WO2020124771A1 - 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件 - Google Patents

热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件 Download PDF

Info

Publication number
WO2020124771A1
WO2020124771A1 PCT/CN2019/075616 CN2019075616W WO2020124771A1 WO 2020124771 A1 WO2020124771 A1 WO 2020124771A1 CN 2019075616 W CN2019075616 W CN 2019075616W WO 2020124771 A1 WO2020124771 A1 WO 2020124771A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
delayed fluorescent
compound
layer
Prior art date
Application number
PCT/CN2019/075616
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/470,552 priority Critical patent/US20200194682A1/en
Publication of WO2020124771A1 publication Critical patent/WO2020124771A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/26[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom without other substituents attached to the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Definitions

  • the invention belongs to the technical field of electroluminescent materials, and particularly relates to a thermally activated delayed fluorescent compound, a preparation method thereof and an organic electroluminescent diode device.
  • OLED Organic Light-Emitting Diode
  • the principle of the OLED device is that under the action of an electric field, holes and electrons are injected from the anode and the cathode, respectively, and through the hole injection layer, hole transport layer, electron injection layer, and electron transport layer, the excitons are recombined in the light emitting layer, Exciton radiation decays and glows.
  • organic electroluminescent materials have a great influence on the performance of the devices.
  • the luminescent guest material that plays a leading role is very important.
  • the luminescent guest materials used in early OLED devices were fluorescent materials. Because the ratio of singlet and triplet excitons in OLED devices is 1:3, the theoretical internal quantum efficiency (IQE) of OLED devices based on fluorescent materials is only It can reach 25%, which greatly limits the application of fluorescent electroluminescent devices.
  • Heavy metal complex phosphorescent materials can achieve 100% IQE by utilizing singlet and triplet excitons simultaneously due to the spin-orbit coupling of heavy atoms.
  • the commonly used heavy metals are precious metals such as iridium (Ir) and platinum (Pt), and the phosphorescent luminescent materials of the heavy metal complexes have yet to be broken through in terms of blue light materials.
  • Pure organic thermally activated delayed fluorescence (TADF) materials through clever molecular design, make the molecules have a small minimum single triple energy level difference ( ⁇ E ST ), so that triplet excitons can be returned through reverse intersystem crossing (RISC) To the singlet state, it emits light by transitioning to the ground state through radiation, so that single and triplet excitons can be used at the same time, and 100% IQE can also be achieved.
  • TADF organic thermally activated delayed fluorescence
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (k RISC ) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLED devices. At present, TADF materials with the above conditions are still relatively scarce compared to the heavy metal Ir complexes. For two-color white light, high-efficiency sky blue materials are indispensable. Therefore, it is of great significance to design and synthesize sky blue TADF materials with high performance.
  • k RISC fast reverse intersystem crossing constant
  • PLQY photoluminescence quantum yield
  • the object of the present invention is to provide a thermally activated delayed fluorescent compound, which has an ultra-fast reverse intersystem crossing rate and high luminous efficiency, is a sky blue TADF compound with significant TADF characteristics, and can be used as a light emitting diode of organic electroluminescence ⁇ Layer material.
  • Another object of the present invention is to provide a method for preparing a thermally activated delayed fluorescent compound, which is easy to operate and has a high yield to obtain the target product.
  • Still another object of the present invention is to provide an organic electroluminescent diode device that uses the above-mentioned thermally activated delayed fluorescent compound as a light-emitting layer material, thereby improving the luminous efficiency of the device.
  • the present invention provides a thermally activated delayed fluorescent compound having a chemical structure as shown in the following formula 1:
  • R represents a chemical group as an electron donor.
  • the electron donor group R is selected from any one of the following groups:
  • the thermally activated delayed fluorescent compound is Compound 1, Compound 2 or Compound 3, and the structural formulas of Compound 1, Compound 2 and Compound 3 are as follows:
  • the invention also provides a preparation method of the thermally activated delayed fluorescent compound, and the chemical reaction formula is as follows:
  • the raw material 1, the electron donor compound, palladium acetate and tri-tert-butylphosphine tetrafluoroborate with a molar ratio of 1:3-4:0.1-0.2:0.3-0.4 are added to the reaction bottle, and then Add sodium tert-butoxide in a molar ratio of 3-4 to the raw material 1 in the glove box, and add dehydrated and deoxygenated toluene under an argon atmosphere to react at 120°C for 24 hours; cool to room temperature and pour the reaction solution into Extract three times with dichloromethane in ice water, combine organic phases, spin into silica gel, separate and purify by column chromatography to obtain the product, and calculate the yield;
  • the structural formula of the electron donor-containing compound is R-H, where R represents a chemical group as an electron donor.
  • the electron donor group R is selected from any one of the following groups:
  • the electron-containing donor compound is 9,10-dihydro-9,9-dimethylacridine, phenoxazine, or phenothiazine.
  • the present invention also provides an organic electroluminescent diode device, including a substrate, a first electrode provided on the substrate, an organic functional layer provided on the first electrode, and a second electrode provided on the organic functional layer ;
  • the organic functional layer includes one or more organic film layers, and at least one of the organic film layers is a light-emitting layer;
  • the light-emitting layer contains the thermally activated delayed fluorescent compound as described above.
  • the light-emitting layer is formed by vacuum evaporation or solution coating.
  • the material of the light-emitting layer is a mixture of a host light-emitting material and a guest light-emitting material, and the guest light-emitting material is selected from one or more of the thermally activated delayed fluorescent compounds described above.
  • the substrate is a glass substrate, the material of the first electrode is indium tin oxide, and the second electrode is a double-layer composite structure composed of a lithium fluoride layer and an aluminum layer;
  • the organic functional layer includes multiple organic film layers including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, wherein the material of the hole injection layer is molybdenum trioxide ,
  • the material of the hole transport layer is TCTA
  • the material of the electron transport layer is Tm3PyPB
  • the material of the light emitting layer is a mixture of host light emitting material and guest light emitting material
  • the host light emitting material is DPEPO
  • the guest The luminescent material is selected from one or more of the thermally activated delayed fluorescent compounds as described above.
  • the present invention has the following advantages and beneficial effects:
  • trifluoromethyl group is used as a strong electron acceptor group.
  • the electron donor group is changed to study the influence of the strength of the electron donor on the performance of the material.
  • the thermally activated delayed fluorescent compound of the present invention is a sky blue TADF compound material with an ultra-fast reverse intersystem crossing rate and high luminous efficiency. When it is used as a light-emitting material in an organic light-emitting display device, it can improve organic The luminous efficiency of the light-emitting display device and the organic electroluminescent device based on the thermally activated delayed fluorescent compound of the sky blue light of the present invention have achieved very high device efficiency.
  • FIG. 1 is a distribution diagram of HOMO and LUMO energy levels of Compounds 1-3 prepared in Specific Examples 1-3 of the present invention
  • FIG. 2 is a photoluminescence spectrum diagram of compound 1-3 prepared in specific examples 1-3 of the present invention in a toluene solution at room temperature;
  • FIG. 3 is a schematic structural diagram of an organic electroluminescent device of the present invention.
  • the synthetic route of the target compound 1 is as follows:
  • reaction solution was poured into 200 mL of ice water, extracted three times with dichloromethane, the organic phases were combined, spinned into silica gel, and column chromatography (dichloromethane: n-hexane, v: v, 1:1) was separated and purified. 3.0g of blue-white powder of compound 1, yield 66%.
  • the synthetic route of the target compound 2 is as follows:
  • reaction solution was poured into 200 mL of ice water, extracted three times with dichloromethane, the organic phases were combined, spinned into silica gel, and column chromatography (dichloromethane: n-hexane, v: v, 1:1) was separated and purified. 2.7 g of blue-white powder of compound 2 with a yield of 65%.
  • the synthetic route of the target compound 3 is as follows:
  • reaction solution was poured into 200 mL of ice water, extracted three times with dichloromethane, the organic phases were combined, spinned into silica gel, and column chromatography (dichloromethane: n-hexane, v: v, 1:1) was separated and purified. 2.8 g of blue and white powder of compound 3, yield 64%.
  • Figure 1 shows the orbital arrangement of compounds 1-3. It is clear from Figure 1 that the highest electron-occupied orbital (HOMO) and lowest electron unoccupied orbital (LUMO) of compound 1-3 are arranged in On different units, complete separation is achieved, which helps to reduce the intersystem energy difference ⁇ EST, thereby improving the reverse intersystem crossover capability.
  • Figure 2 shows the photoluminescence spectra of compound 1-3 in toluene solution at room temperature. For compounds 1-3, the lowest singlet energy level S1 and the lowest triplet energy level T1 of the molecule were calculated.
  • Examples 1-3 The relevant data of Examples 1-3 are shown in Table 1. It can be seen from Table 1 that the ⁇ Est of all compounds is less than 0.3ev, which achieves a small singlet and triplet energy level difference and has a significant delayed fluorescence effect.
  • PL Peak represents the photoluminescence peak
  • S1 represents the singlet energy level
  • T1 represents the triplet energy level
  • ⁇ EST represents the difference between the singlet and triplet energy levels.
  • OLED organic electroluminescent diode
  • the organic electroluminescent diode device of the present invention with the thermally activated delayed fluorescent compound as the guest material of the light-emitting layer may include a substrate 9, an anode layer 1, a hole injection layer 2, and The hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the cathode layer 6.
  • the substrate 9 is a glass substrate
  • the material of the anode 1 is indium tin oxide (ITO)
  • the substrate 9 and the anode 1 together constitute ITO glass
  • the square resistance of the ITO glass is 10 ⁇ /cm 2 .
  • the material of the hole injection layer 2 is molybdenum trioxide (MoO 3 ), the material of the hole transport layer 3 is TCTA, and the material of the light emitting layer is a mixture of the activated delayed fluorescent compound and DPEPO of the present invention.
  • the material of the electron transport layer 5 is Tm3PyPB.
  • the cathode has a double-layer structure composed of a lithium fluoride (LiF) layer and an aluminum (Al) layer.
  • TCTA refers to 4,4',4′′-tri(carbazol-9-yl)triphenylamine
  • DPEPO refers to di[2-((oxo)diphenylphosphino)phenyl]ether
  • Tm3PyPB refers to 1, 3,5-tris(3-(3-pyridyl)phenyl)benzene.
  • the organic electroluminescent device can be manufactured according to a method known in the art.
  • the specific method is: on a cleaned ITO glass, under high vacuum conditions, a 2nm thick MoO 3 film, a 35nm thick TCTA film, DPEPO plus Activated delayed fluorescent compound, 40nm thick Tm3PyPB film, 1nm thick LiF film and 100nm thick Al film.
  • the various specific device structures are as follows:
  • ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO Compound 1 (3% 40nm)/TmPyPB (40nm)/LiF (1nm)/Al (100nm)
  • ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO Compound 2 (3% 40nm)/TmPyPB (40nm)/LiF (1nm)/Al (100nm)
  • ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO Compound 3 (3% 40nm)/TmPyPB (40nm)/LiF (1nm)/Al (100nm)
  • the current-brightness-voltage characteristics of devices 1-3 were completed by a Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a corrected silicon photodiode, and the electroluminescence spectrum was measured by SPEX CCD3000 spectrometer of French JY company , All measurements are done in room temperature atmosphere.
  • the performance data of devices 1-3 are shown in Table 2 below.
  • CIEy is the y coordinate value of the standard CIE color space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件,所述热活化延迟荧光化合物的结构通式如下式一所示:式一 (I) R表示作为电子给体的化学基团。本发明采用三氟甲基(-CF3)作为强的电子受体基团,通过搭配不同的官能团,改变电子给体基团,研究电子给体的强弱对材料性能带来的影响,设计出具有显著TADF特性的天蓝光的热活化延迟荧光化合物。本发明的热活化延迟荧光化合物,为具有超快反向系间窜越速率及高发光效率的天蓝光TADF化合物,因此,当其作为发光材料应用于有机电致发光器件时,可以有效提高有机电致发光器件的发光效率,基于本发明的热活化延迟荧光化合物的有机电致发光器件具有非常高的器件效率。

Description

热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件 技术领域
本发明属于电致发光材料技术领域,特别涉及一种热活化延迟荧光化合物及其制备方法和有机电致发光二极管器件。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示面板以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低、能耗小、更轻更薄、柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。
OLED器件的原理在于,在电场作用下,空穴和电子分别从阳极和阴极注入,分别通过空穴注入层、空穴传输层和电子注入层、电子传输层,在发光层复合形成激子,激子辐射衰减发光。
有机电致发光材料作为OLED器件的核心组成部分,对器件的使用性能具有很大的影响。其中,起主导作用的发光客体材料至关重要。早期的OLED器件使用的发光客体材料为荧光材料,由于其在OLED器件中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED器件的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是铱(Ir)、铂(Pt)等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。纯有机热活化延迟荧光(TADF)材料,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔE ST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
对于TADF材料,快速的反向系间窜越常数(k RISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED器件的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏。对于双色白光而言,高效的天蓝光材料是必不可少的,因此,设计合成具有高性能的天蓝光TADF材料具有重要意义。
发明内容
本发明的目的在于提供一种热活化延迟荧光化合物,具有超快反向系间窜越速率及高发光效率,为具有显著TADF特性的天蓝光的TADF化合物,可作为有机电致发光二极管的发光层材料。
本发明另一目的在于提供一种热活化延迟荧光化合物的制备方法,该方法易于操作,且获得目标产物的产率较高。
本发明又一目的在于提供一种有机电致发光二极管器件,采用上述热活化延迟荧光化合物作为发光层材料,从而提高器件的发光效率。
为实现上述发明目的,本发明提供一种热活化延迟荧光化合物,具有如下式一所示的化学结构:
式一
Figure PCTCN2019075616-appb-000001
以上式一中,R表示作为电子给体的化学基团。
所述电子给体基团R选自以下基团中的任意一种:
Figure PCTCN2019075616-appb-000002
所述的热活化延迟荧光化合物为化合物1、化合物2或化合物3,所述化合物1、化合物2和化合物3的结构式分别如下:
Figure PCTCN2019075616-appb-000003
本发明还提供一种热活化延迟荧光化合物的制备方法,其化学反应式如下:
Figure PCTCN2019075616-appb-000004
具体为:向反应瓶中加入摩尔比为1:3-4:0.1-0.2:0.3-0.4的原料1、含电子给体化合物、醋酸钯和三叔丁基膦四氟硼酸盐,然后在手套箱中按与原料1为3-4的摩尔比加入叔丁醇钠,在氩气氛围下打入除水除氧的甲苯,在120℃反应24小时;冷却至室温,将反应液倒入冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析分离纯化,得产物,计算收率;
其中,所述原料1的结构式为
Figure PCTCN2019075616-appb-000005
所述含电子给体化合物的结构通式为R-H,其中,R表示作为电子给体的化学基团。
所述电子给体基团R选自以下基团中的任意一种:
Figure PCTCN2019075616-appb-000006
Figure PCTCN2019075616-appb-000007
所述含电子给体化合物为9,10-二氢-9,9-二甲基吖啶、吩噁嗪或吩噻嗪。
本发明还提供一种有机电致发光二极管器件,包括基板、设置于所述基板上的第一电极、设置于第一电极上的有机功能层及设置于所述有机功能层上的第二电极;
所述有机功能层包括一层或多层有机膜层,且至少一层所述有机膜层为发光层;
所述发光层包含如上所述的热活化延迟荧光化合物。
所述发光层采用真空蒸镀或者溶液涂覆的方法形成。
所述发光层的材料为主体发光材料与客体发光材料的混合物,所述客体发光材料选自如上所述的热活化延迟荧光化合物中的一种或多种。
所述基板为玻璃基板,所述第一电极的材料为氧化铟锡,所述第二电极为氟化锂层与铝层构成的双层复合结构;
所述有机功能层包括多层有机膜层,该多层有机膜层包括空穴注入层、空穴传输层、发光层、电子传输层,其中,所述空穴注入层的材料为三氧化钼,所述空穴传输层的材料为TCTA,所述电子传输层的材料为Tm3PyPB,所述发光层的材料为主体发光材料与客体发光材料的混合物,所述主体发光材料为DPEPO,所述客体发光材料选自如上所述的热活化延迟荧光化合物中的一种或多种。
相比于已有材料和技术,本发明具有如下优点和有益效果:
(1)本发明采用三氟甲基作为强的电子受体基团,通过搭配不同的官能团,改变电子给体基团,研究电子给体的强弱对材料性能带来的影响,设计出具有显著TADF特性的天蓝光的热活化延迟荧光化合物;
(2)本发明的热活化延迟荧光化合物,为具有超快反向系间窜越速率及高发光效率的天蓝光TADF化合物材料,当其作为发光材料应用于有机发光显示装置时,可以提高有机发光显示装置的发光效率,基于本发明的天蓝光的热活化延迟荧光化合物的有机电致发光器件都取得了非常高的器件效率。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明具体实施例1-3中所制备的化合物1-3的HOMO与LUMO能级分布图;
图2为本发明具体实施例1-3中所制备的化合物1-3在室温下甲苯溶液中的光致发光光谱图;
图3为本发明有机电致发光器件的结构示意图。
具体实施方式
本发明中所用的未注明的一些原料均为市售商品。一些化合物的制备方法将在实施案例中描述。下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此。
实施例1:
目标化合物1的合成路线如下:
Figure PCTCN2019075616-appb-000008
向100mL二口瓶中加入原料1(2.56g,5mmol),9,10-二氢-9,9-二甲基吖啶(3.76g,18mmol),醋酸钯Pb(OAc)(135mg,0.6mmol)和三叔丁基膦四氟硼酸盐(t-Bu) 3HPBF 4(0.51g,1.8mmol),然后在手套箱中加入叔丁醇钠NaOt-Bu(1.74g,18mmol),在氩气氛围下打入40mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v, 1:1)分离纯化,得3.0g蓝白色粉末的化合物1,产率66%。
1HNMR(300MHz,CD2Cl2,δ):7.19-7.14(m,18H),6.95(d,J=6.9Hz,6H),1.69(s,18H)。
MS(EI)m/z:[M] +calcd for C 54H 42F 9N 3,903.32;found,903.27。
实施例2:
目标化合物2的合成路线如下:
Figure PCTCN2019075616-appb-000009
向100mL二口瓶中加入原料1(2.56g,5mmol),吩噁嗪(3.30g,18mmol),醋酸钯(135mg,0.6mmol)和三叔丁基膦四氟硼酸盐(0.51g,1.8mmol),然后在手套箱中加入叔丁醇钠(1.74g,18mmol),在氩气氛围下打入40mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:1)分离纯化,得2.7g蓝白色粉末的化合物2,产率65%。
1H NMR(300MHz,CD 2Cl 2,δ):7.14(d,J=7.2Hz,6H),7.01-6.96(m,18H)。
MS(EI)m/z:[M] +calcd for C 45H 24F 9N 3O 3,825.17;found,825.13。
实施例3:
目标化合物3的合成路线如下所示:
Figure PCTCN2019075616-appb-000010
向100mL二口瓶中加入原料1(2.56g,5mmol),吩噻嗪(3.59g,18mmol),醋酸钯(135mg,0.6mmol)和三叔丁基膦四氟硼酸盐(0.51g,1.8mmol),然后在手套箱中加入叔丁醇钠(1.74g,18mmol),在氩气氛围下打入40mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将 反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:1)分离纯化,得2.8g蓝白色粉末的化合物3,产率64%。
1H NMR(300MHz,CD 2Cl 2,δ):7.16-7.08(m,12H),7.04-6.98(m,12H)。
MS(EI)m/z:[M] +calcd for C 45H 24F 9N 3S 3,873.10;found,873.00。
图1示出了化合物1-3的轨道排布情况,从图1中可以明显看出,化合物1-3的最高电子占据轨道(HOMO)与最低电子未占据轨道(LUMO)均分别排布在不同的单元上,实现了完全的分离,这有助于减小系间能差ΔEST,从而提高反向系间窜越能力。图2示出了化合物1-3在室温下甲苯溶液中的光致发光光谱。针对化合物1-3,模拟计算了分子的最低单线态能级S1和最低三线态能级T1。
实施例1-3的相关数据如表1所示。由表1可以看出,所有化合物的ΔEst均小于0.3ev,实现了较小的单线态和三线态能级差,具有明显的延迟荧光效应。
表1、化合物1-3的光物理性质结果
Figure PCTCN2019075616-appb-000011
表1中,PL Peak表示光致发光峰,S1表示单线态能级,T1表示三线态能级,ΔEST表示单线态和三线态能级差。
实施例4:
有机电致发光二极管(OLED)器件的制备:
如图1所述,本发明的热活化延迟荧光化合物作为发光层客体材料的有机电致发光二极管器件,可包括从下到上依次设置的基板9、阳极层1、空穴注入层2、空穴传输层3、发光层4、电子传输层5、及阴极层6。其中,所述基板9为玻璃基板,所述阳极1的材料为氧化铟锡(ITO),所述基板9与阳极1共同构成ITO玻璃,所述ITO玻璃的方块电阻为10Ω/cm 2。所述空穴注入层2的材料为三氧化钼(MoO 3),所述空穴传输层3的材料为TCTA,所述发光层的材料为本发明的活化延迟荧光化合物与DPEPO的混合物,所述电子传输层5的材料为Tm3PyPB。所述阴极为氟化锂(LiF)层与铝(Al)层构成的双层结构。
其中,TCTA指4,4',4″-三(咔唑-9-基)三苯胺,DPEPO指二[2-((氧代)二 苯基膦基)苯基]醚,Tm3PyPB指1,3,5-三(3-(3-吡啶基)苯基)苯。
所述有机电致发光器件可按本领域已知方法制作,具体方法为:在经过清洗的ITO玻璃上,高真空条件下依次蒸镀2nm厚的MoO 3膜、35nm厚的TCTA膜、DPEPO加活化延迟荧光化合物、40nm厚的Tm3PyPB膜、1nm厚的LiF膜和100nm厚的Al膜。用该方法制得如图1所示的器件,各种具体的器件结构如下:
器件1:
ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物1(3%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
器件2:
ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物2(3%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
器件3:
ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物3(3%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
器件1-3的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量***(Keithley 2400Sourcemeter、Keithley 2000Currentmeter)完成的,电致发光光谱是由法国JY公司SPEX CCD3000光谱仪测量的,所有测量均在室温大气中完成。器件1-3的性能数据见下表2。
表2、基于化合物1-3为发光层客体材料的器件的性能结果
Figure PCTCN2019075616-appb-000012
表2中,CIEy为标准CIE色彩空间的y坐标值。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种热活化延迟荧光化合物,具有如下式一所示的化学结构:
    式一
    Figure PCTCN2019075616-appb-100001
    以上式一中,R表示作为电子给体的化学基团。
  2. 如权利要求1所述的热活化延迟荧光化合物,其中,所述电子给体基团R选自以下基团中的任意一种:
    Figure PCTCN2019075616-appb-100002
  3. 如权利要求2所述的热活化延迟荧光化合物,为化合物1、化合物2或化合物3,所述化合物1、化合物2和化合物3的结构式分别如下:
    Figure PCTCN2019075616-appb-100003
  4. 一种热活化延迟荧光化合物的制备方法,其化学反应式如下:
    Figure PCTCN2019075616-appb-100004
    具体为:向反应瓶中加入摩尔比为1:3-4:0.1-0.2:0.3-0.4的原料1、含电子给体化合物、醋酸钯和三叔丁基膦四氟硼酸盐,然后在手套箱中按与原料1为3-4的摩尔比加入叔丁醇钠,在氩气氛围下打入除水除氧的甲苯,在120℃反应24小时;冷却至室温,将反应液倒入冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析分离纯化,得产物,计算收率;
    其中,所述原料1的结构式为
    Figure PCTCN2019075616-appb-100005
    所述含电子给体化合物的结构通式为R-H,其中,R表示作为电子给体的化学基团。
  5. 如权利要求4所述的热活化延迟荧光化合物的制备方法,其中,所述电子给体基团R选自以下基团中的任意一种:
    Figure PCTCN2019075616-appb-100006
    Figure PCTCN2019075616-appb-100007
  6. 如权利要求5所述的热活化延迟荧光化合物的制备方法,其中,所述含电子给体化合物为9,10-二氢-9,9-二甲基吖啶、吩噁嗪或吩噻嗪。
  7. 一种有机电致发光二极管器件,包括基板、设置于所述基板上的第一电极、设置于第一电极上的有机功能层及设置于所述有机功能层上的第二电极;
    所述有机功能层包括一层或多层有机膜层,且至少一层所述有机膜层为发光层;
    所述发光层包含如权利要求1所述的热活化延迟荧光化合物。
  8. 如权利要求7所述的有机电致发光二极管器件,其中,所述发光层采用真空蒸镀或者溶液涂覆的方法形成。
  9. 如权利要求7所述的有机电致发光二极管器件,其中,所述发光层的材料为主体发光材料与客体发光材料的混合物,所述客体发光材料选自如权利要求1所述的热活化延迟荧光化合物中的一种或多种。
  10. 如权利要求7所述的有机电致发光二极管器件,其中,所述基板为玻璃基板,所述第一电极的材料为氧化铟锡,所述第二电极为氟化锂层与铝层构成的双层复合结构;
    所述有机功能层包括多层有机膜层,该多层有机膜层包括空穴注入层、空穴传输层、发光层、电子传输层,其中,所述空穴注入层的材料为三氧化钼,所述空穴传输层的材料为TCTA,所述电子传输层的材料为Tm3PyPB,所述发光层的材料为主体发光材料与客体发光材料的混合物,所述主体发光材料为DPEPO,所述客体发光材料选自如权利要求1所述的热活化延迟荧光化合物中的一种或多种。
PCT/CN2019/075616 2018-12-17 2019-02-20 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件 WO2020124771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/470,552 US20200194682A1 (en) 2018-12-17 2019-02-20 Thermally activated delayed fluorescence material and method for preparing thereof and organic electroluminescent diode device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811545490.8 2018-12-17
CN201811545490.8A CN109503481B (zh) 2018-12-17 2018-12-17 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件

Publications (1)

Publication Number Publication Date
WO2020124771A1 true WO2020124771A1 (zh) 2020-06-25

Family

ID=65752784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075616 WO2020124771A1 (zh) 2018-12-17 2019-02-20 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件

Country Status (2)

Country Link
CN (1) CN109503481B (zh)
WO (1) WO2020124771A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003208B (zh) * 2019-04-16 2020-10-30 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN109897065B (zh) * 2019-04-16 2021-06-01 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110563633B (zh) * 2019-08-30 2022-11-08 武汉华星光电半导体显示技术有限公司 蓝光热活化延迟荧光材料及其制备方法、电致发光器件
CN111072641B (zh) * 2019-12-31 2023-05-12 盐城工学院 一种橙光热激活延迟荧光材料及其合成方法和应用
CN113831324B (zh) * 2021-11-02 2022-11-25 青岛科技大学 化合物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502388A (zh) * 2011-04-18 2014-01-08 默克专利有限公司 用于电子器件的化合物
US20150129849A1 (en) * 2013-11-14 2015-05-14 Universal Display Corporation Organic electroluminescent materials and devices
JP2016036025A (ja) * 2014-07-31 2016-03-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びπ共役系化合物
CN106661001A (zh) * 2014-05-14 2017-05-10 哈佛学院院长等 有机发光二极管材料
CN107011243A (zh) * 2017-04-21 2017-08-04 瑞声光电科技(常州)有限公司 芳香族化合物及发光器件
CN107531628A (zh) * 2015-05-08 2018-01-02 柯尼卡美能达株式会社 π共轭类化合物、有机电致发光元件材料、发光材料、发光性薄膜、有机电致发光元件、显示装置及照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105418533B (zh) * 2015-12-18 2019-02-19 昆山国显光电有限公司 一种红光热活化延迟荧光材料及有机电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502388A (zh) * 2011-04-18 2014-01-08 默克专利有限公司 用于电子器件的化合物
US20150129849A1 (en) * 2013-11-14 2015-05-14 Universal Display Corporation Organic electroluminescent materials and devices
CN106661001A (zh) * 2014-05-14 2017-05-10 哈佛学院院长等 有机发光二极管材料
JP2016036025A (ja) * 2014-07-31 2016-03-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びπ共役系化合物
CN107531628A (zh) * 2015-05-08 2018-01-02 柯尼卡美能达株式会社 π共轭类化合物、有机电致发光元件材料、发光材料、发光性薄膜、有机电致发光元件、显示装置及照明装置
CN107011243A (zh) * 2017-04-21 2017-08-04 瑞声光电科技(常州)有限公司 芳香族化合物及发光器件

Also Published As

Publication number Publication date
CN109503481B (zh) 2020-06-02
CN109503481A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
Liu et al. Novel bipolar host materials based on 1, 3, 5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off
CN109678844B (zh) 一种橙红光热激活延迟荧光材料及有机电致发光器件
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN107406391A (zh) 螺环化合物和包含其的有机发光元件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211126A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
CN106749050B (zh) 一种以环状二酮为核心的热激活延迟荧光oled材料及其应用
CN106632231B (zh) 一种杂环衍生物及使用该杂环衍生物的有机发光器件
US20200194682A1 (en) Thermally activated delayed fluorescence material and method for preparing thereof and organic electroluminescent diode device
CN106800526A (zh) 一种以环状二酮为核心的有机电致发光材料及其应用
WO2020082568A1 (zh) 吖啶衍生物及有机电致发光器件
CN116425762A (zh) 一种有机电致发光化合物及有机电致发光器件
KR20230074407A (ko) 시아노-치환을 갖는 헤테로고리 화합물
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110105231B (zh) 一种含薁环的化合物、其用途及包含其的有机光电装置
WO2020124764A1 (zh) 红光热活化延迟荧光材料、其制备方法及有机发光二极管器件
KR20120052062A (ko) 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
US20200331923A1 (en) Thermal active delay fluorescent material, method for manufacturing same, and organic light-emitting diode device
CN105237501A (zh) 含有螺双芴和二苯并呋喃的有机发光材料及发光器件
WO2020211127A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN106495975B (zh) 9,9′-联蒽类蓝光多功能材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898560

Country of ref document: EP

Kind code of ref document: A1