WO2023133740A1 - 通信方法、终端设备以及网络设备 - Google Patents

通信方法、终端设备以及网络设备 Download PDF

Info

Publication number
WO2023133740A1
WO2023133740A1 PCT/CN2022/071669 CN2022071669W WO2023133740A1 WO 2023133740 A1 WO2023133740 A1 WO 2023133740A1 CN 2022071669 W CN2022071669 W CN 2022071669W WO 2023133740 A1 WO2023133740 A1 WO 2023133740A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
rnti
type
precoding
terminal device
Prior art date
Application number
PCT/CN2022/071669
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/071669 priority Critical patent/WO2023133740A1/zh
Publication of WO2023133740A1 publication Critical patent/WO2023133740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present application relates to the technical field of communication, and more specifically, designs a communication method, terminal equipment and network equipment.
  • a waveform for transmitting a physical uplink shared channel (PUSCH) can be semi-statically configured through radio resource control (radio resource control, RRC) signaling. Due to the flexibility of the semi-static configuration, it is difficult to quickly switch the waveform of the PUSCH transmission according to the actual communication scene, which makes it difficult for the coverage performance of the PUSCH to match the changing communication scene.
  • RRC radio resource control
  • the present application provides a communication method, a terminal device and a network device, so as to realize dynamic indication of a waveform for transmitting PUSCH.
  • a communication method comprising: a terminal device receives a PDCCH sent by a network device for scheduling a PUSCH; the terminal device determines, according to the PDCCH, the enablement of transform precoding of the PUSCCH state.
  • a communication method includes: a network device sends a PDCCH for scheduling a PUSCH to a terminal device, and the PDCCH is used to indicate an enabling state of the PUSCH conversion precoding.
  • a terminal device in a third aspect, includes: a first receiving unit, configured to receive a PDCCH sent by a network device for scheduling a PUSCH; a determining unit, configured to determine the PUSCH according to the PDCCH The enable state of transform precoding.
  • a network device in a fourth aspect, includes: a second sending unit, configured to send a PDCCH for scheduling a PUSCH to a terminal device, where the PDCCH is used to indicate the usage of the transformed precoding of the PUSCH able state.
  • a terminal device including a processor, a memory, and a communication interface, the memory is used to store one or more computer programs, and the processor is used to call the computer programs in the memory so that the terminal device Execute the method described in the first aspect.
  • a network device including a processor, a memory, and a communication interface, the memory is used to store one or more computer programs, and the processor is used to invoke the computer programs in the memory to make the network device Execute the method of the second aspect.
  • an embodiment of the present application provides a communication system, where the system includes the above-mentioned terminal device and/or network device.
  • the system may further include other devices that interact with the terminal or network device in the solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program enables the terminal device to perform some or all of the steps in the method of the first aspect above .
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program causes the network device to perform some or all of the steps in the method of the second aspect above .
  • the embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable the terminal to execute the above-mentioned first Some or all of the steps in the method of one aspect.
  • the computer program product can be a software installation package.
  • the embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a network device to execute Part or all of the steps in the method of the second aspect above.
  • the computer program product can be a software installation package.
  • an embodiment of the present application provides a chip, the chip includes a memory and a processor, and the processor can call and run a computer program from the memory to implement the method described in the first aspect or the second aspect above some or all of the steps.
  • a thirteenth aspect provides a computer program product, including a program, the program causes a computer to execute the method described in the first aspect.
  • a fourteenth aspect provides a computer program product, including a program, the program causes a computer to execute the method described in the second aspect.
  • a fifteenth aspect provides a computer program, the computer program causes a computer to execute the method described in the first aspect.
  • a sixteenth aspect provides a computer program, the computer program causes a computer to execute the method described in the second aspect.
  • Different conversion precoding enabling states can correspond to different transmission PUSCH waveforms, therefore, by scheduling the physical downlink control channel (physical downlink control channel, PDCCH) of PUSCH to dynamically indicate the enabling status of converting precoding, the transmission of PUSCH can be realized The dynamic indication of the waveform.
  • PDCCH physical downlink control channel
  • Fig. 1 is a wireless communication system applied in the embodiment of the present application.
  • FIG. 2 is an example diagram of a process for dynamically indicating the changing precoding enabling state provided by the embodiment of the present application.
  • FIG. 3 is an example diagram of another process of dynamically indicating the changing precoding enabling state provided by the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120 .
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with the terminal device 120 located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. The embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system , LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system, and satellite communication systems, and so on.
  • the 5G system researched by the 3rd generation partnership project (3GPP) aims to meet people's pursuit of speed, delay, high-speed mobility and energy efficiency, and adapt to the diversity and complexity of business in future life .
  • the main scenarios of 5G system application can include: enhanced mobile broadband (eMBB), low-latency and high-reliability communications (ultra-reliable&low latency communications, URLLC) and large-scale machine type communications (massive machine type communications, mMTC) .
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable&low latency communications
  • mMTC massive machine type communications
  • the terminal equipment in the embodiment of the present application may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and can be used to connect people, objects and machines, such as handheld devices with wireless connection functions, vehicle-mounted devices, and the like.
  • the terminal device in the embodiment of the present application can be mobile phone (mobile phone), tablet computer (Pad), notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • UE can be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • a cell phone and an automobile communicate with each other using sidelink signals. Communication between cellular phones and smart home devices without relaying communication signals through base stations.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network.
  • radio access network radio access network, RAN node (or device) that connects a terminal device to a wireless network.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), primary station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (access point, AP), transmission node, transceiver node, base band unit (base band unit, BBU), remote radio unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that undertakes the function of a base station in D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communication, and a device in a 6G network.
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the network device in this embodiment of the present application may refer to a CU or a DU, or, the network device includes a CU and a DU.
  • a gNB may also include an AAU.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • uplink data transmission is carried on PUSCH.
  • the transmission of the PUSCH may include PUSCH transmission based on uplink grant (UL grant) scheduling and PUSCH transmission based on grant-free (configured grant, CG).
  • the uplink grant scheduling can be carried by downlink control information (downlink control information, DCI) format (format) 0_0 or DCI format 0_1.
  • the uplink grant scheduling may be carried by a random access response (random access response, RAR).
  • the network device may carry a time domain resource allocation (TimeDomainResourceAllocation, TDRA) field in the DCI.
  • the TDRA field can indicate different rows in a resource allocation table. Each row in the resource allocation table can contain a different combination of resource allocations.
  • the resource allocation combination may include: one or more of the starting position S of the PUSCH, the length L, k2 and different types (type). Wherein, k2 may represent the number of offset slots between the slot where the DCI is located and the slot where the PUSCH is located.
  • the TDRA field can be 4 bits, so that 16 different rows in the resource allocation table can be indicated.
  • DCI can also indicate frequency domain resource allocation information of PUSCH, modulation and coding scheme (modulation and coding scheme, MCS), new data indicator (new data indicator, NDI), redundancy version, and hybrid automatic repeat request (hybrid automatic repeat) request, HARQ) process number and other information.
  • modulation and coding scheme modulation and coding scheme, MCS
  • new data indicator new data indicator
  • NDI redundancy version
  • hybrid automatic repeat request hybrid automatic repeat request
  • the uplink authorized RAR can be used to bear the PUSCH in the random access process.
  • the random access process may adopt a four-step process, that is, the sending process of message 1 (Msg1 ) to message 4 (Msg4 ).
  • the message 1 (Msg3) can be carried by the PUSCH
  • the uplink grant of the PUSCH for carrying the initial transmission of the Msg3 can be carried by the RAR in the message 2 (Msg2).
  • the RAR uplink authorization information may be as shown in Table 1.
  • the RAR uplink authorization information may include one or more of PUSCH time domain and frequency domain resource allocation information, power control command (transmit power control, TPC), frequency hopping, and MCS information.
  • the network device may indicate the retransmission scheduling information of the Msg3 through the DCI.
  • DCI format 0_0 scrambled by a temporary cell radio network temporary identity temporary cell radio network temporary identity, TC-RNTI
  • the DCI may include not only the content of the RAR uplink authorization, but also the NDI, redundancy version, and HARQ process number.
  • the communication system can support semi-static configuration and dynamic indication of the MCS table.
  • the semi-static configuration can be realized based on RRC signaling
  • the dynamic indication can be realized based on the PDCCH channel.
  • the spectrum efficiency range corresponding to the MCS table low spectral efficiency 64qam (qam64LowSE) corresponding to the URLLC service is different from the MCS table qam256 corresponding to the eMBB service.
  • qam64LowSE supplements the MCS elements corresponding to the corresponding low spectral efficiency, and deletes the MCS elements corresponding to the high spectral efficiency.
  • the selection of different MCS tables can be determined by combining the configuration of RRC signaling and the RNTI of the cyclic redundancy check (cyclic redundancy check, CRC) of the scrambled DCI.
  • a modulation and coding scheme cell radio network temporary identity can be selected and set for the MCS table. If the MCS-C-RNTI is not configured, or the CRC of the PDCCH that schedules PUSCH transmission passes through the cell radio network temporary identity (C-RNTI), semi-static channel state information wireless network temporary identity (semi persistent channel state information radio network temporary identity, SP-CSI-RNTI) or set scheduling radio network temporary identity (configured scheduling radio network temporary identity, CS-RNTI) scrambling, or PUSCH based on scheduling-free transmission, the terminal device can use RRC parameters MCS table for semi-static configuration of mcs-Table and mcs-TableTransformPrecoder.
  • C-RNTI cell radio network temporary identity
  • SP-CSI-RNTI semi-static channel state information wireless network temporary identity
  • SP-CSI-RNTI semi-static channel state information radio network temporary identity
  • scheduling radio network temporary identity configured scheduling radio network temporary identity, CS-RNTI
  • the transmission of the PUSCH can use the MCS table qam256.
  • the MCS table qam64LowSE is configured, the transmission of the PUSCH can use the MCS table qam64LowSE. If the MCS-C-RNTI is configured, and the CRC of the PDCCH scheduling the PUSCH is scrambled by the MCS-C-RNTI, the MCS table qam64LowSE can be used for the transmission of the PUSCH.
  • the above implementation method can be applied to PUSCH scheduled by DCI format 0_1/0_2.
  • the transmission of the PUSCH can continue to use the existing MCS table.
  • Waveforms for data transmission may include discrete fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) waveforms and cyclic prefix orthogonal frequency division multiplexing (cyclic prefix orthogonal frequency division multiplexing, CP-OFDM) waveform, etc.
  • the DFT-S-OFDM waveform can have a lower peak-to-average power ratio (PAPR), and can also achieve better coverage.
  • PAPR peak-to-average power ratio
  • DFT-S-OFDM waveforms can be used in coverage-limited scenarios.
  • the CP-OFDM waveform can support more flexible data scheduling.
  • CP-OFDM waveforms can be used in scenarios where coverage is not limited.
  • downlink transmission waveforms can support CP-OFDM waveforms, and uplink transmission waveforms (ie, PUSCH transmission waveforms) only support DFT-S-OFDM waveforms.
  • the waveform of uplink transmission can also support the waveform of CP-OFDM, thereby supporting more flexible data scheduling.
  • the waveform of CP-OFDM may be the same as the downlink waveform.
  • the uplink waveform can be selected from CP-OFDM and DFT-S-OFDM.
  • the uplink waveform can be indicated by enabling and disabling the transform precoder.
  • enabling transform precoding may correspond to a DFT-S-OFDM waveform
  • disabling transform precoding may correspond to a CP-OFDM waveform.
  • the uplink waveform can be semi-statically configured through RRC parameters.
  • the uplink waveform can be configured by any one or more of the following RRC parameters: parameter transformPrecoder configured in PUSCH-Config, parameter msg3-transformPrecoder configured in RACH-ConfigCommon, parameter transformPrecoder configured in ConfiguredGrantConfig, and parameter transformPrecoder configured in MsgA-PUSCH-Config Configured parameter msgA-TransformPrecoder-r16.
  • PUSCH-Config.transformPrecoder can be used to configure the terminal device specific PUSCH transmission waveform.
  • RACH-ConfigCommon.msg3-transformPrecoder can be used to configure the waveform of the PUSCH transmission of Msg3.
  • ConfiguredGrantConfig.transformPrecoder can be used to configure the waveform for scheduling-free PUSCH transmission.
  • MsgA-PUSCH-Config.msgA-TransformPrecoder-r16 can be used to configure the waveform of PUSCH transmission of message A (MsgA).
  • the waveform for transmitting the PUSCH can be semi-statically configured through RRC signaling. Due to the weak flexibility of the semi-static configuration, it is difficult to quickly switch the PUSCH transmission waveform according to the actual communication scenario, which makes it difficult for the coverage performance of the PUSCH to match the changing communication scenario.
  • Related technologies (such as the R18 standard) propose a requirement for dynamic switching of PUSCH waveforms, but do not propose how to implement dynamic instructions for transmitting PUSCH waveforms.
  • the present application proposes to indicate the enabled state of the transform precoding of the PUSCH by scheduling the PDCCH of the PUSCH. That is to say, the enabled state of the transform precoding of the PUSCH can be indicated by the PDCCH that schedules the PUSCH.
  • Different transformation precoding enabling states may correspond to different PUSCH waveforms, so as to realize dynamic indication of PUSCH waveforms.
  • the network device may determine the enabling state of transform precoding based on an actual communication situation. For example, in the dynamic uplink scheduling process, the network device can determine the enabling state of the precoding conversion according to one or more of the following information: received signal-to-noise ratio of PUSCH, demodulation reference symbol (demodulation reference symbol, DMRS) Received signal-to-noise ratio, PUSCH bit error rate, channel sounding reference signal (sounding reference signal, SRS) measurement results and power headroom report (power headroom report, PHR) results.
  • received signal-to-noise ratio of PUSCH demodulation reference symbol (demodulation reference symbol, DMRS) Received signal-to-noise ratio, PUSCH bit error rate, channel sounding reference signal (sounding reference signal, SRS) measurement results and power headroom report (power headroom report, PHR) results.
  • received signal-to-noise ratio of PUSCH demodulation reference symbol (demodulation reference symbol, DMRS) Received signal-to-
  • the network device may transmit the PDCCH for scheduling the PUSCH according to the enabled state of the transformed precoding, thereby dynamically indicating the enabled state of the transformed precoding of the PUSCH.
  • the terminal device can determine the enabling state of the transform precoding of the PUSCH through the received PDCCH for scheduling the PUSCH.
  • the transform precoding of the PUSCH is simply referred to as transform precoding hereinafter.
  • the precoding enabled state may include the first state or the second state.
  • the first state can be enabled or disabled.
  • the first state may be predefined.
  • the first state can be predefined as disabled.
  • the first state may also be configured for a network device.
  • the first state may be an enabled state of transform precoding semi-statically configured in RRC signaling.
  • the enabling state of transform precoding configured by RRC semi-statically may include transformprecoder configured in PUSCH-Config, transformprecoder configured in ConfiguredGrantConfig, msgA-TransformPrecoder configured in MsgA-PUSCH-Config, or msg3-transformPrecoder configured in RACH-ConfigCommon.
  • the second state can be enabled or disabled.
  • the second state may be a transform precoding enabled state different from the first state.
  • the second state may be disabled.
  • the first state when the first state is disabled, the second state may be enabled.
  • the second state may be predefined.
  • the second state may also be based on network device configuration.
  • the second state may be an enabled state different from the enabled state of transform precoding configured semi-statically in RRC signaling.
  • the second state may also be referred to as an enabled state of target transform precoding.
  • disabling may also be referred to as a disabling state
  • enabling may also be referred to as an enabling state
  • the RNTI scrambled by the PDCCH that schedules the PUSCH may be used to indicate the enabling state of the conversion precoding.
  • the PDCCH may include one or more parity bits. Part or all of the check bits can be checked in a CRC manner, for example.
  • the RNTI for scrambling the PDCCH may be the RNTI for scrambling the part or all of the parity bits.
  • the RNTI of the PDCCH that schedules the PUSCH may be scrambled to indicate the enabling state of the transform precoding.
  • the RNTI type of the PDCCH may be scrambled to indicate the enabling state of the transform precoding.
  • different RNTI types may correspond to different transformation precoding enabling states.
  • the type of RNTI may include the first RNTI type or the second RNTI type.
  • the first RNTI type may be used to indicate that the enabling state of transform precoding is the first state
  • the second RNTI type may be used to indicate that the enabling state of transform precoding is the second state.
  • a specific RNTI type may be used to indicate switching or changing of the transformation precoding enabling state of the PUSCH.
  • the type of RNTI may include a second RNTI type.
  • the second RNTI type may be used to indicate switching of the transformation precoding enabling state.
  • the first RNTI type may be used to indicate that the enabling state of the transformed precoding is not changed, that is, the precoding enabling state remains the current precoding enabling state.
  • the second RNTI type may be used to indicate that the precoding enabled state is switched to an enabled state different from the current precoding enabled state.
  • the second RNTI type may be used to indicate that the precoding enabling state is switched from enabled to disabled, or from disabled to enabled.
  • the first RNTI type or the second RNTI type may include one or more RNTIs.
  • the first RNTI type may include existing RNTIs in the related art.
  • the first RNTI type may include MCS-C-RNTI, C-RNTI, SP-CSI-RNTI or CS-RNTI.
  • the second RNTI type may include an existing RNTI in the related art, or may include a newly defined RNTI.
  • the second RNTI type includes a newly defined RNTI, and the newly defined RNTI may be named as transform precoder cell radio network temporary identity (transform precoder cell radio network temporary identity, TP-C-RNTI).
  • the terminal device can try the first RNTI type and the second RNTI type, so as to determine the RNTI type that scrambles the CRC of the PDCCH, and then determine the enabling state of the conversion precoding and use the corresponding waveform transmission PUSCH.
  • FIG. 2 is an example diagram of a process for dynamically indicating the changing precoding enabling state provided by the embodiment of the present application.
  • the first RNTI type may include C-RNTI
  • the second RNTI type may include TP-C-RNTI
  • the first state may be a disabled state
  • the second state may be an enabled state .
  • the offset between the time slot indicated by the DCI used to schedule the PUSCH and the time slot where the PUSCH is located is 2 time slots.
  • the DCI in the downlink time slot 211 can be used to schedule the PUSCH in the uplink time slot 221 .
  • the DCI in the downlink time slot 212 can be used to schedule the PUSCH in the uplink time slot 222 .
  • DCI can be scrambled by TP-C-RNTI, then on the uplink time slot 221, the enable state of the uplink conversion precoding can be enabled, that is, the PUSCH can pass the DFT-S-OFDM waveform transmission.
  • the DCI can be scrambled by C-RNTI, and on the uplink time slot 222, the enable state of the uplink conversion precoding can be disabled, that is, the PUSCH can be transmitted through the CP-OFDM waveform.
  • the RNTI type scrambled by the CRC of the PDCCH that schedules the PUSCH indicates the enabled state of the transformed precoding
  • the dynamic indication of the enabled state of the transformed precoding can be realized without changing the existing DCI format, thereby realizing Dynamic switching of the waveform for transmitting PUSCH.
  • the second RNTI type can be configured through a network device.
  • the second RNTI type may be configured through signaling physical cell group configuration (PhysicalCellGroupConfig).
  • PhysicalCellGroupConfig For example, the information element of adding TP-C-RNTI can be configured in PhysicalCellGroupConfig.
  • the semi-static configuration of RRC signaling can be combined with the RNTI type of the CRC of the PDCCH to realize the dynamic switching of the enabling state of the transforming precoding, thereby realizing the semi-static configuration and dynamic configuration of the transforming precoding enabling state .
  • the first state may be an enabling state of transform precoding configured by RRC signaling.
  • the enabled state of the conversion precoding may be the first state.
  • the first state may be an enabled state of transformed precoding configured by RRC semi-statically.
  • the conversion precoding may be in the second state.
  • the second state may be a predefined state, or a state based on network configuration.
  • the second state may include an enabled or disabled state.
  • the second state may be an enabled state different from an enabled state of transform precoding configured semi-statically in RRC signaling.
  • the present application also proposes to dynamically indicate two kinds of information, the enabled status of the conversion precoding and the MCS table, through the RNTI type of the scrambled PDCCH.
  • Different RNTI types may correspond to different combinations of transformation precoding enabling states and MCS tables.
  • the type of RNTI may include one or more RNTIs.
  • the RNTI type may include existing RNTIs in the related art, and may also include newly defined RNTIs.
  • the RNTI type may include a first RNTI type, a second RNTI type, a third RNTI type, or a fourth RNTI type.
  • the first RNTI type may be used to indicate that the enabling state of transform precoding is the first state and the MCS table is the first table;
  • the second RNTI type may be used to indicate that the enabling state of transform precoding is the second state and the MCS table is The first table;
  • the third RNTI type may be used to indicate that the enabling state of the transform precoding is the second state and the MCS table is the second table;
  • the fourth RNTI type may be used to indicate that the enabling state of the transform precoding is the first state And the MCS table may be the second table.
  • the first RNTI type may include C-RNTI, SP-CSI-RNTI or CS-RNTI.
  • the second RNTI type may include newly defined TP-C-RNTI.
  • the third RNTI type may be another newly defined RNTI.
  • the fourth RNTI type may be MCS-C-RNTI.
  • the first state and the second state may be the enabled state of transform precoding described above.
  • the first MCS table may be an MCS table configured semi-statically in RRC signaling.
  • the second MCS table may be the MCS table corresponding to the MCS-C-RNTI in the related art. In some embodiments, the second MCS table may also be referred to as a target MCS table.
  • the above one or more RNTI types can be configured by signaling PhysicalCellGroupConfig.
  • an information element for configuring a newly defined RNTI can be added to PhysicalCellGroupConfig.
  • the RNTI of the CRC of the PDCCH that schedules the PUSCH indicates in detail the enablement status of the transform precoding above.
  • the present application also provides other embodiments to dynamically indicate the enabled status of transform precoding.
  • the enabling state of transform precoding may be indicated implicitly through the search space set of the PDCCH scheduling the PUSCH, the listening opportunity or the DCI format.
  • the enabled state of transform precoding may be indicated by scheduling the search space set of the PDCCH of the PUSCH.
  • a terminal device may be configured with at least two sets of search spaces for scheduling PDCCHs.
  • the network device may determine the search space set according to the enabled state of the transformation precoding to be indicated.
  • the terminal device receives the PDCCH, it can determine the search space set of the PDCCH, so as to determine the enabling state of the transform precoding.
  • the set of search spaces for PDCCH may belong to one of multiple sets of spaces.
  • the search space set of PDCCH may belong to the first search space set or the second search space set.
  • the first set of search spaces may be used to indicate that the enabled state of transform precoding may be the first state.
  • the enabling state of the second search space set that can be used to change the precoding may be the second state.
  • the first search space set may be a public search space set
  • the second search space set may be a terminal device-specific search space set.
  • the first search space set may be a terminal device-specific search space set
  • the second search space set may be a public search space set.
  • the enabling state of transform precoding may be indicated by scheduling the listening occasions in the search space set of the PDCCH.
  • the set of search spaces of the PDCCH may include the listening occasions of the PDCCH.
  • Listening occasions may belong to one or more listening occasion sets.
  • One or more sets of listening occasions may correspond to corresponding enabling states of switching precoding.
  • the network device may determine the set of listening occasions to which the listening occasions of the PDCCH belong, so as to indicate the enabling status of switching precoding.
  • the terminal device may determine the set of listening occasions to which the listening occasion of the PDCCH belongs and determine the enabling state of switching precoding.
  • a set of listening occasions may include one or more sets of listening occasions.
  • the one or more sets of listening occasions may include a first set of listening occasions and a second set of listening occasions.
  • the enabling state of the conversion precoding may be the first state
  • switching The enabled state of precoding may be the second state.
  • the DCI format may be used to indicate the enabling state of the precoding conversion.
  • a terminal device can be configured with at least two DCI formats.
  • the network device may determine the DCI format according to the enabling state of the transformation precoding to be indicated.
  • the terminal device can determine the enabled state of transform precoding according to the detected DCI format of the PDCCH.
  • the format of the DCI may include the first format and the second format.
  • the enabled state of transform precoding may be the first state.
  • the DCI format is the second format
  • the enabled state of the transform precoding may be the second state.
  • the first format may be one of one or more DCI formats
  • the second format may be one of one or more DCI formats.
  • FIG. 3 is an example diagram of a process for dynamically indicating a changing precoding enabling state provided by an embodiment of the present application.
  • the first state may be transform precoding enabled
  • the second state may be transform precoding disabled.
  • the offset between the time slot indicated by the DCI used to schedule the PUSCH and the time slot where the PUSCH is located is 2 time slots.
  • the DCI in the downlink time slot 311 can be used to schedule the PUSCH in the uplink time slot 321 .
  • the DCI in the downlink time slot 312 can be used to schedule the PUSCH in the uplink time slot 322 .
  • the search space set described by the PDCCH belongs to the first search space set, or the listening opportunity of the PDCCH belongs to the first listening opportunity set, or the DCI format is the first format, then on the uplink time slot 321, the uplink
  • the enabling state of transform precoding may be the enabling state, that is, the PUSCH may be transmitted through the DFT-S-OFDM waveform.
  • the uplink The enabled state of transforming the precoding may be a disabled state, that is, the PUSCH may be transmitted through the CP-OFDM waveform.
  • the false alarm probability of PDCCH detection can be reduced by scheduling PUSCH PDCCH search space set, listening opportunity or DCI format to implicitly indicate the enabling state of changing precoding.
  • the search space set, listening opportunity set or DCI format of the PDCCH scheduling the PUSCH can be combined with the RNTI type of the CRC of the PDCCH scheduling the PUSCH to indicate the enabled state of the transform precoding.
  • the public search space set may be used to indicate that the enabled state of transform precoding is the first state
  • the terminal device-specific search space set may be used to indicate that the enabled state of transform precoding is the second state.
  • the first RNTI type may be used to indicate that the enable state of the change precoding is the first state
  • the second RNTI type may be used to indicate that the enable state of the transform precoding is the second state .
  • the network device may configure whether to enable dynamic switching of transform precoding for the terminal device.
  • the network device may send the first information to the terminal device.
  • the first information may be used to instruct the terminal device to determine the enabling state of the transformation precoding of the PUSCH according to the PDCCH that schedules the PUSCH, that is, enable dynamic switching of the transformation precoding.
  • the terminal device may report to the network device whether the terminal device has the relevant capability of changing precoding and switching dynamically.
  • the terminal device may send the first terminal capability to the network device.
  • the first terminal capability may be used to indicate whether the terminal device supports dynamic determination of the enabled state of the transform precoding of the PUSCH, that is, whether the terminal device has the capability of dynamically switching the transform precoding. It can be understood that before the network device configures for the terminal device whether to enable the dynamic switching of the transform precoding, it may report whether the terminal device supports dynamically determining the enabling state of the transform precoding of the PUSCH.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method shown in FIG. 4 can be executed by a terminal device and a network device.
  • the method described in FIG. 4 includes step S410 and step S420.
  • Step S410 the network device sends the PDCCH for scheduling the PUSCH to the terminal device.
  • Step S420 the terminal device determines the enabled state of the transform precoding of the PUSCH according to the PDCCH.
  • the network device determines the RNTI of the PDCCH, where the RNTI is used to indicate the enabling state of the transformed precoding.
  • Step S420 may include: the terminal device determining the enabling state of the transform precoding according to the radio network temporary identifier RNTI that scrambles the PDCCH.
  • the network device determining the RNTI of the PDCCH includes:
  • the network device determines the type of the RNTI, where the type of the RNTI is used to indicate the transformation precoding enabling state.
  • the determining, by the terminal device, the enabling state of the transform precoding according to the RNTI that scrambles the PDCCH includes: determining, by the terminal device, the enabling state of the transform precoding according to the type of the RNTI.
  • the RNTI type includes the first RNTI type or the second RNTI type.
  • the network device determines that the RNTI type is the first RNTI type to indicate that the transformation precoding enabling state is the first state; or, the network device determines that the RNTI type is the second RNTI type, The enabling state indicating the transform precoding is the second state.
  • Determining, by the terminal device, the enabling state of the transform precoding according to the type of the RNTI includes: in a case where the type of the RNTI is the first type of RNTI, the terminal device determines the enabling state of the transform precoding is the first state; when the RNTI type is the second RNTI type, the terminal device determines that the transformation precoding enabling state is the second state.
  • the type of the RNTI includes a second type of RNTI.
  • the network device determining the type of the RNTI includes: the network device determining that the RNTI is a second RNTI type, so as to indicate switching of an enabling state of the transformed precoding.
  • Determining, by the terminal device, the enabled state of the transform precoding according to the type of the RNTI includes: switching the enabled state of the transform precoding by the terminal device when the type of the RNTI is a second RNTI type .
  • the terminal device determines the enabled state of the transform precoding of the PUSCH includes: the second RNTI type is not configured, and the RNTI type is the first RNTI type or the PUSCH scheduling-free transmission, the terminal device determines that the enabled state of the transformation precoding is the first state, and the first state is the transformation precoding configured semi-statically in the radio resource control RRC signaling enabled status.
  • the first RNTI type includes: modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, cell radio network temporary identifier C-RNTI, semi-static channel state information radio network temporary identifier SP-CSI-RNTI Or set the scheduling radio network temporary identifier CS-RNTI.
  • the network device determining the type of the RNTI includes: the network device determining the type of the RNTI to indicate the conversion precoding enabling state and the MCS modulation and coding scheme table.
  • the terminal device determining the transformation precoding enabling state according to the type of the RNTI includes: the terminal device determining the transformation precoding enabling state and the MCS modulation and coding mode table according to the type of the RNTI .
  • the RNTI type includes a first RNTI type, a second RNTI type, a third RNTI type or a fourth RNTI type.
  • the network device determining the type of the RNTI includes: the network device determining the RNTI type as the first RNTI type to indicate that the transformation precoding enabling state is the first state and the MCS table is The first table; or, the network device determines that the RNTI type is the second RNTI type, to indicate that the transformation precoding enabling state is the second state and the MCS table is the first table; or, The network device determines that the RNTI type is the third RNTI type to indicate that the transformation precoding enabling state is the second state and the MCS table is the second table; or, the network device determines that the The RNTI type is the fourth RNTI type, to indicate that the transformation precoding enabling state is the first state and the MCS table is the second table.
  • the terminal device determines the transformation precoding enabling status and the MCS table includes: when the RNTI type is the first RNTI type, the terminal device determines the transformation precoding The enabling state is the first state, and determining that the MCS table is the first table; when the RNTI type is the second RNTI type, the terminal device determines that the transforming precoding enabling state is The second state, and determining that the MCS table is the first table; when the RNTI type is the third RNTI type, the terminal device determines that the conversion precoding enabling state is the second state, And determine that the MCS table is the second table; when the RNTI type is the fourth RNTI type, the terminal device determines that the enable state of the transformation precoding is the first state, and determines that the The MCS form is the second form.
  • the first RNTI type includes C-RNTI, SP-CSI-RNTI or CS-RNTI.
  • the network device determines the search space set of the PDCCH to indicate the enabling state of the transform precoding.
  • step S420 may include: the terminal device determining the enabled state of the transform precoding according to the search space set of the PDCCH.
  • the search space set of the PDCCH belongs to one of multiple search space sets, and the multiple search space sets include a first search space set or a second search space set.
  • the network device determining the search space set of the PDCCH includes: the network device determining that the search space set of the PDCCH belongs to the first search space set, so as to indicate that the enabled state of the transform precoding is the first state or, the network device determines that the search space set of the PDCCH belongs to the second search space set, so as to indicate that the enable state of the transform precoding is the second state.
  • the determining, by the terminal device, the enabled state of the transform precoding according to the search space set of the PDCCH includes: when the search space set of the PDCCH belongs to the first search space set, the terminal device determines The enabling state of the transform precoding is the first state; when the search space set of the PDCCH belongs to the second search space set, the terminal device determines that the enabling state of the transform precoding is the first state Two states.
  • the network device may determine the monitoring timing of the PDCCH to indicate the enabling state of the transform precoding.
  • step S420 may include: the terminal device determining the enabling state of the transform precoding according to the monitoring timing of the PDCCH.
  • the listening occasion of the PDCCH belongs to one of multiple listening occasion sets, and the multiple listening occasion sets include a first listening occasion set and a second listening occasion set.
  • the network device determining the monitoring opportunity of the PDCCH includes: the network device determining that the monitoring opportunity of the PDCCH belongs to the first monitoring opportunity set, so as to indicate that the enabled state of the converted precoding is the first state; or The network device determines that the listening opportunity of the PDCCH belongs to the second listening opportunity set, so as to indicate that the enabling state of the transform precoding is the second state.
  • the determining, by the terminal device, the enabling state of the transformation precoding according to the monitoring opportunity of the PDCCH includes: when the monitoring opportunity of the PDCCH belongs to the first set of monitoring opportunities, the terminal device determines the The enabled state of transform precoding is the first state; in the case that the listening opportunity of the PDCCH belongs to the second listening opportunity set, the terminal device determines that the enabled state of transformed precoding is the second state.
  • the network device determines the format of the DCI of the PDCCH to indicate the enabled state of the transform precoding.
  • the step S420 may include: the terminal device determining the enabled state of the transform precoding according to the format of the DCI of the PDCCH.
  • the format of the DCI includes the first format or the second format.
  • the network device determines that the format of the DCI is the first format to indicate that the enable state of the transformation precoding is the first state; or, the network device determines that the format of the DCI is the second format. format, to indicate that the enabled state of the transform precoding is the second state.
  • the determining, by the terminal device, the enabling state of the transform precoding according to the format of the DCI of the PDCCH includes: when the format of the DCI is the first format, the terminal device determines that the transform precoding The enabling state of encoding is the first state; when the format of the DCI is the second format, the terminal device determines that the enabling state of the transform precoding is the second state.
  • the first state is enabled, and the second state is disabled; or, the first state is disabled, and the second state is enabled; or, the first The state is an enabled state of transformed precoding configured semi-statically in RRC signaling, and the second state is an enabled state different from the enabled state of transformed precoding configured semi-statically in RRC signaling.
  • the method shown in FIG. 4 may further include: the terminal device receiving first information sent by the network device, where the first information is used to instruct the terminal device to determine the conversion schedule according to the PDCCH. Encoded enable state.
  • the method shown in FIG. 4 may further include: the terminal device sending a first terminal capability to the network device, where the first terminal capability is used to indicate whether the terminal device supports dynamically determining the conversion schedule of the PUSCH. Encoded enable state.
  • FIG. 5 is a schematic structural diagram of a terminal device 500 provided in an embodiment of the present application.
  • the terminal device 500 may include a first receiving unit 510 and a first determining unit 520 .
  • the first receiving unit 510 may be configured to receive a physical downlink control channel PDCCH sent by a network device for scheduling a physical uplink shared channel PUSCH.
  • the first determining unit 520 may be configured to determine the enabling state of the transform precoding of the PUSCH according to the PDCCH.
  • the first determining unit 520 may include: a second determining unit, configured to determine the enabled state of the transformed precoding according to the radio network temporary identifier RNTI that scrambles the PDCCH.
  • the second determining unit includes: a third determining unit, configured to determine the transformed precoding enabled state according to the type of the RNTI.
  • the type of the RNTI includes a first RNTI type or a second RNTI type
  • the third determining unit includes: a fourth determining unit, configured to determine if the RNTI type is the first RNTI type The enabling state of the transformation precoding is the first state; the fifth determining unit is configured to determine the enabling state of the transformation precoding as the second state when the RNTI type is the second RNTI type.
  • the type of the RNTI includes a second RNTI type
  • the third determining unit includes: a switching unit configured to switch the use of the transform precoding when the RNTI type is the second RNTI type. able state.
  • the second determining unit 520 may include: a sixth determining unit, configured to, when the second RNTI type is not configured and the RNTI type is the first RNTI type or the PUSCH scheduling-free transmission, It is determined that the enabling state of the transformation precoding is a first state, and the first state is an enabling state of the transformation precoding configured semi-statically in the radio resource control RRC signaling.
  • the first RNTI type includes: modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, cell radio network temporary identifier C-RNTI, semi-static channel state information radio network temporary identifier SP-CSI-RNTI Or set the scheduling radio network temporary identifier CS-RNTI.
  • the third determining unit includes: a seventh determining unit, configured to determine a transformation precoding enabling state and an MCS modulation and coding scheme table according to the type of the RNTI.
  • the type of the RNTI includes a first RNTI type, a second RNTI type, a third RNTI type, or a fourth RNTI type
  • the seventh determining unit includes: an eighth determining unit, configured to determine the RNTI type In the case of the first RNTI type, determine that the enabled state of the transformation precoding is the first state, and determine that the MCS table is the first table; a ninth determination unit, configured to determine when the RNTI type is In the case of the second RNTI type, determine that the enabled state of the transformation precoding is the second state, and determine that the MCS table is the first table; a tenth determination unit is configured to determine that the RNTI type is the In the case of the third RNTI type, determine that the enabled state of the transform precoding is the second state, and determine that the MCS table is the second table; an eleventh determination unit is configured to determine that the RNTI type is the In the case of the fourth RNTI type, determine that the enabled state of the transform precoding is the first
  • the first RNTI type includes C-RNTI, SP-CSI-RNTI or CS-RNTI.
  • the first determining unit 520 includes: a twelfth determining unit, configured to determine the enabling state of the transform precoding according to the search space set of the PDCCH.
  • the search space set of the PDCCH belongs to one of multiple search space sets, the multiple search space sets include a first search space set or a second search space set, and the twelfth determining unit includes: The thirteenth determination unit is configured to determine that the enabled state of the transform precoding is the first state when the search space set of the PDCCH belongs to the first search space set; the fourteenth determination unit is configured to In a case where the search space set of the PDCCH belongs to the second search space set, determine that the enabled state of the transform precoding is the second state.
  • the first determining unit 520 includes: a fifteenth determining unit, configured to determine the enabled state of the transform precoding according to the monitoring timing of the PDCCH.
  • the listening opportunity of the PDCCH belongs to one of multiple listening opportunity sets
  • the multiple listening opportunity sets include a first listening opportunity set and a second listening occasion set
  • the fifteenth determining unit includes: A sixteenth determination unit, configured to determine that the enabled state of the transformed precoding is the first state when the listening opportunity of the PDCCH belongs to the first set of listening opportunities; a seventeenth determining unit, configured to If the listening opportunity of the PDCCH belongs to the second listening opportunity set, it is determined that the enabling state of the transform precoding is the second state.
  • the first determining unit 520 includes: an eighteenth determining unit, configured to determine the enabling state of the transform precoding according to the format of the DCI of the PDCCH.
  • the format of the DCI includes a first format or a second format
  • the eighteenth determining unit includes: a nineteenth determining unit, configured to be configured when the format of the DCI is the first format , determining that the enabling state of the transform precoding is the first state; a twentieth determining unit, configured to determine the enabling state of the transform precoding when the format of the DCI is the second format to the second state.
  • the first state is enabled, and the second state is disabled; or, the first state is disabled, and the second state is enabled; or, the first The state is an enabled state of transformed precoding configured semi-statically in RRC signaling, and the second state is an enabled state different from the enabled state of transformed precoding configured semi-statically in RRC signaling.
  • the terminal device 500 further includes: a second receiving unit, configured to receive first information sent by the network device, where the first information is used to instruct the terminal device to determine the transformation according to the PDCCH Enable status of precoding.
  • a second receiving unit configured to receive first information sent by the network device, where the first information is used to instruct the terminal device to determine the transformation according to the PDCCH Enable status of precoding.
  • the terminal device 500 further includes: a first sending unit, configured to send a first terminal capability to the network device, where the first terminal capability is used to indicate whether the terminal device supports dynamically determining PUSCH conversion Enable status of precoding.
  • a first sending unit configured to send a first terminal capability to the network device, where the first terminal capability is used to indicate whether the terminal device supports dynamically determining PUSCH conversion Enable status of precoding.
  • FIG. 6 is a schematic structural diagram of a network device 600 provided by an embodiment of the present application.
  • the network device 600 may include a second sending unit 610 .
  • the second sending unit 610 is configured to send a physical downlink control channel (PDCCH) for scheduling a physical uplink shared channel (PUSCH) to a terminal device; wherein, the PDCCH is used to indicate the enabling state of the transformation precoding of the PUSCH.
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • the network device 600 further includes: a twenty-first determining unit, configured to determine an RNTI of the PDCCH, where the RNTI is used to indicate the enabled state of the transformed precoding.
  • the twenty-first determining unit includes: a twenty-second determining unit, configured to determine the type of the RNTI, where the type of the RNTI is used to indicate the transformation precoding enabled state.
  • the RNTI type includes a first RNTI type or a second RNTI type
  • the twenty-second determining unit includes: a twenty-third determining unit, configured to determine that the RNTI type is the first RNTI type , to indicate that the enabling state of the transform precoding is the first state; or, a twenty-fourth determining unit, configured for the network device to determine that the type of the RNTI is a second RNTI type, to indicate the transform precoding
  • the enabled state of encoding is the second state.
  • the type of the RNTI includes a second RNTI type
  • the twenty-second determining unit includes: a twenty-fifth determining unit, configured to determine that the RNTI is the second RNTI type, so as to indicate switching of the conversion Enable status of precoding.
  • the first RNTI type includes: modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, cell radio network temporary identifier C-RNTI, semi-static channel state information radio network temporary identifier SP-CSI-RNTI Or set the scheduling radio network temporary identifier CS-RNTI.
  • the twenty-second determining unit includes: a twenty-sixth determining unit, configured to determine the type of the RNTI to indicate the transformation precoding enabling state and the MCS modulation and coding scheme table.
  • the type of the RNTI includes a first RNTI type, a second RNTI type, a third RNTI type, or a fourth RNTI type
  • the twenty-sixth determining unit includes: a twenty-seventh determining unit, configured to determine The RNTI type is the first RNTI type, to indicate that the enabled state of the transform precoding is the first state and the MCS table is the first table; or, a twenty-eighth determining unit, configured to determine the The RNTI type is the second RNTI type, to indicate that the enabled state of the transform precoding is the second state and the MCS table is the first table; or, a twenty-ninth determining unit, configured to determine the The RNTI type is the third RNTI type, to indicate that the enabled state of the transform precoding is the second state and the MCS table is the second table; or, a thirtieth determination unit, configured to determine the RNTI type is the fourth RNTI type, to indicate that the enabled state of the transform pre
  • the first RNTI type includes C-RNTI, SP-CSI-RNTI or CS-RNTI.
  • the network device 600 further includes: a 31st determining unit, configured to determine the search space set of the PDCCH, so as to indicate the enabling state of the transform precoding.
  • the search space set of the PDCCH belongs to one of multiple search space sets, and the multiple search space sets include a first search space set or a second search space set, and the thirty-first determining unit includes : A thirty-second determining unit, configured to determine that the search space set of the PDCCH belongs to the first search space set, so as to indicate that the enabled state of the transform precoding is the first state; or, the thirty-third determination A unit, configured to determine that the search space set of the PDCCH belongs to the second search space set, so as to indicate that the enabled state of the transform precoding is the second state.
  • the network device 600 further includes: a 34th determining unit, configured to determine the monitoring timing of the PDCCH, so as to indicate the enabled state of the transformed precoding.
  • the listening opportunity of the PDCCH belongs to one of multiple listening occasion sets, the multiple listening occasion sets include a first listening opportunity set and a second listening occasion set, and the thirty-fourth determining unit includes: The thirty-fifth determining unit is configured to determine that the listening opportunity of the PDCCH belongs to the first listening opportunity set, so as to indicate that the enabling state of the transformed precoding is the first state; or, the thirty-sixth determining unit, The listening opportunity for determining the PDCCH belongs to the second listening opportunity set, so as to indicate that the enabled state of the transform precoding is the second state.
  • the network device 600 further includes: a thirty-seventh determining unit, configured to determine the format of the DCI of the PDCCH, so as to indicate the enabling state of the transform precoding.
  • the format of the DCI includes the first format or the second format
  • the thirty-seventh determining unit includes: a thirty-eighth determining unit, configured to determine that the format of the DCI is the first format, To indicate that the transformation precoding enabling state is the first state; or, a thirty-ninth determining unit, configured to determine that the format of the DCI is the second format, so as to indicate the enabling of the transformation precoding The state is the second state.
  • the first state is enabled, and the second state is disabled; or, the first state is disabled, and the second state is enabled; or, the first The state is an enabled state of transformed precoding configured semi-statically in RRC signaling, and the second state is an enabled state different from the enabled state of transformed precoding configured semi-statically in RRC signaling.
  • the network device 600 further includes: a third sending unit, configured to send first information to the terminal device, where the first information is used to indicate that the transform precoding is enabled according to the PDCCH state.
  • a third sending unit configured to send first information to the terminal device, where the first information is used to indicate that the transform precoding is enabled according to the PDCCH state.
  • the network device 600 further includes: a third receiving unit, configured to receive the first terminal capability sent by the terminal device, where the first terminal capability is used to indicate whether the terminal device supports dynamic determination of PUSCH Change the enable state of precoding.
  • Fig. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dotted line in Figure 7 indicates that the unit or module is optional.
  • the apparatus 700 may be used to implement the methods described in the foregoing method embodiments.
  • Apparatus 700 may be a chip, a terminal device or a network device.
  • Apparatus 700 may include one or more processors 710 .
  • the processor 710 may support the device 700 to implement the methods described in the foregoing method embodiments.
  • the processor 710 may be a general purpose processor or a special purpose processor.
  • the processor may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • Apparatus 700 may also include one or more memories 720 .
  • a program is stored in the memory 720, and the program can be executed by the processor 710, so that the processor 710 executes the methods described in the foregoing method embodiments.
  • the memory 720 may be independent from the processor 710 or may be integrated in the processor 710 .
  • Apparatus 700 may also include a transceiver 730 .
  • the processor 710 can communicate with other devices or chips through the transceiver 730 .
  • the processor 710 may send and receive data with other devices or chips through the transceiver 730 .
  • the embodiment of the present application also provides a computer-readable storage medium for storing programs.
  • the computer-readable storage medium can be applied to the terminal or the network device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the terminal or the network device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes programs.
  • the computer program product can be applied to the terminal or the network device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the terminal or the network device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or the network device provided in the embodiments of the present application, and the computer program enables the computer to execute the methods performed by the terminal or the network device in the various embodiments of the present application.
  • the "indication" mentioned may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is instructed, configures and is configured, etc. relation.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, rather than the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be read by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)) or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、终端设备和网络设备。所述方法包括:终端设备接收网络设备发送的用于调度PUSCH的PDCCH;所述终端设备根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态。不同的变换预编码使能状态可以对应不同的传输PUSCH的波形,因此,通过调度PUSCH的PDCCH动态地指示变换预编码的使能状态,可以实现传输PUSCH的波形的动态指示。

Description

通信方法、终端设备以及网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,设计一种通信方法、终端设备以及网络设备。
背景技术
传输物理上行共享信道(physical uplink shared channel,PUSCH)的波形可以通过无线资源控制(radio resource control,RRC)信令实现半静态配置。由于半静态配置的灵活性较查,难以根据实际通信场景快速切换传输PUSCH的波形,从而导致PUSCH的覆盖性能难以与变化的通信场景匹配。相关技术提出了传输PUSCH的波形动态切换的需求,但是并未提出如何实现传输PUSCH的波形的动态指示。
发明内容
本申请提供一种通信方法、终端设备和网络设备,以实现传输PUSCH的波形的动态指示。
第一方面,提供了一种通信方法,所述方法包括:终端设备接收网络设备发送的用于调度PUSCH的PDCCH;所述终端设备根据所述PDCCH,确定所述PUSCCH的变换预编码的使能状态。
第二方面,提供了一种通信方法,所述方法包括:网络设备向终端设备发送用于调度PUSCH的PDCCH,所述PDCCH用于指示所述PUSCH变换预编码的使能状态。
第三方面,提供了一种终端设备,所述终端设备包括:第一接收单元,用于接收网络设备发送的用于调度PUSCH的PDCCH;确定单元,用于根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态。
第四方面,提供了一种网络设备,所述网络设备包括:第二发送单元,用于向终端设备发送用于调度PUSCH的PDCCH,所述PDCCH用于指示所述PUSCH的变换预编码的使能状态。
第五方面,提供一种终端设备,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面所述的方法。
第六方面,提供一种网络设备,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第二方面的方法。
第七方面,本申请实施例提供了一种通信***,该***包括上述的终端设备和/或网络设备。在另一种可能的设计中,该***还可以包括本申请实施例提供的方案中与该终端或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端设备执行上述第一方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得网络设备执行上述第二方面的方法中的部分或全部步骤。
第十方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端执行上述第一方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十一方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使网络设备执行上述第二方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十二方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述第一方面或第二方面的方法中所描述的部分或全部步骤。
第十三方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第一方面所述的方法。
第十四方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第二方面所述的方法。
第十五方面,提供一种计算机程序,所述计算机程序使得计算机执行第一方面所述的方法。
第十六方面,提供一种计算机程序,所述计算机程序使得计算机执行第二方面所述的方法。
不同的变换预编码使能状态可以对应不同的传输PUSCH的波形,因此,通过调度PUSCH的物理下行控制信道(physical downlink control channel,PDCCH)动态地指示变换预编码的使能状态,可以实现传输PUSCH的波形的动态指示。
附图说明
图1是本申请实施例应用的无线通信***。
图2为本申请实施例提供的一种动态指示变换预编码使能状态的过程示例图。
图3为本申请实施例提供的另一种动态指示变换预编码使能状态的过程示例图。
图4为本申请实施例提供的一种通信方法的流程性示意图。
图5为本申请实施例提供的一种终端设备的结构示意图。
图6为本申请实施例提供的一种网络设备的结构示意图。
图7为本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
通信***
图1是本申请实施例应用的无线通信***100。该无线通信***100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:第五代(5th generation,5G)***或新无线(new radio,NR)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信***,如第六代移动通信***,又如卫星通信***,等等。
其中,由第三代合作伙伴计划(3rd generation partnership project,3GPP)研究的5G***旨在满足人们对速率、延迟、高速移动性以及能效的追求,并适应未来生活中业务的多样性与复杂性。5G***应用的主要场景可以包括:增强移动超宽带(enhanced mobile broadband,eMBB)、低时延高可靠通信(ultra-reliable&low latency communications,URLLC)以及大规模机器类通信(massive machine type communication,mMTC)。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心 以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信***中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
上行数据传输
在一些通信***(例如NR***)中,上行数据传输承载于PUSCH。PUSCH的传输可以包括基于上行授权(UL grant)调度的PUSCH传输和基于免授权(configured grant,CG)的PUSCH传输。上行授权调度可以通过下行控制信息(downlink control information,DCI)格式(format)0_0或DCI格式0_1承载。或者,上行授权调度可以通过随机接入响应(random access response,RAR)承载。
对于承载上行授权的DCI,网络设备可以在DCI中携带一个时间域资源分配(TimeDomainResourceAllocation,TDRA)的域。TDRA域可以指示一个资源分配表格中的不同的行。资源分配表格中每一行可以包含不同的资源分配组合。资源分配组合可以包括:PUSCH的起始位置S,长度L,k2以及不同的类型(type)中的一个或多个。其中,k2可以表示DCI所在的时隙(slot)和PUSCH所在的时隙之间的偏移时隙的个数。TDRA域可以为4bit,从而可以指示资源分配表格中的16个不同的行。另外,DCI也可以指示PUSCH的频域资源分配信息、调制编码方式(modulation and coding scheme,MCS)、新数据指示(new data indicator,NDI)、冗余版本以及混合自动重传请求(hybrid automatic repeat request,HARQ)进程号等信息中的一个或多个。
上行授权的RAR可以用于承载随机接入过程中的PUSCH。在一些通信***(例如NR***或LTE***)中,随机接入过程可以采用四步过程,即消息1(Msg1)至消息4(Msg4)的发送过程。其中,消息1(Msg3)可以通过PUSCH承载,用于承载Msg3初次传输的PUSCH的上行授权可以通过消息2(Msg2)中的RAR承载。RAR上行授权信息可以如表1所示。RAR上行授权信息可以包括PUSCH的时域和频域资源分配信息、功率控制命令(transmit power control,TPC)、跳频以及MCS等信息中的一个或多个。
表1
Figure PCTCN2022071669-appb-000001
如果网络设备没有收到终端设备发送的Msg3,可以通过DCI指示Msg3的重传的调度信息。例如,可以通过临时小区无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)加扰的DCI format 0_0承载。DCI中不仅可以包含RAR上行授权的内容,也可以包括NDI、冗余版本以及 HARQ进程号。
PUSCH的MCS表格的确定
数据传输需要配置合适的调制编码以适应信道质量变化,并满足业务可靠性需求。例如,URLLC与eMBB的评估场景和覆盖需求相同,但URLLC的可靠性需求更高。因此,针对eMBB设计的MCS表格无法匹配URLLC高可靠性传输。为了适应URLLC业务的需要,通信***可以支持MCS表格的半静态配置和动态指示。其中,半静态配置可以基于RRC信令实现,动态指示可以基于PDCCH信道实现。
可以理解的是,为了支持URLLC业务的高可靠性和低时延,可以牺牲一定的频谱效率。因此,URLLC业务对应的MCS表低频谱效率64qam(qam64LowSE)对应的频谱效率的范围与eMBB业务对应的MCS表格qam256是不同的。qam64LowSE在qam256的基础上补充了相应低频谱效率对应的MCS元素,并且删除了高频谱效率对应的MCS元素。不同MCS表格的选择可以通过结合RRC信令的配置和加扰DCI的循环冗余校验(cyclic redundancy check,CRC)的RNTI来确定。
作为一种实现方式,可针对MCS表格选择设置调制和编码方案小区无线网络临时标识(modulation and coding scheme cell radio network temporary identity,MCS-C-RNTI)。如果MCS-C-RNTI没有被配置,或者调度PUSCH传输的PDCCH的CRC通过小区无线网络临时标识(cell radio network temporary identity,C-RNTI)、半静态信道状态信息无线网络临时标识(semi persistent channel state information radio network temporary identity,SP-CSI-RNTI)或设定调度无线网络临时标识(configured scheduling radio network temporary identity,CS-RNTI)加扰,或者PUSCH基于免调度传输,则终端设备可以使用通过RRC参数mcs-Table和mcs-TableTransformPrecoder半静态配置的MCS表格。当MCS表格qam256被配置,则PUSCH的传输可以使用MCS表格qam256。当MCS表格qam64LowSE被配置,则PUSCH的传输可以使用MCS表格qam64LowSE。如果配置了MCS-C-RNTI,并且调度PUSCH的PDCCH的CRC通过MCS-C-RNTI加扰,则PUSCH的传输可以采用MCS表格qam64LowSE。
需要说明的是,上述实现方式可以适用于DCI format 0_1/0_2调度的PUSCH。对于公共搜索空间的DCI format 0_0调度的PUSCH,PUSCH的传输可以沿用现有的MCS表格。
上行传输的波形
用于数据传输的波形可以包括离散傅里叶变换拓展正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing)DFT-S-OFDM波形以及循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形等。DFT-S-OFDM波形可以具有更低的峰均功率比(peak-to-average power ratio,PAPR),也可以实现更好的覆盖。DFT-S-OFDM波形可以用于覆盖受限的场景。CP-OFDM波形可以支持更加灵活的数据调度。CP-OFDM波形可以用于覆盖不受限的场景。
在一些通信***(例如LTE***)中,下行传输的波形可以支持CP-OFDM波形,上行传输的波形(即传输PUSCH的波形)仅支持DFT-S-OFDM的波形。在一些通信***(例如NR***)中,上行传输的波形也可以支持CP-OFDM的波形,从而支持更加灵活的数据调度。其中,CP-OFDM的波形可以与下行波形相同。上行波形可以从CP-OFDM以及DFT-S-OFDM中选择。
上行波形可以通过变换预编码(transform precoder)的使能和去使能来指示。其中,变换预编码使能可以对应DFT-S-OFDM波形,变换预编码去使能可以对应CP-OFDM波形。
上行波形可以通过RRC参数半静态配置。例如,上行波形可以通过以下任意一个或多个RRC参数进行配置:PUSCH-Config中配置的参数transformPrecoder、RACH-ConfigCommon中配置的参数msg3-transformPrecoder、ConfiguredGrantConfig中配置的参数transformPrecoder以及MsgA-PUSCH-Config中配置的参数msgA-TransformPrecoder-r16。PUSCH-Config.transformPrecoder可以用于配置终端设备特定的PUSCH传输的波形。RACH-ConfigCommon.msg3-transformPrecoder可以用于配置Msg3的PUSCH传输的波形。ConfiguredGrantConfig.transformPrecoder可以用于配置免调度PUSCH传输的波形。MsgA-PUSCH-Config.msgA-TransformPrecoder-r16可以用于配置消息A(MsgA)的PUSCH传输的波形。
由上文可知,传输PUSCH的波形可以通过RRC信令实现半静态配置。由于半静态配置的灵活性较弱,难以根据实际通信场景快速切换传输PUSCH的波形,从而导致PUSCH的覆盖性能难以与变化的通信场景匹配。相关技术(例如R18标准)提出了PUSCH的波形动态切换的需求,但是并未提出如何实现传输PUSCH波形的动态指示。
针对上述情况,本申请提出通过调度PUSCH的PDCCH指示该PUSCH的变换预编码的使能状态。也就是说,PUSCH的变换预编码的使能状态可以通过调度该PUSCH的PDCCH指示。不同的变换预编码使能状态可以对应不同的PUSCH波形,从而实现PUSCH波形的动态指示。
作为一个实施例,网络设备可以基于实际通信情况确定变换预编码的使能状态。例如,在动态的上 行调度过程中,网络设备可以根据以下信息中的一项或多项确定变换预编码的使能状态:PUSCH的接收信噪比、解调参考符号(demodulation reference symbol,DMRS)的接收信噪比、PUSCH的误码率、信道探测参考信号(sounding reference signal,SRS)的测量结果以及功率余量上报(power headroom report,PHR)的结果。
网络设备确定变换预编码的使能状态后,可以根据变换预编码的使能状态传输调度PUSCH的PDCCH,从而动态地指示该PUSCH的变换预编码的使能状态。
终端设备可以通过接收到的调度PUSCH的PDCCH,确定PUSCH的变换预编码的使能状态。为便于描述,下文将PUSCH的变换预编码简称为变换预编码。
预编码的使能状态可以包括第一状态或第二状态。
第一状态可以为使能,也可以为去使能。第一状态可以是预定义的。例如,第一状态可以预定义为去使能。第一状态也可以为网络设备配置的。例如,第一状态可以为RRC信令半静态配置的变换预编码的使能状态。RRC半静态配置的变换预编码的使能状态可以包括PUSCH-Config中配置的transformprecoder、ConfiguredGrantConfig中配置的transformprecoder、MsgA-PUSCH-Config中配置的msgA-TransformPrecoder或者RACH-ConfigCommon中配置的msg3-transformPrecoder。
第二状态可以为使能,也可以为去使能。第二状态可以为与第一状态不同的变换预编码使能状态。例如,第一状态为使能的情况下,第二状态可以为去使能。或者,第一状态为去使能的情况下,第二状态可以为使能。第二状态可以是预定义的。第二状态也可以是基于网络设备配置的。例如,第二状态可以是与RRC信令半静态配置的变换预编码的使能状态不同的使能状态。在一些实施例中,第二状态也可以称为目标变换预编码的使能状态。
需要说明的是,在一些实施例中,去使能也可以称为去使能状态,使能也可以称为使能状态。作为一种实现方式,可以通过调度PUSCH的PDCCH所加扰的RNTI指示变换预编码的使能状态。可以理解的是,PDCCH可以包括一个或多个校验比特。部分或全部的校验比特例如可以使用CRC的方式进行校验。加扰PDCCH的RNTI可以为加扰所述部分或全部校验比特的RNTI。
在一个实施例中,可以通过加扰调度PUSCH的PDCCH的RNTI,指示变换预编码的使能状态。例如,可以通过加扰所述PDCCH的RNTI类型,指示变换预编码的使能状态。
作为一种实现方式,不同的RNTI类型可以对应不同的变换预编码使能状态。例如,RNTI的类型可以包括第一RNTI类型或第二RNTI类型。第一RNTI类型可以用于指示变换预编码的使能状态为第一状态,第二RNTI类型可以用于指示变换预编码的使能状态为第二状态。
作为另一种实现方式,特定的RNTI类型可以用于指示PUSCH的变换预编码使能状态的切换或改变。例如,RNTI的类型可以包括第二RNTI类型。第二RNTI类型可以用于指示变换预编码使能状态的切换。以RNTI的类型还包括第一RNTI类型为例,第一RNTI类型可以用于指示不改变变换预编码的使能状态,即预编码使能状态保持为当前预编码使能状态。第二RNTI类型可以用于指示将预编码使能状态切换为与当前预编码使能状态不同的使能状态。例如,第二RNTI类型可以用于指示将预编码使能状态由使能切换为去使能,或由去使能切换为使能。
第一RNTI类型或第二RNTI类型可以包括一个或多个RNTI。第一RNTI类型可以包括相关技术中已有的RNTI。例如,第一RNTI类型可以包括MCS-C-RNTI、C-RNTI、SP-CSI-RNTI或CS-RNTI。第二RNTI类型可以包括相关技术中已有的RNTI,也可以包括新定义的一个RNTI。例如,第二RNTI类型包括一个新定义的RNTI,该新定义的RNTI可以命名为变换预编码小区无线网络临时标识(transform precoder cell radio network temporary identity,TP-C-RNTI)。在终端设备接收PDCCH时,终端设备可以对第一RNTI类型和第二RNTI类型进行尝试,从而确定对PDCCH的CRC加扰的RNTI类型,进而确定变换预编码的使能状态并使用对应的波形传输PUSCH。
图2为本申请实施例提供的一种动态指示变换预编码使能状态的过程示例图。在图2所示的实施例中,第一RNTI类型可以包括C-RNTI,第二RNTI类型可以包括TP-C-RNTI,第一状态可以为去使能状态,第二状态可以为使能状态。
图2所示的实施例中,用于调度PUSCH的DCI所示的时隙和PUSCH所在的时隙之间的偏移为2个时隙。下行时隙211中的DCI可以用于调度上行时隙221的PUSCH。下行时隙212中的DCI可以用于调度上行时隙222的PUSCH。在下行时隙211上,DCI可以通过TP-C-RNTI加扰,则在上行时隙221上,上行变换预编码的使能状态可以为使能状态,即PUSCH可以通过DFT-S-OFDM波形传输。在下行时隙212上,DCI可以通过C-RNTI加扰,则在上行时隙222上,上行变换预编码的使能状态可以为去使能状态,即PUSCH可以通过CP-OFDM波形传输。
本申请通过调度PUSCH的PDCCH的CRC所加扰的RNTI类型指示变换预编码的使能状态,可以在不改变现有的DCI格式的前提下,实现变换预编码使能状态的动态指示,从而实现传输PUSCH的波 形的动态切换。
需要说明的是,第二RNTI类型可以通过网络设备配置。例如,第二RNTI类型可以通过信令物理小区组配置(PhysicalCellGroupConfig)配置。例如,可以在PhysicalCellGroupConfig配置增加TP-C-RNTI的信息元素。
RRC信令半静态配置变换预编码的使能状态可以与PDCCH的CRC的RNTI类型实现变换预编码的使能状态的动态切换相结合,从而实现变换预编码使能状态的半静态配置和动态配置。可以理解的是,在这种情况下,第一状态可以为RRC信令配置的变换预编码的使能状态。
作为一个实施例,如果第二RNTI类型(例如TP-C-RNTI)没有被配置,或者调PUSCH传输的PDCCH的CRC通过第一RNTI类型(例如MCS-C-RNTI、C-RNTI、SP-CSI-RNTI或CS-RNTI)加扰,或者PUSCH基于免调度传输,则变换预编码的使能状态可以为第一状态。第一状态可以为RRC半静态配置的变换预编码的使能状态。
作为另一个实施例,如果配置了第二RNTI类型,并且调度PUSCH的PDCCH的CRC通过第二RNTI加扰,则变换预编码可以为第二状态。第二状态可以是预定义的状态,也可以是基于网络配置的状态。第二状态可以包括使能或去使能状态。作为一种实现方式,第二状态可以是与RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
本申请还提出通过加扰PDCCH的RNTI类型动态指示变换预编码的使能状态与MCS表格两种信息。不同的RNTI类型可以对应不同的变换预编码使能状态和MCS表格的组合。RNTI的类型可以包括一个或多个RNTI。RNTI类型可以包括相关技术中已有的RNTI,也可以包括新定义的RNTI。
作为一种实现方式,RNTI的类型可以包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型。第一RNTI类型可以用于指示变换预编码的使能状态为第一状态且MCS表格为第一表格;第二RNTI类型可以用于指示变换预编码的使能状态为第二状态且MCS表格为第一表格;第三RNTI类型可以用于指示变换预编码的使能状态为第二状态且MCS表格为第二表格;第四RNTI类型可以用于指示变换预编码的使能状态为第一状态且MCS表格可以为第二表格。
第一RNTI类型可以包括C-RNTI、SP-CSI-RNTI或CS-RNTI。第二RNTI类型可以包括新定义的TP-C-RNTI。第三RNTI类型可以为另一新定义的RNTI。第四RNTI类型可以为MCS-C-RNTI。第一状态和第二状态可以为上文所述的变换预编码的使能状态。第一MCS表格可以为RRC信令半静态配置的MCS表格。第二MCS表格可以是相关技术中MCS-C-RNTI对应的MCS表格。在一些实施例中,第二MCS表格也可以称为目标MCS表格。
需要说明的是,上述一个或多个RNTI类型(例如上文所述的第二RNTI类型、第三RNTI类型或第四RNTI类型)可以通过信令PhysicalCellGroupConfig配置。例如,可以在PhysicalCellGroupConfig中增加用于配置新定义的RNTI的信息元素。
上文详细说明了通过调度PUSCH的PDCCH的CRC的RNTI指示变换预编码的使能状态。本申请还提供其他实施例以实现动态指示变换预编码的使能状态。例如,可以通过调度PUSCH的PDCCH的搜索空间集合、监听时机或DCI格式隐含指示变换预编码的使能状态。
作为一种实现方式,可以通过调度PUSCH的PDCCH的搜索空间集合指示变换预编码的使能状态。
终端设备可以被配置至少两种调度PDCCH的搜索空间集合。网络设备可以根据待指示的变换预编码的使能状态确定搜索空间集合。终端设备接收PDCCH时,可以确定PDCCH的搜索空间集合,从而确定变换预编码的使能状态。
PDCCH的搜索空间集合可以属于多个空间集合中的一个。例如,PDCCH的搜索空间集合可以属于第一搜索空间集合或第二搜索空间集合。第一搜索空间集合可以用于指示变换预编码的使能状态可以为第一状态。第二搜索空间集合可以用于变化预编码的使能状态可以为第二状态。其中,第一搜索空间集合可以为公共搜索空间集合,第二搜索空间集合可以为终端设备专用的搜索空间集合。或者,第一搜索空间集合可以为终端设备专用的搜索空间集合,第二搜索空间集合可以为公共搜索空间集合。
作为另一种实现方式,可以通过调度PDCCH的搜索空间集合中的监听时机指示变换预编码的使能状态。
PDCCH的搜索空间集合可以包含PDCCH的监听时机。监听时机可以属于一个或多个监听时机集合。一个或多个监听时机集合可以对应相应的转换预编码的使能状态。网络设备可以确定PDCCH的监听时机所属的监听时机集合,以指示转换预编码的使能状态。终端设备可以确定PDCCH的监听时机所属的监听时机集合并确定转换预编码的使能状态。
监听时机集合可以包括一个或多个监听时机集合。例如,一个或多个监听时机集合可以包括第一监听时机集合和第二监听时机集合。在调度PUSCH的PDCCH的监听时机属于第一监听时机集合的情况下,转换预编码的使能状态可以为第一状态,在调度PUSCH的PSCCH的监听时机属于第二监听时机 集合的情况下,转换预编码的使能状态可以为第二状态。
作为再一种实现方式,可以通过DCI的格式指示预编码变换的使能状态。
终端设备可以被配置至少两种DCI格式。网络设备可以根据待指示的变换预编码的使能状态确定DCI格式。终端设备可以根据检测到的PDCCH的DCI格式,确定变换预编码的使能状态。
例如,DCI的格式可以包括第一格式以及第二格式。在DCI格式为第一格式的情况下,变换预编码的使能状态可以为第一状态。在DCI格式为第二格式的情况下,变换预编码的使能状态可以为第二状态。其中,第一格式可以为一种或多种DCI格式中的一个,第二格式可以为一种或多种DCI格式中的一个。
图3为本申请实施例提供的一种动态指示变换预编码使能状态的过程示例图。在图3所示的实施例中,第一状态可以为变换预编码使能,第二状态可以为变换预编码去使能。
图3所示的实施例中,用于调度PUSCH的DCI所示的时隙和PUSCH所在的时隙之间的偏移为2个时隙。下行时隙311中的DCI可以用于调度上行时隙321的PUSCH。下行时隙312中的DCI可以用于调度上行时隙322的PUSCH。在下行时隙311上,PDCCH所述的搜索空间集合属于第一搜索空间集合,或PDCCH的监听时机属于第一监听时机集合,或DCI格式为第一格式,则在上行时隙321上,上行变换预编码的使能状态可以为使能状态,即PUSCH可以通过DFT-S-OFDM波形传输。在下行时隙312上,PDCCH所述的搜索空间集合属于第二搜索空间集合,或PDCCH的监听时机属于第二监听时机集合,或DCI格式为第二格式,则在上行时隙322上,上行变换预编码的使能状态可以为去使能状态,即PUSCH可以通过CP-OFDM波形传输。
通过调度PUSCH的PDCCH的搜索空间集合、监听时机或DCI格式隐含指示变换预编码的使能状态可以减少PDCCH检测虚警概率。
需要说明的是,调度PUSCH的PDCCH的搜索空间集合、监听时机集合或DCI格式可以和调度PUSCH的PDCCH的CRC的RNTI类型结合,指示变换预编码的使能状态。例如,公共搜索空间集合可以用于指示变换预编码的使能状态为第一状态,终端设备专用的搜索空间集合可以用于指示变换预编码的使能状态为第二状态。并且,在终端设备专用的搜索空间中,第一RNTI类型可以用于指示变化预编码的使能状态为第一状态,第二RNTI类型可以用于指示变换预编码的使能状态为第二状态。
需要说明的是,网络设备可以为终端设备配置是否开启变换预编码动态切换。例如,网络设备可以向终端设备发送第一信息。第一信息可以用于指示所述终端设备根据调度PUSCH的PDCCH确定PUSCH的变换预编码的使能状态,即开启变换预编码动态切换。
需要说明的是,终端设备可以向网络设备上报终端设备是否具有变换预编码动态切换的相关能力。例如,终端设备可以向网络设备发送第一终端能力。第一终端能力可以用于指示终端设备是否支持动态确定PUSCH的变换预编码的使能状态,即终端设备是否具有变换预编码动态的切换能力。可以理解的是,在网络设备为终端设备配置是否开启变换预编码动态切换之前,可以上报终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
图4为本申请实施例提供的一种通信方法的流程性示意图。图4所示的方法可以由终端设备以及网络设备执行。图4所述的方法包括步骤S410和步骤S420。
步骤S410,网络设备向终端设备发送用于调度PUSCH的PDCCH。
步骤S420,终端设备根据所述PDCCH,确定PUSCH的变换预编码的使能状态。
可选地,所述网络设备确定所述PDCCH的RNTI,所述RNTI用于指示所述变换预编码的使能状态。
步骤S420可以包括:所述终端设备根据加扰所述PDCCH的无线网络临时标识RNTI,确定所述变换预编码的使能状态。
可选地,所述网络设备确定所述PDCCH的RNTI包括:
所述网络设备确定所述RNTI的类型,所述RNTI的类型用于指示所述变换预编码使能状态。
可选地,所述终端设备根据加扰所述PDCCH的RNTI,确定所述变换预编码的使能状态包括:所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态。
可选地,所述RNTI的类型包括第一RNTI类型或第二RNTI类型。所述网络设备确定所述RNTI的类型为第一RNTI类型,以指示所述变换预编码的使能状态为第一状态;或,所述网络设备确定所述RNTI的类型为第二RNTI类型,以指示所述变换预编码的使能状态为第二状态。所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态包括:在所述RNTI类型为第一RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;在所述RNTI类型为第二RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
可选地,所述RNTI的类型包括第二RNTI类型。所述网络设备确定所述RNTI的类型包括:所 述网络设备确定所述RNTI为第二RNTI类型,以指示切换所述变换预编码的使能状态。所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态包括:在所述RNTI类型为第二RNTI类型的情况下,所述终端设备切换所述变换预编码的使能状态。
可选地,所述终端设备根据加扰所述PDCCH的RNTI,确定所述PUSCH的变换预编码的使能状态包括:在第二RNTI类型没有配置、所述RNTI的类型为所述第一RNTI类型或所述PUSCH免调度传输的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态。
可选地,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
可选地,所述网络设备确定所述RNTI的类型包括:所述网络设备确定所述RNTI的类型,以指示所述变换预编码使能状态和MCS调制编码方式表格。
可选地,所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态包括:所述终端设备根据所述RNTI的类型,确定变换预编码使能状态和MCS调制编码方式表格。
可选地,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型。所述网络设备确定所述RNTI的类型包括:所述网络设备确定所述RNTI类型为所述第一RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第一表格;或,所述网络设备确定所述RNTI类型为所述第二RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第一表格;或,所述网络设备确定所述RNTI类型为所述第三RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第二表格;或,所述网络设备确定所述RNTI类型为所述第四RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第二表格。所述终端设备根据所述RNTI的类型,确定变换预编码使能状态和MCS表格包括:在所述RNTI类型为所述第一RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第一表格;在所述RNTI类型为所述第二RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第一表格;在所述RNTI类型为所述第三RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第二表格;在所述RNTI类型为所述第四RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第二表格。
可选地,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
可选地,所述网络设备确定所述PDCCH的搜索空间集合,以指示所述变换预编码的使能状态。
可选地,步骤S420可以包括:所述终端设备根据所述PDCCH的搜索空间集合,确定所述变换预编码的使能状态。
可选地,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合。所述网络设备确定所述PDCCH的搜索空间集合包括:所述网络设备确定所述PDCCH的搜索空间集合属于所述第一搜索空间集合,以指示所述变换预编码的使能状态为第一状态;或,所述网络设备确定所述PDCCH的搜索空间集合属于所述第二搜索空间集合,以指示所述变换预编码的使能状态为第二状态。所述终端设备根据所述PDCCH的搜索空间集合,确定所述变换预编码的使能状态包括:在所述PDCCH的搜索空间集合属于所述第一搜索空间集合的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;在所述PDCCH的搜索空间集合属于所述第二搜索空间集合的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
可选地,所述网络设备可以确定所述PDCCH的监听时机,以指示所述变换预编码的使能状态。
可选地,步骤S420可以包括:所述终端设备根据所述PDCCH的监听时机,确定所述变换预编码的使能状态。
可选地,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合。所述网络设备确定所述PDCCH的监听时机包括:所述网络设备确定所述PDCCH的监听时机属于所述第一监听时机集合,以指示所述变换预编码的使能状态为第一状态;或,所述网络设备确定所述PDCCH的监听时机属于所述第二监听时机集合,以指示所述变换预编码的使能状态为第二状态。所述终端设备根据所述PDCCH的监听时机,确定所述变换预编码的使能状态包括:在所述PDCCH的监听时机属于所述第一监听时机集合的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;在所述PDCCH的监听时机属于所述第二监听时机集合的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
可选地,所述网络设备确定所述PDCCH的DCI的格式,以指示所述变换预编码的使能状态。
可选地,所述步骤S420可以包括:所述终端设备根据所述PDCCH的DCI的格式,确定所述变换预编码的使能状态。
可选地,所述DCI的格式包括第一格式或第二格式。所述网络设备确定所述DCI的格式为所述第一格式,以指示所述变换预编码的使能状态为第一状态;或,所述网络设备确定所述DCI的格式为所述第二格式,以指示所述变换预编码的使能状态为第二状态。所述终端设备根据所述PDCCH的DCI的格式,确定所述变换预编码的使能状态包括:在所述DCI的格式为所述第一格式的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;在所述DCI的格式为所述第二格式的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
可选地,所述第一状态为使能,所述第二状态为去使能;或,所述第一状态为去使能,所述第二状态为使能;或,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
可选地,图4所示的方法还可以包括:所述终端设备接收所述网络设备发送的第一信息,所述第一信息用于指示所述终端设备根据所述PDCCH确定所述变换预编码的使能状态。
可选地,图4所示的方法还可以包括:所述终端设备向所述网络设备发送第一终端能力,所述第一终端能力用于指示所述终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
上文结合图2至图4,详细描述了本申请的方法实施例,下面结合图5至图7,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图5为本申请实施例提供的一种终端设备500的结构示意图。终端设备500可以包括第一接收单元510和第一确定单元520。
第一接收单元510可以用于接收网络设备发送的用于调度物理上行共享信道PUSCH的物理下行控制信道PDCCH。
第一确定单元520可以用于根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态。
可选地,第一确定单元520可以包括:第二确定单元,用于根据加扰所述PDCCH的无线网络临时标识RNTI,确定所述变换预编码的使能状态。
可选地,所述第二确定单元包括:第三确定单元,用于根据所述RNTI的类型,确定所述变换预编码使能状态。
可选地,所述RNTI的类型包括第一RNTI类型或第二RNTI类型,所述第三确定单元包括:第四确定单元,用于在所述RNTI类型为第一RNTI类型的情况下,确定所述变换预编码的使能状态为第一状态;第五确定单元,用于在所述RNTI类型为第二RNTI类型的情况下,确定所述变换预编码的使能状态为第二状态。
可选地,所述RNTI的类型包括第二RNTI类型,所述第三确定单元包括:切换单元,用于在所述RNTI类型为第二RNTI类型的情况下,切换所述变换预编码的使能状态。
可选地,第二确定单元520可以包括:第六确定单元,用于在第二RNTI类型没有配置、所述RNTI的类型为所述第一RNTI类型或所述PUSCH免调度传输的情况下,确定所述变换预编码的使能状态为第一状态,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态。
可选地,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
可选地,所述第三确定单元包括:第七确定单元,用于根据所述RNTI的类型,确定变换预编码使能状态和MCS调制编码方式表格。
可选地,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型,所述第七确定单元包括:第八确定单元,用于在所述RNTI类型为所述第一RNTI类型的情况下,确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第一表格;第九确定单元,用于在所述RNTI类型为所述第二RNTI类型的情况下,确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第一表格;第十确定单元,用于在所述RNTI类型为所述第三RNTI类型的情况下,确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第二表格;第十一确定单元,用于在所述RNTI类型为所述第四RNTI类型的情况下,确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第二表格。
可选地,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
可选地,所述第一确定单元520包括:第十二确定单元,用于根据所述PDCCH的搜索空间集 合,确定所述变换预编码的使能状态。
可选地,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合,所述第十二确定单元包括:第十三确定单元,用于在所述PDCCH的搜索空间集合属于所述第一搜索空间集合的情况下,确定所述变换预编码的使能状态为第一状态;第十四确定单元,用于在所述PDCCH的搜索空间集合属于所述第二搜索空间集合的情况下,确定所述变换预编码的使能状态为第二状态。
可选地,所述第一确定单元520包括:第十五确定单元,用于根据所述PDCCH的监听时机,确定所述变换预编码的使能状态。
可选地,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合,所述第十五确定单元包括:第十六确定单元,用于在所述PDCCH的监听时机属于所述第一监听时机集合的情况下,确定所述变换预编码的使能状态为第一状态;第十七确定单元,用于在所述PDCCH的监听时机属于所述第二监听时机集合的情况下,确定所述变换预编码的使能状态为第二状态。
可选地,所述第一确定单元520包括:第十八确定单元,用于根据所述PDCCH的DCI的格式,确定所述变换预编码的使能状态。
可选地,所述DCI的格式包括第一格式或第二格式,所述第十八确定单元包括:第十九确定单元,用于在所述DCI的格式为所述第一格式的情况下,确定所述变换预编码的使能状态为第一状态;第二十确定单元,用于在所述DCI的格式为所述第二格式的情况下,确定所述变换预编码的使能状态为第二状态。
可选地,所述第一状态为使能,所述第二状态为去使能;或,所述第一状态为去使能,所述第二状态为使能;或,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
可选地,所述终端设备500还包括:第二接收单元,用于接收所述网络设备发送的第一信息,所述第一信息用于指示所述终端设备根据所述PDCCH确定所述变换预编码的使能状态。
可选地,所述终端设备500还包括:第一发送单元,用于向所述网络设备发送第一终端能力,所述第一终端能力用于指示所述终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
图6为本申请实施例提供的网络装置600的结构示意图。网络设备600可以包括第二发送单元610。
第二发送单元610用于向终端设备发送的用于调度物理上行共享信道PUSCH的物理下行控制信道PDCCH;其中,所述PDCCH用于指示所述PUSCH的变换预编码的使能状态。
可选地,所述网络设备600还包括:第二十一确定单元,用于确定所述PDCCH的RNTI,所述RNTI用于指示所述变换预编码的使能状态。
可选地,所述第二十一确定单元包括:第二十二确定单元,用于确定所述RNTI的类型,所述RNTI的类型用于指示所述变换预编码使能状态。
可选地,所述RNTI的类型包括第一RNTI类型或第二RNTI类型,所述第二十二确定单元包括:第二十三确定单元,用于确定所述RNTI的类型为第一RNTI类型,以指示所述变换预编码的使能状态为第一状态;或,第二十四确定单元,用于所述网络设备确定所述RNTI的类型为第二RNTI类型,以指示所述变换预编码的使能状态为第二状态。
可选地,所述RNTI的类型包括第二RNTI类型,所述第二十二确定单元包括:第二十五确定单元,用于确定所述RNTI为第二RNTI类型,以指示切换所述变换预编码的使能状态。
可选地,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
可选地,所述第二十二确定单元包括:第二十六确定单元,用于确定所述RNTI的类型,以指示所述变换预编码使能状态和MCS调制编码方式表格。
可选地,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型,所述第二十六确定单元包括:第二十七确定单元,用于确定所述RNTI类型为所述第一RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第一表格;或,第二十八确定单元,用于确定所述RNTI类型为所述第二RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第一表格;或,第二十九确定单元,用于确定所述RNTI类型为所述第三RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第二表格;或,第三十确定单元,用于确定所述RNTI类型为所述第四RNTI类型,以指示所述变换预编码的使能状态为 第一状态并且所述MCS表格为第二表格。
可选地,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
可选地,所述网络设备600还包括:第三十一确定单元,用于确定所述PDCCH的搜索空间集合,以指示所述变换预编码的使能状态。
可选地,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合,所述第三十一确定单元包括:第三十二确定单元,用于确定所述PDCCH的搜索空间集合属于所述第一搜索空间集合,以指示所述变换预编码的使能状态为第一状态;或,第三十三确定单元,用于确定所述PDCCH的搜索空间集合属于所述第二搜索空间集合,以指示所述变换预编码的使能状态为第二状态。
可选地,所述网络设备600还包括:第三十四确定单元,用于确定所述PDCCH的监听时机,以指示所述变换预编码的使能状态。
可选地,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合,所述第三十四确定单元包括:第三十五确定单元,用于确定所述PDCCH的监听时机属于所述第一监听时机集合,以指示所述变换预编码的使能状态为第一状态;或,第三十六确定单元,用于确定所述PDCCH的监听时机属于所述第二监听时机集合,以指示所述变换预编码的使能状态为第二状态。
可选地,所述网络设备600还包括:第三十七确定单元,用于确定所述PDCCH的DCI的格式,以指示所述变换预编码的使能状态。
可选地,所述DCI的格式包括第一格式或第二格式,所述第三十七确定单元包括:第三十八确定单元,用于确定所述DCI的格式为所述第一格式,以指示所述变换预编码的使能状态为第一状态;或,第三十九确定单元,用于确定所述DCI的格式为所述第二格式,以指示所述变换预编码的使能状态为第二状态。
可选地,所述第一状态为使能,所述第二状态为去使能;或,所述第一状态为去使能,所述第二状态为使能;或,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
可选地,所述网络设备600还包括:第三发送单元,用于向所述终端设备发送第一信息,所述第一信息用于指示根据所述PDCCH确定所述变换预编码的使能状态。
可选地,所述网络设备600还包括:第三接收单元,用于接收所述终端设备发送的第一终端能力,所述第一终端能力用于指示所述终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
图7是本申请实施例的通信装置的示意性结构图。图7中的虚线表示该单元或模块为可选的。该装置700可用于实现上述方法实施例中描述的方法。装置700可以是芯片、终端设备或网络设备。
装置700可以包括一个或多个处理器710。该处理器710可支持装置700实现前文方法实施例所描述的方法。该处理器710可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置700还可以包括一个或多个存储器720。存储器720上存储有程序,该程序可以被处理器710执行,使得处理器710执行前文方法实施例所描述的方法。存储器720可以独立于处理器710也可以集成在处理器710中。
装置700还可以包括收发器730。处理器710可以通过收发器730与其他设备或芯片进行通信。例如,处理器710可以通过收发器730与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“***”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术 语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (86)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收网络设备发送的用于调度物理上行共享信道PUSCH的物理下行控制信道PDCCH;
    所述终端设备根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态包括:
    所述终端设备根据加扰所述PDCCH的无线网络临时标识RNTI,确定所述变换预编码的使能状态。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据加扰所述PDCCH的RNTI,确定所述变换预编码的使能状态包括:
    所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态。
  4. 根据权利要求3所述的方法,其特征在于,所述RNTI的类型包括第一RNTI类型或第二RNTI类型,所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态包括:
    在所述RNTI类型为所述第一RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;
    在所述RNTI类型为所述第二RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
  5. 根据权利要求3所述的方法,其特征在于,所述RNTI的类型包括第二RNTI类型,所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态包括:
    在所述RNTI类型为第二RNTI类型的情况下,所述终端设备切换所述变换预编码的使能状态。
  6. 根据权利要求2所述的方法,其特征在于,所述终端设备根据加扰所述PDCCH的RNTI,确定所述PUSCH的变换预编码的使能状态包括:
    在第二RNTI类型没有配置、所述RNTI的类型为第一RNTI类型或所述PUSCH免调度传输的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态。
  7. 根据权利要求4或6所述的方法,其特征在于,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
  8. 根据权利要求3所述的方法,其特征在于,所述终端设备根据所述RNTI的类型,确定所述变换预编码使能状态包括:
    所述终端设备根据所述RNTI的类型,确定变换预编码使能状态和MCS调制编码方式表格。
  9. 根据权利要求8所述的方法,其特征在于,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型,所述终端设备根据所述RNTI的类型,确定变换预编码使能状态和MCS表格包括:
    在所述RNTI类型为所述第一RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第一表格;
    在所述RNTI类型为所述第二RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第一表格;
    在所述RNTI类型为所述第三RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第二表格;
    在所述RNTI类型为所述第四RNTI类型的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第二表格。
  10. 根据权利要求9所述的方法,其特征在于,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
  11. 根据权利要求1~10中任一项所述的方法,其特征在于,所述终端设备根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态包括:
    所述终端设备根据所述PDCCH的搜索空间集合,确定所述变换预编码的使能状态。
  12. 根据权利要求11所述的方法,其特征在于,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合,所述终端设备根据所述PDCCH的搜索空间集合,确定所述变换预编码的使能状态包括:
    在所述PDCCH的搜索空间集合属于所述第一搜索空间集合的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;
    在所述PDCCH的搜索空间集合属于所述第二搜索空间集合的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
  13. 根据权利要求1~10中任一项所述的方法,其特征在于,所述终端设备根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态包括:
    所述终端设备根据所述PDCCH的监听时机,确定所述变换预编码的使能状态。
  14. 根据权利要求13所述的方法,其特征在于,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合,所述终端设备根据所述PDCCH的监听时机,确定所述变换预编码的使能状态包括:
    在所述PDCCH的监听时机属于所述第一监听时机集合的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;
    在所述PDCCH的监听时机属于所述第二监听时机集合的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
  15. 根据权利要求1~10中任一项所述的方法,其特征在于,所述终端设备根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态包括:
    所述终端设备根据所述PDCCH的DCI的格式,确定所述变换预编码的使能状态。
  16. 根据权利要求15所述的方法,其特征在于,所述DCI的格式包括第一格式或第二格式,所述终端设备根据所述PDCCH的DCI的格式,确定所述变换预编码的使能状态包括:
    在所述DCI的格式为所述第一格式的情况下,所述终端设备确定所述变换预编码的使能状态为第一状态;
    在所述DCI的格式为所述第二格式的情况下,所述终端设备确定所述变换预编码的使能状态为第二状态。
  17. 根据权利要求4、9、12、14或16所述的方法,其特征在于,
    所述第一状态为使能,所述第二状态为去使能;或,
    所述第一状态为去使能,所述第二状态为使能;或,
    所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
  18. 根据权利要求1~17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一信息,所述第一信息用于指示所述终端设备根据所述PDCCH确定所述变换预编码的使能状态。
  19. 根据权利要求1~18中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第一终端能力,所述第一终端能力用于指示所述终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
  20. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送的用于调度物理上行共享信道PUSCH的物理下行控制信道PDCCH;
    其中,所述PDCCH用于指示所述PUSCH的变换预编码的使能状态。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述PDCCH的RNTI,所述RNTI用于指示所述变换预编码的使能状态。
  22. 根据权利要求21所述的方法,其特征在于,所述网络设备确定所述PDCCH的RNTI包括:
    所述网络设备确定所述RNTI的类型,所述RNTI的类型用于指示所述变换预编码使能状态。
  23. 根据权利要求22所述的方法,其特征在于,所述RNTI的类型包括第一RNTI类型或第二RNTI类型,所述网络设备确定所述RNTI的类型包括:
    所述网络设备确定所述RNTI的类型为所述第一RNTI类型,以指示所述变换预编码的使能状态为第一状态;或,
    所述网络设备确定所述RNTI的类型为所述第二RNTI类型,以指示所述变换预编码的使能状态为第二状态。
  24. 根据权利要求22所述的方法,其特征在于,所述RNTI的类型包括第二RNTI类型,所述网络设备确定所述RNTI的类型包括:
    所述网络设备确定所述RNTI为第二RNTI类型,以指示切换所述变换预编码的使能状态。
  25. 根据权利要求23所述的方法,其特征在于,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络 临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
  26. 根据权利要求22所述的方法,其特征在于,所述网络设备确定所述RNTI的类型包括:
    所述网络设备确定所述RNTI的类型,以指示所述变换预编码使能状态和MCS调制编码方式表格。
  27. 根据权利要求26所述的方法,其特征在于,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型,所述网络设备确定所述RNTI的类型包括:
    所述网络设备确定所述RNTI类型为所述第一RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第一表格;或,
    所述网络设备确定所述RNTI类型为所述第二RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第一表格;或,
    所述网络设备确定所述RNTI类型为所述第三RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第二表格;或,
    所述网络设备确定所述RNTI类型为所述第四RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第二表格。
  28. 根据权利要求27所述的方法,其特征在于,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
  29. 根据权利要求20~28中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述PDCCH的搜索空间集合,以指示所述变换预编码的使能状态。
  30. 根据权利要求29所述的方法,其特征在于,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合,所述网络设备确定所述PDCCH的搜索空间集合包括:
    所述网络设备确定所述PDCCH的搜索空间集合属于所述第一搜索空间集合,以指示所述变换预编码的使能状态为第一状态;或,
    所述网络设备确定所述PDCCH的搜索空间集合属于所述第二搜索空间集合,以指示所述变换预编码的使能状态为第二状态。
  31. 根据权利要求20~28中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述PDCCH的监听时机,以指示所述变换预编码的使能状态。
  32. 根据权利要求31所述的方法,其特征在于,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合,所述网络设备确定所述PDCCH的监听时机包括:
    所述网络设备确定所述PDCCH的监听时机属于所述第一监听时机集合,以指示所述变换预编码的使能状态为第一状态;或,
    所述网络设备确定所述PDCCH的监听时机属于所述第二监听时机集合,以指示所述变换预编码的使能状态为第二状态。
  33. 根据权利要求20~28中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述PDCCH的DCI的格式,以指示所述变换预编码的使能状态。
  34. 根据权利要求33所述的方法,其特征在于,所述DCI的格式包括第一格式或第二格式,所述网络设备确定所述PDCCH的DCI的格式包括:
    所述网络设备确定所述DCI的格式为所述第一格式,以指示所述变换预编码的使能状态为第一状态;或,
    所述网络设备确定所述DCI的格式为所述第二格式,以指示所述变换预编码的使能状态为第二状态。
  35. 根据权利要求23、27、30、32或34所述的方法,其特征在于,
    所述第一状态为使能,所述第二状态为去使能;或,
    所述第一状态为去使能,所述第二状态为使能;或,
    所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
  36. 根据权利要求20~35中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述终端设备根据所述PDCCH确定所述变换预编码的使能状态。
  37. 根据权利要求20~36中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一终端能力,所述第一终端能力用于指示所述终端设备 是否支持动态确定PUSCH的变换预编码的使能状态。
  38. 一种终端设备,其特征在于,包括:
    第一接收单元,用于接收网络设备发送的用于调度物理上行共享信道PUSCH的物理下行控制信道PDCCH;
    第一确定单元,用于根据所述PDCCH,确定所述PUSCH的变换预编码的使能状态。
  39. 根据权利要求38所述的终端设备,其特征在于,所述第一确定单元包括:
    第二确定单元,用于根据加扰所述PDCCH的无线网络临时标识RNTI,确定所述变换预编码的使能状态。
  40. 根据权利要求39所述的终端设备,其特征在于,所述第二确定单元包括:
    第三确定单元,用于根据所述RNTI的类型,确定所述变换预编码使能状态。
  41. 根据权利要求40所述的终端设备,其特征在于,所述RNTI的类型包括第一RNTI类型或第二RNTI类型,所述第三确定单元包括:
    第四确定单元,用于在所述RNTI类型为所述第一RNTI类型的情况下,确定所述变换预编码的使能状态为第一状态;
    第五确定单元,用于在所述RNTI类型为所述第二RNTI类型的情况下,确定所述变换预编码的使能状态为第二状态。
  42. 根据权利要求40所述的终端设备,其特征在于,所述RNTI的类型包括第二RNTI类型,所述第三确定单元包括:
    切换单元,用于在所述RNTI类型为第二RNTI类型的情况下,切换所述变换预编码的使能状态。
  43. 根据权利要求39所述的终端设备,其特征在于,所述第二确定单元包括:
    第六确定单元,用于在第二RNTI类型没有配置、所述RNTI的类型为第一RNTI类型或所述PUSCH免调度传输的情况下,确定所述变换预编码的使能状态为第一状态,所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态。
  44. 根据权利要求41或43所述的终端设备,其特征在于,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
  45. 根据权利要求40所述的终端设备,其特征在于,所述第三确定单元包括:
    第七确定单元,用于根据所述RNTI的类型,确定变换预编码使能状态和MCS调制编码方式表格。
  46. 根据权利要求45所述的终端设备,其特征在于,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型,所述第七确定单元包括:
    第八确定单元,用于在所述RNTI类型为所述第一RNTI类型的情况下,确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第一表格;
    第九确定单元,用于在所述RNTI类型为所述第二RNTI类型的情况下,确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第一表格;
    第十确定单元,用于在所述RNTI类型为所述第三RNTI类型的情况下,确定所述变换预编码的使能状态为第二状态,并且确定所述MCS表格为第二表格;
    第十一确定单元,用于在所述RNTI类型为所述第四RNTI类型的情况下,确定所述变换预编码的使能状态为第一状态,并且确定所述MCS表格为第二表格。
  47. 根据权利要求46所述的终端设备,其特征在于,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
  48. 根据权利要求38~47中任一项所述的终端设备,其特征在于,所述第一确定单元包括:
    第十二确定单元,用于根据所述PDCCH的搜索空间集合,确定所述变换预编码的使能状态。
  49. 根据权利要求48所述的终端设备,其特征在于,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合,所述第十二确定单元包括:
    第十三确定单元,用于在所述PDCCH的搜索空间集合属于所述第一搜索空间集合的情况下,确定所述变换预编码的使能状态为第一状态;
    第十四确定单元,用于在所述PDCCH的搜索空间集合属于所述第二搜索空间集合的情况下,确定所述变换预编码的使能状态为第二状态。
  50. 根据权利要求38~47中任一项所述的终端设备,其特征在于,所述第一确定单元包括:
    第十五确定单元,用于根据所述PDCCH的监听时机,确定所述变换预编码的使能状态。
  51. 根据权利要求50所述的终端设备,其特征在于,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合,所述第十五确定单元包括:
    第十六确定单元,用于在所述PDCCH的监听时机属于所述第一监听时机集合的情况下,确定所述变换预编码的使能状态为第一状态;
    第十七确定单元,用于在所述PDCCH的监听时机属于所述第二监听时机集合的情况下,确定所述变换预编码的使能状态为第二状态。
  52. 根据权利要求38~47中任一项所述的终端设备,其特征在于,所述第一确定单元包括:
    第十八确定单元,用于根据所述PDCCH的DCI的格式,确定所述变换预编码的使能状态。
  53. 根据权利要求52所述的终端设备,其特征在于,所述DCI的格式包括第一格式或第二格式,所述第十八确定单元包括:
    第十九确定单元,用于在所述DCI的格式为所述第一格式的情况下,确定所述变换预编码的使能状态为第一状态;
    第二十确定单元,用于在所述DCI的格式为所述第二格式的情况下,确定所述变换预编码的使能状态为第二状态。
  54. 根据权利要求41、46、49、51或53所述的终端设备,其特征在于,
    所述第一状态为使能,所述第二状态为去使能;或,
    所述第一状态为去使能,所述第二状态为使能;或,
    所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
  55. 根据权利要求38~54中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第二接收单元,用于接收所述网络设备发送的第一信息,所述第一信息用于指示所述终端设备根据所述PDCCH确定所述变换预编码的使能状态。
  56. 根据权利要求38~55中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第一发送单元,用于向所述网络设备发送第一终端能力,所述第一终端能力用于指示所述终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
  57. 一种通信网络设备,其特征在于,包括:
    第二发送单元,用于向终端设备发送的用于调度物理上行共享信道PUSCH的物理下行控制信道PDCCH;
    其中,所述PDCCH用于指示所述PUSCH的变换预编码的使能状态。
  58. 根据权利要求57所述的网络设备,其特征在于,所述网络设备还包括:
    第二十一确定单元,用于确定所述PDCCH的RNTI,所述RNTI用于指示所述变换预编码的使能状态。
  59. 根据权利要求58所述的网络设备,其特征在于,所述第二十一确定单元包括:
    第二十二确定单元,用于确定所述RNTI的类型,所述RNTI的类型用于指示所述变换预编码使能状态。
  60. 根据权利要求59所述的网络设备,其特征在于,所述RNTI的类型包括第一RNTI类型或第二RNTI类型,所述第二十二确定单元包括:
    第二十三确定单元,用于确定所述RNTI的类型为所述第一RNTI类型,以指示所述变换预编码的使能状态为第一状态;或,
    第二十四确定单元,用于所述网络设备确定所述RNTI的类型为所述第二RNTI类型,以指示所述变换预编码的使能状态为第二状态。
  61. 根据权利要求59所述的网络设备,其特征在于,所述RNTI的类型包括第二RNTI类型,所述第二十二确定单元包括:
    第二十五确定单元,用于确定所述RNTI为第二RNTI类型,以指示切换所述变换预编码的使能状态。
  62. 根据权利要求60所述的网络设备,其特征在于,所述第一RNTI类型包括:调制和编码方案小区无线网络临时标识MCS-C-RNTI、小区无线网络临时标识C-RNTI、半静态信道状态信息无线网络临时标识SP-CSI-RNTI或者设定调度无线网络临时标识CS-RNTI。
  63. 根据权利要求59所述的网络设备,其特征在于,所述第二十二确定单元包括:
    第二十六确定单元,用于确定所述RNTI的类型,以指示所述变换预编码使能状态和MCS调制 编码方式表格。
  64. 根据权利要求63所述的网络设备,其特征在于,所述RNTI的类型包括第一RNTI类型、第二RNTI类型、第三RNTI类型或第四RNTI类型,所述第二十六确定单元包括:
    第二十七确定单元,用于确定所述RNTI类型为所述第一RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第一表格;或,
    第二十八确定单元,用于确定所述RNTI类型为所述第二RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第一表格;或,
    第二十九确定单元,用于确定所述RNTI类型为所述第三RNTI类型,以指示所述变换预编码的使能状态为第二状态并且所述MCS表格为第二表格;或,
    第三十确定单元,用于确定所述RNTI类型为所述第四RNTI类型,以指示所述变换预编码的使能状态为第一状态并且所述MCS表格为第二表格。
  65. 根据权利要求64所述的网络设备,其特征在于,所述第一RNTI类型包括C-RNTI、SP-CSI-RNTI或CS-RNTI。
  66. 根据权利要求57~65中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第三十一确定单元,用于确定所述PDCCH的搜索空间集合,以指示所述变换预编码的使能状态。
  67. 根据权利要求66所述的网络设备,其特征在于,所述PDCCH的搜索空间集合属于多个搜索空间集合中的一个,所述多个搜索空间集合包括第一搜索空间集合或第二搜索空间集合,所述第三十一确定单元包括:
    第三十二确定单元,用于确定所述PDCCH的搜索空间集合属于所述第一搜索空间集合,以指示所述变换预编码的使能状态为第一状态;或,
    第三十三确定单元,用于确定所述PDCCH的搜索空间集合属于所述第二搜索空间集合,以指示所述变换预编码的使能状态为第二状态。
  68. 根据权利要求57~65中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第三十四确定单元,用于确定所述PDCCH的监听时机,以指示所述变换预编码的使能状态。
  69. 根据权利要求68所述的网络设备,其特征在于,所述PDCCH的监听时机属于多个监听时机集合中的一个,所述多个监听时机集合包括第一监听时机集合和第二监听时机集合,所述第三十四确定单元包括:
    第三十五确定单元,用于确定所述PDCCH的监听时机属于所述第一监听时机集合,以指示所述变换预编码的使能状态为第一状态;或,
    第三十六确定单元,用于确定所述PDCCH的监听时机属于所述第二监听时机集合,以指示所述变换预编码的使能状态为第二状态。
  70. 根据权利要求57~65中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第三十七确定单元,用于确定所述PDCCH的DCI的格式,以指示所述变换预编码的使能状态。
  71. 根据权利要求70所述的网络设备,其特征在于,所述DCI的格式包括第一格式或第二格式,所述第三十七确定单元包括:
    第三十八确定单元,用于确定所述DCI的格式为所述第一格式,以指示所述变换预编码的使能状态为第一状态;或,
    第三十九确定单元,用于确定所述DCI的格式为所述第二格式,以指示所述变换预编码的使能状态为第二状态。
  72. 根据权利要求60、64、67、69或71所述的网络设备,其特征在于,
    所述第一状态为使能,所述第二状态为去使能;或,
    所述第一状态为去使能,所述第二状态为使能;或,
    所述第一状态为无线资源控制RRC信令半静态配置的变换预编码的使能状态,所述第二状态为与所述RRC信令半静态配置的变换预编码的使能状态不同的使能状态。
  73. 根据权利要求57~72中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第三发送单元,用于向所述终端设备发送第一信息,所述第一信息用于指示根据所述PDCCH确定所述变换预编码的使能状态。
  74. 根据权利要求57~73中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第三接收单元,用于接收所述终端设备发送的第一终端能力,所述第一终端能力用于指示所述终端设备是否支持动态确定PUSCH的变换预编码的使能状态。
  75. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用 于调用所述存储器中的程序,以执行如权利要求1-19中任一项所述的方法。
  76. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求20-37中任一项所述的方法。
  77. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1-19中任一项所述的方法。
  78. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求20-37中任一项所述的方法。
  79. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-19中任一项所述的方法。
  80. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求20-37中任一项所述的方法。
  81. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-19中任一项所述的方法。
  82. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求20-37中任一项所述的方法。
  83. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-19中任一项所述的方法。
  84. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求20-37中任一项所述的方法。
  85. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-19中任一项所述的方法。
  86. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求20-37中任一项所述的方法。
PCT/CN2022/071669 2022-01-12 2022-01-12 通信方法、终端设备以及网络设备 WO2023133740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071669 WO2023133740A1 (zh) 2022-01-12 2022-01-12 通信方法、终端设备以及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071669 WO2023133740A1 (zh) 2022-01-12 2022-01-12 通信方法、终端设备以及网络设备

Publications (1)

Publication Number Publication Date
WO2023133740A1 true WO2023133740A1 (zh) 2023-07-20

Family

ID=87280008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071669 WO2023133740A1 (zh) 2022-01-12 2022-01-12 通信方法、终端设备以及网络设备

Country Status (1)

Country Link
WO (1) WO2023133740A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784895A (zh) * 2018-07-31 2020-02-11 夏普株式会社 由用户设备执行的方法以及用户设备
CN112740738A (zh) * 2018-12-06 2021-04-30 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
US20210282172A1 (en) * 2018-11-29 2021-09-09 Huawei Technologies Co., Ltd. Transmission method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784895A (zh) * 2018-07-31 2020-02-11 夏普株式会社 由用户设备执行的方法以及用户设备
US20210282172A1 (en) * 2018-11-29 2021-09-09 Huawei Technologies Co., Ltd. Transmission method and apparatus
CN112740738A (zh) * 2018-12-06 2021-04-30 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
CN113329501A (zh) * 2018-12-06 2021-08-31 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Considerations for CQI and MCS for URLLC", 3GPP TSG RAN WG1 MEETING #93, R1-1807376, 20 May 2018 (2018-05-20), XP051442568 *

Similar Documents

Publication Publication Date Title
US11502887B2 (en) Method and apparatus for collision mitigation and complexity reduction for NOMA
WO2019242776A1 (zh) 无线通信方法及装置
EP3437285A1 (en) Method performed by user equipment, method performed by evolved node b, user equipment, and evolved node b
WO2019104685A1 (zh) 通信方法和通信设备
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
WO2020181441A1 (zh) 通信方法、装置及***
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
US20240179728A1 (en) Communication method and communication apparatus
WO2021077305A1 (zh) 测量方法、装置及***
WO2023133740A1 (zh) 通信方法、终端设备以及网络设备
WO2022012396A1 (zh) 一种通信方法及装置
WO2020143713A1 (zh) 通信方法、装置和存储介质
WO2020220350A1 (zh) 一种通信方法及装置
WO2023123315A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123073A1 (zh) 通信方法、终端设备及网络设备
WO2024011483A1 (zh) 通信方法、终端设备及网络设备
WO2023123051A1 (zh) 通信方法和终端设备
WO2024031540A1 (zh) 通信方法及通信装置
WO2024092702A1 (zh) 通信方法、终端设备以及网络设备
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2023035251A1 (zh) 无线通信的方法和通信设备
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919405

Country of ref document: EP

Kind code of ref document: A1