WO2020116596A1 - フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法 - Google Patents

フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法 Download PDF

Info

Publication number
WO2020116596A1
WO2020116596A1 PCT/JP2019/047740 JP2019047740W WO2020116596A1 WO 2020116596 A1 WO2020116596 A1 WO 2020116596A1 JP 2019047740 W JP2019047740 W JP 2019047740W WO 2020116596 A1 WO2020116596 A1 WO 2020116596A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
organopolysiloxane
composition
curing
group
Prior art date
Application number
PCT/JP2019/047740
Other languages
English (en)
French (fr)
Inventor
弘 福井
津田 武明
ファ レン
Original Assignee
ダウ・東レ株式会社
ダウ シリコーンズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社, ダウ シリコーンズ コーポレーション filed Critical ダウ・東レ株式会社
Priority to EP19893829.2A priority Critical patent/EP3892688A4/en
Priority to US17/420,149 priority patent/US20220064448A1/en
Priority to KR1020217020878A priority patent/KR20210112322A/ko
Priority to JP2020560035A priority patent/JP7453155B2/ja
Priority to CN201980090348.5A priority patent/CN113348211A/zh
Publication of WO2020116596A1 publication Critical patent/WO2020116596A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • C08K5/03Halogenated hydrocarbons aromatic, e.g. C6H5-CH2-Cl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane

Definitions

  • the present invention has a low viscosity, it can be easily applied in a thin film form, and a curable organopolysiloxane composition for film formation, which can provide a uniform and thin film of a cured organopolysiloxane film, and the same To a method for producing a cured film of organopolysiloxane.
  • a cured product of an organopolysiloxane having a polysiloxane skeleton is excellent in transparency, electric insulation, heat resistance, cold resistance, etc., and if desired, a high dielectric functional group such as a fluoroalkyl group is introduced to improve electric activity. Since it can be easily processed into a film or sheet, it can be used in various applications including adhesive films used in various electric and electronic devices and electroactive films used in transducer devices such as actuators. There is. Cured products of these organopolysiloxanes are classified into hydrosilylation reaction curable type, condensation reaction curable type, peroxide curable type and the like depending on the curing mechanism. A cured organopolysiloxane film using a hydrosilylation-curable curable organopolysiloxane composition is widely used because it cures rapidly when left at room temperature or heated and does not generate by-products.
  • a cured film of an organopolysiloxane is a thin film having a high degree of uniformity and a thickness of 100 ⁇ m or less. Moldability tends to be required.
  • the curable organopolysiloxane when applied in the form of a thin film, the organopolysiloxane has a high viscosity, which makes uniform application difficult, and the resulting thin film of the organopolysiloxane cured product may have defects. ..
  • Patent Document 1 a provision of a high dielectric film having excellent uniformity and flatness in the width direction of the film, and its use and manufacturing method.
  • the film is effective in realizing an organopolysiloxane cured product film having excellent flatness by suppressing variation and unevenness in thickness, but it is processable into an extremely thin film and has a microscopic film surface or Regarding the defects inside the film, there is still room for improvement.
  • a low-molecular-weight siloxane-based solvent such as disiloxane is known as a low-viscosity diluting solvent for high-viscosity organopolysiloxane (for example, Patent Document 2). Further, the present applicants propose the use of an organic solvent in the dielectric organopolysiloxane in Patent Document 3 and the like. However, in these documents, a specific organic solvent is selected and a low-viscosity curable organopolysiloxane composition for film formation is realized for the purpose of realizing a thin film and a uniform organopolysiloxane cured film. This is neither stated nor suggested.
  • the present invention has been made to solve the above problems, and provides a curable organopolysiloxane composition for film formation, which is uniform and can be made into a thin film, and a method for producing a cured organopolysiloxane film using the same.
  • the purpose is to
  • a curing-reactive organopolysiloxane a curing agent, and (D1) an organic polar solvent, (D2) a low-molecular-weight siloxane solvent, and (D3) halogen.
  • the viscosity of the entire composition is 100,000 mPa ⁇ s or less at 25° C., containing one or more kinds of organic solvents selected from the system solvents or mixed solvents thereof, and measured at a shear rate of 0.1 (s ⁇ 1 ).
  • the viscosity of the whole composition measured at a share rate of 10.0 (s ⁇ 1 ) is in the range of 5 to 50,000 mPa ⁇ s, and the whole composition measured at a share rate of 0.1 (s ⁇ 1 ).
  • the above problem can be solved by a curable organopolysiloxane composition for film formation having a thixo ratio of 25.0 or less, which is the ratio of the viscosity of the composition to the viscosity of the entire composition measured at a share rate of 10.0 (s ⁇ 1 ). And has reached the present invention.
  • the curable organopolysiloxane composition for film formation is composed of an alkylsiloxane unit and does not substantially contain a halogen atom, one or more organic compounds selected from the above (D1) and (D2). It is preferable to use a solvent or a mixed solvent thereof, in which case it is particularly preferable not to use the (D3) halogen-based solvent.
  • the object of the present invention is to [1] Curing-reactive organopolysiloxane, curing agent, and one or more kinds of organic solvents selected from (D1) organic polar solvent, (D2) low-molecular siloxane solvent and (D3) halogen-based solvent, or a mixture thereof.
  • the viscosity of the entire composition measured at a share rate of 0.1 (s ⁇ 1 ) is 100,000 mPa ⁇ s or less, and the viscosity of the entire composition measured at a share rate of 10.0 (s ⁇ 1 ) Is in the range of 5 to 50,000 mPa ⁇ s
  • the thixo ratio which is the ratio of the viscosity of the entire composition measured at a share rate of 0.1 (s -1 ) and the viscosity of the entire composition measured at a share rate of 10.0 (s -1 ), is 25.0 or less.
  • Organic polar solvent is cyclohexanone, isobutyl acetate, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, N,N-dimethylformamide (DMF), N-hexaaldehyde, acetone, benzaldehyde, methyl acetate, propyl
  • One or more organic polar solvents selected from acetate, acetophenone, pentyl acetate, butyraldehyde, methyl ethyl acetate, ethyl ether, and tetrahydrofuran (THF)
  • the low-molecular-weight siloxane-based solvent is one or more selected from hexamethyldisiloxane, tetramethyldivinyldisiloxane, 2-methylphenethylpentamethyldisiloxane, octamethyltrisiloxane,
  • the halogen-based solvent is trifluoromethylbenzene, 1,2-bis(trifluoromethyl)benzene, 1,3-bis(trifluoromethyl)benzene, 1,4-bis(trifluoromethyl)benzene, trifluoromethylbenzene
  • halogen-based solvents selected from fluoromethyl chlorobenzene, trifluoromethyl fluorobenzene and hydrofluoroether, The curable organopolysiloxane composition for film formation of [1].
  • One or more kinds of organic solvents selected from the group consisting of (D1) an organic polar solvent and (D2) a low-molecular-weight siloxane-based solvent, wherein the curing-reactive organopolysiloxane and its curing agent do not substantially contain halogen atoms.
  • the curing-reactive organopolysiloxane and its curing agent contain a halogen atom, and one or more organic solvents selected from (D1) organic polar solvents and (D3) halogen-based solvents, or a combination thereof.
  • a curing-reactive organopolysiloxane and a curing agent are characterized by being cured by one or more curing reaction mechanisms selected from hydrosilylation curing, condensation reaction curing, radical reaction curing and high energy ray curing reaction.
  • the curing-reactive organopolysiloxane and the curing agent are (A) an organopolysiloxane having a curing reactive group containing at least two carbon-carbon double bonds in the molecule, [B] an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in the molecule, and (C) an effective amount of a catalyst for hydrosilylation reaction, [1] to [9].
  • the component (A) is (A1) a linear or branched organopolysiloxane having an alkenyl group only at the terminal of the molecular chain, and optionally (a2) having at least one branched siloxane unit in the molecule, vinyl (CH 2 ⁇ CH -) Curing for film formation according to [10], which is an organopolysiloxane containing an alkenyl group-containing organopolysiloxane resin having a group content of 1.0 to 5.0 mass% or a mixture thereof.
  • Organopolysiloxane composition Organopolysiloxane composition.
  • the curable organopolysiloxane composition for film formation according to any one of [1] to [13] is formed into a thin film in a thickness range of 1 to 1000 ⁇ m.
  • Application process Production of a cured organopolysiloxane film, comprising a step of curing the curable organopolysiloxane composition for film formation applied in the form of a thin film, and a step of removing an organic solvent during or after the curing.
  • Method [15] The method for producing a cured organopolysiloxane film according to [14], further including a rolling step.
  • a curable organopolysiloxane composition for film formation which has a low viscosity, enables uniform and thin film coating, and forms an extremely uniform organopolysiloxane cured product film by curing, and the same are used.
  • a method for producing a cured film of an organopolysiloxane can be provided.
  • the organopolysiloxane cured film is a film or sheet-like member excellent in various properties expected of silicone materials such as handling workability, transparency, and heat resistance, and suitable as an adhesive layer or a dielectric layer for electronic parts and the like. It may have a function such as a gel, an elastomer, and an optical binding.
  • the organopolysiloxane cured film is used as a film or sheet-shaped member having excellent thinning properties and high dielectric breakdown strength under high voltage, such as electronic materials, electronic members for display devices such as touch panels, and transducers such as actuators. It can be preferably used for applications as a material.
  • the curable organopolysiloxane composition for film formation of the present invention will be described in detail below.
  • the curable organopolysiloxane composition for film formation of the present invention comprises a curing-reactive organopolysiloxane, a curing agent, and (D1) an organic polar solvent, (D2) a low molecular siloxane solvent, and (D3) a halogen solvent.
  • the viscosity of the entire composition containing one or more selected organic solvents or a mixed solvent thereof at 25° C., measured at a shear rate of 0.1 (s ⁇ 1 ) is 100,000 mPa ⁇ s or less.
  • the curable organopolysiloxane composition for film formation has a viscosity of the entire composition measured at 10.0 (s ⁇ 1 ) of 5 to 50,000 mPa ⁇ s.
  • the curable organopolysiloxane composition can be evenly applied and thinned.
  • the curable organopolysiloxane composition for forming a film of the present invention has a viscosity of 100,000 mPa ⁇ s or less at 25° C., measured at a shear rate of 0.1 (s ⁇ 1 ), and a shear rate.
  • the total viscosity measured at 10.0 (s ⁇ 1 ) is in the range of 5 to 50,000 mPa ⁇ s.
  • the viscosity of the entire composition measured at a share rate of 0.1 (s ⁇ 1 ) is preferably in the range of 5,000 to 75,000 mPa ⁇ s, and at a share rate of 10.0 (s ⁇ 1 ).
  • the measured total viscosity is in the range of 5 to 10,000 mPa ⁇ s. If it exceeds the upper limit of the viscosity range, uniform and thin film coating may be difficult, and if it is less than the lower limit of the viscosity range, the solid content of the film-forming curable organopolysiloxane composition becomes too small. Therefore, it may not be possible to obtain an organopolysiloxane cured product film having a practically sufficient thickness. In addition, it may be uneconomical since it may take a long time to remove the organic solvent after obtaining the cured film described later.
  • One of the features of the curable organopolysiloxane composition for film formation of the present invention is that it has excellent fluidity and does not exhibit thixotropic behavior. As a result, it is possible to realize properties that the overall viscosity is low and the uniform coating property is excellent. Specifically, it is the ratio of the viscosity of the entire composition measured at a shear rate of 0.1 (s ⁇ 1 ) and the viscosity of the entire composition measured at a shear rate of 10.0 (s ⁇ 1 ) for the composition.
  • the thixo ratio is 25.0 or less, and particularly preferably 22.0 or less.
  • the thixo ratio may be 15.0 or less, if necessary, using a solvent other than the above (D1) to (D3), or a curable organopolysiloxane composition having a high halogen content.
  • a solvent other than the above (D1) to (D3) or a curable organopolysiloxane composition having a high halogen content.
  • Solid content In the curable organopolysiloxane composition for film formation of the present invention, the solid content is not particularly limited as long as the above viscosity range and the type of the organic solvent are selected, but the organopolymer having a practically sufficient thickness.
  • the content of components (which may be simply referred to as “solid content” in the present invention) of components that cure to form an organopolysiloxane cured product that is a non-volatile solid component is The content is preferably in the range of 5 to 95% by mass, and more preferably in the range of 5 to 50% by mass.
  • a curable organopolysiloxane composition for film formation having a uniform and low viscosity can be easily prepared even if the solid content is 5 to 40% by mass. Obtainable.
  • the curable organopolysiloxane composition for film formation of the present invention is a good solvent for the organopolysiloxane in which the curing-reactive organopolysiloxane and its curing agent may optionally have a high dielectric functional group. , And is dispersed by a specific organic solvent or a mixed solvent thereof. These organic solvents or mixed solvents thereof, when a part or all of the components of the curing-reactive organopolysiloxane are solid or highly viscous, improve their miscibility and handleability and disperse them uniformly, It is used for the purpose of reducing the overall viscosity and forming a thin and uniform film.
  • Such organic solvents are (D1) organic polar solvent, One or more kinds of organic solvents selected from (D2) low-molecular-weight siloxane-based solvents and (D3) halogen-based solvents, or a mixed solvent thereof, having a boiling point of 80° C. or higher and lower than 200° C. are preferably used. It should be noted that it may be a mixed solvent of different ratios of different or same kinds of different organic solvents.
  • it may be a mixed solvent of (D1) an organic polar solvent and (D2) a low molecular siloxane solvent, or a mixed solvent of (D1) an organic polar solvent and (D3) a halogen solvent
  • the mixed solvent of (D2) low-molecular siloxane solvent and (D3) halogen-based solvent may be mixed solvent of (D1) to (D3), and the same (D2) low-molecular siloxane solvent.
  • a mixed solvent of the same kind may be used, such as a mixed solvent of hexamethyldisiloxane and octamethyltrisiloxane, which is a solvent.
  • the organic polar solvent (D1) is cyclohexanone, isobutyl acetate, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, N,N-dimethylformamide (DMF), N-hexaaldehyde, acetone, benzaldehyde, methyl acetate, At least one selected from propyl acetate, acetophenone, pentyl acetate, butyraldehyde, methyl ethyl acetate, ethyl ether, and tetrahydrofuran (THF).
  • DMF N,N-dimethylformamide
  • the low-molecular-weight siloxane-based solvent is hexamethyldisiloxane, tetramethyldivinyldisiloxane, 2-methylphenethylpentamethyldisiloxane, octamethyltrisiloxane, 1,3-difluorotetramethyldisiloxane.
  • the (D3) halogen-based solvent is preferably trifluoromethylbenzene, 1,2-bis(trifluoromethyl)benzene, 1,3-bis(trifluoromethyl)benzene, 1,4-bis(tri).
  • the higher the content of fluoroalkyl group in the curable organopolysiloxane composition the higher the proportion of the halogen-based solvent used, and the more uniform mixing and lower viscosity may be achieved.
  • the organic solvent contains at least one low-molecular-weight siloxane-based solvent selected from hexamethyldisiloxane and octamethyltrisiloxane and a mixed solvent thereof, and these are OST-10 and OST.
  • OST-10 and OST Commercially available from Dow Silicones Corporation under the names -20 and OST-2.
  • these low molecular weight siloxane-based solvents are optionally used in combination with the above halogen-based solvent. To be done.
  • the organic solvent contains at least one organic solvent selected from (D1) organic polar solvent and (D2) low-molecular siloxane solvent, or a mixed solvent thereof, and (D3) halogen-based solvent.
  • the solvent is not substantially contained, and specifically, the content of the halogen-based solvent (D3) is preferably 0 to 5% by mass or less and 0 to 1% by mass or less based on the whole organic solvent.
  • the content of the halogen-based solvent (D3) is preferably 0 to 5% by mass or less and 0 to 1% by mass or less based on the whole organic solvent.
  • the above organic solvent is At least one low-molecular-weight siloxane-based solvent selected from hexamethyldisiloxane and octamethyltrisiloxane and a mixed solvent thereof are particularly preferable.
  • organic solvents selected from (D1) organic polar solvent and (D2) low-molecular-weight siloxane-based solvent or a mixed solvent thereof have high affinity and compatibility with polyalkylsiloxane containing no halogen atom. This is to provide an excellent and uniform composition.
  • the curable organopolysiloxane and the curing agent described later contain halogen atoms derived from a fluoroalkyl group or the like
  • the sum of the halogen atoms in the curable organopolysiloxane and the curing agent is preferably 1% by mass or more, Is 3% by mass or more, and more preferably 5% by mass or more
  • the organic solvent is one or more kinds of organic solvents selected from (D1) organic polar solvents and (D3) halogenated solvents, or a mixed solvent thereof.
  • the composition of the present invention has the above-mentioned viscosity and thixo ratio. The range of may not be satisfied.
  • the organic solvent preferably has a boiling point of 120° C. or higher, and a boiling point of 120 to 200° C. It is more preferably within the range, and the boiling point of the organic solvent is particularly preferably within the range of 150 to 200°C.
  • the curable organopolysiloxane This is to provide a uniform composition having excellent affinity and compatibility with the curing agent.
  • the organic solvent or a mixed solvent thereof preferably has a certain Hansen solubility parameter. Only by selecting the Hansen solubility parameter of the organic solvent does not satisfy the above range of viscosity and thixo ratio required in the composition of the present invention, by using an organic solvent satisfying a certain Hansen solubility parameter, This is because it is easy to design a composition having excellent affinity and compatibility with the curable organopolysiloxane and the curing agent.
  • the preferred range of the Hansen solubility parameter of the organic solvent is as follows.
  • D value a value based on energy due to intermolecular dispersive force
  • P value value based on energy due to dipole interaction between molecules
  • H value value based on energy due to hydrogen bond between molecules.
  • D value 11 to 20 range
  • P value 0 to 9 range
  • H value 0 to 7 range
  • the organic solvent or the mixed solvent thereof preferably has a symmetrical molecular structure.
  • suitable solvent molecules are not preferably macromolecules, and those whose molar volume is in the range of approximately 70 to 400 are preferably used.
  • the curable organopolysiloxane composition of the present invention contains a curing-reactive organopolysiloxane and a curing agent, and the curing reaction mechanism is not particularly limited, but for example, an alkenyl group and a silicon atom-bonded hydrogen atom can be used.
  • the total amount of alkenyl groups in the composition is 1 mol, and the number of silicon-bonded hydrogen atoms in the component is 0.1.
  • the component (A) is an organopolysiloxane having a curable reactive group containing a carbon-carbon double bond, and is a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group.
  • decenyl group decenyl group, undecenyl group, dodecenyl group, and other alkenyl groups having 2 to 20 carbon atoms; 3-acryloxypropyl group, 4-acryloxybutyl group, and other acryl-containing groups; 3-methacryloxypropyl group, 4-methacryl group
  • Examples thereof include straight-chain, branched-chain, cyclic, or resin-like (network-like) organopolysiloxanes containing a curing reactive group selected from methacryl-containing groups such as a roxybutyl group in the molecule.
  • an organopolysiloxane having a curing reactive group containing a carbon-carbon double bond selected from a vinyl group, an allyl group or a hexenyl group is preferable.
  • the organopolysiloxane as the component (A) may contain a group selected from a monovalent hydrocarbon group having no carbon-carbon double bond, a hydroxyl group and an alkoxy group in the molecule. Further, in the monovalent hydrocarbon group, a part of the hydrogen atoms may be substituted with a halogen atom or a hydroxyl group. Examples of such monovalent hydrocarbon groups include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, etc.
  • Alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group; benzyl group, phenethyl group, naphthylethyl group, naphthylpropyl group, anthracenylethyl group, phenane Aralkyl groups such as tolylethyl group and pyrenylethyl group; and hydrogen atoms of these aryl groups or aralkyl groups, alkyl groups such as methyl group, ethyl group; alkoxy groups such as methoxy group, ethoxy group; chlorine atom, bromine atom, etc. A group substituted with a halogen atom may be mentioned.
  • the component (A) contains a hydroxyl group or the like, the component has condensation reactivity in addition to hydrosilylation reaction curability.
  • component (A) has the following average composition formula: R 1 a R 2 b SiO (4-a-b)/2 May be an organopolysiloxane represented by or a mixture thereof.
  • R 1 is a curing reactive group containing the above carbon-carbon double bond
  • R 2 is a group selected from the above monovalent hydrocarbon group having no carbon-carbon double bond
  • a and b are numbers satisfying the following conditions: 1 ⁇ a+b ⁇ 3 and 0.001 ⁇ a/(a+b) ⁇ 0.33, and preferably the following conditions: 1.5 ⁇ a+b ⁇ 2.5 and It is a number that satisfies 0.005 ⁇ a/(a+b) ⁇ 0.2.
  • the component (A) according to the present invention is particularly preferably (A1) a linear or branched organopolysiloxane having an alkenyl group only at the terminal of the molecular chain, and optionally (a2) having at least one branched siloxane unit in the molecule, vinyl (CH 2 ⁇ CH An organopolysiloxane containing an alkenyl group-containing organopolysiloxane resin having a group content of 1.0) to 5.0% by mass, or a mixture thereof.
  • the component (a1) has (Alk)R 2 2 SiO 1/2 at its molecular chain end.
  • Alk is an alkenyl group having 2 or more carbon atoms
  • the other siloxane units are substantially composed of R 2 2 SiO 2/2. It is a chain or branched organopolysiloxane.
  • R 2 represents the same group as described above.
  • the siloxane polymerization degree of the component (a1) including the terminal siloxane unit is in the range of 7 to 1002, and may be in the range of 102 to 902.
  • Such component (a1) is particularly preferably a linear organopolysiloxane in which both ends of the molecular chain are capped with siloxane units represented by (Alk)R 2 2 SiO 1/2 .
  • the component (a2) is an alkenyl group-containing organopolysiloxane resin, and may be optionally used in combination with the component (a1).
  • Such component (a2) is Average unit formula: (RSiO 3/2) o (R 2 SiO 2/2) p (R 3 SiO 1/2) q (SiO 4/2) r (XO 1/2) s
  • An alkenyl group-containing organopolysiloxane resin represented by is exemplified.
  • R is a group selected from an alkenyl group and the above-mentioned monovalent hydrocarbon group having no carbon-carbon double bond
  • X is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R is an alkenyl group within a range in which the content of vinyl (CH 2 ⁇ CH—) group in the organopolysiloxane resin satisfies at least 1.0 to 5.0 mass %.
  • at least a part of R on the siloxane unit represented by RSiO 1/2 is preferably an alkenyl group.
  • (o+r) is a positive number
  • p is 0 or a positive number
  • q is 0 or a positive number
  • s is 0 or a positive number
  • p/(o+r) is 0 to Is a number in the range of 10
  • q/(o+r) is a number in the range of 0 to 5
  • (o+r)/(o+p+q+r) is a number in the range of 0.3 to 0.9
  • s /(O+p+q+r) is a number within the range of 0 to 0.4.
  • component (a2) particularly preferably, ⁇ (Alk)R 2 2 SiO 1/2 ⁇ q1(R 2 3 SiO 1/2 )q2(SiO 4/2 )r
  • Alk and R 2 are the same groups as described above, q1+q2+r is a number in the range of 50 to 500, (q1+q2)/r is a number in the range of 0.1 to 2.0, and q2 is The content of vinyl (CH 2 ⁇ CH—) groups in the organopolysiloxane resin is a number satisfying the range of 1.0 to 5.0 mass %.
  • the component (a1) having an alkenyl group only at the molecular chain terminal and the organopolysiloxane resin (a2) having a certain amount of the alkenyl group, if necessary, are used in combination to cure the entire composition. It is possible to provide a cured product of an organopolysiloxane that provides a cured reaction product having excellent properties and excellent mechanical strength and flexibility and that is particularly suitable for the adhesive layer or the dielectric layer in the above-mentioned electronic parts and the like.
  • the component (B) is an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in the molecule, and functions as a crosslinking agent for the component (A).
  • component (B) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris(dimethylhydrogensiloxy)methylsilane, and tris(dimethylhydrogen).
  • silane dimethylsiloxy group-capped dimethylsiloxypolysiloxane blocked at both ends of the molecular chain, dimethylsiloxy group-methylhydrogensiloxane copolymer dimethylsiloxane-capped at both ends of the molecular chain, dimethylhydrogensiloxy group blocked at both ends of the molecular chain Siloxane, dimethylhydrogensiloxy group-blocked dimethylsiloxane/methylhydrogensiloxane copolymer, trimethylsiloxy group-blocked dimethylsiloxane/diphenylsiloxane copolymer, dimethylsiloxy group-blocked dimethylsiloxy group Methyl hydrogen siloxane/diphenyl siloxane/dimethyl siloxane copolymer, hydrolyzed condensate of trimethoxysilane, copolymer composed of (CH 3 ) 2 HSiO 1/2 unit and SiO 4/2 unit, (CH
  • the amount of component (B) used is preferably in the range of 0.1 to 10 moles of silicon atom-bonded hydrogen atoms, relative to 1 mole of carbon-carbon double bond in component (A) in the composition.
  • the amount is preferably in the range of 0.1 to 5.0 moles, and particularly preferably in the range of 0.1 to 2.5 moles. If the amount of the component (B) used is less than the lower limit, it may cause curing failure. If the content of the component (B) exceeds the upper limit, the mechanical strength of the cured product becomes too high, and the adhesive layer or In some cases, the physical properties suitable for the dielectric layer may not be obtained.
  • silicon is used for 1 mol of the carbon-carbon double bond in the component (A). It does not prevent the use of hydrogen in the range of more than 20 mol.
  • the component (C) is a catalyst that accelerates the hydrosilylation reaction of the components (A) and (B), and includes a platinum catalyst, a rhodium catalyst, a palladium catalyst, a nickel catalyst, an iridium catalyst, a ruthenium catalyst, and An iron-based catalyst is exemplified, and a platinum-based catalyst is preferable.
  • platinum-based catalyst platinum-based compounds such as platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, alcohol solution of chloroplatinic acid, olefin complex of platinum, alkenylsiloxane complex of platinum, etc.
  • the alkenyl siloxane includes 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenylsiloxanes in which a part of methyl groups of these alkenylsiloxanes are substituted with ethyl groups, phenyl groups and the like, and alkenylsiloxanes in which vinyl groups of these alkenylsiloxanes are substituted with allyl groups, hexenyl groups and the like.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferable because the platinum-alkenylsiloxane complex has good stability. Further, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl-1,1 are added to the complex.
  • these hydrosilylation reaction catalysts are catalysts dispersed or encapsulated in a thermoplastic resin such as silicone resin, polycarbonate resin, and acrylic resin. It may be a thermoplastic resin fine particle containing a hydrosilylation reaction catalyst, particularly a thermoplastic resin fine particle containing a platinum-containing hydrosilylation reaction catalyst.
  • a non-platinum-based metal catalyst such as iron, ruthenium, or iron/cobalt may be used as the catalyst for promoting the hydrosilylation reaction.
  • the amount of component (C) used is an effective amount and is not particularly limited, but is not particularly limited as long as it is an amount that accelerates curing of the curable organopolysiloxane composition of the present invention.
  • the metal atom in this catalyst is 0.01 to 1,000 ppm in mass unit, and preferably ( The amount of platinum metal atoms in the component C) is within the range of 0.1 to 500 ppm. This is because if the content of the component (C) is less than the lower limit of the above range, curing may be insufficient, and if it exceeds the upper limit of the above range, it is uneconomical and coloring of the obtained cured product, etc. , May adversely affect transparency.
  • the high dielectric functional group is introduced by using an organopolysiloxane or organohydrogenpolysiloxane having a high dielectric functional group as a part or all of the component (A) or the component (B), and It can be performed by adding an organic additive having a functional group, a non-reactive organosilicon compound having a high dielectric functional group, or the like to the curable composition.
  • the organopolysiloxane or the organohydrogenpolysiloxane which is the component (A) or the component (B) all of the groups on the silicon atom It is preferable that 10 mol% or more, preferably 20 mol% or more, and more preferably 40 mol% or more of the substituents are substituted with the high dielectric functional group.
  • the type of the high dielectric functional group introduced into the organopolysiloxane cured product film is not particularly limited, but a) a halogen atom or a halogen atom represented by 3,3,3-trifluoropropyl group or the like. Containing group, b) nitrogen atom-containing group typified by cyanopropyl group, c) oxygen atom-containing group typified by carbonyl group, d) heterocyclic group such as imidazole group, e) boron such as borate ester group Examples thereof include a containing group, f) a phosphorus-containing group such as a phosphine group, and g) a sulfur-containing group such as a thiol group. It is preferable to use a halogen atom containing a fluorine atom and a halogen atom-containing group.
  • the high dielectric functional group is (C p F 2p+1 )-R- (R is an alkylene group having 1 to 10 carbon atoms) , P is an integer of 1 or more and 8 or less) is preferably introduced.
  • R is an alkylene group having 1 to 10 carbon atoms
  • P is an integer of 1 or more and 8 or less
  • fluoroalkyl group examples include a trifluoropropyl group, a pentafluorobutyl group, a heptafluoropentyl group, a nonafluorohexyl group, an undecafluoroheptyl group, a tridecafluorooctyl group, a pentadecafluorononyl group, It is a heptadecafluorodecyl group.
  • the curable organopolysiloxane composition according to the present invention may contain, in addition to the above-mentioned components, components other than these components, if necessary, as long as the object of the present invention is not impaired.
  • components other than these components include hydrosilylation reaction inhibitors, release agents, insulating additives, adhesion improvers, heat resistance improvers, fillers, pigments, and other conventionally known various additives.
  • an inorganic filler may be blended for the purpose of adjusting the overall viscosity and improving the functionality such as improving the dielectric property.
  • the hydrosilylation reaction inhibitor is added to suppress the cross-linking reaction between the component (A) and the component (B), extend the pot life at room temperature, and improve storage stability. is there. Therefore, the curable composition of the present invention is a component which is inevitably blended in practical use.
  • hydrosilylation reaction inhibitor examples include acetylene compounds, enyne compounds, organic nitrogen compounds, organic phosphorus compounds and oxime compounds. Specifically, 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyne-3-ol, 3-methyl-1-pentyn-3-ol, 1-ethynyl-1-cyclo Alkyne alcohols such as hexanol and phenylbutynol; enyne compounds such as 3-methyl-3-pentene-1-yne and 3,5-dimethyl-1-hexyne-3-yne; 1,3,5,7-tetramethyl Methylalkenylcyclosiloxanes such as -1,3,5,7-tetravinylcyclotetrasiloxane and 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane; benzotriazole is exemplified. To benzo
  • the compounding amount of the hydrosilylation reaction inhibitor is an amount effective for extending the pot life of the curable organopolysiloxane composition of the present invention at room temperature and improving the storage stability. Usually, it is in the range of 0.001 to 5 parts by mass, and preferably in the range of 0.01 to 2 parts by mass, per 100 parts by mass of the component (A). It may be appropriately selected depending on the content, the amount of alkenyl groups in the component (A), the amount of silicon atom-bonded hydrogen atoms in the component (B), and the like.
  • the filler may or may not be used as desired.
  • a filler either or both of an inorganic filler and an organic filler can be used.
  • the type of filler used is not particularly limited, and examples thereof include a high dielectric filler, a conductive filler, an insulating filler and a reinforcing filler, and one or more of these can be used.
  • the composition of the present invention in the range of not impairing its transparency, coatability and handling workability, for the purpose of adjusting viscosity or imparting functionality, a high dielectric filler, a conductive filler, It may contain one or more fillers selected from the group consisting of insulating fillers and reinforcing fillers, and in particular, from the viewpoint of improving mechanical strength, at least one reinforcing filler may be contained. It is preferable to mix them.
  • part or all of the filler may be surface-treated with one or more surface-treating agents.
  • the filler may be one kind or two or more kinds, and the shape thereof is not particularly limited, and any shape such as particle, plate, needle and fiber can be used. ..
  • the particle diameter of the filler is not particularly limited, but when measured by a laser light diffraction method or a dynamic light scattering method, the volume average particle diameter is, for example, 0.001 It can be in the range of up to 500 ⁇ m.
  • the volume average particle size of the filler can be 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 10 ⁇ m or less, or 0.01 ⁇ m or more, 0.1 ⁇ m or more, 1 ⁇ m or more, depending on the purpose of use of the filler.
  • the aspect ratio of the filler can be 1.5 or more, 5 or more, or 10 or more.
  • fine particles having a volume average particle size of 0.01 ⁇ m or less and a maximum particle size of 0.02 ⁇ m or less a cured product having substantially high transparency, particularly an adhesive film or an electroactive film is produced. You may be able to.
  • the preferable filler is one or more kinds of reinforcing inorganic fine particles having an average primary particle diameter of less than 50 nm from the viewpoint of mechanical strength of the cured product, and fumed silica, wet silica, ground silica, carbonic acid.
  • examples are calcium, diatomaceous earth, finely pulverized quartz, various metal oxide powders other than alumina/zinc oxide, glass fiber, carbon fiber and the like. Further, these may be treated with various surface treatment agents described later. Of these, silica is recommended.
  • the average primary particle diameter is 10 nm or less, the particles partially aggregate, and the specific surface area thereof is 50 m 2 /g or more and 300 m 2 /g or less hydrophilicity or
  • Examples include hydrophobic fumed silica or a metal oxide composite thereof.
  • fumed silica or a metal oxide composite thereof is preferably treated with disilazane or a silane coupling agent described later. You may use these reinforcing inorganic particles in combination of 2 or more types.
  • a filler By blending a filler into the composition, it becomes possible to increase the mechanical strength and dielectric breakdown strength of the cured organopolysiloxane obtained by curing the curable organopolysiloxane composition according to the present invention.
  • the content of these fillers is in the range of 10 to 40% by mass, and in the range of 15 to 35% by mass, with respect to the sum of the components forming a nonvolatile solid content by the curing reaction in the composition. It may be present, and the range of 15 to 30% by mass is particularly preferable.
  • a part or all of the inorganic fine particles (regardless of particle diameter, function, etc.) used in the curable organopolysiloxane composition according to the present invention may be surface-treated with one or more surface-treating agents.
  • the type of surface treatment is not particularly limited, and examples thereof include hydrophilic treatment and hydrophobic treatment, and hydrophobic treatment is preferable.
  • hydrophobically treated inorganic fine particles are used, they can be dispersed in the organopolysiloxane composition at a high filling rate. Further, the increase in the viscosity of the composition is suppressed, and the moldability is improved.
  • the surface treatment can be performed by treating (or coating) the inorganic fine particles with a surface treatment agent.
  • the surface treatment agent for hydrophobizing include at least one surface treatment agent selected from the group consisting of organic titanium compounds, organic silicon compounds, organic zirconium compounds, organic aluminum compounds and organic phosphorus compounds.
  • the surface treatment agents may be used alone or in combination of two or more.
  • organosilicon compounds are preferred, of which silazanes, silanes, siloxanes, and polysiloxanes are preferred, and silazanes, alkyltriacyloxysilanes, and triacylsilyldidimethylsiloxane with one terminal are most preferably used. To be done.
  • the ratio of the surface treatment agent to the total amount of the filler is preferably 0.1% by mass or more and 50% by mass or less, more preferably 0.3% by mass or more and 30% by mass or less.
  • the treatment amount is the charging ratio of the filler and the surface treatment agent, and it is preferable to remove the excess treatment agent after the treatment. Further, there is no problem even if an additive or the like which accelerates or assists the reaction is used in the treatment when necessary.
  • Examples of other functional fillers include dielectric inorganic fine particles, conductive inorganic fine particles, insulating inorganic fine particles, and heat conductive inorganic fine particles. One or more selected from these fine particles can be used in the composition of the present invention. In addition, these inorganic fine particles may have two or more types of functions, such as a function as a reinforcing filler.
  • titanium oxide, barium titanate, strontium titanate, lead zirconate titanate, and barium and part of the titanium portion of barium titanate are calcium, strontium, yttrium, neodymium, samarium, dysprosium.
  • examples thereof include one or more kinds of inorganic fine particles selected from the group consisting of an alkaline earth metal or a rare earth metal, or a composite metal oxide substituted with zirconium, titanium oxide, barium titanate, barium calcium zirconate titanate, And strontium titanate are more preferable, and titanium oxide and barium titanate are further preferable.
  • the dielectric inorganic fine particles is a dielectric inorganic fine particle having a relative dielectric constant of 10 or more at room temperature and 1 kHz.
  • the upper limit of the preferred size (average primary particle size) of the inorganic fine particles is 20,000 nm (20 ⁇ m), but in consideration of workability into a transducer thin film described later, 10,000 nm (10 ⁇ m) is preferable. More preferable.
  • the use of the dielectric inorganic fine particles can further improve the mechanical properties and/or the electrical properties of the cured product of the organopolysiloxane, particularly the relative dielectric constant thereof.
  • the conductive inorganic fine particles are not particularly limited as long as they can impart conductivity to the organopolysiloxane cured product. Specific examples thereof include conductive carbon black, graphite, conductive carbon such as vapor grown carbon (VGCF); and metal powders such as platinum, gold, silver, copper, nickel, tin, zinc, iron and aluminum.
  • conductive carbon black graphite
  • conductive carbon such as vapor grown carbon (VGCF)
  • metal powders such as platinum, gold, silver, copper, nickel, tin, zinc, iron and aluminum.
  • tin oxide doped with antimony tin oxide doped with phosphorus
  • needle-shaped titanium oxide surface-coated with tin oxide/antimony tin oxide, indium oxide, antimony oxide, zinc antimonate, whiskers of carbon or graphite
  • Pigments pigments having conductive properties containing tin oxide and phosphorus on the surface of titanium dioxide particles and the like may be mentioned, and these may be treated with various surface treatment agents described later. These can be used alone or in combination of two or more.
  • the conductive inorganic fine particles are glass fibers, silica alumina fibers, alumina fibers, fibers such as carbon fibers, and aluminum borate whiskers, needle-like reinforcing agents such as potassium titanate whiskers, glass beads, talc, mica,
  • the surface of an inorganic filler such as graphite, wollastonite or dolomite may be coated with a conductive material such as metal.
  • the insulating inorganic fine particles that can be used in the present invention are not particularly limited as long as they are particles of a generally known insulating inorganic material, that is, an inorganic material having a volume resistivity of 10 10 to 10 18 ⁇ cm. Any shape such as a flake shape and a fiber shape (including whiskers) can be used. Specific examples thereof include ceramic spherical particles, plate-like particles, or fibers, and particles of alumina, iron oxide, copper oxide, metal silicates such as mica and talc, quartz, amorphous silica, and glass are preferably used. Take as an example. Further, these may be treated with various surface treatment agents described later. These can be used alone or in combination of two or more. By blending the insulating inorganic fine particles in the composition, it becomes possible to increase the mechanical strength and the dielectric breakdown strength of the cured organopolysiloxane, and the relative dielectric constant may be increased in some cases.
  • the blending amount of these insulating inorganic particles is preferably in the range of 0.1 to 20% by mass, and more preferably in the range of 0.1 to 5% by mass, based on the curable organopolysiloxane composition, depending on the application. If the blending amount is out of the above preferred range, the effect of blending the insulating inorganic particles may not be obtained, or the mechanical strength of the organopolysiloxane cured product may decrease.
  • heat conductive inorganic fine particles usable in the present invention include metal oxide particles such as magnesium oxide, zinc oxide, nickel oxide, vanadium oxide, copper oxide, iron oxide and silver oxide, and aluminum nitride, boron nitride and silicon carbide.
  • Inorganic compound particles such as silicon nitride, boron carbide, titanium carbide, diamond and diamond-like carbon can be mentioned, with zinc oxide, boron nitride, silicon carbide and silicon nitride being preferred.
  • the measurement of the average particle size of these inorganic particles can be carried out by a usual measuring method in the art.
  • a transmission electron microscope (TEM), a field emission transmission electron microscope (FE-TEM), a scanning electron microscope (SEM), a field emission scanning electron TEM
  • FE-TEM field emission transmission electron microscope
  • SEM scanning electron microscope
  • the average primary particle diameter can be measured by measuring the particle diameter by observing with a microscope such as a microscope (FE-SEM) and obtaining an average value.
  • the average particle diameter is about 500 nm or more, the value of the average primary particle diameter can be directly obtained by a laser diffraction/scattering type particle size distribution measuring device or the like.
  • These inorganic particles may be hydrophobized with a surface treatment agent.
  • the surface treatment can be performed by treating (or coating) the filler with a surface treatment agent.
  • the surface treatment agent for hydrophobizing include at least one surface treatment agent selected from the group consisting of organic titanium compounds, organic silicon compounds, organic zirconium compounds, organic aluminum compounds and organic phosphorus compounds.
  • the surface treatment agents may be used alone or in combination of two or more.
  • organosilicon compounds among them, silazanes, silanes, siloxanes, and polysiloxanes are preferable, and silazanes, alkyltriacyloxysilanes, and triacetal silylpolydimethylsiloxanes with one terminal are preferably used.
  • the treatment amount and the like at that time are in accordance with the treatment method, the treatment amount and the like described in the surface treatment of the filler component.
  • the curable organopolysiloxane composition according to the present invention may further contain additives for improving releasability or dielectric breakdown properties, adhesion improvers and the like.
  • a film-shaped or sheet-shaped cured product obtained by curing the curable organopolysiloxane composition according to the present invention into a thin film is used as an adhesive film or an electroactive film (dielectric layer or electrode layer) constituting a transducer.
  • an adhesive film or an electroactive film (dielectric layer or electrode layer) constituting a transducer is used as an adhesive film or an electroactive film (dielectric layer or electrode layer) constituting a transducer.
  • the film may be damaged due to the release of the mold, particularly when an organopolysiloxane cured film is produced at high speed. ..
  • a dielectric layer used for an actuator, a touch panel, or the like there is a case where it is required to reduce adhesiveness in order to improve sensitivity under a low pressure.
  • the curable organopolysiloxane composition according to the present invention may improve the production rate of the film without damaging the film, and may further reduce the tackiness by adding other release agent. is there
  • releasability improving additive applicable to the curable organopolysiloxane composition of the present invention
  • the dielectric breakdown property improving agent is preferably an electric insulating property improving agent, and a hydroxide or salt of aluminum or magnesium, a clay mineral, and a mixture thereof, specifically, aluminum silicate, aluminum sulfate, water. It can be selected from the group consisting of aluminum oxide, magnesium hydroxide, calcined clay, montmorillonite, hydrotalcite, talc, and mixtures thereof.
  • the insulating property improver may be treated by a known surface treatment method. Specific examples thereof are the same as those proposed in the above-mentioned International Publication 2014/105959, for example.
  • the adhesiveness improver is for improving the adhesiveness to the substrate with which the curable organopolysiloxane composition of the present invention is in contact during curing. It is an effective additive when the dielectric layer, which is a cured product of the composition, is not removed again.
  • an adhesion improver vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and other organofunctional alkoxysilane compounds, and their siloxanes.
  • n is a number in the range of 1 to 3.) 1 type or 2 or more types selected from an epoxy group-containing silane represented by or a partial hydrolysis-condensation product (g4) alkoxysilane (excluding those having an epoxy group-containing organic group), or a partial hydrolysis-condensation product thereof. Is exemplified.
  • antioxidants such as phenol-based, quinone-based, amine-based, phosphorus-based, phosphite-based, sulfur-based, thioether-based antioxidants; triazole-based, benzophenone-based, etc., as long as the technical effects of the present invention are not impaired.
  • Agents dyes, pigments and the like are exemplified.
  • the curable organopolysiloxane composition of the present invention comprises a curable organopolysiloxane and a curing reaction accelerating component, preferably by uniformly mixing the above components (A) to (C), and if necessary, And other optional components are added and uniformly mixed. Mixing may be performed at room temperature by using various stirrers or kneaders, but may be mixed under heating as long as the combination of components does not cure during mixing.
  • each component is not particularly limited as long as it does not cure during mixing.
  • store in a plurality of containers so that the cross-linking agent (for example, component (B)) and the curing reaction accelerating component (for example, component (C)) do not exist in the same container.
  • the components in all the containers may be mixed immediately before use.
  • the curing reaction of the curable organopolysiloxane composition of the present invention proceeds at room temperature in a curing reaction based on a condensation reaction such as dehydration and dealcoholization, but an organopolysiloxane cured product film is produced by an industrial production process. In this case, it is usually achieved by heating the composition or exposing it to an active energy ray.
  • the curing reaction temperature by heat is not particularly limited, but is preferably 50° C. or higher and 200° C. or lower, more preferably 60° C. or higher and 200° C. or lower, and further preferably 80° C. or higher and 180° C. or lower.
  • the time required for the curing reaction depends on the structures of the components (A), (B), and (C), but is usually 1 second or more and 3 hours or less. Generally, a cured product can be obtained by keeping the temperature within the range of 90 to 180° C. for 10 seconds to 30 minutes. The film manufacturing method and rolling process will be described later.
  • active energy rays examples include ultraviolet rays, electron beams, and radiation, but ultraviolet rays are preferable from the viewpoint of practicality.
  • a hydrosilylation reaction catalyst having high activity with respect to the ultraviolet rays used for example, bis(2,4-pentanedionato)platinum complex, (methylcyclopentadienyl)trimethylplatinum complex, Is preferably added.
  • a high-pressure mercury lamp, a medium-pressure mercury lamp, a Xe-Hg lamp, a deep UV lamp and the like are suitable as the ultraviolet ray generating source, and the irradiation amount at that time is preferably 100 to 8,000 mJ/cm 2 .
  • the organopolysiloxane cured product film of the present invention can be suitably obtained by curing the above-mentioned curable organopolysiloxane composition on a separator having a release layer.
  • the cured film of the organopolysiloxane of the present invention can be suitably realized by applying the above-mentioned curable organopolysiloxane composition in the form of a film, followed by rolling to cure it into a film by heating or the like.
  • the cured film of the organopolysiloxane of the present invention itself may be further rolled, or the film coated or cured between the separators provided with the release layer may be further rolled.
  • a cured film of an organopolysiloxane according to the present invention comprises a curable organopolysiloxane composition for forming a film as described above, which is a film-shaped base material, a tape-shaped base material, or a sheet-shaped base material (hereinafter referred to as “film-shaped base material” After that, it can be formed on the surface of the base material by curing by a method corresponding to the curing mechanism.
  • the base material is particularly a flat base material having a release surface, and the curable organopolysiloxane composition is preferably applied onto the release surface. Since such a base material functions as a separator, the organopolysiloxane cured product film of the present invention laminated on the base material can be smoothly separated from the release layer with a small force and attached to an intended electronic device or the like. Since it can be adhered, it has an advantage of being excellent in handling workability.
  • Examples of the type of substrate include paperboard, cardboard paper, clay-coated paper, polyolefin laminated paper, particularly polyethylene laminated paper, synthetic resin film sheet, natural fiber cloth, synthetic fiber cloth, artificial leather cloth, and metal foil.
  • a synthetic resin film/sheet is preferable, and examples of the synthetic resin include polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyethylene terephthalate, and nylon.
  • a film of heat resistant synthetic resin such as polyimide, polyether ether ketone, polyethylene naphthalate (PEN), liquid crystal polyarylate, polyamide imide, and polyether sulfone is suitable.
  • transparent materials such as polypropylene, polystyrene, polyvinylidene chloride, polycarbonate, polyethylene terephthalate, and PEN are suitable.
  • the base material is preferably in the form of a film or a sheet.
  • the thickness is not particularly limited, but is usually about 5 to 300 ⁇ m.
  • a support film that has been subjected to primer treatment, corona treatment, etching treatment, and plasma treatment may be used.
  • the surface of the film-shaped substrate opposite to the pressure-sensitive adhesive layer may be surface-treated to prevent scratches, stains, fingerprints, antiglare, antireflection, antistatic and the like.
  • the cured organopolysiloxane film obtained by curing the curable organopolysiloxane composition for film formation of the present invention includes an adhesive layer (including a pressure-sensitive adhesive layer) or an electroactive film (including a dielectric film such as a dielectric layer).
  • the cured layer is preferably handled as a laminated film laminated in a releasable state on a film substrate having a release layer having a release coating ability.
  • the release layer is sometimes called a release liner, a separator, a release layer or a release coating layer, and is preferably a release coating such as a silicone release agent, a fluorine release agent, an alkyd release agent, or a fluorosilicone release agent. It may be a release layer having a function, or a base material itself which is hard to physically form fine irregularities on the surface of the base material or which does not easily adhere to the pressure-sensitive adhesive layer of the present invention. Particularly in the laminate film according to the present invention, it is preferable to use a release layer obtained by curing a fluorosilicone release agent as the release layer.
  • the method for producing a cured organopolysiloxane film using the curable organopolysiloxane composition for film formation On the separator having a release layer, the above-mentioned curable organopolysiloxane composition for film formation is formed into a thin film having a thickness after curing of 1 to 1000 ⁇ m, preferably 1 to 200 ⁇ m, and more preferably 1 to 100 ⁇ m.
  • Process of applying It includes a step of curing the film-forming curable organopolysiloxane composition applied in the form of a thin film, and a step of removing the organic solvent during or after the curing, and further has a rolling step described later. May be.
  • the organic solvent can be efficiently removed from the organopolysiloxane cured film by reducing the pressure or heating the film or the film precursor during or after curing. This is because if the residual rate of the organic solvent is high, it may cause a contact failure or cause contamination in the device, especially when the organopolysiloxane cured film is used as an electronic material.
  • the whole laminate in which the uncured curable organopolysiloxane composition is applied between the separators having a release layer described later the whole laminate is rolled and then cured by heating or the like to produce a flat and uniform organopolysiloxane. It is particularly preferred to obtain a polysiloxane cured product film.
  • the amount of the curable organopolysiloxane composition applied on the substrate needs to be such that the cured film has an average thickness of 1 to 200 ⁇ m and can be rolled.
  • the rolling process can be performed by applying a curable organopolysiloxane composition onto a substrate and using a known rolling method such as roll rolling. If necessary, the cured or semi-cured organopolysiloxane cured product may be molded into a substantially sheet shape and then rolled.
  • the cured organopolysiloxane film after rolling needs to have an average film thickness in the range of 1 to 200 ⁇ m.
  • an organopolysiloxane cured product film having a desired thickness can be designed by adjusting the gap between the rolls. For example, the roll having an average thickness of 1 to 200 ⁇ m is used.
  • the gap between them is adjusted in the range of 2.0 to 4.0 times the average thickness of the desired cured organopolysiloxane film.
  • the thickness of the release layer is particularly preferably in the range of 100 to 200 ⁇ m. If the gap is wider than the upper limit, voids (voids) derived from bubbles may not be sufficiently eliminated, and defects on the film surface and inside may increase.
  • the rolling process is preferably performed in the uncured state by applying the curable organopolysiloxane composition onto the substrate.
  • the curable organopolysiloxane composition as a raw material is preferably applied onto a sheet-shaped substrate having a release layer, rolled by rolling or the like, and then flattened.
  • the siloxane composition can be cured by heating or the like to obtain the organopolysiloxane cured product film of the present invention.
  • the method of applying the curable organopolysiloxane composition before rolling to the substrate, the substrate, and the like are the same as above, and the fluoroalkyl group-containing organopolysiloxane cured product having the primer layer and the flattening layer is further Rolling processing such as roll rolling may be performed.
  • the cured organopolysiloxane film of the present invention is in the form of a thin film, and the average thickness of the film is preferably in the range of 1 to 200 ⁇ m, and the average thickness is preferably in the range of 1 to 150 ⁇ m. More preferably, the thickness is in the range of 1 to 100 ⁇ m.
  • the average thickness of the film is the average value of the thickness at the center of the film.
  • the above-mentioned organopolysiloxane cured product film is uniform and flat, and the difference between the thickness at the terminal and the thickness at the center is within 5.0% in the width direction of the film, and the average thickness at the center of the film is average.
  • the width direction of the film is a direction perpendicular to the length direction of the film, and is generally a direction perpendicular to the plane direction with respect to the direction in which the curable organopolysiloxane composition as a raw material is applied onto the substrate.
  • the winding direction is the length direction
  • the width direction of the film is the direction perpendicular thereto.
  • the width direction of the film is a direction perpendicular to the major axis direction, and in the case of a square or substantially square film, it is either a direction perpendicular to or parallel to each side of the square film. May be in the width direction.
  • the difference (absolute value) between the terminal thickness ( ⁇ m) and the central thickness ( ⁇ m) in the width direction of the film is 5.0% or less and 4.0% or less. Is preferable, and it is particularly preferable that it is within 3.5%.
  • the film has a flat and uniform structure with substantially no unevenness on the surface, including swelling at both ends, and the maximum displacement (difference) in thickness in the film width direction is 5.0% or less. It is preferable that the maximum displacement (difference) of the thickness of the entire film is within 5.0%, and it is particularly preferable that the film is a flat film having substantially no unevenness.
  • the cured film of the organopolysiloxane of the present invention has an average thickness per sheet in the range of 1 to 200 ⁇ m, but a plurality of films are superposed to form a laminated film having a thickness of more than 200 ⁇ m to form an adhesive layer or a dielectric layer. It can be used for the purpose of forming a layer.
  • a dielectric film forming a dielectric layer formed by laminating two or more layers of the film is included in the scope of the present invention.
  • the organopolysiloxane cured product film of the present invention preferably has a certain size (area), a film width of 30 mm or more, and a film area of 900 mm 2 or more.
  • a film is, for example, a 30 mm square or more organopolysiloxane cured product film.
  • the organopolysiloxane cured product film of the present invention may have a structure in which the curable composition as the raw material is uniformly applied and cured even on the release layer, Even if the length is such that it can be wound on a roll, it can be used without limitation. Needless to say, the organopolysiloxane cured product film may be cut into a desired size and shape before use.
  • the organopolysiloxane cured product film of the present invention preferably has extremely few defects on the film surface at the arbitrary positions of the film.
  • the film surface defect is a contaminated site on the film surface due to adhesion of voids (voids) derived from air bubbles, dust, and floating dust. If a large number of these exist, the uniformity of the film surface is impaired and Since a visual defect is caused, it becomes a cause of causing dielectric breakdown of the film at the site, especially when a high voltage is applied to the film and electricity is applied. It may be difficult to visually confirm surface defects, especially minute voids having a diameter of several to several tens of ⁇ m.
  • the organopolysiloxane cured product film of the present invention is obtained by measuring the number of surface defects using an optical means in an area having a unit area of 15 mm ⁇ 15 mm at an arbitrary position of the film.
  • the number of surface defects is in the range of 0 to 1, preferably in the range of 0 to 0.5, and more preferably in the range of 0 to 0.1.
  • dielectric breakdown is likely to occur when a high voltage is applied to the film to apply current, and the dielectric breakdown strength of the entire film is significantly reduced.
  • the measurement of the number of defects using optical means means that light is irradiated from a light source having a constant illuminance at a constant incident angle to the film surface, and the reflected light is reflected by an optical means such as a CCD camera.
  • This is a method of detecting and counting those having a constant signal threshold value as surface defects.
  • the illuminance at the film position becomes constant at a specific incident angle (for example, 10 to 60 degrees) from a white LED light source installed at a position at a constant distance (for example, 50 to 300 mm) from the film.
  • specularly reflected light (reflected light having a reflection angle corresponding to the above incident angle) is installed at a position at a constant distance from the film (for example, 50 to 400 mm) at a scanning speed of 10 m/min. Is detected by a CCD camera with a pixel size of 10 ⁇ m, the detected signal is differentiated in the scanning direction, and the number of defects having a specific signal threshold value is counted over the entire film roll. Can be converted into the number of defects per area.
  • the surface of the cured organopolysiloxane film has a constant surface incident angle. It is possible to specify the number of defects on the film surface by irradiating light from a white LED light source having and detecting the reflected light.
  • the organopolysiloxane cured product film of the present invention is in the form of a thin film, it is preferable that the number of defects inside the film is also suppressed. Specifically, when the number of internal defects is measured using an optical means in an area having a unit area of 15 mm ⁇ 15 mm at an arbitrary portion of the film, the number of internal defects is in the range of 0 to 20. And a range of 0 to 15 is preferable. When the number of internal defects exceeds the above upper limit, dielectric breakdown is likely to occur when a high voltage is applied to the film, and the dielectric breakdown strength of the entire film is significantly reduced.
  • the number of internal defects can be specified by measuring the number of defects using an optical means.
  • a light source having a constant illuminance irradiates light vertically to the lower surface of the film, and the transmitted light is detected by an optical means such as a CCD camera to obtain a constant signal threshold value.
  • an optical means such as a CCD camera
  • the number of defects inside the film can be specified by irradiating the white LED light source so as to penetrate the film and detecting the transmitted light.
  • the cured film of the organopolysiloxane of the present invention is substantially transparent when a colorant, a filler having a large particle size, or the like is not added, and is used as a dielectric layer or an adhesive layer in applications requiring transparency/visibility. Can be used.
  • substantially transparent means that when a film-shaped cured product having an average thickness of 1 to 200 ⁇ m is formed, it is visually transparent, and generally, the transmittance of light having a wavelength of 450 nm is It is 80% or more when the value of air is 100%.
  • a suitable organopolysiloxane cured product film is a thin film and highly transparent, and preferably has an average thickness in the range of 1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m. Further, those having a light transmittance of 90% or more are particularly preferable.
  • the cured film of the organopolysiloxane of the present invention has very few defects on the surface and inside thereof, and therefore even when a high voltage is applied to the film, voids (voids) in the film that are defective. It is possible to suppress the occurrence of an overvoltage in dust or the like and to prevent the dielectric breakdown phenomenon of the film, and as a result, it is possible to realize a high dielectric breakdown strength.
  • the “dielectric breakdown strength” is a measure of the dielectric breakdown resistance of the film under an applied DC or AC voltage, and the applied voltage before the dielectric breakdown is divided by the thickness of the film. Thus, the dielectric breakdown strength value or the dielectric breakdown voltage value can be obtained.
  • the dielectric breakdown strength in the present invention is measured in a unit of potential difference with respect to a unit of film thickness (in the present invention, volt/micrometer (V/ ⁇ m)).
  • Such dielectric breakdown strength can be measured by an electric insulating oil breakdown voltage tester (for example, Portatest 100A-2 manufactured by Soken Co., Ltd.) having a program conforming to the standard such as JIS 2101-82.
  • an electric insulating oil breakdown voltage tester for example, Portatest 100A-2 manufactured by Soken Co., Ltd.
  • JIS 2101-82 volt/micrometer
  • the cured organopolysiloxane film of the present invention has a dielectric breakdown strength measured at room temperature of 56 V/ ⁇ m to 200 V/ ⁇ m, and 70 V/ ⁇ m to 100 V/ ⁇ m. More preferable. If the number of defects on the film surface and inside exceeds the upper limit, the above dielectric breakdown strength may not be realized. Further, the cured film of the organopolysiloxane of the present invention is uniform in its entirety and contains almost no microscopic defects. Therefore, the standard deviation value of the dielectric breakdown strength is sufficiently small that the standard deviation value is 0.1 to 10.0 V/ ⁇ m. The range is preferably 0.1 to 5.0 V/ ⁇ m.
  • the organopolysiloxane cured film of the present invention may optionally be introduced with a high dielectric functional group such as a fluoroalkyl group, and the relative permittivity of the entire film at 1 kHz and 25° C. is easily designed to be 3 or more. be able to.
  • the relative permittivity can be designed by the introduction amount of the high dielectric functional group and the use of the high dielectric filler, and the relative dielectric constants of 4 or more, 5 or more, or 6 or more organopolysiloxane cured product films are compared. It can be easily obtained.
  • the cured film of the organopolysiloxane of the present invention is characterized by having few microscopic surface and internal defects, and macroscopic mechanical physical properties such as hardness, tear strength, and tensile strength have the same chemical composition. In general, it is substantially the same as an organopolysiloxane cured product film designed by the thickness and shape of the film.
  • an organopolysiloxane cured product can be designed to have the following mechanical properties measured according to JIS K 6249 when it is thermoformed into a 2.0 mm thick sheet. (1) Young's modulus (MPa) can be 10 MPa or less at room temperature, and a particularly preferable range is 0.1 to 2.5 MPa.
  • the tear strength (N/mm) can be set to 1 N/mm or more at room temperature, and a particularly preferable range is 2 N/mm or more.
  • the tensile strength (MPa) can be 1 MPa or more at room temperature, and a particularly preferable range is 2 MPa or more.
  • the elongation at break (%) can be set to 200% or more, and a particularly preferable range is 200 to 1000%.
  • the shear storage elastic modulus at 23° C. is 10 3 to 10 3. It is preferably in the range of 5 Pa, and more preferably in the range of 1.0 ⁇ 10 3 to 5.0 ⁇ 10 4 Pa.
  • the residual compressive strain (%) of the organopolysiloxane cured product film is preferably less than 10%, more preferably less than 5%, and particularly preferably 4% or less. ..
  • a material having a compressive residual strain (%) of less than 3% can be designed.
  • the compression rate (%) of the cured film of the organopolysiloxane of the present invention is preferably 15% or more, more preferably 18% or more, and particularly preferably 20% or more.
  • the cured organopolysiloxane film of the present invention When used as an adhesive or an adhesive layer, it may be designed to have a desired adhesive force by using an organopolysiloxane resin or the like.
  • a test piece obtained by laminating a polyethylene terephthalate (PET) substrate (thickness 50 ⁇ m) on both sides of a 100 ⁇ m thick cured organopolysiloxane film was performed in an environment of 23° C. and a humidity of 50% at a speed of 300 mm/min, When peeled off at an angle of 180 degrees, the adhesive force can be designed to be 5 N/m or more, or 10 N/m or more.
  • PET polyethylene terephthalate
  • organopolysiloxane cured product film of the present invention Since the organopolysiloxane cured product film of the present invention has very few fine defects (voids derived from bubbles, sites contaminated by dust or suspended dust) on the film surface and inside the film, a high voltage is applied to the film. When applied and energized, dielectric breakdown is unlikely to occur in the defect, high dielectric breakdown strength can be realized as the entire film, and in addition to transparency and flatness, adhesiveness/adhesiveness can be realized as desired.
  • the cured film of the organopolysiloxane of the present invention is useful as an electronic material, a member for a display device or a member for a transducer (including a sensor, a speaker, an actuator, and a generator), and particularly an adhesive/adhesive film. It can be suitably used as an electroactive film (including a high-dielectric film) as an electronic component or a member of a display device.
  • an electroactive film or an electroactive film is suitable as a member for a display panel or a display, and is particularly useful for a so-called touch panel application capable of operating a device, particularly an electronic device by touching the screen with a fingertip or the like. is there.
  • an electroactive film having a high dielectric breakdown strength is suitable for a member for a transducer such as an actuator in the form of a single layer or a laminated film, and is particularly useful for an actuator application activated under a high voltage.
  • the application of the cured film of the organopolysiloxane of the present invention is not limited to the above-mentioned ones, and is used for television receivers, computer monitors, personal digital assistant monitors, surveillance monitors, video cameras, digital cameras, mobile phones.
  • Various displays for displaying characters, symbols, images such as telephone, mobile information terminal, instrument panel displays for automobiles, instrument panel displays for various equipment, devices and equipment, vending machines, automatic teller machines, etc. Can be used for the flat panel display (FPD).
  • the device is a display device such as a CRT display, a liquid crystal display, a plasma display, an organic EL display, an inorganic EL display, an LED display, a surface electrolytic display (SED), a field emission display (FED), or a touch panel using these. It can be applied.
  • the organopolysiloxane cured product film of the present invention is a film-like or sheet-like member excellent in electrical properties including dielectric breakdown strength and mechanical properties, and has high relative dielectric constant and mechanical strength as required. (Specifically, it has tensile strength, tear strength, elongation rate, etc.).
  • the organopolysiloxane cured film can be used as an electronic material, a member for a display device, or a member for a transducer (including one for a sensor, a speaker, an actuator, and a generator). It can be suitably used as a film (dielectric layer or electrode layer). As a specific usage method thereof, a known usage method of the dielectric layer or the pressure-sensitive adhesive layer can be used without particular limitation.
  • Component (a1-1) both ends vinyldimethylsiloxy group blocked, dimethylsiloxane polymer (vinyl group content: 0.22% by mass, siloxane polymerization degree: 335)
  • Component (a1-2) both ends vinyldimethylsiloxy group blocked, dimethylsiloxane polymer (vinyl group content: 0.09% by mass, siloxane polymerization degree: 835)
  • Component (a2-2) both ends vinyldimethylsiloxy group blocking, 3,3,3-trifluoropropylmethyl, dimethylsiloxane copolymer (vinyl group content: 0.50% by mass, siloxane polymerization degree: 107)
  • Component (a2-3) vinyl dimethyls
  • Dosilica Product name before treatment: CAB-O-SIL(R)MS75D
  • Component (b2) Fumed silica treated with hexamethyldisilazane
  • Component (c1) fumed silica treated with hexamethyldisilazane and 1,3-bis(3,3,3-trifluoropropyl)-1,1,3,3-tetramethyldisilazane (before treatment)
  • Component (c2) titania and silica composite oxide treated with hexamethyldisilazane and 1,3-bis(3,3,3-trifluoropropyl)-1,1,3,3-tetramethyldisilazane
  • Product name before treatment: VPTiO2 1580S Component (c3): fumed silica treated with hexamethyldisilazane and 1,3-bis(3,3,3-trifluoroprop
  • the weight average molecular weight (Mw) of the component (f1) is a polystyrene equivalent weight average molecular weight measured by GPC (gel permeation chromatography) using tetrahydrofuran (THF) as a solvent.
  • Component (f3) both ends dimethylhydrosiloxy group blocked, dimethylsiloxane-3,3,3-trifluoropropylmethylsiloxane copolymer (content of silicon atom-bonded hydrogen atoms (wt%) is about 0.015)
  • Component (g1) Platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex with both ends vinyldimethylsiloxy group-blocked dimethylsiloxane polymer solution (platinum concentration about 0.6% by weight)
  • Component (h) 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane
  • composition example 1 As the liquid curable organopolysiloxane composition 1, the above component (a1-1) is 41.81% by weight, the component (a1-2) is 36.95% by weight, and the component (b1) is 5.94% by weight. Component (b2) 10.50% by weight, component (d) 1.47% by weight, component (e) 2.93% by weight, component (g1) 0.30% by weight, component (h) It was mixed and prepared so as to be 0.10% by weight. At that time, the silicon atom-bonded hydrogen atom (Si—H) of the component (e) was used in an amount of about 2.0 mol per mol of the vinyl group in the composition. The specific gravity of Composition 1 was 1.08 g/cc.
  • composition example 2 As the liquid curable organopolysiloxane composition 2, the above component (a2-1) is 31.92% by weight, the component (a2-2) is 45.55% by weight, and the component (c1) is 17.00% by weight. , Component (c2) was 2.00% by weight, component (f1) was 2.89% by weight, component (g2) was 0.36% by weight, and component (h) was 0.28% by weight. Prepared. At that time, the silicon atom-bonded hydrogen atom (Si—H) of the component (f1) was used in an amount of about 1.2 mol per mol of the vinyl group in the composition. The specific gravity of composition 2 was 1.23 g/cc.
  • composition example 3 As the liquid curable organopolysiloxane composition 3, the above component (a2-1) is 2.63% by weight, the component (a2-3) is 65.38% by weight, and the component (c1) is 18.80% by weight. , Component (c3) 2.33 wt%, component (f2) 5.24 wt%, component (f3) 5.24 wt%, component (g1) 0.10 wt%, component (h) It was mixed and prepared so as to be 0.28% by weight. At that time, the total amount of silicon atom-bonded hydrogen atoms (Si—H) of the components (f2) and (f3) was about 1.2 mol per mol of vinyl group in the composition. The specific gravity of composition 3 was 1.25 g/cc.
  • Example 1 A solution was prepared by mixing the above liquid curable organopolysiloxane composition example 1 and hexamethyldisiloxane (Dow DOWSIL TM OS-10) at a volume ratio of 50:50 at 1200 rpm for 2 minutes under vacuum. A mixture was obtained.
  • Dow DOWSIL TM OS-10 hexamethyldisiloxane
  • Example 2 A solution mixture was obtained in the same manner as in Example 1 except that octamethyltrisiloxane (Dow DOWSIL TM OS-20) was used instead of hexamethyldisiloxane.
  • octamethyltrisiloxane Dow DOWSIL TM OS-20
  • Example 3 A solution mixture was obtained in the same manner as in Example 1 except that a mixture of hexamethyldisiloxane and octamethyltrisiloxane (Dow DOWSIL TM OS-2) was used instead of hexamethyldisiloxane.
  • a mixture of hexamethyldisiloxane and octamethyltrisiloxane (Dow DOWSIL TM OS-2) was used instead of hexamethyldisiloxane.
  • Example 4 The above liquid curable organopolysiloxane composition example 3 and cyclohexanone (Wako Pure Chemical Industries, Ltd.) were mixed at a volume ratio of 50:50 under vacuum at 1200 rpm for 2 minutes to obtain a solution mixture.
  • Example 5 A solution mixture was obtained in the same manner as in Example 4 except that octamethyltrisiloxane (Dow DOWSIL TM OS-20) was used instead of cyclohexanone.
  • octamethyltrisiloxane Dow DOWSIL TM OS-20
  • the blade gap of the applicator with a micrometer (SA-204, manufactured by Tester Sangyo Co., Ltd.) is set to about 175 microns, and an automatic coating machine (PI-1210 manufactured by Tester Sangyo Co., Ltd.) on the OHP film (CG3500, 3M Co. was used to apply the above solution mixture. At that time, the coating speed was 10 mm per second. Further, after leaving it under vacuum at 40° C. for 15 to 30 minutes, it was heated at 110° C. for 1 hour to prepare an organopolysiloxane cured product film.
  • SA-204 manufactured by Tester Sangyo Co., Ltd.
  • Comparative Example 1 having a very high viscosity at a share rate of 0.1 (s ⁇ 1 )
  • a film could be produced although the thixotropy was high. However, it could not be peeled off successfully from the base film.
  • Comparative Examples 2 to 7 as shown in Table 2, the thixotropy was extremely high, and it was difficult to prepare uniform films.
  • Table 3 shows the average values and standard deviations of the thicknesses measured at a total of 15 in-plane values of the films of Examples 1 to 5.
  • the sheet (thickness: about 40 to 70 ⁇ m) obtained above was used to measure the dielectric breakdown strength with an electric insulating oil breakdown voltage tester PORTATEST 100A-2 manufactured by Soken Electric Co., Ltd. With respect to Examples 1 to 5, measurement was carried out at 15 arbitrary points in an area of 10 cm x 10 cm, and the average value and standard deviation thereof are shown in Table 4.
  • Comparative Examples 2 and 4 in Composition Examples 2 and 3 having a large fluorine content, when hexamethyldisiloxane was used as the organic solvent, the viscosity of the solution mixture at the shear rate of 0.1 (S ⁇ 1 ) was obtained. It was extremely high and the thixotropy was very high, so that a uniform organopolysiloxane cured film could not be obtained. Further, as shown in Comparative Examples 3 and 5, when toluene is used in Composition Examples 2 and 3 having a high fluorine content, a cured organopolysiloxane film having a very high thixotropic property of the solution mixture can be obtained. I could not do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、均一かつ薄膜化が可能であるフィルム形成用硬化性オルガノポリシロキサン組成物、およびそれを用いるオルガノポリシロキサン硬化物フィルムの製造方法を提供することを目的とする。 硬化反応性オルガノポリシロキサン、硬化剤、および(D1)有機系極性溶媒、(D2)低分子シロキサン系溶媒および(D3)ハロゲン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、25℃におけるシェアレート0.1(s-1)で測定した組成物全体の粘度が100,000mPa・s以下であり、シェアレート10.0(s-1)で測定した組成物全体の粘度が5~10,000mPa・sの範囲にあり、そのチキソ比が25.0以下である、フィルム形成用硬化性オルガノポリシロキサン組成物およびそれを用いるオルガノポリシロキサン硬化物フィルムの製造方法。

Description

フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法
本発明は、低粘度であるため、薄膜状に容易に塗布することができ、均一かつ薄膜状のオルガノポリシロキサン硬化物フィルムを与えることができるフィルム形成用硬化性オルガノポリシロキサン組成物、およびそれを用いるオルガノポリシロキサン硬化物フィルムの製造方法に関する。
ポリシロキサン骨格を有するオルガノポリシロキサン硬化物は、透明性、電気絶縁性、耐熱性、耐寒性等に優れ、所望によりフルオロアルキル基等の高誘電性官能基を導入することで電気活性を改善することができ、かつフィルム状またはシート状に容易に加工できることから、各種の電気・電子デバイスに用いる接着剤フィルムやアクチュエータ等のトランスデューサーデバイスに用いる電気活性フィルムをはじめ、様々な用途に使用されている。これらのオルガノポリシロキサン硬化物は、その硬化機構により、ヒドロシリル化反応硬化型、縮合反応硬化型、パーオキサイド硬化型などに分類される。室温放置もしくは加熱によって速やかに硬化し、副生物を発生しないので、ヒドロシリル化反応硬化型の硬化性オルガノポリシロキサン組成物を用いるオルガノポリシロキサン硬化物フィルムが汎用されている。
特に、タッチパネル等の電子材料、表示装置用電子部材、特にセンサー、アクチュエータ等のトランスデューサー材料として、オルガノポリシロキサン硬化物フィルムは高度の均一性に加えて100μm以下の厚さを有する薄膜フィルムとしての成形性が求められる傾向がある。しかしながら、硬化性オルガノポリシロキサンを薄膜状に塗布する場合、オルガノポリシロキサンが高粘度であるため、均一な塗布が困難となり、得られる薄膜状のオルガノポリシロキサン硬化物フィルムに欠陥を生じる場合がある。これらの欠陥を多数含むオルガノポリシロキサン硬化物フィルムを高い荷電圧下で使用した場合、これらの欠陥において絶縁破壊が発生する場合があり、オルガノポリシロキサン硬化物に期待される高い光学的透明性、電気絶縁性、耐熱性、耐寒性等の諸特性を十分に発揮できないという問題があった。
一方、本件出願人らは、特許文献1において、均一性、フィルムの幅方向への平坦性に優れた高誘電性フィルムの提供、ならびにその用途および製造方法を提案している。しかしながら、当該フィルムは厚みのばらつきやムラを抑制して平坦性に優れたオルガノポリシロキサン硬化物フィルムを実現する上では有効であるが、極めて薄いフィルムへの加工性や微視的なフィルム表面又はフィルム内部の欠陥について、未だ改善の余地を残している。
なお、ジシロキサン等の低分子シロキサン系溶媒は、高粘度オルガノポリシロキサンの低粘度希釈溶媒として知られている(たとえば、特許文献2)。また、本件出願人らは、特許文献3等において、誘電性オルガノポリシロキサンにおいて、有機溶媒の使用を提案している。しかしながら、これらの文献において、薄膜化および均一なオルガノポリシロキサン硬化物フィルムを実現する目的で、特定の有機溶媒を選択し、かつ、低粘度のフィルム形成用硬化性オルガノポリシロキサン組成物を実現することは記載も示唆もされていない。
国際公開2017/183541号 特開平05-148275号公報 国際公開2016/098334号
本発明は上記課題を解決すべくなされたものであり、均一かつ薄膜化が可能であるフィルム形成用硬化性オルガノポリシロキサン組成物、およびそれを用いるオルガノポリシロキサン硬化物フィルムの製造方法を提供することを目的とする。
上記課題を解決すべく、鋭意検討の結果、本発明者らは、硬化反応性オルガノポリシロキサン、硬化剤、および(D1)有機系極性溶媒、(D2)低分子シロキサン系溶媒および(D3)ハロゲン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、25℃において、シェアレート0.1(s-1)で測定した組成物全体の粘度が100,000mPa・s以下であり、シェアレート10.0(s-1)で測定した組成物全体の粘度が5~50,000mPa・sの範囲にあり、かつ、シェアレート0.1(s-1)で測定した組成物全体の粘度とシェアレート10.0(s-1)で測定した組成物全体の粘度の比であるチキソ比が25.0以下であるフィルム形成用硬化性オルガノポリシロキサン組成物により上記課題を解決できることを見出し、本発明に到達した。なお、フィルム形成用硬化性オルガノポリシロキサン組成物が、アルキルシロキサン単位から構成され、ハロゲン原子を実質的に含まない場合には、上記の(D1)および(D2)から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を使用することが好ましく、その場合、(D3)ハロゲン系溶媒を使用しないことが特に好ましい。
すなわち、本発明の目的は、
[1]硬化反応性オルガノポリシロキサン、硬化剤、および
(D1)有機系極性溶媒、(D2)低分子シロキサン系溶媒および(D3)ハロゲン系溶媒
から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、
25℃において、シェアレート0.1(s-1)で測定した組成物全体の粘度が100,000mPa・s以下であり、シェアレート10.0(s-1)で測定した組成物全体の粘度が5~50,000mPa・sの範囲にあり、
シェアレート0.1(s-1)で測定した組成物全体の粘度とシェアレート10.0(s-1)で測定した組成物全体の粘度の比であるチキソ比が25.0以下である、
フィルム形成用硬化性オルガノポリシロキサン組成物。
[2](D1)有機系極性溶媒が、シクロヘキサノン、酢酸イソブチル、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミド(DMF)、N-ヘキサアルデヒド、アセトン、ベンズアルデヒド、メチルアセテート、プロピルアセテート、アセトフェノン、酢酸ペンチル、ブチルアルデヒド、エチル酢酸メチル、エチルエーテル、およびテトラヒドロフラン(THF)から選ばれる1種類以上の有機系極性溶媒であり、
(D2)低分子シロキサン系溶媒が、ヘキサメチルジシロキサン、テトラメチルジビニルジシロキサン、2-メチルフェネチルペンタメチルジシロキサン、オクタメチルトリシロキサン、1,3-ジフルオロテトラメチルジシロキサンから選ばれる1種類以上の低分子シロキサン系溶媒であり、
(D3)ハロゲン系溶媒が、トリフルオロメチルベンゼン、1,2-ビス(トリフルオロメチル)ベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(トリフルオロメチル)ベンゼン、トリフルオロメチルクロロベンゼン、トリフルオロメチルフルオロベンゼン、ハイドロフルオロエーテルから選ばれる1種類以上のハロゲン系溶媒である、
[1]のフィルム形成用硬化性オルガノポリシロキサン組成物。
[3]硬化反応性オルガノポリシロキサンおよびその硬化剤がハロゲン原子を実質的に含まず、かつ、(D1)有機系極性溶媒および(D2)低分子シロキサン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、(D3)ハロゲン系溶媒を実質的に含まないことを特徴とする、[1]または[2]に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[4]硬化反応性オルガノポリシロキサンおよびその硬化剤が、ハロゲン原子を実質的に含まず、ジメチルシロキサン単位を全シロキサン単位の50モル%以上含むメチルポリシロキサン組成物であって、有機溶媒が、ヘキサメチルジシロキサンおよびオクタメチルトリシロキサンから選ばれる少なくとも1種の低分子シロキサン系溶媒またはそれらの混合物を含み、(D3)ハロゲン系溶媒を実質的に含まないことを特徴とする、[1]~[3]のいずれか1項に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[5]硬化反応性オルガノポリシロキサンおよびその硬化剤がハロゲン原子を含むものであり、かつ、(D1)有機系極性溶媒および(D3)ハロゲン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含むことを特徴とする、[1]または[2]に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[6]有機溶媒の沸点が120℃以上である、[5]に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[7]硬化して不揮発性の固形分であるオルガノポリシロキサン硬化物を形成する成分の含有量が、組成物全体の5~95質量%の範囲である、[1]~[6]のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[8]硬化反応性オルガノポリシロキサンおよび硬化剤が、ヒドロシリル化反応硬化、縮合反応硬化、ラジカル反応硬化および高エネルギー線硬化反応から選ばれる1種類以上の硬化反応機構により硬化することを特徴とする、[1]~[7]のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[9]硬化後に得られるオルガノポリシロキサン硬化物フィルムが、1kHz、25℃において測定される比誘電率が3以上である、[1]~[8]のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[10]硬化反応性オルガノポリシロキサンおよび硬化剤が、
(A)分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサン、
(B)分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン、および
(C)有効量のヒドロシリル化反応用触媒
である、[1]~[9]のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[11]前記成分(A)が、
(a1)分子鎖末端のみにアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサン、および、任意で
(a2)分子内に少なくとも1つの分岐シロキサン単位を有し、ビニル(CH=CH―)基の含有量が1.0~5.0質量%の範囲内にあるアルケニル基含有オルガノポリシロキサン樹脂
を含有するオルガノポリシロキサンまたはその混合物である、[10]に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[12]前記成分(A)または成分(B)の一部又は全部が高誘電性官能基を有するオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンである、[10]または[11]に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[13]前記成分(A)または成分(B)の一部又は全部が、分子中に(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基を有するオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンである、[10]~[12]のいずれか1項に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
[14]剥離層を有するセパレータ上に、[1]~[13]のいずれか1項に記載のフィルム形成用硬化性オルガノポリシロキサン組成物を、厚さが1~1000μmの範囲で薄膜状に塗布する工程、
当該薄膜状に塗布されたフィルム形成用硬化性オルガノポリシロキサン組成物を硬化させる工程、および
硬化中または硬化後に有機溶媒を除去する工程
を有することを特徴とする、オルガノポリシロキサン硬化物フィルムの製造方法。
[15]さらに、圧延加工工程を有する、[14]に記載のオルガノポリシロキサン硬化物フィルムの製造方法。
本発明によれば、低粘度であり、均一かつ薄膜状の塗布が可能であり、硬化により極めて均一なオルガノポリシロキサン硬化物フィルムを形成するフィルム形成用硬化性オルガノポリシロキサン組成物およびそれを用いるオルガノポリシロキサン硬化物フィルムの製造方法を提供することができる。当該オルガノポリシロキサン硬化物フィルムは、取扱作業性および透明性、耐熱性等のシリコーン材料に期待される諸特性に優れ、電子部品等の接着層または誘電層として好適なフィルム乃至シート状部材であり、ゲル、エラストマー、オプティカルボンディング等の機能を有してもよい。さらに好適には、当該オルガノポリシロキサン硬化物フィルムは、薄膜化および高電圧下における絶縁破壊強度に優れるフィルム乃至シート状部材として、電子材料、タッチパネル等の表示装置用電子部材、アクチュエータ等のトランスデューサー材料としての用途に好適に用いることができる。
以下、本発明のフィルム形成用硬化性オルガノポリシロキサン組成物について詳細に説明する。
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物は、硬化反応性オルガノポリシロキサン、硬化剤、および
(D1)有機系極性溶媒、(D2)低分子シロキサン系溶媒および(D3)ハロゲン系溶媒
から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、25℃において、シェアレート0.1(s-1)で測定した組成物全体の粘度が100,000mPa・s以下であり、シェアレート10.0(s-1)で測定した組成物全体の粘度が5~50,000mPa・sの範囲にある、フィルム形成用硬化性オルガノポリシロキサン組成物である。ここで、硬化性オルガノポリシロキサン組成物を均一に溶解する、特定の有機溶媒を選択的に使用し、かつ、組成物の全体粘度を一定の範囲に調整することで、フィルム形成用硬化性オルガノポリシロキサン組成物の均一塗布および薄膜化が可能になる。
[全体粘度]
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物は、25℃において、シェアレート0.1(s-1)で測定した組成物全体の粘度が100,000mPa・s以下であり、かつシェアレート10.0(s-1)で測定した全体粘度が、5~50,000mPa・sの範囲である。シェアレート0.1(s-1)で測定した組成物全体の粘度は、5,000~75,000mPa・sの範囲であることが好ましく、かつ、シェアレート10.0(s-1)で測定した全体粘度が、5~10,000mPa・sの範囲にあることが特に好ましい。上記の粘度範囲の上限を超えると、均一かつ薄膜状の塗布が困難となる場合があり、上記の粘度範囲の下限未満では、フィルム形成用硬化性オルガノポリシロキサン組成物の固形分量が少なくなりすぎるため、実用上十分な厚みを有するオルガノポリシロキサン硬化物フィルムが得られなくなる場合がある。また、後述する硬化物フィルムを得た後の有機溶媒除去に長時間を要する場合があり、不経済である。
[チキソ比]
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物は、流動性に優れ、チキソトロピックな挙動を示さないことを特徴の一つとする。これにより、全体粘度が低く、かつ、均一塗布性に優れる性質が実現可能である。具体的には、当該組成物についてシェアレート0.1(s-1)で測定した組成物全体の粘度とシェアレート10.0(s-1)で測定した組成物全体の粘度の比であるチキソ比が25.0以下であり、22.0以下であることが特に好ましい。さらに、同チキソ比は、必要に応じて、15.0以下であってよく、上記の(D1)~(D3)以外の溶媒を使用したり、ハロゲン含有率の高い硬化性オルガノポリシロキサン組成物について(D2)成分を使用したりすると、組成物全体のチキソ比が前記上限を超えるため、均一な薄層フィルムを形成するための塗布が困難となる場合がある。
[固形分量]
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物において、上記の粘度範囲および有機溶媒の種類を選択するかぎり、その固形分量は特に制限されるものではないが、実用上十分な厚みを有するオルガノポリシロキサン硬化物フィルムを実現するため、硬化して不揮発性の固形分であるオルガノポリシロキサン硬化物を形成する成分の含有量(本発明において、単に「固形分」ということがある)が、組成物全体の5~95質量%の範囲であることが好ましく、5~50質量%の範囲であることがより好ましい。本発明の好適な有機溶媒またはそれらの混合溶媒を使用する場合、上記の固形分が5~40質量%であっても、均一かつ低粘度なフィルム形成用硬化性オルガノポリシロキサン組成物を容易に得ることができる。
[溶媒]
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物は、硬化反応性オルガノポリシロキサンおよびその硬化剤が、必要に応じて高誘電性官能基を有してもよいオルガノポリシロキサンに対する良溶媒である、特定の有機溶媒またはそれらの混合溶媒により分散されていることを特徴とする。これらの有機溶媒またはそれらの混合溶媒は、硬化反応性オルガノポリシロキサンの一部又は全部の成分が、固形または高粘度である場合に、その混和性および取り扱い性を向上させ、均一に分散させ、全体粘度を低減して、薄膜状かつ均一なフィルム形成を行う目的で使用される。ベンゼン等の無極性溶媒等を用いる場合、本発明の技術的効果が十分に実現できず、均一に硬化反応性オルガノポリシロキサンおよびその硬化剤を組成物中に分散できなかったり、低粘度を実現できない場合がある。
このような有機溶媒は、
(D1)有機系極性溶媒、
(D2)低分子シロキサン系溶媒、および
(D3)ハロゲン系溶媒
から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒であり、沸点が80℃以上200℃未満のものが好ましく使用される。なお、異種または同種の異なる有機溶媒の任意の比率の混合溶媒であってもよい。たとえば、(D1)有機系極性溶媒と(D2)低分子シロキサン系溶媒の混合溶媒であってもよく、(D1)有機系極性溶媒と(D3)ハロゲン系溶媒の混合溶媒であってもよく、(D2)低分子シロキサン系溶媒と(D3)ハロゲン系溶媒の混合溶媒であってもよく、(D1)~(D3)の3種混合溶媒であってもよく、同じ(D2)低分子シロキサン系溶媒である、ヘキサメチルジシロキサンとオクタメチルトリシロキサンの混合溶媒のように、同種の混合溶媒であってもよい。これらの有機溶媒は、硬化反応性オルガノポリシロキサンおよびその変性率に応じて適宜選択することができる。
好適には、(D1)有機系極性溶媒が、シクロヘキサノン、酢酸イソブチル、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミド(DMF)、N-ヘキサアルデヒド、アセトン、ベンズアルデヒド、メチルアセテート、プロピルアセテート、アセトフェノン、酢酸ペンチル、ブチルアルデヒド、エチル酢酸メチル、エチルエーテル、およびテトラヒドロフラン(THF)から選ばれる1種類以上である。
同じく、好適には、(D2)低分子シロキサン系溶媒が、ヘキサメチルジシロキサン、テトラメチルジビニルジシロキサン、2-メチルフェネチルペンタメチルジシロキサン、オクタメチルトリシロキサン、1,3-ジフルオロテトラメチルジシロキサンから選ばれる1種類以上である。
同じく、好適には、(D3)ハロゲン系溶媒が、トリフルオロメチルベンゼン、1,2-ビス(トリフルオロメチル)ベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(トリフルオロメチル)ベンゼン、トリフルオロメチルクロロベンゼン、トリフルオロメチルフルオロベンゼン、ハイドロフルオロエーテルから選ばれる1種類以上である。特に、硬化性オルガノポリシロキサン組成物中のフルオロアルキル基含有量が高いほど、上記のハロゲン系溶媒の使用比率を高めることで均一な混和および低粘度化を図れる場合がある。
特に好適には、上記の有機溶媒は、ヘキサメチルジシロキサンおよびオクタメチルトリシロキサンから選ばれる少なくとも1種の低分子シロキサン系溶媒およびそれらの混合溶媒を含むものであり、これらはOST-10、OST-20およびOST-2の名称で、ダウシリコーンズコーポレーションから市販されている。また、硬化性オルガノポリシロキサン組成物中のフルオロアルキル基含有量が高い場合には、任意でこれらの低分子シロキサン系溶媒と上記のハロゲン系溶媒を併用することも本発明の好適な形態に包含される。
後述する硬化性オルガノポリシロキサンおよび硬化剤がフルオロアルキル基等に由来するハロゲン原子を実質的に含有しない場合、具体的には、硬化性オルガノポリシロキサンおよび硬化剤中のハロゲン原子の和が1質量%未満である場合、上記の有機溶媒は、(D1)有機系極性溶媒および(D2)低分子シロキサン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、(D3)ハロゲン系溶媒を実質的に含まないことが好ましく、具体的には、(D3)ハロゲン系溶媒の含有量が有機溶媒全体の0~5質量%以下、0~1質量%以下であることが好ましい。特に、後述する硬化性オルガノポリシロキサンおよび硬化剤が、ジメチルシロキサン単位等のアルキルシロキサン単位を、その全シロキサン単位の50モル%以上、好適には75モル%以上含む場合、上記の有機溶媒は、ヘキサメチルジシロキサンおよびオクタメチルトリシロキサンから選ばれる少なくとも1種の低分子シロキサン系溶媒およびそれらの混合溶媒であることが特に好ましい。これは、(D1)有機系極性溶媒および(D2)低分子シロキサン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒が、ハロゲン原子を含まないポリアルキルシロキサンの親和性、相溶性に優れ、均一な組成物を与えるためである。
他方、後述する硬化性オルガノポリシロキサンおよび硬化剤がフルオロアルキル基等に由来するハロゲン原子を含む場合、特に、硬化性オルガノポリシロキサンおよび硬化剤中のハロゲン原子の和が1質量%以上、好適には3質量%以上、より好適には5質量%以上である場合、有機溶媒として、(D1)有機系極性溶媒および(D3)ハロゲン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含むことが特に好ましい。これは、フルオロアルキル基等に由来するハロゲン原子の含有量が高い場合、(D1) 有機系極性溶媒および(D3)ハロゲン系溶媒またはそれを含む混合溶媒が硬化性オルガノポリシロキサンおよび硬化剤との親和性、相溶性に優れ、均一な組成物を与えるためである。一方、フルオロアルキル基等に由来するハロゲン含有量の多い硬化性オルガノポリシロキサンおよび硬化剤について、(D2)低分子シロキサン系溶媒のみを使用した場合、本発明の組成物が上記の粘度およびチキソ比の範囲を満たさなくなる場合がある。
また、後述する硬化性オルガノポリシロキサンおよび硬化剤がフルオロアルキル基等に由来するハロゲン原子を含む場合、前記の有機溶媒はその沸点が120℃以上であることが好ましく、沸点が120~200℃の範囲内であることがより好ましく、当該有機溶媒の沸点が150~200℃の範囲内であることが特に好ましい。フルオロアルキル基等に由来するハロゲン原子の含有量が高い場合、(D1)有機系極性溶媒および(D3)ハロゲン系溶媒またはそれを含む混合溶媒の沸点が前記範囲にあると、硬化性オルガノポリシロキサンおよび硬化剤との親和性、相溶性に優れ、均一な組成物を与えるためである。
[溶媒の好適なハンセン溶解度パラメーター]
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物において、有機溶媒またはそれらの混合溶媒は、一定のハンセン溶解度パラメーターを有することが好ましい。有機溶媒のハンセン溶解度パラメーターを選択しただけでは、本発明の組成物において必要な上記の粘度およびチキソ比の範囲を充足するものではないが、一定のハンセン溶解度パラメーターを満たす有機溶媒を用いることで、硬化性オルガノポリシロキサンおよび硬化剤との親和性、相溶性に優れた組成物を設計しやすくなるためである。
本発明に係る組成物において、有機溶媒のハンセン溶解度パラメーターの好適な範囲は以下のとおりである。なお、D値: 分子間の分散力によるエネルギーに基づく値、P値:分子間の双極子相互作用によるエネルギーに基づく値、H値:分子間の水素結合によるエネルギーに基づく値である。
D値:11~20の範囲
P値:0~9の範囲
H値:0~7の範囲
[溶媒分子の対称性およびモル体積]
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物において、有機溶媒またはそれらの混合溶媒は、好適には、対称性の分子構造を有することが好ましいと考えられる。さらに、好適な溶媒分子は、巨大分子であることは好ましくなく、そのモル体積が、概ね70~400の範囲にあるものの使用が好ましい。
[硬化性オルガノポリシロキサンおよび硬化剤]
本発明の硬化性オルガノポリシロキサン組成物は、硬化反応性オルガノポリシロキサンおよび硬化剤を含むものであり、その硬化反応機構は特に限定されるものではないが、例えば、アルケニル基とケイ素原子結合水素原子によるヒドロシリル化反応硬化型;シラノール基および/またはケイ素原子結合アルコキシ基による脱水縮合反応硬化型、脱アルコール縮合反応硬化型;有機過酸化物の使用による過酸化物硬化反応型;およびメルカプト基等に対する高エネルギー線照射によるラジカル反応硬化型等が挙げられ、比較的速やかに全体が硬化し、反応を容易にコントロールできることから、ヒドロシリル化反応硬化型、過酸化物硬化反応型、ラジカル反応硬化型、高エネルギー線硬化型およびこれらの組み合わせであることが望ましい。これらの硬化反応は、加熱、高エネルギー線の照射またはこれらの組み合わせに対して進行する。
特に、後述する製造方法でフィルム表面および内部の欠陥が極めて少ないオルガノポリシロキサン硬化物フィルムが得られることから、本発明において、ヒドロシリル化反応硬化性の硬化性オルガノポリシロキサン組成物を用いることが好ましい。
好適には、(A)分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサン、
(B)分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン 組成物中のアルケニル基の合計量1モルに対して、本成分中のケイ素原子結合水素原子が0.1~2.5モルとなる量、および
(C)有効量のヒドロシリル化反応用触媒、
を含有する、硬化性オルガノポリシロキサン組成物を硬化させてなるオルガノポリシロキサン硬化物フィルムであり、特に、前記成分(A)が、
(a1)分子鎖末端のみにアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサン、および、
(a2)分子内に少なくとも1つの分岐シロキサン単位を有し、ビニル(CH=CH―)基の含有量が1.0~5.0質量%の範囲内にあるアルケニル基含有オルガノポリシロキサン樹脂を含有するオルガノポリシロキサン混合物であることがより好ましい。
上記の成分(A)は、炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサンであり、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素数2~20のアルケニル基;3-アクリロキシプロピル基、4-アクリロキシブチル基等のアクリル含有基;3-メタクリロキシプロピル基、4-メタクリロキシブチル基等のメタクリル含有基から選ばれる硬化反応性基を分子内に含有する、直鎖状、分岐鎖状、環状、または樹脂状(ネットワーク状)のオルガノポリシロキサンが例示される。特に、ビニル基、アリル基またはヘキセニル基から選ばれる炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサンが好ましい。
成分(A)であるオルガノポリシロキサンは、分子内に炭素-炭素二重結合を有しない一価炭化水素基、水酸基およびアルコキシ基から選ばれる基を含んでもよい。また、一価炭化水素基は、その水素原子の一部がハロゲン原子または水酸基で置換されていてもよい。このような一価炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などのアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基などのアリール基;ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基などのアラルキル基;およびこれらのアリール基またはアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基が挙げられる。なお、成分(A)が、水酸基等を含む場合、当該成分は、ヒドロシリル化反応硬化性に加えて、縮合反応性を有する。
好適には、成分(A)は、下記の平均組成式:
SiO(4-a―b)/2 
で表されるオルガノポリシロキサン、またはその混合物であってよい。
式中、Rは、上記の炭素-炭素二重結合を含む硬化反応性基であり、
は、上記の炭素-炭素二重結合を有しない一価炭化水素基、水酸基およびアルコキシ基から選ばれる基であり、
aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数であり、好ましくは、次の条件:1.5≦a+b≦2.5及び0.005≦a/(a+b)≦0.2を満たす数である。これは、a+bが上記範囲の下限以上であると、硬化物の柔軟性が高くなるからであり、一方上記範囲の上限以下であると、硬化物の機械強度が高くなるからであり、a/(a+b)が上記範囲の下限以上であると、硬化物の機械強度が高くなるからであり、一方上記範囲の上限以下であると、硬化物の柔軟性が高くなるからである。
本発明にかかる成分(A)は、特に好適には、
(a1)分子鎖末端のみにアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサン、および、任意で
(a2)分子内に少なくとも1つの分岐シロキサン単位を有し、ビニル(CH=CH―)基の含有量が1.0~5.0質量%の範囲内にあるアルケニル基含有オルガノポリシロキサン樹脂
を含むオルガノポリシロキサンまたはその混合物である。
成分(a1)は、その分子鎖末端に
(Alk)R SiO1/2
(式中、Alkは炭素原子数2以上のアルケニル基)で表されるシロキサン単位を有し、その他のシロキサン単位が実質的にR SiO2/2で表されるシロキサン単位のみからなる直鎖状または分岐鎖状のオルガノポリシロキサンである。なお、Rは前記同様の基を表す。また、成分(a1)のシロキサン重合度は、末端シロキサン単位を含めて、7~1002の範囲であり、102~902の範囲であってよい。このような成分(a1)は特に好適には、分子鎖の両末端が(Alk)R SiO1/2で表されるシロキサン単位で封鎖された、直鎖状のオルガノポリシロキサンである。
成分(a2)は、アルケニル基含有オルガノポリシロキサン樹脂であり、任意で、前記の成分(a1)と併用してもよい。このような成分(a2)は、
平均単位式:
(RSiO3/2)o(RSiO2/2)p(RSiO1/2)q(SiO4/2)r(XO1/2)s
で表されるアルケニル基含有オルガノポリシロキサン樹脂が例示される。
上式中、Rは、アルケニル基および前記の炭素-炭素二重結合を有しない一価炭化水素基から選ばれる基であり、Xは水素原子または炭素原子数1~3のアルキル基である。ただし、全てのRのうち、少なくとも、当該オルガノポリシロキサン樹脂中のビニル(CH=CH―)基の含有量が、1.0~5.0質量%の範囲を満たす範囲においてRはアルケニル基であり、特に、RSiO1/2で表されるシロキサン単位上のRの少なくとも一部はアルケニル基であることが好ましい。
上式中、(o+r)は正数であり、pは0又は正数であり、qは0又は正数であり、sは0又は正数であり、かつ、p/(o+r)は0~10の範囲内の数であり、q/(o+r)は0~5の範囲内の数であり、(o+r)/(o+p+q+r)は0.3~0.9の範囲内の数であり、s/(o+p+q+r)は0~0.4の範囲内の数である。
成分(a2)として、特に好適には、
{(Alk)R SiO1/2}q1(R SiO1/2)q2(SiO4/2)r
(式中、Alk、Rは前記同様の基であり、q1+q2+rは50~500の範囲の数であり、(q1+q2)/rは0.1~2.0の範囲の数であり、q2は当該オルガノポリシロキサン樹脂中のビニル(CH=CH―)基の含有量が、1.0~5.0質量%の範囲を満たす範囲の数である)
で表されるアルケニル基含有MQオルガノポリシロキサン樹脂が例示される。
これらの分子鎖末端のみにアルケニル基を有する成分(a1)およびオルガノポリシロキサン樹脂であって、必要に応じて一定量のアルケニル基を有する成分(a2)を併用することで、組成物全体として硬化性に優れ、かつ、機械的強度および柔軟性に優れる硬化反応物を与え、上記の電子部品等における接着層または誘電層に特に適合したオルガノポリシロキサン硬化物フィルムを提供することができる。
成分(B)は、分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンであり、成分(A)の架橋剤として機能する成分である。
このような成分(B)として、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシランの加水分解縮合物、(CH)HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)HSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体、およびこれらの2種以上の混合物が例示される。
成分(B)の使用量は、組成物中の、好適には、成分(A)中の炭素-炭素二重結合1モルに対して、ケイ素原子結合水素原子が0.1~10モルの範囲となる量であり、好適には、0.1~5.0モルの範囲となる量であり、特に好適には、0.1~2.5モルの範囲となる量である。成分(B)の使用量が前記下限以下では硬化不良の原因となる場合があり、成分(B)の含有量が前記上限を超えると、硬化物の機械的強度が高くなりすぎ、接着層または誘電層として好適な物性を得られなくなる場合がある。ただし、本発明にかかるオルガノポリシロキサン硬化物フィルムのガラス等の被着体に対する接着強度の向上等を目的とする場合、成分(A)中の炭素-炭素二重結合1モルに対して、ケイ素原子結合水素原子が20モルを超える範囲で使用することを妨げるものではない。
成分(C)は成分(A)および成分(B)のヒドロシリル化反応を促進する触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒、ニッケル系触媒、イリジウム系触媒、ルテニウム系触媒、および鉄系触媒が例示され、好ましくは、白金系触媒である。この白金系触媒としては、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体等の白金系化合物が例示され、特に白金のアルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンが好ましい。また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、これらのヒドロシリル化反応触媒は、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂中に分散あるいはカプセル化した触媒である、ヒドロシリル化反応触媒含有熱可塑性樹脂微粒子、特に、白金含有ヒドロシリル化反応触媒を含む熱可塑性樹脂微粒子であってもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
成分(C)の使用量は、有効量であり、特に制限されるものではないが、本発明の硬化性オルガノポリシロキサン組成物の硬化を促進する量であれば特に限定されない。具体的には、(A)~(C)成分の和(全体を100質量%とする)に対して、この触媒中の金属原子が質量単位で0.01~1,000ppm、好適には(C)成分中の白金金属原子が、0.1~500ppmの範囲内となる量である。これは、(C)成分の含有量が上記範囲の下限未満であると、硬化が不十分となる場合があり、上記範囲の上限を超えると、不経済であるほか得られる硬化物の着色等、透明性に悪影響を及ぼす場合がある。
[誘電性官能基の導入]
本発明にかかるオルガノポリシロキサン硬化物フィルムをアクチュエータ等のトランスデューサーに用いる電気活性フィルム(たとえば、誘電性フィルム)として用いる場合、硬化物に高誘電性官能基を導入してもよい。ただし、高誘電性官能基を含まないオルガノポリシロキサン硬化物フィルムであっても、電気活性フィルムとして利用することは可能である。なお、これらの高誘電性官能基の導入および比誘電率の向上については、例えば、本件出願人らの国際公開2014/105959号等に提案されている。
高誘電性官能基の導入は、前記成分(A)または成分(B)の一部又は全部として、高誘電性官能基を有するオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンを用いることや、高誘電性官能基を有する有機添加剤、高誘電性官能基を有する非反応性の有機ケイ素化合物等を前記の硬化性組成物に添加することで行うことができる。硬化性組成物への混和性および硬化物の比誘電率の向上の見地から、前記成分(A)または成分(B)であるオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンにおいて、そのケイ素原子上の全ての置換基の10モル%以上、好適には20モル%以上、より好適には40モル%以上が、高誘電性官能基により置換されていることが好ましい。
オルガノポリシロキサン硬化物フィルムに導入される高誘電性官能基の種類は、特に制限されるものではないが、a)3,3,3-トリフルオロプロピル基等に代表されるハロゲン原子及びハロゲン原子含有基、b)シアノプロピル基等に代表される窒素原子含有基、c)カルボニル基等に代表される酸素原子含有基、d)イミダゾール基等の複素環基、e)ボレートエステル基等のホウ素含有基、f)ホスフィン基等のリン含有基、およびg)チオール基等の硫黄含有基が例示され、好適には、フッ素原子を含むハロゲン原子及びハロゲン原子含有基の使用が好ましい。
本発明においては、成分(A)または成分(B)の一部又は全部に、高誘電性官能基は(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基が導入されていることが好ましい。このようなフルオロアルキル基は、比誘電率に優れた硬化物を与え、かつ、各成分がフッ素原子を有することで各成分の相溶性を改善し、透明性に優れた硬化物を与える。このようなフルオロアルキル基の具体例としては、トリフルオロプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ウンデカフルオロヘプチル基、トリデカフルオロオクチル基、ペンタデカフルオロノニル基、ヘプタデカフルオロデシル基である。この中では、誘電特性、経済性、製造容易性、得られる硬化性オルガノポリシロキサン組成物の成形加工性の観点からp=1の基、すなわちトリフルオロプロピル基が好ましい基である。
本発明に係る硬化性オルガノポリシロキサン組成物には上記の成分の他に、本発明の目的を損なわない限り、必要に応じてこれら以外の成分を添加配合することができる。他の成分としては、ヒドロシリル化反応抑制剤、離型剤、絶縁性添加剤、接着性向上剤、耐熱性向上剤、充填剤、顔料その他従来公知の各種添加剤が例示される。例えば、全体の粘度調整や、誘電性の向上などの機能性改善を目的として、無機充填剤を配合することもできる。
[ヒドロシリル化反応抑制剤]
ヒドロシリル化反応抑制剤は、成分(A)および成分(B)との間で起こる架橋反応を抑制して、常温での可使時間を延長し、保存安定性を向上するために配合するものである。従って、本発明の硬化性組成物にとって、実用上、必然的に配合される成分である。
ヒドロシリル化反応抑制剤として、アセチレン系化合物、エンイン化合物、有機窒素化合物、有機燐化合物、オキシム化合物が例示される。具体的には、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ペンチン-3-オール、1-エチニル-1-シクロヘキサノール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-1-ヘキシン-3-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のメチルアルケニルシクロシロキサン;ベンゾトリアゾールが例示される。
ヒドロシリル化反応抑制剤の配合量は、本発明にかかる硬化性オルガノポリシロキサン組成物の常温での可使時間を延長し、保存安定性を向上するのに有効な量である。通常、成分(A)100質量部あたり0.001~5質量部の範囲内であり、好ましくは0.01~2質量部の範囲内であるが、本成分の種類、白金系触媒の性能と含有量、成分(A)中のアルケニル基量、成分(B)中のケイ素原子結合水素原子量などに応じて適宜選定するとよい。
[充填剤]
本発明にかかる硬化性オルガノポリシロキサン組成物において、充填剤は、所望により用いても、用いなくてもよい。充填剤を用いる場合には無機充填剤及び有機充填剤のいずれか又は両方を用いることができる。用いる充填剤の種類は特に限定されないが、例えば、高誘電性充填剤、導電性充填剤、絶縁性充填剤および補強性充填剤が挙げられ、これらの1種以上を用いることができる。特に、本発明の組成物には、その透明性、塗工性および取扱作業性を損なわない範囲で、粘度の調整または機能性の付与を目的として、高誘電性充填剤、導電性充填剤、絶縁性充填剤および補強性充填剤からなる群から選択される1種以上の充填剤を含有することができ、特に、機械的強度の向上の見地から、少なくとも1種類以上の補強性充填剤を配合することが好ましい。特に、充填剤の一部または全部は、1種類以上の表面処理剤により表面処理されていてもよい。
 充填剤は、1種類または2種類以上であってよく、その形状は、特に限定されるものではなく、粒子状、板状、針状、繊維状等の任意の形状のものを用いることができる。フィラーの形状が粒子の場合、フィラーの粒子径は特に限定されるものではないが、例えばレーザー光回折法や動的光散乱法で測定した場合、その体積平均粒子径は、例えば、0.001~500μmの範囲とすることができる。また、フィラーの使用目的によって、フィラーの体積平均子粒径は、300μm以下、200μm以下、100μm以下、10μm以下、或いは、0.01μm以上、0.1μm以上、1μm以上とすることができる。フィラーの形状が板状、針状、繊維状等の異方性の場合、フィラーのアスペクト比は1.5以上、5以上、または10以上であることができる。体積平均子粒径が0.01μm以下で、かつ最大粒子の粒子径が0.02μm以下の微粒子を用いると、実質的に透明性の高い硬化物、とくに接着剤フィルムまたは電気活性フィルムを製造することができる場合がある。
[補強性充填剤]
本発明において、好ましい充填剤は、硬化物の機械的強度の見地から、平均一次粒子径が50nm未満である1種以上の補強性無機微粒子であり、ヒュームドシリカ、湿式シリカ、粉砕シリカ、炭酸カルシウム、珪藻土、微粉砕石英、アルミナ・酸化亜鉛以外の各種金属酸化物粉末、ガラス繊維、炭素繊維等が例示される。また、これらを後述する各種表面処理剤で処理したものであってもよい。中でもシリカが推奨される。
好例としては、機械的強度の向上の観点から、平均一次粒子径が10nm以下であり、部分的に凝集し、その比表面積が、50m2/g以上、300m2/g以下である親水性または疎水性のヒュームドシリカもしくはその金属酸化物複合体が挙げられる。更に、分散性の向上の点から、ヒュームドシリカもしくはその金属酸化物複合体をジシラザンまたは後述するシランカップリング剤で処理したものが好ましい。これら補強性無機粒子は、2種以上を組み合わせて使用してもよい。
 充填剤を組成物中に配合することにより、本発明に係る硬化性オルガノポリシロキサン組成物を硬化してなるオルガノポリシロキサン硬化物の力学強度、絶縁破壊強度を増加させることが可能となる。これら充填剤の配合量は、組成物中の、硬化反応により不揮発性の固形分を形成する成分の和に対して、10~40質量%の範囲内であり、15~35質量%の範囲であってよく、15~30質量%の範囲が特に好ましい。上記の質量%範囲の上限を超えると、均一かつ薄膜状の塗布が困難となる場合があり、上記の質量%範囲の下限未満では、フィルム形成用硬化性オルガノポリシロキサン組成物の硬化後の物性が不十分となる恐れがある。
 本発明に係る硬化性オルガノポリシロキサン組成物中で使用される、無機微粒子(粒子径、機能等を問わず)の一部または全部は、1種類以上の表面処理剤により表面処理されてよい。表面処理の種類は特に限定されるものではなく、親水化処理又は疎水化処理が挙げられるが、疎水化処理が好ましい。疎水化処理された無機微粒子を用いると、オルガノポリシロキサン組成物中に高充填率で分散させることができる。また、組成物の粘度の増大が抑制され、成形加工性が向上する。
 前記表面処理は、表面処理剤で無機微粒子を処理(又は被覆処理)することにより行うことができる。疎水化用の表面処理剤としては、有機チタン化合物、有機ケイ素化合物、有機ジルコニウム化合物、有機アルミニウム化合物及び有機リン化合物からなる群から選択される少なくとも1種の表面処理剤が挙げられる。表面処理剤は単独で又は2種以上を組み合わせてもよい。これらの表面処理剤のうち、有機ケイ素化合物、なかでも、シラザン、シラン類、シロキサン類、ポリシロキサン類が好ましく、シラザン、アルキルトリアルコシキシラン類、片末端トリアルコシキシリルポリジメチルシロキサン類が最も好ましく使用される。
前記表面処理において、充填剤総量に対する表面処理剤の割合は、0.1質量%以上、50質量%以下の範囲が好ましく、0.3質量%以上、30質量%以下の範囲がより好ましい。なお、処理量については、充填剤と表面処理剤の仕込み比であり、処理後に余剰の処理剤を除去することが好ましい。また、必要に応じて処理する際には反応を促進もしくは補助する添加剤等を使用しても問題ない。
[その他の機能性充填剤]
その他の機能性充填剤として、誘電性無機微粒子、導電性無機微粒子、絶縁性無機微粒子、および熱伝導性無機微粒子が例示される。これらの微粒子から選択される1種以上を本発明の組成物に用いることができる。なお、これらの無機微粒子は、補強性充填剤としての機能等、2種類以上の機能を併せ持つ場合がある。
好ましい誘電性無機微粒子の例として、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸ジルコン酸鉛、およびチタン酸バリウムのバリウムおよびチタン部位の一部をカルシウム、ストロンチウム、イットリウム、ネオジム、サマリウム、ジスプロシウムなどのアルカリ土類金属または希土類金属、あるいはジルコニウムで置換した複合金属酸化物からなる群から選択される1種以上の無機微粒子が挙げられ、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウムカルシウム、及びチタン酸ストロンチウムがより好ましく、酸化チタン、チタン酸バリウムがさらに好ましい。
特に、誘電性無機微粒子は、その少なくとも一部が、室温、1kHzにおける比誘電率が10以上の誘電性無機微粒子であることが特に好ましい。なお、当該無機微粒子の好ましい大きさ(平均一次粒子径)の上限は、20,000nm(20μm)であるが、後述するトランスデューサー用薄膜への加工性を考慮すると、10,000nm(10μm)がより好ましい。当該誘電性無機微粒子の使用により、オルガノポリシロキサン硬化物について、機械特性及び/又は電気的特性、特にその比誘電率をさらに改善できる場合がある。
導電性無機微粒子としては、オルガノポリシロキサン硬化物に導電性を付与することができるものであれば特に制限はない。具体的には、導電性カーボンブラック、グラファイト、気相成長カーボン(VGCF)等の導電性カーボン;白金、金、銀、銅、ニッケル、錫、亜鉛、鉄、アルミニウム等の金属粉が挙げられ、更に、アンチモンがドープされた酸化錫、リンがドープされた酸化錫、酸化錫/アンチモンで表面被覆された針状酸化チタン、酸化スズ、酸化インジウム、酸化アンチモン、アンチモン酸亜鉛、カーボンやグラファイトのウィスカー表面に酸化錫等を被覆した顔料;錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、リンドープ酸化錫及び酸化ニッケルからなる群より選ばれる少なくとも1種の導電性金属酸化物を被覆した顔料;二酸化チタン粒子表面に酸化錫及びリンを含む導電性を有する顔料等が挙げられ、また、これらは、後述する各種表面処理剤で処理したものであってもよい。これらはそれぞれ単独で又は2種以上組合せて用いることができる。
さらに、導電性無機微粒子は、ガラス繊維、シリカアルミナ繊維、アルミナ繊維、炭素繊維等の繊維、並びに、ホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー等の針状の補強剤、ガラスビーズ、タルク、マイカ、グラファイト、ウォラストナイト、ドロマイト等の無機充填剤の表面に金属等の導電性物質を被覆したものでもよい。
本発明で使用可能な絶縁性無機微粒子としては、一般に知られる絶縁型無機材料、すなわち、体積抵抗率が1010~1018Ω・cmである無機材料の粒子であれば制限が無く、粒子状、フレーク状、ファイバー(ウィスカー含む)状のいずれの形状でも使用することができる。具体的には、セラミックの球状粒子、板状粒子、又はファイバーが挙げられ、アルミナ、酸化鉄、酸化銅、マイカやタルク等の金属シリケート、石英、非晶質シリカ、ガラス等の粒子が好ましい使用例として挙げられる。また、これらを後述する各種表面処理剤で処理したものであってもよい。これらはそれぞれ単独で又は2種以上組合せて用いることができる。絶縁性無機微粒子を組成物中に配合することにより、オルガノポリシロキサン硬化物の力学強度、絶縁破壊強度を増加させることが可能となり、比誘電率の増加も見られる場合がある。
これら絶縁性無機粒子の配合量は、その用途に応じ、硬化性オルガノポリシロキサン組成物に対し0.1~20質量%の範囲が好ましく、0.1~5質量%の範囲がより好ましい。配合量が上記の好ましい範囲を外れると、絶縁性無機粒子の配合による効果が得られない、もしくはオルガノポリシロキサン硬化物の力学強度が低下する場合がある。
本発明で使用可能な熱伝導性無機微粒子としては、酸化マグネシウム、酸化亜鉛、酸化ニッケル、酸化バナジウム、酸化銅、酸化鉄、酸化銀等の金属酸化物粒子、および窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素、炭化ホウ素、炭化チタン、ダイヤモンド、ダイヤモンドライクカーボン等の無機化合物粒子が挙げられ、酸化亜鉛、窒化ホウ素、炭化ケイ素、および窒化ケイ素が好ましい。これら熱伝導性無機微粒子の1種以上を組成物中に配合することにより、オルガノポリシロキサン硬化物の熱伝導率を増加させることが可能となる。
これらの無機粒子の平均粒子径の測定は当該分野で通常の測定方法により行うことができる。例えば、平均粒子径が50nm以上、500nm程度以下である場合は、透過型電子顕微鏡(TEM)、電界放射型透過電子顕微鏡(FE-TEM)、走査型電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE-SEM)等の顕微鏡観察により粒子径を測定し、平均値を求めることで平均一次粒子径の測定ができる。一方、平均粒子径が500nm程度以上である場合は、レーザー回折・散乱式粒度分布測定装置等により平均一次粒子径の値を直接求めることができる。
これらの無機粒子は、表面処理剤により疎水化処理されていてもよい。当該表面処理は、表面処理剤で充填剤を処理(又は被覆処理)することにより行うことができる。疎水化用の表面処理剤としては、有機チタン化合物、有機ケイ素化合物、有機ジルコニウム化合物、有機アルミニウム化合物及び有機リン化合物からなる群から選択される少なくとも1種の表面処理剤が挙げられる。表面処理剤は単独で又は2種以上を組み合わせてもよい。これらの表面処理剤のうち、有機ケイ素化合物、なかでも、シラザン、シラン類、シロキサン類、ポリシロキサン類が好ましく、シラザン、アルキルトリアルコシキシラン類、片末端トリアルコシキシリルポリジメチルシロキサン類が好ましく使用される。また、その際の処理量等は、充填剤成分の表面処理で述べた処理方法、処理量等に準じるものである。
[その他の任意成分]
本発明に係る硬化性オルガノポリシロキサン組成物は、さらに離型性または絶縁破壊特性の改善のための添加剤、接着性向上剤等を含有することができる。
本発明に係る硬化性オルガノポリシロキサン組成物を薄膜状に硬化して得られるフィルム状またはシート状の硬化物は、接着剤フィルム、トランスデューサーを構成する電気活性フィルム(誘電層または電極層)に好適に利用できるものであるが、薄膜形成時に硬化層の離型性が悪いと、特に高速でオルガノポリシロキサン硬化物フィルムを製造した場合に、型離れに起因してフィルムが破損する場合がある。また、アクチュエータ、タッチパネル等に用いる誘電層としては、低圧下での感度向上のため、接着性の低減を求められる場合がある。本発明に係る硬化性オルガノポリシロキサン組成物は、フィルムにダメージを与えることなくフィルムの製造速度を向上させることができ、かつ、その他の離型剤の添加により、さらに粘着性を低減できる場合がある。
本発明に係る硬化性オルガノポリシロキサン組成物に適用可能な離型性向上添加剤(=離型剤)としては、例えば、カルボン酸系離型剤、エステル系離型剤、エーテル系離型剤、ケトン系離型剤、アルコール系離型剤等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記離型剤としては、ケイ素原子を含まないもの、ケイ素原子を含むもの、又は、これらの混合物を使用することができる。これらの具体例は、例えば、上記の国際公開2014/105959号において提案されたものと同様である。
絶縁破壊特性向上剤は、電気絶縁性向上剤であることが好ましく、アルミニウム又はマグネシウムの水酸化物又は塩、粘土鉱物、及び、これらの混合物、具体的には、ケイ酸アルミニウム、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、焼成クレイ、モンモリロナイト、ハイドロタルサイト、タルク、及び、これらの混合物からなる群から選択することができる。また、当該絶縁性向上剤は、公知の表面処理方法で処理されていてもよい。これらの具体例は、例えば、上記の国際公開2014/105959号において提案されたものと同様である。
接着性向上剤は、本発明の硬化性オルガノポリシロキサン組成物が硬化途上で接触している基材への接着性向上のためのものである。該組成物の硬化物である誘電層を再剥離しない場合に、有効な添加剤である。接着性向上剤として、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等の有機官能性アルコキシシラン化合物、そのシロキサン誘導体、特にフッ素含有有機基で置換された鎖状または三次元樹脂状のシロキサン誘導体が例示される。特に好適な接着性向上剤として、
(g1)アミノ基含有オルガノアルコキシシランとエポキシ基含有オルガノアルコキシシランとの反応混合物
(g2)一分子中に少なくとも二つのアルコキシシリル基を有し,かつそれらのシリル基の間にケイ素-酸素結合以外の結合が含まれている有機化合物、
(g3)一般式:
  R Si(OR)4-n
(式中、Rは一価のエポキシ基含有有機基であり、Rは炭素原子数1~6のアルキル基または水素原子である。nは1~3の範囲の数である)
で表されるエポキシ基含有シランまたはその部分加水分解縮合物
(g4)アルコキシシラン(エポキシ基含有有機基を有するものを除く)、またはその部分加水分解縮合物
などから選ばれる1種類または2種類以上が例示される。
その他の任意成分として、本発明の技術的効果を損なわない限り、フェノール系、キノン系、アミン系、リン系、ホスファイト系、イオウ系、チオエーテル系などの酸化防止剤;トリアゾール系、ベンゾフェノン系などの光安定剤;リン酸エステル系、ハロゲン系、リン系、アンチモン系などの難燃剤;カチオン系界面活性剤、アニオン系界面活性剤、非イオン系界面活性剤などからなる1種類以上の帯電防止剤;染料、顔料などが例示される。
本発明の硬化性オルガノポリシロキサン組成物は、硬化性オルガノポリシロキサンおよび硬化反応の促進成分、好適には、上記成分(A)~(C)を均一に混合することにより、また、必要に応じてその他任意の成分を添加して、均一に混合することにより調製することができる。各種攪拌機あるいは混練機を用いて、常温で混合すればよいが、混合中に硬化しない成分の組合せであれば、加熱下で混合してもよい。
混合中に硬化しなければ、各成分の配合順序は特に制限されるものではない。混合後、直ちに使用しないときは、架橋剤(例えば、成分(B))と硬化反応の促進成分(例えば、成分(C))が同一の容器内に存在しないように複数の容器に分けて保管しておき、使用直前に全容器内の成分を混合してもよい。
本発明の、硬化性オルガノポリシロキサン組成物の硬化反応は、脱水、脱アルコール等の縮合反応に基づく硬化反応においては室温で進行するが、オルガノポリシロキサン硬化物フィルムを工業的生産プロセスで生産する場合、通常、該組成物を加熱あるいは活性エネルギー線にさらすことにより達成される。熱による硬化反応温度は、特に限定されないが、50℃以上200℃以下が好ましく、60℃以上200℃以下がより好ましく、80℃以上180℃以下がさらに好ましい。また、硬化反応にかける時間は、上記(A)、(B)、(C)成分の構造に依存するが、通常1秒以上3時間以下である。一般的には、90~180℃の範囲内で10秒~30分保持することにより硬化物を得ることができる。なお、フィルムの製造法および圧延加工等については後述する。
硬化反応に使用され得る活性エネルギー線としては、紫外線、電子線、及び放射線等が挙げられるが、実用性の点で紫外線が好ましい。紫外線により硬化反応を行なう場合は、使用する紫外線に対して高い活性を有するヒドロシリル化反応用触媒、例えばビス(2,4-ペンタンジオナト)白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、を添加することが望ましい。紫外線発生源としては高圧水銀ランプ、中圧水銀ランプ、Xe-Hgランプ、及びディープUVランプ等が好適であり、その際の照射量は、100~8,000mJ/cmが好ましい。
[オルガノポリシロキサン硬化物フィルムの製造方法]
上記のフィルム形成用硬化性オルガノポリシロキサン組成物を用いることで、均一かつ薄膜状のオルガノポリシロキサン硬化物フィルムを高精度で得ることができ、機能性フィルムとしてみた場合、極めて薄く、均質で、巨視的には実質的に凹凸を有しない平坦なフィルムである。このようなオルガノポリシロキサン硬化物フィルムは、空気中の浮遊塵等の表面および内部への付着を避けるため、クリーンルームにおいて製造することが好ましい。
本発明のオルガノポリシロキサン硬化物フィルムは、上述の硬化性オルガノポリシロキサン組成物を、剥離層を有するセパレータ上で硬化することで好適に得ることができる。同様に、本発明のオルガノポリシロキサン硬化物フィルムは、上述の硬化性オルガノポリシロキサン組成物をフィルム状に塗布し、圧延加工後に加熱等によりフィルム状に硬化させることによって好適に実現可能である。なお、本発明のオルガノポリシロキサン硬化物フィルムそれ自体をさらに圧延加工してもよく、剥離層を設けたセパレータ間で塗布乃至硬化されたフィルムをさらに圧延加工してもよい。以下、それらの構造および製造方法について説明する。
本発明に係るオルガノポリシロキサン硬化物フィルムは、上記のフィルム形成用硬化性オルガノポリシロキサン組成物を、フィルム状基材、テープ状基材、またはシート状基材(以下、「フィルム状基材」という)に塗布した後、その硬化機構に対応した方法で硬化させることにより、前記基材の表面に形成することができる。
前記基材は、特に、剥離面を有する平面状の基材であり、硬化性オルガノポリシロキサン組成物が剥離面上に塗布されることが好ましい。このような基材は、セパレータとして機能するので、基材上に積層された本発明のオルガノポリシロキサン硬化物フィルムは、僅かな力で円滑に剥離層から引き離して目的とする電子機器等に付着ないし接着させることができるため、取扱作業性に優れるという利点を有する。
基材の種類として、板紙、ダンボール紙、クレーコート紙、ポリオレフィンラミネート紙、特にはポリエチレンラミネート紙、合成樹脂フィルム・シート、天然繊維布、合成繊維布、人工皮革布、金属箔が例示される。特に、合成樹脂フィルム・シートが好ましく、合成樹脂として、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエチレンテレフタレート、ナイロンが例示される。特に耐熱性が要求される場合には、ポリイミド、ポリエーテルエーテルケトン、ポリエチレンナフタレート(PEN)、液晶ポリアリレート、ポリアミドイミド、ポリエーテルスルフォン等の耐熱性合成樹脂のフィルムが好適である。一方、表示デバイス等視認性が求められる用途においては、透明基材、具体的にはポリプロピレン、ポリスチレン、ポリ塩化ビニリデン、ポリカーボネート、ポリエチレンテレフタレート、PEN等の透明材料が好適である。
上記基材はフィルム状またはシート状であることが好ましい。その厚さは特に制限されないが、通常5~300μm程度である。さらに、支持フィルムと感圧接着層の密着性を向上させるために、プライマー処理、コロナ処理、エッチング処理、プラズマ処理された支持フィルムを用いてもよい。また、フィルム状基材の感圧接着層面と反対面には、傷つき防止、汚れ防止、指紋付着防止、防眩、反射防止、帯電防止などの表面処理されたものであってもよい。
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物を基材に塗布する方法としては、グラビアコート、オフセットコート、オフセットグラビア、オフセット転写ロールコーター等を用いたロールコート、リバースロールコート、エアナイフコート、カーテンフローコーター等を用いたカーテンコート、コンマコート、マイヤーバー、その他公知の硬化層を形成する目的で使用される方法が制限なく使用できる。
本発明のフィルム形成用硬化性オルガノポリシロキサン組成物を硬化してなるオルガノポリシロキサン硬化物フィルムが接着剤層(感圧接着剤層を含む)または電気活性フィルム(誘電層等の誘電性フィルム含む)である場合、当該硬化層は、剥離コーティング能を有する剥離層を備えたフィルム基材上に、剥離可能な状態で積層した積層体フィルムとして取り扱うことが好ましい。
剥離層は剥離ライナー、セパレータ、離型層あるいは剥離コーティング層と呼ばれることもあり、好適には、シリコーン系剥離剤、フッ素系剥離剤、アルキド系剥離剤、またはフルオロシリコーン系剥離剤等の剥離コーティング能を有する剥離層、基材表面に物理的に微細な凹凸を形成させたり、本発明の感圧接着層と付着しにくい基材それ自体であってもよい。特に本発明にかかる積層体フィルムにおいては、剥離層として、フルオロシリコーン系剥離剤を硬化させてなる剥離層の使用が好ましい。
好適には、フィルム形成用硬化性オルガノポリシロキサン組成物を用いるオルガノポリシロキサン硬化物フィルムの製造方法は、
剥離層を有するセパレータ上に、上記のフィルム形成用硬化性オルガノポリシロキサン組成物を、硬化後の厚さが1~1000μm、好適には1~200μm、より好適には1~100μmの範囲で薄膜状に塗布する工程、
当該薄膜状に塗布されたフィルム形成用硬化性オルガノポリシロキサン組成物を硬化させる工程、および
硬化中または硬化後に有機溶媒を除去する工程を含むものであり、さらに、後述する圧延加工工程を有してもよい。なお、有機溶媒は硬化中または硬化後に減圧乃至フィルムまたはフィルム前駆体を加熱する事で、当該オルガノポリシロキサン硬化物フィルムから効率よく除去することができる。当該有機溶媒の残留率が多いと、特にオルガノポリシロキサン硬化物フィルムを電子材料に使用する場合、接点障害や装置内の汚染原因となりうるためである。
[圧延加工を用いた製法]
本発明のフィルム形成性硬化性オルガノポリシロキサン組成物を基材上に塗布した後、硬化反応の前もしくは硬化反応後に、圧延加工を行うことが特に好ましい。圧延加工は、硬化乃至半硬化状態のオルガノポリシロキサン硬化物に対して行うこともできるが、未硬化の硬化性オルガノポリシロキサン組成物を圧延加工した後に、加熱等により硬化させて平坦かつ均一なオルガノポリシロキサン硬化物フィルムを得ることが好ましい。また、圧延加工を行う場合、後述する剥離層を有するセパレータ間に未硬化の硬化性オルガノポリシロキサン組成物を塗布した積層体全体を圧延加工した後に、加熱等により硬化させて平坦かつ均一なオルガノポリシロキサン硬化物フィルムを得ることが特に好ましい。
硬化性オルガノポリシロキサン組成物を基材上に塗布する量は、硬化後のフィルムの平均厚みが1~200μmであり、圧延加工が可能な厚みであることが必要である。
圧延加工は、硬化性オルガノポリシロキサン組成物を基材上に塗布し、ロール圧延等の公知の圧延方法を用いて行うことができる。なお、硬化乃至半硬化状態のオルガノポリシロキサン硬化物を、必要に応じて略シート状に成型した後、圧延加工を行ってもよい。圧延加工後のオルガノポリシロキサン硬化物フィルムは、フィルムの平均厚みが1~200μmの範囲であることが必要である。特に、ロール圧延の場合、ロール間の隙間を調整することで、所望の厚さのオルガノポリシロキサン硬化物フィルムを設計することができる利点があり、例えば、平均厚みが1~200μmの範囲でロール間の隙間を一定に調整して圧延することで、平坦性に優れ、かつ、上記のフィルム表面およびフィルム内部における欠陥の極めて少ないオルガノポリシロキサン硬化物フィルムを得ることができる。より詳細には、ロール圧延の場合、目的とするオルガノポリシロキサン硬化物フィルムの平均厚みに対して2.0~4.0倍の範囲でロール間の隙間が調整されていることが特に好ましい。例えば、50μmのオルガノポリシロキサン硬化物フィルムを得る場合、剥離層の厚みが100~200μmの範囲であることが特に好ましい。当該間隙が前記上限よりも広いと、特に気泡に由来する空隙(ボイド)が十分に解消されず、フィルム表面および内部における欠陥が増加する場合がある。
上記のとおり、圧延加工は、硬化性オルガノポリシロキサン組成物を基材上に塗布し、未硬化の状態で行うことが好ましい。具体的には、原料である硬化性オルガノポリシロキサン組成物を好適には剥離層を備えたシート状基材上に塗布し、ロール圧延等で圧延加工した後に、平坦化された硬化性オルガノポリシロキサン組成物を加熱等により硬化させて本発明のオルガノポリシロキサン硬化物フィルムを得ることができる。
圧延加工前の硬化性オルガノポリシロキサン組成物の基材への塗布方法、基材等は前記同様であり、前記のプライマー層および平坦化層を有するフルオロアルキル基含有オルガノポリシロキサン硬化物について、さらにロール圧延等の圧延加工を行ってもよい。
得られるオルガノポリシロキサン硬化物フィルムについて詳細に説明する。
[厚み、均一性および平坦性]
本発明のオルガノポリシロキサン硬化物フィルムは、薄膜状であり、フィルムの平均厚みが好適には1~200μmの範囲にあるものであり、平均厚みが1~150μmの範囲にあることが好ましく、平均厚みが1~100μmの範囲にあることがより好ましい。ここで、フィルムの平均厚みは、フィルム中央の厚みの平均値である。好適には、上記のオルガノポリシロキサン硬化物フィルムは、均一かつ平坦であり、フィルムの幅方向について、末端の厚みと中央の厚みの差が5.0%以内であり、フィルム中央の厚みの平均値が5~200μmの範囲にあることがより好ましい。フィルムの幅方向とはフィルムの長さ方向と直角方向であり、一般的には、原料となる硬化性オルガノポリシロキサン組成物を基材上に塗布した方向に対して、平面方向に直角な方向を意味する。なお、フィルムの巻取りが行われる場合には巻き取られる方向が長さ方向であり、フィルムの幅方向は、それに直角の方向である。四辺形または略四辺形のフィルムにおいては、フィルムの幅方向は、長軸方向に直角な方向であり、正方形または略正方形フィルムにあっては、当該正方形フィルム各辺に直角または平行の方向のいずれを幅方向としてもよい。
本発明のオルガノポリシロキサン硬化物フィルムは、フィルムの幅方向について、末端の厚み(μm)と中央の厚み(μm)の差(絶対値)が5.0%以内であり、4.0%以内であることが好ましく、3.5%以内であることが特に好ましい。なお、当該フィルムは、両端の盛り上がりを含め、実質的に面上に凹凸がない平坦かつ均一な構造であることが好ましく、フィルム幅方向の厚みの最大変位(差)が5.0%以内であることが好ましく、フィルム全体において厚みの最大変位(差)が5.0%以内であって、実質的に凹凸を有しない平坦なフィルムであることが特に好ましい。特に、平坦なフィルムであると、単層だけでなく、複数のフィルム層を重ね合わせて均一な厚いフィルム層を形成する際に、フィルム間の凹凸に由来する気泡の巻き込み、変形および欠陥を生じにくいという利点を有する。
本発明のオルガノポリシロキサン硬化物フィルムは、一枚あたりの平均厚みが1~200μmの範囲にあるものであるが、複数のフィルムを重ね合わせて200μmを超える積層フィルムを形成し、接着層や誘電層を形成する目的で用いることが可能である。特に、当該フィルムを2層以上積層化してなる誘電層を構成する誘電性フィルムは、本願発明の範囲に包含される。
[フィルムの大きさ]
本発明のオルガノポリシロキサン硬化物フィルムは、一定の大きさ(面積)を有することが好ましく、フィルム幅が30mm以上であり、フィルム面積が900mm以上であることが好ましい。このようなフィルムは、例えば、30mm四方以上のオルガノポリシロキサン硬化物フィルムである。一方、本発明のオルガノポリシロキサン硬化物フィルムは、剥離層上であっても原料の硬化性組成物を均一に塗布して硬化させた構造を有してもよいので、長さ方向については、ロール上に巻取りが可能な長さであっても制限なく用いることができる。また、言うまでもなく、当該オルガノポリシロキサン硬化物フィルムは所望の大きさ、形状に切断して用いてもよい。
[フィルムの表面欠陥の個数]
本発明のオルガノポリシロキサン硬化物フィルムは、好適には、当該フィルムの任意の箇所において同フィルム表面の欠陥のフィルム表面における欠陥が極めて少ないことが好ましい。ここで、フィルム表面の欠陥とは、気泡に由来する空隙(ボイド)や埃、浮遊塵等の付着による同フィルム表面の汚染部位であり、これが多数存在すると、フィルム表面の均一性を損ない、微視的な欠陥を生じるため、特に当該フィルムに高電圧を印加して通電した場合に、当該部位で当該フィルムの絶縁破壊を生じる原因となる。なお、表面欠陥、特に直径数~数十μm程度の微小な空隙は目視確認が困難な場合がある。
具体的には、本発明のオルガノポリシロキサン硬化物フィルムは、当該フィルムの任意の箇所において、15mm×15mmを単位面積とする範囲で、光学的手段を用いてその表面欠陥の個数を測定した場合、表面欠陥の個数が0~1個の範囲にあり、0~0.5個の範囲が好ましく、0~0.1個の範囲がより好ましい。表面欠陥の個数が前記の上限を超えると、当該フィルムに高電圧を印加して通電した場合、絶縁破壊が起こりやすくなり、フィルム全体の絶縁破壊強度が著しく低下する。
ここで、光学的手段を用いる欠陥個数の測定とは、一定の照度を有する光源から、フィルム表面に対して一定の入射角をもって光照射を行い、その反射光をCCDカメラ等の光学的手段で検出し、一定の信号閾値を有するものを表面欠陥としてカウントする手法である。具体的には、当該フィルムから一定の距離(たとえば、50~300mm)の位置に設置した白色LED光源から特定の入射角(たとえば、10~60度)にてフィルム位置での照度が一定となるように照射し、その正反射光(上記の入射角に対応した反射角の反射光)をフィルムからの一定の距離(たとえば、50~400mm)の位置に設置した、走査速度が10m/分時の分解能が画素サイズ10μmのCCDカメラにて検出し、検出した信号を走査方向について微分処理を実施し、特定の信号閾値を有する欠陥個数をフィルムロール全体に渡ってカウントし、フィルムの15mm×15mmを単位面積とする範囲当たり欠陥数に換算することができる。たとえば、株式会社フューテック社製MaxEye.Impact(ラインスピード10 m/min、分解能0.01mm/scanのCCDカメラを備える)を用いて、当該オルガノポリシロキサン硬化物フィルムに対して一定の表面入射角を有する白色LED光源から光照射を行ってその反射光を検出することで、フィルム表面の欠陥数を特定することができる。
[フィルムの内部欠陥の個数]
本発明のオルガノポリシロキサン硬化物フィルムは薄膜状であるため、そのフィルム内部における欠陥の個数も抑制されていることが好ましい。具体的には、当該フィルムの任意の箇所において15mm×15mmを単位面積とする範囲で、光学的手段を用いてその内部欠陥の個数を測定した場合、内部欠陥の個数が0~20個の範囲であり、0~15個の範囲が好ましい。内部欠陥の個数が前記の上限を超えると、当該フィルムに高電圧を印加した場合、絶縁破壊が起こりやすくなり、フィルム全体の絶縁破壊強度が著しく低下する。
前記のフィルム表面の欠陥同様に、光学的手段を用いる欠陥個数の測定により内部欠陥の個数を特定可能である。この場合、表面欠陥の測定と異なり、一定の照度を有する光源から、フィルム表面下部に対して垂直な光照射を行い、その透過光をCCDカメラ等の光学的手段で検出し、一定の信号閾値を有するものを表面欠陥としてカウントする手法を用いることができる。たとえば、株式会社フューテック社製MaxEye.Impact(ラインスピード10 m/分、分解能0.01mm/scanのCCDカメラを備える)を用いて、当該オルガノポリシロキサン硬化物フィルムの下部から垂直(直上)方向にフィルムを貫通するように白色LED光源から光照射を行ってその透過光を検出することで、フィルム内部の欠陥数を特定することができる。
[透明性]
本発明のオルガノポリシロキサン硬化物フィルムは、着色剤や粒子径の大きいフィラー等を配合しない場合には、実質的に透明であり、透明性/視認性の求められる用途における誘電層または接着層として使用することができる。ここで、実質的に透明とは、平均厚み1~200μmのフィルム状の硬化物を形成させた場合、目視で透明であることを意味するものであり、概ね、波長450nmの光の透過率が空気の値を100%とした場合に80%以上である。本発明において、好適なオルガノポリシロキサン硬化物フィルムは薄膜状かつ高透明であり、平均厚みが1~150μmの範囲にあることが好ましく、平均厚みが1~100μmの範囲にあることがより好ましく、かつ、光透過率が90%以上であるものが特に好ましい。
[絶縁破壊強度]
本発明のオルガノポリシロキサン硬化物フィルムは、上記のとおり、その表面および内部に欠陥が極めて少ないため、当該フィルムに高電圧を印加した場合であっても、欠陥であるフィルム内の空隙(ボイド)や塵において過電圧を生じてフィルムの絶縁破壊現象が発生することが抑制され、結果として、高い絶縁破壊強度を実現することができる。なお、本明細書において「絶縁破壊強度」とは、印加された直流又は交流の電圧下における本フィルムの絶縁破壊抵抗性の尺度であり、絶縁破壊前の印加電圧を本フィルムの厚さで割ることで、絶縁破壊強度値又は絶縁破壊電圧値が得られる。すなわち、本発明における絶縁破壊強度は、フィルムの厚さの単位に対する電位差の単位(本発明においては、ボルト/マイクロメーター(V/μm))で測定される。このような絶縁破壊強度は、JIS 2101-82等の標準規格に準拠したプログラムを有する電気絶縁油破壊電圧試験装置(たとえば、総研株式会社製 ポルタテスト 100A-2等)により測定可能である。その際、フィルム上の任意の箇所における絶縁破壊強度の測定値のばらつきを避けるため、すくなくとも10点以上のフィルム上の任意の箇所において絶縁破壊強度の測定を行い、その標準偏差値が十分に小さいことが好ましい。
具体的には、本発明のオルガノポリシロキサン硬化物フィルムは、室温で測定される絶縁破壊強度が56V/μm~200V/μmの範囲であり、70V/μm~100V/μmの範囲であることがより好ましい。前記のフィルム表面および内部の欠陥の個数が前記上限を超えると、上記の絶縁破壊強度を実現できない場合がある。さらに、本発明のオルガノポリシロキサン硬化物フィルムは全体が均一で、微視的な欠陥をほとんど含まないため、絶縁破壊強度の標準偏差値が十分に小さく、0.1~10.0V/μmの範囲であり、0.1~5.0V/μmの範囲であることが好ましい。前記のフィルム表面および内部の欠陥の個数が前記上限を超えると、フィルム表面および内部における欠陥の個数のばらつきも大きくなり、絶縁破壊強度の標準偏差値が、10.0V/μmを超える場合が多くなり、得られるオルガノポリシロキサン硬化物フィルムの信頼性が低下する。
[比誘電率]
本発明のオルガノポリシロキサン硬化物フィルムは、任意で、フルオロアルキル基等の高誘電性官能基を導入してもよく、1kHz、25℃におけるフィルム全体の比誘電率を容易に3以上に設計することができる。当該比誘電率は、高誘電性官能基の導入量および高誘電性フィラーの使用等により設計可能であり、比誘電率4以上、5以上、または、6以上のオルガノポリシロキサン硬化物フィルムを比較的容易に得ることができる。
[機械的物性]
本発明のオルガノポリシロキサン硬化物フィルムは、微視的な表面および内部の欠陥が少ないことが特徴であり、硬度、引き裂き強度、引っ張り強度等の巨視的な機械的物性は、同様な化学的組成、フィルムの厚さおよび形状で設計されたオルガノポリシロキサン硬化物フィルムに概ね準じる。一例として、オルガノポリシロキサン硬化物は、2.0mm厚のシート状に加熱成形した場合、JIS K 6249に基づいて測定される以下の力学物性を有するように設計可能である。
(1)ヤング率(MPa)は、室温下において、10MPa以下とすることができ、特に好適な範囲は、0.1~2.5MPaである。
(2)引き裂き強さ(N/mm)は、室温下において、1N/mm以上とすることができ、特に好適な範囲は、2N/mm以上である。
(3)引っ張り強さ(MPa)は、室温下において、1MPa以上とすることができ、特に好適な範囲は、2MPa以上である。
(4)破断伸び(%)は、200%以上とすることができ、特に好適な範囲は、200~1000%の範囲である。
本発明のオルガノポリシロキサン硬化物フィルムをタッチパネル等の電子材料、表示装置用電子部材、特にセンサー等のトランスデューサー材料としての用途に用いる場合には、23℃におけるせん断貯蔵弾性率が10~10Paの範囲にあることが好ましく、1.0×10~5.0×10Paの範囲にあることがより好ましい。
その他の機械的物性としては、オルガノポリシロキサン硬化物フィルムの圧縮残留ひずみ(%)が10%未満であることが好ましく、5%未満であることがより好ましく、4%以下であることが特に好ましい。ただし、本発明のオルガノポリシロキサン硬化物フィルムにおいては、圧縮残留ひずみ(%)が3%未満の材料も設計可能である。
同様に、本発明のオルガノポリシロキサン硬化物フィルムは、その圧縮率(%)が15%以上であることが好ましく、18%以上であることがより好ましく、20%以上であることが特に好ましい。
[粘着力]
本発明のオルガノポリシロキサン硬化物フィルムを接着剤または接着層として用いる場合には、オルガノポリシロキサンレジンの使用等により、所望の粘着力を有するように設計してもよい。たとえば、厚さ100μmのオルガノポリシロキサン硬化物フィルムの両面にポリエチレンテレフタレート(PET)基材(厚さ50μm)を張り合わせた試験片について、23℃、湿度50%の環境で行ない、速度300mm/min、180度の角度で引き剥がした場合、その粘着力が5N/m以上、または10N/m以上に設計することができる。なお、実用上、本発明のオルガノポリシロキサン硬化物フィルムを密着させる基材自体に各種処理に基づく粘着力を付与できる場合や接着層として使用しない場合には、実質的に粘着力がなかったり、容易に剥離可能なオルガノポリシロキサン硬化物フィルムを用いることができることは言うまでもない。
[オルガノポリシロキサン硬化物フィルムの使用]
本発明のオルガノポリシロキサン硬化物フィルムは、そのフィルム表面およびフィルム内部に微細な欠陥(気泡に由来する空隙(ボイド)、埃または浮遊塵による汚染部位)が極めて少ないので、当該フィルムに高電圧を印加して通電した場合に当該欠陥における絶縁破壊が発生しにくく、フィルム全体として高い絶縁破壊強度を実現でき、かつ、透明性および平坦性に加えて、所望により接着性/粘着性を実現できる。このため、本発明のオルガノポリシロキサン硬化物フィルムは、電子材料、表示装置用部材またはトランスデューサー用部材(センサー、スピーカー、アクチュエータ、およびジェネレーター用含む)として有用であり、特に接着剤/粘着剤フィルム、電気活性フィルム(高誘電性フィルムを含む)として、電子部品または表示装置の部材として好適に使用可能である。特に、透明な接着剤フィルムまたは電気活性フィルムは、表示パネルまたはディスプレイ用の部材として好適であり、画面を指先等で接触することにより機器、特に電子機器を操作可能な所謂タッチパネル用途に特に有用である。同様に、絶縁破壊強度の高い電気活性フィルムは、単層または積層フィルムの形態としてアクチュエータ等のトランスデューサー用部材に好適であり、高電圧下で起動するアクチュエータ用途に特に有用である。
本発明のオルガノポリシロキサン硬化物フィルムの用途としては、上記に開示した他に何ら制約はなく、テレビ受像機、コンピューター用モニター、携帯情報端末用モニター、監視用モニター、ビデオカメラ、デジタルカメラ、携帯電話、携帯情報端末、自動車などの計器盤用ディスプレイ、種々の設備・装置・機器の計器盤用ディスプレイ、自動券売機、現金自動預け払い機、など、文字や記号、画像を表示するための種々のフラットパネルディスプレイ(FPD)に使用することができる。装置としては、CRTディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイ、LEDディスプレイ、表面電解ディスプレイ(SED)、電界放出型ディスプレイ(FED)などの表示装置や、これらを利用したタッチパネルに応用が可能である。同様に、本発明のオルガノポリシロキサン硬化物フィルムは、絶縁破壊強度を含む電気的特性および機械的特性に優れたフィルム状またはシート状部材であり、必要に応じて高い比誘電率および機械的強度(具体的には、引っ張り強度、引き裂き強度、伸び率等)を有する。このため、当該オルガノポリシロキサン硬化物フィルムは、電子材料、表示装置用部材またはトランスデューサー用部材(センサー、スピーカー、アクチュエータ、およびジェネレーター用を含む)として使用でき、特に、トランスデューサーを構成する電気活性フィルム(誘電層または電極層)として好適に利用できる。その具体的な使用方法は、誘電層または感圧接着層の公知の使用方法を特に制限なく用いることができる。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例および比較例では下記の化合物を用いた。
・成分(a1-1):両末端ビニルジメチルシロキシ基封鎖、ジメチルシロキサンポリマー(ビニル基含有量:0.22質量%、シロキサン重合度:335)
・成分(a1-2):両末端ビニルジメチルシロキシ基封鎖、ジメチルシロキサンポリマー(ビニル基含有量:0.09質量%、シロキサン重合度:835)
 
・成分(a2-1):両末端ビニルジメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチル、ジメチルシロキサンコポリマー(ビニル基含有量:0.21質量%、シロキサン重合度:246)
・成分(a2-2):両末端ビニルジメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチル、ジメチルシロキサンコポリマー(ビニル基含有量:0.50質量%、シロキサン重合度:107)
・成分(a2-3):両末端ビニルジメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチル、ジメチルシロキサンコポリマー(ビニル基含有量:0.27質量%、シロキサン重合度:190)
 
・成分(b1):ヘキサメチルジシラザン、ジビニルテトラメチルジシラザンおよび両末端ヒドロキシジメチルシロキシ基封鎖、ジメチルシロキシユニットとビニルメチルシロキシユニットを有するシロキサンポリマー(ビニル基重量%が約11)で処理したヒュームドシリカ(処理前の製品名:CAB-O-SIL(R)MS75D)
・成分(b2):ヘキサメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:CAB-O-SIL(R)MS75D)
 
・成分(c1):ヘキサメチルジシラザンと1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:アエロジル200)
・成分(c2):ヘキサメチルジシラザンと1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンで処理したチタニアとシリカ複合酸化物(処理前の製品名:VPTiO2 1580S)
・成分(c3):ヘキサメチルジシラザンと1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:アエロジル50)
 
・成分(d):トリメチルシロキシ単位(M)およびビニルジメチルシロキシ単位(ViM)と4官能シロキシ単位(Q、SiO4/2)単位から構成されるビニル基含有MQレジン(ビニル基含有量:1.60質量%)
 
・成分(e):両末端トリメチルシロキシ基封鎖、ジメチルシロキシ-メチルヒドロシロキシ-シロキサンコポリマー(ケイ素原子結合水素原子含有量:0.70質量%)
 
・成分(f1):ジメチルヒドロシロキシ単位(M単位)と3,3,3-トリフルオロプロピル基を有するTF3Pr単位(3官能シロキシ単位)で構成されるシロキサン(Mw=1.11×10、ケイ素原子結合水素原子は約0.59重量%である。)
なお、成分(f1)の重量平均分子量(Mw)は、テトラヒドロフラン(THF)を溶媒に用いて、GPC(ゲルパーミエーションクロマトグラフィ)で測定したポリスチレン換算の重量平均分子量である。
・成分(f2):両末端トリメチルシロキシ基封鎖、ジメチルシロキサン・3,3,3-トリフルオロプロピルメチルシロキサン・メチルハイドロジェンシロキサンコポリマー(ケイ素原子結合水素原子の含有量(重量%)が約0.22)
・成分(f3):両末端ジメチルヒドロシロキシ基封鎖、ジメチルシロキサン・3,3,3-トリフルオロプロピルメチルシロキサンコポリマー(ケイ素原子結合水素原子の含有量(重量%)が約0.015)
 
・成分(g1):白金-1,3-ジビニル1,1,3,3-テトラメチルジシロキサン錯体の両末端ビニルジメチルシロキシ基封鎖ジメチルシロキサンポリマー溶液(白金濃度で約0.6重量%)
・成分(g2):球状の白金触媒含有熱可塑性樹脂微粒子(アクリル樹脂微粒子、白金含有量0.16質量%)
 
<ヒドロシリル化反応抑制剤>
・成分(h):1,3,5,7-テトラメチル-1,3,5,7-テトラビニル-シクロテトラシロキサン
[組成物例1]
液状の硬化性オルガノポリシロキサン組成物1として、上記の成分(a1-1)を41.81重量%、成分(a1-2)を36.95重量%、成分(b1)を5.94重量%、成分(b2)を10.50重量%、成分(d)を1.47重量%、成分(e)を2.93重量%、成分(g1)を0.30重量%、成分(h)を0.10重量%となるように配合し調製した。その際、組成物中のビニル基1モル当たり、成分(e)のケイ素原子結合水素原子(Si-H)が約2.0モルとなる量で用いた。なお、組成物1の比重は1.08 g/ccであった。
[組成物例2]
液状の硬化性オルガノポリシロキサン組成物2として、上記の成分(a2-1)を31.92重量%、成分(a2-2)を45.55重量%、成分(c1)を17.00重量%、成分(c2)を2.00重量%、成分(f1)を2.89重量%、成分(g2)を0.36重量%、成分(h)を0.28重量%となるように配合し調製した。その際、組成物中のビニル基1モル当たり、成分(f1)のケイ素原子結合水素原子(Si-H)が約1.2モルとなる量で用いた。なお、組成物2の比重は1.23 g/ccであった。
[組成物例3]
液状の硬化性オルガノポリシロキサン組成物3として、上記の成分(a2-1)を重量2.63%、成分(a2-3)を65.38重量%、成分(c1)を18.80重量%、成分(c3)を2.33重量%、成分(f2)を5.24重量%、成分(f3)を5.24重量%、成分(g1)を0.10重量%、成分(h)を0.28重量%となるように配合し調製した。その際、組成物中のビニル基1モル当たり、成分(f2)及び(f3)のケイ素原子結合水素原子(Si-H)の合計が約1.2モルとなる量で用いた。なお、組成物3の比重は1.25 g/ccであった。
[実施例1]
上記液状の硬化性オルガノポリシロキサン組成物例1とヘキサメチルジシロキサン(Dow DOWSILTM OS-10)を体積比で50:50の条件で、真空下毎分1200回転で2分間混合することにより溶液混合物を得た。
[実施例2]
ヘキサメチルジシロキサンの代わりにオクタメチルトリシロキサン(Dow DOWSILTMOS-20)を用いた以外は実施例1と同様に溶液混合物を得た。
[実施例3]
ヘキサメチルジシロキサンの代わりにヘキサメチルジシロキサンとオクタメチルトリシロキサンの混合物(Dow DOWSILTM OS-2)を用いた以外は実施例1と同様に溶液混合物を得た。
[実施例4]
上記液状の硬化性オルガノポリシロキサン組成物例3とシクロヘキサノン(和光純薬)を体積比で50:50の条件で、真空下毎分1200回転で2分間混合することにより溶液混合物を得た。
[実施例5]
シクロヘキサノンの代わりにオクタメチルトリシロキサン(Dow DOWSILTMOS-20)を用いた以外は実施例4と同様に溶液混合物を得た。
[比較例1]
ヘキサメチルジシロキサンの代わりにトルエン(和光純薬)を用いた以外は実施例1と同様に溶液混合物を得た。
[比較例2]
上記液状の硬化性オルガノポリシロキサン組成物例2とヘキサメチルジシロキサン(Dow DOWSILTM OS-10)を体積比で50:50の条件で、真空下毎分1200回転で2分間混合することにより溶液混合物を得た。
[比較例3]
ヘキサメチルジシロキサンの代わりにトルエンを用いた以外は比較例2と同様に溶液混合物を得た。
[比較例4]
上記液状の硬化性オルガノポリシロキサン組成物例3とヘキサメチルジシロキサンを体積比で50:50の条件で、真空下毎分1200回転で2分間混合することにより溶液混合物を得た。
[比較例5]
ヘキサメチルジシロキサンの代わりにトルエンを用いた以外は比較例4と同様に溶液混合物を得た。
[比較例6]
ヘキサメチルジシロキサンの代わりに4-メチル-2-ペンタノン(和光純薬)を用いた以外は比較例4と同様に溶液混合物を得た。
[比較例7]
ヘキサメチルジシロキサンの代わりに酢酸イソブチル(和光純薬)を用いた以外は比較例4と同様に溶液混合物を得た。
<希釈溶媒>
以下、表1において、実施例および比較例で使用した溶媒の物性を示す。
Figure JPOXMLDOC01-appb-T000001
[粘度測定およびチキソ比]
各組成物の硬化前粘度は、粘弾性測定装置(アントンパール社製、型番MCR102)を使用して測定した。直径20mm、2°のコーン-プレートを用い、シェアレートを変えて測定を行った。25℃、シェアレート0.1(s-1)、1.0(s-1)および10.0(s-1)で測定した組成物の全体粘度を表1に示した。
なお、シェアレート0.1s-1と10.0s-1での硬化前粘度比をチキソ比と評価した。
実施例および比較例の粘度(単位Pa・s)およびチキソ比を下表2に示す。
Figure JPOXMLDOC01-appb-T000002
[フィルム作製]
マイクロメーター付アプリケーター(SA-204、テスター産業社製)のブレードギャップを約175ミクロンに設定し、OHPフィルム(CG3500、3M社製)上に自動塗工機(テスター産業社製、PI-1210)を使用して上記溶液混合物を塗布した。その際、塗工速度は毎秒10mmとした。さらに、真空下40℃にて15~30分間放置後、110℃にて1時間加熱することにより、オルガノポリシロキサン硬化物フィルムを作製した。ただし、比較例1(シェアレート0.1(s-1)における粘度が極めて高いもの)については、チキソ性が高いがフィルムを作製できた。しかしながら、基材フィルムからうまく剥がすことができなかった。比較例2~7については、表2に示した通り、チキソ性が非常に高く、均一フィルムを作製することがそもそも困難であった。表3に実施例1~5のフィルム面内計15箇所で測定した厚みの平均値および標準偏差を示す。
<絶縁破壊強度の測定>
上記で得られたシート(膜厚約40~70μm)を用いて、電気絶縁油破壊電圧試験装置 総研電気株式会社製PORTATEST 100A-2で絶縁破壊強度を測定した。実施例1~5に関して、10 cm x 10 cm の面積の任意の15箇所測定し、その平均値および標準偏差を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表2が示すように、組成例1においてヘキサメチルジシロキサン、オクタトリシロキサンおよびその混合物を使用した場合、チキソ性を発現することなく粘度の低減が可能であり、厚みのばらつきが少なく均一なオルガノポリシロキサン硬化物フィルムが得られた。一方、一般的な有機溶媒であるトルエンを使用した場合には、溶液混合物のシェアレート0.1(s-1)における粘度が極めて高く、均一なフィルム作製が困難であり、かつ、基材からの引き剥がしが難しく取り扱い性が悪かった(比較例1)。
一方、比較例2および4に示すとおり、フッ素含有量の多い組成例2および3において、ヘキサメチルジシロキサンを有機溶媒に用いた場合、溶液混合物のシェアレート0.1(S-1)における粘度が極めて高く、かつ、チキソ性が非常に高いため、均一なオルガノポリシロキサン硬化物フィルムを得ることが出来なかった。また、比較例3および5に示すとおり、フッ素含有量の多い組成例2および3において、トルエンを用いた場合、溶液混合物のチキソ性が非常に高く均一なオルガノポリシロキサン硬化物フィルムを得ることが出来なかった。さらに、比較例6および7に示す通り、フッ素含有量の多い組成例3において、4-メチル-2-ペンタノンや酢酸イソブチルを用いた場合にも、シェアレート0.1(s-1)における粘度が極めて高く、かつ、チキソ性が非常に高く均一なオルガノポリシロキサン硬化物フィルムを得ることが出来なかった。

Claims (15)

  1. 硬化反応性オルガノポリシロキサン、硬化剤、および
    (D1)有機系極性溶媒、(D2)低分子シロキサン系溶媒および(D3)ハロゲン系溶媒
    から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、
    25℃において、シェアレート0.1(s-1)で測定した組成物全体の粘度が100,000mPa・s以下であり、シェアレート10.0(s-1)で測定した組成物全体の粘度が5~50,000mPa・sの範囲にあり、
    シェアレート0.1(s-1)で測定した組成物全体の粘度とシェアレート10.0(S-1)で測定した組成物全体の粘度の比であるチキソ比が25.0以下である、
    フィルム形成用硬化性オルガノポリシロキサン組成物。
  2. (D1)有機系極性溶媒が、シクロヘキサノン、酢酸イソブチル、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミド(DMF)、N-ヘキサアルデヒド、アセトン、ベンズアルデヒド、メチルアセテート、プロピルアセテート、アセトフェノン、酢酸ペンチル、ブチルアルデヒド、エチル酢酸メチル、エチルエーテル、およびテトラヒドロフラン(THF)から選ばれる1種類以上の有機系極性溶媒であり、
    (D2)低分子シロキサン系溶媒が、ヘキサメチルジシロキサン、テトラメチルジビニルジシロキサン、2-メチルフェネチルペンタメチルジシロキサン、オクタメチルトリシロキサン、1,3-ジフルオロテトラメチルジシロキサンから選ばれる1種類以上の低分子シロキサン系溶媒であり、
    (D3)ハロゲン系溶媒が、トリフルオロメチルベンゼン、1,2-ビス(トリフルオロメチル)ベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(トリフルオロメチル)ベンゼン、トリフルオロメチルクロロベンゼン、トリフルオロメチルフルオロベンゼン、ハイドロフルオロエーテルから選ばれる1種類以上のハロゲン系溶媒である、
    請求項1のフィルム形成用硬化性オルガノポリシロキサン組成物。
  3. 硬化反応性オルガノポリシロキサンおよびその硬化剤がハロゲン原子を実質的に含まず、かつ、(D1)有機系極性溶媒および(D2)低分子シロキサン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含み、(D3)ハロゲン系溶媒を実質的に含まないことを特徴とする、請求項1または請求項2に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  4. 硬化反応性オルガノポリシロキサンおよびその硬化剤が、ハロゲン原子を実質的に含まず、ジメチルシロキサン単位を全シロキサン単位の50モル%以上含むメチルポリシロキサン組成物であって、有機溶媒が、ヘキサメチルジシロキサンおよびオクタメチルトリシロキサンから選ばれる少なくとも1種の低分子シロキサン系溶媒またはそれらの混合物を含み、(D3)ハロゲン系溶媒を実質的に含まないことを特徴とする、請求項1~3のいずれか1項に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  5. 硬化反応性オルガノポリシロキサンおよびその硬化剤がハロゲン原子を含むものであり、かつ、(D1)有機系極性溶媒、(D2)低分子シロキサン系溶媒および(D3)ハロゲン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含むことを特徴とする、請求項1または請求項2に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  6. 有機溶媒の沸点が120℃以上である、請求項5に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  7. 硬化して不揮発性の固形分であるオルガノポリシロキサン硬化物を形成する成分の含有量が、組成物全体の5~95質量%の範囲である、請求項1~6のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  8. 硬化反応性オルガノポリシロキサンおよび硬化剤が、ヒドロシリル化反応硬化、縮合反応硬化、ラジカル反応硬化および高エネルギー線硬化反応から選ばれる1種類以上の硬化反応機構により硬化することを特徴とする、請求項1~7のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  9. 硬化後に得られるオルガノポリシロキサン硬化物フィルムが、1kHz、25℃において測定される比誘電率が3以上である、請求項1~8のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  10. 硬化反応性オルガノポリシロキサンおよび硬化剤が、
    (A)分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサン、
    (B)分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン、および
    (C)有効量のヒドロシリル化反応用触媒
    である、請求項1~9のいずれか1項記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  11. 前記成分(A)が、
    (a1)分子鎖末端のみにアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサン、および、任意で
    (a2)分子内に少なくとも1つの分岐シロキサン単位を有し、ビニル(CH=CH―)基の含有量が1.0~5.0質量%の範囲内にあるアルケニル基含有オルガノポリシロキサン樹脂
    を含有するオルガノポリシロキサンまたはその混合物である、請求項10に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  12. 前記成分(A)または成分(B)の一部又は全部が高誘電性官能基を有するオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンである、請求項10または請求項11に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  13. 前記成分(A)または成分(B)の一部又は全部が、分子中に(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基を有するオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンであり、かつ、(D1)有機系極性溶媒および(D3)ハロゲン系溶媒から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒を含む、請求項10~12のいずれか1項に記載のフィルム形成用硬化性オルガノポリシロキサン組成物。
  14. 剥離層を有するセパレータ上に、請求項1~13のいずれか1項に記載のフィルム形成用硬化性オルガノポリシロキサン組成物を、硬化後の厚さが1~1000μmの範囲で薄膜状に塗布する工程、
    当該薄膜状に塗布されたフィルム形成用硬化性オルガノポリシロキサン組成物を硬化させる工程、および
    硬化中または硬化後に有機溶媒を除去する工程
    を有することを特徴とする、オルガノポリシロキサン硬化物フィルムの製造方法。
  15. さらに、圧延加工工程を有する、請求項14に記載のオルガノポリシロキサン硬化物フィルムの製造方法。
PCT/JP2019/047740 2018-12-07 2019-12-06 フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法 WO2020116596A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19893829.2A EP3892688A4 (en) 2018-12-07 2019-12-06 COMPOSITION OF CURED ORGANOPOLYSILOXANE FOR FORMING A FILM AND METHOD FOR PRODUCING A FILM OF CURED ORGANOPOLYSILOXANE PRODUCT
US17/420,149 US20220064448A1 (en) 2018-12-07 2019-12-06 Curable organopolysiloxane composition for forming film and production method for organopolysiloxane cured product film
KR1020217020878A KR20210112322A (ko) 2018-12-07 2019-12-06 필름 형성용 경화성 오가노폴리실록산 조성물 및 오가노폴리실록산 경화물 필름의 제조 방법
JP2020560035A JP7453155B2 (ja) 2018-12-07 2019-12-06 フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法
CN201980090348.5A CN113348211A (zh) 2018-12-07 2019-12-06 膜形成用固化性聚有机硅氧烷组合物以及聚有机硅氧烷固化物膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018229642 2018-12-07
JP2018-229642 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020116596A1 true WO2020116596A1 (ja) 2020-06-11

Family

ID=70975381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047740 WO2020116596A1 (ja) 2018-12-07 2019-12-06 フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法

Country Status (6)

Country Link
US (1) US20220064448A1 (ja)
EP (1) EP3892688A4 (ja)
JP (1) JP7453155B2 (ja)
KR (1) KR20210112322A (ja)
CN (1) CN113348211A (ja)
WO (1) WO2020116596A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075661A1 (ja) * 2022-10-05 2024-04-11 ダウ・東レ株式会社 トランスデューサー用硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
EP4173821A4 (en) * 2020-06-30 2024-07-17 Dow Toray Co Ltd MULTILAYER BODY MADE OF CURED ORGANOPOLYSILOXANE FILMS, USE THEREOF AND PRODUCTION METHOD THEREFOR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210101257A (ko) * 2018-12-07 2021-08-18 다우 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물, 그 경화물 및 당해 경화물을 구비한 트랜스듀서 등

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148275A (ja) 1991-11-28 1993-06-15 Toray Dow Corning Silicone Co Ltd ジシロキサン化合物およびその製造方法
JP2003026926A (ja) * 2001-07-18 2003-01-29 Shin Etsu Chem Co Ltd シリコーンゴム組成物及び導電性ゴム硬化物
JP2007500775A (ja) * 2003-05-23 2007-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 離型組成物およびその方法
WO2014105959A1 (en) 2012-12-28 2014-07-03 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
JP2015532312A (ja) * 2012-10-09 2015-11-09 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、該組成物からなる硬化層を備えたシート状物品および積層体
WO2016098334A1 (ja) 2014-12-16 2016-06-23 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
WO2016163069A1 (ja) * 2015-04-10 2016-10-13 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
JP2017503903A (ja) * 2013-11-11 2017-02-02 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物およびそれを用いた誘電体セラミック層成形材料用剥離フィルム
WO2017183541A1 (ja) 2016-04-22 2017-10-26 東レ・ダウコーニング株式会社 高誘電性フィルム、その用途および製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880210A (en) * 1997-04-01 1999-03-09 Dow Corning Corporation Silicone fluids and solvents thickened with silicone elastomers
JP5683848B2 (ja) * 2009-07-01 2015-03-11 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、該組成物からなる硬化層を備えたシート状物品およびその製造方法
JP5767161B2 (ja) * 2012-05-08 2015-08-19 信越化学工業株式会社 ウエハ加工用仮接着材、それを用いたウエハ加工用部材、ウエハ加工体、及び薄型ウエハの作製方法
DE102012220954A1 (de) * 2012-11-16 2014-05-22 Wacker Chemie Ag Schleifbare Siliconelastomerzusammensetzung und deren Verwendung
JP6712162B2 (ja) 2016-03-30 2020-06-17 日本碍子株式会社 圧電素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148275A (ja) 1991-11-28 1993-06-15 Toray Dow Corning Silicone Co Ltd ジシロキサン化合物およびその製造方法
JP2003026926A (ja) * 2001-07-18 2003-01-29 Shin Etsu Chem Co Ltd シリコーンゴム組成物及び導電性ゴム硬化物
JP2007500775A (ja) * 2003-05-23 2007-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 離型組成物およびその方法
JP2015532312A (ja) * 2012-10-09 2015-11-09 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、該組成物からなる硬化層を備えたシート状物品および積層体
WO2014105959A1 (en) 2012-12-28 2014-07-03 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
JP2017503903A (ja) * 2013-11-11 2017-02-02 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物およびそれを用いた誘電体セラミック層成形材料用剥離フィルム
WO2016098334A1 (ja) 2014-12-16 2016-06-23 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
WO2016163069A1 (ja) * 2015-04-10 2016-10-13 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
WO2017183541A1 (ja) 2016-04-22 2017-10-26 東レ・ダウコーニング株式会社 高誘電性フィルム、その用途および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892688A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4173821A4 (en) * 2020-06-30 2024-07-17 Dow Toray Co Ltd MULTILAYER BODY MADE OF CURED ORGANOPOLYSILOXANE FILMS, USE THEREOF AND PRODUCTION METHOD THEREFOR
WO2024075661A1 (ja) * 2022-10-05 2024-04-11 ダウ・東レ株式会社 トランスデューサー用硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等

Also Published As

Publication number Publication date
JP7453155B2 (ja) 2024-03-19
EP3892688A4 (en) 2022-08-24
CN113348211A (zh) 2021-09-03
KR20210112322A (ko) 2021-09-14
JPWO2020116596A1 (ja) 2021-10-21
EP3892688A1 (en) 2021-10-13
TW202037675A (zh) 2020-10-16
US20220064448A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2020166692A1 (ja) オルガノポリシロキサン硬化物フィルム、その用途、製造方法および製造装置
JP7376479B2 (ja) オルガノポリシロキサン硬化物フィルム、その用途および製造方法
JP7453155B2 (ja) フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法
JPWO2018211981A1 (ja) フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
CN113330073B (zh) 膜形成用固化性聚有机硅氧烷组合物以及聚有机硅氧烷固化物膜的制造方法
CN115038757B (zh) 固化性弹性体组合物及换能器设备的设计方法
WO2020116440A1 (ja) 硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
TWI845567B (zh) 薄膜形成用固化性有機聚矽氧烷組成物以及有機聚矽氧烷固化物薄膜之製造方法
TWI843776B (zh) 薄膜形成用固化性有機聚矽氧烷組合物以及有機聚矽氧烷固化物薄膜之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020560035

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019893829

Country of ref document: EP

Effective date: 20210707