WO2020111214A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2020111214A1
WO2020111214A1 PCT/JP2019/046697 JP2019046697W WO2020111214A1 WO 2020111214 A1 WO2020111214 A1 WO 2020111214A1 JP 2019046697 W JP2019046697 W JP 2019046697W WO 2020111214 A1 WO2020111214 A1 WO 2020111214A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
high frequency
control unit
distance
unit
Prior art date
Application number
PCT/JP2019/046697
Other languages
English (en)
French (fr)
Inventor
高史 夘野
大介 細川
小笠原 史太佳
吉野 浩二
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020557846A priority Critical patent/JP7266166B2/ja
Priority to US17/294,410 priority patent/US20220022292A1/en
Priority to CN201980077787.2A priority patent/CN113170541B/zh
Publication of WO2020111214A1 publication Critical patent/WO2020111214A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/54Electrodes

Definitions

  • the present disclosure relates to a high frequency heating device.
  • the defrosting device described in Patent Document 1 As a high-frequency heating device, for example, the defrosting device described in Patent Document 1 is known.
  • the heating target object is arranged between the electrodes facing each other, and the heating target object is heated by the high-frequency power supplied between the electrodes (see, for example, Patent Document 1).
  • the defrosting device described in Patent Document 1 includes two counter electrodes, an adjusting mechanism, a high frequency supplying unit, and a condition changing unit.
  • the adjustment mechanism adjusts the distance between the counter electrodes.
  • the high frequency supply unit supplies high frequency power to the counter electrode.
  • the condition changing unit changes the supply condition of the high frequency power to the counter electrodes according to the interval between the counter electrodes.
  • the thawing device described in Patent Document 1 adjusts the interval between the counter electrodes according to the height of the thawing target, so that the thawing target can be thawed in a more appropriate state regardless of the height of the thawing target. It is what
  • the other electrode is arranged at a position separated from the heating target by a predetermined distance.
  • the distance between the other electrode and the object to be heated can be made constant.
  • the impedance of the counter electrode including the heating object changes depending on the size and type of the heating object. Therefore, the device described in Patent Document 1 needs to adjust the high-frequency power supplied according to the position of the electrode. In this case, if the output of the high frequency power is reduced, the heat treatment time may increase.
  • the change in the impedance of the counter electrode can be adjusted using a matching device.
  • a matching device in order to cope with the change in the impedance of the counter electrode, it is necessary to configure the matching box using the variable reactance element having a relatively wide variable range. In this case, it may take time to adjust the constant.
  • the device described in Patent Document 1 still has room for improvement in that the object to be heated is efficiently heated. Further, such a device requires a sensor for detecting contact between the electrode and the heating target, and a mechanism for limiting the load applied to the heating target when the electrode contacts the heating target. .. As a result, the configuration of the device becomes complicated.
  • a high-frequency heating device includes a first electrode, a second electrode, a high-frequency power source, a position adjustment unit, a detection unit, and a control unit.
  • the second electrode is arranged to face the first electrode.
  • the high frequency power supply supplies high frequency power to the first electrode.
  • the position adjustment unit adjusts the distance between the first electrode and the second electrode.
  • the detection unit detects the reflected power from the first electrode toward the high frequency power supply.
  • the control unit controls the position adjusting unit based on the reflected power.
  • the heating target can be efficiently heated.
  • FIG. 1 is a schematic diagram showing a configuration of a high frequency heating device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic diagram showing the configuration of the high frequency power supply according to the first embodiment.
  • FIG. 3A is a schematic diagram showing one configuration of the matching unit according to the first embodiment.
  • FIG. 3B is a schematic diagram showing another configuration of the matching device in the first embodiment.
  • FIG. 4A is a schematic diagram showing one configuration of the detection unit in the first embodiment.
  • FIG. 4B is a schematic diagram showing another configuration of the detection unit in the first embodiment.
  • FIG. 5 is a schematic diagram showing an equivalent circuit relating to the matching unit and the inside of the heating chamber in Example 1 of the first exemplary embodiment.
  • FIG. 6 is a graph showing the relationship between the reflection ratio and the distance between the first electrode and the object to be heated in Example 1.
  • FIG. 7 is a graph showing the relationship between the reflection ratio and the distance between the first electrode and the second electrode in Example 1.
  • FIG. 8 is a schematic diagram showing an equivalent circuit relating to the matching unit and the inside of the heating chamber in Example 2 of the first exemplary embodiment.
  • FIG. 9 is a graph showing the relationship between the reflection ratio and the distance between the first electrode and the object to be heated in Example 2.
  • FIG. 10 is a graph showing the relationship between the distance between the first electrode and the second electrode and the reflection ratio in Example 2.
  • FIG. 11 is a timing chart showing the operation of the high-frequency heating device according to Embodiment 2 of the present disclosure.
  • the high-frequency heating device includes a first electrode, a second electrode, a high-frequency power source, a position adjustment unit, a detection unit, and a control unit.
  • the second electrode is arranged to face the first electrode.
  • the high frequency power supply supplies high frequency power to the first electrode.
  • the position adjustment unit adjusts the distance between the first electrode and the second electrode.
  • the detection unit detects the reflected power from the first electrode toward the high frequency power supply.
  • the control unit controls the position adjusting unit based on the reflected power.
  • the position adjusting unit moves both or either one of the first electrode and the second electrode.
  • the control unit controls the position adjustment unit to adjust the distance between the first electrode and the second electrode, and acquires the value of the reflected power from the detection unit.
  • the control unit stops the position adjustment unit when the value according to the reflected power becomes equal to or less than the predetermined first threshold value.
  • the high-frequency heating device further includes a matching device arranged between the first electrode and the high-frequency power source, in addition to the first aspect. After adjusting the distance between the first electrode and the second electrode, the control unit adjusts the matching device so as to perform impedance matching between the load and the high frequency power supply.
  • the high-frequency heating device further includes a matching device that is disposed between the first electrode and the high-frequency power source and that performs impedance matching between the load and the high-frequency power source.
  • the matching device includes a variable reactance element that changes the reactance.
  • variable reactance element in addition to the fifth aspect, includes a variable inductor and/or a variable capacitor.
  • control unit adjusts the constant of the variable reactance element so that the value according to the reflected power becomes the minimum.
  • FIG. 1 is a schematic diagram showing a configuration of a high frequency heating device 1A according to the first embodiment of the present disclosure.
  • the high-frequency heating device 1A includes a first electrode 11, a second electrode 12, a heating chamber 13, a position adjusting unit 20, a high-frequency power source 30, a matching unit 40, and a detecting unit 50. , And a control unit 60.
  • the first electrode 11, the second electrode 12, and the position adjusting unit 20 are arranged in the heating chamber 13.
  • the first electrode 11 is a flat plate-shaped electrode having a rectangular shape and arranged in the upper part of the heating chamber 13.
  • the second electrode 12 is a flat plate electrode having a rectangular shape.
  • the second electrode 12 is arranged on the bottom surface of the heating chamber 13 so as to face the first electrode 11.
  • the second electrode 12 is connected to the ground.
  • the heating object 90 is placed on the second electrode 12 and arranged between the first electrode 11 and the second electrode 12.
  • the heating target 90 is a dielectric having a uniform thickness, for example, a food material.
  • the position adjusting unit 20 is arranged on the ceiling of the heating chamber 13.
  • the position adjustment unit 20 adjusts the distance between the first electrode 11 and the second electrode 12 according to the instruction from the control unit 60.
  • the position adjusting unit 20 adjusts the position of the first electrode 11 by moving the first electrode 11.
  • the position adjusting unit 20 has, for example, a motor (not shown) arranged on the ceiling of the heating chamber 13, and a connecting member (not shown) that connects the motor and the first electrode 11. When this motor rotates, the connecting member moves the first electrode 11 up and down.
  • the connection member is, for example, a rod-shaped member or a wire.
  • the high frequency power supply 30 is connected to the first electrode 11 via the matching unit 40 and the detection unit 50 and supplies high frequency power to the first electrode 11.
  • FIG. 2 is a schematic diagram showing the configuration of the high frequency power supply 30. As shown in FIG. 2, the high frequency power supply 30 includes a high frequency oscillator 31, an amplifier 32, and an amplifier 33.
  • the high frequency power supply 30 supplies high frequency power to the first electrode 11 to generate an electric field between the first electrode 11 and the second electrode 12. Due to this electric field, the heating target object 90 arranged between the first electrode 11 and the second electrode 12 is dielectrically heated.
  • FIG. 3A is a schematic diagram showing the configuration of the matching device 40.
  • the matching device 40 includes a variable inductor VL1 and a variable capacitor VC1.
  • the variable inductor VL1 is connected to the first electrode 11.
  • the variable capacitor VC1 is connected to the ground. That is, the capacitor composed of the first electrode 11 and the second electrode 12 is connected in series with the variable inductor VL1 and in parallel with the variable capacitor VC1.
  • Matching device 40 has a motor (not shown) that changes the inductance of variable inductor VL1 and/or the capacitance of variable capacitor VC1.
  • the control unit 60 controls the motor to adjust the matching box 40 so as to perform impedance matching between the load and the high frequency power supply 30.
  • FIG. 3B is a schematic diagram showing a configuration of a matching device 40 a which is a modified example of the matching device 40.
  • the matching device 40a includes variable inductors VL2 and VL3.
  • the variable inductor VL2 is connected to the first electrode 11.
  • the variable inductor VL3 is connected to the ground. That is, the capacitor composed of the first electrode 11 and the second electrode 12 is connected in series with the variable inductor VL2 and in parallel with the variable inductor VL3.
  • Matching device 40a has a motor (not shown) that changes both or either of the inductances of variable inductor VL2 and variable inductor VL3.
  • the control unit 60 controls the motor to adjust the matching box 40 so as to perform impedance matching between the load and the high frequency power supply 30.
  • the detection unit 50 detects the reflected power from the first electrode 11 toward the high frequency power supply 30.
  • the detection unit 50 is composed of, for example, an electric circuit.
  • FIG. 4A is a schematic diagram showing the configuration of the detection unit 50.
  • the detection unit 50 is a CM directional coupler configured by combining capacitive coupling (C) and inductive coupling (M).
  • the detection unit 50 includes a transformer T1, a capacitor C1, a capacitor C2, a resistor R1, and a resistor R2.
  • the capacitors C1 and C2 are arranged on both sides of the transformer T1.
  • the resistors R1 and R2 are connected in series to the capacitors C1 and C2, respectively.
  • the transformer T1 when it is defined that the traveling wave flows from left to right and the reflected wave flows from right to left, the transformer T1 generates a current Imf according to the traveling wave and a current Imr according to the reflected wave.
  • the capacitors C1 and C2 generate a current Ic1 and a current Ic2.
  • the circuit shown in FIG. 4A functions as a directional coupler.
  • the detection unit 50 may be composed of a distributed constant line arranged on the substrate pattern.
  • FIG. 4B is a schematic diagram showing a configuration of a detection unit 50 a which is a modified example of the detection unit 50.
  • the detection unit 50a includes a transformer T2, a capacitor C3, a capacitor C4, a capacitor C5, a capacitor C6, a resistor R3, a resistor R4, a diode D1, and a diode D2.
  • the detection units 50 and 50a can detect both the reflected wave (reflected power) and the traveling wave (incident power).
  • the control unit 60 is composed of, for example, a microcomputer. As shown in FIG. 1, the control unit 60 controls the position adjusting unit 20 and adjusts the position (specifically, the height) of the first electrode 11 so that the heating target 90 is efficiently heated.
  • the control unit 60 is electrically connected to the position adjustment unit 20 and the detection unit 50.
  • the control unit 60 receives the value of the reflected power from the detection unit 50.
  • the control unit 60 transmits the moving direction and the moving amount of the first electrode 11 to the position adjusting unit 20.
  • the control unit 60 acquires the value of the reflected power from the detection unit 50 while moving the first electrode 11 by controlling the position adjustment unit 20.
  • the control unit 60 calculates the reflection ratio, which is the ratio of the reflected wave (reflected power) and the traveling wave (incident power).
  • the control unit 60 controls the position adjusting unit 20 so that the first electrode 11 is stopped at the position where the reflection ratio is equal to or less than the threshold value.
  • Example 1 which is an example of the operation of the high-frequency heating device 1A will be described.
  • FIG. 5 shows an equivalent circuit of the matching unit 40 and the inside of the heating chamber 13 in the first embodiment.
  • the reflection ratio is the ratio of the reflected wave to the traveling wave.
  • the traveling wave is the incident power applied to the first electrode 11 by the high frequency power supply 30, and the reflected wave is the reflected power returning from the first electrode 11 to the high frequency power supply 30.
  • the incident power is 1W.
  • Example 1 the traveling wave and the reflected wave were detected when the first electrode 11 was brought close to the heating target 90, and the reflection ratio was calculated.
  • the matching device 40 performs impedance matching. That is, impedance matching is not performed while the position adjusting unit 20 is operating.
  • Example 1 minced beef was used as the heating target 90.
  • the reflection ratio was calculated under the condition 1 in which 1 kg of beef minced was arranged and the condition 2 in which 300 g of beef minced was arranged.
  • the size of the heating target object 90 is 165 mm ⁇ 110 mm ⁇ 25 mm.
  • the size of the heating target object 90 is 220 mm ⁇ 155 mm ⁇ 40 mm.
  • the equivalent circuit inside the heating chamber 13 includes an inductance 14, a capacitance 15 between the first electrode 11 and the heating target 90, and a capacitance/resistance 16 inside the heating target 90. , A capacitance 17 around the heating target 90, and a capacitance 18 between the first electrode 11 and the wall surface in the heating chamber 13.
  • the inductance 14 is the inductance of the wiring from the matching unit 40 including the position adjusting unit 20 to the first electrode 11.
  • Matching device 40 includes a variable inductor VL1 and a variable capacitor VC1.
  • the variable inductor VL1 is connected to the first electrode 11, and the variable capacitor VC1 is connected to the ground. Therefore, the capacitor composed of the first electrode 11 and the second electrode 12 is connected in series with the variable inductor VL1 and in parallel with the variable capacitor VC1.
  • FIG. 6 shows the relationship between the reflection ratio and the distance B1 (see FIG. 1) between the first electrode 11 and the heating target 90 in the first embodiment.
  • the reflection ratio becomes the minimum when the distance B1 is 28 mm and 30 mm, respectively. Become.
  • the minimum reflection ratio means that the reflected wave is the smallest.
  • the first electrode 11 is arranged at a suitable position for efficient heat treatment. Therefore, in the first embodiment, the control unit 60 moves the first electrode 11 toward the heating target 90, and stops the first electrode 11 when the reflection ratio becomes equal to or less than the predetermined threshold P1. Control 20.
  • the control unit 60 arranges the first electrode 11 at a suitable position for efficient heat treatment according to the size of the heating target 90.
  • the threshold value P1 is a value of the reflection ratio that is allowable for efficient heat treatment.
  • control unit 60 controls the position adjusting unit 20 to adjust the position of the first electrode 11 so that the heating target object 90 is efficiently heated.
  • the threshold P1 is set to 0.1. Therefore, under the conditions 1 and 2, the control unit 60 controls the position adjusting unit 20 to move the first electrode 11 so that the distance B1 is within the range of 25 to 29 mm and 28 to 32 mm, respectively. ..
  • FIG. 7 shows the relationship between the reflection ratio and the distance B2 (see FIG. 1) between the first electrode 11 and the second electrode 12 in the first embodiment.
  • the reflection ratio when the distance B2 is changed is calculated under the conditions 1 and 2 and the additional condition 3. Under the condition 3, the heating target object 90 is not arranged.
  • the reflection ratio becomes the minimum when the distance B2 is 45 mm.
  • the reflection ratio becomes minimum when the distance B2 is 68 mm and 55 mm, respectively.
  • the distance B2 when the reflection ratio reaches the threshold value P1 under the condition 3 is set as the predetermined threshold value Q1.
  • the position adjusting unit 20 gradually narrows the distance B2.
  • the control unit 60 determines that the heating target object 90 is not arranged between the first electrode 11 and the second electrode 12. To do.
  • the relative permittivity of the heating object 90 is larger than 1. Therefore, when the heating target object 90 is not arranged, the capacitance/resistance 16 (see FIG. 5) in the heating target object 90 is the smallest. As a result, the distance B2 when the reflection ratio becomes the minimum is the smallest when the heating target 90 is not arranged.
  • the high frequency heating device 1A determines that the heating target object 90 is not arranged between the first electrode 11 and the second electrode 12.
  • the control unit 60 acquires information on the reflection ratio (information on the reflection ratio under the condition 3 shown in FIG. 7) when the heating target 90 is not arranged. Specifically, the control unit 60 changes the distance B2 in a state where the heating target object 90 is not arranged and acquires the information of the reflection ratio.
  • the control unit 60 recognizes the distance B2 at which the reflection ratio is the minimum when the heating target object 90 is not arranged.
  • the control unit 60 sets the distance Q2 at which the reflection ratio first reaches the threshold value P1 as the threshold value Q1.
  • the position adjustment unit 20 gradually narrows the distance B2.
  • the detection unit 50 detects the reflected wave (reflected power) and the traveling wave (incident power) while the distance B2 is narrowing.
  • the control unit 60 receives the reflected wave information and the traveling wave information, and calculates the reflection ratio based on these pieces of information.
  • the control unit 60 determines that the heating target object 90 is not arranged between the first electrode 11 and the second electrode 12. To do.
  • control unit 60 determines that the heating target 90 is not arranged between the first electrode 11 and the second electrode 12 when the reflection ratio is larger than the threshold P1 until the distance B2 reaches the threshold Q1. judge.
  • the thresholds P1 and Q1 correspond to the first threshold and the second threshold, respectively.
  • the control unit 60 arranges the heating target object 90 between the first electrode 11 and the second electrode 12. To determine.
  • FIG. 8 shows an equivalent circuit of the matching device 40a and the inside of the heating chamber 13 in the second embodiment.
  • the equivalent circuit inside the heating chamber 13 in FIG. 8 is the same as that of the first embodiment shown in FIG. 5, and the description thereof is omitted.
  • a matching device 40a which is a modified example of the matching device 40 includes variable inductors VL2 and VL3.
  • the variable inductor VL2 is connected to the first electrode 11, and the variable inductor VL3 is connected to the ground. Therefore, the capacitor composed of the first electrode 11 and the second electrode 12 is connected in series with the variable inductor VL2 and in parallel with the variable inductor VL3.
  • Example 2 the traveling wave and the reflected wave were detected when the first electrode 11 was brought close to the heating target 90, and the reflection ratio was calculated.
  • the matching device 40 performs impedance matching. That is, impedance matching is not performed while the position adjusting unit 20 is operating.
  • Example 2 minced beef was used as the heating target 90.
  • the reflection ratio was calculated under the condition 4 in which 1 kg of beef minced was placed and the condition 5 in which 300 g of beef minced was placed.
  • the size of the heating target object 90 is 165 mm ⁇ 110 mm ⁇ 25 mm.
  • the size of the heating target object 90 is 220 mm ⁇ 155 mm ⁇ 40 mm.
  • FIG. 9 shows the relationship between the reflection ratio and the distance B1 between the first electrode 11 and the heating target 90 in the second embodiment.
  • Example 2 when the first electrode 11 was moved toward the heating target object 90 under the conditions 4 and 5, the reflection ratio was the minimum when the distance B1 was 27 mm and 30 mm, respectively. Become.
  • control unit 60 moves the first electrode 11 toward the heating target 90, and controls the position adjusting unit 20 so that the reflection ratio detected by the detection unit 50 becomes equal to or less than the predetermined threshold P2. Control. In this way, the control unit 60 arranges the first electrode 11 at a position where the heating target object 90 is efficiently heated.
  • the threshold P2 is set to 0.1. Therefore, under the conditions 4 and 5, the control unit 60 moves the first electrode 11 so that the distance B1 is within the range of 25 to 29 mm and 28 to 32 mm, respectively.
  • FIG. 10 shows the relationship between the reflection ratio and the distance B2 between the first electrode 11 and the second electrode 12 in the second embodiment.
  • the reflection ratio when the distance B2 is changed is calculated under the conditions 4 and 5 and the additional condition 6. Under the condition 6, the heating target object 90 is not arranged.
  • the reflection ratio becomes the minimum when the distance B2 is 45 mm.
  • the reflection ratio becomes minimum when the distance B2 is 68 mm and 55 mm, respectively.
  • the distance B2 when the reflection ratio reaches the threshold value P2 under the condition 6 is set as the predetermined threshold value Q2.
  • the position adjusting unit 20 gradually narrows the distance B2.
  • the control unit 60 determines that the heating target object 90 is not arranged between the first electrode 11 and the second electrode 12. To do.
  • the control unit 60 arranges the heating target object 90 between the first electrode 11 and the second electrode 12. To determine.
  • the high frequency heating device 1A includes a detection unit 50 that detects reflected power, a position adjustment unit 20 that moves the first electrode 11, and a control unit 60.
  • the control unit 60 controls the position adjusting unit 20 based on the reflection ratio, which is the ratio of the reflected power to the incident power, and adjusts the position of the first electrode 11.
  • the position of the first electrode 11 can be easily adjusted according to the dimensions of the heating target 90. As a result, the heating target object 90 can be efficiently heated.
  • the control unit 60 arranges the first electrode 11 at a position suitable for efficient heating based on the reflection ratio. Therefore, the position of the first electrode 11 can be adjusted without contacting the heating target object 90 with the first electrode 11.
  • the high frequency heating device 1A does not require a sensor for detecting contact between the first electrode 11 and the heating target 90.
  • the high frequency heating device 1A does not require a mechanism for limiting the load applied to the heating target object 90 when the first electrode 11 contacts the heating target object 90.
  • the position adjusting unit 20 can be simplified, and by extension, the entire device can be simplified.
  • the matching device 40 performs impedance matching between the heating chamber 13 and the high frequency power source 30 after adjusting the position of the first electrode 11. As a result, it is possible to start adjusting the constant of the variable reactance element in the matching device 40 from the state where the reflected power is small. Therefore, a variable reactance element having a narrower variable range can be used. As a result, impedance matching can be performed in a shorter time.
  • the first electrode 11 is a flat plate electrode having a rectangular shape.
  • the first electrode 11 may have a shape such as a circle, an ellipse, or a polygon.
  • the second electrode 12 is arranged below the first electrode 11.
  • the present disclosure is not limited to this. It is sufficient that the first electrode 11 and the second electrode 12 are arranged so as to face each other.
  • the second electrode 12 may be arranged above the first electrode 11.
  • the first electrode 11 and the second electrode 12 may be arranged so as to face each other in the left-right direction.
  • the first electrode 11, the second electrode 12 and the position adjusting unit 20 are arranged inside the heating chamber 13.
  • the present disclosure is not limited to this.
  • the position adjusting unit 20 may be arranged outside the heating chamber 13.
  • the position adjusting unit 20 moves the first electrode 11 up and down.
  • the position adjustment unit 20 may move the second electrode 12 up and down.
  • the position adjustment unit 20 may move both the first electrode 11 and the second electrode 12 up and down.
  • the high frequency power supply 30 includes a high frequency oscillator 31 and amplifiers 32 and 33 as shown in FIG.
  • the high frequency power supply 30 is not limited to this embodiment as long as it can output a high frequency signal.
  • the high frequency heating device 1A includes a matching device 40.
  • the high frequency heating device 1A may not include the matching device 40.
  • control unit 60 may control the position adjusting unit 20 based on a value corresponding to the reflected power such as a reflection ratio or a value of the reflected power.
  • the thresholds P1 and P2 are set to 0.1.
  • the present disclosure is not limited to these.
  • the threshold values P1 and P2 can be set to arbitrary values.
  • the configuration of the matching device has been described by exemplifying the matching device 40 shown in FIG. 3A and the matching device 40a shown in FIG. 3B.
  • the present disclosure is not limited to this. It suffices that the matching device includes a variable reactance element and can perform impedance matching between the impedance of the high frequency power supply 30 and the impedance of the load in the heating chamber 13.
  • the heating object 90 has a constant dielectric constant.
  • the dielectric constant of the heating target object 90 changes as the heating progresses, the position of the first electrode 11 may be readjusted based on the reflection ratio.
  • Embodiment 2 A high frequency heating device 1B according to Embodiment 2 of the present disclosure will be described.
  • the high frequency heating device 1B has the same configuration as the high frequency heating device 1A of the first embodiment.
  • the present embodiment is different from the first embodiment in that the control unit 60 alternately operates the matching unit 40 and the position adjusting unit 20.
  • FIG. 11 is a timing chart showing the operation of the high frequency heating device 1B. As shown in FIG. 11, the high frequency heating device 1B alternately operates the motor included in the matching unit 40 and the motor included in the position adjusting unit 20 to move the first electrode 11 and perform impedance matching. And alternate.
  • control unit 60 controls the position adjusting unit 20 so that the first electrode 11 gradually approaches the heating target 90 from the position farthest from the heating target 90.
  • the control unit 60 adjusts the matching unit 40 based on the value of the reflected power at each stop position of the first electrode 11 to perform impedance matching.
  • control unit 60 causes the matching device 40 to perform impedance matching based on the value of the reflected power. As shown in FIG. 11, the input power is constant in the present embodiment. Therefore, the control unit 60 is substantially the same as performing impedance matching based on the reflection ratio.
  • matching device 40 includes a variable reactance element that changes the reactance.
  • the variable reactance element includes both or one of a variable inductor and a variable capacitor.
  • the control unit 60 determines the position of the first electrode 11 when the change in the constant of the variable reactance element of the matching unit 40 drops below a predetermined threshold value.
  • the high frequency heating device 1B includes a matching device 40 shown in FIG. 3A. However, the high frequency heating device 1B may include the matching device 40a shown in FIG. 3B.
  • the control unit 60 changes the constant of the variable reactance element included in the matching unit 40 based on the value of the reflected power in order to cause the matching unit 40 to perform impedance matching.
  • the constant of the variable reactance element is the inductance of the variable inductance element and the capacitance of the variable capacitance element. As shown in FIG. 3A, the variable inductance element is the variable inductor VL1 and the variable capacitance element is the variable capacitor VC1.
  • the constant of the variable reactance element is adjusted by fixing the inductance of the variable inductor VL1 and changing the capacitance of the variable capacitor VC1.
  • control unit 60 adjusts the capacitance of the variable capacitor VC1 of the matching unit 40 at the initial position of the first electrode 11 so as to minimize the value of the reflected power.
  • the control unit 60 stores the constant of the variable capacitor VC1 when the reflected power becomes minimum as Tg(1).
  • control unit 60 adjusts the constant of the variable capacitor VC1 so that the value of the reflected power approaches the predetermined threshold P3. In the state where the first electrode 11 is located away from the heating target 90, the reflected power may not decrease.
  • FIG. 11 shows that the reflected power approaches the threshold value P3 when the “impedance matching” and the “movement of the first electrode 11” are performed for 3 cycles.
  • the control unit 60 fixes the constant of the variable capacitor VC1 to Tg(1) and controls the position adjusting unit 20 to move the first electrode 11 by a predetermined distance.
  • the impedance of the load inside the heating chamber 13 changes and the reflected power increases.
  • control unit 60 adjusts the capacitance of the variable capacitor VC1 so as to minimize the reflected power.
  • the control unit 60 stores the capacitance of the variable capacitor VC1 when the reflected power becomes minimum as Tg(2).
  • control unit 60 repeats the movement of the first electrode 11 and the impedance matching n times, and records the capacitance of the variable capacitor VC1 when the reflected power becomes minimum as Tg(1) to Tg(n). To do.
  • the capacitance of the variable capacitor VC1 changes largely before and after the movement of the first electrode 11.
  • the change in the capacitance of the variable capacitor VC1 becomes smaller.
  • the control unit 60 determines the distance B2 based on the change in the capacitance of the variable capacitor VC1 before and after the movement of the first electrode 11. Specifically, the control unit 60 obtains a constant Tg(n-1) immediately before the adjustment of the variable capacitor VC1 is completed and a constant Tg(n) after the adjustment of the variable capacitor VC1 is changed, and the change (Tg(n Calculate n-1)-Tg(n)).
  • the control unit 60 has a predetermined reference value serving as a threshold value with respect to the change (Tg(n ⁇ 1) ⁇ Tg(n)) of the capacitance of the variable capacitor VC1.
  • the control unit 60 arranges the first electrode 11 so that the change (Tg(n ⁇ 1) ⁇ Tg(n)) of the capacitance of the variable capacitor VC1 falls below the reference value. Thereby, the distance B2 suitable for heating can be determined.
  • the control unit 60 controls the position adjustment unit 20 so that the first electrode 11 approaches the heating target 90 stepwise.
  • the controller 60 adjusts the matching device 40 based on the value of the reflected power at each stop position of the first electrode 11 to perform impedance matching.
  • the control unit 60 moves the first electrode 11 so that the change in the constant of the variable reactance element becomes equal to or less than the reference value. Accordingly, the first electrode 11 can be easily arranged at a suitable position according to the size of the heating target 90. As a result, the heating target object 90 can be efficiently heated.
  • the position of the first electrode 11 is determined by fixing the inductance of the variable inductor VL1 and changing the capacitance of the variable capacitor VC1.
  • the position of the first electrode 11 may be determined by fixing the capacitance of the variable capacitor VC1 and changing the inductance of the variable inductor VL1.
  • the position of the first electrode 11 may be determined by changing the constants of both the variable inductor VL1 and the variable capacitor VC1.
  • matching device 40 includes variable inductor VL1 connected in series with a capacitor composed of first electrode 11 and second electrode 12, and a capacitor composed of first electrode 11 and second electrode 12. And a variable capacitor VC1 connected in parallel.
  • Matching device 40 may include a variable reactance element and may perform impedance matching between the impedance of high frequency power supply 30 and the impedance of the load in heating chamber 13.
  • control unit 60 sets the constant of the variable reactance element of the matching unit 40 (capacitance of the variable capacitor VC1) when the reflected power is minimum at Tg(1) at the initial position of the first electrode 11.
  • the present disclosure is not limited to this.
  • the reflected power may not be sufficiently reduced within the adjustment range of the variable reactance element, for example, when the initial position of the first electrode 11 is too far from the heating target 90.
  • the first electrode 11 is moved to a position where the reflected power can be reduced by adjusting the constant of the variable reactance element.
  • Tg(1) may be determined by adjusting the constant of the variable reactance element.
  • control unit 60 adjusts the constant of the variable reactance element of the matching unit 40 so as to minimize the reflected power.
  • the present disclosure is not limited to this.
  • the control unit 60 may determine the constant of the variable reactance element when the value of the reflected power is almost the minimum to be Tg(n). In this case, it is necessary to adjust the threshold P3.
  • control unit 60 moves the first electrode 11 so that the change in the constant of the variable reactance element becomes equal to or less than the reference value.
  • the controller 60 may move the first electrode 11 based on the constant of the variable reactance element.
  • the position adjusting unit 20 moves the first electrode 11 as in the first embodiment.
  • the present disclosure is not limited to this.
  • the position adjusting unit 20 may move both the first electrode 11 and the second electrode 12, or either one of them.
  • the high-frequency heating device according to the present disclosure can be applied to cooking appliances such as a thawing machine.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Plasma Technology (AREA)

Abstract

本開示に係る高周波加熱装置は、第1電極(11)と、第2電極(12)と、高周波電源(30)と、位置調整部(20)と、検出部(50)と、制御部(60)とを備える。第2電極(12)は、第1電極に対向して配置される。高周波電源(30)は、第1電極に高周波電力を供給する。位置調整部(20)は、第1電極(11)と第2電極(12)との間の距離を調整する。検出部(50)は、第1電極(11)から高周波電源(30)に向かう反射電力を検出する。制御部(60)は、反射電力に基づいて位置調整部(20)を制御する。本態様によれば、加熱対象物を効率良く加熱することができる。

Description

高周波加熱装置
 本開示は高周波加熱装置に関する。
 高周波加熱装置として、例えば、特許文献1に記載の解凍装置が知られている。特許文献1に記載の解凍装置では、対向する電極間に加熱対象物が配置され、電極間に供給された高周波電力によって加熱対象物が加熱される(例えば、特許文献1参照。)。
 特許文献1に記載の解凍装置は、二つの対向電極と、調節機構と、高周波供給部と、条件変更部とを備える。調節機構は、対向電極間の間隔を調節する。高周波供給部は、対向電極に高周波電力を供給する。条件変更部は、対向電極間の間隔に応じて高周波電力の対向電極への供給条件を変更する。
 特許文献1に記載の解凍装置は、対向電極の間隔を解凍対象物の高さに応じて調節することで、解凍対象物の高さに関わらず、より適切な状態で解凍対象物を解凍しようとするものである。
特開2006-12547号公報
 特許文献1に記載の装置においては、加熱対象物を一方の電極に接触させた後、加熱対象物から所定の距離離れた位置に他方の電極を配置する。
 このような装置において、他方の電極と加熱対象物との距離を一定にすることはできる。しかし、加熱対象物を含めた対向電極のインピーダンスは、加熱対象物の大きさ、種類によって変化する。このため、特許文献1に記載の装置は、電極の位置に応じて供給する高周波電力を調節する必要がある。この場合、高周波電力の出力を下げると、加熱処理時間が長くなる可能性がある。
 対向電極のインピーダンスの変化は、整合器を用いて調整することができる。この場合、対向電極のインピーダンスの変化に対応するためには、比較的広い可変範囲を有する可変リアクタンス素子を用いて整合器を構成する必要がある。この場合、定数の調整に時間がかかる可能性がある。
 このように、特許文献1に記載の装置には、加熱対象物を効率良く加熱するという点で未だ改善の余地がある。さらに、このような装置には、電極と加熱対象物との接触を検出するためのセンサと、電極が加熱対象物に接触するときに加熱対象物にかかる荷重を制限する機構とが必要である。その結果、装置の構成が複雑化する。
 本開示の一態様の高周波加熱装置は、第1電極と、第2電極と、高周波電源と、位置調整部と、検出部と、制御部とを備える。第2電極は、第1電極に対向して配置される。高周波電源は、第1電極に高周波電力を供給する。位置調整部は、第1電極と第2電極との間の距離を調整する。検出部は、第1電極から高周波電源に向かう反射電力を検出する。制御部は、反射電力に基づいて位置調整部を制御する。
 本態様によれば、加熱対象物を効率良く加熱することができる。
図1は、本開示の実施の形態1に係る高周波加熱装置の構成を示す概略図である。 図2は、実施の形態1における高周波電源の構成を示す概略図である。 図3Aは、実施の形態1における整合器の一つの構成を示す概略図である。 図3Bは、実施の形態1における整合器の他の構成を示す概略図である。 図4Aは、実施の形態1における検出部の一つの構成を示す概略図である。 図4Bは、実施の形態1における検出部の他の構成を示す概略図である。 図5は、実施の形態1の実施例1における整合器と加熱室の内部とに関する等価回路を示す概略図である。 図6は、実施例1における第1電極と加熱対象物との間の距離と、反射比率との関係を示すグラフである。 図7は、実施例1における第1電極と第2電極との間の距離と、反射比率との関係を示すグラフである。 図8は、実施の形態1の実施例2における整合器と加熱室の内部とに関する等価回路を示す概略図である。 図9は、実施例2における第1電極と加熱対象物との間の距離と、反射比率との関係を示すグラフである。 図10は、実施例2における第1電極と第2電極との間の距離と、反射比率との関係を示すグラフである。 図11は、本開示の実施の形態2に係る高周波加熱装置の動作を示すタイミングチャートである。
 本開示の第1の態様の高周波加熱装置は、第1電極と、第2電極と、高周波電源と、位置調整部と、検出部と、制御部とを備える。第2電極は、第1電極に対向して配置される。高周波電源は、第1電極に高周波電力を供給する。位置調整部は、第1電極と第2電極との間の距離を調整する。検出部は、第1電極から高周波電源に向かう反射電力を検出する。制御部は、反射電力に基づいて位置調整部を制御する。
 本開示の第2の態様の高周波加熱装置では、第1の態様に加えて、位置調整部は、第1電極と第2電極との両方またはいずれか一方を移動させる。制御部は、位置調整部を制御して、第1電極と第2電極との間の距離を調整しながら、反射電力の値を検出部から取得する。制御部は、反射電力に応じた値が所定の第1閾値以下になると、位置調整部を停止させる。
 本開示の第3の態様の高周波加熱装置は、第1の態様に加えて、第1電極と高周波電源との間に配置された整合器をさらに備える。第1電極と第2電極との間の距離の調整後、制御部は、負荷と高周波電源とのインピーダンス整合を行うように整合器を調整する。
 本開示の第4の態様の高周波加熱装置では、第2の態様に加えて、制御部は、第1電極と第2電極との間の距離が所定の第2閾値に到達するまで、反射電力に応じた値が第1閾値より大きい場合、第1電極と第2電極との間に加熱対象物が配置されていないと判定する。
 本開示の第5の態様の高周波加熱装置は、第1の態様に加えて、第1電極と高周波電源との間に配置され、負荷と高周波電源とのインピーダンス整合を行う整合器をさらに備える。整合器は、リアクタンスを可変する可変リアクタンス素子を含む。
 制御部は、第1電極と第2電極との間の距離を段階的に変化させるように、位置調整部を制御する。制御部は、距離を変化させる毎に、反射電力に応じた値に基づいて、可変リアクタンス素子の定数を調整する。制御部は、第1電極と第2電極との間の距離を変化させる前後における可変リアクタンス素子の定数の変化に基づいて、第1電極と第2電極との間の距離を決定する。
 本開示の第6の態様の高周波加熱装置では、第5の態様に加えて、可変リアクタンス素子は、可変インダクタと可変キャパシタとの両方またはいずれか一方を含む。
 本開示の第7の態様の高周波加熱装置では、第5の態様に加えて、制御部は、反射電力に応じた値が最小になるように、可変リアクタンス素子の定数を調整する。
 以下、本開示の実施形態について、添付の図面を参照しながら説明する。
 (実施の形態1)
 [全体構成]
 図1は、本開示の実施の形態1に係る高周波加熱装置1Aの構成を示す概略図である。図1に示すように、高周波加熱装置1Aは、第1電極11と、第2電極12と、加熱室13と、位置調整部20と、高周波電源30と、整合器40と、検出部50と、制御部60とを備える。第1電極11と、第2電極12と、位置調整部20とは、加熱室13内に配置される。
 <第1電極>
 第1電極11は、加熱室13内の上部に配置された、矩形形状を有する平板状の電極である。
 <第2電極>
 第2電極12は、矩形形状を有する平板状の電極である。第2電極12は、加熱室13の底面上に第1電極11に対向して配置される。第2電極12はグランドに接続される。加熱対象物90は、第2電極12上に載置されて、第1電極11と第2電極12との間に配置される。加熱対象物90は、厚みの均一な誘電体、例えば、食材である。
 <位置調整部>
 位置調整部20は、加熱室13の天井に配置される。位置調整部20は、制御部60の指示に応じて、第1電極11と第2電極12との間の距離を調整する。本実施の形態では、位置調整部20は、第1電極11を移動させることで、第1電極11の位置を調整する。
 位置調整部20は、例えば、加熱室13の天井に配置されたモータ(図示せず)と、このモータと第1電極11とを接続する接続部材(図示せず)とを有する。このモータが回転すると、接続部材は第1電極11を上下に移動させる。接続部材は、例えば、棒状部材またはワイヤである。
 <高周波電源>
 高周波電源30は、整合器40および検出部50を介して第1電極11に接続され、第1電極11に高周波電力を供給する。図2は、高周波電源30の構成を示す概略図である。図2に示すように、高周波電源30は、高周波発振器31と増幅器32と増幅器33とを備える。
 高周波発振器31は、HF~VHF帯域の周波数を有する高周波信号を発振させる。増幅器32は、高周波発振器31により発振された高周波信号を増幅する。増幅器33は、増幅器32により増幅された電圧信号をさらに増幅する。これにより、高周波電源30は、所望の高周波信号を発生させることができる。
 高周波電源30は、第1電極11に高周波電力を供給することによって、第1電極11と第2電極12との間に電界を発生させる。この電界により、第1電極11と第2電極12との間に配置された加熱対象物90が誘電加熱される。
 <整合器>
 図1に示すように、整合器40は、第1電極11と高周波電源30との間に配置され、高周波電源30と加熱室13内の負荷とのインピーダンス整合を行う。加熱室13内の負荷には、第1電極11、第2電極12、加熱対象物90などが含まれる。
 図3Aは、整合器40の構成を示す概略図である。図3Aに示すように、整合器40は、可変インダクタVL1と可変キャパシタVC1とを備える。可変インダクタVL1は、第1電極11に接続される。可変キャパシタVC1は、グランドに接続される。すなわち、第1電極11と第2電極12で構成されるキャパシタは、可変インダクタVL1と直列に接続され、可変キャパシタVC1と並列に接続される。
 整合器40は、可変インダクタVL1のインダクタンスおよび可変キャパシタVC1のキャパシタンスの両方またはいずれか一方を変化させるモータ(図示せず)を有する。制御部60は、このモータを制御することで、負荷と高周波電源30とのインピーダンス整合を行うように、整合器40を調整する。
 図3Bは、整合器40の変形例である整合器40aの構成を示す概略図である。図3Bに示すように、整合器40aは、可変インダクタVL2、VL3を備える。整合器40aでは、可変インダクタVL2は、第1電極11に接続される。可変インダクタVL3は、グランドに接続される。すなわち、第1電極11と第2電極12で構成されるキャパシタは、可変インダクタVL2と直列に接続され、可変インダクタVL3と並列に接続される。
 整合器40aは、可変インダクタVL2および可変インダクタVL3のインダクタンスの両方またはいずれか一方を変化させるモータ(図示せず)を有する。制御部60は、このモータを制御することで、負荷と高周波電源30とのインピーダンス整合を行うように、整合器40を調整する。
 <検出部>
 負荷と高周波電源30とのインピーダンス整合がとれていない場合、一部の電力が加熱室13に供給されず、高周波電源30に向かって反射される。検出部50は、第1電極11から高周波電源30に向かう反射電力を検出する。検出部50は、例えば、電気回路で構成される。
 図4Aは、検出部50の構成を示す概略図である。図4Aに示すように、本実施の形態では、検出部50は、容量性結合(C)と誘導性結合(M)を組合せて構成されるCM方向性結合器である。
 検出部50は、トランスT1、キャパシタC1、キャパシタC2、抵抗R1、抵抗R2を備える。キャパシタC1、C2は、トランスT1の両側に配置される。抵抗R1、R2は、キャパシタC1、C2にそれぞれ直列に接続される。
 図4Aにおいて、進行波が左から右へ、反射波が右から左へ流れると定義すると、トランスT1は、進行波に応じた電流Imf、反射波に応じた電流Imrを発生させる。キャパシタC1、C2は、電流Ic1と電流Ic2を発生させる。
 抵抗R1の両端電圧Vf、抵抗R2の両端電圧Vrは次式で表される。
  Vf=R1×(Ic1+Imf-Imr)
  Vr=R2×(Ic2+Imr-Imf)
 Ic1がImrと等しくなり、Ic2がImfと等しくなるように各部品の定数を選定すると、図4Aに示す回路は方向性結合器として機能する。検出部50は、基板パターン上に配置された分布定数線路によって構成されてもよい。
 図4Bは、検出部50の変形例である検出部50aの構成を示す概略図である。図4Bに示すように、検出部50aは、トランスT2、キャパシタC3、キャパシタC4、キャパシタC5、キャパシタC6、抵抗R3、抵抗R4、ダイオードD1、ダイオードD2を備える。
 上記構成により、検出部50、50aは、反射波(反射電力)および進行波(入射電力)の両方を検出することができる。
 <制御部>
 制御部60は、例えば、マイクロコンピュータにより構成される。図1に示すように、制御部60は位置調整部20を制御し、加熱対象物90が効率良く加熱されるように第1電極11の位置(具体的には高さ)を調整する。
 制御部60は、位置調整部20と検出部50とに電気的に接続される。制御部60は、反射電力の値を検出部50から受信する。制御部60は、第1電極11の移動方向および移動量を位置調整部20に送信する。
 制御部60は、位置調整部20を制御することによって第1電極11を移動させながら、反射電力の値を検出部50から取得する。制御部60は、反射波(反射電力)と進行波(入射電力)との比率である反射比率を算出する。制御部60は、反射比率が閾値以下になる位置で第1電極11を停止させるよう、位置調整部20を制御する。
 [動作の一例]
 高周波加熱装置1Aの動作の一例である実施例1について説明する。図5は、実施例1における整合器40と加熱室13の内部とに関する等価回路を示す。
 反射比率とは、進行波に対する反射波の比率である。進行波とは、高周波電源30によって第1電極11に印加される入射電力であり、反射波とは、第1電極11から高周波電源30に戻ってくる反射電力である。実施例1において、入射電力は1Wである。
 実施例1では、第1電極11を加熱対象物90に近づける際に進行波および反射波を検出し、反射比率を算出した。実施例1では、位置調整部20が第1電極11を移動させた後、整合器40がインピーダンス整合を行う。すなわち、位置調整部20の作動中は、インピーダンス整合を行わない。
 実施例1では、加熱対象物90として牛肉のミンチを用いた。実施例1では、1kgの牛肉のミンチを配置した条件1、および、300gの牛肉のミンチを配置した条件2の下で、反射比率を算出した。条件1では、加熱対象物90の大きさは、165mm×110mm×25mmである。条件2では、加熱対象物90の大きさは、220mm×155mm×40mmである。
 図5に示すように、実施例1において、加熱室13内部の等価回路は、インダクタンス14、第1電極11と加熱対象物90との間のキャパシタンス15、加熱対象物90内の容量・抵抗16、加熱対象物90周辺のキャパシタンス17、および、第1電極11と加熱室13内の壁面との間のキャパシタンス18を含む。インダクタンス14は、位置調整部20を含む整合器40から第1電極11までの配線のインダクタンスである。
 整合器40は、可変インダクタVL1と可変キャパシタVC1とを含む。可変インダクタVL1は第1電極11に接続され、可変キャパシタVC1はグランドに接続される。従って、第1電極11と第2電極12で構成されるキャパシタは、可変インダクタVL1と直列に接続され、可変キャパシタVC1と並列に接続される。
 図6は、実施例1における、第1電極11と加熱対象物90との間の距離B1(図1参照)と、反射比率との関係を示す。図6に示すように、実施例1において、条件1、2の下で第1電極11を加熱対象物90に向かって移動させると、距離B1がそれぞれ28mm、30mmのときに反射比率が最小となる。
 反射比率が最小であるとは、反射波が最も少ないということである。このとき、第1電極11は、効率的な加熱処理のための好適な位置に配置されている。従って、実施例1では、制御部60は、第1電極11を加熱対象物90に向かって移動させ、反射比率が所定の閾値P1以下になると第1電極11を停止させるように、位置調整部20を制御する。
 このようにして、制御部60は、加熱対象物90の寸法に応じた効率的な加熱処理のための好適な位置に、第1電極11を配置する。閾値P1は、効率的な加熱処理のために許容できる反射比率の値である。第1電極11と第2電極12との間に加熱対象物90が配置されている場合、反射比率が閾値P1以下であれば、加熱対象物90を効率良く加熱することができる。
 このように、制御部60は、位置調整部20を制御して、加熱対象物90が効率良く加熱されるように第1電極11の位置を調整する。
 実施例1では、例えば、閾値P1は0.1に設定される。このため、条件1、2の下で、制御部60は、位置調整部20を制御して、それぞれ距離B1が25~29mm、28~32mmの範囲内となるように第1電極11を移動させる。
 次に、実施例1における、第1電極11と第2電極12との間に加熱対象物90が配置されているか否かの判断について説明する。
 図7は、実施例1における、第1電極11と第2電極12との間の距離B2(図1参照)と、反射比率との関係を示す。図7に示す例では、条件1、2、および、追加の条件3の下で、距離B2を変化させたときの反射比率を算出する。条件3では、加熱対象物90は配置されない。
 図7に示すように、条件3の下では、距離B2が45mmのときに反射比率が最小となる。条件1、2の下では、距離B2がそれぞれ68mm、55mmのときに反射比率が最小となる。
 実施例1では、条件3の下で反射比率が閾値P1に到達するときの距離B2を所定の閾値Q1とする。位置調整部20は距離B2を徐々に狭めていく。距離B2が閾値Q1に到達するまでに反射比率が閾値P1以下に低下しない場合、制御部60は、第1電極11と第2電極12との間に加熱対象物90が配置されていないと判定する。
 加熱対象物90の比誘電率は1より大きい。このため、加熱対象物90を配置しない場合、加熱対象物90内の容量・抵抗16(図5参照)は最も小さい。その結果、反射比率が最小となるときの距離B2は、加熱対象物90が配置されない場合に最も小さい。
 これを利用して、本実施の形態では、高周波加熱装置1Aは、第1電極11と第2電極12との間に加熱対象物90が配置されていないことを判定する。
 ここで、閾値Q1の決定について説明する。制御部60は、加熱対象物90が配置されていない場合の反射比率の情報(図7に示す条件3の下での反射比率の情報)を取得する。具体的には、制御部60は、加熱対象物90が配置されていない状態で距離B2を変化させて、反射比率の情報を取得する。
 このようにして、制御部60は、加熱対象物90が配置されていないときの反射比率が最小となる距離B2を認識する。制御部60は、距離B2を狭くする際に、反射比率が最初に閾値P1に到達するときの距離B2を閾値Q1に設定する。
 次に、第1電極11と第2電極12との間に加熱対象物90が配置されているか否かの判定について説明する。
 位置調整部20は距離B2を徐々に狭めていく。検出部50は、距離B2が狭まっていく間、反射波(反射電力)および進行波(入射電力)を検出する。制御部60は、反射波および進行波の情報を受信し、これらの情報に基づいて反射比率を算出する。
 制御部60は、距離B2が閾値Q1に到達するまでに反射比率が閾値P1以下に低下しない場合、第1電極11と第2電極12との間に加熱対象物90が配置されていないと判定する。
 言い換えると、制御部60は、距離B2が閾値Q1に到達するまで、反射比率が閾値P1より大きい場合、第1電極11と第2電極12との間に加熱対象物90が配置されていないと判定する。本実施の形態では、閾値P1、Q1がそれぞれ第1閾値、第2閾値に相当する。
 一方、制御部60は、距離B2が閾値Q1に到達する前に反射比率が閾値P1以下に低下した場合、第1電極11と第2電極12との間に加熱対象物90が配置されていると判定する。
 [動作の他の例]
 高周波加熱装置1Aにおける動作の他の例である実施例2について説明する。図8は、実施例2における整合器40aと加熱室13の内部とに関する等価回路を示す。図8における加熱室13内部の等価回路は、図5に示す実施例1のそれと同じであり、その説明は省略する。
 図8に示すように、実施例2では、整合器40の変形例である整合器40aは、可変インダクタVL2、VL3を含む。可変インダクタVL2は第1電極11に接続され、可変インダクタVL3はグランドに接続される。従って、第1電極11と第2電極12で構成されるキャパシタは、可変インダクタVL2と直列に接続され、可変インダクタVL3と並列に接続される。
 実施例2では、第1電極11を加熱対象物90に近づける際に進行波および反射波を検出し、反射比率を算出した。実施例2では、位置調整部20が第1電極11を移動させた後、整合器40がインピーダンス整合を行う。すなわち、位置調整部20が作動中は、インピーダンス整合を行わない。
 実施例2では、加熱対象物90として牛肉のミンチを用いた。実施例2では、1kgの牛肉のミンチを配置した条件4、および、300gの牛肉のミンチを配置した条件5において、反射比率を算出した。条件4では、加熱対象物90の大きさは、165mm×110mm×25mmである。条件5では、加熱対象物90の大きさは、220mm×155mm×40mmである。
 図9は、実施例2における、第1電極11と加熱対象物90との間の距離B1と、反射比率との関係を示す。図9に示すように、実施例2において、条件4、5の下で第1電極11を加熱対象物90に向かって移動させると、距離B1がそれぞれ27mm、30mmのときに反射比率が最小となる。
 実施例2では、制御部60は、第1電極11を加熱対象物90に向かって移動させ、検出部50で検出される反射比率が所定の閾値P2以下になるように、位置調整部20を制御する。このようにして、制御部60は、加熱対象物90が効率良く加熱される位置に、第1電極11を配置する。
 実施例2では、例えば、閾値P2は0.1に設定される。このため、条件4、5の下で、制御部60は、それぞれ、距離B1が25~29mm、28~32mmの範囲内となるように、第1電極11を移動させる。
 図10は、実施例2における、第1電極11と第2電極12との間の距離B2と、反射比率との関係を示す。図10に示す例では、条件4、5、および、追加の条件6の下で、距離B2を変化させたときの反射比率を算出する。条件6では、加熱対象物90は配置されない。
 図10に示すように、条件6の下では、距離B2が45mmのときに反射比率が最小となる。条件4、5の下では、距離B2がそれぞれ68mm、55mmのときに反射比率が最小となる。
 実施例2では、条件6の下で反射比率が閾値P2に到達するときの距離B2を所定の閾値Q2とする。位置調整部20は距離B2を徐々に狭めていく。距離B2が閾値Q2に到達するまでに反射比率が閾値P2以下に低下しない場合、制御部60は、第1電極11と第2電極12との間に加熱対象物90が配置されていないと判定する。
 一方、距離B2が閾値Q2に到達する前に反射比率が閾値P2以下に低下した場合、制御部60は、第1電極11と第2電極12との間に加熱対象物90が配置されていると判定する。
 [効果]
 高周波加熱装置1Aは、反射電力を検出する検出部50と、第1電極11を移動させる位置調整部20と、制御部60とを備える。制御部60は、入射電力に対する反射電力の比率である反射比率に基づいて位置調整部20を制御し、第1電極11の位置を調整する。本実施の形態によれば、加熱対象物90の寸法に応じて、第1電極11の位置を容易に調整することができる。その結果、加熱対象物90を効率良く加熱することができる。
 制御部60は、反射比率に基づいて、効率的な加熱に好適な位置に第1電極11を配置する。このため、第1電極11を加熱対象物90に接触させることなく、第1電極11の位置を調整することができる。
 高周波加熱装置1Aは、第1電極11と加熱対象物90との接触を検出するためのセンサを必要としない。高周波加熱装置1Aは、第1電極11が加熱対象物90に接触するときに加熱対象物90にかかる荷重を制限する機構も必要としない。本実施の形態によれば、位置調整部20の簡略化を図り、ひいては、装置全体の簡素化を図ることができる。
 本実施の形態では、第1電極11の位置を調整した後に、整合器40が、加熱室13と高周波電源30とのインピーダンス整合を行う。これにより、反射電力の少ない状態から、整合器40における可変リアクタンス素子の定数を調整し始めることができる。このため、より狭い可変範囲を有する可変リアクタンス素子を用いることができる。その結果、インピーダンス整合をより短時間で行うことができる。
 本実施の形態では、第1電極11は、矩形形状を有する平板状の電極である。しかし、第1電極11は、円形、楕円形または多角形などの形状を有してもよい。
 実施の形態1では、第2電極12が、第1電極11の下方に配置される。しかし、本開示はこれに限定されない。第1電極11と第2電極12とが、互いに対向するように配置されていればよい。例えば、第2電極12が、第1電極11の上方に配置されてもよい。第1電極11および第2電極12が、左右方向に対向するように配置されてもよい。
 本実施の形態では、第1電極11、第2電極12および位置調整部20は、加熱室13内に配置される。しかし、本開示はこれに限定されない。位置調整部20が、加熱室13の外に配置されてもよい。
 本実施の形態では、位置調整部20は、第1電極11を上下に移動させる。しかし、本開示はこれに限定されない。位置調整部20が、第2電極12を上下に移動させてもよい。位置調整部20が、第1電極11と第2電極12との両方を上下に移動させてもよい。
 本実施の形態では、高周波電源30は、図2に示すように、高周波発振器31と、増幅器32、33とを備える。しかし、高周波電源30は、高周波信号を出力することができるものであれば、本実施の形態に限定されない。
 本実施の形態では、高周波加熱装置1Aが整合器40を備える。しかし、高周波加熱装置1Aは、整合器40を備えなくてもよい。
 本実施の形態では、制御部60は、反射比率に基づいて位置調整部20を制御する。しかし、制御部60は、反射電力の値に基づいて位置調整部20を制御してもよい。この場合、例えば、制御部60は、反射電力の値が所定の閾値よりも下回った場合に、第1電極11を停止させるように位置調整部20を制御する。
 すなわち、制御部60は、反射比率、反射電力の値などの反射電力に応じた値に基づいて位置調整部20を制御すればよい。
 本実施の形態では、閾値P1、P2は0.1に設定される。しかし、本開示はこれらに限定されない。閾値P1、P2は任意の値に設定することができる。
 本実施の形態では、図3Aに示す整合器40と、図3Bに示す整合器40aとを例示して、整合器の構成を説明した。しかし、本開示はこれに限定されない。整合器が、可変リアクタンス素子を含み、高周波電源30のインピーダンスと加熱室13内の負荷のインピーダンスとのインピーダンス整合を行うことができればよい。
 本実施の形態では、加熱対象物90の誘電率は一定であると仮定している。加熱の進行に伴って加熱対象物90の誘電率が変化する場合、反射比率に基づいて、第1電極11の位置を再調整してもよい。
 (実施の形態2)
 本開示の実施の形態2に係る高周波加熱装置1Bについて説明する。高周波加熱装置1Bは、実施の形態1の高周波加熱装置1Aと同様の構成を有する。本実施の形態は、制御部60が、整合器40と位置調整部20とを交互に作動させるという点で実施の形態1と異なる。
 図11は、高周波加熱装置1Bの動作を示すタイミングチャートである。図11に示すように、高周波加熱装置1Bは、整合器40に含まれたモータと、位置調整部20に含まれたモータとを交互に作動させることで、第1電極11の移動とインピーダンス整合とを交互に行う。
 本実施の形態では、制御部60は、第1電極11を加熱対象物90から最も離れた位置から加熱対象物90に段階的に近づけるように、位置調整部20を制御する。制御部60は、第1電極11の各停止位置において、反射電力の値に基づいて整合器40を調整し、インピーダンス整合を行う。
 なお、本実施の形態では、制御部60は、反射電力の値に基づいて整合器40にインピーダンス整合を行わせる。図11に示すように、本実施の形態では入力電力は一定である。従って、制御部60は、反射比率に基づいてインピーダンス整合を行うことと実質的に同じである。
 本実施の形態において、整合器40は、リアクタンスを可変する可変リアクタンス素子を含む。可変リアクタンス素子は、可変インダクタ、可変キャパシタのうちの両方またはいずれか一方を含む。
 制御部60は、整合器40の可変リアクタンス素子の定数の変化が所定の閾値以下に低下するとき、第1電極11の位置を決定する。
 高周波加熱装置1Bは、図3Aに示す整合器40を備える。しかし、高周波加熱装置1Bは、図3Bに示す整合器40aを備えてもよい。
 制御部60は、整合器40にインピーダンス整合を行わせるため、反射電力の値に基づいて、整合器40に含まれた可変リアクタンス素子の定数を変化させる。可変リアクタンス素子の定数とは、可変インダクタンス素子のインダクタンス、および、可変キャパシタンス素子のキャパシタンスである。図3Aに示すように、可変インダクタンス素子とは可変インダクタVL1であり、可変キャパシタンス素子とは可変キャパシタVC1である。
 本実施の形態では、可変リアクタンス素子の定数は、可変インダクタVL1のインダクタンスを固定し、可変キャパシタVC1のキャパシタンスを変化させることで調整される。
 高周波電源30の作動開始後、第1電極11の初期位置において、制御部60は、反射電力の値を最小にするように、整合器40の可変キャパシタVC1のキャパシタンスを調整する。制御部60は、反射電力が最小となるときの可変キャパシタVC1の定数をTg(1)として記憶する。
 具体的には、制御部60は、反射電力の値を所定の閾値P3に近づけるように、可変キャパシタVC1の定数を調整する。第1電極11が加熱対象物90から離れた位置にある状態では、反射電力が減少しない場合がある。図11は、「インピーダンス整合」および「第1電極11の移動」が3サイクル実施されると、反射電力は閾値P3に近づくことを示す。
 制御部60は、可変キャパシタVC1の定数をTg(1)に固定し、位置調整部20を制御して第1電極11を所定の距離だけ移動させる。第1電極11が移動すると、加熱室13内の負荷のインピーダンスが変化し、反射電力が増加する。
 再び、制御部60は、反射電力を最小にするように、可変キャパシタVC1のキャパシタンスを調整する。制御部60は、反射電力が最小となるときの可変キャパシタVC1のキャパシタンスをTg(2)として記憶する。
 このように、制御部60は、第1電極11の移動とインピーダンス整合とをn回繰り返して、反射電力が最小となるときの可変キャパシタVC1のキャパシタンスをTg(1)~Tg(n)として記録する。
 距離B1が大きい場合、第1電極11の移動の前後における可変キャパシタVC1のキャパシタンスの変化が大きい。一方、距離B1が好適な値に近づくにつれ、可変キャパシタVC1のキャパシタンスの変化は小さくなる。
 本実施の形態では、制御部60は、第1電極11の移動の前後における可変キャパシタVC1のキャパシタンスの変化に基づいて距離B2を決定する。具体的には、制御部60は、可変キャパシタVC1の調整完了直前の定数Tg(n-1)と、可変キャパシタVC1の調整完了後の定数Tg(n)とを取得し、その変化(Tg(n-1)-Tg(n))を算出する。
 制御部60は、可変キャパシタVC1のキャパシタンスの変化(Tg(n-1)-Tg(n))に対して閾値となる所定の基準値を有する。制御部60は、可変キャパシタVC1のキャパシタンスの変化(Tg(n-1)-Tg(n))がその基準値を下回るように、第1電極11を配置する。これにより、加熱に好適な距離B2を決定することができる。
 [効果]
 本実施の形態では、制御部60は、第1電極11を加熱対象物90に段階的に近付けるように、位置調整部20を制御する。制御部60は、第1電極11の各停止位置において、反射電力の値に基づいて整合器40を調整し、インピーダンス整合を行う。制御部60は、可変リアクタンス素子の定数の変化が基準値以下になるように、第1電極11を移動させる。これにより、加熱対象物90の寸法に応じて、第1電極11を好適な位置に容易に配置させることができる。その結果、加熱対象物90を効率良く加熱することができる。
 本実施の形態では、可変インダクタVL1のインダクタンスを固定し、可変キャパシタVC1のキャパシタンスを変化させて、第1電極11の位置を決定する。しかし、本開示はこれに限定されない。可変キャパシタVC1のキャパシタンスを固定し、可変インダクタVL1のインダクタンスを変化させて、第1電極11の位置を決定してもよい。可変インダクタVL1および可変キャパシタVC1の両方の定数を変化させて、第1電極11の位置を決定してもよい。
 本実施の形態では、整合器40は、第1電極11と第2電極12で構成されるキャパシタと直列接続された可変インダクタVL1と、第1電極11と第2電極12で構成されるキャパシタと並列接続された可変キャパシタVC1とを有する。しかし、本開示はこれに限定されない。整合器40は、可変リアクタンス素子を含み、高周波電源30のインピーダンスと加熱室13内の負荷のインピーダンスとのインピーダンス整合を行うことができればよい。
 本実施の形態では、制御部60は、第1電極11の初期位置において、反射電力が最小となるときの整合器40の可変リアクタンス素子の定数(可変キャパシタVC1のキャパシタンス)をTg(1)として記憶する。しかし、本開示はこれに限定されない。
 例えば、第1電極11の初期位置が加熱対象物90から離れ過ぎている場合などの、可変リアクタンス素子の調整範囲では、反射電力を十分に低減できない可能性がある。この場合、まず、可変リアクタンス素子の定数の調整により、反射電力を低減できる位置まで第1電極11を移動させる。その後、可変リアクタンス素子の定数を調整してTg(1)を決定しても良い。
 本実施の形態では、制御部60は、反射電力を最小にするように、整合器40の可変リアクタンス素子の定数を調整する。しかし、本開示はこれに限定されない。例えば、制御部60は、反射電力の値がほぼ最小となるときの可変リアクタンス素子の定数をTg(n)に決定してもよい。この場合、閾値P3を調整することが必要となる。
 本実施の形態では、制御部60は、可変リアクタンス素子の定数の変化が基準値以下になるように、第1電極11を移動させる。しかし、本開示これに限定されない。制御部60は、可変リアクタンス素子の定数に基づいて、第1電極11を移動させてもよい。
 本実施の形態では、実施の形態1と同様に、位置調整部20が第1電極11を移動させる。しかし、本開示はこれに限定されない。例えば、位置調整部20は、第1電極11と第2電極12との両方またはいずれか一方を移動させてもよい。
 本開示に係る高周波加熱装置は、解凍機などの調理家電に適用可能である。
 1A、1B 高周波加熱装置
 11 第1電極
 12 第2電極
 13 加熱室
 14 インダクタンス
 15、17、18 キャパシタンス
 16 容量・抵抗
 20 位置調整部
 30 高周波電源
 31 高周波発振器
 32、33 増幅器
 40、40a 整合器
 50、50a 検出部
 60 制御部
 90 加熱対象物

Claims (7)

  1.  第1電極と、
     前記第1電極に対向して配置された第2電極と、
     前記第1電極に高周波電力を供給するように構成された高周波電源と、
     前記第1電極と前記第2電極との間の距離を調整するように構成された位置調整部と、
     前記第1電極から前記高周波電源に向かう反射電力を検出する検出部と、
     前記反射電力に基づいて前記位置調整部を制御するように構成された制御部と、
    を備えた、高周波加熱装置。
  2.  前記位置調整部が、前記第1電極と前記第2電極との両方またはいずれか一方を移動させ、
     前記制御部が、
      前記位置調整部を制御して、前記第1電極と前記第2電極との間の前記距離を調整しながら、前記反射電力の値を前記検出部から取得し、
      前記反射電力に応じた値が所定の第1閾値以下になると、前記位置調整部を停止させる、
    ように構成された、請求項1に記載の高周波加熱装置。
  3.  前記第1電極と前記高周波電源との間に配置された整合器をさらに備え、
     前記第1電極と前記第2電極との間の前記距離の調整後、前記制御部が、負荷と前記高周波電源とのインピーダンス整合を行うように前記整合器を調整するように構成された、請求項1に記載の高周波加熱装置。
  4.  前記制御部が、前記第1電極と前記第2電極との間の前記距離が所定の第2閾値に到達するまで、前記反射電力に応じた前記値が前記第1閾値より大きい場合、前記第1電極と前記第2電極との間に加熱対象物が配置されていないと判定するように構成された、請求項2に記載の高周波加熱装置。
  5.  前記第1電極と前記高周波電源との間に配置され、負荷と前記高周波電源とのインピーダンス整合を行う整合器をさらに備え、
     前記整合器は、リアクタンスを可変する可変リアクタンス素子を含み、
     前記制御部は、
      前記第1電極と前記第2電極との間の前記距離を段階的に変化させるように、前記位置調整部を制御し、
      前記第1電極と前記第2電極との間の前記距離を変化させる毎に、前記反射電力に応じた値に基づいて、前記可変リアクタンス素子の定数を調整し、
      前記第1電極と前記第2電極との間の前記距離を変化させる前後における前記可変リアクタンス素子の前記定数の前記変化に基づいて、前記第1電極と前記第2電極との間の前記距離を決定する、
    ように構成された、請求項1に記載の高周波加熱装置。
  6.  前記可変リアクタンス素子が、可変インダクタと可変キャパシタとの両方またはいずれか一方を含む、請求項5に記載の高周波加熱装置。
  7.  前記制御部が、前記反射電力に応じた前記値が最小になるように、前記可変リアクタンス素子の定数を調整するように構成された、請求項5に記載の高周波加熱装置。
PCT/JP2019/046697 2018-11-30 2019-11-29 高周波加熱装置 WO2020111214A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020557846A JP7266166B2 (ja) 2018-11-30 2019-11-29 高周波加熱装置
US17/294,410 US20220022292A1 (en) 2018-11-30 2019-11-29 High-frequency heating apparatus
CN201980077787.2A CN113170541B (zh) 2018-11-30 2019-11-29 高频加热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-225570 2018-11-30
JP2018225570 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111214A1 true WO2020111214A1 (ja) 2020-06-04

Family

ID=70852885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046697 WO2020111214A1 (ja) 2018-11-30 2019-11-29 高周波加熱装置

Country Status (4)

Country Link
US (1) US20220022292A1 (ja)
JP (1) JP7266166B2 (ja)
CN (1) CN113170541B (ja)
WO (1) WO2020111214A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206938A (ja) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2005129335A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2005158326A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 高周波加熱装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067873A1 (en) * 2009-05-19 2012-03-22 Panasonic Corporation Microwave heating device and microwave heating method
CN107710869B (zh) * 2015-07-03 2021-08-31 东洋制罐集团控股株式会社 高频感应加热装置
GB201513120D0 (en) * 2015-07-24 2015-09-09 C Tech Innovation Ltd Radio frequency heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206938A (ja) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2005129335A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2005158326A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 高周波加熱装置

Also Published As

Publication number Publication date
JPWO2020111214A1 (ja) 2021-10-21
JP7266166B2 (ja) 2023-04-28
CN113170541B (zh) 2023-07-28
US20220022292A1 (en) 2022-01-20
CN113170541A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP5911608B2 (ja) 共振型送信電源装置及び共振型送信電源システム
CN109526082B (zh) 用于阻抗网络调谐的具有相位检测的射频加热***
WO2017017407A1 (en) Radio frequency heating system
KR102663551B1 (ko) 부하의 임피던스를 전력 발생기의 출력 임피던스에 조정시키는 방법 및 임피던스 조정 어셈블리
KR102639006B1 (ko) Rf 가열 시스템을 위한 평면형 인덕터
JP2018022675A (ja) 集中誘導性整合ネットワークを備える解凍装置およびその作動方法
JP6177351B2 (ja) 高周波電源用自動整合回路
WO2010134307A1 (ja) マイクロ波加熱装置及びマイクロ波加熱方法
JP2020102440A (ja) Rf及び熱による複合加熱システム並びにその動作方法
WO2015097805A1 (ja) 高周波整流回路用自動整合回路
KR101852609B1 (ko) 유도 가열 장치
JP3249701B2 (ja) 誘電加熱装置
JP2017017003A (ja) 高周波誘電加熱装置
JP7266166B2 (ja) 高周波加熱装置
JP6877291B2 (ja) 高周波解凍装置
US20230309622A1 (en) Electromagnetic induction heating apparatus for heating an aerosol-forming article of an electronic cigarette
US6437302B1 (en) Interruptible variable frequency power supply and load matching circuit, and method of design
JP3640621B2 (ja) 誘電加熱装置
JP2021005459A (ja) 誘電加熱システム
CN113170542B (zh) 高频加热装置
KR20180044766A (ko) 유도 가열 조리기
KR20170115707A (ko) 복수 워킹코일 동작시 주파수 제어와 듀티 제어를 병행하는 전기 레인지
KR101191297B1 (ko) 유도 가열 장치 및 그의 제어 방법
JP5467341B2 (ja) マイクロ波処理装置
WO2023166594A1 (ja) 高周波誘電加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889807

Country of ref document: EP

Kind code of ref document: A1