WO2020110906A1 - Surface treated infrared absorbing fine particle dispersion liquid and method for producing same - Google Patents

Surface treated infrared absorbing fine particle dispersion liquid and method for producing same Download PDF

Info

Publication number
WO2020110906A1
WO2020110906A1 PCT/JP2019/045630 JP2019045630W WO2020110906A1 WO 2020110906 A1 WO2020110906 A1 WO 2020110906A1 JP 2019045630 W JP2019045630 W JP 2019045630W WO 2020110906 A1 WO2020110906 A1 WO 2020110906A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared absorbing
absorbing fine
fine particles
fine particle
particle dispersion
Prior art date
Application number
PCT/JP2019/045630
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 常松
長南 武
中山 博貴
健二 福田
佐藤 啓一
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2020557626A priority Critical patent/JP7371638B2/en
Publication of WO2020110906A1 publication Critical patent/WO2020110906A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a surface-treated infrared absorption fine particle dispersion liquid in which surface-treated infrared absorption fine particles are dispersed in a solvent containing water, and a method for producing the same.
  • a transparent glass substrate is selected from the substrate side as a first layer from the group consisting of IIIa group, IVa group, Vb group, VIb group and VIIb group of the periodic table.
  • a composite tungsten oxide film containing at least one metal ion is provided, a transparent dielectric film is provided as a second layer on the first layer, and a IIIa group of the periodic table is provided as a third layer on the second layer.
  • a composite tungsten oxide film containing at least one metal ion selected from the group consisting of IVa group, Vb group, VIb group and VIIb group is provided, and the refractive index of the transparent dielectric film of the second layer is
  • the refractive index of the composite tungsten oxide film of the first layer and the third layer is lower than that of the composite tungsten oxide film.
  • the infrared ray shielding glass can be suitably used in a region where high visible light transmittance and good infrared ray shielding performance are required. Is proposed.
  • Patent Document 2 in the same manner as in Patent Document 1, a first dielectric film is provided as a first layer on the transparent glass substrate from the substrate side, and a tungsten oxide film is provided as a second layer on the first layer.
  • an infrared shielding glass provided with a second dielectric film as a third layer on the second layer.
  • Patent Document 3 a composite tungsten oxide film containing a metal element similar to that in Patent Document 1 is provided as a first layer from the substrate side on a transparent glass substrate by the same method as in Patent Document 1, and the first layer is formed on the first layer.
  • a heat ray-shielding glass provided with a transparent dielectric film as a second layer.
  • Patent Document 4 tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide (containing additional elements such as hydrogen, lithium, sodium or potassium) ( Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ), and vanadium dioxide (VO 2 ) selected from at least one metal oxide film, which is coated at about 250° C. by a CVD method or a spray method.
  • a solar control glass sheet having a sunlight shielding property, which is formed by being thermally decomposed in.
  • Patent Document 5 proposes a solar light-modulating light heat insulating material in which tungsten oxide obtained by hydrolyzing tungstic acid is used, and an organic polymer having a specific structure called polyvinylpyrrolidone is added to the tungsten oxide. ..
  • the sunlight tunable photo-insulating material is irradiated with sunlight, the ultraviolet rays in the light rays are absorbed by the tungsten oxide to generate excited electrons and holes, and the amount of pentavalent tungsten is significantly increased due to a small amount of ultraviolet rays.
  • the coloring reaction is increased to accelerate the coloring reaction, and the coloring density is increased accordingly.
  • the pentavalent tungsten is rapidly oxidized to hexavalent and the decoloring reaction is enhanced.
  • the sunlight-modulated light capable of blocking the near-infrared rays of sunlight by exhibiting rapid coloring and decoloring reaction to sunlight and having an absorption peak at a wavelength of 1250 nm in the near-infrared region at the time of coloring. It has been proposed that an insulating material be obtained.
  • Patent Document 6 tungsten hexachloride is dissolved in alcohol and the medium is evaporated as it is, or after the medium is refluxed by heating, the medium is evaporated and then heated at 100° C. to 500° C. , Tungsten trioxide or a hydrate thereof, or a mixture of the two, to obtain a tungsten oxide fine particle powder. Then, it was disclosed that an electrochromic device can be obtained by using the tungsten oxide fine particles, that the optical characteristics of the film can be changed when a multilayer laminate is formed and protons are introduced into the film. ..
  • Patent Document 8 an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium, optical characteristics, conductivity, and a manufacturing method of the infrared shielding material fine particle dispersion.
  • the infrared shielding material fine particles are fine particles of tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2 ⁇ z/y ⁇ 2.999), and/or the general formula MxWyOz.
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be.
  • the particle diameter of the infrared shielding material fine particles is 1 nm or more and 800 nm or less.
  • the inventors of the present invention have used the infrared shielding material fine particle dispersion according to Patent Document 8 for vehicle-mounted or building materials, and shield the near-infrared region light while sufficiently incorporating visible light in sunlight. Then, we aimed to suppress the temperature rise in the room while maintaining the brightness.
  • an infrared absorbing material fine particle dispersion liquid in which infrared absorbing material fine particles are dispersed in a solvent is prepared, and a resin or the like is added to the infrared absorbing material fine particle dispersion liquid. May be dissolved into a coating solution, and the coating solution may be applied to a substrate or sprayed and then dried.
  • an optical member transparent base material, film, resin sheet, etc.
  • tungsten oxide fine particles and/or composite tungsten oxide fine particles may be air-conditioned depending on the use situation and method. It was found that the water vapor and water contained therein gradually penetrate into the coating layer and solid resin of the optical member. Then, when water vapor or water penetrates into the coating layer or the solid resin, the surface of the tungsten oxide fine particles and/or the composite tungsten oxide fine particles is decomposed, and the transmittance of light having a wavelength of 200 to 2600 nm changes with time. It has been found that there is a problem that the infrared absorption characteristics of the optical member gradually deteriorates.
  • the “coating layer” is a medium film that is solid at room temperature and has a predetermined film thickness formed on a base material by, for example, a method utilizing coating or spraying.
  • Patent Document 9 the inventors of the present invention have disclosed in Patent Document 9 that the tungsten oxide represented by the general formula WyOz and/or the general formula WyOz is used as the infrared shielding fine particles having excellent water resistance and excellent infrared shielding properties.
  • An infrared shielding fine particle coated with an organometallic compound and a method for producing the same have been disclosed.
  • the tungsten oxide fine particles and/or the composite tungsten oxide fine particles according to Patent Document 9 described above were excellent in moisture resistance.
  • infrared ray absorbing materials used for vehicles and building materials are used for a long period of time under various environments including high humidity and high temperature environments.
  • the infrared shielding fine particles disclosed in Patent Document 9 are required to have improved wet heat resistance.
  • the coating liquid described above does not contain an organic solvent having a high environmental load, and preferably has a main solvent of water. Has been. That is, an infrared absorbing fine particle dispersion liquid dispersed in a solvent containing water has been demanded.
  • the present invention has been made under the above-mentioned circumstances, and the problem is that surface-treated infrared absorbing fine particle dispersion liquid in which surface-treated infrared absorbing fine particles having excellent wet heat resistance are dispersed in a solvent containing water. , And a method for manufacturing the same.
  • the present inventors have used infrared absorbing fine particles having excellent optical characteristics, and the infrared absorbing fine particles are capable of improving chemical stability even in high humidity and high temperature environments. Researched. As a result, the compound having excellent affinity with the surface of the infrared absorbing fine particles, and uniformly adsorbed to the individual particle surface of the infrared absorbing fine particles to form a strong coating film, We have realized that it is important to coat the surface of the infrared absorbing fine particles.
  • the present inventors further researched, and conceived a metal chelate compound or a metal cyclic oligomer compound as a compound having excellent affinity for the above infrared absorbing fine particles and forming a coating film. Then, as a result of further research, the hydrolysis products of these compounds, which are produced when the metal chelate compound or the metal cyclic oligomer compound is hydrolyzed, or the polymerization products of the hydrolysis products are infrared absorbing fine particles. It was discovered that the compound is a compound that uniformly adsorbs to the surface of each particle and forms a strong coating film.
  • the surface of the infrared absorbing fine particles, the hydrolysis product of the metal chelate compound, the polymer of the hydrolysis product of the metal chelate compound, the hydrolysis product of the metal cyclic oligomer compound, the hydrolysis product of the metal cyclic oligomer compound Infrared absorbing fine particles (in some cases referred to as “surface-treated infrared absorbing fine particles” in the present invention) which are uniformly and firmly coated with a coating film containing one or more selected from polymers. It was done. It was also found that the surface-treated infrared absorbing fine particles maintained their infrared absorbing properties even when exposed to a high humidity and high temperature environment.
  • the present inventors further researched, and arrived at the present invention by conceiving a surface-treated infrared absorption fine particle dispersion liquid in which the surface-treated infrared absorption fine particles are dispersed in a solvent containing water.
  • a surface-treated infrared absorption fine particle dispersion in which surface-treated infrared absorption fine particles are dispersed in a solvent containing water In the surface-treated infrared absorbing fine particles, the surface of the infrared absorbing fine particles has a metal chelate compound hydrolysis product, a metal chelate compound hydrolysis product polymer, a metal cyclic oligomer compound hydrolysis product, and a metal cyclic oligomer compound.
  • the surface-treated infrared absorption fine particle dispersion liquid has a dispersed particle diameter of 20 nm or more and 400 nm or less.
  • the method for producing a surface-treated infrared-absorbing fine particle dispersion liquid comprising:
  • FIG. 3 is a schematic plan view of a crystal structure in a composite tungsten oxide having a hexagonal crystal structure.
  • the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is obtained by dispersing surface-treated infrared absorbing fine particles in a solvent containing water.
  • the surface-treated infrared absorbing fine particles according to the present invention the surface of the infrared absorbing fine particles is a hydrolysis product of the metal chelate compound, a polymer of the hydrolysis product of the metal chelate compound, a hydrolysis product of the metal cyclic oligomer compound.
  • a surface-treated infrared absorbing fine particle uniformly and firmly coated with a coating film containing at least one selected from the group consisting of polymers of hydrolysis products of metal cyclic oligomer compounds.
  • the dispersed particle diameter in the dispersion is 20 nm or more and 400 nm or less.
  • the infrared absorption fine particles are preferably tungsten oxide fine particles and/or composite tungsten oxide fine particles.
  • the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention [1] infrared absorbing fine particles, [2] infrared absorbing fine particle surface treating agent, [3] infrared absorbing fine particle surface treating method, [4] dispersion solvent, [5] The surface-treated infrared absorbing fine particle dispersion according to the present invention will be described in detail in this order.
  • the coating film formed by using at least one selected from the hydrolysis product of 1. and the polymerization product of the hydrolysis product of the metal cyclic oligomer compound may be simply referred to as the “coating film”.
  • Infrared absorbing fine particles used in the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention have the general formula WyOz (where W is tungsten, O is oxygen, and 2.2 ⁇ z/y ⁇ 2.999).
  • MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb,
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb,
  • W is tungsten
  • O oxygen
  • the infrared absorbing fine particles will be described below by taking the tungsten oxide fine particles and the composite tungsten oxide fine particles as examples. It is generally known that a material containing free electrons exhibits a reflection absorption response to an electromagnetic wave around a region of a sun ray having a wavelength of 200 nm to 2600 nm due to plasma vibration. It is known that when powder of such a substance is made into particles smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced and transparency in the visible light region is obtained. In the present invention, the term “transparency" is used to mean "the light in the visible light region has little scattering and high transparency".
  • the present inventors have found that, in a specific portion of the composition range of tungsten and oxygen, there is a particularly effective range as infrared absorbing fine particles, and tungsten oxide that is transparent in the visible light region and has absorption in the infrared region.
  • Invented fine particles of fine particles and fine particles of composite tungsten oxide are particularly effective range as infrared absorbing fine particles, and tungsten oxide that is transparent in the visible light region and has absorption in the infrared region.
  • Invented fine particles of fine particles and fine particles of composite tungsten oxide are particularly effective range as infrared absorbing fine particles, and tungsten oxide that is transparent in the visible light region and has absorption in the infrared region.
  • Invented fine particles of fine particles and fine particles of composite tungsten oxide are particularly effective range as infrared absorbing fine particles, and tungsten oxide that is transparent in the visible light region and has absorption in the infrared region.
  • Tungsten Oxide Fine Particles are fine particles of tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, and 2.2 ⁇ z/y ⁇ 2.999). ..
  • the composition range of the tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3, and further, when the infrared absorbing fine particles are described as WyOz, 2. It is preferable that 2 ⁇ z/y ⁇ 2.999.
  • the value of z/y is 2.2 or more, it is possible to avoid the appearance of a crystal phase of WO 2 other than the purpose in the tungsten oxide, and the chemical stability as a material. Since it can be obtained, it becomes an effective infrared absorbing fine particle.
  • the value of z/y is 2.999 or less, the required amount of free electrons are generated, and the infrared absorbing fine particles are efficient.
  • MxWyOz (where M is the M element, W is tungsten, and O is oxygen). , 0.001 ⁇ x/y ⁇ 1, and 2.0 ⁇ z/y ⁇ 3 are desirable.
  • the element M in the composite tungsten oxide is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, At least one selected from Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb is preferable.
  • the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, More preferably, it is at least one element selected from Nb, V, Mo, Ta, and Re.
  • the element M further belongs to an alkali metal, an alkaline earth metal element, a transition metal element, a 4B group element, and a 5B group element. preferable.
  • the value of x/y indicating the added amount of the element M
  • a sufficient amount of free electrons are generated in the composite tungsten oxide to obtain the desired infrared absorption characteristics.
  • the composite tungsten oxide fine particles have a hexagonal crystal structure
  • the transmission of the fine particles in the visible light region is improved, and the absorption in the infrared region is improved.
  • FIG. 1 is a schematic plan view of the crystal structure of this hexagonal crystal.
  • six octahedrons formed by the WO 6 unit shown by reference numeral 11 are aggregated to form a hexagonal void
  • the element M shown by the reference numeral 12 is arranged in the void to form one hexagonal void.
  • a unit is formed, and a large number of this one unit are assembled to form a hexagonal crystal structure.
  • the composite tungsten oxide fine particles contain the unit structure described with reference to FIG.
  • the composite tungsten oxide fine particles may be crystalline or amorphous.
  • the addition amount of the element M is preferably 0.2 or more and 0.5 or less, more preferably 0. 33.
  • the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
  • the cations of the element M are present in the hexagonal voids, the light transmission in the visible light region is improved, and the light absorption in the infrared region is improved.
  • the element M having a large ionic radius is added, the hexagonal crystal is likely to be formed.
  • one or more elements selected from Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe and Sn, more preferably Cs, K, Rb, Tl and In. , Ba are likely to form hexagonal crystals when one or more elements selected from Ba are added.
  • Typical examples are Cs 0.33 WO z , Cs 0.03 Rb 0.30 WO z , Rb 0.33 WO z , K 0.33 WO z , Ba 0.33 WO z (2.0 ⁇ z ⁇ 3.0) can be preferably mentioned.
  • other elements may be used as long as the above-mentioned element M exists in the hexagonal void formed by the WO 6 unit, and the elements are not limited to the above-mentioned elements.
  • the addition amount of the element M is preferably 0.2 or more and 0.5 or less, more preferably 0. 33.
  • the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
  • tetragonal and cubic composite tungsten oxides are also effective as infrared absorbing fine particles.
  • the absorption position in the infrared region tends to change, and the absorption position tends to move to the longer wavelength side in the order of cubic crystal ⁇ tetragonal crystal ⁇ hexagonal crystal.
  • incidental small absorption in the visible light region is in the order of hexagonal crystal, tetragonal crystal, and cubic crystal. Therefore, it is preferable to use the hexagonal composite tungsten oxide for the purpose of transmitting light in the visible light region and absorbing light in the infrared light region.
  • the tendency of the optical characteristics described here is only a rough tendency and changes depending on the type of the added element, the added amount, and the oxygen amount, and the present invention is not limited to this.
  • the infrared absorption fine particles preferably contain the above-mentioned tungsten oxide fine particles and/or composite tungsten oxide fine particles.
  • the infrared-absorbing fine particles according to the present invention largely absorb light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm, the transmission color tone thereof is often from blue to green.
  • the crystallite diameter of the infrared absorption fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and further preferably 10 nm or more and 70 nm or less.
  • measurement of an X-ray diffraction pattern by a powder X-ray diffraction method ( ⁇ -2 ⁇ method) and analysis by the Rietveld method are used.
  • the X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer "X'Pert-PRO/MPD" manufactured by Spectris PANalytical.
  • the dispersed particle size of the infrared absorbing fine particles can be selected depending on the purpose of use.
  • the dispersed particle size is a concept including the particle size of the aggregate unlike the crystallite size of the infrared absorbing fine particles.
  • the infrared-absorbing fine particles have a dispersed particle diameter of 800 nm or less. This is because particles having a dispersed particle size of less than 800 nm do not completely block light due to scattering, and can maintain visibility in the visible light region and at the same time efficiently retain transparency. .. Particularly when importance is attached to the transparency in the visible light region, it is preferable to further consider scattering by particles.
  • the dispersed particle size is 200 nm or less, preferably 100 nm or less.
  • the reason for this is that if the dispersed particle size of the particles is small, the scattering of light in the visible light region of wavelength 400 nm to 780 nm due to geometrical scattering or Mie scattering is reduced, and as a result, the infrared absorbing film becomes frosted glass. It is possible to avoid the loss of clear transparency. That is, when the dispersed particle diameter is 200 nm or less, the above-mentioned geometrical scattering or Mie scattering is reduced, and it becomes a Rayleigh scattering region.
  • the scattered light is proportional to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased. Further, when the dispersed particle diameter is 100 nm or less, scattered light becomes very small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle diameter is small, and if the dispersed particle diameter is 1 nm or more, industrial production is easy.
  • the haze value of the infrared absorbing fine particle dispersion in which the infrared absorbing fine particles are dispersed in the medium can be set to a visible light transmittance of 85% or less and a haze of 30% or less.
  • the dispersed particle size of the infrared-absorbing fine particles can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the principle of the dynamic light scattering method.
  • the dispersed particle diameter of the infrared absorbing fine particles is different from the dispersed particle diameter of the surface-treated infrared absorbing fine particles according to the present invention. Specifically, the dispersed particle diameter of the infrared absorbing fine particles is measured before the surface treatment (surface coating), and the dispersed particle diameter of the surface treated infrared absorbing fine particles is measured after the surface treatment. ..
  • the so-called “Magnelli phase” having a composition ratio represented by 2.45 ⁇ z/y ⁇ 2.999 is chemically stable, and is in the infrared region. Since it has good absorption characteristics, it is preferable as an infrared absorbing fine particle.
  • the surface treatment agent used for coating the surface of the infrared absorption fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, or a hydrolysis product of a metal cyclic oligomer compound.
  • a metal chelate compound a polymer of a hydrolysis product of a metal chelate compound, or a hydrolysis product of a metal cyclic oligomer compound.
  • One or more selected from decomposition products and polymers of hydrolysis products of metal cyclic oligomer compounds are metal alkoxides, metal acetylacetonates, and metal carboxylates, one or more selected from ether bonds, ester bonds, alkoxy groups, and acetyl groups.
  • the surface treatment agent (1) a metal chelate compound, (2) a metal cyclic oligomer compound, (3) a hydrolysis product of a metal chelate compound or a metal cyclic oligomer compound, and a polymer thereof, (4) The amount of surface treatment agent added will be described in this order.
  • the metal chelate compound used in the present invention is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based and Ti-based chelate compounds containing an alkoxy group.
  • Examples of the aluminum-based chelate compound include aluminum ethylate, aluminum isopropylate, aluminum sec-butyrate, mono-sec-butoxyaluminum diisopropylate, and other aluminum alcoholates or their polymers, ethyl acetoacetate aluminum diisopropylate, aluminum tris.
  • ethyl acetoacetate aluminum isopropylate
  • aluminum sec-butyrate aluminum sec-butyrate
  • mono-sec-butoxyaluminum diisopropylate aluminum alcoholates or their polymers
  • ethyl acetoacetate aluminum diisopropylate aluminum tris.
  • octyl acetoacetate aluminum diisoproplate stearyl acetoaluminum diisopropylate
  • aluminum tris(acetylacetonate) etc.
  • These compounds are prepared by dissolving aluminum alcoholate in an aprotic solvent, a petroleum solvent, a hydrocarbon solvent, an ester solvent, a ketone solvent, an ether solvent, an amide solvent, etc.
  • An alkoxy group-containing aluminum chelate compound obtained by adding a diketone, a ⁇ -keto ester, a monohydric or polyhydric alcohol, a fatty acid and the like, heating and refluxing, and performing a ligand substitution reaction.
  • zirconium-based chelate compounds include zirconium ethylate, zirconium butyrate and other zirconium alcoholates or polymers thereof, zirconium tributoxystearate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis(acetyl). Acetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetylacetonate bis(ethyl acetoacetate), and the like.
  • Titanium-based chelate compounds include titanium alcoholates such as methyl titanate, ethyl titanate, isopropyl titanate, butyl titanate, 2-ethylhexyl titanate and their polymers, titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate. , Titanium ethyl acetoacetate, titanium lactate, titanium triethanolaminate, and the like.
  • a tetrafunctional silane compound represented by the general formula: Si(OR) 4 (wherein R is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) or its partial hydrolysis is used.
  • Degradation products can be used.
  • Specific examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • silane monomers or oligomers
  • silanol (Si-OH) groups silanol
  • a partial hydrolysis product of a tetrafunctional silane compound (there is no appropriate terminology indicating the entire intermediate of the tetrafunctional silane compound), part or all of the alkoxy group is hydrolyzed,
  • examples thereof include silanol (Si—OH) group-based silane monomers, 4- to 5-mer oligomers, and polymers (silicone resins) having a weight average molecular weight (Mw) of about 800 to 8000.
  • Mw weight average molecular weight
  • Examples of the zinc-based chelate compounds include zinc octylate, zinc laurate, zinc stearates and other organic carboxylic acid zinc salts, acetylacetone zinc chelates, benzoylacetone zinc chelates, dibenzoylmethane zinc chelates, ethyl acetoacetate zinc chelates, and the like. It can be illustrated.
  • Metal cyclic oligomer compound is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based cyclic oligomer compounds.
  • cyclic aluminum oligomer compounds such as cyclic aluminum oxide octylate can be preferably exemplified.
  • the coating film may contain undecomposed metal chelate compound and/or metal cyclic oligomer compound.
  • the coating film that coats the surface of the infrared absorbing fine particles has a hydroxyl group or a carboxyl group by partially or completely hydrolyzing an alkoxy group, an ether bond, or an ester bond in the above-described metal chelate compound or metal cyclic oligomer compound. It is preferable that the resulting hydrolysis product is a polymer that is self-condensed through the hydrolysis reaction.
  • the addition amount of the above-mentioned metal chelate compound or metal cyclic oligomer compound is 0.05 parts by weight or more and 1000 parts by weight or less in terms of metal element with respect to 100 parts by weight of infrared absorbing fine particles. Preferably. It is more preferably 5 parts by weight or more and 500 parts by weight or less, and most preferably 50 parts by weight or more and 250 parts by weight or less.
  • the addition amount of the metal chelate compound or the metal cyclic oligomer compound is preferably 1000 parts by weight or less.
  • [3] Surface Treatment Method of Infrared Absorption Fine Particles There are a plurality of treatment methods in the surface treatment method of infrared absorption fine particles (surface coating method), but (A) a surface treatment agent is added to an aqueous dispersion for forming a coating film. There will be described two treatment methods, that is, the treatment method (B) and the treatment method (B) of adding the surface treatment agent and water to the water-soluble organic solvent dispersion liquid.
  • the infrared absorbing fine particles are mixed with a solvent.
  • An infrared absorbing fine particle water dispersion for forming a coating film dispersed in water (sometimes referred to as "water dispersion for forming coating film” in the present invention) is prepared.
  • the surface treating agent is added to the prepared aqueous dispersion for forming a coating film, followed by mixing and stirring.
  • the surface of the infrared absorbing fine particles shows that the hydrolysis product of the metal chelate compound, the polymerization product of the hydrolysis product of the metal chelate compound, the hydrolysis product of the metal cyclic oligomer compound, and the hydrolysis product of the metal cyclic oligomer compound. It is coated with a coating film containing at least one selected from polymers.
  • a treatment method of adding a surface treatment agent to an aqueous dispersion for forming a coating film (1) preparation of an aqueous dispersion for forming a coating film, (2) infrared rays using the aqueous dispersion for forming a coating film
  • the surface treatment method of the absorbing fine particles and (3) treatment after mixing and stirring in the coating film forming aqueous dispersion will be described in this order.
  • Aqueous Dispersion for Forming Coating Film In order to coat the surface of the infrared-absorbing fine particles to produce surface-treated infrared-absorbing fine particles, first, the infrared-absorbing fine particles are dispersed in water to prepare an appropriate concentration range, In addition, an aqueous dispersion for forming a coating film having a pH in an appropriate range is prepared. Then, the surface treatment agent (see the section "[2] Surface treatment agent for infrared absorbing fine particles”) is added to the aqueous dispersion for coating film formation having the concentration and pH while mixing and stirring.
  • the surface of the fine particles is a hydrolysis product of the metal chelate compound, a polymer of the hydrolysis product of the metal chelate compound, or a metal. It is coated with a coating film containing one or more selected from a hydrolysis product of a cyclic oligomer compound and a polymerization product of a hydrolysis product of a metal cyclic oligomer compound.
  • infrared absorbing fine particles for example, tungsten oxide or/and composite tungsten oxide are previously finely pulverized and dispersed in water to obtain a monodispersed state. It is preferable to keep it.
  • the concentration range of the tungsten oxide and/or the composite tungsten oxide to be dispersed is preferably 0.01% by mass or more and 80% by mass or less. Within this concentration range, the liquid stability of the dispersion is excellent. Moreover, when an appropriate liquid medium, dispersant, coupling agent, or surfactant is selected, gelation of the dispersion liquid or sedimentation of particles will occur for 6 months or longer even when placed in a constant temperature bath at a temperature of 40°C. Instead, the dispersed particle size can be maintained in the range of 1 to 800 nm.
  • the concentration range is more preferably 3% by mass or more and 80% by mass or less. This is because the pH of the aqueous dispersion for forming a coating film can be set to 8 or less, and when the surface treatment agent is added later, the dispersibility of the infrared absorbing fine particles is maintained by the electrostatic repulsion action of the fine particles. Because it will be. However, even if the concentration range is 0.01% by mass or more and less than 3% by mass, the solvent replacement treatment or the solvent replacement treatment described in the section of "[5] Surface-treated infrared absorbing fine particle dispersion liquid (ii) other production method" is performed.
  • the drying treatment By performing the drying treatment, it is possible to obtain a surface-treated infrared absorbing fine particle dispersion liquid having good dispersibility. Then, it is important that the dispersed state is ensured and the fine particles are not aggregated during the pulverization and dispersion treatment process.
  • the pulverization/dispersion treatment include a pulverization/dispersion treatment method using a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like.
  • beads, balls, using Ottawa sand media media, crushing with a media stirring mill such as a beads mill, ball mill, sand mill, paint shaker, etc. is required to reach the desired dispersed particle diameter It is preferable because the time is short.
  • the pH range of the coating film forming aqueous dispersion is preferably 8 or less. This is because the dispersibility of the infrared absorbing fine particles is maintained by the electrostatic repulsion action of the surface-treated infrared absorbing fine particles.
  • the pH of the coating film forming aqueous dispersion is slightly shifted to the alkaline side.
  • the pH of the coating film-forming aqueous dispersion exceeds 8
  • the surface-treated infrared-absorbing fine particles agglomerate and the dispersion stability is not ensured.
  • the tungsten oxide and/or the composite tungsten oxide is slightly dissolved in water, the pH in the aqueous dispersion for forming a coating film before the addition of the surface treatment agent is oscillated toward the acid side.
  • the concentration range of the tungsten oxide and/or the composite tungsten oxide before the addition of the surface treatment agent is 80% by mass or less, the aggregation due to the interparticle interaction does not occur, and the infrared absorbing fine particles are dispersed by the electrostatic repulsion action. Sex is maintained.
  • the concentration range of the tungsten oxide and/or the composite tungsten oxide before the surface treatment agent is added is 3% by mass or more and 80% by mass or less.
  • the hydrolysis reaction of the surface treatment agent always precedes, and thereafter the polymerization reaction of the generated hydrolysis product occurs.
  • By reducing the amount of carbon C remaining in the molecules of the surface treatment agent present in the coating film it is considered possible to form a coating film that densely covers the surface of each infrared absorbing fine particle. ..
  • the coating film forming aqueous dispersion is water, or an appropriate amount containing water. It is also desirable to dilute to an appropriate concentration with an organic solvent.
  • the dispersion concentration of the tungsten oxide or/and the composite tungsten oxide as the infrared absorbing fine particles is diluted to 3% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less, This is because everything is uniformly surface-coated, the pH of the dispersion liquid can be set to 8 or less, and the dispersibility of the infrared absorbing fine particles is maintained by the electrostatic repulsion action of the fine particles.
  • the surface treatment agent When the surface treatment agent is added dropwise, in order to uniformly coat the infrared absorbing fine particles, the surface treatment agent itself diluted with an appropriate solvent is added dropwise to adjust the amount of the surface treatment agent added per hour. It is also preferable to
  • the solvent used for dilution is preferably one that does not react with the surface treatment agent and has high compatibility with water that is the medium of the coating film forming aqueous dispersion. Specifically, solvents such as alcohols, ketones and glycols can be preferably used.
  • the dilution ratio of the surface treatment agent is not particularly limited. However, from the viewpoint of ensuring productivity, the dilution ratio is preferably 100 times or less.
  • a metal chelate compound, a metal cyclic oligomer compound, a hydrolysis product of these, and a polymer of the hydrolysis product are decomposed into metal ions immediately after addition.
  • the decomposition up to the metal ion is completed. That is, after the decomposition up to the metal ions is completed, the added surface treatment agent becomes a hydrolysis product or a polymer thereof and becomes a coating film for coating the surface of the infrared absorbing fine particles.
  • the infrared absorbing fine particles maintain dispersion due to electrostatic repulsion.
  • the surface of all the infrared absorbing fine particles was hydrolyzed with a metal chelate compound, a polymer of the hydrolyzed product of the metal chelate compound, a hydrolysis product of the metal cyclic oligomer compound, and a hydrolysis product of the metal cyclic oligomer compound.
  • the surface-treated infrared absorbing fine particles according to the present invention are produced by being coated with a coating film containing at least one selected from the polymer of the products.
  • the surface-treated infrared-absorbing fine particles according to the present invention obtained by the surface-treating method described above are used as a raw material for an infrared-absorbing fine-particle dispersion or an infrared-absorbing substrate. It can be used in the form of fine particles, or dispersed in a liquid medium or a solid medium.
  • the generated surface-treated infrared absorbing fine particles do not need to be further heat-treated to increase the density and chemical stability of the coating film. This is because the density and adhesiveness of the coating film are sufficiently increased so that the desired moist heat resistance can be obtained without the heat treatment.
  • (B) Treatment Method of Adding Surface Treatment Agent and Water to Water-Soluble Organic Solvent Dispersion In the treatment method of adding the surface treatment agent and water to the water-soluble organic solvent dispersion fluid, Infrared absorbing fine particles are dispersed in the organic solvent to prepare a dispersion liquid. Then, the surface treatment agent and water are added in parallel to the prepared dispersion liquid and mixed and stirred. As a result, the surface of the infrared absorbing fine particles has a metal chelate compound hydrolysis product, a metal chelate compound hydrolysis product polymer, a metal cyclic oligomer compound hydrolysis product, and a metal cyclic oligomer compound hydrolysis product. And a coating film containing at least one polymer selected from the above.
  • the surface treatment agent and water are added in parallel.
  • water is excessively added first aggregation or deterioration of infrared absorption characteristics may occur depending on the infrared absorption fine particles. For example, when the infrared absorbing fine particles are cubic sodium tungsten bronze, they react with water to cause a decrease in infrared absorbing characteristics.
  • the surface-treated infrared absorbing fine particles according to the present invention do not cause agglomeration because it does not require a heat treatment after the treatment after mixing and stirring, and therefore a dispersion treatment for crushing the agglomeration. Unnecessary or in a short time.
  • the coating film of the surface-treated infrared absorbing fine particles according to the present invention uniformly and firmly coats the individual infrared absorbing fine particles without damaging them.
  • the infrared absorbing fine particle dispersion and the infrared absorbing base material produced by using the surface-treated infrared absorbing fine particles show better wet heat resistance than those obtained by the conventional method.
  • the dispersion solvent of the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is a solvent containing water, and is a solvent consisting essentially of water. That is, when the dispersion solvent contains a trace amount of an organic solvent resulting from the production process of the surface-treated infrared absorbing fine particle dispersion according to the present invention, and optionally contains one or more water-soluble organic substances. There is.
  • the organic solvent or water-soluble organic substance is alcohols, glycols, water-soluble resins, or the like, but it is preferable that they have low toxicity to the human body.
  • the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is obtained by dispersing the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention in water as a dispersion solvent.
  • the surface-treated infrared absorbing fine particle dispersion according to the present invention will be described in the order of (1) surface-treated infrared absorbing fine particle dispersion, and (2) method for producing surface-treated infrared absorbing fine particle dispersion.
  • the pH value of the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is preferably 4 or more and 10 or less.
  • the concentration of the surface-treated infrared absorbing fine particles is preferably 0.01% by mass or more and 80% by mass or less. When the concentration is within this range, the surface-treated infrared absorbing fine particles can maintain dispersibility in water.
  • the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention may further contain a dispersant in order to improve the dispersibility of the surface-treated infrared absorbing fine particles and avoid coarsening of the dispersed particle diameter due to re-aggregation.
  • a dispersant in order to improve the dispersibility of the surface-treated infrared absorbing fine particles and avoid coarsening of the dispersed particle diameter due to re-aggregation.
  • an additive can be used also when adjusting pH.
  • a water-soluble dispersant is preferable. Further, those having an acidic functional group and having an acid value of 10 mg/KOH or more are preferable.
  • An ammonium salt or acrylic polymer dispersant can be preferably used.
  • SOLSPERSE registered trademark
  • BYK Japan Japan's DISPERBYK (registered trademark) (the same applies hereinafter)-102, 180, 184, 185, 187, 190, 191, 192, 193, 194N, 2010, 2012, 2015, 2060, 2096, Anti- Terra® (registered trademark)-250 and the like; BASF Japan Ltd. JONCRYL (registered trademark) (hereinafter the same) 67, 678, 586, 611, 682, 683, 690 and the like;
  • two or more kinds of dispersants can be used in combination.
  • one kind uses a dispersant having an acidic functional group
  • the other kind uses a nonionic dispersant having no acidic and basic functional groups.
  • It may exhibit excellent dispersion stability.
  • a dispersant having all acidic functional groups is used as the dispersant, excellent dispersion stability may be exhibited in some cases.
  • the surface-treated infrared absorbing fine particle dispersion according to the present invention is obtained by dispersing the surface-treated infrared absorbing fine particle according to the present invention in water as a dispersion solvent.
  • the surface-treated infrared-absorbing fine particle dispersion obtained immediately after the surface treatment to the infrared-absorbing fine particles contains an organic solvent such as alcohol produced by the hydrolysis reaction of the surface-treating agent, or the surface treatment to be used. Depending on the type of agent, it may contain an organic solvent having a boiling point higher than that of water.
  • the content of the organic solvent can be reduced by an appropriate method such as solvent substitution treatment, washing treatment, or drying treatment.
  • the surface-treated infrared absorbing fine particle dispersion liquid is directly produced after the surface treatment of the surface-treated infrared absorbing fine particle according to the present invention (i) A production method of directly forming the dispersion liquid And (ii) other manufacturing method having a step of removing the organic solvent after the surface treatment of the surface-treated infrared absorbing fine particles according to the present invention.
  • the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is "[3] Surface treatment method of infrared absorbing fine particles
  • A Surface treatment to aqueous dispersion liquid for forming coating film.
  • Dispersion liquid containing surface-treated infrared absorbing fine particles and water when the method described in the section "(2) Surface treatment method of infrared absorbing fine particles using aqueous dispersion for forming coating film" is adopted. Since it can be obtained, it can be directly used as the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention.
  • the organic component derived from the surface treatment agent is as small as possible. Therefore, it is preferable to use a low molecular weight surface treatment agent and use the surface treatment agent without diluting it with an organic solvent.
  • a dispersant or an additive may be added to the surface-treated infrared absorbing fine particle dispersion liquid, if necessary, to improve and stabilize the dispersibility of the surface-treated infrared absorbing fine particles.
  • the method for dispersing the surface-treated infrared-absorbing fine particles include the same methods as the above-described pulverizing/dispersing method.
  • a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like may be used.
  • the method used may be mentioned.
  • the time required for the dispersion treatment is extremely short.
  • the surface-treated infrared absorbing fine particle dispersion according to the present invention contains an organic solvent in the dispersion immediately after the surface treatment of the infrared absorbing fine particles according to the present invention by the manufacturing method.
  • the method described in the section “[3] Surface treatment method of infrared absorbing fine particles (B) Treatment method of adding surface treatment agent and water to water-soluble organic solvent dispersion” is adopted, surface treatment is carried out.
  • aluminum ethyl acetoacetate diisopropylate is used as the agent, the following are mentioned.
  • the hydrolysis reaction leaves ethyl acetoacetate having a boiling point of 181° C., which is contained in the dispersion liquid immediately after the surface treatment. Since these solvents have a boiling point higher than that of water, it is extremely difficult to evaporate and remove only the solvent while leaving water by the heat treatment.
  • the method for producing the surface-treated infrared absorption fine particle dispersion according to the present invention by removing the organic solvent from the dispersion immediately after the surface treatment of the infrared absorption fine particles ⁇ 1>
  • Surface treatment infrared absorption by solvent substitution treatment A method for producing a fine particle dispersion, ⁇ 2> a method for producing a surface-treated infrared absorbing fine particle dispersion by a washing treatment, and ⁇ 3> a method for producing a surface treated infrared absorbing fine particle dispersion by a drying treatment will be described in this order.
  • ⁇ 1> Method for Producing Surface-treated Infrared Absorbing Fine Particle Dispersion by Solvent Substitution Treatment first, the surface-treated infrared absorbing fine particle dispersion immediately after the surface treatment is dispersed. The liquid is solid-liquid separated. In order to perform the solid-liquid separation, the dispersion concentration of the infrared absorbing fine particles in the coating film forming aqueous dispersion before the surface treatment is set to less than 3% by mass, or the surface treated infrared absorbing fine particles are dispersed immediately after the surface treatment.
  • a pH adjustor may be added to the liquid to adjust the pH value to 9 or more.
  • the organic solvent can be reduced.
  • the content of the organic solvent can be infinitely reduced as the number of decantations and the addition of pure water is increased, but the content can be reduced to a practical content by repeating three times or more.
  • the atmosphere for the drying treatment is preferably a reduced pressure atmosphere from the viewpoint of being able to remove all the solvent at a lower temperature.
  • the atmosphere for the drying treatment is preferably a reduced pressure inert gas atmosphere or a vacuum atmosphere.
  • the surface-treated infrared-absorbing fine particles are dried so as not to exceed the temperature at which strong aggregates are formed, and the obtained surface-treated infrared-absorbing fine particle powder is dried and/or wet-processed.
  • the crushing/redispersion treatment include the same methods as the crushing/dispersion treatment method described above.For example, a method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, or an ultrasonic homogenizer may be used. Can be mentioned.
  • the surface-treated infrared absorbing fine particle dispersion according to the present invention produced as described above is applied to the surface of an appropriate substrate and cured to form an infrared absorbing group. It can be used as a material. Further, since the infrared absorbing fine particles have a function of absorbing infrared rays and converting them into heat, the formed cured film can be used as a photothermal conversion layer. At this time, since the surface-treated infrared ray absorbing fine particle dispersion liquid according to the present invention contains almost no organic solvent component, the coating process can be performed without impairing the health of the worker in the process.
  • the surface-treated infrared absorbing fine particle dispersion liquid contains a dispersant
  • it is dried and pulverized to obtain a powdery surface-treated infrared absorbing fine particle dispersion (in the present invention, "surface-treated infrared absorbing fine particles”). It may be described as “dispersed powder”.), and it can also be used as a raw material to be added to an infrared absorbing product or a photothermal conversion product.
  • the surface-treated infrared absorption fine particles according to the present invention is a powdery dispersion dispersed in a solid medium, the surface-treated infrared absorption fine particles dispersion powder, again, the liquid It may be dispersed in a medium and used as a dispersion for infrared absorbing products, or may be kneaded into a resin and used as described later.
  • the surface-treated infrared ray absorbing fine particle dispersion liquid according to the present invention contains almost no organic solvent component, the drying treatment can be performed without impairing the health of the worker in the process.
  • the surface-treated infrared absorbing fine particle dispersion powder obtained by the drying treatment contains almost no organic component as a residual solvent, crushing treatment, dispersing treatment, and resin kneading treatment are performed without impairing the health of workers in the process. You can
  • the surface-treated infrared absorbing fine particles in the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention produced as described above are dispersed according to the usage method. desirable. In terms of the dispersed particle size of the surface-treated infrared absorbing fine particles, it is desirable that the particle size is 20 nm or more and 400 nm or less.
  • the dispersed particle size of the fine particles in the dispersions in Examples and Comparative Examples is shown as an average value measured by a particle size measuring device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method.
  • the crystallite diameter is measured by a powder X-ray diffraction method ( ⁇ -2 ⁇ method) using a powder X-ray diffractometer (X'Pert-PRO/MPD manufactured by Spectris Co., Ltd. PANalytical), and the Rietveld method is used. Calculated.
  • the optical characteristics of the surface-treated infrared-absorbing fine particle dispersion were measured by diluting with pure water so that the visible light transmittance was 80% in a measuring glass cell of a spectrophotometer, and then using a spectrophotometer (U manufactured by Hitachi, Ltd. -4100) in the wavelength range of 200 nm to 2600 nm at 5 nm intervals, and the visible light transmittance and the solar radiation transmittance were calculated according to JIS R3106.
  • the surface-treated infrared absorption fine particle dispersion is exposed to an air atmosphere at 85° C. for 24 hours. Then, for example, when hexagonal cesium tungsten bronze fine particles are used as the infrared absorbing fine particles, it is determined that the amount of change in solar radiation transmittance before and after the exposure is 4.0% or less is considered to have good wet heat resistance, and the amount of change is Moisture and heat resistance was judged to be insufficient if it exceeded 4.0%.
  • Cs/W (molar ratio) 0.33 hexagonal cesium tungsten bronze (Cs 0.33 WO z , 2.2 ⁇ z ⁇ 3.0) powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) 25% by mass Cs 0.33 WO z according to Example 1 was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and pulverized and dispersed for 10 hours. A fine particle dispersion was obtained. When the dispersed particle size of the Cs 0.33 WO z fine particles in the obtained dispersion was measured, it was 100 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using pure water, and the solvent refractive index was 1.33. Then, the crystallite diameter of the Cs 0.33 WO z fine particles obtained after removing the solvent from the obtained dispersion was 32 nm.
  • the obtained dispersion liquid of Cs 0.33 WO z fine particles was mixed with pure water to obtain an aqueous dispersion liquid A for forming a coating film according to Example 1 in which the concentration of Cs 0.33 WO z fine particles was 2% by mass. Obtained.
  • 2.5% by mass of aluminum ethyl acetoacetate diisopropylate as an aluminum-based chelate compound and 97.5% by mass of isopropyl alcohol (IPA) were mixed to obtain a surface treatment agent dilution liquid a.
  • aqueous dispersion A for coating film formation 890 g of the obtained aqueous dispersion A for coating film formation was placed in a beaker, and 360 g of the surface treatment agent dilution liquid a was added dropwise thereto over 3 hours while stirring strongly with a stirrer with a blade. After the dropwise addition of the surface treatment agent dilution liquid a, stirring was further performed at a temperature of 20° C. for 24 hours to prepare an aging liquid according to Example 1. Then, a powder containing the surface-treated infrared-absorbing fine particles according to Example 1 (surface-treated infrared-absorbing fine-particle powder) is obtained by performing a drying treatment at a temperature of 120° C. for 24 hours using vacuum fluidized drying to evaporate the medium from the aging liquid. ) Got.
  • Example 1 10% by mass of the surface-treated infrared absorbing fine particle powder according to Example 1 and 90% by mass of pure water were mixed.
  • the obtained mixed liquid was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and crushed for 1 hour to obtain a surface-treated infrared absorbing fine particle dispersion liquid according to Example 1.
  • the dispersion particle diameter of the obtained surface-treated infrared absorbing fine particle dispersion liquid according to Example 1 was 180 nm.
  • the particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement.
  • the background was measured using pure water, and the solvent refractive index was 1.33.
  • the visible light transmittance was 79.6% and the solar radiation transmittance was 56.6%.
  • the surface-treated infrared absorbing fine particle dispersion liquid obtained in Example 1 was exposed to an air atmosphere of 85° C. for 24 hours, and its optical characteristics were measured.
  • the visible light transmittance was 80.2% and the solar radiation transmittance was 58. It was 0.5%. It was also found that the change in visible light transmittance before and after exposure to the atmosphere at 85° C. was 0.6%, and the change in solar radiation transmittance was 1.9%, which were both small.
  • Examples 2 and 3 By performing the same operation as in Example 1 except that the amount of the surface treatment agent diluting liquid a and the dropping addition time thereof were changed, the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 2 and 3 were obtained. The same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 4 The ripening solution according to Example 1 was allowed to stand for 1 hour to perform solid-liquid separation of the surface-treated infrared absorbing fine particles and the medium. Then, only the supernatant medium was removed by decantation using pure water to obtain an infrared absorbing fine particle slurry. Pure water was added to the obtained infrared absorbing fine particle slurry, and 0.5% by mass of cesium carbonate was further added as a pH adjusting agent, and the mixture was stirred for 1 hour and then allowed to stand for 1 hour, and then surface treated infrared absorption again. The fine particles and the medium were solid-liquid separated.
  • Example 4 The decantation and the addition of pure water were repeated twice more (three times of decantation and pure water addition were carried out) to obtain the surface-treated infrared absorbing fine particle dispersion liquid of Example 4. With respect to the surface-treated infrared absorbing fine particle dispersion liquid according to Example 4, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 5 The dispersion liquid of Cs 0.33 WO z fine particles according to Example 1 is mixed with pure water, and the concentration of the Cs 0.33 WO z fine particles is 6% by mass. I got -6. 890 g of the obtained aqueous dispersion A-6 for forming a coating film was placed in a beaker and stirred vigorously with a stirrer equipped with a blade, to which an aluminum chelate compound such as aluminum ethyl acetoacetate diisopropylpropionate was added as a surface treatment agent. A rate of 133.5 g was added dropwise over 1 hour. After the dropwise addition of the surface treatment agent, stirring was carried out at a temperature of 20° C.
  • Example 5 For the surface-treated infrared absorbing fine particle dispersion liquid according to Example 5, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 6 2.4% by mass of zirconium tributoxyacetylacetonate and 97.6% by mass of isopropyl alcohol were mixed to obtain a surface treating agent dilution liquid b according to Example 6.
  • a surface-treated infrared absorbing fine particle dispersion liquid according to Example 6 was produced by performing the same operation as in Example 1 except that the surface treatment agent dilution liquid b was used instead of the surface treatment agent dilution liquid a.
  • the same evaluation as in Example 1 was performed for the surface-treated infrared absorbing fine particle dispersion liquid according to Example 6, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 7 2.6% by mass of diisopropoxytitanium bisethylacetoacetate and 97.4% by mass of isopropyl alcohol were mixed to obtain a surface treating agent dilution liquid c according to Example 7.
  • a surface-treated infrared absorbing fine particle dispersion liquid according to Example 7 was prepared by performing the same operation as in Example 1 except that the surface treatment agent dilution liquid c was used instead of the surface treatment agent dilution liquid a.
  • the same evaluation as in Example 1 was performed for the surface-treated infrared absorbing fine particle dispersion liquid according to Example 7, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • the mixture was loaded into a paint shaker containing 2 beads and pulverized and dispersed for 10 hours to obtain a dispersion liquid of Na 0.33 WO z fine particles according to Example 8.
  • the dispersed particle diameter of Na 0.33 WO z fine particles in the obtained dispersion was measured, it was 100 nm.
  • the particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement.
  • the background was measured using isopropyl alcohol and the solvent refractive index was 1.38. After removing the solvent of the obtained dispersion liquid, the crystallite size was measured and found to be 32 nm.
  • a dispersion of Na 0.33 WO z fine particles according to Example 8 was mixed with isopropyl alcohol to obtain an aqueous dispersion B for forming a coating film in which the concentration of infrared absorbing fine particles (cubic sodium tungsten bronze fine particles) was 2%. Obtained. 520 g of the obtained coating film forming aqueous dispersion B was placed in a beaker, and while being strongly stirred by a stirrer with a blade, 360 g of the surface treatment agent diluting liquid a and 100 g of pure water as the diluting agent d were concurrently added over 3 hours. It was added dropwise. After the dropwise addition, stirring was carried out at a temperature of 20° C. for 24 hours to prepare an aging liquid according to Example 8. Next, the medium was evaporated from this aged liquid by vacuum fluidization drying at a temperature of 120° C. for 24 hours to obtain a surface-treated infrared absorbing fine particle powder according to Example 8.
  • Example 8 By performing the same operation as in Example 1 except that the surface-treated infrared absorption fine particle powder according to Example 8 was used in place of the surface-treated infrared absorption fine particle powder according to Example 1, the surface according to Example 8 was obtained. A treated infrared absorbing fine particle dispersion was prepared. With respect to the surface-treated infrared absorbing fine particle dispersion liquid according to Example 8, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • an aqueous dispersion C for forming a coating film according to Example 9 an aqueous dispersion D for forming a coating film according to Example 10, and an aqueous dispersion E for forming a coating film according to Example 11 were obtained.
  • Example 9 By performing the same operation as in Example 1 except that the coating film forming aqueous dispersions C to E were used instead of the coating film forming aqueous dispersion A, the surface-treated infrared rays according to Examples 9 to 11 were obtained. An absorption particle dispersion liquid was prepared. Then, the same evaluations as in Example 1 were performed on the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 9 to 11. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • the resulting mixed liquid was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads, and pulverization/dispersion treatment was performed for 4 hours (Example 12) or 6 hours (Example 13).
  • a dispersion liquid of Cs 0.33 WO z fine particles according to When the dispersed particle size of Cs 0.33 WO z fine particles in the obtained dispersion was measured, it was 140 nm in Example 12 and 120 nm in Example 13.
  • the particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement.
  • the background was measured using pure water, and the solvent refractive index was 1.33.
  • Example 12 was 42 nm
  • Example 13 was 50 nm.
  • Example 12 The coating according to Example 12 in which the obtained dispersion liquid of Cs 0.33 WO z fine particles according to Examples 12 and 13 was mixed with pure water, and the concentration of Cs 0.33 WO z fine particles was 2% by mass.
  • An aqueous dispersion F for forming a film and an aqueous dispersion G for forming a coating film according to Example 13 were obtained.
  • the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 12 and 13 were prepared. Then, the same evaluations as in Example 1 were performed on the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 12 and 13.
  • the manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 14 to 18 10% by mass of the surface-treated infrared absorbing fine particle powder according to Example 2, 85% by mass of pure water, and dispersants ⁇ to ⁇ (however, ⁇ in Example 14, ⁇ in Example 15, ⁇ in Example 16, and Example 17).
  • Example 18 and ⁇ in Example 18 are mixed with 5% by mass, and the obtained mixed solution is loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and crushed for 1 hour, Coating film forming aqueous dispersion A- ⁇ according to Example 14, coating film forming aqueous dispersion A- ⁇ according to Example 15, coating film forming aqueous dispersion A- ⁇ according to Example 16, Example A coating film forming aqueous dispersion A- ⁇ according to Example 17 and a coating film forming aqueous dispersion A- ⁇ according to Example 18 were obtained.
  • the dispersant ⁇ is a dispersant having a functional group of phosphoric acid, an acid value of 60 mgKOH/g, and a base value of 0 mgKOH/g.
  • the dispersant ⁇ is a dispersant having a functional group of a carboxylic acid, an acid value of 70 mgKOH/g, and a base value of 0 mgKOH/g.
  • the dispersant ⁇ is a dispersant having a carboxylic acid as a functional group, an acid value of 15 mgKOH/g, and a base value of 0 mgKOH/g.
  • the dispersant ⁇ is a dispersant having a carboxylic acid as a functional group, an acid value of 110 mgKOH/g, and a base value of 0 mgKOH/g.
  • the dispersant ⁇ is a dispersant containing phosphoric acid as a functional group and having an acid value of 85 mgKOH/g and a base value of 85 mgKOH/g.
  • the coating film forming aqueous dispersions A- ⁇ to A- ⁇ according to Examples 14 to 18 were used, and the dropping time of the surface treatment diluent was changed.
  • the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 14 to 18 were produced.
  • the same evaluations as in Example 1 were performed on the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 14 to 18.
  • the manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 19 10% by mass of the surface-treated infrared absorbing fine particle powder according to Example 2, 80% by mass of pure water, 5% by mass of dispersant ⁇ and 5% by mass of dispersant ⁇ were mixed, and the resulting mixed solution was mixed with 0.3 mm ⁇ ZrO 2 beads. The paint shaker put in was put and crushed for 1 hour to obtain an aqueous dispersion A- ⁇ for forming a coating film according to Example 19.
  • the dispersant ⁇ is a nonionic dispersant having no acid and basic functional groups and an acid value of less than 1 mgKOH/g and a base value of less than 1 mgKOH/g.
  • Example 19 The same as Example 1 except that the coating film forming aqueous dispersion A- ⁇ according to Example 19 was used instead of the coating film forming aqueous dispersion A, and the dropping time of the surface treatment diluent was changed. By performing the operation, a surface-treated infrared absorbing fine particle dispersion liquid according to Example 19 was prepared. Then, the same evaluation as in Example 1 was performed on the surface-treated infrared absorbing fine particle dispersion liquid according to Example 19. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • Example 1 A hexagonal cesium tungsten bronze powder (10% by mass) was mixed with pure water (90% by mass), and the resulting mixed solution was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and pulverized/dispersed for 4 hours. An aqueous dispersion for forming a coating film according to No. 1 was obtained. When the dispersed particle diameter of the infrared absorbing fine particles in the obtained dispersion was measured in the same manner as in Example 1, it was 100 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using water, and the solvent refractive index was 1.33.
  • the infrared absorbing fine particle dispersion liquid according to Comparative Example 1 was used as it was without adding the surface treatment diluent dropwise to the coating film forming aqueous dispersion liquid according to Comparative Example 1.
  • the infrared absorbing fine particle dispersion liquid according to Comparative Example 1 was evaluated in the same manner as in Example 1. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
  • the infrared absorbing fine particle dispersion liquid using the hexagonal cesium tungsten bronze set to the visible light transmittance of 80% according to Comparative Examples 1 to 6 using the infrared absorbing fine particles not subjected to the surface treatment was heated to 85° C.
  • the amount of change in solar radiation transmittance before and after the exposure was 7.4% or more, and it was revealed that the moisture and heat resistance was poor.

Abstract

A surface treated infrared absorbing fine particle dispersion liquid which is obtained by dispersing surface treated infrared absorbing fine particles into a solvent that contains water, and which is configured such that: each of the surface treated infrared absorbing fine particles is obtained by covering the surface of an infrared absorbing fine particle with a coating film that contains one or more substances selected from among a hydrolysis product of a metal chelate compound, a polymerization product of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound and a polymerization product of a hydrolysis product of a metal cyclic oligomer compound; and the dispersed particle diameter of the surface treated infrared absorbing fine particles is from 20 nm to 400 nm (inclusive).

Description

表面処理赤外線吸収微粒子分散液およびその製造方法Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
 本発明は、水を含む溶媒中に表面処理赤外線吸収微粒子が分散している表面処理赤外線吸収微粒子分散液、および、その製造方法に関する。 The present invention relates to a surface-treated infrared absorption fine particle dispersion liquid in which surface-treated infrared absorption fine particles are dispersed in a solvent containing water, and a method for producing the same.
 近年、赤外線吸収体の需要が急増しており、赤外線吸収体に関し多くの提案が為されている。
 これらの提案を機能的観点から俯瞰してみる。すると、例えば、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的としたものがある。
In recent years, the demand for infrared absorbers has increased rapidly, and many proposals have been made for infrared absorbers.
Let's look at these proposals from a functional perspective. Then, for example, in the field of various buildings and window materials of vehicles, the purpose is to block the temperature in the room while keeping the brightness while blocking the light in the near infrared region while sufficiently incorporating visible light. There is one.
 先行技術文献として、例えば特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設け、当該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、且つ、前記第2層の透明誘電体膜の屈折率を前記第1層および前記第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な赤外線遮断性能が要求される部位に好適に使用することが出来る赤外線遮断ガラスが提案されている。 As a prior art document, for example, in Patent Document 1, a transparent glass substrate is selected from the substrate side as a first layer from the group consisting of IIIa group, IVa group, Vb group, VIb group and VIIb group of the periodic table. A composite tungsten oxide film containing at least one metal ion is provided, a transparent dielectric film is provided as a second layer on the first layer, and a IIIa group of the periodic table is provided as a third layer on the second layer. A composite tungsten oxide film containing at least one metal ion selected from the group consisting of IVa group, Vb group, VIb group and VIIb group is provided, and the refractive index of the transparent dielectric film of the second layer is By setting the refractive index of the composite tungsten oxide film of the first layer and the third layer to be lower than that of the composite tungsten oxide film, the infrared ray shielding glass can be suitably used in a region where high visible light transmittance and good infrared ray shielding performance are required. Is proposed.
 特許文献2では特許文献1と同様の方法で、透明なガラス基板上へ、基板側より第1層として第1の誘電体膜を設け、当該第1層上に第2層として酸化タングステン膜を設け、当該第2層上に第3層として第2の誘電体膜を設けた赤外線遮断ガラスが提案されている。 In Patent Document 2, in the same manner as in Patent Document 1, a first dielectric film is provided as a first layer on the transparent glass substrate from the substrate side, and a tungsten oxide film is provided as a second layer on the first layer. There has been proposed an infrared shielding glass provided with a second dielectric film as a third layer on the second layer.
 特許文献3では特許文献1と同様な方法で、透明なガラス基板上へ、基板側より第1層として特許文献1と同様の金属元素を含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。 In Patent Document 3, a composite tungsten oxide film containing a metal element similar to that in Patent Document 1 is provided as a first layer from the substrate side on a transparent glass substrate by the same method as in Patent Document 1, and the first layer is formed on the first layer. There has been proposed a heat ray-shielding glass provided with a transparent dielectric film as a second layer.
 特許文献4では、水素、リチウム、ナトリウムまたはカリウム等の添加元素を含有する、三酸化タングステン(WO)、三酸化モリブデン(MoO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)、五酸化バナジウム(V)および二酸化バナジウム(VO)の1種以上から選択される金属酸化物膜が、CVD法またはスプレー法で被覆された後、250℃程度で熱分解されることにより形成された、太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。 In Patent Document 4, tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide (containing additional elements such as hydrogen, lithium, sodium or potassium) ( Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ), and vanadium dioxide (VO 2 ) selected from at least one metal oxide film, which is coated at about 250° C. by a CVD method or a spray method. There has been proposed a solar control glass sheet having a sunlight shielding property, which is formed by being thermally decomposed in.
 特許文献5には、タングステン酸を加水分解して得られた酸化タングステンを用い、当該酸化タングステンに、ポリビニルピロリドンという特定の構造の有機ポリマーを添加した太陽光可変調光断熱材料が提案されている。当該太陽光可変調光断熱材料は太陽光が照射されると、光線中の紫外線が酸化タングステンに吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなるものである。他方、光が遮断されることによって、前記5価タングステンが極めて速やかに6価に酸化されて消色反応が高くなるものである。当該着色/消色特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することが出来る太陽光可変調光断熱材料が得られることが提案されている。 Patent Document 5 proposes a solar light-modulating light heat insulating material in which tungsten oxide obtained by hydrolyzing tungstic acid is used, and an organic polymer having a specific structure called polyvinylpyrrolidone is added to the tungsten oxide. .. When the sunlight tunable photo-insulating material is irradiated with sunlight, the ultraviolet rays in the light rays are absorbed by the tungsten oxide to generate excited electrons and holes, and the amount of pentavalent tungsten is significantly increased due to a small amount of ultraviolet rays. As a result, the coloring reaction is increased to accelerate the coloring reaction, and the coloring density is increased accordingly. On the other hand, when the light is blocked, the pentavalent tungsten is rapidly oxidized to hexavalent and the decoloring reaction is enhanced. By using the coloring/decoloring property, the sunlight-modulated light capable of blocking the near-infrared rays of sunlight by exhibiting rapid coloring and decoloring reaction to sunlight and having an absorption peak at a wavelength of 1250 nm in the near-infrared region at the time of coloring. It has been proposed that an insulating material be obtained.
 一方、本発明者等は特許文献6において、六塩化タングステンをアルコールに溶解し、そのまま媒質を蒸発させるか、または加熱還流した後、媒質を蒸発させ、その後100℃~500℃で加熱することにより、三酸化タングステンまたはその水和物または両者の混合物からなる酸化タングステン微粒子粉末を得ることを開示した。そして、当該酸化タングステン微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることが出来ること、等を開示した。 On the other hand, the inventors of the present invention disclosed in Patent Document 6 that tungsten hexachloride is dissolved in alcohol and the medium is evaporated as it is, or after the medium is refluxed by heating, the medium is evaporated and then heated at 100° C. to 500° C. , Tungsten trioxide or a hydrate thereof, or a mixture of the two, to obtain a tungsten oxide fine particle powder. Then, it was disclosed that an electrochromic device can be obtained by using the tungsten oxide fine particles, that the optical characteristics of the film can be changed when a multilayer laminate is formed and protons are introduced into the film. ..
 特許文献7には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩とを原料とし、その混合水溶液の乾固物を約300~700℃の加熱温度で加熱し、この加熱の際に不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)を添加した水素ガスを供給することにより、一般式MWO(但し、Mはアルカリ、アルカリ土類、希土類などの金属元素、0<x<1)で表される種々のタングステンブロンズを作製する方法が提案されている。そして、当該操作を支持体上で実施して種々のタングステンブロンズ被覆複合体を製造し、燃料電池等の電極触媒材料として用いることが提案されている。 In Patent Document 7, ammonium metatungstate and various water-soluble metal salts are used as raw materials, and a dry solid of a mixed aqueous solution thereof is heated at a heating temperature of about 300 to 700° C. and is inert during this heating. By supplying hydrogen gas to which gas (addition amount: about 50 vol% or more) or steam (addition amount; about 15 vol% or less) is added, general formula M X WO 3 (where M is alkali, alkaline earth, rare earth) Various tungsten bronze represented by metal elements such as 0<x<1) have been proposed. Then, it is proposed that the operation is carried out on a support to produce various tungsten bronze-coated composites, which are used as an electrode catalyst material for fuel cells and the like.
 そして、本発明者等は特許文献8において、赤外線遮蔽材料微粒子が媒質中に分散してなる赤外線遮蔽材料微粒子分散体、当該赤外線遮蔽材料微粒子分散体の光学特性、導電性、製造方法について開示した。当該赤外線遮蔽材料微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物の微粒子であって、当該赤外線遮蔽材料微粒子の粒子直径は1nm以上800nm以下である。 Then, the present inventors disclosed in Patent Document 8 an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium, optical characteristics, conductivity, and a manufacturing method of the infrared shielding material fine particle dispersion. . The infrared shielding material fine particles are fine particles of tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2≦z/y≦2.999), and/or the general formula MxWyOz. (However, M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be. , Hf, Os, Bi, I, at least one element selected from the group consisting of W, tungsten, O is oxygen, and 0.001≦x/y≦1, 2.2≦z/y≦3.0) In the fine particles of the composite tungsten oxide represented by, the particle diameter of the infrared shielding material fine particles is 1 nm or more and 800 nm or less.
特開平8-59300号公報JP-A-8-59300 特開平8-12378号公報JP-A-8-12378 特開平8-283044号公報JP-A-8-283044 特開2000-119045号公報Japanese Patent Laid-Open No. 2000-119045 特開平9-127559号公報JP-A-9-127559 特開2003-121884号公報JP-A-2003-121884 特開平8-73223号公報JP-A-8-73223 国際公開第2005/37932号International Publication No. 2005/37932 国際公開第2010/55570号International Publication No. 2010/55570
 本発明者らは、特許文献8に係る赤外線遮蔽材料微粒子分散体を車載用や建材用に用い、太陽光に含まれる光のうち、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目指した。このとき、特許文献8に係る赤外線遮蔽材料微粒子分散体を得るには、例えば赤外線吸収材料微粒子を溶媒に分散した赤外線吸収材料微粒子分散液を調製し、そして当該赤外線吸収材料微粒子分散液へ樹脂などを溶解してコーティング液とし、当該コーティング液を例えば基材へ塗布した後や噴霧した後にこれを乾燥する、等の方法を採ればよい。 The inventors of the present invention have used the infrared shielding material fine particle dispersion according to Patent Document 8 for vehicle-mounted or building materials, and shield the near-infrared region light while sufficiently incorporating visible light in sunlight. Then, we aimed to suppress the temperature rise in the room while maintaining the brightness. At this time, in order to obtain the infrared shielding material fine particle dispersion according to Patent Document 8, for example, an infrared absorbing material fine particle dispersion liquid in which infrared absorbing material fine particles are dispersed in a solvent is prepared, and a resin or the like is added to the infrared absorbing material fine particle dispersion liquid. May be dissolved into a coating solution, and the coating solution may be applied to a substrate or sprayed and then dried.
 しかしながら本発明者らの検討によると、上述したタングステン酸化物微粒子、または/および、複合タングステン酸化物微粒子を含む光学部材(透明基材、フィルム、樹脂シート等)は、使用状況や方法により、空気中の水蒸気や水分が当該光学部材のコーティング層や固体状樹脂中へ徐々に浸透することを知見した。そして、水蒸気や水分がコーティング層や固体状樹脂中へ浸透すると、前記タングステン酸化物微粒子、または/および、複合タングステン酸化物微粒子の表面が分解し、波長200~2600nmの光の透過率が経時的に上昇してしまい、前記光学部材の赤外線吸収特性が徐々に低下するという課題があることを知見した。特に、表面活性の高いタングステン酸化物微粒子や複合タングステン酸化物微粒子ほど、当該分解劣化による赤外線吸収特性の損失割合は大きいということも知見した。
 尚、本発明において「コーティング層」とは、例えば塗布や噴霧を利用した方法によって、基材上に所定の膜厚をもって形成された室温で固体の媒質膜のことである。
However, according to a study by the present inventors, an optical member (transparent base material, film, resin sheet, etc.) containing the above-described tungsten oxide fine particles and/or composite tungsten oxide fine particles may be air-conditioned depending on the use situation and method. It was found that the water vapor and water contained therein gradually penetrate into the coating layer and solid resin of the optical member. Then, when water vapor or water penetrates into the coating layer or the solid resin, the surface of the tungsten oxide fine particles and/or the composite tungsten oxide fine particles is decomposed, and the transmittance of light having a wavelength of 200 to 2600 nm changes with time. It has been found that there is a problem that the infrared absorption characteristics of the optical member gradually deteriorates. In particular, it was also found that the higher the surface activity of the tungsten oxide fine particles and the composite tungsten oxide fine particles, the greater the loss ratio of the infrared absorption characteristics due to the decomposition and degradation.
In the present invention, the “coating layer” is a medium film that is solid at room temperature and has a predetermined film thickness formed on a base material by, for example, a method utilizing coating or spraying.
 上述の状況の下、本発明者等は特許文献9において、耐水性に優れ、且つ、優れた赤外線遮蔽特性を有する赤外線遮蔽微粒子として、一般式WyOzで表記されるタングステン酸化物または/および一般式MxWyOzで表記される複合タングステン酸化物微粒子であって、当該微粒子の平均一次粒径が1nm以上、800nm以下であり、当該微粒子表面が4官能性シラン化合物もしくはその加水分解生成物、または/および、有機金属化合物で被覆されている赤外線遮蔽微粒子とその製造方法とを開示した。 Under the above-mentioned circumstances, the inventors of the present invention have disclosed in Patent Document 9 that the tungsten oxide represented by the general formula WyOz and/or the general formula WyOz is used as the infrared shielding fine particles having excellent water resistance and excellent infrared shielding properties. A composite tungsten oxide fine particle represented by MxWyOz, wherein the average primary particle diameter of the fine particle is 1 nm or more and 800 nm or less, and the fine particle surface has a tetrafunctional silane compound or a hydrolysis product thereof, and/or An infrared shielding fine particle coated with an organometallic compound and a method for producing the same have been disclosed.
 上述した特許文献9に係るタングステン酸化物微粒子または/および複合タングステン酸化物微粒子は、耐湿性に優れたものであった。しかしながら、車載用や建材用に用いられる赤外線吸収材料は、高湿度、高温環境を初めとする多様な環境下において、長期間に渡って使用されるものである。そして、市場での要求が年々高まっていくにつれて、特許文献9で開示した赤外線遮蔽微粒子に対して、耐湿熱性の改善が求められることになった。更には、近年、各種の工業材料において環境負荷を低減することが求められており、上述したコーティング液においては、環境負荷の高い有機溶媒は含まず、好ましくは水を主溶媒としたものが求められている。即ち、水を含む溶媒中に分散している赤外線吸収微粒子分散液が求められているのである。 The tungsten oxide fine particles and/or the composite tungsten oxide fine particles according to Patent Document 9 described above were excellent in moisture resistance. However, infrared ray absorbing materials used for vehicles and building materials are used for a long period of time under various environments including high humidity and high temperature environments. As the market demand increases year by year, the infrared shielding fine particles disclosed in Patent Document 9 are required to have improved wet heat resistance. Furthermore, in recent years, it has been required to reduce the environmental load in various industrial materials, and the coating liquid described above does not contain an organic solvent having a high environmental load, and preferably has a main solvent of water. Has been. That is, an infrared absorbing fine particle dispersion liquid dispersed in a solvent containing water has been demanded.
 本発明は上述の状況の下になされたものであり、その課題とするところは、耐湿熱性に優れた表面処理赤外線吸収微粒子が水を含む溶媒中に分散している表面処理赤外線吸収微粒子分散液、およびその製造方法を提供することである。 The present invention has been made under the above-mentioned circumstances, and the problem is that surface-treated infrared absorbing fine particle dispersion liquid in which surface-treated infrared absorbing fine particles having excellent wet heat resistance are dispersed in a solvent containing water. , And a method for manufacturing the same.
 本発明者等は上述の課題の解決の為、優れた光学的特性を有する赤外線吸収微粒子を用い、当該赤外線吸収微粒子が高湿度、高温環境においても化学安定性を向上させることを可能にする構成について研究を行った。その結果、当該赤外線吸収微粒子表面との親和性に優れ、且つ、当該赤外線吸収微粒子の個々の粒子表面に対して均一に吸着し、強固な被覆膜を形成する化合物を用いて、当該個々の赤外線吸収微粒子の表面を被覆することが肝要なことに想到した。 In order to solve the above problems, the present inventors have used infrared absorbing fine particles having excellent optical characteristics, and the infrared absorbing fine particles are capable of improving chemical stability even in high humidity and high temperature environments. Researched. As a result, the compound having excellent affinity with the surface of the infrared absorbing fine particles, and uniformly adsorbed to the individual particle surface of the infrared absorbing fine particles to form a strong coating film, We have realized that it is important to coat the surface of the infrared absorbing fine particles.
 本発明者等はさらに研究を続け、上述した赤外線吸収微粒子において親和性に優れ、被覆膜を形成する化合物として、金属キレート化合物や金属環状オリゴマー化合物に想到した。そして、さらなる研究の結果、当該金属キレート化合物や金属環状オリゴマー化合物が加水分解したときに生成する、これらの化合物の加水分解生成物、または、当該加水分解生成物の重合物が、赤外線吸収微粒子の個々の粒子表面に対して均一に吸着し、且つ、強固な被覆膜を形成する化合物であることを知見した。 The present inventors further researched, and conceived a metal chelate compound or a metal cyclic oligomer compound as a compound having excellent affinity for the above infrared absorbing fine particles and forming a coating film. Then, as a result of further research, the hydrolysis products of these compounds, which are produced when the metal chelate compound or the metal cyclic oligomer compound is hydrolyzed, or the polymerization products of the hydrolysis products are infrared absorbing fine particles. It was discovered that the compound is a compound that uniformly adsorbs to the surface of each particle and forms a strong coating film.
 即ち、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で均一、且つ、強固に被覆されている赤外線吸収微粒子(本発明において「表面処理赤外線吸収微粒子」と記載する場合がある。)に想到したものである。そして、当該表面処理赤外線吸収微粒子は、高湿度、高温環境に曝されても赤外線吸収特性が維持されていることを知見した。 That is, the surface of the infrared absorbing fine particles, the hydrolysis product of the metal chelate compound, the polymer of the hydrolysis product of the metal chelate compound, the hydrolysis product of the metal cyclic oligomer compound, the hydrolysis product of the metal cyclic oligomer compound Infrared absorbing fine particles (in some cases referred to as “surface-treated infrared absorbing fine particles” in the present invention) which are uniformly and firmly coated with a coating film containing one or more selected from polymers. It was done. It was also found that the surface-treated infrared absorbing fine particles maintained their infrared absorbing properties even when exposed to a high humidity and high temperature environment.
 本発明者等はさらに研究を続け、当該表面処理赤外線吸収微粒子が水を含む溶媒中に分散している表面処理赤外線吸収微粒子分散液に想到して本発明に至った。 The present inventors further researched, and arrived at the present invention by conceiving a surface-treated infrared absorption fine particle dispersion liquid in which the surface-treated infrared absorption fine particles are dispersed in a solvent containing water.
 即ち、上述の課題を解決する為の発明は、
 水を含む溶媒中に表面処理赤外線吸収微粒子が分散している表面処理赤外線吸収微粒子分散液であって、
 前記表面処理赤外線吸収微粒子は、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されているものであり、
 前記表面処理赤外線吸収微粒子の分散粒子径が20nm以上400nm以下であることを特徴とする表面処理赤外線吸収微粒子分散液である。
 さらに、上述の課題を解決する為の発明は、
 水を含む溶媒中へ赤外線吸収微粒子を分散させて被覆膜形成用水分散液を得る工程と
 前記被覆膜形成用水分散液へ、金属キレート化合物および/または金属環状オリゴマー化合物を添加し、前記赤外線吸収微粒子の表面を金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆して表面処理赤外線吸収微粒子とし、水を含む溶媒中に前記表面処理赤外線吸収微粒子が分散している表面処理赤外線吸収微粒子分散液を得る工程とを有することを特徴とする表面処理赤外線吸収微粒子分散液の製造方法である。
That is, the invention for solving the above-mentioned problems,
A surface-treated infrared absorption fine particle dispersion in which surface-treated infrared absorption fine particles are dispersed in a solvent containing water,
In the surface-treated infrared absorbing fine particles, the surface of the infrared absorbing fine particles has a metal chelate compound hydrolysis product, a metal chelate compound hydrolysis product polymer, a metal cyclic oligomer compound hydrolysis product, and a metal cyclic oligomer compound. A polymer of a hydrolysis product of, which is coated with a coating film containing at least one selected from the group consisting of:
The surface-treated infrared absorption fine particle dispersion liquid has a dispersed particle diameter of 20 nm or more and 400 nm or less.
Furthermore, the invention for solving the above-mentioned problems,
A step of dispersing infrared absorbing fine particles in a solvent containing water to obtain an aqueous dispersion for forming a coating film, and adding a metal chelate compound and/or a metal cyclic oligomer compound to the aqueous dispersion for forming a coating film, From the surface of the absorption fine particles, the metal chelate compound hydrolysis product, the metal chelate compound hydrolysis product polymer, the metal cyclic oligomer compound hydrolysis product, the metal cyclic oligomer compound hydrolysis product polymer, A step of coating with a coating film containing at least one selected to form surface-treated infrared absorbing fine particles, and obtaining a surface-treated infrared absorbing fine particle dispersion in which the surface-treated infrared absorbing fine particles are dispersed in a solvent containing water. The method for producing a surface-treated infrared-absorbing fine particle dispersion liquid, comprising:
 本発明により、高湿度、高温環境に曝されても優れた赤外線吸収特性を維持する表面処理赤外線吸収微粒子が、水を含有する溶媒中に分散した表面処理赤外線吸収微粒子分散液を得ることが出来た。 According to the present invention, it is possible to obtain a surface-treated infrared absorption fine particle dispersion in which surface-treated infrared absorption fine particles maintaining excellent infrared absorption characteristics even when exposed to high humidity and high temperature environment are dispersed in a solvent containing water. It was
六方晶の結晶構造を有する複合タングステン酸化物における結晶構造の模式的な平面図である。FIG. 3 is a schematic plan view of a crystal structure in a composite tungsten oxide having a hexagonal crystal structure.
 本発明に係る表面処理赤外線吸収微粒子分散液は、水を含む溶媒中に、表面処理赤外線吸収微粒子が分散しているものである。
 そして、本発明に係る表面処理赤外線吸収微粒子は、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で均一、且つ、強固に被覆されている表面処理赤外線吸収微粒子であり、表面処理赤外線吸収微粒子分散液中における分散粒子径は20nm以上400nm以下である。さらに、当該赤外線吸収微粒子は、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子であることが好ましい。
The surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is obtained by dispersing surface-treated infrared absorbing fine particles in a solvent containing water.
And, the surface-treated infrared absorbing fine particles according to the present invention, the surface of the infrared absorbing fine particles is a hydrolysis product of the metal chelate compound, a polymer of the hydrolysis product of the metal chelate compound, a hydrolysis product of the metal cyclic oligomer compound. A surface-treated infrared absorbing fine particle uniformly and firmly coated with a coating film containing at least one selected from the group consisting of polymers of hydrolysis products of metal cyclic oligomer compounds. The dispersed particle diameter in the dispersion is 20 nm or more and 400 nm or less. Further, the infrared absorption fine particles are preferably tungsten oxide fine particles and/or composite tungsten oxide fine particles.
 以下、本発明に係る表面処理赤外線吸収微粒子分散液を、[1]赤外線吸収微粒子、[2]赤外線吸収微粒子の表面処理剤、[3]赤外線吸収微粒子の表面処理方法、[4]分散溶媒、[5]本発明に係る表面処理赤外線吸収微粒子分散液、の順で詳細に説明する。
 尚、本発明において、「赤外線吸収微粒子へ耐湿熱性を付与する為に、当該微粒子の表面へ、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を用いて形成した被覆膜」を、単に「被覆膜」と記載する場合がある。
Hereinafter, the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention, [1] infrared absorbing fine particles, [2] infrared absorbing fine particle surface treating agent, [3] infrared absorbing fine particle surface treating method, [4] dispersion solvent, [5] The surface-treated infrared absorbing fine particle dispersion according to the present invention will be described in detail in this order.
Incidentally, in the present invention, "in order to impart resistance to moist heat to the infrared absorbing fine particles, the surface of the fine particles, the hydrolysis product of the metal chelate compound, the polymer of the hydrolysis product of the metal chelate compound, the metal cyclic oligomer compound The coating film formed by using at least one selected from the hydrolysis product of 1. and the polymerization product of the hydrolysis product of the metal cyclic oligomer compound may be simply referred to as the “coating film”.
[1]赤外線吸収微粒子
 本発明に係る表面処理赤外線吸収微粒子分散液に用いられる赤外線吸収微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることが好ましい。
[1] Infrared absorbing fine particles The infrared absorbing fine particles used in the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention have the general formula WyOz (where W is tungsten, O is oxygen, and 2.2≦z/y≦2.999). ) Or/and the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, and 0.001≦x/y≦1, 2 It is preferable that the infrared-absorbing fine particles are expressed as 0.0≦z/y≦3.0).
 以下、タングステン酸化物微粒子および複合タングステン酸化物微粒子を例として、赤外線吸収微粒子について説明する。
 一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺の電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を、光の波長より小さい粒子にすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。
 尚、本発明において「透明性」とは、「可視光領域の光に対して散乱が少なく透過性が高い。」という意味で用いている。
The infrared absorbing fine particles will be described below by taking the tungsten oxide fine particles and the composite tungsten oxide fine particles as examples.
It is generally known that a material containing free electrons exhibits a reflection absorption response to an electromagnetic wave around a region of a sun ray having a wavelength of 200 nm to 2600 nm due to plasma vibration. It is known that when powder of such a substance is made into particles smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced and transparency in the visible light region is obtained.
In the present invention, the term "transparency" is used to mean "the light in the visible light region has little scattering and high transparency".
 一般に、タングステン酸化物(WO)中には有効な自由電子が存在しない為、赤外線領域の吸収反射特性が少なく、赤外線吸収微粒子としては有効ではない。しかしながら、酸素欠損を持つWOや、WOにNa等の陽性元素を添加した複合タングステン酸化物の構成をとることで、タングステン酸化物や複合タングステン酸化物中に自由電子が生成され、赤外線領域に自由電子由来の吸収特性が発現することが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
 本発明者等は、当該タングステンと酸素との組成範囲の特定部分において、赤外線吸収微粒子として特に有効な範囲があることを見出し、可視光領域においては透明で、赤外線領域においては吸収を持つタングステン酸化物微粒子、複合タングステン酸化物微粒子に想到した。
 ここで、赤外線吸収微粒子について、タングステン酸化物微粒子および複合タングステン酸化物微粒子を例として、(1)タングステン酸化物微粒子、(2)複合タングステン酸化物微粒子、(3)赤外線吸収微粒子の性状と特性、の順で説明する。
In general, since there are no effective free electrons in tungsten oxide (WO 3 ), the absorption and reflection characteristics in the infrared region are small and it is not effective as infrared absorbing fine particles. However, and WO 3 with oxygen vacancies, With the configuration of the composite tungsten oxide doped with positive elements such as Na to WO 3, the free electrons are generated in the tungsten oxide or composite tungsten oxide, the infrared region It is known that the absorption characteristics derived from free electrons are developed. Analysis of single crystals of materials having these free electrons has suggested the response of the free electrons to light in the infrared region.
The present inventors have found that, in a specific portion of the composition range of tungsten and oxygen, there is a particularly effective range as infrared absorbing fine particles, and tungsten oxide that is transparent in the visible light region and has absorption in the infrared region. Invented fine particles of fine particles and fine particles of composite tungsten oxide.
Here, regarding the infrared absorbing fine particles, by taking tungsten oxide fine particles and composite tungsten oxide fine particles as examples, (1) tungsten oxide fine particles, (2) composite tungsten oxide fine particles, (3) properties and characteristics of the infrared absorbing fine particles, Will be explained in order.
(1)タングステン酸化物微粒子
 タングステン酸化物微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子である。
(1) Tungsten Oxide Fine Particles Tungsten oxide fine particles are fine particles of tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, and 2.2≦z/y≦2.999). ..
 一般式WyOzで表記されるタングステン酸化物において、当該タングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、さらには、当該赤外線吸収微粒子をWyOzと記載したとき、2.2≦z/y≦2.999であることが好ましい。
 当該z/yの値が2.2以上であれば、当該タングステン酸化物中に目的以外であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので有効な赤外線吸収微粒子となる。一方、当該z/yの値が2.999以下であれば、必要とされる量の自由電子が生成され効率よい赤外線吸収微粒子となる。
In the tungsten oxide represented by the general formula WyOz, the composition range of the tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3, and further, when the infrared absorbing fine particles are described as WyOz, 2. It is preferable that 2≦z/y≦2.999.
When the value of z/y is 2.2 or more, it is possible to avoid the appearance of a crystal phase of WO 2 other than the purpose in the tungsten oxide, and the chemical stability as a material. Since it can be obtained, it becomes an effective infrared absorbing fine particle. On the other hand, when the value of z/y is 2.999 or less, the required amount of free electrons are generated, and the infrared absorbing fine particles are efficient.
(2)複合タングステン酸化物微粒子
 上述した当該複合タングステン酸化物(WO)へ、後述する元素Mを添加したものが複合タングステン酸化物である。そして、当該WOに対し酸素量の制御と、自由電子を生成する元素Mの添加とを併用することで、より効率の良い赤外線吸収微粒子を得ることが出来る。当該構成をとることで、複合タングステン酸化物中に自由電子が生成され、特に近赤外線領域に自由電子由来の強い吸収特性が発現し、波長1000nm付近の近赤外線吸収微粒子として有効となる。
 この酸素量の制御と、自由電子を生成する元素Mの添加とを併用した赤外線吸収微粒子の一般式をMxWyOz(但し、Mは、前記M元素、Wはタングステン、Oは酸素)と記載したとき、0.001≦x/y≦1、2.0≦z/y≦3の関係を満たす赤外線吸収微粒子が望ましい。
(2) Composite Tungsten Oxide Fine Particles The composite tungsten oxide (WO 3 ) to which the element M described later is added is a composite tungsten oxide. Then, by combining the control of the amount of oxygen and the addition of the element M that generates free electrons with respect to the WO 3, it is possible to obtain more efficient infrared absorbing fine particles. By taking the said structure, a free electron is produced|generated in a composite tungsten oxide, the strong absorption characteristic derived from a free electron expresses especially in a near-infrared region, and it becomes effective as a near-infrared absorptive fine particle of wavelength 1000nm vicinity.
When the general formula of infrared absorbing fine particles in which the control of the oxygen amount and the addition of the element M that generates free electrons are used in combination is MxWyOz (where M is the M element, W is tungsten, and O is oxygen). , 0.001≦x/y≦1, and 2.0≦z/y≦3 are desirable.
 ここで、上記複合タングステン酸化物における元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上であることが好ましい。 Here, the element M in the composite tungsten oxide is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, At least one selected from Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb is preferable.
 さらに、元素Mを添加された当該MxWyOzにおける安定性の観点から、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちのうちから選択される1種類以上の元素であることがより好ましい。そして、赤外線吸収微粒子としての光学特性、耐湿熱性を向上させる観点から、元素Mは、アルカリ金属、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものであることがさらに好ましい。 Furthermore, from the viewpoint of stability in the MxWyOz to which the element M is added, the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, More preferably, it is at least one element selected from Nb, V, Mo, Ta, and Re. Further, from the viewpoint of improving the optical characteristics and resistance to moist heat as the infrared absorbing fine particles, the element M further belongs to an alkali metal, an alkaline earth metal element, a transition metal element, a 4B group element, and a 5B group element. preferable.
 元素Mの添加量を示すx/yの値については、x/yの値が0.001より大きければ、複合タングステン酸化物において十分な量の自由電子が生成され目的とする赤外線吸収特性を得ることが出来る。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線吸収効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線吸収微粒子中に不純物相が生成されるのを回避できるので好ましい。 Regarding the value of x/y indicating the added amount of the element M, if the value of x/y is larger than 0.001, a sufficient amount of free electrons are generated in the composite tungsten oxide to obtain the desired infrared absorption characteristics. You can As the amount of the element M added increases, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is saturated when the value of x/y is about 1. Further, when the value of x/y is smaller than 1, it is possible to avoid generation of an impurity phase in the infrared absorbing fine particles, which is preferable.
 また、酸素量の制御を示すz/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述したWyOzで表記されるタングステン酸化物と同様の機構が働くことに加え、z/y=3.0や2.0≦z/y≦2.2においても、上述した元素Mの添加量による自由電子の供給がある。この為、2.0≦z/y≦3.0が好ましく、より好ましくは2.2≦z/y≦3.0、さらに好ましくは2.45≦z/y≦3.0である。 Regarding the value of z/y indicating the control of the oxygen amount, in the composite tungsten oxide represented by MxWyOz, in addition to the mechanism similar to the tungsten oxide represented by WyOz described above, z/y Even when y=3.0 or 2.0≦z/y≦2.2, the free electrons are supplied by the addition amount of the element M described above. Therefore, 2.0≦z/y≦3.0 is preferable, 2.2≦z/y≦3.0 is more preferable, and 2.45≦z/y≦3.0 is still more preferable.
 さらに、当該複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、赤外領域の吸収が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照しながら説明する。
 図1において、符号11で示すWO単位にて形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に、符号12で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
 そして、可視光領域における光の透過を向上させ、赤外領域における光の吸収を向上させる効果を得る為には、複合タングステン酸化物微粒子中に、図1を用いて説明した単位構造が含まれていれば良く、当該複合タングステン酸化物微粒子が結晶質であっても非晶質であっても構わない。
Furthermore, when the composite tungsten oxide fine particles have a hexagonal crystal structure, the transmission of the fine particles in the visible light region is improved, and the absorption in the infrared region is improved. This will be described with reference to FIG. 1, which is a schematic plan view of the crystal structure of this hexagonal crystal.
In FIG. 1, six octahedrons formed by the WO 6 unit shown by reference numeral 11 are aggregated to form a hexagonal void, and the element M shown by the reference numeral 12 is arranged in the void to form one hexagonal void. A unit is formed, and a large number of this one unit are assembled to form a hexagonal crystal structure.
In order to improve the light transmission in the visible light region and the light absorption in the infrared region, the composite tungsten oxide fine particles contain the unit structure described with reference to FIG. The composite tungsten oxide fine particles may be crystalline or amorphous.
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、さらに好ましくは0.33である。x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。
 この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域における光の透過が向上し、赤外領域における光の吸収が向上する。ここで一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され易い。具体的には、Cs、K、Rb、Tl、In、Ba、Li、Ca、Sr、Fe、Snの中から選択される1種類以上の元素、より好ましくはCs、K、Rb、Tl、In、Baの中から選択される1種類以上の元素を添加したとき六方晶が形成され易い。典型的な例としてはCs0.33WO、Cs0.03Rb0.30WO、Rb0.33WO、K0.33WO、Ba0.33WO(2.0≦z≦3.0)などを、好ましく挙げることができる。勿論これら以外の元素でも、WO単位で形成される六角形の空隙に上述した元素Mが存在すれば良く、上述の元素に限定される訳ではない。
When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the element M is preferably 0.2 or more and 0.5 or less, more preferably 0. 33. When the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
When the cations of the element M are present in the hexagonal voids, the light transmission in the visible light region is improved, and the light absorption in the infrared region is improved. Generally, when the element M having a large ionic radius is added, the hexagonal crystal is likely to be formed. Specifically, one or more elements selected from Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe and Sn, more preferably Cs, K, Rb, Tl and In. , Ba are likely to form hexagonal crystals when one or more elements selected from Ba are added. Typical examples are Cs 0.33 WO z , Cs 0.03 Rb 0.30 WO z , Rb 0.33 WO z , K 0.33 WO z , Ba 0.33 WO z (2.0≦z ≦3.0) can be preferably mentioned. Of course, other elements may be used as long as the above-mentioned element M exists in the hexagonal void formed by the WO 6 unit, and the elements are not limited to the above-mentioned elements.
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、さらに好ましくは0.33である。x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the element M is preferably 0.2 or more and 0.5 or less, more preferably 0. 33. When the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
 また、六方晶以外であって、正方晶、立方晶の複合タングステン酸化物も赤外線吸収微粒子として有効である。結晶構造によって、赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順である。従って、より可視光領域の光を透過し、より赤外線領域の光を吸収する用途には、六方晶の複合タングステン酸化物を用いることが好ましい。ただし、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。 Also, other than hexagonal crystals, tetragonal and cubic composite tungsten oxides are also effective as infrared absorbing fine particles. Depending on the crystal structure, the absorption position in the infrared region tends to change, and the absorption position tends to move to the longer wavelength side in the order of cubic crystal <tetragonal crystal <hexagonal crystal. In addition, incidental small absorption in the visible light region is in the order of hexagonal crystal, tetragonal crystal, and cubic crystal. Therefore, it is preferable to use the hexagonal composite tungsten oxide for the purpose of transmitting light in the visible light region and absorbing light in the infrared light region. However, the tendency of the optical characteristics described here is only a rough tendency and changes depending on the type of the added element, the added amount, and the oxygen amount, and the present invention is not limited to this.
(3)赤外線吸収微粒子の性状と特性
 赤外線吸収微粒子は、上述したタングステン酸化物微粒子および/または複合タングステン酸化物微粒子を含有するものであることが好ましい。そしてこの場合、本発明に係る赤外線吸収微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収する為、その透過色調は青色系から緑色系となる物が多い。
(3) Properties and Characteristics of Infrared Absorption Fine Particles The infrared absorption fine particles preferably contain the above-mentioned tungsten oxide fine particles and/or composite tungsten oxide fine particles. In this case, since the infrared-absorbing fine particles according to the present invention largely absorb light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm, the transmission color tone thereof is often from blue to green.
 そして、優れた赤外線吸収特性を発揮させる観点から、赤外線吸収微粒子の結晶子径は1nm以上200nm以下であることが好ましく、より好ましくは1nm以上100nm以下、さらに好ましくは10nm以上70nm以下である。結晶子径の測定には、粉末X線回折法(θ―2θ法)によるX線回折パターンの測定と、リートベルト法による解析を用いる。X線回折パターンの測定には、例えばスペクトリス株式会社PANalytical製の粉末X線回折装置「X’Pert-PRO/MPD」などを用いて行うことができる。 From the viewpoint of exhibiting excellent infrared absorption characteristics, the crystallite diameter of the infrared absorption fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and further preferably 10 nm or more and 70 nm or less. To measure the crystallite diameter, measurement of an X-ray diffraction pattern by a powder X-ray diffraction method (θ-2θ method) and analysis by the Rietveld method are used. The X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer "X'Pert-PRO/MPD" manufactured by Spectris PANalytical.
 一方、赤外線吸収微粒子の分散粒子径は、その使用目的によって各々選定することが出来る。そして、分散粒子径は、赤外線吸収微粒子の結晶子径とは異なり凝集体の粒径も含む概念である。
 赤外線吸収微粒子を、透明性を保持したい応用に使用する場合は、800nm以下の分散粒子径を有していることが好ましい。これは、分散粒子径が800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
On the other hand, the dispersed particle size of the infrared absorbing fine particles can be selected depending on the purpose of use. The dispersed particle size is a concept including the particle size of the aggregate unlike the crystallite size of the infrared absorbing fine particles.
When the infrared-absorbing fine particles are used for the purpose of maintaining transparency, it is preferable that the infrared-absorbing fine particles have a dispersed particle diameter of 800 nm or less. This is because particles having a dispersed particle size of less than 800 nm do not completely block light due to scattering, and can maintain visibility in the visible light region and at the same time efficiently retain transparency. .. Particularly when importance is attached to the transparency in the visible light region, it is preferable to further consider scattering by particles.
 この粒子による散乱の低減を重視するとき、分散粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、粒子の分散粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm~780nmの可視光線領域の光の散乱が低減される結果、赤外線吸収膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できる。即ち、分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に比例している為、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。
 さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上あれば工業的な製造は容易である。
When importance is placed on reduction of scattering by the particles, the dispersed particle size is 200 nm or less, preferably 100 nm or less. The reason for this is that if the dispersed particle size of the particles is small, the scattering of light in the visible light region of wavelength 400 nm to 780 nm due to geometrical scattering or Mie scattering is reduced, and as a result, the infrared absorbing film becomes frosted glass. It is possible to avoid the loss of clear transparency. That is, when the dispersed particle diameter is 200 nm or less, the above-mentioned geometrical scattering or Mie scattering is reduced, and it becomes a Rayleigh scattering region. This is because, in the Rayleigh scattering region, the scattered light is proportional to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased.
Further, when the dispersed particle diameter is 100 nm or less, scattered light becomes very small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle diameter is small, and if the dispersed particle diameter is 1 nm or more, industrial production is easy.
 上記分散粒子径を800nm以下とすることにより、赤外線吸収微粒子を媒質中に分散させた赤外線吸収微粒子分散体のヘイズ値は、可視光透過率85%以下でヘイズ30%以下とすることができる。ヘイズが30%よりも大きい値であると、曇りガラスのようになり、鮮明な透明性が得られない。
 尚、赤外線吸収微粒子の分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
 また、赤外線吸収微粒子の分散粒子径は、本発明に係る表面処理赤外線吸収微粒子の分散粒子径とは異なる。具体的には、赤外線吸収微粒子の分散粒子径は表面処理(表面被覆)前の状態で測定したものであり、表面処理赤外線吸収微粒子の分散粒子径は表面処理後の状態で測定したものである。
By setting the dispersed particle diameter to 800 nm or less, the haze value of the infrared absorbing fine particle dispersion in which the infrared absorbing fine particles are dispersed in the medium can be set to a visible light transmittance of 85% or less and a haze of 30% or less. When the haze is more than 30%, it looks like frosted glass and clear transparency cannot be obtained.
The dispersed particle size of the infrared-absorbing fine particles can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the principle of the dynamic light scattering method.
The dispersed particle diameter of the infrared absorbing fine particles is different from the dispersed particle diameter of the surface-treated infrared absorbing fine particles according to the present invention. Specifically, the dispersed particle diameter of the infrared absorbing fine particles is measured before the surface treatment (surface coating), and the dispersed particle diameter of the surface treated infrared absorbing fine particles is measured after the surface treatment. ..
 また、タングステン酸化物微粒子や複合タングステン酸化物微粒子において、2.45≦z/y≦2.999で表される組成比を有する、所謂「マグネリ相」は化学的に安定であり、赤外線領域の吸収特性も良いので、赤外線吸収微粒子として好ましい。 Further, in the tungsten oxide fine particles and the composite tungsten oxide fine particles, the so-called “Magnelli phase” having a composition ratio represented by 2.45≦z/y≦2.999 is chemically stable, and is in the infrared region. Since it has good absorption characteristics, it is preferable as an infrared absorbing fine particle.
[2]赤外線吸収微粒子の表面処理剤
 赤外線吸収微粒子の表面被覆に用いる表面処理剤は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上である。
 そして、当該金属キレート化合物、金属環状オリゴマー化合物は、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートであることが好ましい観点から、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することが好ましい。
 ここで、表面処理剤について、(1)金属キレート化合物、(2)金属環状オリゴマー化合物、(3)金属キレート化合物や金属環状オリゴマー化合物の加水分解生成物、および、それらの重合物、(4)表面処理剤の添加量、の順で説明する。
[2] Surface Treatment Agent for Infrared Absorption Fine Particles The surface treatment agent used for coating the surface of the infrared absorption fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, or a hydrolysis product of a metal cyclic oligomer compound. One or more selected from decomposition products and polymers of hydrolysis products of metal cyclic oligomer compounds.
From the viewpoint that the metal chelate compound and the metal cyclic oligomer compound are metal alkoxides, metal acetylacetonates, and metal carboxylates, one or more selected from ether bonds, ester bonds, alkoxy groups, and acetyl groups. It is preferable to have
Here, regarding the surface treatment agent, (1) a metal chelate compound, (2) a metal cyclic oligomer compound, (3) a hydrolysis product of a metal chelate compound or a metal cyclic oligomer compound, and a polymer thereof, (4) The amount of surface treatment agent added will be described in this order.
(1)金属キレート化合物
 本発明に用いる金属キレート化合物は、アルコキシ基を含有するAl系、Zr系、Ti系、Si系、Ti系のキレート化合物から選ばれる1種以上であることが好ましい。
(1) Metal Chelate Compound The metal chelate compound used in the present invention is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based and Ti-based chelate compounds containing an alkoxy group.
 アルミニウム系のキレート化合物としては、アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムsec-ブチレート、モノ-sec-ブトキシアルミニウムジイソプロピレートなどのアルミニウムアルコレートまたはこれら重合物、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、ステアリルアセトアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等、を例示することが出来る。
 これらの化合物は、アルミニウムアルコレートを非プロトン性溶媒や、石油系溶剤、炭化水素系溶剤、エステル系溶剤、ケトン系溶剤、エーテル系溶剤、アミド系溶剤等に溶解し、この溶液に、β-ジケトン、β-ケトエステル、一価または多価アルコール、脂肪酸等を加えて、加熱還流し、リガンドの置換反応により得られた、アルコキシ基含有のアルミニウムキレート化合物である。
Examples of the aluminum-based chelate compound include aluminum ethylate, aluminum isopropylate, aluminum sec-butyrate, mono-sec-butoxyaluminum diisopropylate, and other aluminum alcoholates or their polymers, ethyl acetoacetate aluminum diisopropylate, aluminum tris. (Ethyl acetoacetate), octyl acetoacetate aluminum diisoproplate, stearyl acetoaluminum diisopropylate, aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum tris(acetylacetonate), etc. can be exemplified.
These compounds are prepared by dissolving aluminum alcoholate in an aprotic solvent, a petroleum solvent, a hydrocarbon solvent, an ester solvent, a ketone solvent, an ether solvent, an amide solvent, etc. An alkoxy group-containing aluminum chelate compound obtained by adding a diketone, a β-keto ester, a monohydric or polyhydric alcohol, a fatty acid and the like, heating and refluxing, and performing a ligand substitution reaction.
 ジルコニウム系のキレート化合物としては、ジルコニウムエチレート、ジルコニウムブチレートなどのジルコニウムアルコレートまたはこれら重合物、ジルコニウムトリブトキシステアレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等、を例示することが出来る。 Examples of zirconium-based chelate compounds include zirconium ethylate, zirconium butyrate and other zirconium alcoholates or polymers thereof, zirconium tributoxystearate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis(acetyl). Acetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetylacetonate bis(ethyl acetoacetate), and the like.
 チタン系のキレート化合物としては、メチルチタネート、エチルチタネート、イソプロピルチタネート、ブチルチタネート、2-エチルヘキシルチタネートなどのチタンアルコレートやこれら重合物、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンオクチレングリコレート、チタンエチルアセトアセテート、チタンラクテート、チタントリエタノールアミネート等、を例示することが出来る。 Titanium-based chelate compounds include titanium alcoholates such as methyl titanate, ethyl titanate, isopropyl titanate, butyl titanate, 2-ethylhexyl titanate and their polymers, titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate. , Titanium ethyl acetoacetate, titanium lactate, titanium triethanolaminate, and the like.
 シリコン系のキレート化合物としては、一般式:Si(OR)(但し、Rは同一または異種の炭素原子数1~6の一価炭化水素基)で示される4官能性シラン化合物またはその部分加水分解生成物を用いることが出来る。4官能性シラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。さらに、これらアルコキシシランモノマーのアルコキシ基の一部あるいは全量が加水分解し、シラノール(Si-OH)基となったシランモノマー(あるいはオリゴマー)、および、加水分解反応を経て自己縮合した重合体の適用も可能である。 As the silicon-based chelate compound, a tetrafunctional silane compound represented by the general formula: Si(OR) 4 (wherein R is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) or its partial hydrolysis is used. Degradation products can be used. Specific examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. Further, application of silane monomers (or oligomers) in which some or all of the alkoxy groups of these alkoxysilane monomers are hydrolyzed to form silanol (Si-OH) groups, and polymers self-condensed through hydrolysis reactions. Is also possible.
 また、4官能性シラン化合物の部分加水分解生成物(4官能性シラン化合物の中間体全体を指示する適宜な術語が存在しない。)としては、アルコキシ基の一部あるいは全量が加水分解して、シラノール(Si-OH)基となったシランモノマー、4~5量体のオリゴマー、および、重量平均分子量(Mw)が800~8000程度の重合体(シリコーンレジン)が挙げられる。なお、アルコキシシランモノマー中のアルコキシシリル基(Si-OR)は、加水分解反応の過程において、その全てが加水分解してシラノール(Si-OH)になるわけではない。 Further, as a partial hydrolysis product of a tetrafunctional silane compound (there is no appropriate terminology indicating the entire intermediate of the tetrafunctional silane compound), part or all of the alkoxy group is hydrolyzed, Examples thereof include silanol (Si—OH) group-based silane monomers, 4- to 5-mer oligomers, and polymers (silicone resins) having a weight average molecular weight (Mw) of about 800 to 8000. Note that not all of the alkoxysilyl groups (Si-OR) in the alkoxysilane monomer are hydrolyzed to silanol (Si-OH) in the course of the hydrolysis reaction.
 亜鉛系のキレート化合物としては、オクチル酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛などの有機カルボン酸亜鉛塩、アセチルアセトン亜鉛キレート、ベンゾイルアセトン亜鉛キレート、ジベンゾイルメタン亜鉛キレート、アセト酢酸エチル亜鉛キレート等、を例示することが出来る。 Examples of the zinc-based chelate compounds include zinc octylate, zinc laurate, zinc stearates and other organic carboxylic acid zinc salts, acetylacetone zinc chelates, benzoylacetone zinc chelates, dibenzoylmethane zinc chelates, ethyl acetoacetate zinc chelates, and the like. It can be illustrated.
(2)金属環状オリゴマー化合物
 金属環状オリゴマー化合物としては、Al系、Zr系、Ti系、Si系、Zn系の環状オリゴマー化合物から選ばれる1種以上であることが好ましい。中でも、環状アルミニウムオキサイドオクチレート等、の環状アルミニウムオリゴマー化合物を好ましく例示することができる。
(2) Metal cyclic oligomer compound The metal cyclic oligomer compound is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based cyclic oligomer compounds. Among them, cyclic aluminum oligomer compounds such as cyclic aluminum oxide octylate can be preferably exemplified.
(3)金属キレート化合物や金属環状オリゴマー化合物の加水分解生成物、および、それらの重合物
 本発明では、上述した金属キレート化合物や金属環状オリゴマー化合物における、アルコキシ基、エーテル結合、エステル結合の一部あるいは全量が加水分解し、ヒドロキシル基やカルボキシル基となった加水分解生成物、または/および、当該加水分解反応を経て自己縮合した重合物を、赤外線吸収微粒子の表面に被覆して被覆膜とし、本発明に係る表面処理赤外線吸収微粒子を得るものである。
(3) Hydrolysis Products of Metal Chelate Compounds and Metal Cyclic Oligomer Compounds, and Polymers Thereof In the present invention, a part of the alkoxy group, ether bond, and ester bond in the above-described metal chelate compound and metal cyclic oligomer compound. Alternatively, a hydrolysis product in which the whole amount is hydrolyzed to be a hydroxyl group or a carboxyl group, or/and a polymer which is self-condensed through the hydrolysis reaction is coated on the surface of the infrared absorbing fine particles to form a coating film. To obtain the surface-treated infrared absorbing fine particles according to the present invention.
 但し、例えば、アルコール等の有機溶媒が介在するような反応系においては、一般的に化学量論組成上、必要十分な水が系内に存在していたとしても、当該有機溶媒の種類や濃度により、出発物質となる金属キレート化合物や金属環状オリゴマー化合物のアルコキシ基やエーテル結合やエステル結合の全てが加水分解するわけではない。従って、後述する表面処理方法の条件によっては、加水分解後であってもその加水分解性生物の分子内に炭素Cを取り込んだアモルファス状態になることがある。
 その結果、被覆膜には、未分解の金属キレート化合物または/および金属環状オリゴマー化合物が含有される場合がある。
However, for example, in a reaction system in which an organic solvent such as alcohol intervenes, generally, in terms of stoichiometric composition, even if necessary and sufficient water is present in the system, the type and concentration of the organic solvent. Therefore, not all of the alkoxy group, ether bond or ester bond of the metal chelate compound or the metal cyclic oligomer compound which is the starting material is hydrolyzed. Therefore, depending on the conditions of the surface treatment method described later, even after the hydrolysis, an amorphous state in which carbon C is incorporated in the molecule of the hydrolyzable organism may occur.
As a result, the coating film may contain undecomposed metal chelate compound and/or metal cyclic oligomer compound.
 即ち、赤外線吸収微粒子の表面を被覆する被覆膜は、上述した金属キレート化合物や金属環状オリゴマー化合物における、アルコキシ基、エーテル結合、エステル結合の一部あるいは全量が加水分解し、ヒドロキシル基やカルボキシル基となった加水分解生成物が、当該加水分解反応を経て自己縮合した重合物であることが好ましい。 That is, the coating film that coats the surface of the infrared absorbing fine particles has a hydroxyl group or a carboxyl group by partially or completely hydrolyzing an alkoxy group, an ether bond, or an ester bond in the above-described metal chelate compound or metal cyclic oligomer compound. It is preferable that the resulting hydrolysis product is a polymer that is self-condensed through the hydrolysis reaction.
(4)表面処理剤の添加量
 上述した金属キレート化合物や金属環状オリゴマー化合物の添加量は、赤外線吸収微粒子100重量部に対して、金属元素換算で0.05重量部以上、1000重量部以下であることが好適である。より好ましくは5重量部以上500重量部以下、最も好ましくは50重量部以上250重量部以下の範囲である。
(4) Addition amount of surface treatment agent The addition amount of the above-mentioned metal chelate compound or metal cyclic oligomer compound is 0.05 parts by weight or more and 1000 parts by weight or less in terms of metal element with respect to 100 parts by weight of infrared absorbing fine particles. Preferably. It is more preferably 5 parts by weight or more and 500 parts by weight or less, and most preferably 50 parts by weight or more and 250 parts by weight or less.
 これは、金属キレート化合物または金属環状オリゴマー化合物が0.05重量部以上あれば、それらの化合物の加水分解生成物や、当該加水分解生成物の重合物が、赤外線吸収微粒子の表面を被覆する効果が発揮され耐湿熱性向上の効果が得られるからである。
 また、金属キレート化合物または金属環状オリゴマー化合物が1000重量部以下であれば、赤外線吸収微粒子に対する吸着量が過剰になることを回避出来る。また、表面被覆による耐湿熱性の向上効果が飽和せず、被覆効果の向上が望めるからである。
 さらに、金属キレート化合物または金属環状オリゴマー化合物が1000重量部以下であることで、赤外線吸収微粒子に対する吸着量が過剰になり、媒質除去時に当該金属キレート化合物または金属環状オリゴマー化合物の加水分解生成物や、当該加水分解生成物の重合物を介して微粒子同士が造粒し易くなることを回避出来るからである。当該微粒子同士による望まれない造粒の回避によって、良好な透明性を担保することが出来る。
 加えて、金属キレート化合物または金属環状オリゴマー化合物の過剰による、添加量および処理時間の増加による生産コスト増加も回避出来る。よって工業的な観点からも金属キレート化合物や金属環状オリゴマー化合物の添加量は、1000重量部以下とすることが好ましい。
This is the effect that, if the metal chelate compound or the metal cyclic oligomer compound is 0.05 parts by weight or more, the hydrolysis products of these compounds and the polymers of the hydrolysis products cover the surface of the infrared absorbing fine particles. This is because the effect of improving the resistance to moist heat is obtained.
Further, when the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by weight or less, it is possible to avoid an excessive amount of adsorption to the infrared absorbing fine particles. Also, the effect of improving the resistance to moist heat by surface coating is not saturated, and the improvement of the coating effect can be expected.
Further, when the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by weight or less, the amount of adsorption to the infrared absorbing fine particles becomes excessive, and the hydrolysis product of the metal chelate compound or the metal cyclic oligomer compound at the time of removing the medium, This is because it is possible to prevent the particles from being easily granulated through the polymer of the hydrolysis product. Good transparency can be ensured by avoiding unwanted granulation between the fine particles.
In addition, it is possible to avoid an increase in production cost due to an increase in the amount of addition and treatment time due to an excess of the metal chelate compound or the metal cyclic oligomer compound. Therefore, from the industrial viewpoint, the addition amount of the metal chelate compound or the metal cyclic oligomer compound is preferably 1000 parts by weight or less.
[3]赤外線吸収微粒子の表面処理方法
 赤外線吸収微粒子の表面処理方法(表面被覆方法)においては複数の処理方法があるが、(A)被覆膜形成用の水分散液へ表面処理剤を添加する処理方法、(B)水溶性の有機溶剤分散液中へ表面処理剤と水とを添加する処理方法、の2方法について説明する。
[3] Surface Treatment Method of Infrared Absorption Fine Particles There are a plurality of treatment methods in the surface treatment method of infrared absorption fine particles (surface coating method), but (A) a surface treatment agent is added to an aqueous dispersion for forming a coating film. There will be described two treatment methods, that is, the treatment method (B) and the treatment method (B) of adding the surface treatment agent and water to the water-soluble organic solvent dispersion liquid.
(A)被覆膜形成用の水分散液へ表面処理剤を添加する処理方法
 被覆膜形成用の水分散液へ表面処理剤を添加する処理方法においては、まず赤外線吸収微粒子を、溶媒である水に分散させた被覆膜形成用の赤外線吸収微粒子水分散液(本発明において「被覆膜形成用水分散液」と記載する場合がある。)を調製する。そして、調製された被覆膜形成用水分散液中へ表面処理剤を添加して混合攪拌を行う。すると、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されるものである。
(A) Treatment Method of Adding Surface Treatment Agent to Water Dispersion for Forming Coating Film In the treatment method of adding surface treatment agent to water dispersion for forming coating film, first, the infrared absorbing fine particles are mixed with a solvent. An infrared absorbing fine particle water dispersion for forming a coating film dispersed in water (sometimes referred to as "water dispersion for forming coating film" in the present invention) is prepared. Then, the surface treating agent is added to the prepared aqueous dispersion for forming a coating film, followed by mixing and stirring. Then, the surface of the infrared absorbing fine particles shows that the hydrolysis product of the metal chelate compound, the polymerization product of the hydrolysis product of the metal chelate compound, the hydrolysis product of the metal cyclic oligomer compound, and the hydrolysis product of the metal cyclic oligomer compound. It is coated with a coating film containing at least one selected from polymers.
 ここで、被覆膜形成用の水分散液へ表面処理剤を添加する処理方法について、(1)被覆膜形成用水分散液の調製、(2)被覆膜形成用水分散液を用いた赤外線吸収微粒子の表面処理方法、(3)被覆膜形成用水分散液における混合攪拌後の処理、の順で説明する。 Here, regarding a treatment method of adding a surface treatment agent to an aqueous dispersion for forming a coating film, (1) preparation of an aqueous dispersion for forming a coating film, (2) infrared rays using the aqueous dispersion for forming a coating film The surface treatment method of the absorbing fine particles and (3) treatment after mixing and stirring in the coating film forming aqueous dispersion will be described in this order.
(1)被覆膜形成用水分散液の調製
 赤外線吸収微粒子の表面へ被覆を施し、表面処理赤外線吸収微粒子を製造するには、まず、赤外線吸収微粒子を水中に分散させて適宜な範囲の濃度、且つ、適宜な範囲のpHを有する被覆膜形成用水分散液を調製する。
 そして、当該濃度、pHの被覆膜形成用水分散液を混合攪拌しながら、ここへ表面処理剤(「[2]赤外線吸収微粒子の表面処理剤」欄を参照)を添加する。すると、微粒子同士の静電反発作用によって赤外線吸収微粒子の分散性が保たれたまま、当該微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されるものである。
(1) Preparation of Aqueous Dispersion for Forming Coating Film In order to coat the surface of the infrared-absorbing fine particles to produce surface-treated infrared-absorbing fine particles, first, the infrared-absorbing fine particles are dispersed in water to prepare an appropriate concentration range, In addition, an aqueous dispersion for forming a coating film having a pH in an appropriate range is prepared.
Then, the surface treatment agent (see the section "[2] Surface treatment agent for infrared absorbing fine particles") is added to the aqueous dispersion for coating film formation having the concentration and pH while mixing and stirring. Then, while maintaining the dispersibility of the infrared absorbing fine particles due to the electrostatic repulsion action between the fine particles, the surface of the fine particles is a hydrolysis product of the metal chelate compound, a polymer of the hydrolysis product of the metal chelate compound, or a metal. It is coated with a coating film containing one or more selected from a hydrolysis product of a cyclic oligomer compound and a polymerization product of a hydrolysis product of a metal cyclic oligomer compound.
 濃度、pHの被覆膜形成用水分散液の調製においては、赤外線吸収微粒子である、例えばタングステン酸化物または/および複合タングステン酸化物を予め細かく粉砕して、水中に分散させ、単分散の状態にしておくことが好ましい。 In the preparation of the coating film-forming aqueous dispersion having a concentration and a pH, infrared absorbing fine particles, for example, tungsten oxide or/and composite tungsten oxide are previously finely pulverized and dispersed in water to obtain a monodispersed state. It is preferable to keep it.
 このとき、タングステン酸化物または/および複合タングステン酸化物の分散させる濃度の範囲としては、0.01質量%以上80質量%以下であることが好ましい。この濃度範囲であれば、分散液の液安定性は優れる。また、適切な液状媒体や、分散剤、カップリング剤、界面活性剤を選択した場合は、温度40℃の恒温槽に入れたときでも6ヶ月以上分散液のゲル化や粒子の沈降が発生せず、分散粒子径を1~800nmの範囲に維持出来る。 At this time, the concentration range of the tungsten oxide and/or the composite tungsten oxide to be dispersed is preferably 0.01% by mass or more and 80% by mass or less. Within this concentration range, the liquid stability of the dispersion is excellent. Moreover, when an appropriate liquid medium, dispersant, coupling agent, or surfactant is selected, gelation of the dispersion liquid or sedimentation of particles will occur for 6 months or longer even when placed in a constant temperature bath at a temperature of 40°C. Instead, the dispersed particle size can be maintained in the range of 1 to 800 nm.
 さらには前記濃度の範囲は、3質量%以上80質量%以下であることがより好ましい。これは、被覆膜形成用水分散液のpHを8以下とすることができ、後に表面処理剤を添加したとき、微粒子同士の静電反発作用によって赤外線吸収微粒子の分散性が保たれるようになるからである。ただし、濃度の範囲が、0.01質量%以上3質量%未満であっても、「[5]表面処理赤外線吸収微粒子分散液(ii)その他の製造方法」欄にて説明する溶媒置換処理や乾燥処理を施すことで、分散性が良好な表面処理赤外線吸収微粒子分散液を得ることが可能である。
 そして、この粉砕、分散処理工程中において分散状態を担保し、微粒子同士を凝集させないことが肝要である。これは、次工程である赤外線吸収微粒子の表面処理の過程において、当該赤外線吸収微粒子が凝集を起こして凝集体の状態で表面被覆され、ひいては、後述する赤外線吸収微粒子分散体中においても当該凝集体が残存し、後述する赤外線吸収微粒子分散体や赤外線吸収基材の透明性が低下する事態を回避する為である。
Further, the concentration range is more preferably 3% by mass or more and 80% by mass or less. This is because the pH of the aqueous dispersion for forming a coating film can be set to 8 or less, and when the surface treatment agent is added later, the dispersibility of the infrared absorbing fine particles is maintained by the electrostatic repulsion action of the fine particles. Because it will be. However, even if the concentration range is 0.01% by mass or more and less than 3% by mass, the solvent replacement treatment or the solvent replacement treatment described in the section of "[5] Surface-treated infrared absorbing fine particle dispersion liquid (ii) other production method" is performed. By performing the drying treatment, it is possible to obtain a surface-treated infrared absorbing fine particle dispersion liquid having good dispersibility.
Then, it is important that the dispersed state is ensured and the fine particles are not aggregated during the pulverization and dispersion treatment process. This is the next step, in the process of surface treatment of the infrared absorbing fine particles, the infrared absorbing fine particles are agglomerated and are surface-coated in the state of aggregates, and thus the aggregates in the infrared absorbing fine particle dispersion described later. This is to avoid the situation in which the transparency of the infrared absorbing fine particle dispersion and the infrared absorbing base material, which will be described later, deteriorates.
 当該粉砕・分散処理の具体的方法としては、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いた、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散処理を行うことは、所望の分散粒子径に到達することに要する時間が短いことから好ましい。 Specific examples of the pulverization/dispersion treatment include a pulverization/dispersion treatment method using a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like. Among them, beads, balls, using Ottawa sand media media, crushing with a media stirring mill such as a beads mill, ball mill, sand mill, paint shaker, etc. is required to reach the desired dispersed particle diameter It is preferable because the time is short.
 被覆膜形成用水分散液のpHの範囲は、8以下とすることが好ましい。表面処理赤外線吸収微粒子同士の静電反発作用によって赤外線吸収微粒子の分散性が保たれるからである。 The pH range of the coating film forming aqueous dispersion is preferably 8 or less. This is because the dispersibility of the infrared absorbing fine particles is maintained by the electrostatic repulsion action of the surface-treated infrared absorbing fine particles.
 ここで、被覆膜形成用水分散液へ表面処理剤を添加すると、被覆膜形成用水分散液のpHが若干アルカリ側に振れる。その結果、被覆膜形成用水分散液のpHが8を超えると表面処理赤外線吸収微粒子が凝集し、分散安定性が担保されない。一方、タングステン酸化物または/および複合タングステン酸化物は、水中で若干溶解するので、表面処理剤添加前の被覆膜形成用水分散液中ではpHが酸側に振れている。また、アルカリ液中では特に溶解しやすく、溶解するほどpHは酸側に触れる。この作用から、タングステン酸化物または/および複合タングステン酸化物が溶解する限り、表面処理剤を添加してもpH8以下を維持することが出来る。その結果、表面処理剤添加前のタングステン酸化物または/および複合タングステン酸化物の濃度範囲が3質量%以上であれば、それらの溶解可能量が多くなるので、表面処理剤の添加後もpH8以下が維持される。そして、微粒子同士の静電反発作用によって赤外線吸収微粒子の分散性が保たれる。
 一方、表面処理剤添加前のタングステン酸化物または/および複合タングステン酸化物の濃度範囲が80質量%以下であれば、粒子間相互作用による凝集は起こらず、静電反発作用によって赤外線吸収微粒子の分散性が保たれる。
 以上のような理由で、表面処理剤添加前のタングステン酸化物または/および複合タングステン酸化物の濃度範囲は3質量%以上80質量%以下であることが好ましいのである。
Here, when the surface treatment agent is added to the coating film forming aqueous dispersion, the pH of the coating film forming aqueous dispersion is slightly shifted to the alkaline side. As a result, when the pH of the coating film-forming aqueous dispersion exceeds 8, the surface-treated infrared-absorbing fine particles agglomerate and the dispersion stability is not ensured. On the other hand, since the tungsten oxide and/or the composite tungsten oxide is slightly dissolved in water, the pH in the aqueous dispersion for forming a coating film before the addition of the surface treatment agent is oscillated toward the acid side. Further, it is particularly easy to dissolve in an alkaline liquid, and the more it is dissolved, the more the pH comes into contact with the acid side. From this effect, as long as the tungsten oxide and/or the composite tungsten oxide is dissolved, the pH of 8 or less can be maintained even if the surface treatment agent is added. As a result, if the concentration range of the tungsten oxide and/or the composite tungsten oxide before the addition of the surface treatment agent is 3% by mass or more, the amount that can be dissolved increases, so that the pH is 8 or less even after the addition of the surface treatment agent. Is maintained. Then, the electrostatic repulsion action of the fine particles maintains the dispersibility of the infrared absorbing fine particles.
On the other hand, when the concentration range of the tungsten oxide and/or the composite tungsten oxide before the addition of the surface treatment agent is 80% by mass or less, the aggregation due to the interparticle interaction does not occur, and the infrared absorbing fine particles are dispersed by the electrostatic repulsion action. Sex is maintained.
For the above reasons, it is preferable that the concentration range of the tungsten oxide and/or the composite tungsten oxide before the surface treatment agent is added is 3% by mass or more and 80% by mass or less.
(2)被覆膜形成用水分散液を用いた赤外線吸収微粒子の表面処理方法
 本発明者らは、被覆膜形成用水分散液を攪拌混合しながら、ここへ、表面処理剤を添加し、さらに、添加された金属キレート化合物、金属環状オリゴマー化合物の加水分解反応を即座に完了させるのが好ましいことを知見した。
 尚、赤外線吸収微粒子を均一に表面被覆する観点から、表面処理剤は滴下添加することが好ましい。
 これは、添加した表面処理剤の反応順序が影響していると考えられる。即ち、被覆膜形成用水分散液中においては、表面処理剤の加水分解反応が必ず先立ち、その後に、生成した加水分解生成物の重合反応が起こる。この結果、水を媒質としない被覆膜形成用水分散液を使用する場合に比較して、被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することが出来るからであると考えられる。当該被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することで、個々の赤外線吸収微粒子の表面を高密度に被覆する被覆膜を形成することが出来たと考えている。
(2) Method of Surface Treatment of Infrared Absorbing Fine Particles Using Aqueous Dispersion for Forming Coating Film The present inventors added a surface treatment agent to the aqueous dispersion for forming a coating film while stirring and mixing, It was found that it is preferable to immediately complete the hydrolysis reaction of the added metal chelate compound and metal cyclic oligomer compound.
From the viewpoint of uniformly coating the infrared absorbing fine particles on the surface, it is preferable to add the surface treatment agent dropwise.
It is considered that this is influenced by the reaction order of the added surface treatment agent. That is, in the coating film forming aqueous dispersion, the hydrolysis reaction of the surface treatment agent always precedes, and thereafter the polymerization reaction of the generated hydrolysis product occurs. As a result, it is possible to reduce the amount of carbon C remaining in the molecules of the surface treatment agent present in the coating film, as compared with the case of using an aqueous dispersion for forming a coating film that does not use water as a medium. it is conceivable that. By reducing the amount of carbon C remaining in the molecules of the surface treatment agent present in the coating film, it is considered possible to form a coating film that densely covers the surface of each infrared absorbing fine particle. ..
 調製された被覆膜形成用水分散液を混合攪拌しながら表面処理剤を添加する際、赤外線吸収微粒子を均一に被覆する為に、被覆膜形成用水分散液を水、または水を含む適宜な有機溶媒により適宜な濃度まで希釈することも望ましい構成である。赤外線吸収微粒子であるタングステン酸化物または/および複合タングステン酸化物の分散濃度が3質量%以上30質量%以下、より好ましくは5質量%以上20質量%以下となるまで希釈すれば、赤外線吸収微粒子の全てが均一に表面被覆され、且つ、分散液のpHを8以下とすることができ、微粒子同士の静電反発作用によって赤外線吸収微粒子の分散性が保たれるからである。 When adding the surface treatment agent while mixing and stirring the prepared coating film forming aqueous dispersion, in order to uniformly coat the infrared absorbing fine particles, the coating film forming aqueous dispersion is water, or an appropriate amount containing water. It is also desirable to dilute to an appropriate concentration with an organic solvent. If the dispersion concentration of the tungsten oxide or/and the composite tungsten oxide as the infrared absorbing fine particles is diluted to 3% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less, This is because everything is uniformly surface-coated, the pH of the dispersion liquid can be set to 8 or less, and the dispersibility of the infrared absorbing fine particles is maintained by the electrostatic repulsion action of the fine particles.
 この表面処理剤の滴下添加の際、赤外線吸収微粒子を均一に被覆する為に、表面処理剤自体を適宜な溶剤で希釈したものを滴下添加して当該表面処理剤の時間当たりの添加量を調整することも好ましい。希釈に用いる溶剤としては、当該表面処理剤と反応せず、被覆膜形成用水分散液の媒質である水とも相溶性の高いものが好ましい。具体的にはアルコール系、ケトン系、グリコール系等の溶剤が好ましく使用出来る。 When the surface treatment agent is added dropwise, in order to uniformly coat the infrared absorbing fine particles, the surface treatment agent itself diluted with an appropriate solvent is added dropwise to adjust the amount of the surface treatment agent added per hour. It is also preferable to The solvent used for dilution is preferably one that does not react with the surface treatment agent and has high compatibility with water that is the medium of the coating film forming aqueous dispersion. Specifically, solvents such as alcohols, ketones and glycols can be preferably used.
 表面処理剤の希釈倍率は特に限定されるものではない。尤も、生産性を担保する観点から、希釈倍率は100倍以下とするのが好ましい。 The dilution ratio of the surface treatment agent is not particularly limited. However, from the viewpoint of ensuring productivity, the dilution ratio is preferably 100 times or less.
 尚、上述した被覆膜形成用水分散液中において、金属キレート化合物、金属環状オリゴマー化合物、これらの加水分解生成物、当該加水分解生成物の重合物は、添加直後に金属イオンにまで分解されるが、飽和水溶液となったところで、当該金属イオン迄の分解は終了する。即ち、金属イオン迄の分解が終了した後、添加した表面処理剤は加水分解生成物やその重合物となり、赤外線吸収微粒子の表面を被覆する被覆膜となる。
 一方、当該水を媒質とする被覆膜形成用水分散液中において、赤外線吸収微粒子は静電反発によって分散を保っている。
 その結果、全ての赤外線吸収微粒子の表面は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆され、本発明に係る表面処理赤外線吸収微粒子が生成すると考えられる。
In the above-mentioned aqueous dispersion for forming a coating film, a metal chelate compound, a metal cyclic oligomer compound, a hydrolysis product of these, and a polymer of the hydrolysis product are decomposed into metal ions immediately after addition. However, when it becomes a saturated aqueous solution, the decomposition up to the metal ion is completed. That is, after the decomposition up to the metal ions is completed, the added surface treatment agent becomes a hydrolysis product or a polymer thereof and becomes a coating film for coating the surface of the infrared absorbing fine particles.
On the other hand, in the coating film-forming aqueous dispersion liquid containing water as a medium, the infrared absorbing fine particles maintain dispersion due to electrostatic repulsion.
As a result, the surface of all the infrared absorbing fine particles was hydrolyzed with a metal chelate compound, a polymer of the hydrolyzed product of the metal chelate compound, a hydrolysis product of the metal cyclic oligomer compound, and a hydrolysis product of the metal cyclic oligomer compound. It is considered that the surface-treated infrared absorbing fine particles according to the present invention are produced by being coated with a coating film containing at least one selected from the polymer of the products.
(3)被覆膜形成用水分散液における混合攪拌後の処理
 上述した表面処理方法で得られた本発明に係る表面処理赤外線吸収微粒子は、赤外線吸収微粒子分散体や赤外線吸収基材の原料として、微粒子状態、液体媒質または固体媒質に分散された状態で用いることが出来る。
 ここで、生成した表面処理赤外線吸収微粒子は、さらに加熱処理を施して被覆膜の密度や化学的安定性を高めるといった操作は必要ない。当該加熱処理をせずとも既に所望の耐湿熱性を得られる程、当該被覆膜の密度や密着性は十分に高まっているからである。
(3) Treatment After Mixing and Stirring in Coating Film Forming Aqueous Dispersion The surface-treated infrared-absorbing fine particles according to the present invention obtained by the surface-treating method described above are used as a raw material for an infrared-absorbing fine-particle dispersion or an infrared-absorbing substrate. It can be used in the form of fine particles, or dispersed in a liquid medium or a solid medium.
Here, the generated surface-treated infrared absorbing fine particles do not need to be further heat-treated to increase the density and chemical stability of the coating film. This is because the density and adhesiveness of the coating film are sufficiently increased so that the desired moist heat resistance can be obtained without the heat treatment.
(B)水溶性の有機溶剤分散液中へ表面処理剤と水とを添加する処理方法
 水溶性の有機溶剤分散液中へ表面処理剤と水とを添加する処理方法においては、まず、水溶性の有機溶媒中に赤外線吸収微粒子を分散させて分散液を調製する。そして当該調製された分散液へ、表面処理剤と水とを並行添加しながら混合攪拌を行うものである。この結果、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されるものである。
(B) Treatment Method of Adding Surface Treatment Agent and Water to Water-Soluble Organic Solvent Dispersion In the treatment method of adding the surface treatment agent and water to the water-soluble organic solvent dispersion fluid, Infrared absorbing fine particles are dispersed in the organic solvent to prepare a dispersion liquid. Then, the surface treatment agent and water are added in parallel to the prepared dispersion liquid and mixed and stirred. As a result, the surface of the infrared absorbing fine particles has a metal chelate compound hydrolysis product, a metal chelate compound hydrolysis product polymer, a metal cyclic oligomer compound hydrolysis product, and a metal cyclic oligomer compound hydrolysis product. And a coating film containing at least one polymer selected from the above.
 当該処理方法においては、並行添加する表面処理剤と水のそれぞれの添加速度が肝要である。上述の通り、表面処理剤は添加直後に加水分解反応することが望ましいので、表面処理剤が添加されるときには当該加水分解反応が完了するのに十分な水を添加しなければならない。一方、先に水を過剰に添加すると赤外線吸収微粒子によっては凝集や赤外線吸収特性の低下が生じることがある。例えば、赤外線吸収微粒子が立方晶ナトリウムタングステンブロンズである場合、水と反応して赤外線吸収特性の低下を生じる。よって、赤外線吸収微粒子に悪影響を与えない程度に少量の水を添加していき、添加された水が順次表面処理剤と反応して消費されるようにすることが肝要である。尚、表面処理剤と水の添加速度調整が肝要となるので、両方とも滴下添加する、即ち並行滴下することが好ましい。
 尤も、水の過剰添加が、赤外線吸収微粒子等に悪影響を与えない場合においては、水を先行して添加しておき、表面処理剤を後に添加しても構わない。
In the treatment method, it is essential that the surface treatment agent and water are added in parallel. As described above, it is desirable that the surface treatment agent undergo a hydrolysis reaction immediately after addition, and therefore, when the surface treatment agent is added, sufficient water must be added to complete the hydrolysis reaction. On the other hand, if water is excessively added first, aggregation or deterioration of infrared absorption characteristics may occur depending on the infrared absorption fine particles. For example, when the infrared absorbing fine particles are cubic sodium tungsten bronze, they react with water to cause a decrease in infrared absorbing characteristics. Therefore, it is important to add a small amount of water to the extent that it does not adversely affect the infrared absorbing fine particles so that the added water sequentially reacts with the surface treatment agent and is consumed. Since it is essential to adjust the addition rate of the surface treatment agent and water, it is preferable to add both of them dropwise, that is, to add them in parallel.
However, if excessive addition of water does not adversely affect the infrared absorbing fine particles and the like, water may be added first and the surface treatment agent may be added later.
 以上、(A)被覆膜形成用の水分散液へ表面処理剤を添加する処理方法、(B)水溶性の有機溶剤分散液中へ表面処理剤と水とを添加する処理方法、の2方法を挙げて説明したように、本発明に係る表面処理赤外線吸収微粒子は、混合攪拌後の処理の後に加熱処理を必要としないので凝集を起こさず、従って当該凝集を解砕する為の分散処理が不要または短時間で済む。この結果、本発明に係る表面処理赤外線吸収微粒子の被覆膜は、個々の赤外線吸収微粒子を傷付けることなく、均一、且つ、強固に被覆している。そして、当該表面処理赤外線吸収微粒子を用いて製造される赤外線吸収微粒子分散体や赤外線吸収基材は、従来の方法で得られるものよりも、優れた耐湿熱性を示すと考えられる。 As described above, (A) a treatment method of adding a surface treatment agent to an aqueous dispersion for forming a coating film, and (B) a treatment method of adding a surface treatment agent and water to a water-soluble organic solvent dispersion liquid. As described with reference to the method, the surface-treated infrared absorbing fine particles according to the present invention do not cause agglomeration because it does not require a heat treatment after the treatment after mixing and stirring, and therefore a dispersion treatment for crushing the agglomeration. Unnecessary or in a short time. As a result, the coating film of the surface-treated infrared absorbing fine particles according to the present invention uniformly and firmly coats the individual infrared absorbing fine particles without damaging them. And, it is considered that the infrared absorbing fine particle dispersion and the infrared absorbing base material produced by using the surface-treated infrared absorbing fine particles show better wet heat resistance than those obtained by the conventional method.
[4]分散溶媒
 本発明に係る表面処理赤外線吸収微粒子分散液の分散溶媒は水を含む溶媒であり、さらには、実質的に水からなる溶媒である。
 即ち、分散溶媒には、本発明に係る表面処理赤外線吸収微粒子分散液の製造工程に起因する微量の有機溶媒が含有されている場合、および、所望により水溶性有機物を1種類以上含んでいる場合がある。当該有機溶媒や水溶性有機物は、アルコール類、グリコール類、水溶性樹脂、等であるが、それらは人体に対する毒性の低いものであることが好ましい。
[4] Dispersion solvent The dispersion solvent of the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is a solvent containing water, and is a solvent consisting essentially of water.
That is, when the dispersion solvent contains a trace amount of an organic solvent resulting from the production process of the surface-treated infrared absorbing fine particle dispersion according to the present invention, and optionally contains one or more water-soluble organic substances. There is. The organic solvent or water-soluble organic substance is alcohols, glycols, water-soluble resins, or the like, but it is preferable that they have low toxicity to the human body.
[5]表面処理赤外線吸収微粒子分散液
 本発明に係る表面処理赤外線吸収微粒子分散液は、本発明に係る表面処理赤外線吸収微粒子が分散溶媒である水中に分散しているものである。
 本発明に係る表面処理赤外線吸収微粒子分散液について、(1)表面処理赤外線吸収微粒子分散液、(2)表面処理赤外線吸収微粒子分散液の製造方法、の順に説明する。
[5] Surface-treated infrared absorbing fine particle dispersion liquid The surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is obtained by dispersing the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention in water as a dispersion solvent.
The surface-treated infrared absorbing fine particle dispersion according to the present invention will be described in the order of (1) surface-treated infrared absorbing fine particle dispersion, and (2) method for producing surface-treated infrared absorbing fine particle dispersion.
(1)表面処理赤外線吸収微粒子分散液
 本発明に係る表面処理赤外線吸収微粒子分散液のpH値は4以上10以下であることが好ましい。また、表面処理赤外線吸収微粒子の濃度が0.01質量%以上80質量%以下であることが好ましい。濃度がこの範囲にあれば、表面処理赤外線吸収微粒子が水中で分散性を保つことができる。
(1) Surface-treated infrared absorbing fine particle dispersion liquid The pH value of the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is preferably 4 or more and 10 or less. The concentration of the surface-treated infrared absorbing fine particles is preferably 0.01% by mass or more and 80% by mass or less. When the concentration is within this range, the surface-treated infrared absorbing fine particles can maintain dispersibility in water.
 本発明に係る表面処理赤外線吸収微粒子分散液は、表面処理赤外線吸収微粒子の分散性を向上させ、再凝集による分散粒子径の粗大化を回避する為、さらに分散剤を含んでも良い。また、pH調整をする際にも添加剤を使用することができる。 The surface-treated infrared absorbing fine particle dispersion liquid according to the present invention may further contain a dispersant in order to improve the dispersibility of the surface-treated infrared absorbing fine particles and avoid coarsening of the dispersed particle diameter due to re-aggregation. Moreover, an additive can be used also when adjusting pH.
 本発明に係る表面処理赤外線吸収微粒子分散液へ分散剤や添加剤を添加する場合は、水溶性の分散剤が良い。さらには酸性の官能基を有し、酸価が10mg/KOH以上であるものが好ましい。そして、アンモニウム塩またはアクリル系の高分子分散剤を好ましく使用出来る。
 市販の分散剤における好ましい具体例としては、ルーブリゾール社製SOLSPERSE(登録商標)(以下同じ)20000、27000、40000、41000、41090、43000、44000、46000、47000、53095、54000、64000、65000、66000等;ビックケミー・ジャパン社製DISPERBYK(登録商標)(以下同じ)-102、180、184、185、187、190、191、192、193、194N、2010、2012、2015、2060、2096、Anti-Terra(登録商標)-250等;BASFジャパン社製JONCRYL(登録商標)(以下同じ)67、678、586、611、682、683、690等;を挙げることが出来る。
When a dispersant or an additive is added to the surface-treated infrared absorbing fine particle dispersion according to the present invention, a water-soluble dispersant is preferable. Further, those having an acidic functional group and having an acid value of 10 mg/KOH or more are preferable. An ammonium salt or acrylic polymer dispersant can be preferably used.
Preferable specific examples of commercially available dispersants include SOLSPERSE (registered trademark) (the same applies hereinafter) 20000, 27000, 40000, 41000, 41090, 43000, 44000, 46000, 47000, 53095, 54000, 64000, 65000, manufactured by Lubrizol. 66000 etc.; BYK Japan Japan's DISPERBYK (registered trademark) (the same applies hereinafter)-102, 180, 184, 185, 187, 190, 191, 192, 193, 194N, 2010, 2012, 2015, 2060, 2096, Anti- Terra® (registered trademark)-250 and the like; BASF Japan Ltd. JONCRYL (registered trademark) (hereinafter the same) 67, 678, 586, 611, 682, 683, 690 and the like;
 さらに、分散安定性向上のため、分散剤として2種類以上を組み合わせて用いることも出来る。例えば、2種類の分散剤を用いるとき、1つの種類として酸性の官能基を有する分散剤を用い、他の種類として酸性および塩基性の官能基を有さないノニオン性の分散剤を用いることで、優れた分散安定性を発揮する場合がある。勿論、分散剤として、全て酸性の官能基を有する分散剤を用いる場合であっても、優れた分散安定性を発揮する場合がある。 Furthermore, in order to improve dispersion stability, two or more kinds of dispersants can be used in combination. For example, when two kinds of dispersants are used, one kind uses a dispersant having an acidic functional group, and the other kind uses a nonionic dispersant having no acidic and basic functional groups. , It may exhibit excellent dispersion stability. Of course, even when a dispersant having all acidic functional groups is used as the dispersant, excellent dispersion stability may be exhibited in some cases.
(2)表面処理赤外線吸収微粒子分散液の製造方法
 本発明に係る表面処理赤外線吸収微粒子分散液は、本発明に係る表面処理赤外線吸収微粒子を分散溶媒である水に分散することにより得られる。しかし、赤外線吸収微粒子への表面処理直後に得られる表面処理赤外線吸収微粒子分散液には、表面処理剤の加水分解反応により生成されたアルコール等の有機溶媒を含んでいる場合や、使用する表面処理剤の種類によっては水以上の沸点を有する有機溶媒を含んでいる場合がある。
(2) Method for producing surface-treated infrared absorbing fine particle dispersion The surface-treated infrared absorbing fine particle dispersion according to the present invention is obtained by dispersing the surface-treated infrared absorbing fine particle according to the present invention in water as a dispersion solvent. However, the surface-treated infrared-absorbing fine particle dispersion obtained immediately after the surface treatment to the infrared-absorbing fine particles contains an organic solvent such as alcohol produced by the hydrolysis reaction of the surface-treating agent, or the surface treatment to be used. Depending on the type of agent, it may contain an organic solvent having a boiling point higher than that of water.
 本発明に係る表面処理赤外線吸収微粒子分散液の用途によっては、有機溶媒の含有量を出来るだけ低減するのが好ましい場合がある。そこで、そのような場合には溶媒置換処理、洗浄処理、乾燥処理等の適宜な方法により有機溶剤の含有量を低減することが出来る。 Depending on the use of the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention, it may be preferable to reduce the content of the organic solvent as much as possible. Therefore, in such a case, the content of the organic solvent can be reduced by an appropriate method such as solvent substitution treatment, washing treatment, or drying treatment.
 以下、表面処理赤外線吸収微粒子分散液の製造方法について、本発明に係る表面処理赤外線吸収微粒子における表面処理後に、そのまま表面処理赤外線吸収微粒子分散液を製造する(i)直接に分散液とする製造方法と、本発明に係る表面処理赤外線吸収微粒子における表面処理後に有機溶剤を除去する工程を有する(ii)その他の製造方法、の順に説明する。 Regarding the method for producing the surface-treated infrared absorbing fine particle dispersion liquid, the surface-treated infrared absorbing fine particle dispersion liquid is directly produced after the surface treatment of the surface-treated infrared absorbing fine particle according to the present invention (i) A production method of directly forming the dispersion liquid And (ii) other manufacturing method having a step of removing the organic solvent after the surface treatment of the surface-treated infrared absorbing fine particles according to the present invention.
 (i)直接に分散液とする製造方法
 本発明に係る表面処理赤外線吸収微粒子分散液は、「[3]赤外線吸収微粒子の表面処理方法(A)被覆膜形成用の水分散液へ表面処理剤を添加する処理方法(2)被覆膜形成用水分散液を用いた赤外線吸収微粒子の表面処理方法」欄にて説明した方法を採った場合、表面処理赤外線吸収微粒子と水とを含む分散液を得られるので、これをそのまま本発明に係る表面処理赤外線吸収微粒子分散液として用いることが出来る。このとき、有機溶剤の含有量を低減するため、表面処理剤由来の有機成分は出来るだけ少ない方が望ましい。よって、表面処理剤としては低分子のものを用い、表面処理剤は有機溶剤で希釈せずに用いることが好ましい。例えば、
 この場合、当該表面処理赤外線吸収微粒子分散液へ必要に応じて分散剤や添加剤を添加し、表面処理赤外線吸収微粒子の分散性を向上させ、安定させることができる。
(I) Production method of directly forming dispersion liquid The surface-treated infrared absorbing fine particle dispersion liquid according to the present invention is "[3] Surface treatment method of infrared absorbing fine particles (A) Surface treatment to aqueous dispersion liquid for forming coating film". Dispersion liquid containing surface-treated infrared absorbing fine particles and water when the method described in the section "(2) Surface treatment method of infrared absorbing fine particles using aqueous dispersion for forming coating film" is adopted. Since it can be obtained, it can be directly used as the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention. At this time, in order to reduce the content of the organic solvent, it is desirable that the organic component derived from the surface treatment agent is as small as possible. Therefore, it is preferable to use a low molecular weight surface treatment agent and use the surface treatment agent without diluting it with an organic solvent. For example,
In this case, a dispersant or an additive may be added to the surface-treated infrared absorbing fine particle dispersion liquid, if necessary, to improve and stabilize the dispersibility of the surface-treated infrared absorbing fine particles.
 表面処理赤外線吸収微粒子を分散処理する為の具体的方法としては、上述した粉砕・分散処理方法と同様の方法が挙げられ、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた方法が挙げられる。
 当該分散処理の際、表面処理赤外線吸収微粒子の表面にある被覆膜が傷付いたり、被覆膜が剥離したりしないよう、再分散条件を検討することが好ましい。例えば、分散処理にかける時間は、極めて短時間とすることが好ましい。
Specific examples of the method for dispersing the surface-treated infrared-absorbing fine particles include the same methods as the above-described pulverizing/dispersing method.For example, a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like may be used. The method used may be mentioned.
During the dispersion treatment, it is preferable to examine redispersion conditions so that the coating film on the surface of the surface-treated infrared absorbing fine particles is not damaged or the coating film is not peeled off. For example, it is preferable that the time required for the dispersion treatment is extremely short.
 (ii)その他の製造方法
 上述の通り、本発明に係る表面処理赤外線吸収微粒子分散液は、その製造方法により本発明に係る赤外線吸収微粒子の表面処理直後の分散液中に有機溶媒が含有されることがある。
 例えば、「[3]赤外線吸収微粒子の表面処理方法(B)水溶性の有機溶剤分散液中へ表面処理剤と水とを添加する処理方法」欄にて説明した方法を採った場合、表面処理剤として、アルミニウムエチルアセトアセテートジイソプロピレートを用いた場合、等が挙げられる。
(Ii) Other Manufacturing Method As described above, the surface-treated infrared absorbing fine particle dispersion according to the present invention contains an organic solvent in the dispersion immediately after the surface treatment of the infrared absorbing fine particles according to the present invention by the manufacturing method. Sometimes.
For example, when the method described in the section “[3] Surface treatment method of infrared absorbing fine particles (B) Treatment method of adding surface treatment agent and water to water-soluble organic solvent dispersion” is adopted, surface treatment is carried out. When aluminum ethyl acetoacetate diisopropylate is used as the agent, the following are mentioned.
 特に、表面処理剤として、アルミニウムエチルアセトアセテートジイソプロピレートを用いた場合は、加水分解反応によって沸点181℃のアセト酢酸エチルが残存することとなり、表面処理直後の分散液中に含有されている。これらの溶媒は水の沸点以上の沸点を有するので、加熱処理によって水を残したまま当該溶媒のみを蒸発させて除去することは極めて困難である。 In particular, when aluminum ethyl acetoacetate diisopropylate is used as the surface treatment agent, the hydrolysis reaction leaves ethyl acetoacetate having a boiling point of 181° C., which is contained in the dispersion liquid immediately after the surface treatment. Since these solvents have a boiling point higher than that of water, it is extremely difficult to evaporate and remove only the solvent while leaving water by the heat treatment.
 このような場合に、赤外線吸収微粒子の表面処理直後の分散液から有機溶剤を除去し、本発明に係る表面処理赤外線吸収微粒子分散液を製造する方法について〈1〉溶媒置換処理による表面処理赤外線吸収微粒子分散液の製造方法、〈2〉洗浄処理による表面処理赤外線吸収微粒子分散液の製造方法、〈3〉乾燥処理による表面処理赤外線吸収微粒子分散液の製造方法、の順に説明する。 In such a case, the method for producing the surface-treated infrared absorption fine particle dispersion according to the present invention by removing the organic solvent from the dispersion immediately after the surface treatment of the infrared absorption fine particles <1> Surface treatment infrared absorption by solvent substitution treatment A method for producing a fine particle dispersion, <2> a method for producing a surface-treated infrared absorbing fine particle dispersion by a washing treatment, and <3> a method for producing a surface treated infrared absorbing fine particle dispersion by a drying treatment will be described in this order.
 〈1〉溶媒置換処理による表面処理赤外線吸収微粒子分散液の製造方法
 本発明に係る表面処理赤外線吸収微粒子分散液を溶媒置換処理によって製造するには、まず、表面処理直後の表面処理赤外線吸収微粒子分散液を固液分離する。当該固液分離を行う為には、表面処理前の被覆膜形成用水分散液中における赤外線吸収微粒子の分散濃度を3質量%未満とするか、または、表面処理直後の表面処理赤外線吸収微粒子分散液中へpH調整剤を添加してpH値を9以上にすればよい。
<1> Method for Producing Surface-treated Infrared Absorbing Fine Particle Dispersion by Solvent Substitution Treatment In order to produce the surface-treated infrared absorbing fine particle dispersion according to the present invention by solvent substitution treatment, first, the surface-treated infrared absorbing fine particle dispersion immediately after the surface treatment is dispersed. The liquid is solid-liquid separated. In order to perform the solid-liquid separation, the dispersion concentration of the infrared absorbing fine particles in the coating film forming aqueous dispersion before the surface treatment is set to less than 3% by mass, or the surface treated infrared absorbing fine particles are dispersed immediately after the surface treatment. A pH adjustor may be added to the liquid to adjust the pH value to 9 or more.
 そして、固液分離させた分散液から、純水を用いたデカンテーションによる上澄み液の除去と、純水およびpH調整剤の添加による固液分離操作(溶媒置換処理)とを繰り返すことにより、有機溶媒の含有量を低減出来る。デカンテーションと純水添加との回数を増やすほど有機溶媒の含有量を限りなく低減出来るが、3回以上繰り返すことで実用的な含有量まで低減させることが出来る。 Then, by removing the supernatant liquid by decantation using pure water from the solid-liquid separated dispersion and repeating the solid-liquid separation operation (solvent replacement treatment) by adding pure water and a pH adjusting agent, the organic The content of the solvent can be reduced. The content of the organic solvent can be infinitely reduced as the number of decantations and the addition of pure water is increased, but the content can be reduced to a practical content by repeating three times or more.
 〈2〉溶媒置換処理や洗浄処理による表面処理赤外線吸収微粒子分散液の製造方法
 「〈1〉溶媒置換処理による表面処理赤外線吸収微粒子分散液の製造方法」欄にて説明した固液分離させた分散液を濾過処理することによって、表面処理赤外線吸収微粒子のスラリーを抽出する。抽出された当該スラリーへ、フィルタープレス等による脱水処理と純水添加による洗浄処理とを繰り返すことでも、有機溶媒の含有量を低減出来る。脱水処理と純水添加の回数を増やすほど有機溶媒の含有量を限りなく低減出来るが、3回以上繰り返すことで実用的な残存量まで低減出来る。
<2> Method for producing surface-treated infrared absorbing fine particle dispersion liquid by solvent substitution treatment or washing treatment Solid-liquid separated dispersion described in “<1> Method for producing surface-treated infrared absorbing fine particle dispersion liquid by solvent substitution treatment” The slurry of the surface-treated infrared absorbing fine particles is extracted by filtering the liquid. The content of the organic solvent can also be reduced by repeating dehydration treatment by a filter press or the like and washing treatment by adding pure water to the extracted slurry. The more the number of dehydration treatments and the addition of pure water, the more the content of the organic solvent can be reduced as much as possible.
 〈3〉乾燥処理による表面処理赤外線吸収微粒子分散液の製造方法
 表面処理直後の表面処理赤外線吸収微粒子分散液へ、当該表面処理赤外線吸収微粒子が強い凝集を起こさない条件で乾燥処理を施し、表面処理赤外線吸収微粒子粉末を得る。そして、当該表面処理赤外線吸収微粒子粉末を純水中に添加して適宜な方法で分散させれば、本発明に係る表面処理赤外線吸収微粒子分散液を得ることが出来る。
<3> Method for producing surface-treated infrared absorbing fine particle dispersion by surface treatment by drying treatment The surface-treated infrared absorbing fine particle dispersion immediately after the surface treatment is subjected to a drying treatment under conditions that do not cause strong aggregation of the surface-treated infrared absorbing fine particles. Obtain infrared absorbing fine particle powder. Then, the surface-treated infrared absorption fine particle powder is added to pure water and dispersed by an appropriate method to obtain the surface-treated infrared absorption fine particle dispersion liquid according to the present invention.
 乾燥処理においては、水以上の沸点を有する有機溶媒も蒸発させる必要がある場合もある。その場合は、水の沸点(1気圧では100℃)よりも高い温度で表面処理赤外線吸収微粒子分散液を乾燥させることとなる。このようなときは、より低温で全ての溶媒を除去できる観点から、乾燥処理の雰囲気は減圧雰囲気とすることが好ましい。さらに、赤外線吸収微粒子(例えば、タングステン酸化物または/および複合タングステン酸化物)を酸化劣化させない観点から、乾燥処理の雰囲気は減圧の不活性ガス雰囲気または真空雰囲気とすることが好ましい。 -In the drying process, it may be necessary to evaporate the organic solvent having a boiling point higher than that of water. In that case, the surface-treated infrared absorbing fine particle dispersion liquid is dried at a temperature higher than the boiling point of water (100° C. at 1 atmospheric pressure). In such a case, the atmosphere for the drying treatment is preferably a reduced pressure atmosphere from the viewpoint of being able to remove all the solvent at a lower temperature. Further, from the viewpoint of not oxidatively degrading the infrared absorbing fine particles (for example, tungsten oxide and/or composite tungsten oxide), the atmosphere for the drying treatment is preferably a reduced pressure inert gas atmosphere or a vacuum atmosphere.
 一方、乾燥処理の温度は、表面処理赤外線吸収微粒子が凝集して強凝集体を形成する温度を超えないように留意することが肝要である。これは、本発明に係る表面処理赤外線吸収微粒子分散体を用いて製造される赤外線吸収微粒子分散体や赤外線吸収基材において、多くの場合は透明性が求められる為である。 On the other hand, it is important to pay attention to the temperature of the drying treatment so that it does not exceed the temperature at which the surface-treated infrared absorbing fine particles aggregate to form strong aggregates. This is because, in many cases, transparency is required in the infrared absorbing fine particle dispersion and the infrared absorbing base material produced by using the surface-treated infrared absorbing fine particle dispersion according to the present invention.
 表面処理赤外線吸収微粒子が、一旦、強凝集体を形成すると、その再分散は極めて困難となる。そして、表面処理赤外線吸収微粒子の凝集体を用いて、赤外線吸収微粒子分散体や赤外線吸収基材を作製すると、曇り度(ヘイズ)の高いものが得られてしまう場合がある。 Once the surface-treated infrared-absorbing fine particles form strong agglomerates, their redispersion becomes extremely difficult. When an infrared-absorbing fine particle dispersion or an infrared-absorbing base material is produced by using an aggregate of surface-treated infrared-absorbing fine particles, a high haze value may be obtained in some cases.
 そこで、当該事態を回避する為には、表面処理赤外線吸収微粒子が強凝集体を形成する温度を超えないように乾燥処理し、得られた表面処理赤外線吸収微粒子粉末を乾式または/および湿式で解砕した後、純水中に再分散させることが好ましい。解砕・再分散処理の具体的方法としては、上述した粉砕・分散処理方法と同様の方法が挙げられ、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた方法が挙げられる。このとき、表面処理赤外線吸収微粒子の表面にある被覆膜が傷付いたり、被覆膜が剥離したりしないよう、再分散条件を検討する必要がある。例えば、解砕・再分散処理にかける時間を極めて短時間とすることが望ましい。 Therefore, in order to avoid this situation, the surface-treated infrared-absorbing fine particles are dried so as not to exceed the temperature at which strong aggregates are formed, and the obtained surface-treated infrared-absorbing fine particle powder is dried and/or wet-processed. After crushing, it is preferable to redisperse it in pure water. Specific examples of the crushing/redispersion treatment include the same methods as the crushing/dispersion treatment method described above.For example, a method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, or an ultrasonic homogenizer may be used. Can be mentioned. At this time, it is necessary to study redispersion conditions so that the coating film on the surface of the surface-treated infrared absorbing fine particles is not damaged or peeled off. For example, it is desirable to make the time required for the crushing/redispersion treatment extremely short.
(3)表面処理赤外線吸収微粒子分散液の使用方法
 上述のようにして製造された本発明に係る表面処理赤外線吸収微粒子分散液は、適宜な基材の表面に塗布し、硬化させて赤外線吸収基材として利用することが出来る。また、赤外線吸収微粒子は赤外線を吸収して熱に変換する機能を有している為、形成した硬化膜は光熱変換層として利用することも出来る。このとき、本発明に係る表面処理赤外線吸収微粒子分散液には有機溶媒成分が殆ど含まれないので、工程の作業者の健康を害さず塗布処理を行うことが出来る。
(3) Method of Using Surface-treated Infrared Absorbing Fine Particle Dispersion The surface-treated infrared absorbing fine particle dispersion according to the present invention produced as described above is applied to the surface of an appropriate substrate and cured to form an infrared absorbing group. It can be used as a material. Further, since the infrared absorbing fine particles have a function of absorbing infrared rays and converting them into heat, the formed cured film can be used as a photothermal conversion layer. At this time, since the surface-treated infrared ray absorbing fine particle dispersion liquid according to the present invention contains almost no organic solvent component, the coating process can be performed without impairing the health of the worker in the process.
 また、当該表面処理赤外線吸収微粒子分散液に分散剤が含有されている場合、これを乾燥し、粉砕処理して、粉末状の表面処理赤外線吸収微粒子分散体(本発明において「表面処理赤外線吸収微粒子分散粉」と記載する場合がある。)とし、赤外線吸収製品や光熱変換製品へ添加する原料として用いることも出来る。即ち、本発明に係る表面処理赤外線吸収微粒子が、固体媒質中に分散された粉末状の分散体である表面処理赤外線吸収微粒子分散粉を得、当該表面処理赤外線吸収微粒子分散粉を、再度、液体媒質中に分散させ、赤外線吸収製品用の分散液として使用しても良いし、後述するように樹脂中に練り込んで使用しても良い。このとき、本発明に係る表面処理赤外線吸収微粒子分散液には有機溶媒成分が殆ど含まれないので、工程の作業者の健康を害さず乾燥処理を行うことが出来る。また、乾燥処理によって得られる表面処理赤外線吸収微粒子分散粉中にも残留溶媒として有機成分は殆ど含まれないので、工程の作業者の健康を害さず粉砕処理、分散処理、樹脂練り込み処理を行うことが出来る。 Further, when the surface-treated infrared absorbing fine particle dispersion liquid contains a dispersant, it is dried and pulverized to obtain a powdery surface-treated infrared absorbing fine particle dispersion (in the present invention, "surface-treated infrared absorbing fine particles"). It may be described as "dispersed powder".), and it can also be used as a raw material to be added to an infrared absorbing product or a photothermal conversion product. That is, the surface-treated infrared absorption fine particles according to the present invention, the surface-treated infrared absorption fine particles dispersion powder is a powdery dispersion dispersed in a solid medium, the surface-treated infrared absorption fine particles dispersion powder, again, the liquid It may be dispersed in a medium and used as a dispersion for infrared absorbing products, or may be kneaded into a resin and used as described later. At this time, since the surface-treated infrared ray absorbing fine particle dispersion liquid according to the present invention contains almost no organic solvent component, the drying treatment can be performed without impairing the health of the worker in the process. In addition, since the surface-treated infrared absorbing fine particle dispersion powder obtained by the drying treatment contains almost no organic component as a residual solvent, crushing treatment, dispersing treatment, and resin kneading treatment are performed without impairing the health of workers in the process. You can
(4)表面処理赤外線吸収微粒子の分散粒子径
 上述のようにして製造された本発明に係る表面処理赤外線吸収微粒子分散液中の表面処理赤外線吸収微粒子は、その利用方法から分散していることが望ましい。表面処理赤外線吸収微粒子の分散粒子径で言えば、20nm以上400nm以下であることが望ましい。
(4) Dispersion Particle Size of Surface-treated Infrared Absorbing Fine Particles The surface-treated infrared absorbing fine particles in the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention produced as described above are dispersed according to the usage method. desirable. In terms of the dispersed particle size of the surface-treated infrared absorbing fine particles, it is desirable that the particle size is 20 nm or more and 400 nm or less.
(5)表面処理赤外線吸収微粒子分散液の耐湿熱性
 本発明に係る表面処理赤外線吸収微粒子分散液を、例えば85℃大気雰囲気中に24時間暴露したとき、当該暴露前後における日射透過率の変化量は4.0%以下を満足する。このことから、本発明に係る表面処理赤外線吸収微粒子分散液は、高湿および高熱環境に曝されても優れた赤外線吸収特性を維持するものであることが判明した。
(5) Moisture and heat resistance of the surface-treated infrared absorption fine particle dispersion liquid When the surface-treated infrared absorption fine particle dispersion liquid according to the present invention is exposed to an atmosphere of 85° C. for 24 hours, the change in solar radiation transmittance before and after the exposure is It satisfies 4.0% or less. From this, it was found that the surface-treated infrared absorbing fine particle dispersion liquid according to the present invention maintains excellent infrared absorbing characteristics even when exposed to high humidity and high heat environments.
 以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 実施例および比較例における分散液中の微粒子の分散粒子径は、動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS-8000)により測定した平均値をもって示した。また、結晶子径は、粉末X線回折装置(スペクトリス株式会社PANalytical製X’Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)により測定し、リートベルト法を用いて算出した。
Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.
The dispersed particle size of the fine particles in the dispersions in Examples and Comparative Examples is shown as an average value measured by a particle size measuring device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method. The crystallite diameter is measured by a powder X-ray diffraction method (θ-2θ method) using a powder X-ray diffractometer (X'Pert-PRO/MPD manufactured by Spectris Co., Ltd. PANalytical), and the Rietveld method is used. Calculated.
 表面処理赤外線吸収微粒子分散液の光学特性は、分光光度計の測定用ガラスセルにて可視光透過率が80%となるように純水で希釈した後、分光光度計(日立製作所株式会社製 U-4100)を用いて波長200nm~2600nmの範囲において5nmの間隔で測定し、可視光透過率と日射透過率はJISR3106に従って算出した。 The optical characteristics of the surface-treated infrared-absorbing fine particle dispersion were measured by diluting with pure water so that the visible light transmittance was 80% in a measuring glass cell of a spectrophotometer, and then using a spectrophotometer (U manufactured by Hitachi, Ltd. -4100) in the wavelength range of 200 nm to 2600 nm at 5 nm intervals, and the visible light transmittance and the solar radiation transmittance were calculated according to JIS R3106.
 また、表面処理赤外線吸収微粒子分散液の耐湿熱性の評価方法は、表面処理赤外線吸収微粒子分散液を85℃の大気雰囲気中に24時間暴露する。
 そして、例えば、赤外線吸収微粒子として六方晶セシウムタングステンブロンズ微粒子を用いた場合は、当該暴露前後における日射透過率の変化量が4.0%以下のものを耐湿熱性が良好と判断し、変化量が4.0%を超えるものは耐湿熱性が不足と判断した。立方晶ナトリウムタングステンブロンズ微粒子を用いた場合は、当該暴露前後における日射透過率の変化量が6.0%以下のものを耐湿熱性が良好と判断し、変化量が6.0%を超えるものは耐湿熱性が不足と判断した。
In addition, as a method for evaluating the moist heat resistance of the surface-treated infrared absorption fine particle dispersion, the surface-treated infrared absorption fine particle dispersion is exposed to an air atmosphere at 85° C. for 24 hours.
Then, for example, when hexagonal cesium tungsten bronze fine particles are used as the infrared absorbing fine particles, it is determined that the amount of change in solar radiation transmittance before and after the exposure is 4.0% or less is considered to have good wet heat resistance, and the amount of change is Moisture and heat resistance was judged to be insufficient if it exceeded 4.0%. When cubic sodium tungsten bronze fine particles are used, those whose change in solar radiation transmittance before and after the exposure is 6.0% or less are judged to have good wet heat resistance, and those whose change exceeds 6.0% It was judged that the resistance to moist heat was insufficient.
[実施例1]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ(Cs0.33WO、2.2≦z≦3.0)粉末(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合して得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し10時間粉砕・分散処理し、実施例1に係るCs0.33WO微粒子の分散液を得た。得られた分散液中のCs0.33WO微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは純水を用いて測定し、溶媒屈折率は1.33とした。そして、得られた分散液から溶媒を除去した後に得られたCs0.33WO微粒子の結晶子径を測定したところ32nmであった。
[Example 1]
Cs/W (molar ratio) = 0.33 hexagonal cesium tungsten bronze (Cs 0.33 WO z , 2.2 ≤ z ≤ 3.0) powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) 25% by mass Cs 0.33 WO z according to Example 1 was loaded into a paint shaker containing 0.3 mmφZrO 2 beads and pulverized and dispersed for 10 hours. A fine particle dispersion was obtained. When the dispersed particle size of the Cs 0.33 WO z fine particles in the obtained dispersion was measured, it was 100 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using pure water, and the solvent refractive index was 1.33. Then, the crystallite diameter of the Cs 0.33 WO z fine particles obtained after removing the solvent from the obtained dispersion was 32 nm.
 得られたCs0.33WO微粒子の分散液と純水とを混合し、Cs0.33WO微粒子の濃度が2質量%である実施例1に係る被覆膜形成用水分散液Aを得た。
 一方、アルミニウム系のキレート化合物としてアルミニウムエチルアセトアセテートジイソプロピレート2.5質量%と、イソプロピルアルコール(IPA)97.5質量%とを混合して表面処理剤希釈液aを得た。
The obtained dispersion liquid of Cs 0.33 WO z fine particles was mixed with pure water to obtain an aqueous dispersion liquid A for forming a coating film according to Example 1 in which the concentration of Cs 0.33 WO z fine particles was 2% by mass. Obtained.
On the other hand, 2.5% by mass of aluminum ethyl acetoacetate diisopropylate as an aluminum-based chelate compound and 97.5% by mass of isopropyl alcohol (IPA) were mixed to obtain a surface treatment agent dilution liquid a.
 得られた被覆膜形成用水分散液A890gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、ここへ表面処理剤希釈液a360gを3時間かけて滴下添加した。当該表面処理剤希釈液aの滴下添加後、さらに温度20℃で24時間の攪拌を行い、実施例1に係る熟成液を作製した。次いで、真空流動乾燥を用いて、温度120℃で24時間の乾燥処理を行い、当該熟成液から媒質を蒸発させて実施例1に係る表面処理赤外線吸収微粒子を含む粉末(表面処理赤外線吸収微粒子粉末)を得た。 890 g of the obtained aqueous dispersion A for coating film formation was placed in a beaker, and 360 g of the surface treatment agent dilution liquid a was added dropwise thereto over 3 hours while stirring strongly with a stirrer with a blade. After the dropwise addition of the surface treatment agent dilution liquid a, stirring was further performed at a temperature of 20° C. for 24 hours to prepare an aging liquid according to Example 1. Then, a powder containing the surface-treated infrared-absorbing fine particles according to Example 1 (surface-treated infrared-absorbing fine-particle powder) is obtained by performing a drying treatment at a temperature of 120° C. for 24 hours using vacuum fluidized drying to evaporate the medium from the aging liquid. ) Got.
 実施例1に係る表面処理赤外線吸収微粒子粉末10質量%と純水90質量%とを混合した。得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、1時間解砕処理し、実施例1に係る表面処理赤外線吸収微粒子分散液を得た。 10% by mass of the surface-treated infrared absorbing fine particle powder according to Example 1 and 90% by mass of pure water were mixed. The obtained mixed liquid was loaded into a paint shaker containing 0.3 mmφZrO 2 beads and crushed for 1 hour to obtain a surface-treated infrared absorbing fine particle dispersion liquid according to Example 1.
 得られた実施例1に係る表面処理赤外線吸収微粒子分散液の分散粒子径を測定したところ、180nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは純水を用いて測定し、溶媒屈折率は1.33とした。 When the dispersion particle diameter of the obtained surface-treated infrared absorbing fine particle dispersion liquid according to Example 1 was measured, it was 180 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using pure water, and the solvent refractive index was 1.33.
 また、実施例1に係る表面処理赤外線吸収微粒子分散液の光学特性を測定したところ、可視光透過率が79.6%、日射透過率が56.6%であった。 Further, when the optical characteristics of the surface-treated infrared absorbing fine particle dispersion liquid according to Example 1 were measured, the visible light transmittance was 79.6% and the solar radiation transmittance was 56.6%.
 得られた実施例1に係る表面処理赤外線吸収微粒子分散液を85℃の大気雰囲気中に24時間暴露後、光学特性を測定したところ、可視光透過率が80.2%、日射透過率が58.5%であった。
 そして、85℃の大気雰囲気暴露前後による可視光透過率の変化量は0.6%、日射透過率の変化量は1.9%とどちらも小さいことが分かった。
The surface-treated infrared absorbing fine particle dispersion liquid obtained in Example 1 was exposed to an air atmosphere of 85° C. for 24 hours, and its optical characteristics were measured. The visible light transmittance was 80.2% and the solar radiation transmittance was 58. It was 0.5%.
It was also found that the change in visible light transmittance before and after exposure to the atmosphere at 85° C. was 0.6%, and the change in solar radiation transmittance was 1.9%, which were both small.
[実施例2、3]
 表面処理剤希釈液aの量とその滴下添加時間とを変更したこと以外は、実施例1と同様の操作をすることで、実施例2および3に係る表面処理赤外線吸収微粒子分散液を得て、実施例1と同様の評価を実施した。当該製造条件と評価結果とを表1~3に示す。
[Examples 2 and 3]
By performing the same operation as in Example 1 except that the amount of the surface treatment agent diluting liquid a and the dropping addition time thereof were changed, the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 2 and 3 were obtained. The same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例4]
 実施例1に係る熟成液を、1時間静置させ、表面処理赤外線吸収微粒子と媒質とを固液分離させた。次いで、純水を用いたデカンテーションにより上澄みである媒質のみを除去して赤外線吸収微粒子スラリーを得た。得られた赤外線吸収微粒子スラリーに純水を添加し、さらにpH調整剤として炭酸セシウムを全体の0.5質量%添加し、1時間攪拌させた後、1時間静置させ、再び表面処理赤外線吸収微粒子と媒質とを固液分離させた。
 このデカンテーションと純水添加とを、さらに2回繰り返し(合計3回のデカンテーションおよび純水添加を実施)、実施例4に係る表面処理赤外線吸収微粒子分散液を得た。
 実施例4に係る表面処理赤外線吸収微粒子分散液について、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
[Example 4]
The ripening solution according to Example 1 was allowed to stand for 1 hour to perform solid-liquid separation of the surface-treated infrared absorbing fine particles and the medium. Then, only the supernatant medium was removed by decantation using pure water to obtain an infrared absorbing fine particle slurry. Pure water was added to the obtained infrared absorbing fine particle slurry, and 0.5% by mass of cesium carbonate was further added as a pH adjusting agent, and the mixture was stirred for 1 hour and then allowed to stand for 1 hour, and then surface treated infrared absorption again. The fine particles and the medium were solid-liquid separated.
The decantation and the addition of pure water were repeated twice more (three times of decantation and pure water addition were carried out) to obtain the surface-treated infrared absorbing fine particle dispersion liquid of Example 4.
With respect to the surface-treated infrared absorbing fine particle dispersion liquid according to Example 4, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例5]
 実施例1に係るCs0.33WO微粒子の分散液と純水を混合し、Cs0.33WO微粒子の濃度が6質量%である実施例5に係る被覆膜形成用水分散液A-6を得た。
 得られた被覆膜形成用水分散液A-6、890gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、ここへ表面処理剤としてアルミニウム系のキレート化合物であるアルミニウムエチルアセトアセテートジイソプロピレート133.5gを1時間かけて滴下添加した。当該表面処理剤の滴下添加後、さらに温度20℃で24時間の攪拌を行い、実施例5に係る表面処理赤外線吸収微粒子分散液を作製した。
 実施例5に係る表面処理赤外線吸収微粒子分散液について、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
[Example 5]
The dispersion liquid of Cs 0.33 WO z fine particles according to Example 1 is mixed with pure water, and the concentration of the Cs 0.33 WO z fine particles is 6% by mass. I got -6.
890 g of the obtained aqueous dispersion A-6 for forming a coating film was placed in a beaker and stirred vigorously with a stirrer equipped with a blade, to which an aluminum chelate compound such as aluminum ethyl acetoacetate diisopropylpropionate was added as a surface treatment agent. A rate of 133.5 g was added dropwise over 1 hour. After the dropwise addition of the surface treatment agent, stirring was carried out at a temperature of 20° C. for 24 hours to prepare a surface-treated infrared absorbing fine particle dispersion liquid according to Example 5.
For the surface-treated infrared absorbing fine particle dispersion liquid according to Example 5, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例6]
 ジルコニウムトリブトキシアセチルアセトネート2.4質量%とイソプロピルアルコール97.6質量%とを混合して実施例6に係る表面処理剤希釈液bを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液bを用いたこと以外は、実施例1と同様の操作をすることで、実施例6に係る表面処理赤外線吸収微粒子分散液を作製した。
 実施例6に係る表面処理赤外線吸収微粒子分散液について、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
[Example 6]
2.4% by mass of zirconium tributoxyacetylacetonate and 97.6% by mass of isopropyl alcohol were mixed to obtain a surface treating agent dilution liquid b according to Example 6. A surface-treated infrared absorbing fine particle dispersion liquid according to Example 6 was produced by performing the same operation as in Example 1 except that the surface treatment agent dilution liquid b was used instead of the surface treatment agent dilution liquid a.
For the surface-treated infrared absorbing fine particle dispersion liquid according to Example 6, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例7]
 ジイソプロポキシチタンビスエチルアセトアセテート2.6質量%とイソプロピルアルコール97.4質量%とを混合して実施例7に係る表面処理剤希釈液cを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液cを用いたこと以外は、実施例1と同様の操作をすることで、実施例7に係る表面処理赤外線吸収微粒子分散液を作製した。
 実施例7に係る表面処理赤外線吸収微粒子分散液について、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
[Example 7]
2.6% by mass of diisopropoxytitanium bisethylacetoacetate and 97.4% by mass of isopropyl alcohol were mixed to obtain a surface treating agent dilution liquid c according to Example 7. A surface-treated infrared absorbing fine particle dispersion liquid according to Example 7 was prepared by performing the same operation as in Example 1 except that the surface treatment agent dilution liquid c was used instead of the surface treatment agent dilution liquid a.
For the surface-treated infrared absorbing fine particle dispersion liquid according to Example 7, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例8]
 Na/W(モル比)=0.33の立方晶ナトリウムタングステンブロンズ粉末(住友金属鉱山株式会社製)25質量%とイソプロピルアルコール75質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填して10時間粉砕・分散処理し、実施例8に係るNa0.33WO微粒子の分散液を得た。得られた分散液中のNa0.33WO微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはイソプロピルアルコールを用いて測定し、溶媒屈折率は1.38とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。
[Example 8]
25% by mass of cubic sodium tungsten bronze powder (manufactured by Sumitomo Metal Mining Co., Ltd.) with Na/W (molar ratio)=0.33 and 75% by mass of isopropyl alcohol were mixed, and the resulting mixed solution was 0.3 mmφZrO. The mixture was loaded into a paint shaker containing 2 beads and pulverized and dispersed for 10 hours to obtain a dispersion liquid of Na 0.33 WO z fine particles according to Example 8. When the dispersed particle diameter of Na 0.33 WO z fine particles in the obtained dispersion was measured, it was 100 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using isopropyl alcohol and the solvent refractive index was 1.38. After removing the solvent of the obtained dispersion liquid, the crystallite size was measured and found to be 32 nm.
 実施例8に係るNa0.33WO微粒子の分散液とイソプロピルアルコールとを混合し、赤外線吸収微粒子(立方晶ナトリウムタングステンブロンズ微粒子)の濃度が2%である被覆膜形成用水分散液Bを得た。得られた被覆膜形成用水分散液B520gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、表面処理剤希釈液a360gと、希釈剤dとして純水100gとを、3時間かけて並行滴下添加した。滴下添加後、温度20℃で24時間の攪拌を行い、実施例8に係る熟成液を作製した。次いで、この熟成液から温度120℃で24時間の真空流動乾燥により媒質を蒸発させ、実施例8に係る表面処理赤外線吸収微粒子粉末を得た。 A dispersion of Na 0.33 WO z fine particles according to Example 8 was mixed with isopropyl alcohol to obtain an aqueous dispersion B for forming a coating film in which the concentration of infrared absorbing fine particles (cubic sodium tungsten bronze fine particles) was 2%. Obtained. 520 g of the obtained coating film forming aqueous dispersion B was placed in a beaker, and while being strongly stirred by a stirrer with a blade, 360 g of the surface treatment agent diluting liquid a and 100 g of pure water as the diluting agent d were concurrently added over 3 hours. It was added dropwise. After the dropwise addition, stirring was carried out at a temperature of 20° C. for 24 hours to prepare an aging liquid according to Example 8. Next, the medium was evaporated from this aged liquid by vacuum fluidization drying at a temperature of 120° C. for 24 hours to obtain a surface-treated infrared absorbing fine particle powder according to Example 8.
 実施例1に係る表面処理赤外線吸収微粒子粉末の代わりに実施例8に係る表面処理赤外線吸収微粒子粉末を用いたこと以外は、実施例1と同様の操作をすることで、実施例8に係る表面処理赤外線吸収微粒子分散液を作製した。
 実施例8に係る表面処理赤外線吸収微粒子分散液について、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
By performing the same operation as in Example 1 except that the surface-treated infrared absorption fine particle powder according to Example 8 was used in place of the surface-treated infrared absorption fine particle powder according to Example 1, the surface according to Example 8 was obtained. A treated infrared absorbing fine particle dispersion was prepared.
With respect to the surface-treated infrared absorbing fine particle dispersion liquid according to Example 8, the same evaluation as in Example 1 was performed. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例9~11]
 六方晶セシウムタングステンブロンズ粉末の代わりに、K/W(モル比)=0.33の六方晶カリウムタングステンブロンズ粉末(実施例9)や、Rb/W(モル比)=0.33の六方晶ルビジウムタングステンブロンズ粉末(実施例10)や、マグネリ相のW1849(実施例11)を用いた以外は、実施例1と同様にして、実施例9~11に係る赤外線吸収微粒子の分散粒子径および結晶子径を測定した。そして、実施例9に係る被覆膜形成用水分散液C、実施例10に係る被覆膜形成用水分散液D、実施例11に係る被覆膜形成用水分散液Eを得た。
[Examples 9 to 11]
Instead of hexagonal cesium tungsten bronze powder, hexagonal potassium tungsten bronze powder with K/W (molar ratio)=0.33 (Example 9) and hexagonal rubidium with Rb/W (molar ratio)=0.33. Dispersion particle size of infrared absorbing fine particles according to Examples 9 to 11 in the same manner as in Example 1 except that tungsten bronze powder (Example 10) and Magneli phase W 18 O 49 (Example 11) were used. And the crystallite size was measured. Then, an aqueous dispersion C for forming a coating film according to Example 9, an aqueous dispersion D for forming a coating film according to Example 10, and an aqueous dispersion E for forming a coating film according to Example 11 were obtained.
 被覆膜形成用水分散液Aの代わりに被覆膜形成用水分散液C~Eを用いたこと以外は、実施例1と同様の操作をすることで、実施例9~11に係る表面処理赤外線吸収微粒子分散液を作製した。そして、実施例9~11に係る表面処理赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。 By performing the same operation as in Example 1 except that the coating film forming aqueous dispersions C to E were used instead of the coating film forming aqueous dispersion A, the surface-treated infrared rays according to Examples 9 to 11 were obtained. An absorption particle dispersion liquid was prepared. Then, the same evaluations as in Example 1 were performed on the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 9 to 11. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例12、13]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ(Cs0.33WO)粉末(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合して得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し4時間(実施例12)、または6時間(実施例13)の粉砕・分散処理を行い、実施例12、13に係るCs0.33WO微粒子の分散液を得た。得られた分散液中のCs0.33WO微粒子の分散粒子径を測定したところ、実施例12は140nm、実施例13は120nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは純水を用いて測定し、溶媒屈折率は1.33とした。
 得られた分散液の溶媒を除去したあと結晶子径を測定したところ、実施例12は42nm、実施例13は50nmであった。
[Examples 12 and 13]
25% by mass of hexagonal cesium tungsten bronze (Cs 0.33 WO z ) powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) with Cs/W (molar ratio)=0.33 and 75% by mass of pure water were mixed. The resulting mixed liquid was loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverization/dispersion treatment was performed for 4 hours (Example 12) or 6 hours (Example 13). A dispersion liquid of Cs 0.33 WO z fine particles according to When the dispersed particle size of Cs 0.33 WO z fine particles in the obtained dispersion was measured, it was 140 nm in Example 12 and 120 nm in Example 13. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using pure water, and the solvent refractive index was 1.33.
When the crystallite diameter was measured after removing the solvent of the obtained dispersion liquid, Example 12 was 42 nm, and Example 13 was 50 nm.
 得られた実施例12、13に係るCs0.33WO微粒子の分散液と純水をと混合し、Cs0.33WO微粒子の濃度が2質量%である実施例12に係る被覆膜形成用水分散液F、実施例13に係る被覆膜形成用水分散液Gを得た。
 被覆膜形成用水分散液Aの代わりに被覆膜形成用水分散液F、Gを用い、表面処理希釈剤の滴下時間を変更したこと以外は、実施例1と同様の操作をすることで、実施例12、13に係る表面処理赤外線吸収微粒子分散液を作製した。そして、実施例12、13に係る表面処理赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
The coating according to Example 12 in which the obtained dispersion liquid of Cs 0.33 WO z fine particles according to Examples 12 and 13 was mixed with pure water, and the concentration of Cs 0.33 WO z fine particles was 2% by mass. An aqueous dispersion F for forming a film and an aqueous dispersion G for forming a coating film according to Example 13 were obtained.
By performing the same operation as in Example 1 except that the coating film forming aqueous dispersions F and G were used instead of the coating film forming aqueous dispersion A, and the dropping time of the surface treatment diluent was changed. The surface-treated infrared absorbing fine particle dispersion liquids according to Examples 12 and 13 were prepared. Then, the same evaluations as in Example 1 were performed on the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 12 and 13. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例14~18]
 実施例2に係る表面処理赤外線吸収微粒子粉末10質量%と純水85質量%と分散剤α~ε(但し、実施例14ではα、実施例15ではβ、実施例16ではγ、実施例17ではδ、実施例18ではεを、それぞれ使用)5質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、1時間解砕処理して、実施例14に係る被覆膜形成用水分散液A-α、実施例15に係る被覆膜形成用水分散液A-β、実施例16に係る被覆膜形成用水分散液A-γ、実施例17に係る被覆膜形成用水分散液A-δ、実施例18に係る被覆膜形成用水分散液A-εを得た。
[Examples 14 to 18]
10% by mass of the surface-treated infrared absorbing fine particle powder according to Example 2, 85% by mass of pure water, and dispersants α to ε (however, α in Example 14, β in Example 15, γ in Example 16, and Example 17). Δ in Example 18 and ε in Example 18) are mixed with 5% by mass, and the obtained mixed solution is loaded into a paint shaker containing 0.3 mmφZrO 2 beads and crushed for 1 hour, Coating film forming aqueous dispersion A-α according to Example 14, coating film forming aqueous dispersion A-β according to Example 15, coating film forming aqueous dispersion A-γ according to Example 16, Example A coating film forming aqueous dispersion A-δ according to Example 17 and a coating film forming aqueous dispersion A-ε according to Example 18 were obtained.
 ここで、分散剤αは、官能基がリン酸で、酸価60mgKOH/g、塩基価0mgKOH/gの分散剤である。
 分散剤βは、官能基がカルボン酸で、酸価70mgKOH/g、塩基価0mgKOH/gの分散剤である。
 分散剤γは、官能基がカルボン酸で、酸価15mgKOH/g、塩基価0mgKOH/gの分散剤である。
 分散剤δは、官能基がカルボン酸で、酸価110mgKOH/g、塩基価0mgKOH/gの分散剤である。
 分散剤εは、官能基としてリン酸を含み、酸価85mgKOH/g、塩基価85mgKOH/gの分散剤である。
Here, the dispersant α is a dispersant having a functional group of phosphoric acid, an acid value of 60 mgKOH/g, and a base value of 0 mgKOH/g.
The dispersant β is a dispersant having a functional group of a carboxylic acid, an acid value of 70 mgKOH/g, and a base value of 0 mgKOH/g.
The dispersant γ is a dispersant having a carboxylic acid as a functional group, an acid value of 15 mgKOH/g, and a base value of 0 mgKOH/g.
The dispersant δ is a dispersant having a carboxylic acid as a functional group, an acid value of 110 mgKOH/g, and a base value of 0 mgKOH/g.
The dispersant ε is a dispersant containing phosphoric acid as a functional group and having an acid value of 85 mgKOH/g and a base value of 85 mgKOH/g.
 被覆膜形成用水分散液Aの代わりに、実施例14~18に係る被覆膜形成用水分散液A-α~A-εを用い、表面処理希釈剤の滴下時間を変更したこと以外は、実施例1と同様の操作をすることで、実施例14~18に係る表面処理赤外線吸収微粒子分散液を作製した。そして、実施例14~18に係る表面処理赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。 Instead of the coating film forming aqueous dispersion A, the coating film forming aqueous dispersions A-α to A-ε according to Examples 14 to 18 were used, and the dropping time of the surface treatment diluent was changed. By performing the same operation as in Example 1, the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 14 to 18 were produced. Then, the same evaluations as in Example 1 were performed on the surface-treated infrared absorbing fine particle dispersion liquids according to Examples 14 to 18. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[実施例19]
 実施例2に係る表面処理赤外線吸収微粒子粉末10質量%と純水80質量%と分散剤α5質量%と分散剤ζ5質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、1時間解砕処理して、実施例19に係る被覆膜形成用水分散液A-ζを得た。
 ここで、分散剤ζは、酸性および塩基性の官能基を有さない、酸価1mgKOH/g未満、塩基価1mgKOH/g未満のノニオン性の分散剤である。
[Example 19]
10% by mass of the surface-treated infrared absorbing fine particle powder according to Example 2, 80% by mass of pure water, 5% by mass of dispersant α and 5% by mass of dispersant ζ were mixed, and the resulting mixed solution was mixed with 0.3 mmφZrO 2 beads. The paint shaker put in was put and crushed for 1 hour to obtain an aqueous dispersion A-ζ for forming a coating film according to Example 19.
Here, the dispersant ζ is a nonionic dispersant having no acid and basic functional groups and an acid value of less than 1 mgKOH/g and a base value of less than 1 mgKOH/g.
 被覆膜形成用水分散液Aの代わりに、実施例19に係る被覆膜形成用水分散液A-ζを用い、表面処理希釈剤の滴下時間を変更したこと以外は、実施例1と同様の操作をすることで、実施例19に係る表面処理赤外線吸収微粒子分散液を作製した。そして、実施例19に係る表面処理赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。 The same as Example 1 except that the coating film forming aqueous dispersion A-ζ according to Example 19 was used instead of the coating film forming aqueous dispersion A, and the dropping time of the surface treatment diluent was changed. By performing the operation, a surface-treated infrared absorbing fine particle dispersion liquid according to Example 19 was prepared. Then, the same evaluation as in Example 1 was performed on the surface-treated infrared absorbing fine particle dispersion liquid according to Example 19. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[比較例1]
 六方晶セシウムタングステンブロンズ粉末10質量%と純水90質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し4時間粉砕・分散処理し、比較例1に係る被覆膜形成用水分散液を得た。
 得られた分散液中の赤外線吸収微粒子の分散粒子径を、実施例1と同様に測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは水を用いて測定し、溶媒屈折率は1.33とした。また、得られた分散液の溶媒を除去して比較例1に係る六方晶セシウムタングステンブロンズ微粒子を得た。得られた比較例1に係る六方晶セシウムタングステンブロンズ微粒子の結晶子径を実施例1と同様に測定したところ32nmであった。
[Comparative Example 1]
A hexagonal cesium tungsten bronze powder (10% by mass) was mixed with pure water (90% by mass), and the resulting mixed solution was loaded into a paint shaker containing 0.3 mmφZrO 2 beads and pulverized/dispersed for 4 hours. An aqueous dispersion for forming a coating film according to No. 1 was obtained.
When the dispersed particle diameter of the infrared absorbing fine particles in the obtained dispersion was measured in the same manner as in Example 1, it was 100 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using water, and the solvent refractive index was 1.33. Further, the solvent of the obtained dispersion was removed to obtain hexagonal cesium tungsten bronze fine particles according to Comparative Example 1. When the crystallite size of the obtained hexagonal cesium tungsten bronze fine particles according to Comparative Example 1 was measured in the same manner as in Example 1, it was 32 nm.
 比較例1に係る被覆膜形成用水分散液へ表面処理希釈剤の滴下添加を実施することなく、このまま比較例1に係る赤外線吸収微粒子分散液とした。
 比較例1に係る赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
The infrared absorbing fine particle dispersion liquid according to Comparative Example 1 was used as it was without adding the surface treatment diluent dropwise to the coating film forming aqueous dispersion liquid according to Comparative Example 1.
The infrared absorbing fine particle dispersion liquid according to Comparative Example 1 was evaluated in the same manner as in Example 1. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[比較例2~5]
 六方晶セシウムタングステンブロンズ粉末の代わりに、Na/W(モル比)=0.33の立方晶ナトリウムタングステンブロンズ粉末(比較例2)、K/W(モル比)=0.33の六方晶カリウムタングステンブロンズ粉末(比較例3)、Rb/W(モル比)=0.33の六方晶ルビジウムタングステンブロンズ粉末(比較例4)、マグネリ相のW1849(比較例5)を用いたこと以外は、比較例1と同様の操作をすることで、比較例2~5に係る被覆膜形成用水分散液を得た。
[Comparative Examples 2 to 5]
Instead of hexagonal cesium tungsten bronze powder, Na/W (molar ratio)=0.33 cubic sodium tungsten bronze powder (Comparative Example 2), K/W (molar ratio)=0.33 hexagonal potassium tungsten Bronze powder (Comparative Example 3), Rb/W (molar ratio)=0.33 hexagonal rubidium tungsten bronze powder (Comparative Example 4), and Magneli phase W 18 O 49 (Comparative Example 5) were used. Then, the same operations as in Comparative Example 1 were carried out to obtain coating film forming aqueous dispersions according to Comparative Examples 2 to 5.
 比較例2~5に係る被覆膜形成用水分散液へ表面処理希釈剤の滴下添加を実施することなく、このまま比較例2~5に係る赤外線吸収微粒子分散液とした。
 得られた比較例2~5に係る赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
Without adding the surface treatment diluent dropwise to the coating film forming aqueous dispersions of Comparative Examples 2 to 5, the infrared absorbing fine particle dispersions of Comparative Examples 2 to 5 were prepared as they were.
The infrared absorbing fine particle dispersions according to Comparative Examples 2 to 5 thus obtained were evaluated in the same manner as in Example 1. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[比較例6]
 六方晶セシウムタングステンブロンズ粉末10質量%と純水90質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し2時間粉砕・分散処理し、比較例6に係る被覆膜形成用水分散液を得た。
 得られた分散液中の赤外線吸収微粒子の分散粒子径を測定したところ、180nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。バックグラウンドは水を用いて測定し、溶媒屈折率は1.33とした。
 また、得られた分散液の溶媒を除去して比較例6に係る六方晶セシウムタングステンブロンズ微粒子を得た。得られた比較例6に係る六方晶セシウムタングステンブロンズ微粒子の結晶子径を実施例1と同様に測定したところ60nmであった。
[Comparative Example 6]
10% by mass of hexagonal cesium tungsten bronze powder and 90% by mass of pure water were mixed, and the resulting mixed solution was loaded into a paint shaker containing 0.3 mmφZrO 2 beads and pulverized and dispersed for 2 hours, and a comparative example. An aqueous dispersion for forming a coating film according to No. 6 was obtained.
When the dispersed particle diameter of the infrared absorbing fine particles in the obtained dispersion was measured, it was 180 nm. The particle refractive index was 1.81 and the particle shape was non-spherical as settings for particle size measurement. The background was measured using water, and the solvent refractive index was 1.33.
Further, the solvent of the obtained dispersion liquid was removed to obtain hexagonal cesium tungsten bronze fine particles according to Comparative Example 6. When the crystallite size of the obtained hexagonal cesium tungsten bronze fine particles according to Comparative Example 6 was measured in the same manner as in Example 1, it was 60 nm.
 比較例6に係る被覆膜形成用水分散液へ表面処理希釈剤の滴下添加を実施することなく、このまま比較例6に係る赤外線吸収微粒子分散液とした。
 比較例6に係る赤外線吸収微粒子分散液に対し、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~3に示す。
Without adding the surface treatment diluent dropwise to the coating film forming aqueous dispersion according to Comparative Example 6, the infrared absorbing fine particle dispersion according to Comparative Example 6 was obtained as it was.
The infrared absorbing fine particle dispersion liquid according to Comparative Example 6 was evaluated in the same manner as in Example 1. The manufacturing conditions and evaluation results are shown in Tables 1 to 3.
[まとめ]
 本発明の実施例1~7、12~19に係る可視光透過率80%に設定した六方晶セシウムタングステンブロンズを用いた表面処理赤外線吸収微粒子分散液を、85℃の大気雰囲気中に24時間暴露したところ、当該暴露前後における日射透過率の変化量が2.0%以下であるような優れた耐湿熱性を有していることが判明した。
 また、赤外線吸収微粒子として実施例8~11に係る立方晶ナトリウムタングステンブロンズ、六方晶カリウムタングステンブロンズ、六方晶ルビジウムタングステンブロンズ、マグネリ相のW1849を用いた表面処理赤外線吸収微粒子分散液も、優れた耐湿熱性を有していることが判明した。
[Summary]
The surface-treated infrared absorbing fine particle dispersion liquid using hexagonal cesium tungsten bronze set to a visible light transmittance of 80% according to Examples 1 to 7 and 12 to 19 of the present invention was exposed to an atmosphere of 85° C. for 24 hours. As a result, it was found that it has excellent moist heat resistance such that the amount of change in solar radiation transmittance before and after the exposure is 2.0% or less.
In addition, the surface-treated infrared absorbing fine particle dispersion liquids using cubic sodium tungsten bronze, hexagonal potassium tungsten bronze, hexagonal rubidium tungsten bronze, and Magneli phase W 18 O 49 according to Examples 8 to 11 as infrared absorbing fine particles, It was found to have excellent resistance to moist heat.
 これに対し、表面処理を実施していない赤外線吸収微粒子を用いた比較例1~6に係る可視光透過率80%に設定した六方晶セシウムタングステンブロンズを用いた赤外線吸収微粒子分散液を、85℃の大気雰囲気中に24時間暴露したところ、当該暴露前後における日射透過率の変化量が7.4%以上であり、耐湿熱性に劣ることが判明した。 On the other hand, the infrared absorbing fine particle dispersion liquid using the hexagonal cesium tungsten bronze set to the visible light transmittance of 80% according to Comparative Examples 1 to 6 using the infrared absorbing fine particles not subjected to the surface treatment was heated to 85° C. When exposed to the air atmosphere for 24 hours, the amount of change in solar radiation transmittance before and after the exposure was 7.4% or more, and it was revealed that the moisture and heat resistance was poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  11.WO単位にて形成される8面体
  12.元素M
11. Octahedral formed by WO 6 unit 12. Element M

Claims (15)

  1.  水を含む溶媒中に表面処理赤外線吸収微粒子が分散している表面処理赤外線吸収微粒子分散液であって、
     前記表面処理赤外線吸収微粒子は、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されているものであり、
     前記表面処理赤外線吸収微粒子の分散粒子径が20nm以上400nm以下であることを特徴とする表面処理赤外線吸収微粒子分散液。
    A surface-treated infrared absorption fine particle dispersion in which surface-treated infrared absorption fine particles are dispersed in a solvent containing water,
    In the surface-treated infrared absorbing fine particles, the surface of the infrared absorbing fine particles has a metal chelate compound hydrolysis product, a metal chelate compound hydrolysis product polymer, a metal cyclic oligomer compound hydrolysis product, and a metal cyclic oligomer compound. A polymer of a hydrolysis product of, which is coated with a coating film containing at least one selected from the group consisting of:
    A dispersion liquid for surface-treated infrared-absorbing fine particles, wherein the dispersed particle size of the surface-treated infrared-absorbing fine particles is 20 nm or more and 400 nm or less.
  2.  前記表面処理赤外線吸収微粒子分散液のpH値が、4以上10以下であることを特徴とする請求項1に記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion liquid according to claim 1, wherein the pH value of the surface-treated infrared absorbing fine particle dispersion liquid is 4 or more and 10 or less.
  3.  前記表面処理赤外線吸収微粒子分散液中における表面処理赤外線吸収微粒子の濃度が、0.01質量%以上80質量%以下であることを特徴とする請求項1または2に記載の表面処理赤外線吸収微粒子分散液。 The concentration of the surface-treated infrared absorption fine particles in the surface-treated infrared absorption fine particles dispersion liquid is 0.01% by mass or more and 80% by mass or less, and the surface-treated infrared absorption fine particles dispersion according to claim 1 or 2. liquid.
  4.  前記金属キレート化合物および前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする請求項1から3のいずれかに記載の表面処理赤外線吸収微粒子分散液。 The surface according to any one of claims 1 to 3, wherein the metal chelate compound and the metal cyclic oligomer compound contain one or more kinds of metal elements selected from Al, Zr, Ti, Si and Zn. Treated infrared absorbing fine particle dispersion.
  5.  前記金属キレート化合物および前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする請求項1から4のいずれかに記載の表面処理赤外線吸収微粒子分散液。 The surface treatment according to any one of claims 1 to 4, wherein the metal chelate compound and the metal cyclic oligomer compound have at least one selected from an ether bond, an ester bond, an alkoxy group, and an acetyl group. Infrared absorbing fine particle dispersion.
  6.  前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする請求項1から5のいずれかに記載の表面処理赤外線吸収微粒子分散液。 The infrared absorbing fine particles have a general formula WyOz (where W is tungsten, O is oxygen, 2.2≦z/y≦2.999), or/and a general formula MxWyOz (where M is H, He, Alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In , Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, Yb One or more elements selected from the above, W is tungsten, O is oxygen, and 0.001≦x/y≦1, 2.0≦z/y≦3.0) The surface-treated infrared absorbing fine particle dispersion liquid according to any one of claims 1 to 5, wherein
  7.  前記Mが、Cs、K、Rb、Tl、In、Baのうちから選択される1種類以上の元素であることを特徴とする請求項6に記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion liquid according to claim 6, wherein the M is one or more kinds of elements selected from Cs, K, Rb, Tl, In, and Ba.
  8.  前記赤外線吸収微粒子が、六方晶の結晶構造を有する、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子であることを特徴とする請求項1から7のいずれかに記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion according to any one of claims 1 to 7, wherein the infrared absorbing fine particles are tungsten oxide fine particles and/or composite tungsten oxide fine particles having a hexagonal crystal structure. liquid.
  9.  前記表面処理赤外線吸収微粒子分散液が、さらに水溶性有機物を1種類以上含んでいることを特徴とする請求項1から8のいずれかに記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion liquid according to any one of claims 1 to 8, wherein the surface-treated infrared absorbing fine particle dispersion liquid further contains one or more water-soluble organic substances.
  10.  前記水溶性有機物が、アルコール類、グリコール類、水溶性樹脂から選択される1種類以上であることを特徴とする請求項1から9のいずれかに記載の表面処理赤外線吸収微粒子分散液。 10. The surface-treated infrared absorbing fine particle dispersion liquid according to claim 1, wherein the water-soluble organic substance is one or more selected from alcohols, glycols and water-soluble resins.
  11.  前記表面処理赤外線吸収微粒子分散液が、さらに1種類または2種類以上の分散剤を含んでいることを特徴とする請求項1から10のいずれかに記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion liquid according to any one of claims 1 to 10, wherein the surface-treated infrared absorbing fine particle dispersion liquid further contains one kind or two or more kinds of dispersants.
  12.  前記分散剤として、酸性の官能基を有する1種類または2種類以上の分散剤を含んでいることを特徴とする請求項11に記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion liquid according to claim 11, wherein the dispersant contains one or more kinds of dispersants having an acidic functional group.
  13.  前記分散剤として、酸価が10mgKOH/g以上である1種類または2種類以上の分散剤を含んでいることを特徴とする請求項11または12に記載の表面処理赤外線吸収微粒子分散液。 The surface-treated infrared absorbing fine particle dispersion liquid according to claim 11 or 12, wherein the dispersant contains one or more kinds of dispersants having an acid value of 10 mgKOH/g or more.
  14.  前記分散剤として、酸性の官能基を有する1種類または2種類以上の分散剤と、ノニオン性である1種類または2種類以上の分散剤とを含んでいることを特徴とする請求項11から13のいずれかに記載の表面処理赤外線吸収微粒子分散液。 14. The dispersant contains one or more kinds of dispersants having an acidic functional group and one or more kinds of nonionic dispersants. 5. The surface-treated infrared absorbing fine particle dispersion liquid according to any one of 1.
  15.  水を含む溶媒中へ赤外線吸収微粒子を分散させて被覆膜形成用水分散液を得る工程と、
     前記被覆膜形成用水分散液へ、金属キレート化合物および/または金属環状オリゴマー化合物を添加し、前記赤外線吸収微粒子の表面を金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆して表面処理赤外線吸収微粒子とし、水を含む溶媒中に前記表面処理赤外線吸収微粒子が分散している表面処理赤外線吸収微粒子分散液を得る工程とを有することを特徴とする表面処理赤外線吸収微粒子分散液の製造方法。
    A step of dispersing the infrared absorbing fine particles in a solvent containing water to obtain a coating film forming aqueous dispersion,
    A metal chelate compound and/or a metal cyclic oligomer compound is added to the coating film-forming aqueous dispersion, and the surface of the infrared absorbing fine particles is polymerized with a hydrolysis product of the metal chelate compound and a hydrolysis product of the metal chelate compound. Substance, a hydrolysis product of a metal cyclic oligomer compound, a polymer of a hydrolysis product of a metal cyclic oligomer compound, a surface treatment infrared absorbing fine particle is obtained by coating with a coating film containing at least one selected from the group consisting of water and water. And a step of obtaining a surface-treated infrared absorption fine particle dispersion in which the surface-treated infrared absorption fine particles are dispersed in a solvent containing the same.
PCT/JP2019/045630 2018-11-28 2019-11-21 Surface treated infrared absorbing fine particle dispersion liquid and method for producing same WO2020110906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020557626A JP7371638B2 (en) 2018-11-28 2019-11-21 Surface-treated infrared absorbing fine particle dispersion and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-222383 2018-11-28
JP2018222383 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110906A1 true WO2020110906A1 (en) 2020-06-04

Family

ID=70853245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045630 WO2020110906A1 (en) 2018-11-28 2019-11-21 Surface treated infrared absorbing fine particle dispersion liquid and method for producing same

Country Status (2)

Country Link
JP (1) JP7371638B2 (en)
WO (1) WO2020110906A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP2008291109A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd Infrared shielding microparticle, its manufacturing method, infrared shielding microparticle dispersion, infrared shielding element, and infrared shielding base material
WO2010055570A1 (en) * 2008-11-13 2010-05-20 住友金属鉱山株式会社 Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
WO2017217459A1 (en) * 2016-06-15 2017-12-21 住友金属鉱山株式会社 Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP2008291109A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd Infrared shielding microparticle, its manufacturing method, infrared shielding microparticle dispersion, infrared shielding element, and infrared shielding base material
WO2010055570A1 (en) * 2008-11-13 2010-05-20 住友金属鉱山株式会社 Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
WO2017217459A1 (en) * 2016-06-15 2017-12-21 住友金属鉱山株式会社 Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor

Also Published As

Publication number Publication date
JP7371638B2 (en) 2023-10-31
JPWO2020110906A1 (en) 2021-10-14
TW202031810A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
US8470212B2 (en) Infrared shielding nanoparticle, its manufacturing method, infrared shielding nanoparticle dispersion using the same, and infrared shielding base material
JP5228376B2 (en) Infrared shielding fine particles and manufacturing method thereof, infrared shielding fine particle dispersion, infrared shielding body, and infrared shielding base material
JP6813019B2 (en) Near-infrared shielding material fine particles and their manufacturing method, and near-infrared shielding material fine particle dispersion
US20150160379A1 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
WO2005076752A2 (en) Metal oxide particle and its uses
TWI824074B (en) Surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body, and infrared absorbing substrate
EP4082972A1 (en) Near-infrared absorbing material particles, near-infrared absorbing material particle dispersing solution, and near-infrared absorbing material particle dispersion
JP7342861B2 (en) Surface treated infrared absorbing fine particle dispersion and infrared absorbing transparent base material
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
WO2020110906A1 (en) Surface treated infrared absorbing fine particle dispersion liquid and method for producing same
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
TWI832929B (en) Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
JP5136832B2 (en) Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate
JP7367686B2 (en) Infrared absorbing material fine particle dispersion and its manufacturing method
JP2005008515A (en) Metal oxide particle and its manufacturing method
WO2023021837A1 (en) Antifungal emulsion coating, antifungal fine particle dispersion, and article provided with antifungal fine particle dispersion
JP7338237B2 (en) IR-absorbing lamps and IR-absorbing lamp covers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888627

Country of ref document: EP

Kind code of ref document: A1