WO2020111110A1 - 網状構造体 - Google Patents

網状構造体 Download PDF

Info

Publication number
WO2020111110A1
WO2020111110A1 PCT/JP2019/046342 JP2019046342W WO2020111110A1 WO 2020111110 A1 WO2020111110 A1 WO 2020111110A1 JP 2019046342 W JP2019046342 W JP 2019046342W WO 2020111110 A1 WO2020111110 A1 WO 2020111110A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
polyester
linear body
less
polystyrene
Prior art date
Application number
PCT/JP2019/046342
Other languages
English (en)
French (fr)
Inventor
章文 安井
小淵 信一
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201980078083.7A priority Critical patent/CN113166995B/zh
Priority to ES19888815T priority patent/ES2945838T3/es
Priority to DK19888815.8T priority patent/DK3889332T3/da
Priority to KR1020217015298A priority patent/KR102473434B1/ko
Priority to EP19888815.8A priority patent/EP3889332B8/en
Priority to JP2020557770A priority patent/JP6863537B2/ja
Priority to US17/297,217 priority patent/US20220025561A1/en
Publication of WO2020111110A1 publication Critical patent/WO2020111110A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/12Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way

Definitions

  • the present invention relates to a reticulated structure exhibiting high vibration absorption and excellent heat and fatigue resistance, and to a reticulated structure suitable for a cushioning material used for vehicle seats, bedding, etc. by taking advantage of its characteristics. It is a thing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-76200 describes a network structure composed of a continuous linear body having a composite structure of a resin composition containing a polyester-based thermoplastic elastomer and a resin composition containing a polystyrene-based thermoplastic elastomer. The body is listed. However, it has not been possible to obtain a reticulated structure having both vibration absorption and heat and fatigue resistance.
  • An object of the present invention is to provide a reticulated structure that exhibits high vibration absorption and excellent heat and fatigue resistance.
  • the inventors of the present invention have made a continuous linear body forming a three-dimensional random loop bonded structure into a composite structure by using a specific thermoplastic elastomer, and thus have high vibration absorption and heat resistance
  • the inventors have found that a net-like structure having excellent properties can be obtained, and completed the present invention.
  • a reticulated structure having a three-dimensional random loop joint structure composed of a thermoplastic elastomer continuous linear body having a fiber diameter of 0.1 mm or more and 3.0 mm or less
  • the thermoplastic elastomer continuous linear body has a composite structure of a thermoplastic elastomer including a polyester-based thermoplastic elastomer and a polystyrene-based thermoplastic elastomer, and the compression residual strain at 70° C. is 35% or less and the impact resilience is 10% or less.
  • a net-like structure is
  • thermoplastic polystyrene elastomer is at least one selected from the group consisting of styrene-butadiene copolymer, styrene-isoprene copolymer, and hydrogenated copolymers thereof [1] to [1].
  • the present invention relates to a reticulated structure that exhibits high vibration absorption and excellent heat and fatigue resistance, and can be suitably used for vehicle seats, bedding, etc. by taking advantage of its characteristics.
  • the network structure of the present invention bends a continuous linear body (which may be referred to as a “continuous linear body” in the present specification) made of a thermoplastic elastomer having a fiber diameter of 0.1 mm or more and 3.0 mm or less.
  • the continuous linear bodies are twisted and brought into contact with each other, and the contact portions are fused to form a three-dimensional random loop junction structure.
  • the whole network structure composed of the fusion-integrated three-dimensional random loop junction structure deforms and absorbs the stress, and the stress is released.
  • the rubber elasticity of the thermoplastic elastomer is developed, and the network structure can be restored to its original form.
  • the fiber diameter of the continuous linear body is less than 0.1 mm, the anti-compression strength is low, and as a result, the repulsion force is low.
  • the fiber diameter of the continuous linear body exceeds 3.0 mm, the individual linear compression bodies have a large anti-compression property, but the number of continuous linear bodies forming the reticulated structure is small, so that the force is dispersed. become worse.
  • the fiber diameter is preferably 0.3 mm or more and 2.0 mm or less, more preferably 0.4 mm or more and 1.5 mm or less.
  • a continuous linear body having a single fiber diameter but also continuous linear bodies having different fiber diameters may be used, and an optimum configuration may be obtained in combination with the apparent density.
  • the continuous linear body that constitutes the network structure of the present invention has a composite structure of a thermoplastic elastomer including a polyester-based thermoplastic elastomer and a polystyrene-based thermoplastic elastomer.
  • a thermoplastic elastomer including a polyester-based thermoplastic elastomer and a polystyrene-based thermoplastic elastomer.
  • the polyester-based thermoplastic elastomer it is preferable to use one having a rebound resilience of 75% or more or a Shore D hardness of 40 or less.
  • continuous linear bodies constituting the reticulated structure are compounded for the purpose of enhancing the vibration absorption of the reticulated structure and the heat and fatigue resistance thereof.
  • a polystyrene-based thermoplastic elastomer having a rebound resilience of 5% or less is used in order to enhance vibration absorption.
  • thermoplastic elastomer having a high melting point and a low impact resilience
  • polyethylene having a high melting point and a low impact resilience and a low Shore D hardness
  • a thermoplastic elastomer is used. And both are compounded and used at an appropriate volume ratio.
  • the present inventors have found that the use of a polyester-based thermoplastic elastomer having a rebound resilience of 75% or more or a Shore D hardness of 40 or less and a relatively low melting point makes it possible to reduce vibration absorption and heat resistance.
  • the present invention has been achieved by finding that both properties increase.
  • the melting point of the polyester-based thermoplastic elastomer is preferably lower than 200°C, more preferably 195°C or lower, and particularly preferably 190°C or lower. From the viewpoint of heat resistance and sag resistance, the melting point is preferably 150°C or higher, more preferably 155°C or higher, and particularly preferably 160°C or higher.
  • the polyester-based thermoplastic elastomer used in the present invention includes a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylene diol as a soft segment, or a polyester ester block copolymer having an aliphatic polyester as a soft segment.
  • a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylene diol as a soft segment
  • a polyester ester block copolymer having an aliphatic polyester as a soft segment.
  • Specific examples of the polyester ether block copolymer include terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, and the like.
  • Aromatic dicarboxylic acids alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid and sebacic acid dimer acid, or ester-forming derivatives thereof.
  • At least one dicarboxylic acid and an aliphatic diol such as 1,4-butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol or hexamethylene glycol, 1,1-cyclohexanedimethanol, 1,4 -At least one diol component selected from alicyclic diols such as cyclohexanedimethanol or ester-forming derivatives thereof, and polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5,000, Alternatively, it is a ternary block copolymer composed of at least one polyalkylene diol selected from ethylene oxide-propylene oxide copolymers and the like.
  • polyester ester block copolymer examples include a ternary block copolymer composed of at least one of the above dicarboxylic acid, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000.
  • polyester diol such as polylactone having an average molecular weight of about 300 to 5,000.
  • terephthalic acid or/and isophthalic acid as the dicarboxylic acid, 1,4-butanediol and polyalkylene as the diol component are preferable.
  • Tertiary block copolymer composed of polytetramethylene glycol as diol, and (2) terephthalic acid or/and naphthalene-2,6-dicarboxylic acid as dicarboxylic acid, 1,4-butanediol and polyester diol as diol component Is a ternary block copolymer composed of polylactone.
  • Particularly preferred is (3) a terpolymer block copolymer comprising (1) terephthalic acid or/and isophthalic acid as the dicarboxylic acid, 1,4-butanediol as the diol component, and polytetramethylene glycol as the polyalkylene diol.
  • a polysiloxane-based soft segment may be used.
  • the polyester-based thermoplastic elastomer used in the present invention is not particularly limited, but from the viewpoint of exhibiting high vibration absorption while appropriately maintaining the heat and fatigue resistance of the network structure, the impact resilience is Of 75% or more or Shore D hardness of 40 or less is preferably used.
  • the impact resilience of the polyester-based thermoplastic elastomer is 75% or more, the impact received by the polyester-based thermoplastic elastomer can be easily transmitted to the polystyrene-based thermoplastic elastomer that together constitutes the continuous linear body having the composite structure. .. As a result, the vibration absorbency exhibited by the polystyrene-based thermoplastic elastomer is increased.
  • the impact resilience of the polyester thermoplastic elastomer is more preferably 78% or more, further preferably 80% or more.
  • Shore D hardness is 40 or less, the polyester-based thermoplastic elastomer is not too hard, and the polystyrene-based thermoplastic elastomer can be sufficiently utilized in impact absorption.
  • the Shore D hardness of the thermoplastic polyester elastomer is preferably 38 or less, more preferably 36 or less, and further preferably 34 or less.
  • the polystyrene-based thermoplastic elastomer used in the present invention is not particularly limited, but the impact resilience is preferably 10% or less from the viewpoint of enhancing the vibration absorption of the network structure.
  • the impact resilience of the polystyrene-based thermoplastic elastomer is 10% or less, sufficient vibration damping is exhibited, and the vibration absorption of the reticulated structure is improved.
  • the impact resilience of the thermoplastic polystyrene-based elastomer is more preferably 7% or less, and further preferably 5% or less.
  • polystyrene-based thermoplastic elastomer satisfying the impact resilience of 10% or less include styrene-butadiene copolymer, styrene-isoprene copolymer, and hydrogenated products thereof.
  • thermoplastic elastomer other than the polyester-based thermoplastic elastomer and the polystyrene-based thermoplastic elastomer within a range capable of maintaining high vibration absorption and excellent heat and fatigue resistance, which is the object of the present invention. It can also be structured.
  • the third thermoplastic elastomer include a polyolefin-based thermoplastic elastomer.
  • the composition ratio of the polyester-based thermoplastic elastomer and the polystyrene-based thermoplastic elastomer of the composite continuous linear body constituting the network structure of the present invention is not particularly specified, but preferably the polyester-based thermoplastic elastomer and
  • the volume ratio of the polystyrene-based thermoplastic elastomer is preferably 95/5 to 5/95, more preferably 92/8 to 8/92, and further preferably 90/10 to 10/90.
  • the volume ratio is 100/0 to 95/5 (excluding 95/5)
  • the volume ratio is 5/95 to 0/100 (excluding 5/95)
  • the reticulated elastic body of the present invention has a repulsive elastic modulus of 10% or less measured using a repulsive elastic modulus measuring device. If the impact resilience exceeds 10%, the vibration absorption of the network structure becomes insufficient. It is preferably 7% or less, more preferably 5% or less.
  • the 70°C compressive residual strain of the network structure is an index for evaluating heat resistance and sag resistance.
  • the network structure of the present invention has a compression residual strain at 70° C. of 35% or less, preferably 30% or less, more preferably 25% or less, further preferably 23% or less, particularly preferably 20%. % Or less, and most preferably 18% or less. If the 70° C. compression residual strain exceeds 35%, the required heat resistance and sag resistance may be insufficient.
  • the lower limit of the 70° C. compression residual strain is not particularly specified, but is 1% or more in the network structure obtained in the present invention.
  • the network structure of the present invention has a hardness at 25% compression of preferably 2.0 kg/ ⁇ 200 mm or more.
  • the hardness at 25% compression is the stress at 25% compression of the stress-strain curve obtained by compressing the net-like structure to 75% with a circular compression plate having a diameter of 200 mm. If the hardness at 25% compression is less than 2.0 kg/ ⁇ 200 mm, the cushioning property will be impaired. It is more preferably 2.5 kg/ ⁇ 200 mm or more, and further preferably 3.0 kg/ ⁇ 200 mm or more.
  • the upper limit is not particularly limited, but is preferably 30 kg/ ⁇ 200 mm or less, more preferably 25 kg/ ⁇ 200 mm or less, and further preferably 20 kg/ ⁇ 200 mm or less. When it is 30 kg/ ⁇ 200 mm or more, the net-like structure becomes too hard, which is not preferable from the viewpoint of cushioning property.
  • additives may be added to the continuous linear body constituting the network structure of the present invention depending on the purpose.
  • additives phthalate-based, trimellitic-ester-based, fatty acid-based, epoxy-based, adipate-based, polyester-based plasticizers, known hindered phenol-based, sulfur-based, phosphorus-based, amine-based oxidation Inhibitors, hindered amine-based, triazole-based, benzophenone-based, benzoate-based, nickel-based, salicyl-based light stabilizers, antistatic agents, molecular regulators such as peroxides, epoxy-based compounds, isocyanate-based compounds, carbodiimide-based compounds Compounds having reactive groups such as, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, optical brighteners, fillers, flame retardants, flame retardant aids, organic In addition, an inorganic pigment or the like can be added.
  • the continuous linear body constituting the network structure of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have markedly improved heat and sag resistance as compared with those having no endothermic peak.
  • terephthalic acid or naphthalene-2,6-dicarboxylic acid having rigidity in the acid component of the hard segment is preferably 90 mol% or more, more preferably 95 mol% or more. More preferably, the content of 100 mol% and the glycol component are transesterified and then polymerized to a required degree of polymerization.
  • the average molecular weight is preferably 500 or more and 5000 or less, more preferably 1000 or more.
  • 3,000 or less of polytetramethylene glycol is copolymerized in an amount of 10% by weight or more and 70% by weight or less, more preferably 20% by weight or more and 60% by weight or less, terephthalic acid or naphthalene-which has rigidity in the acid component of the hard segment.
  • the content of 2,6-dicarboxylic acid is high, the crystallinity of the hard segment is improved, plastic deformation is less likely to occur, and the heat resistance and sag resistance are improved.
  • the heat resistance and sag resistance is further improved.
  • Annealing after applying compressive strain further improves the heat resistance and sag resistance.
  • the continuous linear body of the net-like structure subjected to such treatment more clearly expresses an endothermic peak in the melting curve measured by a differential scanning calorimeter (DSC) at a temperature between room temperature and melting point. When not annealed, no endothermic peak appears in the melting curve above room temperature and below the melting point.
  • DSC differential scanning calorimeter
  • the continuous linear body constituting the reticulated structure of the present invention is characterized by having a composite structure of a polyester-based thermoplastic elastomer and a polystyrene-based thermoplastic elastomer, and a preferable composite structure is a sheath/core structure or a side structure.
  • a buy-side structure is an example.
  • the sheath-core structure is also called a core-sheath type, and can be classified into a concentric type and an eccentric type according to the positional relationship between the sheath (sheath) and the core (core), and a cross-sectional shape into a circular cross section and an atypical cross section. A combination of can also be used.
  • the side-by-side structure is also called a parallel type and has a cross-sectional structure in which multiple components are bonded together. In either of the sheath-core structure and the side-by-side structure, the cross-sectional shape may be hollow or solid.
  • the ratio of the sheath component to the core component is preferably 95/5 to 5/95 by volume ratio, more preferably Is 92/8 to 8/92, more preferably 90/10 to 10/90.
  • the polyester-based thermoplastic elastomer and the polystyrene-based thermoplastic elastomer are complementary. It becomes difficult to exhibit physical properties, and it becomes difficult to achieve the object of the present invention that heat resistance and sag resistance are high and vibration absorption is high.
  • the ratio of the surface of one linear body of either the polyester plastic elastomer or the polystyrene thermoplastic elastomer is an increased structure (for example, a structure in which a polyester-based plastic elastomer is arranged in a sheath having an eccentric sheath/core structure) can be used.
  • the present invention is characterized in that the continuous linear body has a composite structure.
  • a continuous linear body occupying 50% or more of the surface of the linear body with a polyester-based thermoplastic elastomer having a repulsion elastic modulus of 75% or more or a Shore D hardness of 40 or less is used.
  • a continuous linear body is more preferable, in which 80% or more of the surface of the linear body is occupied by a polyester thermoplastic elastomer having a rebound resilience of 75% or more or a Shore D hardness of 40 or less.
  • the cross-sectional shape of the continuous linear body is not particularly limited, but a hollow cross-section or a modified cross-section can impart anti-compression property and bulkiness, and is particularly preferable when it is desired to reduce the fiber diameter.
  • the anti-compression property can be adjusted by the modulus of the material used, and the soft material can increase the hollow ratio and the degree of irregularity to adjust the gradient of the initial compression stress, and the material with a slightly high modulus can reduce the hollow ratio and the degree of irregularity to allow sitting. It gives a comfortable and anti-compression property.
  • As another effect of the hollow cross section and the irregular cross section by increasing the hollow ratio and the irregularity, the weight can be further reduced when the same anti-compression property is given.
  • the preferred range of the apparent density is not more than 0.005 g / cm 3 or more 0.20 g / cm 3 which functions as a cushion material can be expressed. If it is less than 0.005 g/cm 3 , the repulsive force is lost, so that it is unsuitable as a cushioning material, and if it exceeds 0.20 g/cm 3 , the repulsive force is too high and the sitting comfort becomes unfavorable.
  • the more preferable apparent density of the present invention is 0.01 g/cm 3 or more and 0.10 g/cm 3 or less, and the more preferable range is 0.03 g/cm 3 or more and 0.06 g/cm 3 or less.
  • the network structure of the present invention can be provided with preferable characteristics by laminating a plurality of layers made of linear bodies having different fiber diameters and changing the apparent density of each layer.
  • the density of the surface layer is made slightly higher to increase the number of constituents, and the stress received by one linear body is reduced to reduce the stress.
  • the sitting comfort can be improved by improving the dispersion and improving the cushioning property for supporting the buttocks.
  • the basic layer has a thicker fiber diameter and is made slightly harder and is a denser layer for absorbing vibration and maintaining body shape, it can be a linear body having a slightly smaller fiber diameter and a higher density.
  • each layer of the net-like structure is not particularly limited, but is preferably 3 mm or more, more preferably 5 mm or more, in which the function as a cushion is easily exhibited.
  • a meandering linear body is bent 30° or more, preferably 45° or more in the middle to substantially flatten the surface, and most of the contact portion is fused. It is preferable to have a surface layer part.
  • the contact points of the linear body on the surface of the net-like structure are significantly increased to form the bonding points, so that the local external force of the buttocks when sitting does not give the buttocks a feeling of foreign matter, and It is received, the entire surface structure is deformed, the entire internal structure is also deformed to absorb stress, and when the stress is released, rubber elasticity of the elastic resin develops and the structure recovers to its original form. be able to.
  • a relatively thick wadding layer preferably 10 mm or more
  • the adhesion with the wadding layer or the side surface is easy if the surface is flat, but if the surface is not flat, the adhesion becomes incomplete due to unevenness.
  • the network structure of the present invention is produced by melt spinning. First, (1) the ejection lines in a molten state are bent and brought into contact with each other, and most of the contact portions are fused to form a three-dimensional structure, and (2) it is sandwiched by a take-up device. Then, (3) it is cooled in a cooling tank to form a mesh structure.
  • each thermoplastic elastomer is distributed in front of each nozzle orifice, and the melting point of the high melting point component of the thermoplastic elastomer is adjusted so that the discharge linear shape can be formed into a composite structure with a polyester thermoplastic elastomer and a polystyrene thermoplastic elastomer.
  • thermoplastic elastomer and polystyrene thermoplastic elastomer are melted separately using a general melt extruder, and similar to the general method of composite spinning, the mixture is mixed and discharged just before the orifice so that it is discharged.
  • the core component is supplied from the center, and the sheath component is merged and discharged from around the core component.
  • spinning a continuous linear body having a side-by-side structure the respective components are combined and discharged from the left and right or the front and back.
  • the melting temperature at this time is not preferable because if it is not melted at a temperature of 120° C.
  • a preferable melting temperature is 20° C. or higher and 100° C. or lower than the melting point of the low melting point component, more preferably 30° C. or higher and 80° C. or lower, and 15° C. or higher and 40° C. or lower than the melting point of the high melting point component, more preferably 20° C. or higher and 30° C.
  • the materials are combined and discharged at the same melting temperature within the following range. Unless the difference in melting temperature immediately before joining is 10° C. or less, abnormal flow may occur and the formation of the composite form may be impaired.
  • the shape of the orifice is not particularly limited, but may be an irregular cross section (for example, a shape having a high secondary cross sectional moment such as a triangle, a Y shape, or a star shape) or a hollow cross section (for example, a triangular hollow, a round hollow, or a hollow with protrusions). It is particularly preferable that the three-dimensional structure formed by the ejection line in a molten state is less likely to flow relaxation and conversely, the flow time at the contact point can be maintained for a long time to strengthen the adhesion point.
  • the three-dimensional structure is easily relaxed, and a planar structure is formed, which makes it difficult to form a three-dimensional three-dimensional structure.
  • the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the resilience can be improved, so that the structure cannot be easily set.
  • the hollow ratio of the hollow cross section is preferably 10% or more and 70% or less, and more preferably 20% or less, which can achieve the effect of weight reduction. It is above 60%.
  • ⁇ It is necessary to set the pitch between the holes of the orifices so that the loop formed by the wire can make sufficient contact.
  • the pitch between pores is shortened for a structure having a high density of continuous linear bodies, and the pitch between pores is lengthened for a structure having a low density of continuous linear bodies.
  • the pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fiber diameters can be used as desired.
  • the different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, and the method in which the pitch between both rows and holes is also changed.
  • both outer surfaces of the three-dimensional structure in a molten state are sandwiched by a take-up net, and the winding and continuous linear body in a molten state on both outer surfaces is bent and deformed by 30° or more to flatten the outer surface.
  • the contact points with the non-bent ejection line are bonded to form a structure.
  • it is rapidly cooled with a cooling medium (usually, water at room temperature is preferably used because the cooling rate can be increased and the cost is also reduced), and the reticulated structure composed of the three-dimensional random loop bonded structure of the present invention. Get the body.
  • pseudo-crystallization treatment is performed after cooling once.
  • the pseudo-crystallization treatment temperature is at least 10° C. lower than the melting point (Tm), and is higher than the ⁇ dispersion rising temperature (T ⁇ cr) of Tan ⁇ .
  • Tm melting point
  • T ⁇ cr ⁇ dispersion rising temperature
  • the preferred pseudo-crystallization treatment temperature of the present invention is (T ⁇ cr+10°C) to (Tm-20°C). If heat treatment is performed by pseudo heat treatment, heat resistance and sag resistance are improved. Further, it is more preferable that the material is cooled once and then subjected to compressive deformation of 10% or more and annealed to significantly improve the heat and fatigue resistance. In addition, when the drying step is performed after cooling once, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature. In addition, a pseudo crystallization process can be performed separately.
  • the mesh structure is cut into a desired length or shape and used as a cushion material.
  • the reticulated structure of the present invention is used as a cushion material, it is necessary to select a resin, a fiber diameter, a loop diameter and a bulk density to be used depending on the purpose of use and the site of use.
  • a resin, a fiber diameter, a loop diameter and a bulk density it is preferable to have a low density, thin fiber diameter, and fine loop diameter in order to give a soft touch, moderate depression, and bulging with tension, and a cushion for the middle layer.
  • the resonance frequency is lowered, moderate hardness and the hysteresis at the time of compression are changed linearly to improve body shape retention, and in order to maintain durability, medium density, thick fiber diameter, slightly large A loop diameter is preferred.
  • another material such as a hard cotton cushion material made of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application.
  • the molded product is processed from the manufacturing process to the extent that performance is not degraded, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water and oil repellent, colored, aroma, etc.
  • the function of can be processed by adding chemicals.
  • Repulsion elastic modulus It was measured according to JIS K 6255 standard.
  • the sample was cut into a size of 30 cm ⁇ 30 cm, left unloaded for 24 hours in an environment of 20° C. ⁇ 2° C., and then in an environment of 20° C. ⁇ 2° C.
  • Andy's Tensilon (RTG-1310) with a pressure plate of ⁇ 200 mm and thickness of 10 mm, the center of the sample is compressed at a speed of 10 mm/min, and the thickness when the load becomes 1.0 N Is measured to obtain the thickness of the hardness meter.
  • the pressure plate With the position of the pressure plate at this time as the zero point, the pressure plate is compressed to 75% of the thickness of the hardness meter at a speed of 100 mm/min, and then the pressure plate is returned to the zero point at a speed of 100 mm/min. Subsequently, it was compressed to 25% of the thickness of the hardness meter at a speed of 100 mm/min, and the load at that time was defined as the hardness at 25% compression.
  • Fiber diameter of continuous linear body The sample is cut into a size of 10 cm in width direction ⁇ 10 cm in length direction ⁇ sample thickness, and 10 linear bodies are randomly cut from the cut cross section in the thickness direction to about 5 mm. Collected in length.
  • the collected linear body was focused on the fiber diameter measurement site with an optical microscope at an appropriate magnification to measure the thickness of the fiber as seen from the side surface of the fiber. Since the surface of the reticulated structure is flattened to obtain smoothness, the fiber cross section may be deformed. Therefore, it was decided not to collect a sample from a region within 2 mm from the reticulated structure surface. ..
  • Repulsion elastic modulus of reticulate structure The sample was cut into a size of 10 cm in width direction ⁇ 10 cm in length direction ⁇ sample thickness, and allowed to stand for 20 hours under no load in an environment of 20° C. ⁇ 2° C. for 20 hours.
  • the sample was started at a speed of 10 mm/min using a pressure plate with a diameter of 200 mm and a thickness of 10 mm in an A&D Tensilon (RTG-1310) under the environment of °C ⁇ 2°C. Measure the thickness when it reaches 5.0 N, and use the position of the pressure plate as the zero point to compress to 75% of the thickness of the hardness meter at a speed of 100 mm/min, and then zero the pressure plate at a speed of 100 mm/min.
  • the pressure plate is returned to the zero point at a speed of 100 mm/min after being compressed to 75% of the thickness of the hardness meter at a speed of 100 mm/min by continuous operation.
  • a columnar weight having a diameter of 80 mm and a weight of 600 g is dropped from a height of 15 cm, the height of the first rebound is obtained, and the repulsion elastic modulus is obtained from the following formula.
  • Example 1 The polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS) that is a polystyrene-based thermoplastic elastomer (“SOE. S1611”) are melted at 240° C., respectively, and joined in front of the orifice so that the sheath/core is A-1/TPS at a volume ratio of 30/70, and a nozzle effective surface of width 50 cm ⁇ length 5 cm is formed. , At a temperature of 240° C.
  • TPS hydrogenated styrene-butadiene random copolymer
  • SOE. S1611 polystyrene-based thermoplastic elastomer
  • the pitch between rows in the length direction is 5 mm
  • the pitch between holes in the width direction is 10 mm.
  • the discharge amount was 1000 g/min. Cooling water was placed 25 cm below the nozzle surface, and stainless steel endless nets with a width of 60 cm were arranged in parallel at intervals of 5 cm so that a pair of take-up conveyors were partially exposed on the water surface, and then a continuous linear body was discharged. Of the continuous linear body was fused and the both sides were sandwiched, and the continuous linear body was drawn into cooling water at 25° C. at a speed of 0.66 m/min to be solidified.
  • Example 2 The polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS) that is a polystyrene-based thermoplastic elastomer (“SOE. S1611′′) was used in the same manner as in Example 1 except that the sheath/core was A-1/TPS at a volume ratio of 50/50.
  • TPS hydrogenated styrene-butadiene random copolymer
  • SOE. S1611′′ polystyrene-based thermoplastic elastomer
  • Example 3 The polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS) that is a polystyrene-based thermoplastic elastomer (“SOE. S1611′′) was used in the same manner as in Example 1 except that the sheath/core was A-1/TPS at a volume ratio of 10/90.
  • TPS hydrogenated styrene-butadiene random copolymer
  • SOE. S1611′′ polystyrene-based thermoplastic elastomer
  • Example 4 The polyester-based thermoplastic elastomer (A-2) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS), which is a polystyrene-based thermoplastic elastomer (“SOE manufactured by Asahi Kasei Chemicals Corporation”). S1611′′) was used in the same manner as in Example 1 except that the sheath/core was A-2/TPS at a volume ratio of 50/50. The properties of the obtained network structure are shown in Table 2.
  • TPS hydrogenated styrene-butadiene random copolymer
  • TPS Hydrogenated styrene-butadiene random copolymer
  • SOES1611 polystyrene-based thermoplastic elastomer
  • Nozzle provided with an orifice having a hole diameter of 1.0 mm for forming a round hollow cross-section continuous linear body in which an effective surface has a row-to-row pitch of 5.2 mm and a length-to-row pitch of 6.0 mm. Therefore, the total discharge amount was 1000 g/min at 240° C.
  • Cooling water was placed 25 cm below the nozzle surface, and stainless steel endless nets with a width of 70 cm were placed in parallel at 5 cm intervals so that a pair of take-up conveyors were partially exposed above the water surface, and then a continuous linear body was discharged. Of the continuous linear body was fused and the both sides were sandwiched, and the continuous linear body was drawn into cooling water at a rate of 0.66 m/min and solidified. Then, after performing a pseudo crystallization treatment for 15 minutes in a hot air dryer at 70° C., it was cut into a predetermined size to obtain a reticulated structure. The properties of the obtained network structure are shown in Table 2.
  • the temperature of the hot air dryer was set to 105 by using the polyester thermoplastic elastomer (A-1) obtained in Synthesis Example 1 instead of the hydrogenated styrene-butadiene random copolymer (TPS) which is a polystyrene thermoplastic elastomer.
  • TPS hydrogenated styrene-butadiene random copolymer
  • a net-like structure was obtained in the same manner as in Comparative Example 2 except that the discharge temperature was changed to 220° C. and the discharge temperature was changed to 220° C. Table 2 shows the properties of the obtained network structure.
  • Example 5 The polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS) that is a polystyrene-based thermoplastic elastomer (“SOE. S1611”) are melted at 240° C. and merged in front of the orifice so that the sheath/core is A-1/TPS at a volume ratio of 40/60, and a nozzle effective surface of width 50 cm ⁇ length 5 cm is formed. , At a temperature of 240° C.
  • TPS hydrogenated styrene-butadiene random copolymer
  • SOE. S1611 polystyrene-based thermoplastic elastomer
  • the pitch between rows in the length direction is 5 mm
  • the pitch between holes in the width direction is 10 mm.
  • the discharge amount was 1000 g/min. Cooling water was placed 25 cm below the nozzle surface, and stainless steel endless nets with a width of 60 cm were arranged in parallel at intervals of 5 cm so that a pair of take-up conveyors were partially exposed on the water surface, and then a continuous linear body was discharged. Of the continuous linear body was fused and the both sides were sandwiched, and the continuous linear body was drawn into cooling water at 25° C. at a speed of 0.66 m/min to be solidified.
  • Example 6 The polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS) that is a polystyrene-based thermoplastic elastomer (“SOE. S1611′′) was used in the same manner as in Example 5 except that the sheath/core was A-1/TPS at a volume ratio of 60/40.
  • TPS hydrogenated styrene-butadiene random copolymer
  • SOE. S1611′′ a polystyrene-based thermoplastic elastomer
  • Example 7 The polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and a hydrogenated styrene-butadiene random copolymer (TPS) that is a polystyrene-based thermoplastic elastomer (“SOE. S1611′′) was used in the same manner as in Example 5 except that the sheath/core was A-1/TPS at a volume ratio of 20/80.
  • TPS hydrogenated styrene-butadiene random copolymer
  • SOE. S1611′′ a polystyrene-based thermoplastic elastomer
  • Example 8 The thermoplastic polyester-based elastomer (A-2) obtained in Synthesis Example 2 and a hydrogenated styrene-butadiene random copolymer (TPS) which is a thermoplastic polystyrene-based elastomer (“SOE manufactured by Asahi Kasei Chemicals Corporation”). S1611′′) was used in the same manner as in Example 5 except that the sheath/core was A-2/TPS at a volume ratio of 60/40. The characteristics of the obtained network structure are shown in Table 3.
  • TPS hydrogenated styrene-butadiene random copolymer
  • TPS Hydrogenated styrene-butadiene random copolymer
  • SOES1611 polystyrene-based thermoplastic elastomer
  • Nozzle provided with an orifice having a hole diameter of 1.0 mm for forming a round hollow cross-section continuous linear body having an effective surface with a hole-to-hole pitch of 5.2 mm and a length-to-hole pitch of 6.0 mm. Therefore, the total discharge amount was 1000 g/min at 240° C.
  • Cooling water was placed 25 cm below the nozzle surface, and stainless steel endless nets with a width of 70 cm were placed in parallel at 5 cm intervals so that a pair of take-up conveyors were partially exposed above the water surface, and then a continuous linear body was discharged. Of the continuous linear body was fused and the both sides were sandwiched, and the continuous linear body was drawn into cooling water at a rate of 0.66 m/min and solidified. Then, after performing a pseudo crystallization treatment for 15 minutes in a hot air dryer at 70° C., it was cut into a predetermined size to obtain a reticulated structure. The characteristics of the obtained network structure are shown in Table 3.
  • the reticulated structure of the present invention is a reticulated structure exhibiting high vibration absorption and excellent heat and fatigue resistance, and can be suitably used for vehicle seats, bedding, etc. by utilizing its characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Prostheses (AREA)
  • Multicomponent Fibers (AREA)
  • Seats For Vehicles (AREA)

Abstract

網状構造体は、繊維径が0.1mm以上3.0mm以下の熱可塑性エラストマー連続線状体からなる三次元ランダムループ接合構造を持ち、熱可塑性エラストマー連続線状体がポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーとで複合構造化されており、70℃圧縮残留歪が35%以下、反発弾性率が10%以下である。これにより、振動吸収性が高くかつ耐熱耐へたり性に優れた網状構造体が提供される。

Description

網状構造体
 本発明は、高い振動吸収性を示すとともに耐熱耐へたり性に優れた網状構造体に関するものであり、その特性を生かして車両用座席や寝具などに用いられるクッション材に好適な網状構造体に関するものである。
 特許文献1(特開2013-76200号公報)には、ポリエステル系熱可塑性エラストマーを含む樹脂組成物とポリスチレン系熱可塑性エラストマーを含む樹脂組成物で複合構造化された連続線状体からなる網状構造体が記載されている。しかしながら、その網状構造体では、振動吸収性と耐熱耐へたり性を両立した網状構造体を得ることはできていなかった。
特開2013-76200号公報
 本発明は、高い振動吸収性を示すとともに耐熱耐へたり性に優れた網状構造体を提供することを目的とする。
 本発明者らは、鋭意検討した結果、三次元ランダムループ接合構造を構成する連続線状体を特定の熱可塑性エラストマーを使用し複合構造化することで、振動吸収性が高くかつ耐熱耐へたり性に優れた網状構造体が得られることを見出し、本発明に至った。
 すなわち、本発明は、以下の構成からなる。
[1]繊維径が0.1mm以上3.0mm以下の熱可塑性エラストマー連続線状体からなる三次元ランダムループ接合構造を持つ網状構造体であって、
 熱可塑性エラストマー連続線状体がポリエステル系熱可塑性エラストマーおよびポリスチレン系熱可塑性エラストマーを含む熱可塑性エラストマーで複合構造化されており、70℃圧縮残留歪が35%以下、反発弾性率が10%以下である網状構造体。
[2]前記ポリエステル系熱可塑性エラストマーの反発弾性率が75%以上である上記[1]に記載の網状構造体。
[3]前記ポリエステル系熱可塑性エラストマーのショアD硬度が40以下である上記[1]に記載の網状構造体。
[4]前記ポリエステル系熱可塑性エラストマーの融点が200℃未満である上記[1]~[3]のいずれか1つに記載の網状構造体。
[5]前記ポリエステル系熱可塑性エラストマーと前記ポリスチレン系熱可塑性エラストマーの体積比が90/10~10/90である複合構造化された前記熱可塑性エラストマー連続線状体からなる上記[1]~[4]のいずれか1つに記載の網状構造体。
[6]前記熱可塑性エラストマー連続線状体の複合構造がシース・コア構造およびサイド・バイ・サイド構造のいずれかの構造である上記[1]~[5]のいずれか1つに記載の網状構造体。
[7]前記ポリエステル系熱可塑性エラストマーがポリエステルエーテルブロック共重合体およびポリエステルエステルブロック共重合体の少なくとも1種である上記[1]~[6]のいずれか1つに記載の網状構造体。
[8]前記ポリスチレン系熱可塑性エラストマーが、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、およびこれらの水素添加共重合体からなる群より選ばれる少なくとも1種である上記[1]~[7]のいずれか1つに記載の網状構造体。
[9]前記熱可塑性エラストマー連続線状体が中空断面である上記[1]~[8]のいずれか1つに記載の網状構造体。
[10]熱可塑性エラストマー連続線状体が異形断面である上記[1]~[9]のいずれか1つに記載の網状構造体。
 本発明は、高い振動吸収性を示すとともに耐熱耐へたり性にも優れる網状構造体に関するものであり、その特性を生かし車両用座席や寝具などに好適に使用できるものである。
 本発明の網状構造体は、繊維径が0.1mm以上3.0mm以下の熱可塑性エラストマーからなる連続した線状体(本明細書では、「連続線状体」ということがある。)を曲がりくねらせ、該連続線状体同士を接触させ、接触部を融着して三次元ランダムループ接合構造を形成している。このことで、非常に大きい応力で、大変形を与えても、融着一体化した三次元ランダムループ接合構造からなる網状構造体の全体が変形して応力を吸収し、応力が解除されると熱可塑性エラストマーのゴム弾性が発現して、該網状構造体は元の形態に回復することができる。連続線状体の繊維径が0.1mm未満では、抗圧縮強力が低くなり、その結果反発力が低下する。一方、連続線状体の繊維径が3.0mmを超えると連続線状体の個々の抗圧縮性は大きいが、網状構造体を構成する連続線状体の本数が少なくなるため力の分散が悪くなる。特に、100kg/cm以上の著しく大きい圧縮力を受けた場合に、応力集中によるへたり(圧縮永久歪み)が発生し、使用箇所が制限される場合がある。繊維径は、0.3mm以上2.0mm以下が好ましく、0.4mm以上1.5mm以下がより好ましい。なお、本発明において、単一繊維径の連続線状体だけでなく、繊維径の異なる連続線状体を使用し、見掛け密度との組合せで最適な構成とすることもできる。
 本発明の網状構造体を構成する連続線状体は、ポリエステル系熱可塑性エラストマーおよびポリスチレン系熱可塑性エラストマーを含む熱可塑性エラストマーで複合構造化されている。そして、ポリエステル系熱可塑性エラストマーとして、反発弾性率が75%以上あるいはショアD硬度が40以下のものを使用することが好ましい。通常、網状構造体の振動吸収性を高めるとともに耐熱耐へたり性を高める目的で、網状構造体を構成する連続線状体を複合化する。その場合、振動吸収性を高めるために、反発弾性率が5%以下のポリスチレン系熱可塑性エラストマーを使用する。さらに、耐熱耐へたり性を高めるために、(a)融点が高くかつ反発弾性率が低いポリエチレン系熱可塑性エラストマーあるいは(b)融点が高く、反発弾性率が低く、かつショアD硬度が低いポリエチレン系熱可塑性エラストマーを使用する。そして両者を適切な体積比で複合化して使用される。しかしながら、本発明者等は、ポリエステル系熱可塑性エラストマーの反発弾性率が75%以上あるいはショアD硬度が40以下で、融点が比較的低いものを使用した方が、振動吸収性および耐熱耐へたり性が共に高くなることを見出し、本発明に到達した。ポリエステル系熱可塑性エラストマーの融点は、200℃未満が好ましく、195℃以下がより好ましく、特に好ましくは190℃以下である。また、耐熱耐へたり性の点から、融点は150℃以上が好ましく、より好ましくは155℃以上、特に好ましくは160℃以上である。
 本発明で用いるポリエステル系熱可塑性エラストマーとしては、熱可塑性ポリエステルをハードセグメントとし、ポリアルキレンジオールをソフトセグメントとするポリエステルエーテルブロック共重合体、または脂肪族ポリエステルをソフトセグメントとするポリエステルエステルブロック共重合体が例示できる。ポリエステルエーテルブロック共重合体のより具体的な構成としては、テレフタル酸、イソフタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、コハク酸、アジピン酸、セバチン酸ダイマー酸等の脂肪族ジカルボン酸、または、これらのエステル形成性誘導体などから選ばれたジカルボン酸の少なくとも1種と、1,4-ブタンジオール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール等の脂肪族ジオール、1,1-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等の脂環族ジオール、またはこれらのエステル形成性誘導体などから選ばれたジオール成分の少なくとも1種、および平均分子量が約300~5000のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、またはエチレンオキシド-プロピレンオキシド共重合体などから選ばれたポリアルキレンジオールのうち少なくとも1種から構成される三元ブロック共重合体である。ポリエステルエステルブロック共重合体としては、上記ジカルボン酸とジオール及び平均分子量が約300~5000のポリラクトン等のポリエステルジオールのうち少なくとも1種から構成される三元ブロック共重合体が例示される。熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮すると、好ましくは、(1)ジカルボン酸としてテレフタル酸または/およびイソフタル酸、ジオ-ル成分として1,4-ブタンジオール、ポリアルキレンジオールとしてポリテトラメチレングリコールからなる3元ブロック共重合体、および(2)ジカルボン酸としてテレフタル酸または/およびナフタレン-2,6-ジカルボン酸、ジオ-ル成分として1,4-ブタンジオール、ポリエステルジオールとしてポリラクトンからなる3元ブロック共重合体である。特に好ましくは、上記(1)ジカルボン酸としてテレフタル酸または/およびイソフタル酸、ジオ-ル成分として1,4-ブタンジオール、ポリアルキレンジオールとしてポリテトラメチレングリコールからなる3元ブロック共重合体である。特殊な例では、ポリシロキサン系のソフトセグメントを導入したものも使うことができる。
 本発明で用いるポリエステル系熱可塑性エラストマーとしては、特に限定されるものではないが、網状構造体の耐熱耐へたり性を適度に保持しながら高い振動吸収性を発現するという観点から、反発弾性率が75%以上あるいはショアD硬度が40以下のポリエステル系熱可塑性エラストマーを用いることが好ましい。ポリエステル系熱可塑性エラストマーの反発弾性率が75%以上であると、ポリエステル系熱可塑性エラストマーが受けた衝撃を、複合構造化した連続線状体を共に構成するポリスチレン系熱可塑性エラストマーへ伝達しやすくなる。その結果、ポリスチレン系熱可塑性エラストマーにより発現する振動吸収性が高くなる。ポリエステル系熱可塑性エラストマーの反発弾性率は、78%以上がより好ましく、80%以上がさらに好ましい。また、ショアD硬度が40以下であると、ポリエステル系熱可塑性エラストマーが硬すぎず、ポリスチレン系熱可塑性エラストマーの衝撃吸収性を十分に活かしやすくなる。ポリエステル系熱可塑性エラストマーのショアD硬度は、好ましくは38以下であり、より好ましくは36以下であり、さらに好ましくは34以下である。
 本発明で用いるポリスチレン系熱可塑性エラストマーは、特に限定されるものではないが、網状構造体の振動吸収性を高める点から、反発弾性率が10%以下が好ましい。ポリスチレン系熱可塑性エラストマーの反発弾性率が10%以下であると、充分な振動減衰性が発現し、網状構造体の振動吸収性が向上する。ポリスチレン系熱可塑性エラストマーの反発弾性率は、7%以下がより好ましく、5%以下がさらに好ましい。反発弾性率が10%以下を満足するポリスチレン系熱可塑性エラストマーとしては、例えばスチレン-ブタジエン共重合体やスチレン-イソプレン共重合体、あるいはそれらを水素添加したものが挙げられる。
 また、本発明の目的である、高い振動吸収性と優れた耐熱耐へたり性を維持できる範囲で、ポリエステル系熱可塑性エラストマー及びポリスチレン系熱可塑性エラストマー以外の第3の熱可塑性エラストマーを用いて複合構造化させることも可能である。第3の熱可塑性エラストマーとしては、例えば、ポリオレフィン系熱可塑性エラストマーが挙げられる。
 本発明の網状構造体を構成する複合化された連続線状体のポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーの構成比は特に規定されるものではないが、好ましくはポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーの体積比で好ましくは95/5~5/95、より好ましくは92/8~8/92、さらに好ましくは90/10~10/90である。前記体積比が、100/0~95/5(95/5を除く)の場合、振動吸収性を高く保つことが難しくなる。一方、前記体積比が5/95~0/100(5/95を除く)の場合、耐熱へたり性を高く保つことが難しくなる。
 本発明の網状構造体は、反発弾性率測定装置を用いて測定した反発弾性率が10%以下である。反発弾性率が10%を超えると、網状構造体の振動吸収性が不十分となる。好ましくは7%以下、より好ましくは5%以下である。
 本発明において、網状構造体の70℃圧縮残留歪は、耐熱耐へたり性を評価するための指標である。本発明の網状構造体は、70℃圧縮残留歪が35%以下であり、好ましくは30%以下であり、より好ましくは25%以下であり、さらに好ましくは23%以下であり、特に好ましくは20%以下であり、最も好ましくは18%以下である。70℃圧縮残留歪が35%を超えると、必要とする耐熱耐へたり性が不足する場合がある。70℃圧縮残留歪の下限値は特に規定しないが、本発明で得られる網状構造体においては1%以上である。
 本発明の網状構造体は、25%圧縮時硬さが、好ましくは2.0kg/φ200mm以上である。25%圧縮時硬さとは、網状構造体をφ200mm径の円形状の圧縮板にて75%まで圧縮して得た応力-歪み曲線の25%圧縮時の応力である。25%圧縮時硬さが2.0kg/φ200mm未満であると、クッション性が損なわれてしまう。より好ましくは2.5kg/φ200mm以上、さらに好ましくは3.0kg/φ200mm以上である。上限は特に規定されないが、好ましくは30kg/φ200mm以下、より好ましくは25kg/φ200mm以下、さらに好ましくは20kg/φ200mm以下である。30kg/φ200mm以上であると網状構造体が硬くなりすぎ、クッション性の観点から好ましくない。
 本発明の網状構造体を構成する連続線状体には、目的に応じて種々の添加剤を配合することができる。添加剤としては、フタル酸エステル系、トリメリット酸エステル系、脂肪酸系、エポキシ系、アジピン酸エステル系、ポリエステル系の可塑剤、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系などの光安定剤、帯電防止剤、過酸化物などの分子調整剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料などを添加することができる。
 本発明の網状構造体を構成する連続線状体は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有するのが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピ-クを有しないものより著しく向上する。例えば、本発明の好ましいポリエステル系熱可塑性エラストマーとして、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン-2,6-ジカルボン酸などを好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは100モル%含有するものとグリコ-ル成分をエステル交換後、必要な重合度まで重合し、次いで、ポリアルキレンジオールとして、好ましくは平均分子量が500以上5000以下、より好ましくは1000以上3000以下のポリテトラメチレングリコールを10重量%以上70重量%以下、より好ましくは20重量%以上60重量%以下で共重合させた場合、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン-2,6-ジカルボン酸の含有量が多いとハ-ドセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱抗へたり性が向上する。加えて、溶融熱接着後更に融点より少なくとも10℃以上低い温度でアニーリング処理すると、より耐熱抗へたり性が向上する。圧縮歪みを付与してからアニーリングすると更に耐熱抗へたり性が向上する。このような処理をした網状構造体の連続線状体は、示差走査型熱量計(DSC)で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを発現しない。このことから類推するに、アニーリングにより、ハードセグメントが再配列され、疑似結晶化様の架橋点が形成され、耐熱抗へたり性が向上しているのではないかとも考えられる(以下、このアニーリング処理を「疑似結晶化処理」ということがある)。
 本発明の網状構造体を構成する連続線状体は、ポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーで複合構造化することを特徴とするが、好ましい複合構造としては、シース・コア構造、サイド・バイ・サイド構造などが挙げられる。シース・コア構造は芯鞘型とも呼ばれ、シース(鞘)とコア(芯)の位置関係から同心型と偏心型に、また断面形状として円形断面と異型断面に分類できるが、本発明ではいずれの組合せも使用することができる。サイド・バイ・サイド構造は並列型とも呼ばれ、多成分が貼り合わされた断面構造をしている。シース・コア構造、サイド・バイ・サイド構造のいずれの構造においても、断面形状が中空または中実のいずれの構造であっても良い。
 本発明の網状構造体を構成する連続線状体の複合構造がシース・コア構造の場合は、シース成分とコア成分の比率は体積比で好ましくは95/5~5/95であり、より好ましくは92/8~8/92であり、さらに好ましくは90/10~10/90である。100/0~95/5(ただし95/5を除く)または5/95~0/100(ただし5/95を除く)となると、ポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーとの相補的な物性が発現しにくくなり、耐熱耐へたり性が高くかつ振動吸収性も高いという本発明の目的を達成することが難しくなる。
 本発明の網状構造体を構成する連続線状体の複合構造がサイド・バイ・サイド構造の場合は、ポリエステル系可塑性エラストマーまたはポリスチレン系熱可塑性エラストマーのどちらか一方の線状体の表面の割合を多くした構造(例えば、偏芯シース・コア構造のシースにポリエステル系可塑性エラストマーを配した様な構造)とすることができる。
 本発明は、連続線状体が複合構造化されていることを特徴とする。網状構造体の反発弾性率を小さくする観点から、線状体の表面の50%以上を反発弾性率が75%以上あるいはショアD硬度が40以下のポリエステル系熱可塑性エラストマーが占める連続線状体が好ましい。中でも線状体の表面の80%以上を反発弾性率が75%以上あるいはショアD硬度が40以下のポリエステル系熱可塑性エラストマーが占める連続線状体がより好ましい。線状体の表面の100%を反発弾性率が75%以上あるいはショアD硬度が40以下のポリエステル系熱可塑性エラストマーが占める連続線状体、すなわちシース・コア構造である連続線状体が特に好ましい。
 連続線状体の断面形状は特には限定されないが、中空断面や異形断面にすることで、抗圧縮性や嵩高性を付与でき、低繊維径化したい場合には特に好ましい。抗圧縮性は用いる素材のモジュラスにより調整して、柔らかい素材では中空率や異形度を高くし初期圧縮応力の勾配を調整できるし、ややモジュラスの高い素材では中空率や異形度を低くして座り心地が良好な抗圧縮性を付与する。中空断面や異形断面の他の効果として中空率や異形度を高くすることで、同一の抗圧縮性を付与した場合、より軽量化が可能となる。
 本発明の網状構造体の具体的な態様は、見掛け密度の好ましい範囲が、クッション材としての機能が発現できる0.005g/cm以上0.20g/cm以下である。0.005g/cm未満では反発力が失われるのでクッション材には不適当であり、0.20g/cmを越えると反発力が高すぎて座り心地が悪くなり好ましくない。本発明のより好ましい見掛け密度は0.01g/cm以上0.10g/cm以下であり、さらに好ましい範囲は0.03g/cm以上0.06g/cm以下である。本発明の網状構造体は、繊維径の異なる線状体からなる複数層を積層し、各層の見掛け密度を変えることにより好ましい特性を付与することができる。例えば、繊維径の細い表面層と繊維径の太い基本層からなる場合は、表面層の密度はやや高くして構成本数を多くし、線状体の一本が受ける応力を少なくして応力の分散を良くし、かつ臀部を支えるクッション性も向上させることで座り心地を向上させることができる。基本層は繊維径を太くして少し硬くし、振動吸収と体型保持を受け持つ層としてより緻密な層とするため、やや繊維径の細い線状体で、かつ高密度とすることができる。これにより座席フレーム面から受ける振動や反発応力を基本層に均一に伝達し、全体が変形してエンルギー変換できるようにし、座り心地を良くすると共にクッションの耐久性も向上させることもできる。さらに、座席のサイドの厚みと張りを付与させるために部分的に繊維径をやや細くして高密度化することもできる。このように各層はその目的に応じ好ましい密度と繊維径を任意に選択できる。なお、網状構造体の各層の厚みは、特に限定されないが、クッション体としての機能が発現されやすい3mm以上とするのが好ましく5mm以上とするのがより好ましい。
 網状構造体の構造体外表面は、曲がりくねらせた線状体が途中で30°以上、好ましくは45°以上曲げられ実質的に面がフラット化されており、接触部の大部分が融着している表層部を有することが好ましい。このことで、網状構造体面の該線状体の接触点が大幅に増加して接着点を形成するため、座った時の臀部の局部的な外力も臀部に異物感を与えずに構造面で受け止められ、面構造が全体で変形して内部の構造体全体も変形して応力を吸収し、応力が解除されると弾性樹脂のゴム弾性が発現して、構造体は元の形態に回復することができる。実質的にフラット化されてない場合、臀部に異物感を与え、表面に局部的な外力が掛かかり、表面の線状体および接着点部分までに選択的に応力集中が発生する場合があり、応力集中による疲労が発生して耐へたり性が低下する場合がある。構造体外表面がフラット化された場合、ワディング層を使用しないで、または非常に薄いワディング層を積層し、側地で表面を覆い自動車用、鉄道用等の座席や椅子またはベッド用、ソファー用、布団用等のクッションマットにすることができる。構造体外表面がフラット化されていない場合は、網状構造体の表面に比較的厚め(好ましくは10mm以上)のワディング層を積層して側地で表面を覆って座席やクッションマットを形成する必要がある。必要に応じてワディング層との接着または側地との接着は表面がフラットな場合は容易であるが、フラット化されていない場合は凸凹なため接着が不完全になる。
 次に、本発明の三次元ランダムループ接合構造からなる網状構造体の製造方法について述べる。以下の方法は一例であって、これに限定するものではない。本発明の網状構造体は、溶融紡糸により製造される。まず、(1)溶融状態の吐出線状を曲がりくねらせて互いに接触させ、大部分の接触部を融着させることにより3次元構造を形成しつつ、(2)引取り装置で挟み込む。次いで、(3)冷却槽で冷却せしめて網状構造体を形成する。本発明では、吐出線状をポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーで複合構造化できるように、各ノズルオリフィス前で各熱可塑性エラストマーを分配し、該熱可塑性エラストマーの高融点成分の融点より10℃以上、低融点成分の融点より120℃以下の溶融温度で該ノズルより下方に向けて吐出させ、溶融状態の複合化した吐出線状から上記方法により複合構造化させた連続線状体からなる網状構造体を製造する。
 ポリエステル系熱可塑性エラストマーとポリスチレン系熱可塑性エラストマーは一般的な溶融押出機を用いて別々に溶融し、一般的な複合紡糸の方法と同様にオリフィス直前で複合化するように分配合流させ吐出する。シ-ス・コア構造の連続線状体を紡糸する場合、コア成分を中心から供給し、その回りからシ-ス成分を合流させ吐出する。サイド・バイ・サイド構造の連続線状体を紡糸する場合、左右または前後から各成分を合流させて吐出する。このときの溶融温度は、低融点の成分の融点より120℃以下の温度で溶融させないと熱分解が著しくなり熱可塑性樹脂の特性が悪くなるので好ましくない。他方、高融点成分の融点より10℃以上にしないとメルトフラクチャ-が発生し正常な線状形成ができなくなる。また、サイド・バイ・サイド構造の場合は線状の接着が不良になる場合がある。好ましい溶融温度は低融点成分の融点より20℃以上100℃以下、より好ましくは30℃以上80℃以下であり、高融点成分の融点より15℃以上40℃以下、より好ましくは20℃以上30℃以下の範囲となる同一溶融温度で合流させ吐出させる。合流直前の溶融温度差は10℃以下にしないと、異常流動を発生し複合化形態の形成が損なわれる場合がある。
 オリフィスの形状は特に限定されないが、異形断面(例えば三角形、Y型、星型等の断面二次モ-メントが高くなる形状)や中空断面(例えば三角中空、丸型中空、突起つきの中空等となるよう形状)とすることで溶融状態の吐出線状が形成する3次元構造が流動緩和し難くし、逆に接触点での流動時間を長く保持して接着点を強固にできるので特に好ましい。特開平1-2075号公報に記載の接着のための加熱をする場合、3次元構造が緩和し易くなり平面的構造化し、3次元立体構造化が困難となるので好ましくない。構造体の特性向上効果としては、見掛けの嵩を高くでき軽量化になり、また抗圧縮性が向上し、弾発性も改良できて、へたり難くなる。中空断面では中空率が80%を越えると断面が潰れ易くなるので、中空断面を採用する場合の中空率は、好ましくは軽量化の効果が発現できる10%以上70%以下、より好ましくは20%以上60%以下である。
 オリフィスの孔間ピッチは、線状が形成するループが充分接触できるピッチとする必要がある。連続線状体の密度が高い構造にするには孔間ピッチを短くし、連続線状体の密度が低い構造にするには孔間ピッチを長くする。本発明の孔間ピッチは好ましくは3mm~20mm、より好ましくは5mm~10mmである。本発明では所望に応じ異密度化や異繊維径化もできる。列間のピッチまたは孔間のピッチも変えた構成、および列間と孔間の両方のピッチも変える方法などで異密度層を形成できる。また、オリフィスの断面積を変えて吐出時の圧力損失差を付与すると、溶融した熱可塑性エラストマーが同一ノズルから一定の圧力で押し出される吐出量が圧力損失の大きいオリフィスほど少なくなる原理を用いて、異繊維径化できる。
 次いで、引取りネットで溶融状態の三次元立体構造体の両外表面を挟み込み、両外表面の溶融状態の曲がりくねった吐出された連続線状体を30°以上折り曲げて変形させ、外表面をフラット化すると同時に、曲げられていない吐出線状との接触点を接着して構造を形成する。その後、連続して冷却媒体(通常は室温の水を用いるのが冷却速度を早くでき、コスト面でも安くなるので好ましい。)で急冷して本発明の三次元ランダムループ接合構造体からなる網状構造体を得る。次いで、水切り乾燥するが、冷却媒体中に界面活性剤等を添加すると、水切りや乾燥がしにくくなったり、熱可塑性エラストマーが膨潤したりすることもあり好ましくない。本発明の好ましい方法としては、一旦冷却後、疑似結晶化処理を行う。疑似結晶化処理温度は、少なくとも融点(Tm)より10℃以上低く、Tanδのα分散立ち上がり温度(Tαcr)以上で行う。この処理で、融点以下に吸熱ピ-クを持ち、疑似結晶化処理しないもの(吸熱ピ-クを有しないもの)より耐熱耐へたり性が著しく向上する。本発明の好ましい疑似結晶化処理温度は(Tαcr+10℃)から(Tm-20℃)である。単なる熱処理により疑似結晶化させると耐熱耐へたり性が向上する。さらには一旦冷却後、10%以上の圧縮変形を付与してアニーリングすることで耐熱耐へたり性が著しく向上するのでより好ましい。また、一旦冷却後、乾燥工程を経する場合、乾燥温度をアニーリング温度とすることで同時に疑似結晶化処理を行うができる。また、別途疑似結晶化処理を行うができる。
 次いで、上記網状構造体を所望の長さまたは形状に切断してクッション材に用いる。本発明の網状構造体をクッション材に用いる場合、その使用目的、使用部位により使用する樹脂、繊維径、ル-プ径、嵩密度を選択する必要がある。例えば、表層のワディングに用いる場合は、ソフトなタッチと適度の沈み込みと張りのある膨らみを付与するために、低密度で細い繊維径、細かいル-プ径にするのが好ましく、中層のクッション体としては、共振振動数を低くし、適度の硬さと圧縮時のヒステリシスを直線的に変化させて体型保持性を良くし、耐久性を保持させるために、中密度で太い繊維径、やや大きいル-プ径が好ましい。勿論、用途との関係で要求性能に合うべく他の素材、例えば短繊維集合体からなる硬綿クッション材、不織布等と組合せて用いることも可能である。また、樹脂製造過程以外でも性能を低下させない範囲で製造過程から成形体に加工し、製品化する任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油化、着色、芳香等の機能付与を薬剤添加等の処理加工ができる。
 以下に実施例で本発明を詳述する。なお、実施例中の評価は以下の方法で行った。
 <樹脂特性>
(1)反発弾性率
 JIS K 6255規格により測定した。
(2)融点
 島津製作所TA50、DSC50型示差熱分析計を使用し、10gの試料を昇温速度20℃/分で20℃から250℃まで測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
(3)ショアD硬度
 ASTM D2240規格により測定した。
 <網状構造体特性>
(4)25%圧縮時硬度
 試料を30cm×30cmの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるエー・アンド・デイ社製テンシロン(RTG-1310)にてφ200mm、厚み10mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が1.0Nになる時の厚みを計測し、硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻す。引き続き速度100mm/minで硬度計厚みの25%まで圧縮し、その際の荷重を25%圧縮時硬度とした。25%圧縮時硬度の単位はkg/φ200mmであり、n=3の平均値で示した。
(5)連続線状体の繊維径
 試料を幅方向10cm×長さ方向10cm×試料厚さの大きさに切断し、切断断面から厚さ方向にランダムに10本の線状体を約5mmの長さで採集した。採集した線状体を、光学顕微鏡を適切な倍率で繊維径測定箇所にピントを合わせて繊維側面から見た繊維の太さを測定した。なお、網状構造体の表面は平滑性を得るためにフラット化されていることから繊維断面が変形している場合があるため、網状構造体表面から2mm以内の領域から試料は採取しないこととした。
(6)連続線状体の中空率
 網状構造体から連続線状体を採取し、液体窒素で冷却した後に割断し、その断面を電子顕微鏡で倍率50倍にて観察し、得られた画像をCADシステムにて解析して樹脂部分の断面積(A)と中空部分の断面積(B)を測定し、{B/(A+B)}×100の式により中空率を算出した。
(7)70℃圧縮残留歪
 試料を10cm×10cm×試料厚さの大きさに切断し、圧縮前厚さtbを測定したサンプルを50%圧縮状態に保持できる冶具に挟み、70±2℃に設定した乾燥機に入れ、22時間放置した。その後サンプルを取り出し、圧縮歪みを除き、室温(25℃)で冷却して30分放置後の圧縮後厚さtaを求め、式(tb-ta)/tb×100より70℃圧縮残留歪みを算出した:単位%(n=3の平均値)。ここで、圧縮前厚さtbおよび圧縮後厚さtaは、圧縮前および圧縮後の各サンプル1か所の高さを測定しその平均値を厚さとした。
(8)網状構造体の反発弾性率
 試料を幅方向10cm×長さ方向10cm×試料厚さの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるエー・アンド・デイ社製テンシロン(RTG-1310)にてφ200mm、厚み10mmの加圧板を用いて、試料を10mm/minの速度で圧縮を開始し、荷重が5.0Nになる時の厚みを計測し、この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻し、連続した動作で、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻す。サンプルを15分間静置した後、直径80mm、重さ600gの円柱状の錘を15cmの高さから落下させ、最初の跳ね返りの高さを求め、以下の式より反発弾性率を求める。跳ね返りの高さは高速度デジタルカメラで測定した(n=3の平均値)。
 反発弾性率(%)=(跳ね返り高さ(cm)/15(cm))×100
(9)見掛け密度
 試料を15cm×15cmの大きさに切断し、4か所の高さを測定し、体積を求め、試料の重さを体積で除した値(g/cm)で示す。(n=4の平均値)
 <合成例1>
 ジメチルテレフタレート(DMT)と1,4-ブタンジオール(1,4-BD)とポリテトラメチレングリコール(PTMG:平均分子量2000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4-BD/PTMGが100/75/25(mol比)のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー(A-1)を得た。その特性を表1に示す。
 <合成例2>
 ジメチルテレフタレート(DMT)と1,4-ブタンジオール(1,4-BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4-BD/PTMGが100/71.8/28.2(mol比)のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー(A-2)を得た。その特性を表1に示す。
 <合成例3>
 ジメチルテレフタレート(DMT)と1,4-ブタンジオール(1,4-BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4-BD/PTMGが100/84/16(mol比)のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー(A-3)を得た。その特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <実施例1>
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、それぞれ240℃で溶融して、体積比30/70でシース/コアがA-1/TPSとなるようにオリフィス前で合流させ、幅50cm×長さ5cmのノズル有効面に、長さ方向の列間ピッチが5mm、幅方向の孔間ピッチが10mmで配置された丸型中空断面連続線状体形成用の孔径1.0mmのオリフィスを備えるノズルより、240℃にて総吐出量を1000g/分で吐出させた。ノズル面25cm下に冷却水を配し、幅60cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に、吐出させた連続線状体を引取り、連続線状体の接触部分を融着させつつ、両面を挟み込みつつ毎分0.66mの速度で25℃の冷却水中へ引込み固化させた。次いで、105℃の熱風乾燥機中で20分間の疑似結晶化処理した後、所定の大きさに切断して複合構造の連続線状体からなる網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <実施例2>
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比50/50でシース/コアがA-1/TPSとなるようにした以外は実施例1と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <実施例3>
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比10/90でシース/コアがA-1/TPSとなるようにした以外は実施例1と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <実施例4>
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-2)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比50/50でシース/コアがA-2/TPSとなるようにした以外は実施例1と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <比較例1>
 合成例3で得られたポリエステル系熱可塑性エラストマー(A-3)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比30/70でシース/コアがA-3/TPSとなるようにした以外は実施例1と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <比較例2>
 体積比を70/30に変えた以外は比較例1と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <比較例3>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)を240℃で溶融して、幅65cm×長さ5cmのノズル有効面に、幅方向の列間ピッチが5.2mm、長さ方向の列間ピッチが6.0mmで配置された丸型中空断面連続線状体形成用の孔径1.0mmのオリフィスを備えるノズルより、240℃にて総吐出量を1000g/分で吐出させた。ノズル面25cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に、吐出させた連続線状体を引取り、連続線状体の接触部分を融着させつつ、両面を挟み込みつつ毎分0.66mの速度で冷却水中へ引込み固化させた。次いで、70℃の熱風乾燥機中で15分間の疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <比較例4>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)に変えて合成例3で得られたポリエステル系熱可塑性エラストマー(A-3)を用いて、熱風乾燥器の温度を105℃に変えた以外は比較例3と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <比較例5>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)に変えて合成例2で得られたポリエステル系熱可塑性エラストマー(A-2)を用いて、熱風乾燥器の温度を105℃に変え、吐出温度を220℃に変えた以外は比較例3と同じようにして網状構造体を得た。得られた網状構造体の特性を表2に示す。
 <比較例6>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)に変えて合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)を用いて、熱風乾燥器の温度を105℃に変え、吐出温度を220℃に変えた以外は比較例2と同じようにして網状構造体を得た。得られた網状構造体の特性を表2示す。
Figure JPOXMLDOC01-appb-T000002
 <実施例5>
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、それぞれ240℃で溶融して、体積比40/60でシース/コアがA-1/TPSとなるようにオリフィス前で合流させ、幅50cm×長さ5cmのノズル有効面に、長さ方向の列間ピッチが5mm、幅方向の孔間ピッチが10mmで配置された丸型中空断面連続線状体形成用の孔径1.0mmのオリフィスを備えるノズルより、240℃にて総吐出量を1000g/分で吐出させた。ノズル面25cm下に冷却水を配し、幅60cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に、吐出させた連続線状体を引取り、連続線状体の接触部分を融着させつつ、両面を挟み込みつつ毎分0.66mの速度で25℃の冷却水中へ引込み固化させた。次いで、105℃の熱風乾燥機中で20分間の疑似結晶化処理した後、所定の大きさに切断して複合構造の連続線状体からなる網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <実施例6>、
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比60/40でシース/コアがA-1/TPSとなるようにした以外は実施例5と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <実施例7>
 合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比20/80でシース/コアがA-1/TPSとなるようにした以外は実施例5と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <実施例8>
 合成例2で得られたポリエステル系熱可塑性エラストマー(A-2)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比60/40でシース/コアがA-2/TPSとなるようにした以外は実施例5と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <比較例7>
 合成例3で得られたポリエステル系熱可塑性エラストマー(A-3)と、ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)とを、体積比40/60でシース/コアがA-3/TPSとなるようにした以外は実施例5と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <比較例8>
 体積比を60/40に変えた以外は比較例7と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <比較例9>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)(旭化成ケミカルズ社製「S.O.E.S1611」)を240℃で溶融して、幅65cm×長さ5cmのノズル有効面に、幅方向の孔間ピッチが5.2mm、長さ方向の孔間ピッチが6.0mmで配置された丸型中空断面連続線状体形成用の孔径1.0mmのオリフィスを備えるノズルより、240℃にて総吐出量を1000g/分で吐出させた。ノズル面25cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に、吐出させた連続線状体を引取り、連続線状体の接触部分を融着させつつ、両面を挟み込みつつ毎分0.66mの速度で冷却水中へ引込み固化させた。次いで、70℃の熱風乾燥機中で15分間の疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <比較例10>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)に変えて合成例3で得られたポリエステル系熱可塑性エラストマー(A-3)を用いて、熱風乾燥器の温度を105℃に変えた以外は比較例9と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <比較例11>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)に変えてを合成例2で得られたポリエステル系熱可塑性エラストマー(A-2)を用いて、熱風乾燥器の温度を105℃に変えた以外は比較例9と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
 <比較例12>
 ポリスチレン系熱可塑性エラストマーである水添スチレン-ブタジエンランダム共重合体(TPS)に変えてを合成例1で得られたポリエステル系熱可塑性エラストマー(A-1)を用いて、熱風乾燥器の温度を105℃に変えた以外は比較例8と同じようにして網状構造体を得た。得られた網状構造体の特性を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 今回開示された実施の形態および実施例はすべての点で例示であって、どのような面からも制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の網状構造体は、高い振動吸収性を示し、耐熱耐へたり性にも優れる網状構造体であり、その特性を生かし車両用座席や寝具などに好適に使用できるものである。

Claims (10)

  1.  繊維径が0.1mm以上3.0mm以下の熱可塑性エラストマー連続線状体からなる三次元ランダムループ接合構造を持つ網状構造体であって、
     前記熱可塑性エラストマー連続線状体がポリエステル系熱可塑性エラストマーおよびポリスチレン系熱可塑性エラストマーを含む熱可塑性エラストマーで複合構造化されており、70℃圧縮残留歪が35%以下、反発弾性率が10%以下である網状構造体。
  2.  前記ポリエステル系熱可塑性エラストマーの反発弾性率が75%以上である請求項1に記載の網状構造体。
  3.  前記ポリエステル系熱可塑性エラストマーのショアD硬度が40以下である請求項1に記載の網状構造体。
  4.  前記ポリエステル系熱可塑性エラストマーの融点が200℃未満である請求項1~3のいずれか1項に記載の網状構造体。
  5.  前記ポリエステル系熱可塑性エラストマーと前記ポリスチレン系熱可塑性エラストマーの体積比が90/10~10/90である複合構造化された前記熱可塑性エラストマー連続線状体からなる請求項1~4のいずれか1項に記載の網状構造体。
  6.  前記熱可塑性エラストマー連続線状体の複合構造がシース・コア構造およびサイド・バイ・サイド構造のいずれかの構造である請求項1~5のいずれか1項に記載の網状構造体。
  7.  前記ポリエステル系熱可塑性エラストマーが、ポリエステルエーテルブロック共重合体およびポリエステルエステルブロック共重合体の少なくとも1種である請求項1~6のいずれか1項に記載の網状構造体。
  8.  前記ポリスチレン系熱可塑性エラストマーが、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、およびこれらの水素添加共重合体からなる群より選ばれる少なくとも1種である請求項1~7のいずれか1項に記載の網状構造体。
  9.  前記熱可塑性エラストマー連続線状体が中空断面である請求項1~8のいずれか1項に記載の網状構造体。
  10.  前記熱可塑性エラストマー連続線状体が異形断面である請求項1~9のいずれか1項に記載の網状構造体。
PCT/JP2019/046342 2018-11-29 2019-11-27 網状構造体 WO2020111110A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980078083.7A CN113166995B (zh) 2018-11-29 2019-11-27 网状结构体
ES19888815T ES2945838T3 (es) 2018-11-29 2019-11-27 Cuerpo de estructura en forma de red
DK19888815.8T DK3889332T3 (da) 2018-11-29 2019-11-27 Net-formet strukturkrop
KR1020217015298A KR102473434B1 (ko) 2018-11-29 2019-11-27 망상 구조체
EP19888815.8A EP3889332B8 (en) 2018-11-29 2019-11-27 Net-shaped structure body
JP2020557770A JP6863537B2 (ja) 2018-11-29 2019-11-27 網状構造体
US17/297,217 US20220025561A1 (en) 2018-11-29 2019-11-27 Network structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018223515 2018-11-29
JP2018223516 2018-11-29
JP2018-223515 2018-11-29
JP2018-223516 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111110A1 true WO2020111110A1 (ja) 2020-06-04

Family

ID=70853816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046342 WO2020111110A1 (ja) 2018-11-29 2019-11-27 網状構造体

Country Status (9)

Country Link
US (1) US20220025561A1 (ja)
EP (1) EP3889332B8 (ja)
JP (1) JP6863537B2 (ja)
KR (1) KR102473434B1 (ja)
CN (1) CN113166995B (ja)
DK (1) DK3889332T3 (ja)
ES (1) ES2945838T3 (ja)
TW (1) TWI720710B (ja)
WO (1) WO2020111110A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314854A1 (en) * 2021-03-31 2022-10-06 Lear Corporation Seat support
CN113930900B (zh) * 2021-10-29 2023-01-20 延锋国际座椅***有限公司 一种热塑性纤维网结构以及汽车内饰件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642075A (en) 1987-06-25 1989-01-06 Fuji Xerox Co Ltd Production of solid discharge device
JPH07238457A (ja) * 1994-02-23 1995-09-12 Toyobo Co Ltd クッション用網状構造体、その製造法およびクッション製品
JP2013076200A (ja) 2011-09-16 2013-04-25 Toyobo Co Ltd 振動吸収性の高い弾性網状構造体
WO2016093334A1 (ja) * 2014-12-12 2016-06-16 東洋紡株式会社 耐熱耐久性に優れた網状構造体
JP2016141915A (ja) * 2015-02-04 2016-08-08 東洋紡株式会社 低反発性に優れた網状構造体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516910A (en) * 1978-07-17 1980-02-06 Teijin Ltd Elastic net like structure and method
JP3686691B2 (ja) * 1994-08-23 2005-08-24 日本発条株式会社 座席のパッド用繊維系クッション体
JP4413300B2 (ja) * 1999-01-21 2010-02-10 ダイワボウホールディングス株式会社 複合伸縮性シートおよびその製造方法
US7622179B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/α-olefins and uses thereof
TWI597232B (zh) * 2012-05-07 2017-09-01 東洋紡股份有限公司 消音性與硬度優異之彈性網狀構造體
JP5339107B1 (ja) * 2013-02-27 2013-11-13 東洋紡株式会社 圧縮耐久性に優れた網状構造体
JP5569641B1 (ja) * 2013-10-28 2014-08-13 東洋紡株式会社 静粛性と軽量性に優れた弾性網状構造体
TWI639549B (zh) * 2013-10-29 2018-11-01 東洋紡股份有限公司 壓縮耐久性優異之網狀構造物
KR102468540B1 (ko) * 2015-02-04 2022-11-18 도요보 가부시키가이샤 저반발성이 우수한 망상 구조체
WO2016175294A1 (ja) * 2015-04-28 2016-11-03 東洋紡株式会社 網状構造体
KR102288664B1 (ko) * 2016-07-13 2021-08-11 도요보 가부시키가이샤 망상 구조체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642075A (en) 1987-06-25 1989-01-06 Fuji Xerox Co Ltd Production of solid discharge device
JPH07238457A (ja) * 1994-02-23 1995-09-12 Toyobo Co Ltd クッション用網状構造体、その製造法およびクッション製品
JP2013076200A (ja) 2011-09-16 2013-04-25 Toyobo Co Ltd 振動吸収性の高い弾性網状構造体
WO2016093334A1 (ja) * 2014-12-12 2016-06-16 東洋紡株式会社 耐熱耐久性に優れた網状構造体
JP2016141915A (ja) * 2015-02-04 2016-08-08 東洋紡株式会社 低反発性に優れた網状構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889332A4

Also Published As

Publication number Publication date
US20220025561A1 (en) 2022-01-27
DK3889332T3 (da) 2023-07-31
JP6863537B2 (ja) 2021-04-21
EP3889332B8 (en) 2023-06-21
KR20210076130A (ko) 2021-06-23
EP3889332B1 (en) 2023-05-10
TW202026476A (zh) 2020-07-16
ES2945838T3 (es) 2023-07-07
CN113166995A (zh) 2021-07-23
CN113166995B (zh) 2022-06-28
TWI720710B (zh) 2021-03-01
EP3889332A1 (en) 2021-10-06
EP3889332A4 (en) 2022-02-16
JPWO2020111110A1 (ja) 2021-04-30
KR102473434B1 (ko) 2022-12-05

Similar Documents

Publication Publication Date Title
US11970802B2 (en) Fibrous network structure having excellent compression durability
US10316444B2 (en) Elastic network structure with excellent quietness and lightweight properties
KR101961514B1 (ko) 정숙성과 경도가 우수한 탄성 망상 구조체
JP5966471B2 (ja) 静粛性と硬さに優れた弾性網状構造体
WO2020111110A1 (ja) 網状構造体
JP3344512B2 (ja) 異繊度網状構造体及びその製法
JP5978674B2 (ja) 振動吸収性の高い弾性網状構造体
JP5966472B2 (ja) 振動吸収性の高い弾性網状構造体
JP2013091862A (ja) 網状構造体
JP3344511B2 (ja) 網状構造体及びその製造法
JP3314837B2 (ja) 異密度網状構造体及びその製造方法
JP3344514B2 (ja) 多成分網状構造体及びその製法
WO2014192790A1 (ja) 軽量性と硬さに優れた弾性網状構造体
JP3314839B2 (ja) 熱接着性網状構造体及びその製法
JP2002000408A (ja) 乗物用座席
JP3314827B2 (ja) 積層構造体
JP3430447B2 (ja) 積層弾性構造体と製法及びそれを用いた製品
JPH07238461A (ja) 積層構造体と製法及びそれを用いた製品
JPH07300761A (ja) 不織布積層網状体と製法及びそれを用いた製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557770

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217015298

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888815

Country of ref document: EP

Effective date: 20210629