WO2020116374A1 - Overcurrent detection device and motor unit - Google Patents

Overcurrent detection device and motor unit Download PDF

Info

Publication number
WO2020116374A1
WO2020116374A1 PCT/JP2019/046952 JP2019046952W WO2020116374A1 WO 2020116374 A1 WO2020116374 A1 WO 2020116374A1 JP 2019046952 W JP2019046952 W JP 2019046952W WO 2020116374 A1 WO2020116374 A1 WO 2020116374A1
Authority
WO
WIPO (PCT)
Prior art keywords
overcurrent
unit
voltage
phases
neutral point
Prior art date
Application number
PCT/JP2019/046952
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 淳
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020559165A priority Critical patent/JPWO2020116374A1/en
Publication of WO2020116374A1 publication Critical patent/WO2020116374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an overcurrent detection device and a motor unit.
  • the present invention has been made to solve the above problems, and an object thereof is to provide an overcurrent detection device and a motor unit that can simplify the configuration or save space.
  • a current flowing in an AC generator which generates an AC signal of each phase included in an inverter which generates an AC signal of a plurality of phases can be converted into a voltage and detected.
  • the inverter unit that generates the AC signals of the plurality of phases as a drive signal, a motor that is driven based on the drive signal generated by the inverter unit, and the overcurrent detection device described above.
  • a motor unit . ..
  • a current flowing in an AC generation unit which generates an AC signal of each phase included in an inverter unit which generates an AC signal of a plurality of phases can be converted into a voltage and detected. Based on the voltage at the neutral point of the shunt resistor corresponding to each phase and the detection terminal of the shunt resistor, and the connection point in which the plurality of phases are connected to one neutral point via the resistor, and the voltage at the neutral point of the connection point.
  • An overcurrent detection device including a response processing unit that performs response processing for an overcurrent abnormality when it is determined that an overcurrent has occurred in the inverter unit.
  • the configuration can be simplified or the space can be saved.
  • FIG. 1 is a block diagram showing an example of a motor unit according to the first embodiment.
  • FIG. 2 is a time chart showing an example of the operation of the overcurrent determination unit according to the first embodiment.
  • FIG. 3 is a flowchart showing an example of the operation of the control unit according to the first embodiment.
  • FIG. 4 is a block diagram showing an example of a motor unit according to the second embodiment.
  • FIG. 5 is a flowchart showing an example of the operation of the control unit according to the second embodiment.
  • FIG. 1 is a block diagram showing an example of a motor unit 1 according to the first embodiment.
  • the motor unit 1 includes an inverter unit 20, a connection unit 30, an overcurrent determination unit 40, a control unit 60, and a motor MT.
  • the inverter section 20 generates AC signals of a plurality of phases under the control of the control section 60 described later, and outputs the AC signals of the plurality of phases to the motor MT as a drive signal.
  • the inverter unit 20 generates, for example, a three-phase AC signal of a U-phase signal, a V-phase signal, and a W-phase signal.
  • the inverter unit 20 includes an AC generation unit (21-1, 21-2, 21-3), a shunt resistor (22-1, 22-2, 22-3), and an inverter drive unit 23.
  • the AC generation unit 21-1, the AC generation unit 21-2, and the AC generation unit 21-3 have the same configuration and represent any AC generation unit included in the motor unit 1. In the case, or unless otherwise particularly distinguished, the AC generator 21 will be described. Further, in the present embodiment, the shunt resistor 22-1, the shunt resistor 22-2, and the shunt resistor 22-3 have the same configuration, and show any shunt resistor included in the motor unit 1, or particularly When no distinction is made, the shunt resistor 22 will be described.
  • the AC generator 21 includes two switching elements connected in series between the power supply line and the GND line, and generates an AC signal that drives the motor MT.
  • the AC generator 21-1 generates a U-phase signal of the three-phase AC signals and supplies the U-phase signal to the motor MT as a drive signal.
  • the AC generator 21-1 includes a switching element Q1 and a switching element Q2.
  • the switching element Q1 and the switching element Q2 are, for example, an IGBT (Insulated Gate Bipolar Transistor) with an FWD (Free Wheeling Diode), and are connected in series between the power supply line and the GND line via the shunt resistor 22-1. It is connected to the.
  • FWD is a diode for commutating the load current.
  • Each of the switching element Q1 and the switching element Q2 is supplied with a control signal output from the inverter drive unit 23 at its gate terminal to be switching-controlled, and a U-phase signal from the node N1 between the switching element Q1 and the switching element Q2. Is output.
  • the AC generator 21-2 generates a V-phase signal of the three-phase AC signals and supplies the V-phase signal as a drive signal to the motor MT.
  • the AC generator 21-2 includes a switching element Q3 and a switching element Q4.
  • the switching element Q3 and the switching element Q4 are, for example, IGBTs with FWD, and are connected in series between the power supply line and the GND line via the shunt resistor 22-2.
  • Each of the switching element Q3 and the switching element Q4 is supplied with a control signal output from the inverter drive unit 23 at its gate terminal to perform switching control, and a V-phase signal is output from a node N3 between the switching element Q3 and the switching element Q4. Is output. ..
  • the AC generator 21-3 generates a W-phase signal of the three-phase AC signals and supplies the W-phase signal to the motor MT as a drive signal.
  • the AC generator 21-3 includes a switching element Q5 and a switching element Q6.
  • the switching element Q5 and the switching element Q6 are, for example, IGBTs with FWD, and are connected in series between the power supply line and the GND line via the shunt resistor 22-3.
  • Each of the switching element Q5 and the switching element Q6 is supplied with a control signal output from the inverter driving section 23 at its gate terminal to perform switching control, and a W-phase signal is output from a node N5 between the switching element Q5 and the switching element Q6. Is output. ..
  • the shunt resistor 22 converts a current flowing through the AC generator 21 that generates an AC signal of each phase included in the inverter unit 20 into a voltage so that it can be detected.
  • the shunt resistor 22 is arranged, for example, between the AC generator 21 and the GND line.
  • the shunt resistor 22-1 is arranged between the AC generator 21-1 and the GND line and corresponds to the U phase.
  • a node N2 between the AC generator 21-1 and the shunt resistor 22-1 is a detection terminal corresponding to the U phase and outputs a voltage Vu obtained by converting the current Iu flowing in the AC generator 21-1 into a voltage. To do.
  • the shunt resistor 22-2 is arranged between the AC generation unit 21-2 and the GND line and corresponds to the V phase.
  • a node N4 between the AC generator 21-2 and the shunt resistor 22-2 is a detection terminal corresponding to the V phase, and outputs a voltage Vv obtained by converting the current Iv flowing in the AC generator 21-2 into a voltage.
  • the shunt resistor 22-3 is arranged between the AC generator 21-3 and the GND line, and corresponds to the W phase.
  • a node N6 between the AC generator 21-3 and the shunt resistor 22-3 is a detection terminal corresponding to the W phase, and outputs a voltage Vw obtained by converting the current Iw flowing in the AC generator 21-3 into a voltage.
  • the inverter drive unit 23 outputs a control signal for operating the inverter unit 20 under the control of the control unit 60.
  • the inverter drive unit 23 supplies a control signal for controlling switching of each switching element to the gate terminals of the switching elements Q1 to Q6.
  • the motor MT is, for example, a three-phase motor, and is driven based on the three-phase drive signals (U-phase signal, V-phase signal, and W-phase signal) output by the inverter unit 20.
  • the shunt resistor 22 corresponding to each of the above-described three phases, the wire connection part 30, and the overcurrent determination part 40 correspond to the overcurrent detection device 10.
  • the connection part 30 connects the detection terminals of the shunt resistor 22 to one neutral point for a plurality of phases via the resistor 31.
  • the wire connection portion 30 includes a resistor 31-1, a resistor 31-2, and a resistor 31-3, and these resistors 31 are connected by star connection.
  • the resistance 31-1, the resistance 31-2, and the resistance 31-3 have, for example, the same resistance value, and indicate any resistance included in the wire connection portion 30, or if no particular distinction is made. , Resistor 31 will be described.
  • the resistor 31-1 is connected between the detection terminal (node N2) of the shunt resistor 22-1 and the node N7 which is the neutral point
  • the resistor 31-2 is the detection terminal (node N2 of the shunt resistor 22-2. N4) and the node N7 which is a neutral point
  • the resistor 31-3 is connected between the detection terminal (node N6) of the shunt resistor 22-3 and the node N7 which is a neutral point.
  • the voltage Vn at the neutral point is represented by the following mathematical expression (1). ..
  • connection part 30 outputs the average voltage (Vn) of the voltages of the detection terminals corresponding to each phase from the neutral point of the node N7.
  • the resistance value of the resistor 31 corresponding to each phase is such that the voltage Vn at the neutral point becomes the average voltage of the detection terminal voltages (Vu, Vv, and Vw) of the shunt resistor 22 corresponding to each phase. It is set. Specifically, the resistance 31-1, the resistance 31-2, and the resistance 31-1 are set to have the same resistance value. ..
  • the resistors 11 and 12 are directly connected between the power supply line and the GND line, and generate the reference voltage Voc by resistance voltage division.
  • the reference voltage Voc is an example of a predetermined voltage for determining that overcurrent has occurred.
  • a reference voltage Voc according to the resistance ratio between the resistance value of the resistance 11 and the resistance value of the resistance 12 is output to the node N8 between the resistance 11 and the resistance 12 connected in series. ..
  • the overcurrent determination unit 40 determines that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30.
  • the overcurrent determination unit 40 includes a comparator 41 that compares the voltage Vn at the neutral point with the reference voltage Voc, and determines that an overcurrent has occurred when the voltage Vn at the neutral point is equal to or higher than the reference voltage Voc. To do.
  • the comparator 41 is an example of a comparison unit.
  • the overcurrent determination unit 40 includes a comparator 41, capacitors (42, 51), and resistors (43, 52). ..
  • the-input terminal (inverting input terminal) is connected to the node N7, which is the neutral point of the connection part 30, and the + input terminal (non-inverting input terminal) is connected to the node N8. Further, the comparator 41 outputs an output signal, which is a comparison result of the voltage Vn at the neutral point and the reference voltage Voc, to the control unit 60.
  • the comparator 41 outputs a low state (Low state), for example, when the voltage Vn at the neutral point becomes equal to or higher than the reference voltage Voc. Further, the comparator 41 outputs a high state (High state), for example, when the voltage Vn at the neutral point becomes lower than the reference voltage Voc.
  • the capacitor 42 is connected between the two power supply terminals of the comparator 41, and functions as a smoothing capacitor that reduces power supply noise between the power supply line and the GND line.
  • the resistor 43 is connected between the output line of the comparator 41 and the power supply line, and functions as a pull-up resistor that holds the output line of the comparator 41 in a normally high state (H state).
  • the capacitor 51 is arranged between the neutral point node N7 and the GND line.
  • the resistor 52 is connected between the node N7 at the neutral point and the power supply line.
  • the capacitor 51 and the resistor 52, and the resistors 31-1 to 31-3 correspond to the filter unit 50. ..
  • the filter unit 50 reduces the component of the frequency band including the frequency of the drive signal that drives the inverter unit 20 from the voltage Vn at the neutral point.
  • the filter unit 50 is, for example, a low-pass filter, and reduces the switching noise of the inverter unit 20 from the voltage Vn at the neutral point. ..
  • the control unit 60 is a processor including, for example, a CPU (Central Processing Unit), and controls the motor unit 1 in a centralized manner.
  • the control unit 60 controls the inverter drive unit 23 so that the drive command input from the outside and the drive state detected by the drive state detection unit of the motor MT (not shown) match, for example. ..
  • the control unit 60 executes the overcurrent abnormality handling process. That is, the control unit 60 executes the overcurrent abnormality handling process when the output signal of the comparator 41 is in the low state. Further, when the output signal of the comparator 41 is in the high state, the control unit 60 determines that an overcurrent has not occurred in the inverter unit 20, and does not execute the overcurrent abnormality handling process. When an overcurrent occurs, the control unit 60 stops the driving of the motor MT and outputs a warning indicating that the overcurrent abnormality has occurred to the outside as a process for dealing with the overcurrent abnormality, And so on. In the present embodiment, the control unit 60 performs an overcurrent abnormality handling process when it is determined that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30. Corresponds to the processing unit. ..
  • the shunt resistor 22 of each phase converts the current (Iu, Iv, Iw) of each phase of the inverter unit 20 into a voltage (Vu, Vv, Vw) corresponding to the current.
  • the shunt resistor 22-1 converts the current Iu flowing through the AC generator 21-1 of the inverter unit 20 into a voltage Vu and outputs the voltage Vu from a node N2 which is a detection terminal.
  • the shunt resistor 22-2 converts the current Iv flowing through the AC generator 21-2 of the inverter unit 20 into a voltage Vv and outputs it from the node N4 which is a detection terminal.
  • the shunt resistor 22-3 converts the current Iw flowing through the AC generator 21-3 of the inverter unit 20 into a voltage Vw and outputs it from the node N6 which is a detection terminal.
  • connection unit 30 outputs the voltage Vn at the neutral point obtained by averaging the voltage Vu, the voltage Vv, and the voltage Vw described above by the star connection. That is, the connection part 30 outputs the voltage Vn represented by the above-mentioned mathematical expression (1) from the node N7. ..
  • the comparator 41 of the overcurrent determination unit 40 compares the reference voltage Voc generated by the resistance voltage division of the resistors 11 and 12 with the above-mentioned neutral point voltage Vn, and the comparison result is controlled by the control unit 60. Output to.
  • the comparator 41 outputs a low state when the voltage Vn at the neutral point is equal to or higher than the reference voltage Voc. Further, the comparator 41 outputs a high state when the voltage Vn at the neutral point is lower than the reference voltage Voc.
  • the operation of the overcurrent determining unit 40 will be described with reference to FIG. ..
  • FIG. 2 is a time chart showing an example of the operation of the overcurrent determination unit 40 in the embodiment.
  • each graph shows the current value of each phase of the inverter unit 20, the voltage Vn at the neutral point, and the output voltage of the comparator 41 in order from the top.
  • the horizontal axis of each graph shows time.
  • the waveform W1 shows the current Iu
  • the waveform W2 shows the current Iv
  • the waveform W3 shows the current Iw
  • the waveform W4 shows the voltage Vn at the neutral point
  • the waveform W5 shows the output voltage of the comparator 41. ..
  • the wire connection unit 30 outputs the average voltage Vn of the voltage Vu, the voltage Vv, and the voltage Vw corresponding to the average value of the current Iu, the current Iv, and the current Iw of each phase to the voltage Vn at the neutral point. (See waveform W4).
  • the voltage Vn at the neutral point is less than the reference voltage Voc, and the output voltage of the comparator 41 outputs a high state. ..
  • the comparator 41 changes the output from the high state to the low state (see the waveform W5). That is, the comparator 41 determines that an overcurrent has occurred and outputs a low state. ..
  • FIG. 3 is a flowchart showing an example of the operation of the control unit 60 according to this embodiment.
  • the control unit 60 first determines whether or not an overcurrent is occurring (step S101).
  • the control unit 60 determines whether or not an overcurrent is occurring, based on the output of the comparator 41 indicating whether or not the voltage Vn at the neutral point has become equal to or higher than the reference voltage Voc. That is, the control unit 60 determines that the overcurrent is occurring when the output of the comparator 41 is in the low state.
  • step S101 YES
  • the control unit 60 advances the process to step S102.
  • the control part 60 returns a process to step S101, when an overcurrent has not generate
  • step S102 the control unit 60 executes an overcurrent abnormality handling process.
  • the control unit 60 executes, for example, a process of stopping the driving of the motor MT, a process of outputting a warning indicating that an overcurrent abnormality has occurred to the outside, and the like.
  • the control unit 60 ends the processing. Note that the processes of steps S101 and S102 described above may be executed by an interrupt process triggered by the output of the comparator 41 being in a low state.
  • the overcurrent detection device 10 includes the shunt resistor 22 corresponding to each phase of the plurality of phases, the connection part 30, and the overcurrent determination part 40.
  • the shunt resistor 22 corresponding to each of the plurality of phases can detect the current flowing through the AC generator 21 that generates the AC signal of each phase included in the inverter unit 20 that generates the AC signals of the plurality of phases. is there.
  • the connection part 30 connects the detection terminals of the shunt resistor 22 to one neutral point for a plurality of phases via the resistor 31.
  • the overcurrent determination unit 40 determines that an overcurrent has occurred in the inverter unit 20 based on the voltage at the neutral point of the wire connection unit 30. ..
  • the overcurrent detection device 10 according to the present embodiment can detect the drive current flowing in each phase of the inverter unit 20 by detecting the voltage at one neutral point, and thus the overcurrent is detected.
  • the configuration for doing so can be simplified. Therefore, the overcurrent detection device 10 according to the present embodiment can have a simplified configuration or a space saving. Further, the overcurrent detection device 10 according to the present embodiment does not need to detect the drive current of each phase individually to detect the overcurrent, so that it is possible to reduce the number of parts and reduce the manufacturing cost. It can be reduced. ..
  • a comparator and an operational amplifier used for current detection and the like generally include four elements in one IC.
  • the overcurrent detection device 10 according to the present embodiment has a total of four elements including three elements for detecting three Hall elements and one element for the voltage of the neutral point described above. Therefore, these processes can be covered by one IC. Therefore, the overcurrent detection device 10 according to the present embodiment can reduce the waste of the elements of the mounted component (IC). ..
  • the overcurrent determination unit 40 includes a comparison unit (for example, the comparator 41) that compares the voltage Vn at the neutral point with a predetermined voltage (for example, the reference voltage Voc).
  • the overcurrent determination unit 40 determines that an overcurrent has occurred when the voltage Vn at the neutral point is equal to or higher than a predetermined voltage.
  • the overcurrent detection device 10 includes the filter unit 50 that reduces the frequency band component including the frequency of the drive signal that drives the inverter unit 20 from the voltage at the neutral point.
  • the filter unit 50 is a low pass filter.
  • the overcurrent detection device 10 according to the present embodiment can reduce erroneous detection of overcurrent due to noise or the like due to switching of the inverter unit 20, for example.
  • the resistance value of the resistor 31 corresponding to each phase is such that the voltage Vn at the neutral point becomes the average voltage of the voltages (Vu, Vv, Vw) at the detection terminals corresponding to each phase. It is set. That is, the resistance value of the resistor 31 corresponding to each phase is the same value.
  • the overcurrent detection device 10 according to the present embodiment can make the voltage Vn at the neutral point an average voltage with a simple configuration, and can properly detect an overcurrent abnormality.
  • the motor unit 1 includes the inverter unit 20, the motor MT, and the above-described overcurrent detection device 10.
  • the inverter unit 20 generates a plurality of phases of AC signals as drive signals.
  • the motor MT is driven based on the drive signal generated by the inverter unit 20.
  • the overcurrent detection device 10 includes a shunt resistor 22 corresponding to each phase of the plurality of phases described above, a wire connection unit 30, and an overcurrent determination unit 40.
  • the motor unit 1 according to the present embodiment has the same effects as those of the overcurrent detection device 10 described above, and can simplify the configuration or save space.
  • the plurality of phases are three phases and the motor MT is a three-phase motor.
  • the motor unit 1 according to the present embodiment can realize a simplified structure or space saving in a three-phase motor.
  • the control unit 60 may be included in the overcurrent detection device 10.
  • the overcurrent detection device 10 includes the shunt resistor 22, the connection unit 30, and the corresponding processing unit that is the control unit 60.
  • the shunt resistor 22 corresponding to each phase of the plurality of phases can detect the current flowing through the AC generator 21 that generates the AC signal of each phase included in the inverter unit 20 that generates the AC signals of the plurality of phases. is there.
  • the connection part 30 connects the detection terminals of the shunt resistor 22 to one neutral point for a plurality of phases via the resistor 31.
  • the handling processing unit When it is determined that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30, the handling processing unit performs handling processing for an overcurrent abnormality.
  • the overcurrent detection device 10 can simplify the configuration or save space, and when the inverter unit 20 has an overcurrent, performs an overcurrent abnormality handling process. be able to.
  • the response processing unit drives the motor MT that drives the multiple-phase AC signals generated by the inverter unit 20 as drive signals, as the response process for the overcurrent abnormality. It is stopped or a warning indicating that an overcurrent abnormality has occurred is output to the outside.
  • the overcurrent detection device 10 can perform appropriate overcurrent abnormality handling processing when an overcurrent occurs in the inverter unit 20.
  • FIG. 4 is a block diagram showing an example of the motor unit 1a according to the second embodiment.
  • the motor unit 1 includes an inverter unit 20, a connection unit 30, an ADC (Analog to Digital Converter) 44, a control unit 60a, and a motor MT.
  • ADC Analog to Digital Converter
  • the shunt resistor 22 corresponding to each of the three phases, the wire connection portion 30, the filter portion 50, and the overcurrent determination portion 40a correspond to the overcurrent detection device 10a.
  • the ADC 44 and the control unit 60a correspond to the overcurrent determination unit 40a of this embodiment.
  • FIG. 4 the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • the ADC 44 detects the voltage Vn at the neutral point of the connection part 30 and converts it into a digital signal.
  • the ADC 44 outputs the converted voltage value to the control unit 60a.
  • the control unit 60a is, for example, a processor including a CPU and the like, and integrally controls the motor unit 1a.
  • the control unit 60a determines whether or not an overcurrent is generated by determining whether or not the value of the neutral point voltage Vn converted by the ADC 44 is equal to or higher than a predetermined voltage (for example, the reference voltage Voc). judge.
  • the control unit 60a is, for example, a processor including a CPU and the like, and integrally controls the motor unit 1a.
  • the control unit 60a determines that an overcurrent has occurred when the value of the voltage Vn is equal to or higher than the reference voltage Voc. Further, the control unit 60a determines that the overcurrent has not occurred when the value of the voltage Vn is less than the reference voltage Voc.
  • the control unit 60a functions as a comparison unit that compares the neutral point voltage Vn with a predetermined voltage (for example, the reference voltage Voc). ..
  • control unit 60a executes the overcurrent abnormality handling process.
  • the other processing of the control unit 60a is the same as that of the control unit 60 of the first embodiment described above, and therefore the description thereof is omitted here.
  • the control unit 60a performs an overcurrent abnormality handling process when it is determined that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30. It corresponds to the corresponding processing unit.
  • FIG. 5 is a flowchart showing an example of the operation of the control unit 60a according to this embodiment.
  • the control unit 60a first acquires the value of the neutral-point voltage Vn from the ADC 44 (step S201).
  • the control unit 60a determines whether or not the voltage value (value of the voltage Vn) acquired from the ADC 44 is equal to or higher than a predetermined voltage (step S202).
  • the predetermined voltage is, for example, the reference voltage Voc.
  • the control unit 60a advances the process to step S203.
  • the control unit 60a ends the process when the voltage value acquired from the ADC 44 is less than the predetermined voltage (step S202: NO). ..
  • step S203 the control unit 60a executes an overcurrent abnormality handling process.
  • the control unit 60a executes, for example, a process of stopping the driving of the motor MT, a process of outputting a warning indicating that an overcurrent abnormality has occurred to the outside, and the like.
  • the control unit 60a ends the processing.
  • the control unit 60a periodically executes the above-described processing from step S201 to step S203.
  • the overcurrent detection device 10a includes the shunt resistor 22 corresponding to each phase of the plurality of phases, the connection part 30, and the overcurrent determination part. 40a, and the overcurrent determination unit 40a includes an ADC 44 and a control unit 60a.
  • the overcurrent determination unit 40a corresponds to a comparison unit that compares the voltage Vn at the neutral point with a predetermined voltage.
  • the present invention is not limited to each of the above-described embodiments, and can be modified within a range not departing from the spirit of the present invention.
  • an example in which the number of phases is three has been described as an example of a plurality of phases, but a plurality of phases may correspond to another number of phases.
  • the filter unit 50 is not limited to the low pass filter, and may be another filter such as a band pass filter.
  • a digital filter can be used as the filter. In this case, a digital filter may be applied to the digital value of the voltage Vn acquired by the ADC 44. In this case, the capacitor 51 can be eliminated.
  • the comparator 41 may have a hysteresis function. Also, in the second embodiment described above, the hysteresis function may be applied softly. Thereby, the overcurrent detection device 10 can further reduce the false detection of the overcurrent.
  • switching elements Q1 to Q6 are IGBTs
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistor
  • Other switching elements may be applied. ..
  • each of the configurations included in the overcurrent detection device 10 (10a) and the motor unit 1 (1a) described above has a computer system inside. Then, a program for realizing the functions of the respective configurations of the above-described overcurrent detection device 10 (10a) and the motor unit 1 (1a) is recorded in a computer-readable recording medium and recorded in this recording medium. You may perform the process in each structure with which the above-mentioned overcurrent detection apparatus 10 (10a) and the motor unit 1 (1a) are provided by making a computer system read and run a program.
  • “reading and executing a program recorded in a recording medium on a computer system” includes installing the program in the computer system.
  • the “computer system” mentioned here includes an OS and hardware such as peripheral devices.
  • the “computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and a dedicated line.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
  • the recording medium also includes a recording medium provided inside or outside accessible from the distribution server for distributing the program.
  • the program is divided into a plurality of programs, and the programs are downloaded at different timings and then combined with the configurations of the overcurrent detection device 10 (10a) and the motor unit 1 (1a), or the divided programs are distributed.
  • the distribution server used may be different.
  • the "computer-readable recording medium” holds a program for a certain period of time, such as a volatile memory (RAM) inside a computer system that serves as a server or a client when the program is transmitted via a network. It also includes things.
  • the program may be for realizing a part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned functions in combination with a program already recorded in the computer system. ..
  • LSI Large Scale Integration
  • Each of the functions described above may be individually implemented as a processor, or part or all of the functions may be integrated and implemented as a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where an integrated circuit technology that replaces the LSI appears due to the progress of semiconductor technology, an integrated circuit according to the technology may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

This overcurrent detection device is provided with: shunt resistors across which currents flowing through AC generation units, which are provided in an inverter unit for generating AC currents of a plurality of phases and generate the AC currents of the phases, can be converted to voltages that can be detected, and which respectively correspond to the phases; a wire connection unit in which detection terminals of the shunt resistors are connected through resistors to a neutral point shared between the plurality of phases; and an overcurrent determination unit which determines that an overcurrent has occurred in the inverter unit on the basis of the voltage of the neutral point of the wire connection unit. In addition, one aspect of the present invention is a motor unit provided with: the inverter unit which generates, as driving signals, the AC signals of the plurality of phases; a motor which is driven on the basis of the driving signals generated by the inverter; and the overcurrent detection device.

Description

過電流検出装置、及びモータユニットOvercurrent detection device and motor unit
本発明は、過電流検出装置、及びモータユニットに関する。 The present invention relates to an overcurrent detection device and a motor unit.
近年、例えば、3相モータなどのモータユニットの過電流を検出する技術が知られている(例えば、日本国公開公報特開2010-279125号公報を参照)。このような過電流の検出技術では、例えば、3相の駆動電流のそれぞれを個別に検出して過電流を検出していた。 In recent years, for example, a technique for detecting an overcurrent in a motor unit such as a three-phase motor has been known (see, for example, Japanese Patent Laid-Open Publication No. 2010-279125). In such an overcurrent detection technique, for example, each of the three-phase drive currents is individually detected to detect the overcurrent.
日本国公開公報:特開2010-279125号公報Japanese Patent Publication: JP 2010-279125 A
しかしながら、上述した技術では、各相の駆動電流をそれぞれ個別に検出するため、例えば、部品数が多くなり、構成を簡略化、又は省スペース化することが困難であった。  However, in the above-mentioned technique, since the drive currents of the respective phases are individually detected, for example, the number of parts is increased, and it is difficult to simplify the configuration or save the space. ‥
本発明は、上記問題を解決すべくなされたもので、その目的は、構成を簡略化、又は省スペース化することができる過電流検出装置、及びモータユニットを提供することにある。 The present invention has been made to solve the above problems, and an object thereof is to provide an overcurrent detection device and a motor unit that can simplify the configuration or save space.
上記問題を解決するために、本発明の一態様は、複数相の交流信号を生成するインバータ部が備える各相の交流信号を生成する交流生成部に流れる電流を電圧に変換して検出可能であり、 前記複数相の各相に対応するシャント抵抗と、前記シャント抵抗の検出端子を、抵抗を介して前記複数相分を1つの中性点に結線した結線部と、前記結線部の中性点の電圧に基づいて、前記インバータ部に過電流が生じていることを判定する過電流判定部とを備える過電流検出装置である。  In order to solve the above problems, according to one embodiment of the present invention, a current flowing in an AC generator which generates an AC signal of each phase included in an inverter which generates an AC signal of a plurality of phases can be converted into a voltage and detected. Yes, a shunt resistance corresponding to each phase of the plurality of phases, and a connection part in which the detection terminals of the shunt resistance are connected to one neutral point of the plurality of phases via a resistance, and a neutral part of the connection part. It is an overcurrent detection device including an overcurrent determination unit that determines whether an overcurrent has occurred in the inverter unit based on a voltage at a point. ‥
また、本発明の一態様は、前記複数相の交流信号を駆動信号として生成する前記インバータ部と、前記インバータ部が生成した前記駆動信号に基づいて、駆動するモータと、上記の過電流検出装置とを備えるモータユニットである。  Further, according to an aspect of the present invention, the inverter unit that generates the AC signals of the plurality of phases as a drive signal, a motor that is driven based on the drive signal generated by the inverter unit, and the overcurrent detection device described above. And a motor unit. ‥
また、本発明の一態様は、複数相の交流信号を生成するインバータ部が備える各相の交流信号を生成する交流生成部に流れる電流を電圧に変換して検出可能であり、 前記複数相の各相に対応するシャント抵抗と、前記シャント抵抗の検出端子を、抵抗を介して前記複数相分を1つの中性点に結線した結線部と、前記結線部の中性点の電圧に基づいて、前記インバータ部に過電流が生じていると判定された場合に、過電流異常の対応処理を行う対応処理部とを備える過電流検出装置である。 Further, according to one embodiment of the present invention, a current flowing in an AC generation unit which generates an AC signal of each phase included in an inverter unit which generates an AC signal of a plurality of phases can be converted into a voltage and detected. Based on the voltage at the neutral point of the shunt resistor corresponding to each phase and the detection terminal of the shunt resistor, and the connection point in which the plurality of phases are connected to one neutral point via the resistor, and the voltage at the neutral point of the connection point. An overcurrent detection device including a response processing unit that performs response processing for an overcurrent abnormality when it is determined that an overcurrent has occurred in the inverter unit.
本発明によれば、構成を簡略化、又は省スペース化することができる。 According to the present invention, the configuration can be simplified or the space can be saved.
図1は、第1の実施形態によるモータユニットの一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a motor unit according to the first embodiment. 図2は、第1の実施形態における過電流判定部の動作の一例を示すタイムチャートである。FIG. 2 is a time chart showing an example of the operation of the overcurrent determination unit according to the first embodiment. 図3は、第1の実施形態による制御部の動作の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the operation of the control unit according to the first embodiment. 図4は、第2の実施形態によるモータユニットの一例を示すブロック図である。FIG. 4 is a block diagram showing an example of a motor unit according to the second embodiment. 図5は、第2の実施形態による制御部の動作の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the operation of the control unit according to the second embodiment.
以下、本発明の一実施形態による過電流検出装置、及びモータユニットについて、図面を参照して説明する。  Hereinafter, an overcurrent detection device and a motor unit according to an embodiment of the present invention will be described with reference to the drawings. ‥
[第1の実施形態]

 図1は、第1の実施形態によるモータユニット1の一例を示すブロック図である。

 図1に示すように、モータユニット1は、インバータ部20と、結線部30と、過電流判定部40と、制御部60と、モータMTとを備える。 
[First Embodiment]

FIG. 1 is a block diagram showing an example of a motor unit 1 according to the first embodiment.

As shown in FIG. 1, the motor unit 1 includes an inverter unit 20, a connection unit 30, an overcurrent determination unit 40, a control unit 60, and a motor MT.

 インバータ部20は、後述する制御部60の制御に基づいて、複数相の交流信号を生成し、当該複数相の交流信号を駆動信号として、モータMTに出力する。インバータ部20は、例えば、U相信号、V相信号、及びW相信号の3相の交流信号を生成する。

 また、インバータ部20は、交流生成部(21-1、21-2、21-3)と、シャント抵抗(22-1、22-2、22-3)と、インバータ駆動部23とを備える。 

The inverter section 20 generates AC signals of a plurality of phases under the control of the control section 60 described later, and outputs the AC signals of the plurality of phases to the motor MT as a drive signal. The inverter unit 20 generates, for example, a three-phase AC signal of a U-phase signal, a V-phase signal, and a W-phase signal.

In addition, the inverter unit 20 includes an AC generation unit (21-1, 21-2, 21-3), a shunt resistor (22-1, 22-2, 22-3), and an inverter drive unit 23.

 なお、本実施形態において、交流生成部21-1と、交流生成部21-2と、交流生成部21-3とは、同一の構成であり、モータユニット1が備える任意の交流生成部を示す場合、又は特に区別しない場合には、交流生成部21として説明する。

 また、本実施形態において、シャント抵抗22-1と、シャント抵抗22-2と、シャント抵抗22-3とは、同一の構成であり、モータユニット1が備える任意のシャント抵抗を示す場合、又は特に区別しない場合には、シャント抵抗22として説明する。 

In the present embodiment, the AC generation unit 21-1, the AC generation unit 21-2, and the AC generation unit 21-3 have the same configuration and represent any AC generation unit included in the motor unit 1. In the case, or unless otherwise particularly distinguished, the AC generator 21 will be described.

Further, in the present embodiment, the shunt resistor 22-1, the shunt resistor 22-2, and the shunt resistor 22-3 have the same configuration, and show any shunt resistor included in the motor unit 1, or particularly When no distinction is made, the shunt resistor 22 will be described.

 交流生成部21は、電源供給線とGND線との間に直列に接続された2つのスイッチング素子を備え、モータMTを駆動する交流信号を生成する。

 交流生成部21-1は、3相の交流信号のうちのU相信号を生成して、当該U相信号を駆動信号としてモータMTに供給する。交流生成部21-1は、スイッチング素子Q1と、スイッチング素子Q2とを備える。スイッチング素子Q1とスイッチング素子Q2とは、例えば、FWD(Free Wheeling Diode)付きのIGBT(Insulated Gate Bipolar Transistor)であり、シャント抵抗22-1を介して、電源供給線とGND線との間に直列に接続されている。ここで、FWDは、負荷電流を転流させるためのダイオードである。スイッチング素子Q1とスイッチング素子Q2とのそれぞれは、ゲート端子にインバータ駆動部23から出力される制御信号が供給されてスイッチング制御され、スイッチング素子Q1とスイッチング素子Q2との間のノードN1からU相信号を出力する。 

The AC generator 21 includes two switching elements connected in series between the power supply line and the GND line, and generates an AC signal that drives the motor MT.

The AC generator 21-1 generates a U-phase signal of the three-phase AC signals and supplies the U-phase signal to the motor MT as a drive signal. The AC generator 21-1 includes a switching element Q1 and a switching element Q2. The switching element Q1 and the switching element Q2 are, for example, an IGBT (Insulated Gate Bipolar Transistor) with an FWD (Free Wheeling Diode), and are connected in series between the power supply line and the GND line via the shunt resistor 22-1. It is connected to the. Here, FWD is a diode for commutating the load current. Each of the switching element Q1 and the switching element Q2 is supplied with a control signal output from the inverter drive unit 23 at its gate terminal to be switching-controlled, and a U-phase signal from the node N1 between the switching element Q1 and the switching element Q2. Is output.
交流生成部21-2は、3相の交流信号のうちのV相信号を生成して、当該V相信号を駆動信号としてモータMTに供給する。交流生成部21-2は、スイッチング素子Q3と、スイッチング素子Q4とを備える。スイッチング素子Q3とスイッチング素子Q4とは、例えば、FWD付きのIGBTであり、シャント抵抗22-2を介して、電源供給線とGND線との間に直列に接続されている。スイッチング素子Q3とスイッチング素子Q4とのそれぞれは、ゲート端子にインバータ駆動部23から出力される制御信号が供給されてスイッチング制御され、スイッチング素子Q3とスイッチング素子Q4との間のノードN3からV相信号を出力する。  The AC generator 21-2 generates a V-phase signal of the three-phase AC signals and supplies the V-phase signal as a drive signal to the motor MT. The AC generator 21-2 includes a switching element Q3 and a switching element Q4. The switching element Q3 and the switching element Q4 are, for example, IGBTs with FWD, and are connected in series between the power supply line and the GND line via the shunt resistor 22-2. Each of the switching element Q3 and the switching element Q4 is supplied with a control signal output from the inverter drive unit 23 at its gate terminal to perform switching control, and a V-phase signal is output from a node N3 between the switching element Q3 and the switching element Q4. Is output. ‥
交流生成部21-3は、3相の交流信号のうちのW相信号を生成して、当該W相信号を駆動信号としてモータMTに供給する。交流生成部21-3は、スイッチング素子Q5と、スイッチング素子Q6とを備える。スイッチング素子Q5とスイッチング素子Q6とは、例えば、FWD付きのIGBTであり、シャント抵抗22-3を介して、電源供給線とGND線との間に直列に接続されている。スイッチング素子Q5とスイッチング素子Q6とのそれぞれは、ゲート端子にインバータ駆動部23から出力される制御信号が供給されてスイッチング制御され、スイッチング素子Q5とスイッチング素子Q6との間のノードN5からW相信号を出力する。  The AC generator 21-3 generates a W-phase signal of the three-phase AC signals and supplies the W-phase signal to the motor MT as a drive signal. The AC generator 21-3 includes a switching element Q5 and a switching element Q6. The switching element Q5 and the switching element Q6 are, for example, IGBTs with FWD, and are connected in series between the power supply line and the GND line via the shunt resistor 22-3. Each of the switching element Q5 and the switching element Q6 is supplied with a control signal output from the inverter driving section 23 at its gate terminal to perform switching control, and a W-phase signal is output from a node N5 between the switching element Q5 and the switching element Q6. Is output. ‥

 シャント抵抗22は、インバータ部20が備える各相の交流信号を生成する交流生成部21に流れる電流を電圧に変換して検出可能にする。シャント抵抗22は、例えば、交流生成部21とGND線との間に配置される。

 シャント抵抗22-1は、交流生成部21-1とGND線との間に配置され、U相に対応する。交流生成部21-1と、シャント抵抗22-1との間のノードN2は、U相に対応する検出端子であり、交流生成部21-1に流れる電流Iuを電圧に変換した電圧Vuを出力する。 

The shunt resistor 22 converts a current flowing through the AC generator 21 that generates an AC signal of each phase included in the inverter unit 20 into a voltage so that it can be detected. The shunt resistor 22 is arranged, for example, between the AC generator 21 and the GND line.

The shunt resistor 22-1 is arranged between the AC generator 21-1 and the GND line and corresponds to the U phase. A node N2 between the AC generator 21-1 and the shunt resistor 22-1 is a detection terminal corresponding to the U phase and outputs a voltage Vu obtained by converting the current Iu flowing in the AC generator 21-1 into a voltage. To do.

 シャント抵抗22-2は、交流生成部21-2とGND線との間に配置され、V相に対応する。交流生成部21-2と、シャント抵抗22-2との間のノードN4は、V相に対応する検出端子であり、交流生成部21-2に流れる電流Ivを電圧に変換した電圧Vvを出力する。

 シャント抵抗22-3は、交流生成部21-3とGND線との間に配置され、W相に対応する。交流生成部21-3と、シャント抵抗22-3との間のノードN6は、W相に対応する検出端子であり、交流生成部21-3に流れる電流Iwを電圧に変換した電圧Vwを出力する。 

The shunt resistor 22-2 is arranged between the AC generation unit 21-2 and the GND line and corresponds to the V phase. A node N4 between the AC generator 21-2 and the shunt resistor 22-2 is a detection terminal corresponding to the V phase, and outputs a voltage Vv obtained by converting the current Iv flowing in the AC generator 21-2 into a voltage. To do.

The shunt resistor 22-3 is arranged between the AC generator 21-3 and the GND line, and corresponds to the W phase. A node N6 between the AC generator 21-3 and the shunt resistor 22-3 is a detection terminal corresponding to the W phase, and outputs a voltage Vw obtained by converting the current Iw flowing in the AC generator 21-3 into a voltage. To do.

 インバータ駆動部23は、制御部60の制御に基づいて、インバータ部20を動作させる制御信号を出力する。インバータ駆動部23は、スイッチング素子Q1~スイッチング素子Q6のゲート端子に、各スイッチング素子のスイッチングを制御する制御信号を供給する。

 モータMTは、例えば、3相モータであり、インバータ部20が出力する3相の駆動信号(U相信号、V相信号、及びW相信号)に基づいて駆動する。 

The inverter drive unit 23 outputs a control signal for operating the inverter unit 20 under the control of the control unit 60. The inverter drive unit 23 supplies a control signal for controlling switching of each switching element to the gate terminals of the switching elements Q1 to Q6.

The motor MT is, for example, a three-phase motor, and is driven based on the three-phase drive signals (U-phase signal, V-phase signal, and W-phase signal) output by the inverter unit 20.

 なお、本実施形態において、上述した3相の各相に対応するシャント抵抗22と、結線部30と、過電流判定部40とは、過電流検出装置10に対応する。

 結線部30は、シャント抵抗22の検出端子を、抵抗31を介して複数相分を1つの中性点に結線する。結線部30は、抵抗31-1と、抵抗31-2と、抵抗31-3とを備え、スター結線によりこれらの抵抗31を結線する。ここで、抵抗31-1と、抵抗31-2と、抵抗31-3とは、例えば、同一の抵抗値であり、結線部30が備える任意の抵抗を示す場合、又は特に区別しない場合には、抵抗31として説明する。 

In the present embodiment, the shunt resistor 22 corresponding to each of the above-described three phases, the wire connection part 30, and the overcurrent determination part 40 correspond to the overcurrent detection device 10.

The connection part 30 connects the detection terminals of the shunt resistor 22 to one neutral point for a plurality of phases via the resistor 31. The wire connection portion 30 includes a resistor 31-1, a resistor 31-2, and a resistor 31-3, and these resistors 31 are connected by star connection. Here, the resistance 31-1, the resistance 31-2, and the resistance 31-3 have, for example, the same resistance value, and indicate any resistance included in the wire connection portion 30, or if no particular distinction is made. , Resistor 31 will be described.
抵抗31-1は、シャント抵抗22-1の検出端子(ノードN2)と、中性点であるノードN7との間に接続され、抵抗31-2は、シャント抵抗22-2の検出端子(ノードN4)と、中性点であるノードN7との間に接続されている。また、抵抗31-3は、シャント抵抗22-3の検出端子(ノードN6)と、中性点であるノードN7との間に接続されている。ここで、中性点の電圧Vnは、下記の数式(1)で表される。  The resistor 31-1 is connected between the detection terminal (node N2) of the shunt resistor 22-1 and the node N7 which is the neutral point, and the resistor 31-2 is the detection terminal (node N2 of the shunt resistor 22-2. N4) and the node N7 which is a neutral point. The resistor 31-3 is connected between the detection terminal (node N6) of the shunt resistor 22-3 and the node N7 which is a neutral point. Here, the voltage Vn at the neutral point is represented by the following mathematical expression (1). ‥
中性点の電圧Vn=(Vu+Vv+Vw)/3 ・・・ (1)  Neutral point voltage Vn=(Vu+Vv+Vw)/3... (1)
このように、結線部30は、ノードN7の中性点から各相に対応する検出端子の電圧の平均電圧(Vn)を出力する。なお、各相に対応する抵抗31の抵抗値は、中性点の電圧Vnが、各相に対応するシャント抵抗22の検出端子の電圧(Vu、Vv、及びVw)の平均電圧になるように定められている。具体的には、抵抗31-1と、抵抗31-2と、抵抗31-1とは、等しい抵抗値に設定されている。  In this way, the connection part 30 outputs the average voltage (Vn) of the voltages of the detection terminals corresponding to each phase from the neutral point of the node N7. The resistance value of the resistor 31 corresponding to each phase is such that the voltage Vn at the neutral point becomes the average voltage of the detection terminal voltages (Vu, Vv, and Vw) of the shunt resistor 22 corresponding to each phase. It is set. Specifically, the resistance 31-1, the resistance 31-2, and the resistance 31-1 are set to have the same resistance value. ‥
抵抗11及び抵抗12は、電源供給線とGND線との間に、直接に接続され、抵抗分圧により基準電圧Vocを生成する。なお、基準電圧Vocは、過電流が発生していることを判定するための所定の電圧の一例である。直列に接続された抵抗11と抵抗12との間のノードN8には、抵抗11の抵抗値と、抵抗12の抵抗値との抵抗比に応じた基準電圧Vocが出力される。  The resistors 11 and 12 are directly connected between the power supply line and the GND line, and generate the reference voltage Voc by resistance voltage division. The reference voltage Voc is an example of a predetermined voltage for determining that overcurrent has occurred. A reference voltage Voc according to the resistance ratio between the resistance value of the resistance 11 and the resistance value of the resistance 12 is output to the node N8 between the resistance 11 and the resistance 12 connected in series. ‥
過電流判定部40は、結線部30の中性点の電圧Vnに基づいて、インバータ部20に過電流が生じていることを判定する。過電流判定部40は、中性点の電圧Vnと基準電圧Vocとを比較するコンパレータ41を備え、中性点の電圧Vnが基準電圧Voc以上である場合に、過電流が生じていると判定する。ここで、コンパレータ41は、比較部の一例である。また、過電流判定部40は、コンパレータ41と、コンデンサ(42、51)と、抵抗(43、52)とを備える。  The overcurrent determination unit 40 determines that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30. The overcurrent determination unit 40 includes a comparator 41 that compares the voltage Vn at the neutral point with the reference voltage Voc, and determines that an overcurrent has occurred when the voltage Vn at the neutral point is equal to or higher than the reference voltage Voc. To do. Here, the comparator 41 is an example of a comparison unit. Further, the overcurrent determination unit 40 includes a comparator 41, capacitors (42, 51), and resistors (43, 52). ‥

 コンパレータ41は、-入力端子(反転入力端子)に結線部30の中性点であるノードN7が接続され、+入力端子(非反転入力端子)に上述したノードN8が接続されている。また、コンパレータ41は、中性点の電圧Vnと基準電圧Vocとの比較結果である出力信号を制御部60に出力する。

 コンパレータ41は、例えば、中性点の電圧Vnが基準電圧Voc以上になった場合に、ロウ状態(Low状態)を出力する。また、コンパレータ41は、例えば、中性点の電圧Vnが基準電圧Voc未満になった場合に、ハイ状態(High状態)を出力する。 

In the comparator 41, the-input terminal (inverting input terminal) is connected to the node N7, which is the neutral point of the connection part 30, and the + input terminal (non-inverting input terminal) is connected to the node N8. Further, the comparator 41 outputs an output signal, which is a comparison result of the voltage Vn at the neutral point and the reference voltage Voc, to the control unit 60.

The comparator 41 outputs a low state (Low state), for example, when the voltage Vn at the neutral point becomes equal to or higher than the reference voltage Voc. Further, the comparator 41 outputs a high state (High state), for example, when the voltage Vn at the neutral point becomes lower than the reference voltage Voc.

 コンデンサ42は、コンパレータ41の2つの電源端子の間に接続され、電源供給線とGND線との間の電源ノイズを低減する平滑コンデサとして機能する。

 抵抗43は、コンパレータ41の出力線と、電源供給線との間に接続され、コンパレータ41の出力線を通常ハイ状態(H状態)に保持するプルアップ抵抗として機能する。 

The capacitor 42 is connected between the two power supply terminals of the comparator 41, and functions as a smoothing capacitor that reduces power supply noise between the power supply line and the GND line.

The resistor 43 is connected between the output line of the comparator 41 and the power supply line, and functions as a pull-up resistor that holds the output line of the comparator 41 in a normally high state (H state).
コンデンサ51は、上述した中性点のノードN7と、GND線との間に配置されている。また、抵抗52は、中性点のノードN7と、電源供給線との間に接続されている。コンデンサ51及び抵抗52と、抵抗31-1~抵抗31-3とは、フィルタ部50に対応する。  The capacitor 51 is arranged between the neutral point node N7 and the GND line. The resistor 52 is connected between the node N7 at the neutral point and the power supply line. The capacitor 51 and the resistor 52, and the resistors 31-1 to 31-3 correspond to the filter unit 50. ‥
フィルタ部50は、中性点の電圧Vnから、インバータ部20を駆動する駆動信号の周波数を含む周波数帯域の成分を低減させる。フィルタ部50は、例えば、ローパスフィルタであり、インバータ部20のスイッチングノイズを中性点の電圧Vnから低減させる。  The filter unit 50 reduces the component of the frequency band including the frequency of the drive signal that drives the inverter unit 20 from the voltage Vn at the neutral point. The filter unit 50 is, for example, a low-pass filter, and reduces the switching noise of the inverter unit 20 from the voltage Vn at the neutral point. ‥
制御部60は、例えば、CPU(Central Processing Unit)などを含むプロセッサであり、モータユニット1を統括的に制御する。制御部60は、外部から入力された駆動指令と、例えば、不図示のモータMTの駆動状態検出部が検出した駆動状態とが一致するように、インバータ駆動部23を制御する。  The control unit 60 is a processor including, for example, a CPU (Central Processing Unit), and controls the motor unit 1 in a centralized manner. The control unit 60 controls the inverter drive unit 23 so that the drive command input from the outside and the drive state detected by the drive state detection unit of the motor MT (not shown) match, for example. ‥
また、制御部60は、過電流判定部40がインバータ部20に過電流が生じていると判定した場合に、過電流異常の対応処理を実行する。すなわち、制御部60は、コンパレータ41の出力信号が、ロウ状態になった場合に、過電流異常の対応処理を実行する。また、制御部60は、コンパレータ41の出力信号が、ハイ状態である場合に、インバータ部20に過電流が生じていないものとして、過電流異常の対応処理を実行しない。制御部60は、過電流が生じている場合に、過電流異常の対応処理として、例えば、モータMTの駆動を停止させる、及び、過電流異常が発生した旨を示す警告を外部に出力する、等の処理を実行する。本実施形態において、制御部60は、結線部30の中性点の電圧Vnに基づいて、インバータ部20に過電流が生じていると判定された場合に、過電流異常の対応処理を行う対応処理部に対応する。  In addition, when the overcurrent determination unit 40 determines that the overcurrent has occurred in the inverter unit 20, the control unit 60 executes the overcurrent abnormality handling process. That is, the control unit 60 executes the overcurrent abnormality handling process when the output signal of the comparator 41 is in the low state. Further, when the output signal of the comparator 41 is in the high state, the control unit 60 determines that an overcurrent has not occurred in the inverter unit 20, and does not execute the overcurrent abnormality handling process. When an overcurrent occurs, the control unit 60 stops the driving of the motor MT and outputs a warning indicating that the overcurrent abnormality has occurred to the outside as a process for dealing with the overcurrent abnormality, And so on. In the present embodiment, the control unit 60 performs an overcurrent abnormality handling process when it is determined that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30. Corresponds to the processing unit. ‥

 次に、図面を参照して、本実施形態による過電流検出装置10の動作について説明する。

 過電流検出装置10において、まず、各相のシャント抵抗22が、インバータ部20の各相の電流(Iu、Iv、Iw)を、電流に対応する電圧(Vu、Vv、Vw)に変換する。シャント抵抗22-1は、インバータ部20の交流生成部21-1に流れる電流Iuを電圧Vuに変換し、検出端子であるノードN2から出力する。また、シャント抵抗22-2は、インバータ部20の交流生成部21-2に流れる電流Ivを電圧Vvに変換し、検出端子であるノードN4から出力する。また、シャント抵抗22-3は、インバータ部20の交流生成部21-3に流れる電流Iwを電圧Vwに変換し、検出端子であるノードN6から出力する。 

Next, the operation of the overcurrent detection device 10 according to the present embodiment will be described with reference to the drawings.

In the overcurrent detection device 10, first, the shunt resistor 22 of each phase converts the current (Iu, Iv, Iw) of each phase of the inverter unit 20 into a voltage (Vu, Vv, Vw) corresponding to the current. The shunt resistor 22-1 converts the current Iu flowing through the AC generator 21-1 of the inverter unit 20 into a voltage Vu and outputs the voltage Vu from a node N2 which is a detection terminal. Further, the shunt resistor 22-2 converts the current Iv flowing through the AC generator 21-2 of the inverter unit 20 into a voltage Vv and outputs it from the node N4 which is a detection terminal. Further, the shunt resistor 22-3 converts the current Iw flowing through the AC generator 21-3 of the inverter unit 20 into a voltage Vw and outputs it from the node N6 which is a detection terminal.
次に、結線部30は、スター結線により上述した電圧Vu、電圧Vv、及び電圧Vwを平均した中性点の電圧Vnを出力する。すなわち、結線部30は、上述した数式(1)により示される電圧VnをノードN7から出力する。  Next, the connection unit 30 outputs the voltage Vn at the neutral point obtained by averaging the voltage Vu, the voltage Vv, and the voltage Vw described above by the star connection. That is, the connection part 30 outputs the voltage Vn represented by the above-mentioned mathematical expression (1) from the node N7. ‥
次に、過電流判定部40のコンパレータ41は、抵抗11及び抵抗12が抵抗分圧で生成した基準電圧Vocと、上述した中性点の電圧Vnとを比較して、比較結果を制御部60に出力する。コンパレータ41は、中性点の電圧Vnが基準電圧Voc以上である場合に、ロウ状態を出力する。また、コンパレータ41は、中性点の電圧Vnが基準電圧Voc未満である場合に、ハイ状態を出力する。ここで、図2を参照して、過電流判定部40の動作について説明する。  Next, the comparator 41 of the overcurrent determination unit 40 compares the reference voltage Voc generated by the resistance voltage division of the resistors 11 and 12 with the above-mentioned neutral point voltage Vn, and the comparison result is controlled by the control unit 60. Output to. The comparator 41 outputs a low state when the voltage Vn at the neutral point is equal to or higher than the reference voltage Voc. Further, the comparator 41 outputs a high state when the voltage Vn at the neutral point is lower than the reference voltage Voc. Here, the operation of the overcurrent determining unit 40 will be described with reference to FIG. ‥

 図2は、実施形態における過電流判定部40の動作の一例を示すタイムチャートである。

 図2において、各グラフは、上から順に、インバータ部20の各相の電流値、中性点の電圧Vn、及びコンパレータ41の出力電圧を示している。また、各グラフの横軸は、時間を示している。 

FIG. 2 is a time chart showing an example of the operation of the overcurrent determination unit 40 in the embodiment.

In FIG. 2, each graph shows the current value of each phase of the inverter unit 20, the voltage Vn at the neutral point, and the output voltage of the comparator 41 in order from the top. The horizontal axis of each graph shows time.
図2において、波形W1は、電流Iuを示し、波形W2は、電流Ivを示し、波形W3は、電流Iwを示している。また、波形W4は、中性点の電圧Vnを示し、波形W5は、コンパレータ41の出力電圧を示している。  In FIG. 2, the waveform W1 shows the current Iu, the waveform W2 shows the current Iv, and the waveform W3 shows the current Iw. Further, the waveform W4 shows the voltage Vn at the neutral point, and the waveform W5 shows the output voltage of the comparator 41. ‥
結線部30は、中性点の電圧Vnに、各相の電流Iu、電流Iv、及び電流Iwの平均値に対応する電圧である電圧Vu、電圧Vv、及び電圧Vwの平均電圧Vnを出力する(波形W4を参照)。インバータ部20及びモータMTの動作電流が正常な状態である場合には、中性点の電圧Vnが、基準電圧Voc未満であり、コンパレータ41の出力電圧は、ハイ状態を出力する。  The wire connection unit 30 outputs the average voltage Vn of the voltage Vu, the voltage Vv, and the voltage Vw corresponding to the average value of the current Iu, the current Iv, and the current Iw of each phase to the voltage Vn at the neutral point. (See waveform W4). When the operating currents of the inverter unit 20 and the motor MT are in a normal state, the voltage Vn at the neutral point is less than the reference voltage Voc, and the output voltage of the comparator 41 outputs a high state. ‥
また、時刻T1において、中性点の電圧Vnが、基準電圧Voc以上になると、コンパレータ41は、出力をハイ状態からロウ状態に変更する(波形W5を参照)。すなわち、コンパレータ41は、過電流が生じている判定して、ロウ状態を出力する。  Further, at time T1, when the voltage Vn at the neutral point becomes equal to or higher than the reference voltage Voc, the comparator 41 changes the output from the high state to the low state (see the waveform W5). That is, the comparator 41 determines that an overcurrent has occurred and outputs a low state. ‥

 次に、図3を参照して、制御部60の動作について説明する。

 図3は、本実施形態による制御部60の動作の一例を示すフローチャートである。

 図3に示すように、まず、制御部60は、過電流が発生しているか否かを判定する(ステップS101)。制御部60は、中性点の電圧Vnが、基準電圧Voc以上になったか否かのコンパレータ41による出力によって、過電流が発生しているか否かを判定する。すなわち、制御部60は、コンパレータ41の出力が、ロウ状態になった場合に、過電流が発生していると判定する。制御部60は、過電流が発生している場合(ステップS101:YES)に、処理をステップS102に進める。また、制御部60は、過電流が発生していない場合(ステップS101:NO)に、処理をステップS101に戻す。 

Next, the operation of the control unit 60 will be described with reference to FIG.

FIG. 3 is a flowchart showing an example of the operation of the control unit 60 according to this embodiment.

As shown in FIG. 3, the control unit 60 first determines whether or not an overcurrent is occurring (step S101). The control unit 60 determines whether or not an overcurrent is occurring, based on the output of the comparator 41 indicating whether or not the voltage Vn at the neutral point has become equal to or higher than the reference voltage Voc. That is, the control unit 60 determines that the overcurrent is occurring when the output of the comparator 41 is in the low state. When the overcurrent has occurred (step S101: YES), the control unit 60 advances the process to step S102. Moreover, the control part 60 returns a process to step S101, when an overcurrent has not generate|occur|produced (step S101: NO).

 ステップS102において、制御部60は、過電流異常の対応処理を実行する。制御部60は、例えば、モータMTの駆動を停止させる処理、及び、過電流異常が発生した旨を示す警告を外部に出力する処理、等を実行する。ステップS102の処理後に、制御部60は、処理を終了する。

 なお、上述したステップS101及びステップS102の処理は、コンパレータ41の出力がロウ状態になったことをトリガとする割込み処理により実行されてもよい。 

In step S102, the control unit 60 executes an overcurrent abnormality handling process. The control unit 60 executes, for example, a process of stopping the driving of the motor MT, a process of outputting a warning indicating that an overcurrent abnormality has occurred to the outside, and the like. After the processing of step S102, the control unit 60 ends the processing.

Note that the processes of steps S101 and S102 described above may be executed by an interrupt process triggered by the output of the comparator 41 being in a low state.
以上説明したように、本実施形態による過電流検出装置10は、複数相の各相に対応するシャント抵抗22と、結線部30と、過電流判定部40とを備える。複数相の各相に対応するシャント抵抗22は、複数相の交流信号を生成するインバータ部20が備える各相の交流信号を生成する交流生成部21に流れる電流を電圧に変換して検出可能である。結線部30は、シャント抵抗22の検出端子を、抵抗31を介して複数相分を1つの中性点に結線する。過電流判定部40は、結線部30の中性点の電圧に基づいて、インバータ部20に過電流が生じていることを判定する。  As described above, the overcurrent detection device 10 according to the present embodiment includes the shunt resistor 22 corresponding to each phase of the plurality of phases, the connection part 30, and the overcurrent determination part 40. The shunt resistor 22 corresponding to each of the plurality of phases can detect the current flowing through the AC generator 21 that generates the AC signal of each phase included in the inverter unit 20 that generates the AC signals of the plurality of phases. is there. The connection part 30 connects the detection terminals of the shunt resistor 22 to one neutral point for a plurality of phases via the resistor 31. The overcurrent determination unit 40 determines that an overcurrent has occurred in the inverter unit 20 based on the voltage at the neutral point of the wire connection unit 30. ‥
これにより、本実施形態による過電流検出装置10は、インバータ部20の各相に流れる駆動電流を1か所の中性点の電圧を検出することで検出することができるため、過電流を検出するための構成を簡略化することができる。よって、本実施形態による過電流検出装置10は、構成を簡略化、又は省スペース化することができる。また、本実施形態による過電流検出装置10は、各相の駆動電流のそれぞれを個別に検出して過電流を検出する必要がないため、部品数を低減することが可能であり、製造コストを低減することができる。  As a result, the overcurrent detection device 10 according to the present embodiment can detect the drive current flowing in each phase of the inverter unit 20 by detecting the voltage at one neutral point, and thus the overcurrent is detected. The configuration for doing so can be simplified. Therefore, the overcurrent detection device 10 according to the present embodiment can have a simplified configuration or a space saving. Further, the overcurrent detection device 10 according to the present embodiment does not need to detect the drive current of each phase individually to detect the overcurrent, so that it is possible to reduce the number of parts and reduce the manufacturing cost. It can be reduced. ‥
例えば、電流の検出などに用いるコンパレータやオペアンプは、1つのICに4素子入りのものが一般的である。また、モータMTの制御には、例えば、モータMTの回転位置の把握に、3か所に配置したホール素子などの検出信号を用いるものがある。このような場合には、本実施形態による過電流検出装置10は、3つのホール素子の検出用の3つの素子と、上述した中性点の電圧用の1つの素子とで、合計4素子になるため、1つのICでこれらの処理を賄うことができる。そのため、本実施形態による過電流検出装置10は、搭載する部品(IC)の素子の無駄を低減することができる。  For example, a comparator and an operational amplifier used for current detection and the like generally include four elements in one IC. Further, in controlling the motor MT, for example, there is one that uses a detection signal from a Hall element or the like arranged at three positions to grasp the rotational position of the motor MT. In such a case, the overcurrent detection device 10 according to the present embodiment has a total of four elements including three elements for detecting three Hall elements and one element for the voltage of the neutral point described above. Therefore, these processes can be covered by one IC. Therefore, the overcurrent detection device 10 according to the present embodiment can reduce the waste of the elements of the mounted component (IC). ‥

 また、本実施形態では、過電流判定部40は、中性点の電圧Vnと所定の電圧(例えば、基準電圧Voc)とを比較する比較部(例えば、コンパレータ41)を備える。過電流判定部40は、中性点の電圧Vnが所定の電圧以上である場合に、過電流が生じていると判定する。

 これにより、本実施形態による過電流検出装置10は、比較部を用いることで、より簡易な構成により、容易に過電流が生じていることを判定することができる。 

Further, in the present embodiment, the overcurrent determination unit 40 includes a comparison unit (for example, the comparator 41) that compares the voltage Vn at the neutral point with a predetermined voltage (for example, the reference voltage Voc). The overcurrent determination unit 40 determines that an overcurrent has occurred when the voltage Vn at the neutral point is equal to or higher than a predetermined voltage.

Thereby, the overcurrent detection device 10 according to the present embodiment can easily determine that the overcurrent is generated by using the comparison unit with a simpler configuration.

 また、本実施形態による過電流検出装置10は、中性点の電圧から、インバータ部20を駆動する駆動信号の周波数を含む周波数帯域の成分を低減させるフィルタ部50を備える。例えば、フィルタ部50は、ローパスフィルタである。

 これにより、本実施形態による過電流検出装置10は、例えば、インバータ部20のスイッチングによるノイズなどによる過電流の誤検出を低減することができる。 

In addition, the overcurrent detection device 10 according to the present embodiment includes the filter unit 50 that reduces the frequency band component including the frequency of the drive signal that drives the inverter unit 20 from the voltage at the neutral point. For example, the filter unit 50 is a low pass filter.

As a result, the overcurrent detection device 10 according to the present embodiment can reduce erroneous detection of overcurrent due to noise or the like due to switching of the inverter unit 20, for example.

 また、本実施形態では、各相に対応する抵抗31の抵抗値は、中性点の電圧Vnが、各相に対応する検出端子の電圧(Vu、Vv、Vw)の平均電圧になるように定められている。すなわち、各相に対応する抵抗31の抵抗値は、等しい値である。

 これにより、本実施形態による過電流検出装置10は、簡易な構成により、中性点の電圧Vnを平均電圧にすることができ、適切に過電流異常を検出することができる。 

Further, in the present embodiment, the resistance value of the resistor 31 corresponding to each phase is such that the voltage Vn at the neutral point becomes the average voltage of the voltages (Vu, Vv, Vw) at the detection terminals corresponding to each phase. It is set. That is, the resistance value of the resistor 31 corresponding to each phase is the same value.

As a result, the overcurrent detection device 10 according to the present embodiment can make the voltage Vn at the neutral point an average voltage with a simple configuration, and can properly detect an overcurrent abnormality.

 また、本実施形態によるモータユニット1は、インバータ部20と、モータMTと、上述した過電流検出装置10とを備える。インバータ部20は、複数相の交流信号を駆動信号として生成する。モータMTは、インバータ部20が生成した駆動信号に基づいて駆動する。過電流検出装置10は、上述した複数相の各相に対応するシャント抵抗22と、結線部30と、過電流判定部40とを備える。

 これにより、本実施形態によるモータユニット1は、上述した過電流検出装置10と同様の効果を奏し、構成を簡略化、又は省スペース化することができる。 

In addition, the motor unit 1 according to the present embodiment includes the inverter unit 20, the motor MT, and the above-described overcurrent detection device 10. The inverter unit 20 generates a plurality of phases of AC signals as drive signals. The motor MT is driven based on the drive signal generated by the inverter unit 20. The overcurrent detection device 10 includes a shunt resistor 22 corresponding to each phase of the plurality of phases described above, a wire connection unit 30, and an overcurrent determination unit 40.

As a result, the motor unit 1 according to the present embodiment has the same effects as those of the overcurrent detection device 10 described above, and can simplify the configuration or save space.

 また、本実施形態では、複数相が3相であり、モータMTが、3相モータである。

 これにより、本実施形態によるモータユニット1は、3相モータにおいて、構成の簡略化、又は省スペース化を実現することができる。 

Further, in this embodiment, the plurality of phases are three phases and the motor MT is a three-phase motor.

As a result, the motor unit 1 according to the present embodiment can realize a simplified structure or space saving in a three-phase motor.

 なお、本実施形態において、過電流検出装置10に制御部60を含めてもよい。この場合、過電流検出装置10は、シャント抵抗22と、結線部30と、制御部60である対応処理部とを備える。複数相の各相に対応するシャント抵抗22は、複数相の交流信号を生成するインバータ部20が備える各相の交流信号を生成する交流生成部21に流れる電流を電圧に変換して検出可能である。結線部30は、シャント抵抗22の検出端子を、抵抗31を介して複数相分を1つの中性点に結線する。対応処理部は、結線部30の中性点の電圧Vnに基づいて、インバータ部20に過電流が生じていると判定された場合に、過電流異常の対応処理を行う。

 これにより、本実施形態による過電流検出装置10は、構成を簡略化、又は省スペース化することができるとともに、インバータ部20に過電流が生じている場合に、過電流異常の対応処理を行うことができる。 

In the present embodiment, the control unit 60 may be included in the overcurrent detection device 10. In this case, the overcurrent detection device 10 includes the shunt resistor 22, the connection unit 30, and the corresponding processing unit that is the control unit 60. The shunt resistor 22 corresponding to each phase of the plurality of phases can detect the current flowing through the AC generator 21 that generates the AC signal of each phase included in the inverter unit 20 that generates the AC signals of the plurality of phases. is there. The connection part 30 connects the detection terminals of the shunt resistor 22 to one neutral point for a plurality of phases via the resistor 31. When it is determined that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30, the handling processing unit performs handling processing for an overcurrent abnormality.

As a result, the overcurrent detection device 10 according to the present embodiment can simplify the configuration or save space, and when the inverter unit 20 has an overcurrent, performs an overcurrent abnormality handling process. be able to.

 また、対応処理部は、インバータ部20に過電流が生じている場合に、過電流異常の対応処理として、インバータ部20が生成した複数相の交流信号を駆動信号として駆動するモータMTの駆動を停止させる、又は、過電流異常が発生した旨を示す警告を外部に出力する。

 これにより、本実施形態による過電流検出装置10は、インバータ部20に過電流が生じている場合に、適切な過電流異常の対応処理を行うことができる。 

In addition, when the overcurrent occurs in the inverter unit 20, the response processing unit drives the motor MT that drives the multiple-phase AC signals generated by the inverter unit 20 as drive signals, as the response process for the overcurrent abnormality. It is stopped or a warning indicating that an overcurrent abnormality has occurred is output to the outside.

As a result, the overcurrent detection device 10 according to the present embodiment can perform appropriate overcurrent abnormality handling processing when an overcurrent occurs in the inverter unit 20.
[第2の実施形態]

 次に、図面を参照して、第2の実施形態による過電流検出装置10a及びモータユニット1aについて説明する。

 本実施形態では、上述した第1の実施形態においてコンパレータ41で行っていた比較処理を制御部60aで行う場合の変形例について説明する。 
[Second Embodiment]

Next, an overcurrent detection device 10a and a motor unit 1a according to the second embodiment will be described with reference to the drawings.

In the present embodiment, a modification in which the control unit 60a performs the comparison process performed by the comparator 41 in the above-described first embodiment will be described.

 図4は、第2の実施形態によるモータユニット1aの一例を示すブロック図である。

 図4に示すように、モータユニット1は、インバータ部20と、結線部30と、ADC(Analog to Digital Converter)44と、制御部60aと、モータMTとを備える。 

FIG. 4 is a block diagram showing an example of the motor unit 1a according to the second embodiment.

As shown in FIG. 4, the motor unit 1 includes an inverter unit 20, a connection unit 30, an ADC (Analog to Digital Converter) 44, a control unit 60a, and a motor MT.

 なお、本実施形態では、3相の各相に対応するシャント抵抗22と、結線部30と、フィルタ部50と、過電流判定部40aとは、過電流検出装置10aに対応する。ADC44と、制御部60aとは、本実施形態の過電流判定部40aに対応する。

 また、図4において、図1と同一の構成には同一の符号を付与してその説明を省略する。 

In addition, in this embodiment, the shunt resistor 22 corresponding to each of the three phases, the wire connection portion 30, the filter portion 50, and the overcurrent determination portion 40a correspond to the overcurrent detection device 10a. The ADC 44 and the control unit 60a correspond to the overcurrent determination unit 40a of this embodiment.

Further, in FIG. 4, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

 ADC44は、結線部30の中性点の電圧Vnを検出してデジタル信号に変換する。ADC44は、変換した電圧値を制御部60aに出力する。

 制御部60aは、例えば、CPUなどを含むプロセッサであり、モータユニット1aを統括的に制御する。制御部60aは、ADC44が変換した中性点の電圧Vnの値が、所定の電圧(例えば、基準電圧Voc)以上であるか否かを判定することで、過電流が生じているか否かを判定する。 

The ADC 44 detects the voltage Vn at the neutral point of the connection part 30 and converts it into a digital signal. The ADC 44 outputs the converted voltage value to the control unit 60a.

The control unit 60a is, for example, a processor including a CPU and the like, and integrally controls the motor unit 1a. The control unit 60a determines whether or not an overcurrent is generated by determining whether or not the value of the neutral point voltage Vn converted by the ADC 44 is equal to or higher than a predetermined voltage (for example, the reference voltage Voc). judge.
制御部60aは、例えば、CPUなどを含むプロセッサであり、モータユニット1aを統括的に制御する。制御部60aは、電圧Vnの値が、基準電圧Voc以上である場合に、過電流が生じていると判定する。また、制御部60aは、電圧Vnの値が、基準電圧Voc未満である場合に、過電流が生じていないと判定する。このように、本実施形態では、制御部60aは、中性点の電圧Vnと所定の電圧(例えば、基準電圧Voc)とを比較する比較部として機能する。  The control unit 60a is, for example, a processor including a CPU and the like, and integrally controls the motor unit 1a. The control unit 60a determines that an overcurrent has occurred when the value of the voltage Vn is equal to or higher than the reference voltage Voc. Further, the control unit 60a determines that the overcurrent has not occurred when the value of the voltage Vn is less than the reference voltage Voc. As described above, in the present embodiment, the control unit 60a functions as a comparison unit that compares the neutral point voltage Vn with a predetermined voltage (for example, the reference voltage Voc). ‥

 制御部60aは、インバータ部20に過電流が生じていると判定した場合に、過電流異常の対応処理を実行する。

 なお、制御部60aのその他の処理は、上述した第1の実施形態の制御部60と同様であるため、ここではその説明を省略する。なお、本実施形態において、制御部60aは、結線部30の中性点の電圧Vnに基づいて、インバータ部20に過電流が生じていると判定された場合に、過電流異常の対応処理を行う対応処理部に対応する。 

When it is determined that the overcurrent is generated in the inverter unit 20, the control unit 60a executes the overcurrent abnormality handling process.

Note that the other processing of the control unit 60a is the same as that of the control unit 60 of the first embodiment described above, and therefore the description thereof is omitted here. In the present embodiment, the control unit 60a performs an overcurrent abnormality handling process when it is determined that an overcurrent has occurred in the inverter unit 20 based on the voltage Vn at the neutral point of the connection unit 30. It corresponds to the corresponding processing unit.

 次に、図5を参照して、本実施形態における制御部60aの動作について説明する。

 図5は、本実施形態による制御部60aの動作の一例を示すフローチャートである。

 図5に示すように、制御部60aは、まず、ADC44から中性点の電圧Vnの値を取得する(ステップS201)。 

Next, the operation of the control unit 60a in the present embodiment will be described with reference to FIG.

FIG. 5 is a flowchart showing an example of the operation of the control unit 60a according to this embodiment.

As shown in FIG. 5, the control unit 60a first acquires the value of the neutral-point voltage Vn from the ADC 44 (step S201).
次に、制御部60aは、ADC44から取得した電圧値(電圧Vnの値)が、所定の電圧以上であるか否かを判定する(ステップS202)。ここで、所定の電圧は、例えば、基準電圧Vocである。制御部60aは、ADC44から取得した電圧値が、所定の電圧以上である場合(ステップS202:YES)に、処理をステップS203に進める。また、制御部60aは、ADC44から取得した電圧値が、所定の電圧未満である場合(ステップS202:NO)に、処理を終了する。  Next, the control unit 60a determines whether or not the voltage value (value of the voltage Vn) acquired from the ADC 44 is equal to or higher than a predetermined voltage (step S202). Here, the predetermined voltage is, for example, the reference voltage Voc. When the voltage value acquired from the ADC 44 is equal to or higher than the predetermined voltage (step S202: YES), the control unit 60a advances the process to step S203. In addition, the control unit 60a ends the process when the voltage value acquired from the ADC 44 is less than the predetermined voltage (step S202: NO). ‥

 ステップS203において、制御部60aは、過電流異常の対応処理を実行する。制御部60aは、例えば、モータMTの駆動を停止させる処理、及び、過電流異常が発生した旨を示す警告を外部に出力する処理、等を実行する。ステップS203の処理後に、制御部60aは、処理を終了する。

 なお、制御部60aは、上述したステップS201からステップS203までの処理を定期的に実行する。 

In step S203, the control unit 60a executes an overcurrent abnormality handling process. The control unit 60a executes, for example, a process of stopping the driving of the motor MT, a process of outputting a warning indicating that an overcurrent abnormality has occurred to the outside, and the like. After the processing of step S203, the control unit 60a ends the processing.

The control unit 60a periodically executes the above-described processing from step S201 to step S203.

 以上説明したように、本実施形態による過電流検出装置10a及びモータユニット1aでは、過電流検出装置10aが、複数相の各相に対応するシャント抵抗22と、結線部30と、過電流判定部40aとを備え、過電流判定部40aが、ADC44と、制御部60aとを備える。過電流判定部40aは、中性点の電圧Vnと所定の電圧とを比較する比較部に対応する。

 これにより、本実施形態による過電流検出装置10a及びモータユニット1aは、第1の実施形態と同様の効果を奏し、構成を簡略化、又は省スペース化することができる。

 また、本実施形態による過電流検出装置10a及びモータユニット1aは、1素子分のコンパレータが未使用となるため、他の回路に未使用となったコンパレータを利用させる事も可能となる。 

As described above, in the overcurrent detection device 10a and the motor unit 1a according to the present embodiment, the overcurrent detection device 10a includes the shunt resistor 22 corresponding to each phase of the plurality of phases, the connection part 30, and the overcurrent determination part. 40a, and the overcurrent determination unit 40a includes an ADC 44 and a control unit 60a. The overcurrent determination unit 40a corresponds to a comparison unit that compares the voltage Vn at the neutral point with a predetermined voltage.

As a result, the overcurrent detection device 10a and the motor unit 1a according to the present embodiment have the same effects as those of the first embodiment, and the configuration can be simplified or the space can be saved.

Further, in the overcurrent detection device 10a and the motor unit 1a according to the present embodiment, since the comparator for one element is unused, it is possible to use the unused comparator for other circuits.

 なお、本発明は、上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。

 例えば、上記の各実施形態において、複数相の一例として、3相である例を説明したが、複数相であれば、他の数の相に対応するようにしてもよい。 

It should be noted that the present invention is not limited to each of the above-described embodiments, and can be modified within a range not departing from the spirit of the present invention.

For example, in each of the above-described embodiments, an example in which the number of phases is three has been described as an example of a plurality of phases, but a plurality of phases may correspond to another number of phases.

 また、上記の各実施形態において、過電流検出装置10(10a)は、フィルタ部50を備える例を説明したが、これに限定されるものではなく、フィルタ部50を備えない構成であってもよい。また、フィルタ部50は、ローパスフィルタに限定されるものではなく、バンドパスフィルタなどの他のフィルタであってもよい。

 また、上記の第2の実施形態において、フィルタとして、デジタルフィルタを用いることができる。この場合、ADC44で取得した電圧Vnのデジタル値に対して、デジタルフィルタを適用すればよい。この場合、コンデンサ51を削減することができる。 

Further, in each of the above-described embodiments, the example in which the overcurrent detection device 10 (10a) includes the filter unit 50 has been described, but the present invention is not limited to this, and the filter unit 50 may not be included. Good. Further, the filter unit 50 is not limited to the low pass filter, and may be another filter such as a band pass filter.

Further, in the second embodiment described above, a digital filter can be used as the filter. In this case, a digital filter may be applied to the digital value of the voltage Vn acquired by the ADC 44. In this case, the capacitor 51 can be eliminated.

 また、上記の第1の実施形態において、コンパレータ41は、ヒステリシス機能を有するものであってもよい。また、上記の第2の実施形態においても、ソフト的にヒステリシス機能を適用するものであってもよい。

 これにより、過電流検出装置10は、さらに過電流の誤検出を低減することができる。 

Further, in the above-described first embodiment, the comparator 41 may have a hysteresis function. Also, in the second embodiment described above, the hysteresis function may be applied softly.

Thereby, the overcurrent detection device 10 can further reduce the false detection of the overcurrent.
また、上記の各実施形態において、スイッチング素子(Q1~Q6)が、IGBTである例を説明したが、これに限定されるものではなく、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの他のスイッチング素子を適用してもよい。  Further, in each of the above-described embodiments, the example in which the switching elements (Q1 to Q6) are IGBTs has been described, but the present invention is not limited to this, and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistor) and the like are not limited thereto. Other switching elements may be applied. ‥

 なお、上述した過電流検出装置10(10a)及びモータユニット1(1a)が備える各構成は、内部に、コンピュータシステムを有している。そして、上述した過電流検出装置10(10a)及びモータユニット1(1a)が備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述した過電流検出装置10(10a)及びモータユニット1(1a)が備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。

 また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。 

It should be noted that each of the configurations included in the overcurrent detection device 10 (10a) and the motor unit 1 (1a) described above has a computer system inside. Then, a program for realizing the functions of the respective configurations of the above-described overcurrent detection device 10 (10a) and the motor unit 1 (1a) is recorded in a computer-readable recording medium and recorded in this recording medium. You may perform the process in each structure with which the above-mentioned overcurrent detection apparatus 10 (10a) and the motor unit 1 (1a) are provided by making a computer system read and run a program. Here, “reading and executing a program recorded in a recording medium on a computer system” includes installing the program in the computer system. The “computer system” mentioned here includes an OS and hardware such as peripheral devices.

Further, the “computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and a dedicated line. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system. As described above, the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に過電流検出装置10(10a)及びモータユニット1(1a)が備える各構成で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。  The recording medium also includes a recording medium provided inside or outside accessible from the distribution server for distributing the program. It should be noted that the program is divided into a plurality of programs, and the programs are downloaded at different timings and then combined with the configurations of the overcurrent detection device 10 (10a) and the motor unit 1 (1a), or the divided programs are distributed. The distribution server used may be different. Furthermore, the "computer-readable recording medium" holds a program for a certain period of time, such as a volatile memory (RAM) inside a computer system that serves as a server or a client when the program is transmitted via a network. It also includes things. Further, the program may be for realizing a part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned functions in combination with a program already recorded in the computer system. ‥
また、上述した機能の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Further, some or all of the above-mentioned functions may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each of the functions described above may be individually implemented as a processor, or part or all of the functions may be integrated and implemented as a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where an integrated circuit technology that replaces the LSI appears due to the progress of semiconductor technology, an integrated circuit according to the technology may be used.

Claims (8)


  1.  複数相の交流信号を生成するインバータ部が備える各相の交流信号を生成する交流生成部に流れる電流を電圧に変換して検出可能であり、 前記複数相の各相に対応するシャント抵抗と、

     前記シャント抵抗の検出端子を、抵抗を介して前記複数相分を1つの中性点に結線した結線部と、

     前記結線部の中性点の電圧に基づいて、前記インバータ部に過電流が生じていることを判定する過電流判定部と

     を備える過電流検出装置。

    It is possible to detect the current flowing through the AC generator that generates the AC signals of the respective phases included in the inverter unit that generates the AC signals of the plurality of phases by converting it into a voltage, and a shunt resistor corresponding to each of the plurality of phases,

    A connection part in which the detection terminal of the shunt resistor is connected to one neutral point of the plurality of phases via a resistor;

    An overcurrent determination unit that determines whether an overcurrent has occurred in the inverter unit, based on the voltage at the neutral point of the connection unit;

    An overcurrent detection device comprising:

  2.  前記過電流判定部は、

     前記中性点の電圧と所定の電圧とを比較する比較部を備え、

     前記中性点の電圧が所定の電圧以上である場合に、過電流が生じていると判定する

     請求項1に記載の過電流検出装置。

    The overcurrent determination unit,

    A comparator for comparing the voltage at the neutral point with a predetermined voltage,

    When the voltage at the neutral point is equal to or higher than a predetermined voltage, it is determined that an overcurrent has occurred.

    The overcurrent detection device according to claim 1.

  3.  前記中性点の電圧から、前記インバータ部を駆動する駆動信号の周波数を含む周波数帯域の成分を低減させるフィルタ部を備える

     請求項1又は請求項2に記載の過電流検出装置。

    A filter unit for reducing a component of a frequency band including a frequency of a drive signal for driving the inverter unit from the voltage of the neutral point is provided.

    The overcurrent detection device according to claim 1 or 2.

  4.  前記各相に対応する前記抵抗の抵抗値は、前記中性点の電圧が、前記各相に対応する前記検出端子の電圧の平均電圧になるように定められている

     請求項1から請求項3のいずれか一項に記載の過電流検出装置。

    The resistance value of the resistor corresponding to each of the phases is determined such that the voltage at the neutral point is an average voltage of the voltages at the detection terminals corresponding to the phases.

    The overcurrent detection device according to any one of claims 1 to 3.

  5.  前記複数相の交流信号を駆動信号として生成する前記インバータ部と、

     前記インバータ部が生成した前記駆動信号に基づいて、駆動するモータと、

     請求項1から請求項4のいずれか一項に記載の過電流検出装置と

     を備えるモータユニット。

    The inverter unit that generates the AC signals of the plurality of phases as a drive signal,

    A motor driven based on the drive signal generated by the inverter unit;

    An overcurrent detection device according to any one of claims 1 to 4,

    A motor unit.

  6.  前記複数相が3相であり、前記モータが、3相モータである請求項5に記載のモータユニット。

    The motor unit according to claim 5, wherein the plurality of phases are three phases, and the motor is a three-phase motor.

  7.  複数相の交流信号を生成するインバータ部が備える各相の交流信号を生成する交流生成部に流れる電流を電圧に変換して検出可能であり、 前記複数相の各相に対応するシャント抵抗と、

     前記シャント抵抗の検出端子を、抵抗を介して前記複数相分を1つの中性点に結線した結線部と、

     前記結線部の中性点の電圧に基づいて、前記インバータ部に過電流が生じていると判定された場合に、過電流異常の対応処理を行う対応処理部と

     を備える過電流検出装置。

    It is possible to detect the current flowing through the AC generator that generates the AC signals of the respective phases included in the inverter unit that generates the AC signals of the plurality of phases by converting it into a voltage, and a shunt resistor corresponding to each of the plurality of phases,

    A connection part in which the detection terminal of the shunt resistor is connected to one neutral point of the plurality of phases via a resistor;

    A response processing unit that performs a response process for an overcurrent abnormality when it is determined that an overcurrent has occurred in the inverter unit based on the voltage at the neutral point of the connection unit;

    An overcurrent detection device comprising:

  8.  前記対応処理部は、前記インバータ部に過電流が生じている場合に、前記過電流異常の対応処理として、前記インバータ部が生成した前記複数相の交流信号を駆動信号として駆動するモータの駆動を停止させる、又は、前記過電流異常が発生した旨を示す警告を外部に出力する

     請求項7に記載の過電流検出装置。

    When an overcurrent occurs in the inverter unit, the response processing unit drives a motor that drives the multiple-phase AC signals generated by the inverter unit as a drive signal, as a response process for the overcurrent abnormality. Stop or output a warning indicating that the overcurrent abnormality has occurred to the outside

    The overcurrent detection device according to claim 7.
PCT/JP2019/046952 2018-12-04 2019-12-02 Overcurrent detection device and motor unit WO2020116374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559165A JPWO2020116374A1 (en) 2018-12-04 2019-12-02 Overcurrent detector and motor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227479 2018-12-04
JP2018-227479 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020116374A1 true WO2020116374A1 (en) 2020-06-11

Family

ID=70975095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046952 WO2020116374A1 (en) 2018-12-04 2019-12-02 Overcurrent detection device and motor unit

Country Status (2)

Country Link
JP (1) JPWO2020116374A1 (en)
WO (1) WO2020116374A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239359A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Inverter apparatus and driving method therefor
WO2010137328A1 (en) * 2009-05-27 2010-12-02 サンデン株式会社 Motor control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239359A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Inverter apparatus and driving method therefor
WO2010137328A1 (en) * 2009-05-27 2010-12-02 サンデン株式会社 Motor control device

Also Published As

Publication number Publication date
JPWO2020116374A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6050841B2 (en) Motor drive device with current detection mode changing function
US20140268940A1 (en) Method for controlling switching branch of three-level converter and switching branch for three-level converter
JP6138276B2 (en) Power conversion apparatus, motor drive apparatus including the same, blower including the same, compressor, air conditioner including them, refrigerator, and refrigerator
JP2009027818A (en) Control method for three-level inverter
JP2015201996A (en) Power conversion device, control device for power conversion device, and control method for power conversion device
CN101534084A (en) Redundant DC bus discharge for an electric motor system
JP2019033556A (en) Gate driving device and power conversion device
JP6419361B2 (en) Power conversion device and rotating electrical machine drive device
JP2010098820A (en) Power conversion apparatus
JP4783174B2 (en) Power converter
CN111656669B (en) Control device
JP2019080465A (en) Current detector
JP7262604B2 (en) CURRENT DETECTION DEVICE, MOTOR CONTROL DEVICE, AND CURRENT DETECTION METHOD
JP2006246649A (en) Inverter device
JPWO2020017169A1 (en) Power module with built-in drive circuit
WO2020116374A1 (en) Overcurrent detection device and motor unit
JP5224128B2 (en) Current detection circuit
JP2004304925A (en) Inverter device
JP6409982B2 (en) Control circuit for multiphase power converter
JP2017005811A (en) Power conversion device and current detection method
CN110380636B (en) Power conversion device and control method for power conversion device
KR102122576B1 (en) Apparatus and Method for controlling drive of motor
JP2022039105A (en) Semiconductor module
JP4265299B2 (en) Three-phase voltage type PWM inverter device
WO2023248430A1 (en) Electric current detection device and electric current detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891818

Country of ref document: EP

Kind code of ref document: A1