WO2020113643A1 - 蓝光tadf材料及其制备方法和电致发光器件 - Google Patents

蓝光tadf材料及其制备方法和电致发光器件 Download PDF

Info

Publication number
WO2020113643A1
WO2020113643A1 PCT/CN2018/120740 CN2018120740W WO2020113643A1 WO 2020113643 A1 WO2020113643 A1 WO 2020113643A1 CN 2018120740 W CN2018120740 W CN 2018120740W WO 2020113643 A1 WO2020113643 A1 WO 2020113643A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
tadf material
blue
blue tadf
reactant
Prior art date
Application number
PCT/CN2018/120740
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/326,714 priority Critical patent/US11081654B2/en
Publication of WO2020113643A1 publication Critical patent/WO2020113643A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms

Definitions

  • the invention relates to the technical field of display, in particular to a blue TADF material, a preparation method thereof and an electroluminescent device.
  • OLED display devices require no backlight source for their active light emission, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and drive
  • the advantages of low voltage, low energy consumption, lighter and thinner, flexible display and huge application prospects have attracted the attention of many researchers.
  • Existing OLED display devices generally include a substrate, an anode provided on the substrate, an organic light emitting layer provided on the anode, an electron transport layer provided on the organic light emitting layer, and a cathode provided on the electron transport layer.
  • the hole from the anode and the electron from the cathode are emitted to the organic light-emitting layer, and these electrons and holes are combined to generate an excited electron-hole pair, and the excited electron-hole pair is converted from the excited state to the ground state Achieve glow.
  • the luminescent guest material that plays a leading role is crucial.
  • the luminescent guest materials used in early OLEDs were fluorescent materials. Because the ratio of singlet and triplet excitons in OLED is 1:3, the theoretical internal quantum efficiency (IQE) of OLED based on fluorescent materials can only reach 25% , which greatly limits the application of fluorescent electroluminescent devices.
  • Heavy metal complex phosphorescent materials can achieve 100% IQE by utilizing singlet and triplet excitons simultaneously due to the spin-orbit coupling of heavy atoms.
  • the commonly used heavy metals are precious metals such as Ir and Pt, which are very expensive, and the heavy metal complex phosphorescent luminescent materials have yet to be broken through in terms of blue light materials.
  • TADF Thermally Activated Delayed Fluorescence
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (k RISC ) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLEDs.
  • k RISC fast reverse intersystem crossing constant
  • PLQY photoluminescence quantum yield
  • TADF materials with the above conditions are relatively scarce compared to the heavy metal Ir complexes.
  • TADF materials In the blue light field where phosphorescent heavy metal materials need to be broken through, TADF materials are very few.
  • most TADF materials are passed It is processed by vacuum evaporation. This process is complex, requires high energy, and has low material utilization, which greatly limits the application of TADF materials.
  • the object of the present invention is to provide a blue TADF material, which has remarkable TADF characteristics, high synthesis efficiency, and can be processed by solution spin coating.
  • the object of the present invention is also to provide a method for preparing a blue TADF material, which has high synthesis efficiency, and the prepared blue TADF material has remarkable TADF characteristics, and can be processed by solution spin coating.
  • the object of the present invention is also to provide an electroluminescent device with high luminous efficiency and low production cost.
  • the present invention provides a blue light TADF material, the general structure of which is shown in Formula 1:
  • R 1 is one of the structures shown in Formula 2 to Formula 14:
  • R 2 is one of the structures shown in Formula 15 to Formula 19:
  • the blue TADF material has a structure shown in Equation 20 to Equation 22:
  • the blue TADF material can be processed by solution spin coating.
  • the invention also provides a preparation method of blue light TADF material, which includes the following steps:
  • Step S1 providing a reaction vessel, and adding a first reactant R 1 to the reaction vessel;
  • the first reactant R 1 has one of the structures shown in Formula 2 to Formula 14:
  • Step S2 Remove the air in the reaction vessel, and add sodium hydride and tetrahydrofuran to the reaction vessel, and then react at the first temperature for the first duration;
  • Step S3. Provide a second reactant, add the second reactant to the reaction vessel, and continue the reaction for a second duration to obtain a reaction solution;
  • the second reactant has the structural formula shown in Formula 23;
  • R 2 has one of the structures shown in Formula 15 to Formula 19:
  • Step S4 Pour the reaction solution into water, and after extraction, combination of organic phases, rotary evaporation and column chromatography separation and purification, obtain a blue TADF material;
  • the structural formula of the blue TADF material is as follows:
  • the first temperature is 55°C to 65°C, and the first duration is 1.5 hours to 2.5 hours.
  • the second duration is 22 hours to 26 hours
  • step S4 dichloromethane is used for extraction.
  • the blue TADF material prepared in step S4 can be processed by solution spin coating.
  • the present invention also provides an electroluminescent device including the above-mentioned blue TADF material.
  • the electroluminescent device includes a light-emitting layer, and the light-emitting layer is made of the blue TADF material.
  • the present invention provides a blue TADF material.
  • a tertiary butyl carbazole unit with a high energy level is connected to the end of the alkyl chain.
  • high luminous efficiency and TADF efficiency it also achieves good solubility of the material, so that the material can be processed by solution spin coating, and the carbazole at the end can serve as the main body, which can realize the non-doping of the light emitting layer, while effectively avoiding the phase Separate.
  • the invention also adopts a preparation method of blue light TADF material, which has high synthesis efficiency, and the prepared blue light TADF material has remarkable TADF characteristics, and can be processed by solution spin coating.
  • the invention also provides an electroluminescent device with high luminous efficiency and low production cost.
  • FIG. 2 is a structural diagram of an electroluminescent device of the present invention
  • 3 is a distribution diagram of HOMO and LUMO of the first to third embodiments of the present invention.
  • FIG. 5 is a transient photoluminescence spectrum chart of the first to third embodiments of the present invention.
  • the present invention first provides a blue-light TADF material, the general structure of which is shown in Formula 1:
  • R 1 is one of the structures shown in Formula 2 to Formula 14:
  • R 2 is one of the structures shown in Formula 15 to Formula 19:
  • the blue TADF materials have the structures shown in Equations 20 to 22, respectively:
  • the above-mentioned blue TADF material can increase the solubility of the alkyl chain at the periphery, and connect the tertiary butyl carbazole unit with a high energy level at the end of the alkyl chain to obtain high luminous efficiency and TADF efficiency.
  • it also achieves good solubility of the material, so that the material can be processed by solution spin coating, and the carbazole at the end can serve as the main body, which can realize the non-doping of the light-emitting layer, while effectively avoiding phase separation, using the above-mentioned blue TADF
  • the material used as the light-emitting layer of the electroluminescent device has higher luminous efficiency and TADF efficiency.
  • the present invention also provides a method for preparing a blue TADF material, including the following steps:
  • Step S1 providing a reaction vessel, and adding a first reactant R 1 to the reaction vessel;
  • the first reactant R 1 has one of the structures shown in Formula 2 to Formula 14:
  • reaction container is a two-necked bottle.
  • Step S2 Remove air from the reaction vessel, and add sodium hydride (NaH) and tetrahydrofuran (THF) to the reaction vessel, and then react at the first temperature for a first period of time.
  • NaH sodium hydride
  • THF tetrahydrofuran
  • the reaction container is placed in a transition chamber of a glove box for pumping to remove air in the reaction container, and the sodium hydride is placed in the glove box.
  • the operation of adding sodium hydride to the reaction vessel is completed in the glove box.
  • the reaction vessel is removed from the glove box, and the reaction vessel is kept isolated from the air while continuing to the Tetrahydrofuran was added to the reaction vessel to complete the reaction.
  • the reaction container is placed in the transition compartment of the glove box three times.
  • the first temperature is 55°C to 65°C, and the first duration is 1.5 hours to 2.5 hours.
  • the first temperature is 60°C, and the first duration is 2 hours.
  • Step S3. Provide a second reactant, add the second reactant to the reaction vessel, and continue the reaction for a second duration to obtain a reaction solution.
  • the second reactant has the structural formula shown in Formula 23;
  • R 2 has one of the structures shown in Formula 15 to Formula 19:
  • the second duration is 22 hours to 26 hours, preferably, the second duration is 24 hours.
  • Step S4 Pour the reaction solution into water, and after extraction, combination of organic phases, rotary evaporation and column chromatography separation and purification, obtain a blue TADF material;
  • the structural formula of the blue TADF material is as follows:
  • the reaction solution is poured into ice water, and extracted three times with dichloromethane.
  • the prepared blue TADF material can increase the solubility of the alkyl chain at the periphery, and connect the tertiary butyl carbazole with high energy level at the end of the alkyl chain
  • the unit while achieving high luminous efficiency and TADF efficiency, also achieves good solubility of the material, so that the material can be processed by solution spin coating, and the terminal carbazole can serve as the host, which can realize the non-doping of the light emitting layer , While effectively avoiding phase separation, using the above-mentioned blue TADF material as the light-emitting layer of the electroluminescent device has higher luminous efficiency and TADF efficiency.
  • the method for preparing the blue TADF material specifically includes first adding a first reactant 9,10-dihydro-9 of the structure shown in Formula 2 to a 100 mL two-necked bottle ,9-dimethylacridine (2.5g, 12mmol), then place the two-necked bottle in the transition chamber of the glove box and pump it through three times to remove the air from the two-necked bottle, and remove the NaH (0.48g, 60%, 12mmol) was added to the two-necked flask, then the two-necked flask was removed from the glove box, and then 60mL of tetrahydrofuran (THF) was added to the two-necked flask, and reacted at 60°C for 2 hours; then to the two-necked flask A second reactant (3.9 g, 3 mmol) having the structure shown in Formula 24 was added to the reaction for another 24 hours, then cooled to room temperature, the reaction
  • a second reactant 3.9 g
  • the synthesis route of the first embodiment of the present invention is as follows:
  • the method for preparing the blue TADF material specifically includes first adding a first reactant 9,10-dihydro-9 of the structure shown in Formula 3 to a 100 mL two-necked bottle ,9-diphenylacridine (4.0g, 12mmol), then place the two-necked bottle in the transition chamber of the glove box and evacuate three times, remove the air from the two-necked bottle, and remove the NaH (0.48g, 60%, 12mmol) was added to the two-necked flask, then the two-necked flask was removed from the glove box, and then 60mL of tetrahydrofuran (THF) was added to the two-necked flask, and reacted at 60°C for 2 hours; then to the two-necked flask A second reactant (3.9 g, 3 mmol) having the structure shown in Formula 24 was added to the reaction for another 24 hours, then cooled to room temperature, the reaction solution was
  • the synthetic route of the second embodiment of the present invention is as follows:
  • the method for preparing the blue TADF material specifically includes first adding a first reactant 9,10-dihydro-9 of the structure shown in Formula 5 to a 100 mL two-necked bottle ,9-diphenylsilicoacridine (4.2g, 12mmol), then place the two-neck flask in the transition compartment of the glove box and pump it through three times to remove the air from the two-neck flask and remove the NaH (0.48 g, 60%, 12 mmol) was added to the two-necked flask, and then the two-necked flask was removed from the glove box, and then 60 mL of tetrahydrofuran (THF) was added to the two-necked flask, and reacted at 60°C for 2 hours; Add a second reactant (3.9g, 3mmol) with the structure shown in Formula 24 to the mouth bottle, and react for another 24 hours, then cool to room temperature, pour the reaction solution into 200
  • the synthesis route of the third embodiment of the present invention is as follows:
  • the second reactant having the structure shown in Formula 24 can be prepared by the following steps: First, the first raw material (4.32 g, 20 mmol) having the structure shown in Formula 25 is added to a 250 mL two-necked bottle, The second raw material (14.36 g, 60 mmol) and sodium hydroxide (2.4 g, 60 mmol) having the structure shown in Formula 26, followed by addition of 120 mL of tetrahydrofuran (THF), reacted at 60° C. for 24 hours. After cooling to room temperature, the reaction solution was poured into 200 mL of ice water, and extracted three times with dichloromethane.
  • THF tetrahydrofuran
  • the organic phase was combined, rotary evaporation, and column chromatography (dichloromethane: n-hexane, v: v, 1:1) to separate and purify.
  • the second reactant with the structure shown in Formula 24, the second reactant is 15.6 g of white powder, and the yield is 60%.
  • the specific synthesis route is as follows:
  • Compound 1, Compound 2 and Compound 3 have the structures shown in Formula 20, Formula 21 and Formula 22, respectively, and the compound 1, Compound 2 and Compound 3 are examined to obtain the Compound 1, Compound 2 and The distribution of the highest occupied orbit (Highest Occupied Molecular Orbital, HOMO) and lowest unoccupied orbit (Lowest Unoccupied Molecular Orbital, LOMO) of compound 3 is shown in Figure 5.
  • the electrochemical energy of compound 1, compound 2 and compound 3 The levels are shown in Table 1:
  • the present invention also provides an electroluminescent device including the above-mentioned blue TADF material.
  • the electroluminescent device specifically includes a substrate layer 100, a hole transport and injection layer 200, a light emitting layer 300, an electron transport layer 400, and a cathode layer 500 that are sequentially stacked.
  • the substrate layer 100 includes a glass substrate and An anode made of indium tin oxide material (ITO) on a glass substrate, and the material of the hole transport and injection layer 200 is poly 3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS ), the light-emitting layer 300 is made of the above-mentioned blue TADF material through a solution spin coating process, and the material of the electron transport layer 400 is 1,3,5-tris(3-(3-pyridyl)phenyl)benzene ( Tm3PyPB), the material of the cathode 500 is lithium fluoride and aluminum.
  • ITO indium tin oxide material
  • PDOT polystyrene sulfonate
  • the device 1, the device 2 and the device 3 are manufactured using the compound 1, the compound 2 and the compound 3 as the light-emitting layer 300 respectively, and the performance of the device 1, the device 2 and the device 3 are measured, wherein the device 1, the device 2 and the thickness of the hole transport and injection layer 200 in the device 3 is 50 nm, the thickness of the light emitting layer 300 is 40 nm, the thickness of the electron transport layer 400 is 40 nm, the thickness of the lithium fluoride in the cathode 500 is 1 nm, and the thickness of aluminum is 100 nm
  • Table 2 The measured performance of device 1, device 2 and device 3 is shown in Table 2. It can be seen that the performance of device 1, device 2 and device 3 meet the requirements.
  • the present invention provides a blue TADF material.
  • a tertiary butyl carbazole unit with a high energy level is connected at the end of the alkyl chain to obtain high
  • the luminous efficiency and TADF efficiency it also achieves good solubility of the material, so that the material can be processed by solution spin coating, and the carbazole at the end can serve as the main body, which can realize the undoping of the light emitting layer, while effectively avoiding phase separation .
  • the invention also adopts a preparation method of blue light TADF material, which has high synthesis efficiency, and the prepared blue light TADF material has remarkable TADF characteristics, and can be processed by solution spin coating.
  • the invention also provides an electroluminescent device with high luminous efficiency and low production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种蓝光TADF材料及其制备方法和电致发光器件。所述蓝光TADF材料通过在***连接可增加溶解性的烷基链,在烷基链末端连接具有高能级的叔丁基咔唑单元,在获得高的发光效率以及TADF效率的同时,也实现材料良好的溶解性,使得材料能通过溶液旋涂加工,并且末端的咔唑可以充当主体,能够实现发光层的非掺杂,同时有效避免相分离。

Description

蓝光TADF材料及其制备方法和电致发光器件 技术领域
本发明涉及显示技术领域,尤其涉及一种蓝光TADF材料及其制备方法和电致发光器件。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLED)显示装置以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低,能耗小,更轻更薄,柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。
现有的OLED显示装置通常包括:基板、设于基板上的阳极、设于阳极上的有机发光层,设于有机发光层上的电子传输层、及设于电子传输层上的阴极。工作时向有机发光层发射来自阳极的空穴和来自阴极的电子,将这些电子和空穴组合产生激发性电子-空穴对,并将激发性电子-空穴对从受激态转换为基态实现发光。
在OLED中,起主导作用的发光客体材料至关重要。早期的OLED使用的发光客体材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是Ir、Pt等贵重金属,成本很高,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。
纯有机热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔE ST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
对于TADF材料,快速的反向系间窜越常数(k RISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还比较匮乏,在磷光重金属材料有待突破的蓝光领域,TADF材料方面更是寥寥无几,与此同时,绝大部分TADF材料都是通过真空蒸镀的方式进行加工,这种工艺复杂,需要的能量 高,材料利用率低,这极大的限制了TADF材料的应用。
发明内容
本发明的目的在于提供一种蓝光TADF材料,具有显著的TADF特性,合成效率高,且能通过溶液旋涂进行加工。
本发明的目的还在于提供一种蓝光TADF材料的制备方法,合成效率高,制得的蓝光TADF材料具有显著的TADF特性,且能通过溶液旋涂进行加工。
本发明的目的还在于提供一种电致发光器件,发光效率高,生产成本低。
为实现上述目的,本发明提供了一种蓝光TADF材料,其结构通式如式1所示:
Figure PCTCN2018120740-appb-000001
其中,R 1为式2至式14所示结构中的一种:
Figure PCTCN2018120740-appb-000002
Figure PCTCN2018120740-appb-000003
R 2为式15至式19所示结构中的一种:
Figure PCTCN2018120740-appb-000004
可选地,所述蓝光TADF材料具有式20至式22所示的结构:
Figure PCTCN2018120740-appb-000005
Figure PCTCN2018120740-appb-000006
所述蓝光TADF材料能通过溶液旋涂进行加工。
本发明还提供一种蓝光TADF材料的制备方法,包括如下步骤:
步骤S1、提供反应容器,向所述反应容器中加入第一反应物R 1
所述第一反应物R 1具有式2至式14所示结构中的一种:
Figure PCTCN2018120740-appb-000007
Figure PCTCN2018120740-appb-000008
步骤S2、去除所述反应容器中的空气,并向所述反应容器中加入氢化钠及四氢呋喃,接着在第一温度下反应第一时长;
步骤S3、提供第二反应物,将所述第二反应物加入所述反应容器中,继续反应第二时长,得到反应液;
所述第二反应物具有式23所示的结构通式;
Figure PCTCN2018120740-appb-000009
其中,R 2具有式15至式19所示结构中的一种:
Figure PCTCN2018120740-appb-000010
Figure PCTCN2018120740-appb-000011
步骤S4、将所述反应液倒入水中,经过萃取、合并有机相、旋蒸及柱层析分离纯化后,得到蓝光TADF材料;
所述蓝光TADF材料的结构通式如下:
Figure PCTCN2018120740-appb-000012
所述第一温度为55℃至65℃,所述第一时长为1.5小时至2.5小时。
所述第二时长为22小时至26小时
所述步骤S4中利用二氯甲烷进行萃取。
所述步骤S4中制得的蓝光TADF材料能通过溶液旋涂进行加工。
本发明还提供一种电致发光器件,包括上述的蓝光TADF材料。
所述电致发光器件包括发光层,所述发光层采用所述蓝光TADF材料来制作。
本发明的有益效果:本发明提供一种蓝光TADF材料,通过在蓝光TADF材料***连接可增加溶解性的烷基链,在烷基链末端连接具有高能级的叔丁基咔唑单元,在获得高的发光效率以及TADF效率的同时,也实现了材料良好的溶解性,使得材料能通过溶液旋涂加工,并且末端的咔唑可以充当主体,能够实现发光层的非掺杂,同时有效避免相分离。本发明还通过一种蓝光TADF材料的制备方法,合成效率高,制得的蓝光TADF材料具有显著的TADF特性,且能通过溶液旋涂进行加工。本发明还提供一种电致发光器件,发光效率高,生产成本低。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的蓝光TADF材料的制备方法的流图;
图2为本发明的电致发光器件的结构图;
图3为本发明的第一实施例至第三实施例的HOMO和LUMO的分布图;
图4为本发明的第一实施例至第三实施例的光致发光光谱图;
图5为本发明的第一实施例至第三实施例的瞬态光致发光光谱图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明首先提供一种蓝光TADF材料,其结构通式如式1所示:
Figure PCTCN2018120740-appb-000013
其中,R 1为式2至式14所示结构中的一种:
Figure PCTCN2018120740-appb-000014
Figure PCTCN2018120740-appb-000015
R 2为式15至式19所示结构中的一种:
Figure PCTCN2018120740-appb-000016
优选地,在本发明第一至第三实施例中,所述蓝光TADF材料分别具有式20至式22所示的结构:
Figure PCTCN2018120740-appb-000017
Figure PCTCN2018120740-appb-000018
需要说明的是,上述的蓝光TADF材料通过在***连接可增加溶解性的烷基链,在烷基链末端连接具有高能级的叔丁基咔唑单元,在获得高的发光效率以及TADF效率的同时,也实现了材料良好的溶解性,使得该材料能通过溶液旋涂加工,并且末端的咔唑可以充当主体,能够实现发光层的非掺杂,同时有效避免相分离,利用上述的蓝光TADF材料作为电致发光器件的发光层具有较高的发光效率和TADF效率。
请参阅图1,本发明还提供一种蓝光TADF材料的制备方法,包括如下步骤:
步骤S1、提供反应容器,向所述反应容器中加入第一反应物R 1
所述第一反应物R 1具有式2至式14所示结构中的一种:
Figure PCTCN2018120740-appb-000019
Figure PCTCN2018120740-appb-000020
具体地,所述反应容器为二口瓶。
步骤S2、去除所述反应容器中的空气,并向所述反应容器中加入氢化钠(NaH)及四氢呋喃(THF),接着在第一温度下反应第一时长。
具体地,所述步骤S2中通过将所述反应容器置于手套箱的过渡舱中进行抽通,以去除所述反应容器中的空气,所述氢化钠置于所述手套箱中,所述向反应容器中加入氢化钠的操作所述手套箱中完成,加入氢化钠步骤完成后,将所述反应容器从所述手套箱中取出,并保持所述反应容器与空气隔绝的同时继续向所述反应容器中加入四氢呋喃,以完成反应。
优选地,所述步骤S2中将所述反应容器置于手套箱的过渡舱中三次抽通。
具体地,所述第一温度为55℃至65℃,所述第一时长为1.5小时至2.5小时。优选地,所述第一温度为60℃,所述第一时长为2小时。
步骤S3、提供第二反应物,将所述第二反应物加入所述反应容器中,继续反应第二时长,得到反应液。
所述第二反应物具有式23所示的结构通式;
Figure PCTCN2018120740-appb-000021
其中,R 2具有式15至式19所示结构中的一种:
Figure PCTCN2018120740-appb-000022
具体地,所述第二时长为22小时至26小时,优选地,所述第二时长为24小时。
步骤S4、将所述反应液倒入水中,经过萃取、合并有机相、旋蒸及柱层析分离纯化后,得到蓝光TADF材料;
所述蓝光TADF材料的结构通式如下:
Figure PCTCN2018120740-appb-000023
具体地,所述步骤S4中,将所述反应液倒入冰水中,并通过二氯甲烷进行三次萃取。
需要说明的是,上述方法的合成路线合理,合成效率高,制得的蓝光TADF材料通过在***连接可增加溶解性的烷基链,在烷基链末端连接具有高能级的叔丁基咔唑单元,在获得高的发光效率以及TADF效率的同时, 也实现了材料良好的溶解性,使得该材料能通过溶液旋涂加工,并且末端的咔唑可以充当主体,能够实现发光层的非掺杂,同时有效避免相分离,利用上述的蓝光TADF材料作为电致发光器件的发光层具有较高的发光效率和TADF效率。
具体地,在本发明的第一实施例中,所述蓝光TADF材料的制备方法具体包括首先向100mL二口瓶中加入如式2所示结构的第一反应物9,10-二氢-9,9-二甲基吖啶(2.5g,12mmol),然后将二口瓶置于手套箱的过渡舱中抽通三次,去除二口瓶中的空气,将手套箱中的NaH(0.48g,60%,12mmol)加入二口瓶中,接着将二口瓶中从手套箱中移出,然后向二口瓶中加入60mL的四氢呋喃(THF),在60℃下反应2小时;接着向二口瓶中加入具有如式24所示结构的第二反应物(3.9g,3mmol),再反应24小时,接着冷却至室温,将反应液倒入200mL冰水中,利用二氯甲烷萃取三次,接着合并有机相、旋蒸及柱层析(二氯甲烷:正己烷,v:v,1:1)分离纯化,得到式20所示结构的蓝光TADF材料3.1g,所述蓝光TADF材料为蓝白色粉末,产率为55%。
具体地,本发明的第一实施例的合成路线如下:
Figure PCTCN2018120740-appb-000024
具体地,在本发明的第二实施例中,所述蓝光TADF材料的制备方法具体包括首先向100mL二口瓶中加入如式3所示结构的第一反应物9,10-二氢-9,9-二苯基吖啶(4.0g,12mmol),然后将二口瓶置于手套箱的过渡舱中抽通三次,去除二口瓶中的空气,将手套箱中的NaH(0.48g,60%,12mmol)加入二口瓶中,接着将二口瓶中从手套箱中移出,然后向二口瓶中加入60mL的四氢呋喃(THF),在60℃下反应2小时;接着向二口瓶中加入具有如式24所示结构的第二反应物(3.9g,3mmol),再反应24小时,接着冷却至室温,将反应液倒入200mL冰水中,利用二氯甲烷萃取三次,接着合 并有机相、旋蒸及柱层析(二氯甲烷:正己烷,v:v,1:1)分离纯化,得到式21所示结构的蓝光TADF材料3.5g,所述蓝光TADF材料为蓝白色粉末,产率为52%。
具体地,本发明的第二实施例的合成路线如下:
Figure PCTCN2018120740-appb-000025
具体地,在本发明的第三实施例中,所述蓝光TADF材料的制备方法具体包括首先向100mL二口瓶中加入如式5所示结构的第一反应物9,10-二氢-9,9-二苯基硅代吖啶(4.2g,12mmol),然后将二口瓶置于手套箱的过渡舱中抽通三次,去除二口瓶中的空气,将手套箱中的NaH(0.48g,60%,12mmol)加入二口瓶中,接着将二口瓶中从手套箱中移出,然后向二口瓶中加入60mL的四氢呋喃(THF),在60℃下反应2小时;接着向二口瓶中加入具有如式24所示结构的第二反应物(3.9g,3mmol),再反应24小时,接着冷却至室温,将反应液倒入200mL冰水中,利用二氯甲烷萃取三次,接着合并有机相、旋蒸及柱层析(二氯甲烷:正己烷,v:v,1:1)分离纯化,得到式21所示结构的蓝光TADF材料3.9g,所述蓝光TADF材料为蓝白色粉末,产率为45%。
具体地,本发明的第三实施例的合成路线如下:
Figure PCTCN2018120740-appb-000026
需要说明的是,具有如式24所示结构的第二反应物,可通过如下步骤制得:首先向250mL二口瓶中加入如式25所示结构的第一原料(4.32g,20mmol)、如式26所示结构的第二原料(14.36g,60mmol)和氢氧化钠(2.4g,60mmol),接着加入120mL的四氢呋喃(THF),在60℃下反应24小时。冷却至室温,将反应液倒入200mL冰水中,利用二氯甲烷萃取三次,合并有机相、旋蒸、柱层析(二氯甲烷:正己烷,v:v,1:1)分离纯化,得如式24所示结构的第二反应物,所述第二反应物为白色粉末15.6g,产率60%。具体合成路线如下:
Figure PCTCN2018120740-appb-000027
具体地,定义化合物1、化合物2及化合物3分别具有式20、式21及式22所示的结构,对所述化合物1、化合物2及化合物3进行检验,得到所述化合物1、化合物2及化合物3的最高已占轨道(Highest Occupied  Molecular Orbital,HOMO)及最低未占轨道(Lowest Unoccupied Molecular Orbital,LOMO)的分布如图5所示,所述化合物1、化合物2及化合物3的电化学能级如表1所示:
Figure PCTCN2018120740-appb-000028
表1
其中,PL peak为光致发光峰,S 1为最低单重态能级,T 1为最低三重态能级,ΔE ST为最低单重态能级与最低三重态能级的能级差;所述化合物1、化合物2及化合物3在室温下,甲苯溶液中的光致发光光谱如图4所示,在室温下,甲苯溶液中的瞬态光致发光光谱如图5所示,结合图3至图5及表1可知,本发明的所述化合物1、化合物2及化合物3的性能符合要求。
此外,本发明还提供一种电致发光器件,包括上述的蓝光TADF材料。
请参阅图2,所述电致发光器件具体包括依次层叠的衬底层100、空穴传输和注入层200、发光层300、电子传输层400及阴极层500,所述衬底层100包括玻璃基板及位于玻璃基板上的由氧化铟锡材料(ITO)制作的阳极,所述空穴传输和注入层200的材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS),所述发光层300采用上述的蓝光TADF材料通过溶液旋涂工艺制作,所述电子传输层400的材料为1,3,5-三(3-(3-吡啶基)苯基)苯(Tm3PyPB),所述阴极500的材料为氟化锂和铝。
具体地,分别采用化合物1、化合物2及化合物3作为发光层300制作器件1、器件2及器件3,并对器件1、器件2及器件3进行性能进行测量,其中,所述器件1、器件2及器件3中空穴传输和注入层200的厚度为50nm,发光层300的厚度为40nm,电子传输层400的厚度为40nm,阴极500中的氟化锂的厚度为1nm,铝的厚度为100nm,测得的器件1、器件2及器件3的性能如表2所示,可知器件1、器件2及器件3的性能符合要求。
Figure PCTCN2018120740-appb-000029
表2
综上所述,本发明提供一种蓝光TADF材料,通过在蓝光TADF材料***连接可增加溶解性的烷基链,在烷基链末端连接具有高能级的叔丁基咔唑单元,在获得高的发光效率以及TADF效率的同时,也实现了材料良好的溶解性,使得材料能通过溶液旋涂加工,并且末端的咔唑可以充当主体,能够实现发光层的非掺杂,同时有效避免相分离。本发明还通过一种蓝光TADF材料的制备方法,合成效率高,制得的蓝光TADF材料具有显著的TADF特性,且能通过溶液旋涂进行加工。本发明还提供一种电致发光器件,发光效率高,生产成本低。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (12)

  1. 一种蓝光TADF材料,其结构通式如式1所示:
    Figure PCTCN2018120740-appb-100001
    其中,R 1为式2至式14所示结构中的一种:
    Figure PCTCN2018120740-appb-100002
    R 2为式15至式19所示结构中的一种:
    Figure PCTCN2018120740-appb-100003
  2. 如权利要求1所述的蓝光TADF材料,具有式20至式22所示的结构:
    Figure PCTCN2018120740-appb-100004
    Figure PCTCN2018120740-appb-100005
  3. 如权利要求1所述的蓝光TADF材料,能通过溶液旋涂进行加工。
  4. 一种蓝光TADF材料的制备方法,包括如下步骤:
    步骤S1、提供反应容器,向所述反应容器中加入第一反应物R 1
    所述第一反应物R 1具有式2至式14所示结构中的一种:
    Figure PCTCN2018120740-appb-100006
    Figure PCTCN2018120740-appb-100007
    步骤S2、去除所述反应容器中的空气,并向所述反应容器中加入氢化钠及四氢呋喃,接着在第一温度下反应第一时长;
    步骤S3、提供第二反应物,将所述第二反应物加入所述反应容器中,继续反应第二时长,得到反应液;
    所述第二反应物具有式23所示的结构通式;
    Figure PCTCN2018120740-appb-100008
    其中,R 2具有式15至式19所示结构中的一种:
    Figure PCTCN2018120740-appb-100009
    Figure PCTCN2018120740-appb-100010
    步骤S4、将所述反应液倒入水中,经过萃取、合并有机相、旋蒸及柱层析分离纯化后,得到蓝光TADF材料;
    所述蓝光TADF材料的结构通式如下:
    Figure PCTCN2018120740-appb-100011
  5. 如权利要求4所述的蓝光TADF材料的制备方法,其中,所述第一温度为55℃至65℃,所述第一时长为1.5小时至2.5小时。
  6. 如权利要求4所述的蓝光TADF材料的制备方法,其中,所述第二时长为22小时至26小时。
  7. 如权利要求4所述的蓝光TADF材料的制备方法,其中,所述步骤S4中利用二氯甲烷进行萃取。
  8. 如权利要求4所述的蓝光TADF材料的制备方法,其中,所述步骤S4中制得的蓝光TADF材料能通过溶液旋涂进行加工。
  9. 一种电致发光器件,包括如权利要求1所述的蓝光TADF材料。
  10. 如权利要求9所述的电致发光器件,其中,所述蓝光TADF材料具有式20至式22所示的结构:
    Figure PCTCN2018120740-appb-100012
    Figure PCTCN2018120740-appb-100013
  11. 如权利要求9所述的电致发光器件,其中,所述蓝光TADF材料能通过溶液旋涂进行加工。
  12. 如权利要求9所述的电致发光器件,包括发光层,所述发光层采用所述蓝光TADF材料来制作。
PCT/CN2018/120740 2018-12-04 2018-12-12 蓝光tadf材料及其制备方法和电致发光器件 WO2020113643A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/326,714 US11081654B2 (en) 2018-12-04 2018-12-12 Blue light TADF material, preparation method thereof and electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811475447.9 2018-12-04
CN201811475447.9A CN109608437B (zh) 2018-12-04 2018-12-04 蓝光tadf材料及其制备方法和电致发光器件

Publications (1)

Publication Number Publication Date
WO2020113643A1 true WO2020113643A1 (zh) 2020-06-11

Family

ID=66005999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120740 WO2020113643A1 (zh) 2018-12-04 2018-12-12 蓝光tadf材料及其制备方法和电致发光器件

Country Status (2)

Country Link
CN (1) CN109608437B (zh)
WO (1) WO2020113643A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608437B (zh) * 2018-12-04 2020-06-02 武汉华星光电半导体显示技术有限公司 蓝光tadf材料及其制备方法和电致发光器件
CN113078278B (zh) * 2021-03-26 2024-04-30 常州大学 可溶液加工的热活性延迟荧光材料在蓝光器件中以及在杂化白光器件中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051014A (zh) * 2013-03-22 2015-11-11 默克专利有限公司 用于电子器件的材料
CN106946850A (zh) * 2017-02-17 2017-07-14 中节能万润股份有限公司 一种新型热激活延迟荧光发光材料及其应用
CN108484592A (zh) * 2018-04-17 2018-09-04 中山大学 基于大位阻空间电荷转移的tadf材料及其合成方法与应用
CN109608437A (zh) * 2018-12-04 2019-04-12 武汉华星光电半导体显示技术有限公司 蓝光tadf材料及其制备方法和电致发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110970A1 (de) * 2016-06-15 2017-12-21 Technische Universität Dresden Effiziente lichtemittierende Emittermoleküle für optoelektronische Anwendungen durch gezielte Verstärkung der Emission aus ladungsseparierten CT-Zuständen auf Basis dual fluoreszierender Benzol-(Poly)carboxylat-Akzeptoren
CN108658940A (zh) * 2018-07-18 2018-10-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料、其合成方法及oled发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051014A (zh) * 2013-03-22 2015-11-11 默克专利有限公司 用于电子器件的材料
CN106946850A (zh) * 2017-02-17 2017-07-14 中节能万润股份有限公司 一种新型热激活延迟荧光发光材料及其应用
CN108484592A (zh) * 2018-04-17 2018-09-04 中山大学 基于大位阻空间电荷转移的tadf材料及其合成方法与应用
CN109608437A (zh) * 2018-12-04 2019-04-12 武汉华星光电半导体显示技术有限公司 蓝光tadf材料及其制备方法和电致发光器件

Also Published As

Publication number Publication date
CN109608437B (zh) 2020-06-02
CN109608437A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN102731406B (zh) 菲并咪唑衍生物及在制备电致发光器件方面的应用
CN110305150B (zh) 一种热激活延迟荧光材料及其应用
WO2020113789A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020098114A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
WO2020098138A1 (zh) 一种深蓝光热活化延迟荧光材料及其应用
CN109369652B (zh) 一种蓝光热活化延迟荧光材料及其应用
CN105524114A (zh) 一系列深蓝金属铱磷光oled材料
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020211126A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN105461611A (zh) 螺芴苄基荧光材料
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020113643A1 (zh) 蓝光tadf材料及其制备方法和电致发光器件
CN110183426B (zh) 一种热活化延迟荧光材料、制备方法及电致发光器件
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2020191866A1 (zh) 热活化延迟荧光材料及其制备方法、有机发光器件
US11081654B2 (en) Blue light TADF material, preparation method thereof and electroluminescent device
CN111100152A (zh) 一种蓝光热活化延迟荧光材料、合成方法及电致发光器件
CN110240574B (zh) 电致发光材料、电致发光材料的制备方法及发光器件
CN110143960B (zh) 绿光热活化延迟荧光材料及其制备方法、有机电致发光器件
CN109852378B (zh) 一种热活化延迟荧光深红光材料及其电致发光器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2021103058A1 (zh) 空穴传输材料及其制备方法和电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942286

Country of ref document: EP

Kind code of ref document: A1