WO2020113533A1 - 一种数据传输方法、终端设备及网络设备 - Google Patents

一种数据传输方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020113533A1
WO2020113533A1 PCT/CN2018/119632 CN2018119632W WO2020113533A1 WO 2020113533 A1 WO2020113533 A1 WO 2020113533A1 CN 2018119632 W CN2018119632 W CN 2018119632W WO 2020113533 A1 WO2020113533 A1 WO 2020113533A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
configuration
coreset
search space
transmission
Prior art date
Application number
PCT/CN2018/119632
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020217020510A priority Critical patent/KR20210091818A/ko
Priority to PCT/CN2018/119632 priority patent/WO2020113533A1/zh
Priority to EP18942072.2A priority patent/EP3879871B1/en
Priority to JP2021532015A priority patent/JP2022517904A/ja
Priority to CN202110540796.XA priority patent/CN113329501B/zh
Priority to CN201880097686.7A priority patent/CN112740738A/zh
Publication of WO2020113533A1 publication Critical patent/WO2020113533A1/zh
Priority to US17/313,817 priority patent/US11272531B2/en
Priority to US17/580,807 priority patent/US11889526B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of information processing technology, and in particular, to a data transmission method, terminal device, network device, and computer storage medium, chip, computer-readable storage medium, computer program product, and computer program.
  • multiple TRP (Transmission/Reception Points)/antenna panel panels can independently schedule uplink or downlink data transmission for the terminal.
  • Data transmission between different TRP/panels and terminals is usually scheduled through independently configured CORESET (Control Resource Set) or PDCCH in the search space, that is, different CORESET or search spaces correspond to different TRP/panels.
  • CORESET Control Resource Set
  • PDCCH Physical Downlink Control Channel
  • each BWP terminal has only one data channel configuration information (PDSCH-config or PUSCH-config), and data channels scheduled by different TRP/panel can only use the same transmission parameters, which greatly limits the flexibility of scheduling And, there will be serious interference between the data channels scheduled by different TRP/panel, thus affecting the performance of data transmission.
  • embodiments of the present invention provide a data transmission method, terminal device, network device, and computer storage medium, chip, computer-readable storage medium, computer program product, and computer program.
  • an embodiment of the present invention provides a data transmission method, which is applied to a terminal device, and the method includes:
  • the CORESET or search space is the CORESET or search space where the downlink control information DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi co-location QCL as the control channel scheduling the data channel Type D hypothetical CORESET or search space.
  • an embodiment of the present invention provides a terminal device, including:
  • the first processing unit determines transmission parameters of the data channel according to the control channel set CORESET or data channel configuration information corresponding to the search space;
  • the first communication unit sends or receives the data channel based on the transmission parameter
  • the CORESET or search space is the CORESET or search space where the DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi co-located QCL type D assumption as the control channel scheduling the data channel CORESET or search space.
  • an embodiment of the present invention provides a data transmission method, which is applied to a network device.
  • the method includes:
  • the CORESET or search space is the CORESET or search space where the DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi co-located QCL type D assumption as the control channel scheduling the data channel CORESET or search space.
  • an embodiment of the present invention provides a network device, including:
  • the second communication unit sends the data channel configuration information corresponding to the control resource set CORESET or search space to the terminal device, and sends or receives the data channel;
  • the CORESET or search space is the CORESET or search space where the DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi co-located QCL type D assumption as the control channel scheduling the data channel CORESET or search space.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or the various implementations thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the third aspect or the various implementations thereof.
  • a chip is provided for implementing any one of the above-mentioned first and third aspects, or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the first aspect, the third aspect, or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first or third aspects or the various implementations thereof.
  • a computer program product including computer program instructions, which cause the computer to execute the method in any one of the above first and third aspects, or in various implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first and third aspects or various implementations thereof.
  • the transmission parameters of the data channel can be determined based on the data channel configuration information corresponding to CORESET or the search space, and then the data channel can be sent or received according to the transmission parameters; thus, due to different CORESET or search space
  • Corresponding data channel configuration information can be different, then different data channel configuration information can be corresponding to different data channels, thereby ensuring that multiple data channels can use independent data channel configuration information, which improves scheduling flexibility; and
  • different transmission points or panel-scheduled data channels can use different data channel configuration information, so that interference will be reduced between different data channels, thereby ensuring the performance of data transmission.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart 1 of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • FIG. 4 is a second schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device composition provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a composition of a communication device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Broadband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Communication System Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • the communication system 100 applied in the embodiments of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal device 120 within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via wireless interfaces, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device configured to receive/transmit communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Lines
  • WLAN wireless local area networks
  • digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, fax, and data communication capabilities; can include radiotelephones, pagers, Internet/internal PDAs with networked access, web browsers, notepads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to a wireless modem, in-vehicle devices, wearable devices, terminal devices in a 5G network, or terminal devices in a future-evolving PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • terminal equipment 120 may perform terminal direct connection (Device to Device, D2D) communication.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • This embodiment provides a data transmission method, which is applied to a terminal device, as shown in FIG. 2, including:
  • Step 201 Determine the transmission parameters of the data channel according to the data channel configuration information corresponding to the control resource set (CORESET) or search space;
  • Step 202 Send or receive the data channel based on the transmission parameter
  • the CORESET or search space is the CORESET or search space where the downlink control information (DCI) of the data channel is scheduled; or, the CORESET or search space is the same quasi-common as the control channel scheduling the data channel Address (QCL) Type D assumed CORESET or search space.
  • DCI downlink control information
  • QCL data channel Address
  • QCL type D refers to Spatial Rx Parameter receiving parameter.
  • the transmission parameters of the data channel are determined according to the data channel configuration information corresponding to the control resource set CORESET or search space, which can be understood as the first need to determine the downlink control information carried by the physical downlink control channel (PDCCH, Physical Downlink Control Channel) (DCI, Downlink Control Information) the transmission parameters of the scheduled data channel.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the specific processing method may be to determine the transmission parameters of the data channel according to the data channel configuration information corresponding to the CORESET where the DCI scheduling the data channel or the search space, or may be based on the control of scheduling the data channel
  • the channel uses the CORESET of the same QCL type D hypothesis or the data channel configuration information corresponding to the search space to determine the transmission parameters of the data channel; where the control channel can be understood as the PDCCH.
  • the CORESET or search space is a CORESET or search space that uses the same quasi-co-location QCL type D assumption as the control channel that schedules the data channel, including:
  • the CORESET or search space is adopted for the control channel that schedules the data channel CORESET or search space in the same TCI state.
  • the method also includes:
  • the method for obtaining the data channel configuration information through high-level signaling may include the following two types:
  • the first way is to obtain the data channel configuration information corresponding to the CORESET or search space configuration configured by the network side through high-layer signaling.
  • the data channel configuration information may be a specific data channel configuration, or may also be identification information corresponding to the data channel configuration.
  • the data channel may be a downlink channel or an uplink channel.
  • it may be a PDSCH (Physical Downlink Shared Channel) or a PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • it can also be other channels, but this embodiment will not repeat them.
  • the network side can configure the corresponding data channel configuration information for a CORESET or search space through high-level signaling, for example, adding PDSCH-configuration (config) or PUSCH-config in the parameter field of CORESET/search space, or adding PDSCH-config-ID or PUSCH-config-ID.
  • the second way is to obtain the correspondence between the CORESET or search space identification information configured by the network side through high-level signaling and the identification information of the data channel configuration information.
  • the network side can additionally configure the correspondence between CORESET ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH-Config-ID), or search space ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH-Config -ID), the data channel configuration information corresponding to CORESET or search space is determined according to the corresponding relationship.
  • the data channel configuration index may be an index among a plurality of data channel configuration information configured on the network side by one data channel configuration information.
  • the default data channel configuration information may be used to obtain the transmission parameters.
  • the default data channel configuration information may be preset information for the terminal device on the network side, and the acquisition method may be obtained through information transmitted when the terminal device and the network side initially access.
  • the method also includes:
  • the data channel configuration information used for the data channel transmitted in the same time slot or the same OFDM symbol as the CORESET or search space is used as the data channel configuration information corresponding to the CORESET or search space.
  • this embodiment in addition to configuring data channel configuration information for CORESET or search space through high-level signaling, this embodiment also provides a processing method for acquiring data channel configuration information.
  • the finally determined data channel configuration information corresponding to CORESET or search space may be data channel configuration information used for data channels transmitted in the same time slot as CORESET; or, transmitted in the same OFDM symbol as CORESET
  • the data channel transmitted in the same time slot as the CORESET or search space and the CORESET or search space can be transmitted on different OFDM symbols.
  • the data channel transmitted in the same OFDM symbol as the CORESET or search space may not completely overlap with the time domain resource of the CORESET or search space, that is, only part of the OFDM symbols may overlap.
  • the data channel configuration information is used to indicate the transmission parameters used by the data channel.
  • the transmission parameter includes at least one of the following:
  • Data channel transmission scheme power control parameters, frequency domain frequency hopping configuration, whether to perform DFT transformation configuration, codebook subset constraint configuration, maximum transmission layer configuration, UCI transmission configuration carried by the data channel, whether to allow DFT transformation Pi/2-Binary Phase Shift Keying (BPSK, Binary Phase Shift Keying) modulation configuration, the scrambling ID used for data scrambling carried by the data channel, the DMRS configuration of the data channel, the transmission configuration of the data channel candidate indicates the TCI status , VRB to PRB interleaved resource units, time-domain resource configuration of data channels, number of data channel repetitions or aggregation slots, rate matching resource configuration, resource block group RBG size used for resource allocation, modulation and coding used for data transmission MCS table, zero-power CSI-RS configuration, PRB bundling configuration.
  • BPSK Binary Phase Shift Keying
  • the transmission scheme used by the data channel is used to indicate whether the data channel uses codebook-based transmission or non-codebook-based transmission.
  • Power control parameters are used to instruct the data channel to use parameters for uplink power control, including open-loop power control parameters (Po, path loss factor), closed-loop power control parameters, and path loss measurement reference signals.
  • Frequency domain frequency hopping configuration is used to indicate whether frequency domain frequency hopping is allowed and the specific method of frequency domain frequency hopping.
  • Whether the configuration of DFT transformation is performed is used to indicate whether the multiple access method adopted is DFT-S-OFDM or CP-OFDM.
  • the codebook subset constraint configuration is used to indicate the codebook subset available in codebook-based transmission.
  • Maximum transmission layer configuration used to indicate the maximum number of transmission layers allowed for uplink or downlink data transmission.
  • the UCI transmission configuration carried on the data channel is used to indicate the parameters used to calculate the UCI occupied resources.
  • the configuration of the DMRS of the data channel includes at least one of the following parameters:
  • Starting DMRS symbol position DMRS type, additional DMRS position, number of OFDM symbols occupied by basic DMRS, scrambling ID used by DMRS, configuration of phase tracking reference signal PTRS associated with DMRS.
  • the starting DMRS symbol position is used to indicate the OFDM symbol where the first DMRS symbol (that is, the earliest transmitted DMRS in the time slot) is located. For example, it may be the third or fourth OFDM symbol.
  • DMRS type used to indicate whether to use type 1 DMRS or type 2 DMRS.
  • the extra DMRS position is used to indicate the position of the OFDM symbol occupied by other DMRS except the basic DMRS.
  • the number of OFDM symbols occupied by the basic DMRS can be 1 or 2.
  • the scrambling ID used by DMRS can be configured with 2 scrambling IDs.
  • the reference signal in the TCI state of the data channel candidate includes only CSI-RS, or the reference signal in the TCI state of the data channel candidate includes CSI-RS or SSB.
  • the reference signal in the TCI state in the data channel configuration information corresponding to one CORESET or search space may be SSB or CSI-RS, and the other CORESET or search space corresponds to
  • the reference signal in the TCI state in the data channel configuration information can only be CSI-RS.
  • the TCI state is used to indicate reference downlink signals of different QCL types of the terminal, and the QCL hypothesis used for data or signal detection can be obtained based on the reference downlink signal.
  • VRB to PRB interleaved resource units are used to indicate resource units used for VRB to PRB interleaving, such as 2PRBs or 4PRBs.
  • the time domain resource configuration of the data channel is used to indicate the time domain resource occupied by the data channel in a time slot, such as the starting OFDM symbol and the number of occupied OFDM symbols.
  • the number of repetitions of the data channel or the number of aggregate time slots are used to indicate the number of time slots continuously occupied by the data channel, and the continuously occupied time slots are used to repeatedly transmit the same data channel.
  • Rate matching resource configuration is used to indicate the physical resources that need to be rate matched.
  • the rate matching resource configuration includes physical resources occupied by the SSB. That is, if the data channel configuration information includes a rate matching resource configuration, the rate matching resource configuration includes physical resources occupied by the SSB.
  • the size of the RBG (resource block group) used for resource allocation is used to indicate the resource unit of frequency domain resource allocation.
  • the PRB bundling configuration is used to indicate the precoding granularity assumed by the terminal when performing channel estimation.
  • the zero-power CSI-RS configuration is used to indicate resources for sending zero-power CSI-RS, and the resources are not used for data transmission.
  • the determining transmission parameters of the data channel according to the data channel configuration information corresponding to the control resource set CORESET or the search space includes:
  • the CORESET or search space where the detected DCI is located determine the data channel configuration information corresponding to the CORESET or search space;
  • the transmission parameters of the data channel scheduled by the DCI are determined based on the data channel configuration information.
  • the terminal device detects the DCI carried by the PDCCH in multiple CORESET or search spaces, and determines the data channel configuration information corresponding to the CORESET or search space according to the CORESET or search space where the detected DCI is located, thereby determining the DCI scheduled data The transmission parameters of the channel.
  • the terminal detects the DCI carried by the PDCCH in multiple CORESETs or search spaces, it is necessary to separately determine the transmission parameters of each DCI scheduled data channel according to the above method.
  • the sending or receiving the data channel based on the transmission parameter includes at least one of the following:
  • the frequency domain frequency hopping configuration determine whether to perform frequency domain frequency hopping and how to determine frequency domain resources when performing frequency domain frequency hopping; according to whether frequency hopping and frequency domain frequency hopping are used to determine frequency domain resources, determine whether to send or Receiving frequency domain resources used by the data channel;
  • whether to perform DFT transformation whether to perform DFT transformation on the data; whether to transmit the data channel after DFT transformation or after non-DFT transformation according to the result of whether DFT transformation is performed;
  • the maximum number of transmission layers determine the maximum number of transmission layers allowed for current data transmission; according to the maximum number of transmission layers, determine the content of the SRI/RI indication field in the DCI; Describe the data channel;
  • the time domain resource configuration of the data channel determine the time domain resource occupied by the data channel in a time slot; send or receive the data channel on the time domain resource;
  • the MCS table and the MCS information indicated by DCI determine the modulation and coding method used by the data channel; send or receive the data channel according to the modulation and coding method;
  • the PRB bundling configuration perform downlink channel estimation based on DMRS; demodulate the received data channel based on the result of the downlink channel estimation;
  • the physical resource occupied by the zero-power CSI-RS resource is determined, and the data channel is not transmitted or received on the physical resource.
  • the data channel is PUSCH or PDSCH.
  • the data channel indicated in the transmission scheme used for the data channel adopts codebook-based transmission or non-codebook-based transmission, it is determined whether to send or receive the data channel based on the codebook or based on the non-codebook.
  • the uplink transmission power is determined according to the configuration of the open-loop power control parameter, the closed-loop power control parameter and the path loss measurement reference signal among the power control parameters, and the data channel is transmitted according to the determined uplink transmission power.
  • the resource mode determines the frequency domain resources used to send or receive data channels.
  • the data channel after DFT transformation or non-DFT transformation is sent.
  • the multiple access method adopted is DFT-S-OFDM or CP-OFDM according to the configuration of DFT transformation, and the data channel is sent based on the determined configuration.
  • the physical resources occupied by the UCI are determined, and the UCI transmission is performed on the data channel.
  • the parameters used to calculate the resources occupied by UCI determine the resources occupied by UCI, and then send UCI on the data channel.
  • the physical resources and/or sequence of the DMRS are determined, and the DMRS is sent or received on the data channel. For example, according to parameters such as the starting symbol position and type of DMRS, determine the physical resources of the DMRS and transmit the DMRS on the data channel; or, you can also configure the scrambling ID or the number of OFDM symbols based on the DMRS, etc. Resources, the DMRS is transmitted on the data channel.
  • the QCL hypothesis used for data channel detection is determined, and the data channel is received based on the hypothesis.
  • the reference signal in the TCI state in the data channel configuration information corresponding to one CORESET or search space may be SSB or CSI-RS, and the data corresponding to the other CORESET or search space
  • the reference signal in the TCI state in the channel configuration information can only be CSI-RS.
  • the QCL hypothesis used for the detection when the data channel is received is determined, and then the CSI-RS or SSB can also be used to determine the QCL hypothesis used for the detection when the data channel is received.
  • the interleaving of VRB to PRB is performed to perform physical resource mapping of the data channel, and the mapped data channel is transmitted. For example, if the resource unit used for interleaving is 2PRB, then after interleaving based on 2PRB, the physical resource mapping of the data channel is performed.
  • the downlink channel estimation is performed based on the DMRS, and the data channel is used to demodulate the data channel.
  • the transmission parameters of the data channel can be determined based on the data channel configuration information corresponding to CORESET or the search space, and then the data channel can be sent or received according to the transmission parameters; thus, due to different CORESET or search
  • the data channel configuration information corresponding to the space can be different, then different data channel configuration information can be corresponding to different data channels, thereby ensuring that multiple data channels can use independent data channel configuration information, which improves the flexibility of scheduling ;
  • different transmission points or panel scheduled data channels can use different data channel configuration information, so that interference will be reduced between different data channels, thereby ensuring the performance of data transmission.
  • This embodiment provides a terminal device, as shown in FIG. 3, including:
  • the first processing unit 31 determines transmission parameters of the data channel according to the data channel configuration information corresponding to the control resource set (CORESET) or the search space;
  • the first communication unit 32 sends or receives the data channel based on the transmission parameter
  • the CORESET or search space is the CORESET or search space where the DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi-co-location (QCL) type as the control channel scheduling the data channel D hypothetical CORESET or search space.
  • QCL quasi-co-location
  • QCL type D refers to Spatial Rx Parameter receiving parameter.
  • the transmission parameters of the data channel are determined according to the data channel configuration information corresponding to the control resource set CORESET or search space, which can be understood as the first need to determine the downlink control information carried by the physical downlink control channel (PDCCH, Physical Downlink Control Channel) (DCI, Downlink Control Information) the transmission parameters of the scheduled data channel.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the specific processing method may be to determine the transmission parameters of the data channel according to the data channel configuration information corresponding to the CORESET where the DCI scheduling the data channel or the search space, or may be based on the control of scheduling the data channel
  • the channel uses the CORESET of the same QCL type D hypothesis or the data channel configuration information corresponding to the search space to determine the transmission parameters of the data channel; where the control channel can be understood as the PDCCH.
  • the CORESET or search space is a CORESET or search space that uses the same quasi-co-location QCL type D assumption as the control channel that schedules the data channel, including:
  • the CORESET or search space is adopted for the control channel that schedules the data channel CORESET or search space in the same TCI state.
  • the first communication unit 32 obtains data channel configuration information corresponding to the CORESET or search space through high-level signaling.
  • the method for obtaining the data channel configuration information through high-level signaling may include the following two types:
  • the first way is to obtain the data channel configuration information corresponding to the CORESET or search space configuration configured by the network side through high-layer signaling.
  • the data channel configuration information may be a specific data channel configuration, or may also be identification information corresponding to the data channel configuration.
  • the data channel may be a downlink channel or an uplink channel.
  • it may be a PDSCH (Physical Downlink Shared Channel) or a PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • it can also be other channels, but this embodiment will not repeat them.
  • the network side can configure the corresponding data channel configuration information for a CORESET or search space through high-level signaling, for example, adding PDSCH-configuration (config) or PUSCH-config in the parameter field of CORESET/search space, or adding PDSCH-config-ID or PUSCH-config-ID.
  • the second method is to obtain the correspondence between the CORESET or search space identification information configured by the network side through high-level signaling and the identification information of the data channel configuration information
  • the network side can also additionally configure the correspondence between CORESET ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH-Config-ID), or search space ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH- Config-ID), the data channel configuration information corresponding to CORESET or search space is determined according to the corresponding relationship.
  • the data channel configuration index may be an index among a plurality of data channel configuration information configured on the network side by one data channel configuration information.
  • the default data channel configuration information may be used to obtain transmission parameters.
  • the default data channel configuration information may be preset information for the terminal device on the network side, and the acquisition method may be obtained through information transmitted when the terminal device and the network side initially access.
  • the first processing unit 31 uses the data channel configuration information used for the data channel transmitted in the same time slot or the same OFDM symbol as the CORESET or search space as the data channel configuration information corresponding to the CORESET or search space.
  • this embodiment in addition to configuring data channel configuration information for CORESET or search space through high-level signaling, this embodiment also provides a processing method for acquiring data channel configuration information.
  • the finally determined data channel configuration information corresponding to CORESET or search space may be data channel configuration information used for data channels transmitted in the same time slot as CORESET; or, transmitted in the same OFDM symbol as CORESET
  • the data channel transmitted in the same time slot as the CORESET or search space and the CORESET or search space can be transmitted on different OFDM symbols.
  • the data channel transmitted in the same OFDM symbol as the CORESET or search space may not completely overlap with the time domain resource of the CORESET or search space, that is, only part of the OFDM symbols may overlap.
  • the data channel configuration information is used to indicate the transmission parameters used by the data channel.
  • the transmission parameter includes at least one of the following:
  • Data channel transmission scheme power control parameters, frequency domain frequency hopping configuration, whether to perform DFT transformation configuration, codebook subset constraint configuration, maximum transmission layer configuration, UCI transmission configuration carried by the data channel, whether to allow DFT transformation Pi/2-Binary Phase Shift Keying (BPSK, Binary Phase Shift Keying) modulation configuration, the scrambling ID used for data scrambling carried by the data channel, the DMRS configuration of the data channel, the transmission configuration of the data channel candidate indicates the TCI status , VRB to PRB interleaved resource units, time-domain resource configuration of data channels, number of data channel repetitions or aggregation slots, rate matching resource configuration, resource block group RBG size used for resource allocation, modulation and coding used for data transmission MCS table, zero-power CSI-RS configuration, PRB bundling configuration.
  • BPSK Binary Phase Shift Keying
  • the transmission scheme used by the data channel is used to indicate whether the data channel uses codebook-based transmission or non-codebook-based transmission.
  • Power control parameters are used to instruct the data channel to use parameters for uplink power control, including open-loop power control parameters (Po, path loss factor), closed-loop power control parameters, and path loss measurement reference signals.
  • Frequency domain frequency hopping configuration is used to indicate whether frequency domain frequency hopping is allowed and the specific method of frequency domain frequency hopping.
  • Whether the configuration of DFT transformation is performed is used to indicate whether the multiple access method adopted is DFT-S-OFDM or CP-OFDM.
  • the codebook subset constraint configuration is used to indicate the codebook subset available in codebook-based transmission.
  • Maximum transmission layer configuration used to indicate the maximum number of transmission layers allowed for uplink or downlink data transmission.
  • the UCI transmission configuration carried on the data channel is used to indicate the parameters used to calculate the UCI occupied resources.
  • the configuration of the DMRS of the data channel includes at least one of the following parameters:
  • Starting DMRS symbol position DMRS type, additional DMRS position, number of OFDM symbols occupied by basic DMRS, scrambling ID used by DMRS, configuration of phase tracking reference signal PTRS associated with DMRS.
  • the starting DMRS symbol position is used to indicate the OFDM symbol where the first DMRS symbol (that is, the earliest transmitted DMRS in the time slot) is located. For example, it may be the third or fourth OFDM symbol.
  • DMRS type used to indicate whether to use type 1 DMRS or type 2 DMRS.
  • the extra DMRS position is used to indicate the position of the OFDM symbol occupied by other DMRS except the basic DMRS.
  • the number of OFDM symbols occupied by the basic DMRS can be 1 or 2.
  • the scrambling ID used by DMRS can be configured with 2 scrambling IDs.
  • the reference signal in the TCI state of the data channel candidate includes only CSI-RS, or the reference signal in the TCI state of the data channel candidate includes CSI-RS or SSB.
  • the reference signal in the TCI state in the data channel configuration information corresponding to one CORESET or search space may be SSB or CSI-RS, and the other CORESET or search space corresponds to
  • the reference signal in the TCI state in the data channel configuration information can only be CSI-RS.
  • the TCI state is used to indicate reference downlink signals of different QCL types of the terminal, and the QCL hypothesis used for data or signal detection can be obtained based on the reference downlink signal.
  • VRB to PRB interleaved resource units are used to indicate resource units used for VRB to PRB interleaving, such as 2PRBs or 4PRBs.
  • the time domain resource configuration of the data channel is used to indicate the time domain resource occupied by the data channel in a time slot, such as the starting OFDM symbol and the number of occupied OFDM symbols.
  • the number of repetitions of the data channel or the number of aggregate time slots are used to indicate the number of time slots continuously occupied by the data channel, and the continuously occupied time slots are used to repeatedly transmit the same data channel.
  • Rate matching resource configuration is used to indicate the physical resources that need to be rate matched.
  • the rate matching resource configuration includes physical resources occupied by the SSB. That is, if the data channel configuration information includes a rate matching resource configuration, the rate matching resource configuration includes physical resources occupied by the SSB.
  • the size of the RBG (resource block group) used for resource allocation is used to indicate the resource unit of frequency domain resource allocation.
  • the PRB bundling configuration is used to indicate the precoding granularity assumed by the terminal when performing channel estimation.
  • the zero-power CSI-RS configuration is used to indicate resources for sending zero-power CSI-RS, and the resources are not used for data transmission.
  • the first processing unit 31 detects DCI in at least one CORESET or search space; determines the data channel configuration information corresponding to the CORESET or search space according to the CORESET or search space where the detected DCI is located; based on the data The channel configuration information determines the transmission parameters of the data channel scheduled by the DCI.
  • the terminal device detects the DCI carried by the PDCCH in multiple CORESET or search spaces, and determines the data channel configuration information corresponding to the CORESET or search space according to the CORESET or search space where the detected DCI is located, thereby determining the DCI scheduled data The transmission parameters of the channel.
  • the terminal detects the DCI carried by the PDCCH in multiple CORESETs or search spaces, it is necessary to separately determine the transmission parameters of each DCI scheduled data channel according to the above method.
  • the foregoing first communication unit 32 includes at least one of the following:
  • the frequency domain frequency hopping configuration determine whether to perform frequency domain frequency hopping and how to determine frequency domain resources when performing frequency domain frequency hopping; according to whether frequency hopping and frequency domain frequency hopping are used to determine frequency domain resources, determine whether to send or Receiving frequency domain resources used by the data channel;
  • whether to perform DFT transformation whether to perform DFT transformation on the data; whether to transmit the data channel after DFT transformation or after non-DFT transformation according to the result of whether DFT transformation is performed;
  • the maximum number of transmission layers determine the maximum number of transmission layers allowed for current data transmission; according to the maximum number of transmission layers, determine the content of the SRI/RI indication field in the DCI; according to the content of the SRI/RI indication field Describe the data channel;
  • the time domain resource configuration of the data channel determine the time domain resource occupied by the data channel in a time slot; send or receive the data channel on the time domain resource;
  • the MCS table and the MCS information indicated by DCI determine the modulation and coding method used by the data channel; send or receive the data channel according to the modulation and coding method;
  • the PRB bundling configuration perform downlink channel estimation based on DMRS; demodulate the received data channel based on the result of the downlink channel estimation;
  • the physical resource occupied by the zero-power CSI-RS resource is determined, and the data channel is not transmitted or received on the physical resource.
  • the data channel is PUSCH or PDSCH.
  • the data channel indicated in the transmission scheme used for the data channel uses codebook-based transmission or non-codebook-based transmission, it is determined whether to transmit or receive the data channel based on the codebook or based on the non-codebook.
  • the uplink transmission power is determined according to the configuration of the open-loop power control parameter, the closed-loop power control parameter, and the path loss measurement reference signal among the power control parameters, and the data channel is transmitted according to the determined uplink transmission power.
  • the resource mode determines the frequency domain resources used to send or receive data channels.
  • the data channel after DFT transformation or non-DFT transformation is sent.
  • the multiple access method adopted is DFT-S-OFDM or CP-OFDM according to the configuration of DFT transformation, and the data channel is sent based on the determined configuration.
  • the physical resources occupied by the UCI are determined, and the UCI transmission is performed on the data channel.
  • the parameters used to calculate the resources occupied by UCI determine the resources occupied by UCI, and then send UCI on the data channel.
  • the physical resources and/or sequence of the DMRS are determined, and the DMRS is sent or received on the data channel.
  • the physical resources of the DMRS are determined according to the parameters such as the starting symbol position and type of the DMRS, and the DMRS is transmitted on the data channel; or, the scrambling ID or the number of OFDM symbols can be configured based on the DMRS to determine the physical nature of the DMRS Resources, the DMRS is transmitted on the data channel.
  • the QCL hypothesis used for data channel detection is determined, and the data channel is received based on the hypothesis. For example, when the reference signal in the TCI contains CSI-RS, the QCL hypothesis used when detecting the data channel is determined, and then the CSI-RS or SSB may also be used to determine the QCL hypothesis used for detection when the data channel is received.
  • the interleaving of VRB to PRB is performed to perform physical resource mapping of the data channel, and the mapped data channel is transmitted. For example, if the resource unit used for interleaving is 2PRB, then after interleaving based on 2PRB, the physical resource mapping of the data channel is performed.
  • the downlink channel estimation is performed based on the DMRS, and the data channel is used to demodulate the data channel.
  • the transmission parameters of the data channel can be determined based on the data channel configuration information corresponding to CORESET or the search space, and then the data channel can be sent or received according to the transmission parameters; thus, due to different CORESET or search
  • the data channel configuration information corresponding to the space can be different, then different data channel configuration information can be corresponding to different data channels, thereby ensuring that multiple data channels can use independent data channel configuration information, which improves the flexibility of scheduling ;
  • different transmission points or panel scheduled data channels can use different data channel configuration information, so that interference will be reduced between different data channels, thereby ensuring the performance of data transmission.
  • This embodiment provides a data transmission method, which is applied to a network device, as shown in FIG. 4, and includes:
  • Step 401 Send the data channel configuration information corresponding to the control resource set CORESET or search space to the terminal device, and send or receive the data channel;
  • the CORESET or search space is the CORESET or search space where the DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi-co-location (QCL) type as the control channel scheduling the data channel D hypothetical CORESET or search space.
  • QCL quasi-co-location
  • QCL type D refers to Spatial Rx Parameter receiving parameter.
  • the transmission parameters of the data channel are determined according to the data channel configuration information corresponding to the control resource set CORESET or search space, which can be understood as the first need to determine the downlink control information carried by the physical downlink control channel (PDCCH, Physical Downlink Control Channel) (DCI, Downlink Control Information) the transmission parameters of the scheduled data channel.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the specific processing method may be to determine the transmission parameters of the data channel according to the data channel configuration information corresponding to the CORESET where the DCI scheduling the data channel or the search space, or may be based on the control of scheduling the data channel
  • the channel uses the CORESET of the same QCL type D hypothesis or the data channel configuration information corresponding to the search space to determine the transmission parameters of the data channel; where the control channel can be understood as the PDCCH.
  • the CORESET or search space is a CORESET or search space that uses the same quasi-co-location QCL type D assumption as the control channel that schedules the data channel, including:
  • the CORESET or search space is adopted for the control channel that schedules the data channel CORESET or search space in the same TCI state.
  • the foregoing sending data channel configuration information corresponding to the control resource set CORESET or search space to the terminal device may include the following two:
  • the first way is to send the data channel configuration information corresponding to the CORESET or search space configuration to the terminal device through high-level signaling.
  • the data channel configuration information may be a specific data channel configuration, or may also be identification information corresponding to the data channel configuration.
  • the data channel may be a downlink channel or an uplink channel.
  • it may be a PDSCH (Physical Downlink Shared Channel) or a PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • it can also be other channels, but this embodiment will not repeat them.
  • the network side can configure the corresponding data channel configuration information for a CORESET or search space through high-level signaling, for example, adding PDSCH-configuration (config) or PUSCH-config in the parameter field of CORESET/search space, or adding PDSCH-config-ID or PUSCH-config-ID.
  • the second way is to send the correspondence between the CORESET or search space identification information and the data channel configuration information identification information to the terminal device through high-level signaling
  • the network side can also additionally configure the correspondence between CORESET ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH-Config-ID), or search space ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH- Config-ID), the data channel configuration information corresponding to CORESET or search space is determined according to the corresponding relationship.
  • the data channel configuration index may be an index among a plurality of data channel configuration information configured on the network side by one data channel configuration information.
  • the default data channel configuration information may be used to obtain the transmission parameters.
  • the default data channel configuration information may be preset information for the terminal device on the network side, and the acquisition method may be that when the terminal device and the network side initially access, the network device configures the default for the terminal through the information transmitted between the terminal and the terminal Data channel configuration information.
  • the data channel configuration information determined as CORESET or search space corresponding to this embodiment may be the data channel configuration information used for the data channel transmitted in the same time slot as CORESET; or, transmitted in the same OFDM symbol as CORESET Data channel configuration information for the data channel; or, data channel configuration information for the data channel transmitted in the same time slot as the search space; or, data channel for the data channel transmitted in the same OFDM symbol as the search space Configuration information.
  • the data channel transmitted in the same time slot as the CORESET or search space and the CORESET or search space can be transmitted on different OFDM symbols.
  • the data channel transmitted in the same OFDM symbol as the CORESET or search space may not completely overlap with the time domain resource of the CORESET or search space, that is, only part of the OFDM symbols may overlap.
  • the data channel configuration information is used to indicate the transmission parameters used by the data channel.
  • the transmission parameter includes at least one of the following:
  • Data channel transmission scheme power control parameters, frequency domain frequency hopping configuration, whether to perform DFT transformation configuration, codebook subset constraint configuration, maximum transmission layer configuration, UCI transmission configuration carried by the data channel, whether to allow DFT transformation Pi/2-Binary Phase Shift Keying (BPSK, Binary Phase Shift Keying) modulation configuration, the scrambling ID used for data scrambling carried by the data channel, the DMRS configuration of the data channel, the transmission configuration of the data channel candidate indicates the TCI status , VRB to PRB interleaved resource units, time-domain resource configuration of data channels, number of data channel repetitions or aggregation slots, rate matching resource configuration, resource block group RBG size used for resource allocation, modulation and coding used for data transmission MCS table, zero-power CSI-RS configuration, PRB bundling configuration.
  • BPSK Binary Phase Shift Keying
  • the transmission scheme used by the data channel is used to indicate whether the data channel uses codebook-based transmission or non-codebook-based transmission.
  • Power control parameters are used to instruct the data channel to use parameters for uplink power control, including open-loop power control parameters (Po, path loss factor), closed-loop power control parameters, and path loss measurement reference signals.
  • Frequency domain frequency hopping configuration is used to indicate whether frequency domain frequency hopping is allowed and the specific method of frequency domain frequency hopping.
  • Whether the configuration of DFT transformation is performed is used to indicate whether the multiple access method adopted is DFT-S-OFDM or CP-OFDM.
  • the codebook subset constraint configuration is used to indicate the codebook subset available in codebook-based transmission.
  • Maximum transmission layer configuration used to indicate the maximum number of transmission layers allowed for uplink or downlink data transmission.
  • the UCI transmission configuration carried on the data channel is used to indicate the parameters used to calculate the UCI occupied resources.
  • the configuration of the DMRS of the data channel includes at least one of the following parameters:
  • Starting DMRS symbol position DMRS type, additional DMRS position, number of OFDM symbols occupied by basic DMRS, scrambling ID used by DMRS, configuration of phase tracking reference signal PTRS associated with DMRS.
  • the starting DMRS symbol position is used to indicate the OFDM symbol where the first DMRS symbol (that is, the earliest transmitted DMRS in the time slot) is located, for example, it may be the third or fourth OFDM symbol.
  • DMRS type used to indicate whether to use type 1 DMRS or type 2 DMRS.
  • the extra DMRS position is used to indicate the position of the OFDM symbol occupied by other DMRS except the basic DMRS.
  • the number of OFDM symbols occupied by the basic DMRS can be 1 or 2.
  • the scrambling ID used by DMRS can be configured with 2 scrambling IDs.
  • the reference signal in the TCI state of the data channel candidate includes only CSI-RS, or the reference signal in the TCI state of the data channel candidate includes CSI-RS or SSB.
  • the reference signal in the TCI state in the data channel configuration information corresponding to one CORESET or search space may be SSB or CSI-RS, and the data channels corresponding to other CORESET or search spaces
  • the reference signal in the TCI state in the configuration information can only be CSI-RS.
  • the TCI state is used to indicate reference downlink signals of different QCL types of the terminal, and the QCL hypothesis used for data or signal detection can be obtained based on the reference downlink signal.
  • VRB to PRB interleaved resource units are used to indicate resource units used for VRB to PRB interleaving, such as 2PRBs or 4PRBs.
  • the time domain resource configuration of the data channel is used to indicate the time domain resource occupied by the data channel in a time slot, such as the starting OFDM symbol and the number of occupied OFDM symbols.
  • the number of repetitions of the data channel or the number of aggregate time slots are used to indicate the number of time slots continuously occupied by the data channel, and the continuously occupied time slots are used to repeatedly transmit the same data channel.
  • Rate matching resource configuration is used to indicate the physical resources that need to be rate matched.
  • the rate matching resource configuration includes physical resources occupied by the SSB. That is, if the data channel configuration information includes a rate matching resource configuration, the rate matching resource configuration includes physical resources occupied by the SSB.
  • the size of the RBG (resource block group) used for resource allocation is used to indicate the resource unit of frequency domain resource allocation.
  • the PRB bundling configuration is used to indicate the precoding granularity assumed by the terminal when performing channel estimation.
  • the zero-power CSI-RS configuration is used to indicate resources for sending zero-power CSI-RS, and the resources are not used for data transmission.
  • the transmission parameters of the data channel can be determined based on the data channel configuration information corresponding to CORESET or the search space, and then the data channel can be sent or received according to the transmission parameters; thus, due to different CORESET or search
  • the data channel configuration information corresponding to the space can be different, then different data channel configuration information can be corresponding to different data channels, thereby ensuring that multiple data channels can use independent data channel configuration information, which improves the flexibility of scheduling ;
  • different transmission points or panel scheduled data channels can use different data channel configuration information, so that interference will be reduced between different data channels, thereby ensuring the performance of data transmission.
  • This embodiment provides a network device, as shown in FIG. 5, including:
  • the second communication unit 51 sends the data channel configuration information corresponding to the control resource set CORESET or search space to the terminal device, and sends or receives the data channel;
  • the CORESET or search space is the CORESET or search space where the DCI scheduling the data channel is located; or, the CORESET or search space is the same quasi-co-location (QCL) type as the control channel scheduling the data channel D hypothetical CORESET or search space.
  • QCL quasi-co-location
  • QCL type D refers to Spatial Rx Parameter receiving parameter.
  • the transmission parameters of the data channel are determined according to the data channel configuration information corresponding to the control resource set CORESET or search space, which can be understood as the first need to determine the downlink control information carried by the physical downlink control channel (PDCCH, Physical Downlink Control Channel) (DCI, Downlink Control Information) the transmission parameters of the scheduled data channel.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the specific processing method may be to determine the transmission parameters of the data channel according to the data channel configuration information corresponding to the CORESET where the DCI scheduling the data channel or the search space, or may be based on the control of scheduling the data channel
  • the channel uses the CORESET of the same QCL type D hypothesis or the data channel configuration information corresponding to the search space to determine the transmission parameters of the data channel; where the control channel can be understood as the PDCCH.
  • the CORESET or search space is a CORESET or search space that uses the same quasi-co-location QCL type D assumption as the control channel that schedules the data channel, including:
  • the CORESET or search space is adopted for the control channel that schedules the data channel CORESET or search space in the same TCI state.
  • the second communication unit 51 configures the terminal device with the CORESET or data channel configuration information corresponding to the search space through high-level signaling. Specifically, the following two types can be included:
  • the first way is to configure the CORESET or the data channel configuration information corresponding to the search space for the terminal device through high-level signaling.
  • the data channel configuration information may be a specific data channel configuration, or may also be identification information corresponding to the data channel configuration.
  • the data channel may be a downlink channel or an uplink channel.
  • it may be a PDSCH (Physical Downlink Shared Channel) or a PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • it can also be other channels, but this embodiment will not repeat them.
  • the network side can configure the corresponding data channel configuration information for a CORESET or search space through high-level signaling, for example, adding PDSCH-configuration (config) or PUSCH-config in the parameter field of CORESET/search space, or adding PDSCH-config-ID or PUSCH-config-ID.
  • the second way is to configure the correspondence between the CORESET or the search space identification information and the data channel configuration information identification information for the terminal device through high-level signaling.
  • the network side can also additionally configure the correspondence between CORESET ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH-Config-ID), or search space ID and data channel configuration index (such as PDSCH-Config-ID/PUSCH- Config-ID), the data channel configuration information corresponding to CORESET or search space is determined according to the corresponding relationship.
  • the data channel configuration index may be an index among a plurality of data channel configuration information configured on the network side by one data channel configuration information.
  • the default data channel configuration information may be used to obtain the transmission parameters.
  • the default data channel configuration information may be preset information for the terminal device on the network side, and the acquisition method may be that when the terminal device and the network side initially access, the second communication unit 51 in the network device communicates with the terminal The transmitted information configures default data channel configuration information to the terminal.
  • the data channel configuration information determined as CORESET or search space corresponding to this embodiment may be the data channel configuration information used for the data channel transmitted in the same time slot as CORESET; or, transmitted in the same OFDM symbol as CORESET Data channel configuration information for the data channel; or, data channel configuration information for the data channel transmitted in the same time slot as the search space; or, data channel for the data channel transmitted in the same OFDM symbol as the search space Configuration information.
  • the data channel transmitted in the same time slot as the CORESET or search space and the CORESET or search space can be transmitted on different OFDM symbols.
  • the data channel transmitted in the same OFDM symbol as the CORESET or search space may not completely overlap with the time domain resource of the CORESET or search space, that is, only part of the OFDM symbols may overlap.
  • the data channel configuration information is used to indicate the transmission parameters used by the data channel.
  • the transmission parameter includes at least one of the following:
  • Data channel transmission scheme power control parameters, frequency domain frequency hopping configuration, whether to perform DFT transformation configuration, codebook subset constraint configuration, maximum transmission layer configuration, UCI transmission configuration carried by the data channel, whether to allow DFT transformation Pi/2-Binary Phase Shift Keying (BPSK, Binary Phase Shift Keying) modulation configuration, the scrambling ID used for data scrambling carried by the data channel, the DMRS configuration of the data channel, the transmission configuration of the data channel candidate indicates the TCI status , VRB to PRB interleaved resource units, time-domain resource configuration of data channels, number of data channel repetitions or aggregation slots, rate matching resource configuration, resource block group RBG size used for resource allocation, modulation and coding used for data transmission MCS table, zero-power CSI-RS configuration, PRB bundling configuration.
  • BPSK Binary Phase Shift Keying
  • the transmission scheme used by the data channel is used to indicate whether the data channel uses codebook-based transmission or non-codebook-based transmission.
  • Power control parameters are used to instruct the data channel to use parameters for uplink power control, including open-loop power control parameters (Po, path loss factor), closed-loop power control parameters, and path loss measurement reference signals.
  • Frequency domain frequency hopping configuration is used to indicate whether frequency domain frequency hopping is allowed and the specific method of frequency domain frequency hopping.
  • Whether the configuration of DFT transformation is performed is used to indicate whether the multiple access method adopted is DFT-S-OFDM or CP-OFDM.
  • the codebook subset constraint configuration is used to indicate the codebook subset available in codebook-based transmission.
  • Maximum transmission layer configuration used to indicate the maximum number of transmission layers allowed for uplink or downlink data transmission.
  • the UCI transmission configuration carried on the data channel is used to indicate the parameters used to calculate the UCI occupied resources.
  • the configuration of the DMRS of the data channel includes at least one of the following parameters:
  • Starting DMRS symbol position DMRS type, additional DMRS position, number of OFDM symbols occupied by basic DMRS, scrambling ID used by DMRS, configuration of phase tracking reference signal PTRS associated with DMRS.
  • the starting DMRS symbol position is used to indicate the OFDM symbol where the first DMRS symbol (that is, the earliest transmitted DMRS in the time slot) is located. For example, it may be the third or fourth OFDM symbol.
  • DMRS type used to indicate whether to use type 1 DMRS or type 2 DMRS.
  • the extra DMRS position is used to indicate the position of the OFDM symbol occupied by DMRS other than the basic DMRS.
  • the number of OFDM symbols occupied by the basic DMRS can be 1 or 2.
  • the scrambling ID used by DMRS can be configured with 2 scrambling IDs.
  • the reference signal in the TCI state of the data channel candidate includes only CSI-RS, or the reference signal in the TCI state of the data channel candidate includes CSI-RS or SSB.
  • the reference signal in the TCI state in the data channel configuration information corresponding to one CORESET or search space may be SSB or CSI-RS, and the data channels corresponding to other CORESET or search spaces
  • the reference signal in the TCI state in the configuration information can only be CSI-RS.
  • the TCI state is used to indicate reference downlink signals of different QCL types of the terminal, and the QCL hypothesis used for data or signal detection can be obtained based on the reference downlink signal.
  • VRB to PRB interleaved resource units are used to indicate resource units used for VRB to PRB interleaving, such as 2PRBs or 4PRBs.
  • the time domain resource configuration of the data channel is used to indicate the time domain resource occupied by the data channel in a time slot, such as the starting OFDM symbol and the number of occupied OFDM symbols.
  • the number of repetitions of the data channel or the number of aggregate time slots are used to indicate the number of time slots continuously occupied by the data channel, and the continuously occupied time slots are used to repeatedly transmit the same data channel.
  • Rate matching resource configuration is used to indicate the physical resources that need to be rate matched.
  • the rate matching resource configuration includes physical resources occupied by the SSB. That is, if the data channel configuration information includes a rate matching resource configuration, the rate matching resource configuration includes physical resources occupied by the SSB.
  • the size of the RBG (resource block group) used for resource allocation is used to indicate the resource unit of frequency domain resource allocation.
  • the PRB bundling configuration is used to indicate the precoding granularity assumed by the terminal when performing channel estimation.
  • the zero-power CSI-RS configuration is used to indicate resources for sending zero-power CSI-RS, and the resources are not used for data transmission.
  • the transmission parameters of the data channel can be determined based on the data channel configuration information corresponding to CORESET or the search space, and then the data channel can be sent or received according to the transmission parameters; thus, due to different CORESET or search
  • the data channel configuration information corresponding to the space can be different, then different data channel configuration information can be corresponding to different data channels, thereby ensuring that multiple data channels can use independent data channel configuration information, which improves the flexibility of scheduling ;
  • different transmission points or panel scheduled data channels can use different data channel configuration information, so that interference will be reduced between different data channels, thereby ensuring the performance of data transmission.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be the foregoing terminal device or network device of this embodiment.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiments of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • the communication device 600 may specifically be a terminal device or a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. It is concise and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chips, system chips, chip systems, or system-on-chip chips.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory.
  • the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application. No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for simplicity , Will not repeat them here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat again.
  • the computer program product may be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, I will not repeat them here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. , Will not repeat them here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer is implemented by the mobile terminal/terminal device in performing various methods of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;基于所述传输参数,发送或接收所述数据信道;其中,所述CORESET或搜索空间为调度所述数据信道的下行控制信息DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。

Description

一种数据传输方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种数据传输方法、终端设备、网络设备及计算机存储介质、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在NR中,多个TRP(Transmission/Reception Point,传输点)/天线面板panel可以独立给终端调度上行或者下行数据传输。不同TRP/panel与终端之间的数据传输通常通过独立配置的CORESET(Control Resource Set,控制资源集合)或者搜索空间中的PDCCH来调度,即不同的CORESET或搜索空间对应于不同的TRP/panel。现有技术中,每个BWP上终端只有一个数据信道配置信息(PDSCH-config或PUSCH-config),不同TRP/panel调度的数据信道只能采用相同的传输参数,这大大限制了调度的灵活性,而且不同TRP/panel调度的数据信道之间会产生严重干扰,从而影响数据传输的性能。
发明内容
为解决上述技术问题,本发明实施例提供了一种数据传输方法、终端设备、网络设备及计算机存储介质、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,本发明实施例提供了一种数据传输方法,应用于终端设备,所述方法包括:
根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;
基于所述传输参数,发送或接收所述数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的下行控制信息DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
第二方面,本发明实施例提供了一种终端设备,包括:
第一处理单元,根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;
第一通信单元,基于所述传输参数,发送或接收所述数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
第三方面,本发明实施例提供了一种数据传输方法,应用于网络设备,所述方法包括:
向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息,发送或接收数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
第四方面,本发明实施例提供了一种网络设备,包括:
第二通信单元,向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息,发送或接收数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机 程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面、第三方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面、第三方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面、第三方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面、第三方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面、第三方面中的任一方面或其各实现方式中的方法。
通过采用上述方案,能够基于CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,进而根据所述传输参数,发送或接收所述数据信道;如此,由于不同的CORESET或搜索空间所对应的数据信道配置信息可以不同,那么针对不同的数据信道就可以对应有不同的数据信道配置信息,从而保证了多个数据信道可以采用独立的数据信道配置信息,提升了调度的灵活性;并且基于本发明的方法,不同的传输点或panel调度的数据信道可以采用不同的数据信道配置信息,这样不同数据信道之间会减少干扰,从而保证了数据传输的性能。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图一;
图2是本申请实施例提供的一种数据传输方法流程示意图一;
图3为本发明实施例提供的一种终端设备组成结构示意图;
图4是本申请实施例提供的一种数据传输方法流程示意图二;
图5是本申请实施例提供的一种网络设备组成结构示意图;
图6为本发明实施例提供的一种通信设备组成结构示意图;
图7是本申请实施例提供的一种芯片的示意性框图;
图8是本申请实施例提供的一种通信***架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100可以如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一、
本实施例提供了一种数据传输方法,应用于终端设备,如图2所示,包括:
步骤201:根据控制资源集合(CORESET)或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;
步骤202:基于所述传输参数,发送或接收所述数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的下行控制信息(DCI)所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址(QCL)类型D假设的CORESET或搜索空间。
其中,按照现有协议,QCL type D指Spatial Rx Parameter空间接收参数。
本实施例中,根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,可以理解为首先需要确定物理下行控制信道(PDCCH,Physical Downlink Control Channel)承载的下行控制信息(DCI,Downlink Control Information)所调度的数据信道的传输参数。
其具体的处理方式可以为根据调度所述数据信道的DCI所在的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数,或者,还可以为根据与调度所述数据信道的控制信道采用相同QCL类型D假设的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数;其中,控制信道即可以理解为PDCCH。所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
其中所述方法还包括:
通过高层信令获取所述CORESET或搜索空间对应的数据信道配置信息。
具体的,通过高层信令来获取所述数据信道配置信息的方式可以包括以下两种:
第一种方式、获取网络侧通过高层信令配置的CORESET或搜索空间配置对应的数据信道配置信息。
其中,所述数据信道配置信息可以为具体的数据信道的配置,或者,还可以为数据信道的配置所对应的标识信息。
其中,所述数据信道可以为下行信道也可以为上行信道,比如,可以为PDSCH(Physical Downlink Shared Channel,物理下行共享信道),或者,可以为PUSCH(Physical Uplink Shared Channel,物理上行共享信道),当然还可以为其他的信道,只是本实施例不再赘述。
也就是说,网络侧可以通过高层信令为一个CORESET或搜索空间配置对应的数据信道配置信息,比如,在CORESET/搜索空间的参数域中增加PDSCH-配置(config)或者PUSCH-config,或者增加PDSCH-config-ID或者PUSCH-config-ID。
第二种方式、获取网络侧通过高层信令配置的CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系。
网络侧可以额外配置CORESET ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,或者搜索空间ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,根据该对应关系确定CORESET或搜索空间对应的数据信道配置信息。其中,所述数据信道配置索引可以是一个数据信道配置信息在网络侧配置的多个数据信道配置信息中的索引。
另外,需要指出的是,若网络侧没有通过高层信令为所述终端设备配置CORESET或搜索空间对应的数据信道配置信息,则可以采用默认的数据信道配置信息得到传输参数。其中,默认的数据信道配置信息可以为网络侧为终端设备预设的信息,其获取方式可以为终端设备与网络侧初始接入的时候通过传输的信息获取。
所述方法还包括:
将与所述CORESET或搜索空间在相同时隙或相同OFDM符号中传输的数据信道所用的数据信道配置信息,作为所述CORESET或搜索空间对应的数据信道配置信息。
也就是说,除了通过高层信令为CORESET或搜索空间配置数据信道配置信息之外,本实施例还提供了一种获取数据信道配置信息的处理方式。
具体的,最终确定的作为CORESET或搜索空间对应的数据信道配置信息,可以为与CORESET在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与CORESET在相同的OFDM符号中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同OFDM符号中传输的数据信道所用的数据信道配置信息。
其中,与CORESET或搜索空间在同一个时隙中传输的数据信道,与所述CORESET或搜索空间可以在不同的OFDM符号上传输。与CORESET或搜索空间在同一个OFDM符号中传输的数据信道,与所述CORESET或搜索空间的时域资源可以不完全重叠,即可以只有部分的OFDM符号是重叠的。
其中,所述数据信道配置信息用于指示数据信道所用的传输参数。所述传输参数包括以下至少之一:
数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控(BPSK,Binary Phase Shift Keying)调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
具体来说,
所述数据信道所用的传输方案,用于指示数据信道采用基于码本的传输还是基于非码本的传输。
功率控制参数,用于指示数据信道进行上行功率控制所用的参数,包括开环功率控制参数(Po,路损因子)、闭环功率控制参数和路损测量参考信号等配置。
频域跳频配置,用于指示是否允许频域跳频以及频域跳频的具体方式。
是否进行DFT变换的配置,用于指示所采用的多址方式是DFT-S-OFDM还是CP-OFDM。
码本子集约束配置,用于指示基于码本的传输中可用的码本子集。
最大传输层数配置,用于指示上行或下行数据传输允许的最大传输层数。
数据信道承载的UCI的传输配置,用于指示计算UCI占用资源所用的参数。
所述数据信道的DMRS的配置,包含以下参数中的至少一个:
起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
其中,起始DMRS符号位置,用于指示第一个DMRS符号(即时隙中最早传输的DMRS)所在的OFDM符号,例如,可以是第三个或者第四个OFDM符号。
DMRS类型,用于指示使用type 1 DMRS还是type 2 DMRS。
额外的DMRS位置,用于指示除基本DMRS外的其他DMRS所占用的OFDM符号的位置。
基本DMRS占用的OFDM符号数,数值可以是1或者2。
DMRS所用的加扰ID,可以配置2个加扰ID。
所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
具体的,如果终端被配置了多个CORESET或者搜索空间,其中一个CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号可以是SSB或CSI-RS,其他CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号只能是CSI-RS。
所述TCI状态用于指示终端的不同QCL type的参考下行信号,可以基于该参考下行信号获得数据或者信号检测所用的QCL假设。
VRB到PRB的交织资源单位,用于指示VRB到PRB的交织所用的资源单位,比如2PRBs或4PRBs。
数据信道的时域资源配置,用于指示数据信道在一个时隙内占用的时域资源,例如起始OFDM符号,占用的OFDM符号数等。
数据信道的重复次数或聚合时隙数,用于指示数据信道连续占用的时隙数量,所述连续占用的时隙用于重复传输同样的数据信道。
速率匹配资源配置,用于指示需要进行速率匹配的物理资源。
所述速率匹配资源配置中,包括SSB所占用的物理资源。也就是说,若所述数据信道配置信息包括速率匹配资源配置,所述速率匹配资源配置中包括SSB所占用的物理资源。
资源分配所用的RBG(资源块组)大小,用于指示频域资源分配的资源单位。
PRB bundling配置,用于指示终端进行信道估计时所假设的预编码颗粒度。
零功率CSI-RS配置,用于指示发送零功率CSI-RS的资源,所述资源不用于数据传输。
综合前述说明,关于本实施例中前述步骤201,所述根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,包括:
在至少一个CORESET或搜索空间中检测DCI;
根据检测到的DCI所在的CORESET或搜索空间,确定CORESET或搜索空间所对应的数据信道配置信息;
基于所述数据信道配置信息确定所述DCI所调度的数据信道的传输参数。
即终端设备在多个CORESET或搜索空间中检测PDCCH承载的DCI,根据检测到的DCI所在的CORESET或搜索空间,确定CORESET或搜索空间所对应的数据信道配置信息,从而确定所述DCI调度的数据信道的传输参数。
如果终端在多个CORESET或搜索空间中都检测PDCCH承载的DCI,则需要分别按照上述方法确定每个DCI调度的数据信道的传输参数。
前述步骤202中,所述基于所述传输参数,发送或接收所述数据信道,包括以下至少之一:
根据数据信道所用的传输方案,发送或接收所述数据信道;
根据功率控制参数确定上行的发送功率,基于所述上行的发送功率发送所述数据信道;
根据频域跳频配置,确定是否进行频域跳频以及进行频域跳频时确定频域资源的方式;根据是否进行跳频以及进行频域跳频时确定频域资源的方式,确定发送或接收所述数据信道所用的频域资源;
根据是否进行DFT变换的配置,确实是否对数据进行DFT变换;根据是否进行DFT变换的结果,发送DFT变换后、或非DFT变换后的所述数据信道;
根据码本子集约束配置,确定预编码可用的码本子集;基于所述码本子集和网络侧的预编码指示信息,确定发送所述数据信道使用的预编码矩阵;根据确定的预编码矩阵发送所述数据信道;
根据最大传输层数配置,确定当前数据传输允许的最大传输层数;根据所述最大传 输层数,确定DCI中的SRI/RI指示域的内容;根据所述SRI/RI指示域的内容发送所述数据信道;
根据数据信道承载的UCI传输配置,确定UCI占用的物理资源;在所述数据信道上的所述物理资源中发送所述UCI;
根据是否允许DFT变换的pi/2-BPSK调制的配置,确定是否对pi/2-BPSK调制后的数据信道进行DFT变换并发送所述数据信道;
根据数据信道加扰所用的加扰ID进行数据信道的加扰,并发送加扰后的数据信道;
根据数据信道的DMRS的配置,确定DMRS的物理资源和/或序列,并在所述数据信道上发送或接收所述DMRS;
根据数据信道候选的TCI状态,以及DCI中的TCI状态指示信息,确定数据信道检测所用的QCL假设,基于所述QCL假设接收所述数据信道;
根据VRB到PRB的交织资源单位进行VRB到PRB的交织,进行所述数据信道的物理资源映射;
根据数据信道的时域资源配置,确定数据信道在一个时隙内占用的时域资源;在所述时域资源上发送或接收所述数据信道;
根据数据信道的重复次数或聚合时隙数,确定数据信道连续占用的时隙数量;在所述时隙数量对应的时隙中发送或接收所述数据信道;
根据速率匹配资源配置,进行所述数据信道承载的数据的速率匹配,并在所述数据信道上发送或接收速率匹配后的数据;
根据资源分配所用的RBG大小,确定DCI所指示的频域资源,在所述频域资源上发送或接收所述数据信道;
根据MCS表格,以及DCI所指示的MCS信息,确定所述数据信道采用的调制编码方式;根据所述调制编码方式发送或接收所述数据信道;
根据PRB bundling配置,基于DMRS进行下行信道估计;基于所述下行信道估计的结果对接收的所述数据信道进行解调;
根据零功率CSI-RS配置,确定零功率CSI-RS资源占用的物理资源,并在所述物理资源上不发送或接收所述数据信道。
其中,所述数据信道为PUSCH或PDSCH。
具体来说,
根据数据信道所用的传输方案中指示的数据信道采用基于码本的传输还是基于非码本的传输,确定基于码本或基于非码本发送或接收所述数据信道。
根据功率控制参数中的开环功率控制参数、闭环功率控制参数以及路损测量参考信号等配置确定上行的发送功率,根据确定的上行的发送功率发送所述数据信道。
根据频域跳频配置确定是否进行频域跳频,以及根据频域跳频配置进行频域跳频时确定频域资源的方式,从而根据是否进行跳频以及进行频域跳频时确定频域资源的方式,确定发送或接收数据信道所用的频域资源。
根据指示的是否进行DFT变换的配置,确实是否对数据进行DFT变换;根据是否进行DFT变换的结果,发送DFT变换后、或非DFT变换后的所述数据信道。具体的,可以为根据DFT变换的配置,确定采用的多址方式为DFT-S-OFDM或CP-OFDM,基于确定的配置发送数据信道。
根据数据信道承载的UCI传输配置,确定UCI占用的物理资源,并在所述数据信道上进行所述UCI的传输。也就是说,根据计算UCI占用资源所用的参数,确定UCI占用的资源,然后在数据信道上发送UCI。
根据是否允许DFT变换的pi/2-BPSK调制的配置,确定是否对pi/2-BPSK调制后的数据进行DFT变换,并发送变换或未变换后的数据信道。
根据数据信道的DMRS的配置,确定DMRS的物理资源和/或序列,并在所述数据信道上发送或接收所述DMRS。比如,根据DMRS的起始符号位置、类型等参数,确定DMRS的物理资源,在数据信道上传输DMRS;或者,还可以基于DMRS配置这种的加扰ID或OFDM符号数等,确定DMRS的物理资源,在数据信道上传输所述DMRS。
根据数据信道候选的TCI状态,以及DCI中的TCI状态指示信息,确定数据信道检测所用的QCL假设,基于所述假设接收所述数据信道。比如,如果终端被配置了多个CORESET或者搜索空间,其中一个CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号可以是SSB或CSI-RS,其他CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号只能是CSI-RS。当TCI中的参考信号包含CSI-RS时,确定接收数据信道时检测采用的QCL假设,然后还可以采用CSI-RS或SSB,确定接收数据信道时进行检测所采用的QCL假设。
根据VRB到PRB的交织资源单位,进行VRB到PRB的交织,从而进行数据信道的物理资源映射,发送映射后的数据信道。比如,若交织所用的资源单位为2PRB,那 么就基于2PRB进行交织之后,进行数据信道的物理资源映射。
根据PRB bundling配置中指示的终端进行信道估计时假设的预编码颗粒度,基于DMRS进行下行信道估计,并用信道估计的结果来进行所述数据信道的解调。
可见,通过采用上述方案,能够基于CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,进而根据所述传输参数,发送或接收所述数据信道;如此,由于不同的CORESET或搜索空间所对应的数据信道配置信息可以不同,那么针对不同的数据信道就可以对应有不同的数据信道配置信息,从而保证了多个数据信道可以采用独立的数据信道配置信息,提升了调度的灵活性;并且基于本发明的方法,不同的传输点或panel调度的数据信道可以采用不同的数据信道配置信息,这样不同数据信道之间会减少干扰,从而保证了数据传输的性能。
实施例二、
本实施例提供了一种终端设备,如图3所示,包括:
第一处理单元31,根据控制资源集合(CORESET)或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;
第一通信单元32,基于所述传输参数,发送或接收所述数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址(QCL)类型D假设的CORESET或搜索空间。
其中,按照现有协议,QCL type D指Spatial Rx Parameter空间接收参数。
本实施例中,根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,可以理解为首先需要确定物理下行控制信道(PDCCH,Physical Downlink Control Channel)承载的下行控制信息(DCI,Downlink Control Information)所调度的数据信道的传输参数。
其具体的处理方式可以为根据调度所述数据信道的DCI所在的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数,或者,还可以为根据与调度所述数据信道的控制信道采用相同QCL类型D假设的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数;其中,控制信道即可以理解为PDCCH。所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
第一通信单元32,通过高层信令获取所述CORESET或搜索空间对应的数据信道配置信息。
具体的,通过高层信令来获取所述数据信道配置信息的方式可以包括以下两种:
第一种方式、获取网络侧通过高层信令配置的CORESET或搜索空间配置对应的数据信道配置信息。
其中,所述数据信道配置信息可以为具体的数据信道的配置,或者,还可以为数据信道的配置所对应的标识信息。
其中,所述数据信道可以为下行信道也可以为上行信道,比如,可以为PDSCH(Physical Downlink Shared Channel,物理下行共享信道),或者,可以为PUSCH(Physical Uplink Shared Channel,物理上行共享信道),当然还可以为其他的信道,只是本实施例不再赘述。
也就是说,网络侧可以通过高层信令为一个CORESET或搜索空间配置对应的数据信道配置信息,比如,在CORESET/搜索空间的参数域中增加PDSCH-配置(config)或者PUSCH-config,或者增加PDSCH-config-ID或者PUSCH-config-ID。
第二种方式、获取网络侧通过高层信令配置的CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系
网络侧也可以额外配置CORESET ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,或者搜索空间ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,根据该对应关系确定CORESET或搜索空间对应的数据信道配置信息。其中,所述数据信道配置索引可以是一个数据信道配置信息在网络侧配置的多个数据信道配置信息中的索引。
另外,需要指出的是,若网络侧没有通过高层信令为所述终端设备的一个CORESET或搜索空间配置对应的数据信道配置信息,则可以采用默认的数据信道配置信息得到传输参数。其中,默认的数据信道配置信息可以为网络侧为终端设备预设的信息,其获取方式可以为终端设备与网络侧初始接入的时候通过传输的信息获取。
第一处理单元31,将与所述CORESET或搜索空间在相同时隙或相同OFDM符号中传输的数据信道所用的数据信道配置信息,作为所述CORESET或搜索空间对应的数据信道配置信息。
也就是说,除了通过高层信令为CORESET或搜索空间配置数据信道配置信息之外,本实施例还提供了一种获取数据信道配置信息的处理方式。
具体的,最终确定的作为CORESET或搜索空间对应的数据信道配置信息,可以为与CORESET在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与CORESET在相同的OFDM符号中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同OFDM符号中传输的数据信道所用的数据信道配置信息。
其中,与CORESET或搜索空间在同一个时隙中传输的数据信道,与所述CORESET或搜索空间可以在不同的OFDM符号上传输。与CORESET或搜索空间在同一个OFDM符号中传输的数据信道,与所述CORESET或搜索空间的时域资源可以不完全重叠,即可以只有部分的OFDM符号是重叠的。
其中,所述数据信道配置信息用于指示数据信道所用的传输参数。所述传输参数包括以下至少之一:
数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控(BPSK,Binary Phase Shift Keying)调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
具体来说,
所述数据信道所用的传输方案,用于指示数据信道采用基于码本的传输还是基于非码本的传输。
功率控制参数,用于指示数据信道进行上行功率控制所用的参数,包括开环功率控制参数(Po,路损因子)、闭环功率控制参数和路损测量参考信号等配置。
频域跳频配置,用于指示是否允许频域跳频以及频域跳频的具体方式。
是否进行DFT变换的配置,用于指示所采用的多址方式是DFT-S-OFDM还是CP-OFDM。
码本子集约束配置,用于指示基于码本的传输中可用的码本子集。
最大传输层数配置,用于指示上行或下行数据传输允许的最大传输层数。
数据信道承载的UCI的传输配置,用于指示计算UCI占用资源所用的参数。
所述数据信道的DMRS的配置,包含以下参数中的至少一个:
起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
其中,起始DMRS符号位置,用于指示第一个DMRS符号(即时隙中最早传输的DMRS)所在的OFDM符号,例如,可以是第三个或者第四个OFDM符号。
DMRS类型,用于指示使用type 1 DMRS还是type 2 DMRS。
额外的DMRS位置,用于指示除基本DMRS外的其他DMRS所占用的OFDM符号的位置。
基本DMRS占用的OFDM符号数,数值可以是1或者2。
DMRS所用的加扰ID,可以配置2个加扰ID。
所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
具体的,如果终端被配置了多个CORESET或者搜索空间,其中一个CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号可以是SSB或CSI-RS,其他CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号只能是CSI-RS。
所述TCI状态用于指示终端的不同QCL type的参考下行信号,可以基于该参考下行信号获得数据或者信号检测所用的QCL假设。
VRB到PRB的交织资源单位,用于指示VRB到PRB的交织所用的资源单位,比如2PRBs或4PRBs。
数据信道的时域资源配置,用于指示数据信道在一个时隙内占用的时域资源,例如起始OFDM符号,占用的OFDM符号数等。
数据信道的重复次数或聚合时隙数,用于指示数据信道连续占用的时隙数量,所述连续占用的时隙用于重复传输同样的数据信道。
速率匹配资源配置,用于指示需要进行速率匹配的物理资源。
所述速率匹配资源配置中,包括SSB所占用的物理资源。也就是说,若所述数据信 道配置信息包括速率匹配资源配置,所述速率匹配资源配置中包括SSB所占用的物理资源。
资源分配所用的RBG(资源块组)大小,用于指示频域资源分配的资源单位。
PRB bundling配置,用于指示终端进行信道估计时所假设的预编码颗粒度。
零功率CSI-RS配置,用于指示发送零功率CSI-RS的资源,所述资源不用于数据传输。
综合前述说明,第一处理单元31,在至少一个CORESET或搜索空间中检测DCI;根据检测到的DCI所在的CORESET或搜索空间,确定CORESET或搜索空间所对应的数据信道配置信息;基于所述数据信道配置信息确定所述DCI所调度的数据信道的传输参数。
即终端设备在多个CORESET或搜索空间中检测PDCCH承载的DCI,根据检测到的DCI所在的CORESET或搜索空间,确定CORESET或搜索空间所对应的数据信道配置信息,从而确定所述DCI调度的数据信道的传输参数。
如果终端在多个CORESET或搜索空间中都检测PDCCH承载的DCI,则需要分别按照上述方法确定每个DCI调度的数据信道的传输参数。
前述第一通信单元32,包括以下至少之一:
根据数据信道所用的传输方案,发送或接收所述数据信道;
根据功率控制参数确定上行的发送功率,基于所述上行的发送功率发送所述数据信道;
根据频域跳频配置,确定是否进行频域跳频以及进行频域跳频时确定频域资源的方式;根据是否进行跳频以及进行频域跳频时确定频域资源的方式,确定发送或接收所述数据信道所用的频域资源;
根据是否进行DFT变换的配置,确实是否对数据进行DFT变换;根据是否进行DFT变换的结果,发送DFT变换后、或非DFT变换后的所述数据信道;
根据码本子集约束配置,确定预编码可用的码本子集;基于所述码本子集和网络侧的预编码指示信息,确定发送所述数据信道使用的预编码矩阵;根据确定的预编码矩阵发送所述数据信道;
根据最大传输层数配置,确定当前数据传输允许的最大传输层数;根据所述最大传输层数,确定DCI中的SRI/RI指示域的内容;根据所述SRI/RI指示域的内容发送所述数据信道;
根据数据信道承载的UCI传输配置,确定UCI占用的物理资源;在所述数据信道上的所述物理资源中发送所述UCI;
根据是否允许DFT变换的pi/2-BPSK调制的配置,确定是否对pi/2-BPSK调制后的数据信道进行DFT变换并发送所述数据信道;
根据数据信道加扰所用的加扰ID进行数据信道的加扰,并发送加扰后的数据信道;
根据数据信道的DMRS的配置,确定DMRS的物理资源和/或序列,并在所述数据信道上发送或接收所述DMRS;
根据数据信道候选的TCI状态,以及DCI中的TCI状态指示信息,确定数据信道检测所用的QCL假设,基于所述QCL假设接收所述数据信道;
根据VRB到PRB的交织资源单位进行VRB到PRB的交织,进行所述数据信道的物理资源映射;
根据数据信道的时域资源配置,确定数据信道在一个时隙内占用的时域资源;在所述时域资源上发送或接收所述数据信道;
根据数据信道的重复次数或聚合时隙数,确定数据信道连续占用的时隙数量;在所述时隙数量对应的时隙中发送或接收所述数据信道;
根据速率匹配资源配置,进行所述数据信道承载的数据的速率匹配,并在所述数据信道上发送或接收速率匹配后的数据;
根据资源分配所用的RBG大小,确定DCI所指示的频域资源,在所述频域资源上发送或接收所述数据信道;
根据MCS表格,以及DCI所指示的MCS信息,确定所述数据信道采用的调制编码方式;根据所述调制编码方式发送或接收所述数据信道;
根据PRB bundling配置,基于DMRS进行下行信道估计;基于所述下行信道估计的结果对接收的所述数据信道进行解调;
根据零功率CSI-RS配置,确定零功率CSI-RS资源占用的物理资源,并在所述物理资源上不发送或接收所述数据信道。
其中,所述数据信道为PUSCH或PDSCH。
具体来说,
根据数据信道所用的传输方案中指示的数据信道采用基于码本的传输还是基于非 码本的传输,确定基于码本或基于非码本发送或接收所述数据信道。
根据功率控制参数中的开环功率控制参数、闭环功率控制参数以及路损测量参考信号等配置确定上行的发送功率,根据确定的上行的发送功率发送所述数据信道。
根据频域跳频配置确定是否进行频域跳频,以及根据频域跳频配置进行频域跳频时确定频域资源的方式,从而根据是否进行跳频以及进行频域跳频时确定频域资源的方式,确定发送或接收数据信道所用的频域资源。
根据指示的是否进行DFT变换的配置,确实是否对数据进行DFT变换;根据是否进行DFT变换的结果,发送DFT变换后、或非DFT变换后的所述数据信道。具体的,可以为根据DFT变换的配置,确定采用的多址方式为DFT-S-OFDM或CP-OFDM,基于确定的配置发送数据信道。
根据码本子集约束配置,确定当前预编码可用的码本子集;基于所述码本子集和网络侧的预编码指示信息,确定所述数据信道使用的预编码矩阵,根据确定的预编码矩阵发送所述数据信道。
根据数据信道承载的UCI传输配置,确定UCI占用的物理资源,并在所述数据信道上进行所述UCI的传输。也就是说,根据计算UCI占用资源所用的参数,确定UCI占用的资源,然后在数据信道上发送UCI。
根据是否允许DFT变换的pi/2-BPSK调制的配置,确定是否对pi/2-BPSK调制后的数据进行DFT变换,并发送变换或未变换后的数据信道。
根据数据信道的DMRS的配置,确定DMRS的物理资源和/或序列,并在所述数据信道上发送或接收所述DMRS。比如,根据DMRS的起始符号位置、类型等参数,确定DMRS的物理资源,在数据信道上传输DMRS;或者,还可以基于DMRS配置这种的加扰ID或OFDM符号数等,确定DMRS的物理资源,在数据信道上传输所述DMRS。
根据数据信道候选的TCI状态,以及DCI中的TCI状态指示信息,确定数据信道检测所用的QCL假设,基于所述假设接收所述数据信道。比如,当TCI中的参考信号包含CSI-RS时,确定接收数据信道时检测采用的QCL假设,然后还可以采用CSI-RS或SSB,确定接收数据信道时进行检测所采用的QCL假设。
根据VRB到PRB的交织资源单位,进行VRB到PRB的交织,从而进行数据信道的物理资源映射,发送映射后的数据信道。比如,若交织所用的资源单位为2PRB,那么就基于2PRB进行交织之后,进行数据信道的物理资源映射。
根据PRB bundling配置中指示的终端进行信道估计时假设的预编码颗粒度,基于DMRS进行下行信道估计,并用信道估计的结果来进行所述数据信道的解调。
可见,通过采用上述方案,能够基于CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,进而根据所述传输参数,发送或接收所述数据信道;如此,由于不同的CORESET或搜索空间所对应的数据信道配置信息可以不同,那么针对不同的数据信道就可以对应有不同的数据信道配置信息,从而保证了多个数据信道可以采用独立的数据信道配置信息,提升了调度的灵活性;并且基于本发明的方法,不同的传输点或panel调度的数据信道可以采用不同的数据信道配置信息,这样不同数据信道之间会减少干扰,从而保证了数据传输的性能。
实施例三、
本实施例提供了一种数据传输方法,应用于网络设备,如图4所示,包括:
步骤401:向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息,发送或接收数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址(QCL)类型D假设的CORESET或搜索空间。
其中,按照现有协议,QCL type D指Spatial Rx Parameter空间接收参数。
本实施例中,根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,可以理解为首先需要确定物理下行控制信道(PDCCH,Physical Downlink Control Channel)承载的下行控制信息(DCI,Downlink Control Information)所调度的数据信道的传输参数。
其具体的处理方式可以为根据调度所述数据信道的DCI所在的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数,或者,还可以为根据与调度所述数据信道的控制信道采用相同QCL类型D假设的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数;其中,控制信道即可以理解为PDCCH。所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
前述向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息 可以包括以下两种:
第一种方式、通过高层信令向终端设备发送CORESET或搜索空间配置对应的数据信道配置信息。
其中,所述数据信道配置信息可以为具体的数据信道的配置,或者,还可以为数据信道的配置所对应的标识信息。
其中,所述数据信道可以为下行信道也可以为上行信道,比如,可以为PDSCH(Physical Downlink Shared Channel,物理下行共享信道),或者,可以为PUSCH(Physical Uplink Shared Channel,物理上行共享信道),当然还可以为其他的信道,只是本实施例不再赘述。
也就是说,网络侧可以通过高层信令为一个CORESET或搜索空间配置对应的数据信道配置信息,比如,在CORESET/搜索空间的参数域中增加PDSCH-配置(config)或者PUSCH-config,或者增加PDSCH-config-ID或者PUSCH-config-ID。
第二种方式、通过高层信令向终端设备发送CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系
网络侧也可以额外配置CORESET ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,或者搜索空间ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,根据该对应关系确定CORESET或搜索空间对应的数据信道配置信息。其中,所述数据信道配置索引可以是一个数据信道配置信息在网络侧配置的多个数据信道配置信息中的索引。
另外,需要指出的是,若网络侧没有通过高层信令为所述终端设备的一个CORESET或搜索空间配置对应的数据信道配置信息,则可以采用默认的数据信道配置信息得到传输参数。其中,默认的数据信道配置信息可以为网络侧为终端设备预设的信息,其获取方式可以为终端设备与网络侧初始接入的时候,网络设备通过与终端之间传输的信息向终端配置默认的数据信道配置信息。
本实施例确定的作为CORESET或搜索空间对应的数据信道配置信息,可以为与CORESET在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与CORESET在相同的OFDM符号中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同OFDM符号中传输的数据信道所用的数据信道配置信息。
其中,与CORESET或搜索空间在同一个时隙中传输的数据信道,与所述CORESET或搜索空间可以在不同的OFDM符号上传输。与CORESET或搜索空间在同一个OFDM符号中传输的数据信道,与所述CORESET或搜索空间的时域资源可以不完全重叠,即可以只有部分的OFDM符号是重叠的。
其中,所述数据信道配置信息用于指示数据信道所用的传输参数。所述传输参数包括以下至少之一:
数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控(BPSK,Binary Phase Shift Keying)调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
具体来说,
所述数据信道所用的传输方案,用于指示数据信道采用基于码本的传输还是基于非码本的传输。
功率控制参数,用于指示数据信道进行上行功率控制所用的参数,包括开环功率控制参数(Po,路损因子)、闭环功率控制参数和路损测量参考信号等配置。
频域跳频配置,用于指示是否允许频域跳频以及频域跳频的具体方式。
是否进行DFT变换的配置,用于指示所采用的多址方式是DFT-S-OFDM还是CP-OFDM。
码本子集约束配置,用于指示基于码本的传输中可用的码本子集。
最大传输层数配置,用于指示上行或下行数据传输允许的最大传输层数。
数据信道承载的UCI的传输配置,用于指示计算UCI占用资源所用的参数。
所述数据信道的DMRS的配置,包含以下参数中的至少一个:
起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
其中,起始DMRS符号位置,用于指示第一个DMRS符号(即时隙中最早传输的 DMRS)所在的OFDM符号,例如,可以是第三个或者第四个OFDM符号。
DMRS类型,用于指示使用type 1 DMRS还是type 2 DMRS。
额外的DMRS位置,用于指示除基本DMRS外的其他DMRS所占用的OFDM符号的位置。
基本DMRS占用的OFDM符号数,数值可以是1或者2。
DMRS所用的加扰ID,可以配置2个加扰ID。
所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
具体的,如果配置了多个CORESET或者搜索空间,其中一个CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号可以是SSB或CSI-RS,其他CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号只能是CSI-RS。
所述TCI状态用于指示终端的不同QCL type的参考下行信号,可以基于该参考下行信号获得数据或者信号检测所用的QCL假设。
VRB到PRB的交织资源单位,用于指示VRB到PRB的交织所用的资源单位,比如2PRBs或4PRBs。
数据信道的时域资源配置,用于指示数据信道在一个时隙内占用的时域资源,例如起始OFDM符号,占用的OFDM符号数等。
数据信道的重复次数或聚合时隙数,用于指示数据信道连续占用的时隙数量,所述连续占用的时隙用于重复传输同样的数据信道。
速率匹配资源配置,用于指示需要进行速率匹配的物理资源。
所述速率匹配资源配置中,包括SSB所占用的物理资源。也就是说,若所述数据信道配置信息包括速率匹配资源配置,所述速率匹配资源配置中包括SSB所占用的物理资源。
资源分配所用的RBG(资源块组)大小,用于指示频域资源分配的资源单位。
PRB bundling配置,用于指示终端进行信道估计时所假设的预编码颗粒度。
零功率CSI-RS配置,用于指示发送零功率CSI-RS的资源,所述资源不用于数据传输。
可见,通过采用上述方案,能够基于CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,进而根据所述传输参数,发送或接收所述数据信道;如此,由于不同的CORESET或搜索空间所对应的数据信道配置信息可以不同,那么针对不同的数据信道就可以对应有不同的数据信道配置信息,从而保证了多个数据信道可以采用独立的数据信道配置信息,提升了调度的灵活性;并且基于本发明的方法,不同的传输点或panel调度的数据信道可以采用不同的数据信道配置信息,这样不同数据信道之间会减少干扰,从而保证了数据传输的性能。
实施例四、
本实施例提供了一种网络设备,如图5所示,包括:
第二通信单元51,向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息,发送或接收数据信道;
其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址(QCL)类型D假设的CORESET或搜索空间。
其中,按照现有协议,QCL type D指Spatial Rx Parameter空间接收参数。
本实施例中,根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,可以理解为首先需要确定物理下行控制信道(PDCCH,Physical Downlink Control Channel)承载的下行控制信息(DCI,Downlink Control Information)所调度的数据信道的传输参数。
其具体的处理方式可以为根据调度所述数据信道的DCI所在的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数,或者,还可以为根据与调度所述数据信道的控制信道采用相同QCL类型D假设的CORESET或搜索空间所对应的数据信道配置信息来确定数据信道的传输参数;其中,控制信道即可以理解为PDCCH。所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
第二通信单元51,通过高层信令为终端设备配置所述CORESET或搜索空间对应的数据信道配置信息。具体的,可以包括以下两种:
第一种方式、通过高层信令为终端设备配置所述CORESET或搜索空间对应的数据信道配置信息。
其中,所述数据信道配置信息可以为具体的数据信道的配置,或者,还可以为数据信道的配置所对应的标识信息。
其中,所述数据信道可以为下行信道也可以为上行信道,比如,可以为PDSCH(Physical Downlink Shared Channel,物理下行共享信道),或者,可以为PUSCH(Physical Uplink Shared Channel,物理上行共享信道),当然还可以为其他的信道,只是本实施例不再赘述。
也就是说,网络侧可以通过高层信令为一个CORESET或搜索空间配置对应的数据信道配置信息,比如,在CORESET/搜索空间的参数域中增加PDSCH-配置(config)或者PUSCH-config,或者增加PDSCH-config-ID或者PUSCH-config-ID。
第二种方式、通过高层信令为终端设备配置CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系。
网络侧也可以额外配置CORESET ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,或者搜索空间ID和数据信道配置索引(如PDSCH-Config-ID/PUSCH-Config-ID)的对应关系,根据该对应关系确定CORESET或搜索空间对应的数据信道配置信息。其中,所述数据信道配置索引可以是一个数据信道配置信息在网络侧配置的多个数据信道配置信息中的索引。
另外,需要指出的是,若网络侧没有通过高层信令为所述终端设备的一个CORESET或搜索空间配置对应的数据信道配置信息,则可以采用默认的数据信道配置信息得到传输参数。其中,默认的数据信道配置信息可以为网络侧为终端设备预设的信息,其获取方式可以为终端设备与网络侧初始接入的时候,网络设备中的第二通信单元51通过与终端之间传输的信息向终端配置默认的数据信道配置信息。
本实施例确定的作为CORESET或搜索空间对应的数据信道配置信息,可以为与CORESET在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与CORESET在相同的OFDM符号中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同时隙中传输的数据信道所用的数据信道配置信息;或者,为与搜索空间在相同OFDM符号中传输的数据信道所用的数据信道配置信息。
其中,与CORESET或搜索空间在同一个时隙中传输的数据信道,与所述CORESET或搜索空间可以在不同的OFDM符号上传输。与CORESET或搜索空间在同一个OFDM符号中传输的数据信道,与所述CORESET或搜索空间的时域资源可以不完全重叠,即可以只有部分的OFDM符号是重叠的。
所述数据信道配置信息用于指示数据信道所用的传输参数。所述传输参数包括以下至少之一:
数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控(BPSK,Binary Phase Shift Keying)调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
具体来说,
所述数据信道所用的传输方案,用于指示数据信道采用基于码本的传输还是基于非码本的传输。
功率控制参数,用于指示数据信道进行上行功率控制所用的参数,包括开环功率控制参数(Po,路损因子)、闭环功率控制参数和路损测量参考信号等配置。
频域跳频配置,用于指示是否允许频域跳频以及频域跳频的具体方式。
是否进行DFT变换的配置,用于指示所采用的多址方式是DFT-S-OFDM还是CP-OFDM。
码本子集约束配置,用于指示基于码本的传输中可用的码本子集。
最大传输层数配置,用于指示上行或下行数据传输允许的最大传输层数。
数据信道承载的UCI的传输配置,用于指示计算UCI占用资源所用的参数。
所述数据信道的DMRS的配置,包含以下参数中的至少一个:
起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
其中,起始DMRS符号位置,用于指示第一个DMRS符号(即时隙中最早传输的DMRS)所在的OFDM符号,例如,可以是第三个或者第四个OFDM符号。
DMRS类型,用于指示使用type 1 DMRS还是type 2 DMRS。
额外的DMRS位置,用于指示除基本DMRS外的其他DMRS所占用的OFDM符 号的位置。
基本DMRS占用的OFDM符号数,数值可以是1或者2。
DMRS所用的加扰ID,可以配置2个加扰ID。
所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
具体的,如果配置了多个CORESET或者搜索空间,其中一个CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号可以是SSB或CSI-RS,其他CORESET或搜索空间对应的数据信道配置信息中的TCI状态中的参考信号只能是CSI-RS。
所述TCI状态用于指示终端的不同QCL type的参考下行信号,可以基于该参考下行信号获得数据或者信号检测所用的QCL假设。
VRB到PRB的交织资源单位,用于指示VRB到PRB的交织所用的资源单位,比如2PRBs或4PRBs。
数据信道的时域资源配置,用于指示数据信道在一个时隙内占用的时域资源,例如起始OFDM符号,占用的OFDM符号数等。
数据信道的重复次数或聚合时隙数,用于指示数据信道连续占用的时隙数量,所述连续占用的时隙用于重复传输同样的数据信道。
速率匹配资源配置,用于指示需要进行速率匹配的物理资源。
所述速率匹配资源配置中,包括SSB所占用的物理资源。也就是说,若所述数据信道配置信息包括速率匹配资源配置,所述速率匹配资源配置中包括SSB所占用的物理资源。
资源分配所用的RBG(资源块组)大小,用于指示频域资源分配的资源单位。
PRB bundling配置,用于指示终端进行信道估计时所假设的预编码颗粒度。
零功率CSI-RS配置,用于指示发送零功率CSI-RS的资源,所述资源不用于数据传输。
可见,通过采用上述方案,能够基于CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,进而根据所述传输参数,发送或接收所述数据信道;如此,由于不同的CORESET或搜索空间所对应的数据信道配置信息可以不同,那么针对不同的数据信道就可以对应有不同的数据信道配置信息,从而保证了多个数据信道可以采用独立的数据信道配置信息,提升了调度的灵活性;并且基于本发明的方法,不同的传输点或panel调度的数据信道可以采用不同的数据信道配置信息,这样不同数据信道之间会减少干扰,从而保证了数据传输的性能。
图6是本申请实施例提供的一种通信设备600示意性结构图,通信设备可以为本实施例前述的终端设备或者网络设备。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或 数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图8是本申请实施例提供的一种通信***800的示意性框图。如图8所示,该通信***800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(RandomAccess Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种数据传输方法,应用于终端设备,所述方法包括:
    根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;
    基于所述传输参数,发送或接收所述数据信道;
    其中,所述CORESET或搜索空间为调度所述数据信道的下行控制信息DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    通过高层信令获取所述CORESET或搜索空间对应的数据信道配置信息。
  3. 根据权利要求2所述的方法,其中,所述通过高层信令获取CORESET或搜索空间对应的数据信道配置信息,包括:
    获取网络侧通过高层信令配置的CORESET或搜索空间配置对应的数据信道配置信息;
    和/或,获取网络侧通过高层信令配置的CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    将与所述CORESET或搜索空间在相同时隙或相同OFDM符号中传输的数据信道所用的数据信道配置信息,作为所述CORESET或搜索空间对应的数据信道配置信息。
  5. 根据权利要求1-4任一项所述的方法,其中,所述数据信道配置信息,用于指示数据信道所用的传输参数。
  6. 根据权利要求1-5任一项所述的方法,其中,所述传输参数包括以下至少之一:
    数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控BPSK调制的配置、数据信道加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
  7. 根据权利要求6所述的方法,其中,所述数据信道的DMRS的配置,包含以下参数中的至少一个:
    起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
  8. 根据权利要求6所述的方法,其中,
    所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,
    所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
  9. 根据权利要求6所述的方法,其中,所述速率匹配资源配置中,包括SSB所占用的物理资源。
  10. 根据权利要求1-9任一项所述的方法,其中,所述根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数,包括:
    在至少一个CORESET或搜索空间中检测DCI;
    根据检测到的DCI所在的CORESET或搜索空间,确定所述CORESET或搜索空间所对应的数据信道配置信息;
    基于所述数据信道配置信息,确定所述DCI所调度的数据信道的传输参数。
  11. 根据权利要求1所述的方法,其中,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:
    所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
  12. 根据权利要求1所述的方法,其中,所述基于所述传输参数,发送或接收所述数据信道,包括以下至少之一:
    根据数据信道所用的传输方案,发送或接收所述数据信道;
    根据功率控制参数确定上行的发送功率,基于所述上行的发送功率发送所述数据信道;
    根据频域跳频配置,确定是否进行频域跳频以及进行频域跳频时确定频域资源的方式;根据是否进行跳频以及进行频域跳频时确定频域资源的方式,确定发送或接收所述数据信道所用的频域资源;
    根据是否进行DFT变换的配置,确实是否对数据进行DFT变换;根据是否进行DFT变换的结果,发送DFT变换后、或非DFT变换后的所述数据信道;
    根据码本子集约束配置,确定预编码可用的码本子集;基于所述码本子集和网络侧的预编码指示信息,确定发送所述数据信道使用的预编码矩阵;根据确定的预编码矩阵发送所述数据信道;
    根据最大传输层数配置,确定当前数据传输允许的最大传输层数;根据所述最大传输层数,确定DCI中的SRI/RI指示域的内容;根据所述SRI/RI指示域的内容发送所述数据信道;
    根据数据信道承载的UCI传输配置,确定UCI占用的物理资源;在所述数据信道上的所述物理资源中发送所述UCI;
    根据是否允许DFT变换的pi/2-BPSK调制的配置,确定是否对pi/2-BPSK调制后的数据信道进行DFT变换并发送所述数据信道;
    根据数据信道加扰所用的加扰ID进行数据信道的加扰,并发送加扰后的数据信道;
    根据数据信道的DMRS的配置,确定DMRS的物理资源和/或序列,并在所述数据信道上发送或接收所述DMRS;
    根据数据信道候选的TCI状态,以及DCI中的TCI状态指示信息,确定数据信道检测所用的QCL假设,基于所述QCL假设接收所述数据信道;
    根据VRB到PRB的交织资源单位进行VRB到PRB的交织,进行所述数据信道的物理资源映射;
    根据数据信道的时域资源配置,确定数据信道在一个时隙内占用的时域资源;在所述时域资源上发送或接收所述数据信道;
    根据数据信道的重复次数或聚合时隙数,确定数据信道连续占用的时隙数量;在所述时隙数量对应的时隙中发送或接收所述数据信道;
    根据速率匹配资源配置,进行所述数据信道承载的数据的速率匹配,并在所述数据信道上发送或接收速率匹配后的数据;
    根据资源分配所用的RBG大小,确定DCI所指示的频域资源,在所述频域资源上发送或接收所述数据信道;
    根据MCS表格,以及DCI所指示的MCS信息,确定所述数据信道采用的调制编码方式;根据所述调制编码方式发送或接收所述数据信道;
    根据PRB bundling配置,基于DMRS进行下行信道估计;基于所述下行信道估计的结果对接收的所述数据信道进行解调;
    根据零功率CSI-RS配置,确定零功率CSI-RS资源占用的物理资源,并在所述物理资源上不发送或接收所述数据信道。
  13. 根据权利要求12所述的方法,其中,
    所述数据信道为PUSCH或PDSCH。
  14. 一种终端设备,包括:
    第一处理单元,根据控制资源集合CORESET或搜索空间对应的数据信道配置信息,确定数据信道的传输参数;
    第一通信单元,基于所述传输参数,发送或接收所述数据信道;
    其中,所述CORESET或搜索空间为调度所述数据信道的下行控制信息DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
  15. 根据权利要求14所述的终端设备,其中,所述第一通信单元,通过高层信令获取所述CORESET或搜索空间对应的数据信道配置信息。
  16. 根据权利要求15所述的终端设备,其中,所述第一通信单元,获取网络侧通过高层信令配置的CORESET或搜索空间配置对应的数据信道配置信息;
    和/或,获取网络侧通过高层信令配置的CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系。
  17. 根据权利要求14所述的终端设备,其中,所述第一处理单元,将与所述CORESET或搜索空间在相同时隙或相同OFDM符号中传输的数据信道所用的数据信道配置信息,作为所述CORESET或搜索空间对应的数据信道配置信息。
  18. 根据权利要求14-17任一项所述的终端设备,其中,所述数据信道配置信息,用于指示数据信道所用的传输参数。
  19. 根据权利要求14-18任一项所述的终端设备,其中,所述传输参数包括以下至少之一:
    数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控BPSK调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
  20. 根据权利要求19所述的终端设备,其中,所述数据信道的DMRS的配置,包含以下参数中的至少一个:
    起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
  21. 根据权利要求19所述的终端设备,其中,
    所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,
    所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
  22. 根据权利要求19所述的终端设备,其中,所述速率匹配资源配置中,包括SSB所占用的物理资源。
  23. 根据权利要求14-22任一项所述的终端设备,其中,
    所述第一处理单元,在至少一个CORESET或搜索空间中检测DCI;根据检测到的DCI所在的CORESET或搜索空间,确定所述CORESET或搜索空间所对应的数据信道配置信息;基于所述数据信道配置信息确定所述DCI所调度的数据信道的传输参数。
  24. 根据权利要求14所述的终端设备,其中,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
  25. 根据权利要求14所述的终端设备,其中,所述第一通信单元,执行以下至少之一:
    根据数据信道所用的传输方案,发送或接收所述数据信道;
    根据功率控制参数确定上行的发送功率,基于所述上行的发送功率发送所述数据信道;
    根据频域跳频配置,确定是否进行频域跳频以及进行频域跳频时确定频域资源的方式;根据是否进行跳频以及进行频域跳频时确定频域资源的方式,确定发送或接收所述数据信道所用的频域资源;
    根据是否进行DFT变换的配置,确实是否对数据进行DFT变换;根据是否进行DFT变换的结果,发送DFT变换后、或非DFT变换后的所述数据信道;
    根据码本子集约束配置,确定预编码可用的码本子集;基于所述码本子集和网络侧的预编码指示信息,确定发送所述数据信道使用的预编码矩阵;根据确定的预编码矩阵发送所述数据信道;
    根据最大传输层数配置,确定当前数据传输允许的最大传输层数;根据所述最大传输层数,确定DCI中的SRI/RI指示域的内容;根据所述SRI/RI指示域的内容发送所述数据信道;
    根据数据信道承载的UCI传输配置,确定UCI占用的物理资源;并在所述数据信道上的所述物理资源中发送所述UCI;
    根据是否允许DFT变换的pi/2-BPSK调制的配置,确定是否对pi/2-BPSK调制后的数据信道进行DFT变换并发送所述数据信道;
    根据数据信道加扰所用的加扰ID进行数据信道的加扰,并发送加扰后的数据信道;
    根据数据信道的DMRS的配置,确定DMRS的物理资源和/或序列,并在所述数据 信道上发送或接收所述DMRS;
    根据数据信道候选的TCI状态,以及DCI中的TCI状态指示信息,确定数据信道检测所用的QCL假设,基于所述QCL假设接收所述数据信道;
    根据VRB到PRB的交织资源单位进行VRB到PRB的交织,进行所述数据信道的物理资源映射;
    根据数据信道的时域资源配置,确定数据信道在一个时隙内占用的时域资源;在所述时域资源上发送或接收所述数据信道;
    根据数据信道的重复次数或聚合时隙数,确定数据信道连续占用的时隙数量;在所述时隙数量对应的时隙中发送或接收所述数据信道;
    根据速率匹配资源配置,进行所述数据信道承载的数据的速率匹配,并在所述数据信道上发送或接收速率匹配后的数据;
    根据资源分配所用的RBG大小,确定DCI所指示的频域资源,在所述频域资源上发送或接收所述数据信道;
    根据MCS表格,以及DCI所指示的MCS信息,确定所述数据信道采用的调制编码方式;根据所述调制编码方式发送或接收所述数据信道;
    根据PRB bundling配置,基于DMRS进行下行信道估计;基于所述下行信道估计的结果对接收的所述数据信道进行解调;
    根据零功率CSI-RS配置,确定零功率CSI-RS资源占用的物理资源,并在所述物理资源上不发送或接收所述数据信道。
  26. 根据权利要求25所述的终端设备,其中,
    所述数据信道为PUSCH或PDSCH。
  27. 一种数据传输方法,应用于网络设备,所述方法包括:
    向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息,发送或接收数据信道;
    其中,所述CORESET或搜索空间为调度所述数据信道的下行控制信息DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
  28. 根据权利要求27所述的方法,其中,所述向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息包括:
    通过高层信令为终端设备配置所述CORESET或搜索空间对应的数据信道配置信息。
  29. 根据权利要求28所述的方法,其中,所述通过高层信令为终端设备配置所述CORESET或搜索空间对应的数据信道配置信息,还包括:
    通过高层信令为终端设备配置CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系。
  30. 根据权利要求27-29任一项所述的方法,其中,所述数据信道配置信息,用于指示数据信道所用的传输参数。
  31. 根据权利要求30所述的方法,其中,所述传输参数包括以下至少之一:
    数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控BPSK调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
  32. 根据权利要求31所述的方法,其中,所述数据信道的DMRS的配置,包含以下参数中的至少一个:
    起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
  33. 根据权利要求31所述的方法,其中,
    所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,
    所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
  34. 根据权利要求31所述的方法,其中,所述速率匹配资源配置中,包括SSB所 占用的物理资源。
  35. 根据权利要求27所述的方法,其中,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
  36. 根据权利要求27-35任一项所述的方法,其中,
    所述数据信道为PUSCH或PDSCH。
  37. 一种网络设备,包括:
    第二通信单元,向终端设备发送控制资源集合CORESET或搜索空间对应的数据信道配置信息,发送或接收数据信道;
    其中,所述CORESET或搜索空间为调度所述数据信道的DCI所在的CORESET或搜索空间;或者,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间。
  38. 根据权利要求37所述的网络设备,其中,所述第二通信单元,通过高层信令为终端设备配置所述CORESET或搜索空间对应的数据信道配置信息。
  39. 根据权利要求38所述的网络设备,其中,所述第二通信单元,通过高层信令为终端设备配置CORESET或搜索空间的标识信息、与数据信道配置信息的标识信息之间的对应关系。
  40. 根据权利要求37-39任一项所述的网络设备,其中,所述数据信道配置信息,用于指示数据信道所用的传输参数。
  41. 根据权利要求40所述的网络设备,其中,所述传输参数包括以下至少之一:
    数据信道所用的传输方案、功率控制参数、频域跳频配置、是否进行DFT变换的配置、码本子集约束配置、最大传输层数配置、数据信道承载的UCI的传输配置、是否允许DFT变换的pi/2-二进制相移键控BPSK调制的配置、数据信道承载的数据加扰使用的加扰ID、数据信道的DMRS配置、数据信道候选的传输配置指示TCI状态、VRB到PRB的交织资源单位、数据信道的时域资源配置、数据信道的重复次数或聚合时隙数、速率匹配资源配置、资源分配所用的资源块组RBG大小、数据传输所用的调制编码方式MCS表格、零功率CSI-RS配置、PRB捆绑bundling配置。
  42. 根据权利要求41所述的网络设备,其中,所述数据信道的DMRS的配置,包含以下参数中的至少一个:
    起始DMRS符号位置、DMRS类型、额外的DMRS位置、基本DMRS占用的OFDM符号数、DMRS所用的加扰ID、与DMRS关联的相位跟踪参考信号PTRS的配置。
  43. 根据权利要求41所述的网络设备,其中,
    所述数据信道候选的TCI状态中的参考信号只包含CSI-RS,或者,
    所述数据信道候选的TCI状态中的参考信号包含CSI-RS或SSB。
  44. 根据权利要求41所述的网络设备,其中,所述速率匹配资源配置中,包括SSB所占用的物理资源。
  45. 根据权利要求37所述的网络设备,其中,所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同准共址QCL类型D假设的CORESET或搜索空间,包括:所述CORESET或搜索空间为与调度所述数据信道的控制信道采用相同TCI状态的CORESET或搜索空间。
  46. 根据权利要求37-45任一项所述的网络设备,其中,
    所述数据信道为PUSCH或PDSCH。
  47. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-13任一项所述方法的步骤。
  48. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求27-36任一项所述方法的步骤。
  49. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-13中任一项所述的方法。
  50. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求27-36中任一项所述的方法。
  51. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-13、27-36任一项所述方法的步骤。
  52. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-13、27-36中任一项所述的方法。
  53. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-13、27-36中任一项所述的方法。
PCT/CN2018/119632 2018-12-06 2018-12-06 一种数据传输方法、终端设备及网络设备 WO2020113533A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020217020510A KR20210091818A (ko) 2018-12-06 2018-12-06 데이터 전송 방법, 단말 기기 및 네트워크 기기
PCT/CN2018/119632 WO2020113533A1 (zh) 2018-12-06 2018-12-06 一种数据传输方法、终端设备及网络设备
EP18942072.2A EP3879871B1 (en) 2018-12-06 2018-12-06 Data transmission method, terminal device and network device
JP2021532015A JP2022517904A (ja) 2018-12-06 2018-12-06 データ伝送方法、端末機器およびネットワーク機器
CN202110540796.XA CN113329501B (zh) 2018-12-06 2018-12-06 一种数据传输方法、终端设备及网络设备
CN201880097686.7A CN112740738A (zh) 2018-12-06 2018-12-06 一种数据传输方法、终端设备及网络设备
US17/313,817 US11272531B2 (en) 2018-12-06 2021-05-06 Data transmission method, terminal device and network device
US17/580,807 US11889526B2 (en) 2018-12-06 2022-01-21 Data transmission method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119632 WO2020113533A1 (zh) 2018-12-06 2018-12-06 一种数据传输方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/313,817 Continuation US11272531B2 (en) 2018-12-06 2021-05-06 Data transmission method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020113533A1 true WO2020113533A1 (zh) 2020-06-11

Family

ID=70974100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119632 WO2020113533A1 (zh) 2018-12-06 2018-12-06 一种数据传输方法、终端设备及网络设备

Country Status (6)

Country Link
US (2) US11272531B2 (zh)
EP (1) EP3879871B1 (zh)
JP (1) JP2022517904A (zh)
KR (1) KR20210091818A (zh)
CN (2) CN113329501B (zh)
WO (1) WO2020113533A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213326A1 (zh) * 2021-04-08 2022-10-13 华为技术有限公司 一种数据接收方法及装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329501B (zh) * 2018-12-06 2023-05-09 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
US20220104254A1 (en) * 2019-02-01 2022-03-31 Ntt Docomo, Inc. User terminal and radio communication method
JP7355808B2 (ja) * 2019-02-22 2023-10-03 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US12021617B2 (en) * 2019-04-09 2024-06-25 Lg Electronics Inc. Interleaving for code block
US11419122B2 (en) * 2019-07-26 2022-08-16 Qualcomm Incorporated Time domain bundling of reference signals based on transmission configuration indicator (TCI) states
US11621799B2 (en) * 2020-05-08 2023-04-04 Qualcomm Incorporated Peak-to-average power ratio reduction
CN115334661A (zh) * 2021-05-11 2022-11-11 中兴通讯股份有限公司 通信方法、设备和存储介质
US11909474B2 (en) * 2021-05-13 2024-02-20 Qualcomm Incorporated Rank adapation for MIMO transmissions and retransmissions
CN115347988A (zh) * 2021-05-14 2022-11-15 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
CN113329483B (zh) * 2021-05-21 2022-08-16 Oppo广东移动通信有限公司 一种数据传输方法及终端、存储介质
CN113692057B (zh) * 2021-08-26 2023-12-08 中信科移动通信技术股份有限公司 一种网络切片资源分配方法及***
WO2023133740A1 (zh) * 2022-01-12 2023-07-20 Oppo广东移动通信有限公司 通信方法、终端设备以及网络设备
CN117729617B (zh) * 2024-02-07 2024-04-16 山东浪潮数据库技术有限公司 无线自组网节点控制信道收发方法、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955155A (zh) * 2014-03-31 2015-09-30 中国电信股份有限公司 PDSCH数据接收方法、发送方法、用户设备和eNB
CN105594280A (zh) * 2013-10-07 2016-05-18 高通股份有限公司 用于增强pdsch干扰消除的联合pdcch/pdsch调度技术
US20180019844A1 (en) * 2016-07-18 2018-01-18 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721201B (zh) * 2016-07-29 2021-03-11 華碩電腦股份有限公司 無線通訊系統中用於波束操作的通道狀態資訊回報的方法和設備
US20180198650A1 (en) * 2017-01-06 2018-07-12 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN108289016B (zh) * 2017-01-09 2023-10-24 华为技术有限公司 无线通信的方法、终端设备和网络设备
US20200059951A1 (en) * 2017-03-24 2020-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of indicating a transmitter configuration for a wireless device
US20200403763A1 (en) * 2017-12-27 2020-12-24 Ntt Docomo, Inc. User terminal and radio communication method
CN110351052B (zh) * 2018-04-04 2020-08-28 维沃移动通信有限公司 信道和信号的传输方法及通信设备
US10986622B2 (en) * 2018-05-10 2021-04-20 Apple Inc. User equipment (UE) downlink transmission configuration indication (TCI)-state selection
WO2019233352A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
US11057089B2 (en) * 2018-06-29 2021-07-06 Qualcomm Incorporated Multi-beam simultaneous transmissions
WO2020017885A1 (ko) * 2018-07-17 2020-01-23 엘지전자 주식회사 Nr v2x에서 tbs를 결정하는 방법 및 장치
CN110808819B (zh) * 2018-08-06 2021-03-30 华为技术有限公司 信息传输的方法和装置
US11563537B2 (en) * 2018-10-16 2023-01-24 Qualcomm Incorporated Exchanging quasi colocation information between a user equipment and a base station that indicates an association between a spatial parameter and a current transmission configuration
US11115848B2 (en) * 2018-11-05 2021-09-07 Nokia Technologies Oy Apparatus, method and computer program
CN113329501B (zh) * 2018-12-06 2023-05-09 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594280A (zh) * 2013-10-07 2016-05-18 高通股份有限公司 用于增强pdsch干扰消除的联合pdcch/pdsch调度技术
CN104955155A (zh) * 2014-03-31 2015-09-30 中国电信股份有限公司 PDSCH数据接收方法、发送方法、用户设备和eNB
US20180019844A1 (en) * 2016-07-18 2018-01-18 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, no. V15.3.0, 30 September 2018 (2018-09-30), pages 1 - 96, XP051487513 *
CHTTL: "Discussion on Multi-TRP transmission", 3GPP DRAFT; R1-1813278, vol. RAN WG1, 11 November 2018 (2018-11-11), Spokane, USA, pages 1 - 5, XP051555294 *
OPPO: "Enhancements on multi-TRP and multi-panel transmission", 3GPP DRAFT; R1-1812807, vol. RAN WG1, 11 November 2018 (2018-11-11), Spokane, USA, pages 1 - 4, XP051554767 *
ZTE: "Enhancements on multi-TRP/Panel transmission", 3GPP DRAFT; R1-1812256 ENHANCEMENTS ON MULTI-TRP AND MULTI-PANEL TRANSMISSION, vol. RAN WG1, 11 November 2018 (2018-11-11), Spokane, USA, pages 1 - 14, XP051554139 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213326A1 (zh) * 2021-04-08 2022-10-13 华为技术有限公司 一种数据接收方法及装置

Also Published As

Publication number Publication date
US20210259009A1 (en) 2021-08-19
US11889526B2 (en) 2024-01-30
JP2022517904A (ja) 2022-03-11
US20220150948A1 (en) 2022-05-12
EP3879871A4 (en) 2021-12-01
CN112740738A (zh) 2021-04-30
CN113329501B (zh) 2023-05-09
US11272531B2 (en) 2022-03-08
KR20210091818A (ko) 2021-07-22
CN113329501A (zh) 2021-08-31
EP3879871A1 (en) 2021-09-15
EP3879871B1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2020113533A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
JP2020523893A (ja) 通信方法、端末デバイス、及びネットワークデバイス
US20210250934A1 (en) Data transmission method and terminal device
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2020062068A1 (zh) 无线通信方法、终端设备和网络设备
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2021046778A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020191559A1 (zh) 传输数据信道的方法和终端设备
AU2018437469A1 (en) Method and apparatus for transmitting feedback information, and communication device
WO2020087487A1 (zh) 物理上行控制信道资源集配置及起始符号确定方法和装置
WO2021159257A1 (zh) 一种信息配置方法及装置、终端
US20200128528A1 (en) Wireless communication method and device
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020034163A1 (zh) 一种上行信号传输方法、终端和存储介质
WO2021068264A1 (zh) 无线通信方法、装置和通信设备
WO2020113424A1 (zh) 确定传输块大小tbs的方法和设备
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
WO2020211095A1 (zh) 一种信号加扰方法及装置、通信设备
WO2020124506A1 (zh) 确定天线的发射功率的方法、终端设备和网络设备
WO2020107409A1 (zh) 一种通信方法、终端设备和网络设备
US10644830B2 (en) Data transmission method, receiving device, and transmitting device
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020087467A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018942072

Country of ref document: EP

Effective date: 20210608

ENP Entry into the national phase

Ref document number: 20217020510

Country of ref document: KR

Kind code of ref document: A