JP5136832B2 - Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate - Google Patents

Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate Download PDF

Info

Publication number
JP5136832B2
JP5136832B2 JP2007215046A JP2007215046A JP5136832B2 JP 5136832 B2 JP5136832 B2 JP 5136832B2 JP 2007215046 A JP2007215046 A JP 2007215046A JP 2007215046 A JP2007215046 A JP 2007215046A JP 5136832 B2 JP5136832 B2 JP 5136832B2
Authority
JP
Japan
Prior art keywords
heat ray
ultraviolet
shielding film
ultraviolet shielding
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007215046A
Other languages
Japanese (ja)
Other versions
JP2009046609A (en
Inventor
至 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007215046A priority Critical patent/JP5136832B2/en
Publication of JP2009046609A publication Critical patent/JP2009046609A/en
Application granted granted Critical
Publication of JP5136832B2 publication Critical patent/JP5136832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、透明基材等に適用可能な、熱線・紫外線遮蔽膜形成用塗布液であって、優れた紫外線遮蔽能および日射遮蔽能を得られる熱線・紫外線遮蔽膜形成用塗布液、および、これを用いて形成された熱線・紫外線遮蔽能が高く表面硬度の高い熱線・紫外線遮蔽膜、並びに、熱線・紫外線遮蔽機能を有する熱線・紫外線遮蔽基材に関する。   The present invention is a coating solution for forming a heat ray / ultraviolet shielding film applicable to a transparent substrate or the like, and a coating solution for forming a heat ray / ultraviolet shielding film capable of obtaining an excellent ultraviolet shielding ability and solar radiation shielding ability, and The present invention relates to a heat ray / ultraviolet ray shielding film having a high heat ray / ultraviolet ray shielding ability and a high surface hardness, and a heat ray / ultraviolet ray shielding base material having a heat ray / ultraviolet ray shielding function.

太陽光線は、近赤外線、可視光線、紫外線の3つに大きく分けることができる。このうち、長波長領域の近赤外線(熱線)は、熱エネルギーとして人体に感じる波長領域の光であり、室内、車内の温度上昇の原因ともなるものである。一方、短波長領域の紫外線は、日焼け、しみ、そばかす、発癌、視力障害など人体への悪影響があり、物品の機械的強度の低下、色褪せなどの外観の劣化、食品の劣化、印刷物の色調の低下なども引き起こすものである。   Sun rays can be broadly divided into three types: near infrared rays, visible rays, and ultraviolet rays. Of these, near infrared rays (heat rays) in the long wavelength region are light in a wavelength region that is perceived by the human body as thermal energy, and cause a rise in temperature in the room and in the vehicle. On the other hand, ultraviolet rays in the short wavelength region have adverse effects on the human body, such as sunburn, spots, freckles, carcinogenesis, and visual impairment. It also causes a decline.

これらの、不要な近赤外線(熱線)や有害な紫外線を遮蔽するために、熱線・紫外線遮蔽膜を基材上に形成して、熱線・紫外線遮蔽機能を持たせたガラス基板、プラスチック板、フィルムなどの透明基材が使用されている。
また、熱線・紫外線遮蔽材料を含有する塗布液を適宜な基材上に塗布し、熱線・紫外線遮蔽膜を当該基材上に形成することによって、簡単かつ低コストで熱線・紫外線遮蔽機能を持たせた透明基材を製造することも提案されている。
In order to shield these unnecessary near infrared rays (heat rays) and harmful ultraviolet rays, a glass substrate, a plastic plate and a film having a heat ray / ultraviolet ray shielding function formed on the base material to provide a heat ray / ultraviolet ray shielding function. Transparent substrates such as are used.
In addition, by applying a coating solution containing a heat ray / ultraviolet shielding material on an appropriate substrate and forming a heat ray / ultraviolet ray shielding film on the substrate, it has a heat ray / ultraviolet ray shielding function easily and at low cost. It has also been proposed to produce a transparent substrate.

例えば、特許文献1は、常温硬化性バインダーに近赤外光遮蔽材料として六ホウ化物を、無機紫外線遮蔽成分としてCeO、ZnO、Fe、FeOOH微粒子のうちの1種以上を含有する熱線・紫外線遮蔽膜形成用塗布液について開示している。
また、特許文献2は、上記常温硬化性バインダーに近赤外光遮蔽材料として含ルテニウム酸化物微粒子、含イリジウム酸化物微粒子および/または含ロジウム酸化物微粒子を、無機紫外線遮蔽成分としてCeO、ZnO、Fe、FeOOH微粒子のうちの1種以上を含有する熱線・紫外線遮蔽膜形成用塗布液について開示している。
また、本発明者は、特許文献3に、上記常温硬化性バインダーへ、近赤外光遮蔽材料として複合タングステン酸化物を、無機紫外線遮蔽成分としてCeO、ZnO、Fe、FeOOH微粒子のうちの1種以上を添加した日射遮蔽膜形成用塗布液について提案している。
For example, Patent Document 1 contains hexaboride as a near-infrared light shielding material in a room temperature curable binder, and one or more of CeO 2 , ZnO, Fe 2 O 3 , and FeOOH fine particles as an inorganic ultraviolet shielding component. It discloses a coating solution for forming a heat ray / ultraviolet shielding film.
Patent Document 2 discloses that the room temperature curable binder contains ruthenium oxide fine particles, iridium oxide fine particles and / or rhodium oxide fine particles as a near infrared light shielding material, and CeO 2 , ZnO as an inorganic ultraviolet shielding component. A coating solution for forming a heat ray / ultraviolet shielding film containing at least one of Fe 2 O 3 and FeOOH fine particles is disclosed.
Further, the present inventor disclosed in Patent Document 3 a composite tungsten oxide as a near infrared light shielding material and CeO 2 , ZnO, Fe 2 O 3 , FeOOH fine particles as an inorganic ultraviolet shielding component in the room temperature curable binder. It proposes a coating solution for forming a solar shading film to which one or more of them are added.

さらに、特許文献4は、硬化性紫外線吸収剤に近赤外光遮蔽材料として含ルテニウム酸化物微粒子、含イリジウム酸化物微粒子および/または含ロジウム酸化物を、無機紫外線遮蔽成分としてCeO、ZnO、Fe、FeOOH微粒子のうちの1種以上を含有する熱線・紫外線遮蔽膜形成用塗布液について開示している。
また、特許文献5は、硬化性紫外線吸収剤に無機紫外線遮蔽成分として六ホウ化物を、無機紫外線遮蔽成分としてCeO、ZnO、Fe、FeOOH微粒子のうちの1種以上を含有する熱線・紫外線遮蔽膜形成用塗布液について開示している。
Further, Patent Document 4 discloses ruthenium oxide fine particles, iridium oxide fine particles and / or rhodium oxide as a near infrared light shielding material in a curable ultraviolet absorber, and CeO 2 , ZnO, A coating solution for forming a heat ray / ultraviolet shielding film containing at least one of Fe 2 O 3 and FeOOH fine particles is disclosed.
Patent Document 5 discloses a heat ray containing hexaboride as an inorganic ultraviolet shielding component in a curable ultraviolet absorber and one or more of CeO 2 , ZnO, Fe 2 O 3 and FeOOH fine particles as an inorganic ultraviolet shielding component. -It discloses about the coating liquid for ultraviolet shielding film formation.

特開2001−262061号公報JP 2001-262061 A 特開2001−262064号公報JP 2001-262064 A 特開2006−299087号公報JP 2006-299087 A 特開2000−191957号公報JP 2000-191957 A 特開2000−319554号公報JP 2000-319554 A

本発明者らの検討によると、特許文献1,2に記載されているバインダー成分に近赤外光遮蔽材料として含ルテニウム酸化物微粒子、含イリジウム酸化物微粒子、含ロジウム酸化物、六ホウ化物の少なくとも1種以上を含有する熱線・紫外線遮蔽膜形成用塗布液を基材上に成膜した場合、当該成膜の着色が著しいことが見出された。この著しい成膜の着色の為、優れた日射遮蔽能を得ようとして、近赤外光遮蔽材料の添加量を増やすと着色がさらに進み、可視光透過率まで低下してしまうという問題があった。   According to the study by the present inventors, ruthenium oxide fine particles, iridium oxide fine particles, rhodium oxide, hexaboride as a near infrared light shielding material in the binder component described in Patent Documents 1 and 2 When a coating solution for forming a heat ray / ultraviolet ray shielding film containing at least one kind was formed on a substrate, it was found that the coloring of the film formation was remarkable. Due to this remarkable coloration of the film, there was a problem that when the addition amount of the near-infrared light shielding material was increased in order to obtain an excellent solar shading ability, the coloring further progressed and the visible light transmittance was lowered. .

特許文献3のように、近赤外光遮蔽材料として複合タングステン酸化物を用いた場合には、高い可視光透過率と優れた日射遮蔽能が得られる。しかし、紫外線遮蔽能をも同時に得ようとして、無機紫外線遮蔽成分としてFe、FeOOH微粒子のうちの1種以上を併用すると、特許文献1,2と同様に、日射遮蔽膜の着色が著しいという問題があった。そこで、当該日射遮蔽膜の着色を抑制しようとして、無機紫外線遮蔽成分としてCeO2、ZnO微粒子のうちの1種以上を含有する熱線・紫外線遮蔽膜形成用塗布液とした
場合、優れた紫外線遮蔽能を得るために必要な紫外線遮蔽成分の添加量が多くなり、塗布作業性や成膜の外観、表面硬度が悪化するという問題があった。
When the composite tungsten oxide is used as the near-infrared light shielding material as in Patent Document 3, high visible light transmittance and excellent solar radiation shielding ability can be obtained. However, when one or more of Fe 2 O 3 and FeOOH fine particles are used in combination as an inorganic ultraviolet shielding component so as to obtain the ultraviolet shielding ability at the same time, similarly to Patent Documents 1 and 2, the solar radiation shielding film is markedly colored. There was a problem. Therefore, in order to suppress the coloring of the solar radiation shielding film, when the coating liquid for forming a heat ray / ultraviolet shielding film containing at least one of CeO 2 and ZnO fine particles as an inorganic ultraviolet shielding component is used, excellent ultraviolet shielding ability As a result, there is a problem that the amount of the ultraviolet shielding component necessary for obtaining the toner increases, and the coating workability, the appearance of film formation, and the surface hardness deteriorate.

一方、特許文献4,5に記載されている紫外線遮蔽能を有するバインダー成分に近赤外光遮蔽材料を添加した熱線・紫外線遮蔽膜形成用塗布液とした場合であっても、近赤外光遮蔽材料として含ルテニウム酸化物微粒子、含イリジウム酸化物微粒子、含ロジウム酸化物、六ホウ化物を用いている為、特許文献1,2と同様に、成膜の着色が著しいという問題があった。   On the other hand, even in the case of a coating solution for forming a heat ray / ultraviolet shielding film in which a near infrared light shielding material is added to the binder component having an ultraviolet shielding ability described in Patent Documents 4 and 5, near infrared light Since ruthenium-containing oxide fine particles, iridium-containing fine particles, rhodium-containing oxides, and hexaboride are used as the shielding material, there is a problem that the film formation is markedly colored, as in Patent Documents 1 and 2.

本発明は、上述の状況の下でなされたものであり、優れた紫外線遮蔽能および日射遮蔽能を得ながら、基材等へ塗布した際の、当該塗布前後の可視光透過率の差が小さく、且つ、色度の変化が小さい上、既存の各種の基材に適応出来る熱線・紫外線遮蔽膜形成用塗布液、および、これを用いて形成された熱線・紫外線遮蔽膜、並びに熱線・紫外線遮蔽機能を有する熱線・紫外線遮蔽基材を提供することを目的とする。   The present invention has been made under the above-described circumstances, and the difference in visible light transmittance before and after application is small when applied to a substrate or the like while obtaining excellent ultraviolet shielding ability and solar radiation shielding ability. In addition, a coating solution for forming a heat ray / ultraviolet ray shielding film that can be applied to various existing base materials with little change in chromaticity, a heat ray / ultraviolet ray shielding film formed using the same, and a heat ray / ultraviolet ray shielding film An object is to provide a heat ray / ultraviolet shielding base material having a function.

発明者らは、優れた紫外線遮蔽能および日射線遮蔽能が得られる熱線・紫外線遮蔽膜形成用塗布液、およびこれを用いて形成された熱線・紫外線遮蔽能が高く表面硬度の高い熱線・紫外線遮蔽膜を得るため、鋭意研究を重ねた結果、2、2’、4、4’−テトラヒドロキシベンゾフェノンとイソシアノ基をもつアルコキシシランを混合反応させてなる反応物を硬化性紫外線吸収剤の機能も有するバインダー成分として用い、さらに近赤外光遮蔽成分として、複合タングステン酸化物微粒子を用いて熱線・紫外線遮蔽膜形成用塗布液を製造し、該熱線・紫外線遮蔽膜形成用塗布液を適宜な基材上で硬化させると、熱線・紫外線遮蔽能が高く、塗布前後の可視光透過率の差が小さく、且つ、色度の変化が小さい熱線・紫外線遮蔽膜が得られることを見出し、本発明を完成するに至った。   The inventors have developed a coating solution for forming a heat ray / ultraviolet ray shielding film that provides excellent ultraviolet ray shielding ability and solar ray shielding ability, and a heat ray / ultraviolet ray having a high surface hardness and high heat ray / ultraviolet ray shielding ability. As a result of intensive research to obtain a shielding film, a reaction product obtained by mixing and reacting 2,2 ′, 4,4′-tetrahydroxybenzophenone and an alkoxysilane having an isocyano group also functions as a curable ultraviolet absorber. A coating solution for forming a heat ray / ultraviolet ray shielding film is produced using composite tungsten oxide fine particles as a near infrared light shielding component, and the heat ray / ultraviolet ray shielding film forming coating solution is used as an appropriate base. When cured on a material, a heat ray / ultraviolet ray shielding film having high heat ray / ultraviolet ray shielding ability, small difference in visible light transmittance before and after coating, and little change in chromaticity can be obtained. Heading, which resulted in the completion of the present invention.

すなわち、上述の課題を解決する第1の発明は、
硬化性紫外線吸収剤と、近赤外線遮蔽成分と、希釈溶媒と、硬化触媒とを含有する熱線・紫外線遮蔽膜形成用塗布液であって、
前記硬化性紫外線吸収剤が10〜40重量%含まれ、且つ、前記近赤外線遮蔽成分が1〜10重量%含まれ、
前記硬化性紫外線吸収剤の少なくとも1種が、2、2’、4、4’−テトラヒドロキシベンゾフェノン1モルに対しイソシアノ基をもつアルコキシシランを2モル以上10モル未満の割合で配合し、触媒の存在下で反応させて得られた一般式(化1)で示される反応物であり、
前記近赤外線遮蔽成分が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物を含む平均粒径200nm以下の微粒子であることを特徴とする熱線・紫外線遮蔽膜形成用塗布液である。

Figure 0005136832
(但し、一般式(化1)中のXは、加水分解によってシラノールを生じるアルコキシル基を示し、一般式(化1)中のRは、炭素数1〜3のアルキレン鎖を示す。) That is, the first invention for solving the above-described problem is
A coating solution for forming a heat ray / ultraviolet shielding film containing a curable ultraviolet absorber, a near infrared shielding component, a diluting solvent, and a curing catalyst,
10 to 40 wt% of the curable ultraviolet absorber is included, and 1 to 10 wt% of the near infrared ray shielding component is included,
At least one of the curable ultraviolet absorbers is blended in an amount of 2 mol or more and less than 10 mol of alkoxysilane having an isocyano group with respect to 1 mol of 2,2 ′, 4,4′-tetrahydroxybenzophenone. A reaction product represented by the general formula (Chemical Formula 1) obtained by reacting in the presence of
The near-infrared shielding component has a general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni) , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb , V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2. A coating solution for forming a heat ray / ultraviolet ray shielding film, which is a fine particle having an average particle size of 200 nm or less containing a composite tungsten oxide represented by 2 ≦ z / y ≦ 3.0).
Figure 0005136832
(However, X in the general formula (Chemical Formula 1) represents an alkoxyl group that generates silanol by hydrolysis, and R in the general formula (Chemical Formula 1) represents an alkylene chain having 1 to 3 carbon atoms.)

の発明は、
前記複合タングステン酸化物微粒子が、六方晶、正方晶、立方晶の結晶構造のいずれか1つ以上を含むことを特徴とする第1の発明に記載の熱線・紫外線遮蔽膜形成用塗布液である。
The second invention is
The composite tungsten oxide fine particles include one or more of hexagonal, tetragonal, and cubic crystal structures. The coating solution for forming a heat ray / ultraviolet shielding film according to the first aspect of the invention .

の発明は、
前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snから選択される1種類以上の元素であることを特徴とする第1または第2の発明に記載の熱線・紫外線遮蔽膜形成用塗布液を提供する。
The third invention is
In the first or second invention, the M element is one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. The coating solution for forming the heat ray / ultraviolet ray shielding film is provided.

の発明は、
前記硬化触媒がパラトルエンスルホン酸であり、前記熱線・紫外線遮蔽膜形成用塗布液中における当該硬化触媒の含有量が0.1〜3重量%であることを特徴とする第1から第のいずれかの発明に記載の熱線・紫外線遮蔽膜形成用塗布液を提供する。
The fourth invention is:
Wherein the curing catalyst is p-toluenesulfonic acid, the first to third, wherein the content of the curing catalyst in the heat ray-UV-screening film-forming coating liquid is 0.1 to 3 wt% A coating solution for forming a heat ray / ultraviolet ray shielding film according to any one of the inventions is provided.

の発明は、
第1から第の発明のいずれかに記載された熱線・紫外線遮蔽膜形成用塗布液を硬化して得られることを特徴とする熱線・紫外線遮蔽膜を提供する。
The fifth invention is:
A heat ray / ultraviolet ray shielding film obtained by curing the coating solution for forming a heat ray / ultraviolet ray shielding film described in any one of the first to fourth aspects of the invention is provided.

の発明は、
の発明に記載の熱線・紫外線遮蔽膜が、基板の少なくとも片面に形成されている熱線・紫外線遮蔽基材であって、
前記熱線・紫外線遮蔽膜形成用塗布液を塗布して得られた基材の可視光透過率と塗布前の基材の可視光透過率との差が10%以下であり、且つ、紫外線透過率が5%以下であり、且つ、日射透過率が65%以下であり、且つ塗布前後の基材のL表色系における色度b値の差が2以下であることを特徴とする熱線・紫外線遮蔽基材を提供する。
The sixth invention is:
The heat ray / ultraviolet ray shielding film according to the fifth invention is a heat ray / ultraviolet ray shielding base material formed on at least one surface of the substrate,
The difference between the visible light transmittance of the substrate obtained by applying the coating solution for forming the heat ray / ultraviolet shielding film and the visible light transmittance of the substrate before coating is 10% or less, and the ultraviolet transmittance Is 5% or less, the solar transmittance is 65% or less, and the difference in chromaticity b * values in the L * a * b * color system of the base material before and after coating is 2 or less. A heat ray / ultraviolet shielding base material is provided.

本発明に係る熱線・紫外線遮蔽膜形成用塗布液は常温で硬化し得るものであり、優れた紫外線遮蔽能および日射遮蔽能が得られる熱線・紫外線遮蔽膜形成用塗布液、およびこれを用いて形成された熱線・紫外線遮蔽能が高く表面硬度の高い熱線・紫外線遮蔽膜を得ることができた。   The coating solution for forming a heat ray / ultraviolet shielding film according to the present invention can be cured at room temperature, and a coating solution for forming a heat ray / ultraviolet shielding film capable of obtaining excellent ultraviolet shielding ability and solar radiation shielding ability, and The formed heat ray / ultraviolet ray shielding film having high heat ray / ultraviolet ray shielding ability and high surface hardness could be obtained.

以下、本発明について、(1)硬化性紫外線吸収剤、(2)硬化性紫外線吸収剤の製造方法、(3)近赤外線遮蔽成分、(4)近赤外遮蔽成分の製造方法、(5)希釈溶媒、(6)硬化触媒、(7)熱線・紫外線遮蔽膜形成用塗布液、(8)熱線・紫外線遮蔽膜形成用塗布液の調製方法、(9)熱線・紫外線遮蔽膜の形成と、熱線・紫外線遮蔽機能を有する基材、の順で詳細に説明する。   Hereinafter, (1) a curable ultraviolet absorber, (2) a method for producing a curable ultraviolet absorber, (3) a near infrared shielding component, (4) a method for producing a near infrared shielding component, (5) A dilution solvent, (6) a curing catalyst, (7) a coating solution for forming a heat ray / ultraviolet shielding film, (8) a method for preparing a coating solution for forming a heat ray / ultraviolet shielding film, (9) formation of a heat ray / ultraviolet shielding film, It demonstrates in detail in order of the base material which has a heat ray and ultraviolet-ray shielding function.

(1)硬化性紫外線吸収剤
本発明において用いられる紫外線吸収剤は、バインダー成分としても用いられる硬化性紫外線吸収剤である。そして、当該バインダー成分としても用いられる硬化性紫外線吸収剤の少なくとも1種は、2、2’、4、4’−テトラヒドロキシベンゾフェノンと、イソシアノ基をもつアルコキシシランとを、触媒の存在下で反応させて得られた硬化性紫外線吸収剤である。
当該硬化性紫外線吸収剤の基本構造は下記の一般式(化1)で示される。

Figure 0005136832
(但し、一般式(化1)中のXは、加水分解によってシラノールを生じるアルコキシル基を示し、一般式(化1)中のRは、炭素数1〜3のアルキレン鎖を示す。)
ここで、イソシアノ基をもつアルコキシシランとしては、γ−イソシアネートプロピルトリメトキシシランやγ−イソシアネートプロピルトリエトキシシラン等を挙げることができる。 (1) Curable UV absorber The UV absorber used in the present invention is a curable UV absorber also used as a binder component. And at least 1 type of the curable ultraviolet absorber used also as the said binder component reacts 2,2 ', 4,4'-tetrahydroxybenzophenone and the alkoxysilane which has an isocyano group in presence of a catalyst. It is a curable ultraviolet absorber obtained.
The basic structure of the curable ultraviolet absorber is represented by the following general formula (Formula 1).
Figure 0005136832
(However, X in the general formula (Chemical Formula 1) represents an alkoxyl group that generates silanol by hydrolysis, and R in the general formula (Chemical Formula 1) represents an alkylene chain having 1 to 3 carbon atoms.)
Here, examples of the alkoxysilane having an isocyano group include γ-isocyanatopropyltrimethoxysilane and γ-isocyanatopropyltriethoxysilane.

本発明に係る硬化性紫外線吸収剤(バインダー成分)は、前記一般式(化1)の基本構造に示すように、分子内にベンゾフェノン系の骨格をもち、これが紫外線の吸収に寄与する。また、本発明に係る硬化性紫外線吸収剤は、分子端のアルコキシ基は、加水分解して反応性の高いシラノールを生じ、これが縮合重合することによって自身で高分子化、あるいは他のバインダー成分と結合することで、バインダーとしての効果を発揮する。なお、この硬化性紫外線吸収剤はアルコキシル基が加水分解し、シラノールが縮合重合したオリゴマーの形態でも存在しうる。
このように本発明に係る硬化性紫外線吸収剤は自身が重合し、堅牢な塗膜を形成することでバインダーとしての効果を発揮する。このため、本発明に係る熱線・紫外線遮蔽膜においては、紫外線吸収剤のブリードアウトが起こらず、塗布膜表面に紫外線吸収剤が浮き出し、脱落したり、流れたりしない上、紫外線遮蔽効果が劣化しにくい。
The curable ultraviolet absorber (binder component) according to the present invention has a benzophenone-based skeleton in the molecule as shown in the basic structure of the general formula (Formula 1), which contributes to absorption of ultraviolet rays. Further, in the curable ultraviolet absorber according to the present invention, the alkoxy group at the molecular end is hydrolyzed to produce highly reactive silanol, which is polymerized by itself by condensation polymerization, or with other binder components. By bonding, the effect as a binder is exhibited. This curable ultraviolet absorber can also exist in the form of an oligomer in which an alkoxyl group is hydrolyzed and silanol is condensation-polymerized.
As described above, the curable ultraviolet absorber according to the present invention is polymerized by itself and forms a robust coating film, thereby exhibiting an effect as a binder. For this reason, in the heat ray / ultraviolet shielding film according to the present invention, the bleedout of the ultraviolet absorber does not occur, and the ultraviolet absorber does not float out on the surface of the coating film and does not fall off or flow, and the ultraviolet shielding effect deteriorates. Hateful.

(2)硬化性紫外線吸収剤の製造方法
上記硬化性紫外線吸収剤を製造する反応において、上記2、2’、4、4’−テトラヒドロキシベンゾフェノンとアルコキシシランとの配合比は、2、2’、4、4’−テトラヒドロキシベンゾフェノン1モルに対して、イソシアノ基をもつアルコキシシラン2モル
以上、10モル未満が望ましい。
イソシアノ基をもつアルコキシシランの配合比を2、2’、4、4’−テトラヒドロキシベンゾフェノン1モルに対して2モル以上とすれば、本発明に係る熱線・紫外線遮蔽膜形成用塗布液を塗布して得られる紫外線遮蔽膜が、ガラスクリーナーなどのアルカリ性物質に暴露された際であっても、著しく黄変することを回避出来るからである。また、イソシアノ基をもつアルコキシシランの配合比を2、2’、4、4’−テトラヒドロキシベンゾフェノン1モルに対して10モル未満とすることで、高い紫外線遮蔽能を得られる水準の希釈をした時であっても、均一な塗布が容易な粘度を維持出来るからである。
また、触媒としてはジブチルスズジラウレート、ジブチルスズオクトエート、ジオクチルスズジラウレート等が望ましい。
上記反応は、常温〜60℃程度の加温下において30分間〜2時間程度で完了する。
(2) Production method of curable ultraviolet absorber In the reaction for producing the curable ultraviolet absorber, the mixing ratio of 2,2 ′, 4,4′-tetrahydroxybenzophenone and alkoxysilane is 2,2 ′. Desirably, 2 moles or more and less than 10 moles of alkoxysilane having an isocyano group per mole of 4,4′-tetrahydroxybenzophenone.
If the compounding ratio of the alkoxysilane having an isocyano group is 2 mol or more with respect to 1 mol of 2,2 ′, 4,4′-tetrahydroxybenzophenone, the coating solution for forming a heat ray / ultraviolet shielding film according to the present invention is applied. This is because, even when the ultraviolet shielding film obtained in this manner is exposed to an alkaline substance such as a glass cleaner, significant yellowing can be avoided. In addition, the blending ratio of the alkoxysilane having an isocyano group was less than 10 moles with respect to 1 mole of 2,2 ′, 4,4′-tetrahydroxybenzophenone, thereby diluting to a level capable of obtaining high ultraviolet shielding ability. This is because even when it is, uniform viscosity can be easily maintained.
The catalyst is preferably dibutyltin dilaurate, dibutyltin octoate, dioctyltin dilaurate, or the like.
The above reaction is completed in about 30 minutes to 2 hours under normal temperature to about 60 ° C.

(3)近赤外遮蔽成分
本発明において近赤外遮蔽成分として用いられる近赤外線吸収材料は、平均分散粒子径が200nm以下である複合タングステン酸化物の微粒子を主成分として含んでいる。
当該複合タングステン酸化物は、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0
)で示される複合タングステン酸化物微粒子であり、十分な量の自由電子が生成されるため近赤外線吸収成分として有効に機能する。
(3) Near-infrared shielding component The near-infrared absorbing material used as the near-infrared shielding component in the present invention contains fine particles of composite tungsten oxide having an average dispersed particle size of 200 nm or less as a main component.
The composite tungsten oxide has the general formula MxWyOz (where the M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, One or more elements selected from Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, .2 ≦ z / y ≦ 3.0
The composite tungsten oxide fine particles represented by (2) are effective as a near-infrared absorbing component because a sufficient amount of free electrons are generated.

前記一般式MxWyOzで表記される複合タングステン酸化物微粒子は、六方晶、正方晶、立方晶の結晶構造を有する場合に耐久性に優れることから、該六方晶、正方晶、立方晶から選ばれる1つ以上の結晶構造を有する複合タングステン酸化物微粒子であることが
好ましい。
さらに、例えば、六方晶の結晶構造を持つ複合タングステン酸化物微粒子の場合であれば、好ましいM元素として、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの各元素から選択される1種類以上の元素を含む複合タングステン酸化物微粒子が挙げられる。
このとき、添加されるM元素の添加量xは、x/yの値で0.001以上、1.0以下
が好ましく、更に好ましくは0.33付近であることが良い。これは六方晶の結晶構造か
ら理論的に算出されるxの値が0.33であり、この前後の添加量で好ましい光学特性が
得られるからである。
一方、酸素の存在量は、z/yの値で2.2以上3.0以下が好ましい。典型的な例としてはCs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WOなどを挙げることができるが、y、zが上記の範囲に収まるものであれば、有用な近赤外線吸収特性を得ることができる。
The composite tungsten oxide fine particles represented by the general formula MxWyOz are excellent in durability when having a hexagonal, tetragonal, or cubic crystal structure. A composite tungsten oxide fine particle having one or more crystal structures is preferable.
Further, for example, in the case of composite tungsten oxide fine particles having a hexagonal crystal structure, preferable M elements include Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Examples thereof include composite tungsten oxide fine particles containing one or more elements selected from elements.
At this time, the added amount x of the M element is preferably 0.001 or more and 1.0 or less in terms of x / y, and more preferably in the vicinity of 0.33. This is because the value of x calculated theoretically from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this value.
On the other hand, the abundance of oxygen is preferably 2.2 or more and 3.0 or less in terms of z / y. Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, but y and z fall within the above ranges. If it is a thing, a useful near-infrared absorption characteristic can be acquired.

以上説明した複合タングステン酸化物微粒子は、単独で使用してもよいが、二種類以上を混合使用することも好ましい。本発明者らの実験によればこれらの微粒子を十分細かく、かつ均一に分散した膜では、透過率が波長400〜700nmの間に極大値を持ち、かつ700〜1800nmの間に極小値を持つことが観察された。可視光波長が380〜780nmであり、視感度が550nm付近をピークとする釣鐘型であることを考慮すると、このような膜では可視光を有効に透過し、それ以外の波長の光を有効に吸収・反射することが理解できる。   The composite tungsten oxide fine particles described above may be used alone, but it is also preferable to use a mixture of two or more. According to the experiments of the present inventors, in a film in which these fine particles are sufficiently finely and uniformly dispersed, the transmittance has a maximum value between wavelengths of 400 to 700 nm and a minimum value between 700 and 1800 nm. It was observed. Considering that the visible light wavelength is 380 to 780 nm and the visibility is a bell-shaped peak with a peak near 550 nm, such a film effectively transmits visible light and effectively emits light of other wavelengths. It can be understood that it absorbs and reflects.

当該複合タングステン酸化物微粒子の平均粒径は、200nm以下、好ましくは100
nm以下とすることが好ましい。平均粒径が200nm以下であると微粒子同士の凝集傾向が強くならず、塗布液中における微粒子の沈降が回避できるからであり、また、平均粒径が200nm以下の微粒子は、光散乱による可視光透過率の低下の原因とならないという特徴も有している。現在の技術において、粒径2nm程度までの微粒子は容易に商業的に製造できる。
The composite tungsten oxide fine particles have an average particle size of 200 nm or less, preferably 100
It is preferable to set it as nm or less. This is because if the average particle size is 200 nm or less, the tendency of aggregation of the fine particles does not become strong, and the precipitation of the fine particles in the coating solution can be avoided, and the fine particles having an average particle size of 200 nm or less are visible light by light scattering. Another characteristic is that it does not cause a decrease in transmittance. In the current technology, fine particles having a particle size of about 2 nm can be easily produced commercially.

(4)近赤外遮蔽成分(複合タングステン酸化物微粒子)の製造方法
上記一般式MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して得ることができる。
(4) Manufacturing method of near-infrared shielding component (composite tungsten oxide fine particles) The composite tungsten oxide fine particles represented by the above general formula MxWyOz is heat-treated in an inert gas atmosphere or a reducing gas atmosphere. Can be obtained.

複合タングステン化合物出発原料には、3酸化タングステン粉末、もしくは酸化タングステンの水和物、もしくは、6塩化タングステン粉末、もしくはタングステン酸アンモニウム粉末、もしくは、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、もしくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上であることが好ましい。ここで、複合タングステン酸化物微粒子を製造する場合には製造工程の容易さの観点より、タングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、を用いることがさらに好ましい。さらに、出発原料が溶液であると各元素を容易に均一混合が可能となるとの観点より、タングステン酸アンモニウム水溶液や、6塩化タングステン溶液を用いることが好ましい。これら原料を用い、これを不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して、上述した粒径の複合タングステン酸化物微粒子を得ることができる。   The composite tungsten compound starting material is tungsten trioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride dissolved in alcohol and then dried. Tungsten oxide hydrate powder obtained, or tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then adding water to precipitate it and drying it It is preferable that it is at least one selected from a tungsten compound powder obtained by drying an aqueous ammonium solution and a metal tungsten powder. Here, when producing composite tungsten oxide fine particles, tungsten oxide hydrate powder or tungsten compound powder obtained by drying ammonium tungstate aqueous solution is used from the viewpoint of ease of production process. Is more preferable. Furthermore, it is preferable to use an ammonium tungstate aqueous solution or a tungsten hexachloride solution from the viewpoint that when the starting material is a solution, each element can be easily and uniformly mixed. By using these raw materials and heat-treating them in an inert gas atmosphere or a reducing gas atmosphere, composite tungsten oxide fine particles having the above-mentioned particle diameter can be obtained.

さらに元素Mも、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。溶液状の形態で混合することによって、より均一化できるからである。   Furthermore, the element M is also preferably soluble in a solvent such as water or an organic solvent. Examples thereof include tungstate, chloride, nitrate, sulfate, oxalate, oxide, and the like containing element M, but are not limited to these and are preferably in the form of a solution. It is because it can make more uniform by mixing in a solution form.

ここで、不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な着色力を有し複合タングステン酸化物微粒子として効率が良い。
熱処理温度が650℃を下回ると還元不足となり、所定の日射遮蔽特性が得られない。即ち、所定の可視光透過率に対して日射透過率が高くなってしまう。言い換えると、所定の日射遮蔽能を得るために、より多くの複合タングステン酸化物微粒子が必要になってしまう。
Here, the heat treatment condition in the inert atmosphere is preferably 650 ° C. or higher. The starting material heat-treated at 650 ° C. or higher has sufficient coloring power and is efficient as composite tungsten oxide fine particles.
When the heat treatment temperature is lower than 650 ° C., the reduction is insufficient, and a predetermined solar shading characteristic cannot be obtained. That is, the solar radiation transmittance becomes higher than a predetermined visible light transmittance. In other words, more composite tungsten oxide fine particles are required to obtain a predetermined solar radiation shielding ability.

不活性ガスとしてはAr、N等の不活性ガスを用いることが良い。また、還元性雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて100℃以上、650℃以下で熱処理し、次いで不活性ガス雰囲気中で650℃以上、1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないがHが好ましい。また還元性ガスとしてHを用いる場合は、還元雰囲気の組成として、Hが体積比で0.1%以上が好ましく、さらに好ましくは2%以上が良い。0.1%以上であれば効率よく還元を進めることができる。 An inert gas such as Ar or N 2 is preferably used as the inert gas. As the heat treatment conditions in the reducing atmosphere, the starting material is first heat-treated at 100 ° C. or more and 650 ° C. or less in the reducing gas atmosphere, and then at a temperature of 650 ° C. or more and 1200 ° C. or less in the inert gas atmosphere. It is better to heat-treat with. The reducing gas at this time is not particularly limited, but H 2 is preferable. When H 2 is used as the reducing gas, the volume ratio of H 2 is preferably 0.1% or more, more preferably 2% or more, as the composition of the reducing atmosphere. If it is 0.1% or more, the reduction can proceed efficiently.

水素で還元された原料粉末はマグネリ相を含み、良好な近赤外遮蔽特性を示すので、この状態でも近赤外遮蔽微粒子として使用可能である。しかし、複合タングステン酸化物微粒子中に含まれる水素が不安定であるため、耐候性の面で応用が限定される可能性がある
。そこで、この水素を含む複合タングステン酸化物微粒子を、不活性雰囲気中、650℃以上で熱処理することで、さらに安定なものとすることができる。この650℃以上の熱処理時の雰囲気は特に限定されないが、工業的観点から、N、Arが好ましい。当該650℃以上の熱処理により、複合タングステン酸化物微粒子中にマグネリ相が得られ耐候性が向上する。ここで、当該マグネリ相には、一般式WO(2.45≦x≦2.999)で示されるタングステン酸化物が含まれる。
Since the raw material powder reduced with hydrogen contains a Magneli phase and exhibits good near-infrared shielding properties, it can be used as near-infrared shielding fine particles even in this state. However, since hydrogen contained in the composite tungsten oxide fine particles is unstable, the application may be limited in terms of weather resistance. Therefore, the composite tungsten oxide fine particles containing hydrogen can be further stabilized by heat treatment at 650 ° C. or higher in an inert atmosphere. The atmosphere during the heat treatment at 650 ° C. or higher is not particularly limited, but N 2 and Ar are preferable from an industrial viewpoint. By the heat treatment at 650 ° C. or higher, a magnetic phase is obtained in the composite tungsten oxide fine particles, and the weather resistance is improved. Here, the magnesium phase includes a tungsten oxide represented by a general formula WO X (2.45 ≦ x ≦ 2.999).

上述のようにして得られた複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alの一種類以上の金属を含有する酸化物で被覆されていることは、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、当該複合タングステン酸化物微粒子を分散した溶液中へ、上記金属のアルコキシドを添加することで、複合タングステン酸化物微粒子の表面を被覆することが可能である。   From the viewpoint of improving the weather resistance, the surface of the composite tungsten oxide fine particles obtained as described above is coated with an oxide containing one or more kinds of metals of Si, Ti, Zr, and Al. preferable. Although the coating method is not particularly limited, it is possible to coat the surface of the composite tungsten oxide fine particles by adding the metal alkoxide to the solution in which the composite tungsten oxide fine particles are dispersed.

(5)希釈溶媒
熱線・紫外線遮蔽膜形成用塗布液に用いる希釈溶媒は、特に限定されるものではなく、塗布条件や、塗布環境、塗布液中の固形分の種類に合わせて選択可能である。当該希釈溶媒として、例えば、メタノール、エタノール、イソブチルアルコールなどのアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテルアルコール類、酢酸メチルや酢酸エチルなどのエステル類、メチルエチルケトンやシクロヘキサノンなどのケトン類など各種溶媒が使用可能である。また用途によって、前記1種または2種以上の溶媒を組み合わせて使用することもできる。
(5) Diluting solvent The diluting solvent used in the coating solution for forming the heat ray / ultraviolet shielding film is not particularly limited, and can be selected according to the coating conditions, the coating environment, and the solid content in the coating solution. . Examples of the dilution solvent include alcohols such as methanol, ethanol and isobutyl alcohol, ether alcohols such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, esters such as methyl acetate and ethyl acetate, and ketones such as methyl ethyl ketone and cyclohexanone. Various solvents can be used. Moreover, the said 1 type, or 2 or more types of solvent can also be used in combination according to a use.

(6)硬化触媒
上述の硬化性紫外線吸収剤(バインダー成分)には湿気硬化性があるが、常温での硬化速度を実用的なものとするためには、熱線・紫外線遮蔽膜形成用塗布液への硬化触媒の添加が必須である。そして、当該硬化触媒としては、パラトルエンスルホン酸が望ましい。さらに、当該硬化触媒の添加量を調整することによって、硬化時間を制御することが可能となる。この結果、当該熱線・紫外線遮蔽膜形成用塗布液の応用範囲を広げることが出来た。ここで、硬化触媒の添加量は0.1〜3重量%が好ましい。
(6) Curing catalyst Although the above-mentioned curable ultraviolet absorber (binder component) is moisture curable, in order to make the curing rate at room temperature practical, a coating solution for forming a heat ray / ultraviolet shielding film It is essential to add a curing catalyst. And as the said curing catalyst, para-toluenesulfonic acid is desirable. Furthermore, the curing time can be controlled by adjusting the addition amount of the curing catalyst. As a result, the application range of the coating solution for forming the heat ray / ultraviolet shielding film could be expanded. Here, the addition amount of the curing catalyst is preferably 0.1 to 3% by weight.

(7)熱線・紫外線遮蔽膜形成用塗布液
本発明の熱線・紫外線遮蔽膜形成用塗布液は、上記硬化性紫外線吸収剤を少なくとも1種類含有するものであるが、その硬化は硬化性紫外線吸収剤のアルコキシル基の加水分解とこれに続くシラノールの縮合重合による高分子化によって起こり、他のバインダー成分の添加は必須ではない。この結果、上述したように、硬化性紫外線吸収剤自身が重合し、堅牢な塗膜を形成するため、紫外線吸収剤のブリードアウトが起こらず、塗布膜表面に紫外線吸収剤が浮き出し、脱落したり、流れたりしない上、紫外線遮蔽効果は劣化しにくい。
したがって、本発明に係る、上記硬化性紫外線吸収剤をバインダーとする塗布液から得られる塗布膜は、紫外線遮蔽能の長期安定性に優れるため無機紫外線遮蔽成分を必要としない。また、該硬化性紫外線吸収剤をバインダーとし、近赤外線遮蔽材料として該複合タングステン酸化物を組み合わせた塗布液において、それぞれの添加量を最適範囲とすることによって、高い可視光透過率、無色透明に近い色調、優れた熱線・紫外線遮蔽機能、実用的な表面硬度を有する塗膜となる熱線・紫外線遮蔽膜形成用塗布液が得られる。
(7) Coating solution for forming a heat ray / ultraviolet shielding film The coating solution for forming a heat ray / ultraviolet shielding film of the present invention contains at least one kind of the above curable ultraviolet absorber, and its curing is curable ultraviolet absorption. It occurs by hydrolysis of the alkoxyl group of the agent and subsequent polymerization by condensation polymerization of silanol, and the addition of other binder components is not essential. As a result, as described above, the curable ultraviolet absorber itself is polymerized to form a robust coating film, so that the ultraviolet absorber does not bleed out, and the ultraviolet absorber floats on the coating film surface and falls off. In addition, it does not flow and the ultraviolet shielding effect is not easily deteriorated.
Therefore, since the coating film obtained from the coating solution using the curable ultraviolet absorbent as a binder according to the present invention is excellent in long-term stability of the ultraviolet shielding ability, an inorganic ultraviolet shielding component is not required. In addition, in the coating liquid in which the curable ultraviolet absorber is used as a binder and the composite tungsten oxide is combined as a near-infrared shielding material, each additive amount is set to an optimum range so that high visible light transmittance and colorless transparency can be obtained. A coating solution for forming a heat ray / ultraviolet ray shielding film, which becomes a coating film having a close color tone, an excellent heat ray / ultraviolet ray shielding function, and a practical surface hardness, is obtained.

(8)熱線・紫外線遮蔽膜形成用塗布液の調製方法
本発明に係る熱線・紫外線遮蔽膜形成用塗布液の調製において、近赤外遮蔽成分である複合タングステン酸化物微粒子を1〜10重量%となるよう添加し、硬化性紫外線吸収剤(バインダー成分)を10〜40重量%、さらに希釈溶剤と硬化触媒とを添加することで、総計を100重量%となるように秤量し、混合すれば良い。
(8) Preparation method of coating solution for forming heat ray / ultraviolet shielding film In preparation of coating solution for forming heat ray / ultraviolet shielding film according to the present invention, 1 to 10% by weight of composite tungsten oxide fine particles which are near infrared shielding components. And adding a diluting solvent and a curing catalyst to a total weight of 100% by weight, and mixing the curable ultraviolet absorber (binder component). good.

ここで、近赤外遮蔽成分の全配合量が1重量%以上あれば形成される熱線・紫外線遮蔽膜の近赤外遮蔽能が十分に確保でき、一方、10重量%以下であれば熱線・紫外線遮蔽膜の透明性および良好な膜外観が確保できる。
なお、硬化性紫外線吸収剤(バインダー成分)自体が長期的に安定な紫外線遮蔽能を有するため、無機紫外線遮蔽成分は添加する必要がない。
さらに、硬化性紫外線吸収剤(バインダー成分)の配合量が10重量%以上あれば形成される熱線・紫外線遮蔽膜の表面硬度が十分に確保でき、一方、40重量%以下であれば塗布液の粘度が過剰に高くなるのを回避でき、均一な塗布が容易である。
Here, if the total amount of the near-infrared shielding component is 1% by weight or more, the near-infrared shielding ability of the formed heat ray / ultraviolet shielding film can be sufficiently secured, while if it is 10% by weight or less, the heat ray / Transparency of the ultraviolet shielding film and good film appearance can be ensured.
In addition, since the curable ultraviolet absorber (binder component) itself has a long-term stable ultraviolet shielding ability, it is not necessary to add an inorganic ultraviolet shielding component.
Further, if the blending amount of the curable ultraviolet absorber (binder component) is 10% by weight or more, the surface hardness of the heat ray / ultraviolet shielding film to be formed can be sufficiently secured, while if it is 40% by weight or less, the coating solution An excessive increase in viscosity can be avoided, and uniform coating is easy.

一方、上述したように、硬化触媒の含有量は0.1〜3重量%が好ましい。硬化触媒の配合量が0.1重量%以上あれば形成される熱線・紫外線遮蔽膜の硬化に対して促進効果が得られ、3重量%以下であれば塗布時の液のレベリング性が確保されるからである。
硬化触媒が熱線・紫外線遮蔽膜形成用塗布液に添加されると、硬化性紫外線吸収剤(バインダー成分)の硬化が開始するが、塗布液中での硬化速度は極めて遅い。そこで、硬化触媒を予め該熱線・紫外線遮蔽膜形成用塗布液に添加しておくことも可能である。
さらに、該硬化触媒は、上述した各種の希釈溶媒へ予め溶解させておくことが好ましい。溶液の形態であれば、添加が容易で且つ直ちに均一化できるからである。
On the other hand, as described above, the content of the curing catalyst is preferably 0.1 to 3% by weight. If the blending amount of the curing catalyst is 0.1% by weight or more, an effect of accelerating the curing of the formed heat ray / ultraviolet shielding film can be obtained. This is because that.
When a curing catalyst is added to the coating solution for forming a heat ray / ultraviolet shielding film, curing of the curable ultraviolet absorber (binder component) starts, but the curing rate in the coating solution is extremely slow. Therefore, a curing catalyst can be added in advance to the coating solution for forming the heat ray / ultraviolet ray shielding film.
Furthermore, the curing catalyst is preferably dissolved in advance in the various dilution solvents described above. This is because, in the form of a solution, it can be easily added and can be made uniform immediately.

(9)熱線・紫外線遮蔽膜の形成と、熱線・紫外線遮蔽機能を有する基材
本発明に係る熱線・紫外線遮蔽膜形成用塗布液を、ガラス基板、プラスチック板、フィルムなどの透明基材を始めとする所定の基材の片面あるいは両面に塗布し、常温で硬化させることによって前記透明基材の表面上に表面硬度の高い熱線・紫外線遮蔽能を持つ熱線・紫外線遮蔽膜を形成することができる。
(9) Formation of heat ray / ultraviolet shielding film and base material having heat ray / ultraviolet ray shielding function The coating solution for forming the heat ray / ultraviolet ray shielding film according to the present invention includes transparent substrates such as glass substrates, plastic plates and films. A heat ray / ultraviolet shielding film having high surface hardness heat ray / ultraviolet ray shielding ability can be formed on the surface of the transparent substrate by applying to one or both sides of a predetermined substrate and curing at normal temperature. .

熱線・紫外線遮蔽膜形成用塗布液の塗布方法は特に限定されるものではなく、スピンコート法、スプレーコート法、ディップコート法、スクリーン印刷法、布や刷毛による塗布方法など、処理液を平坦で、薄く、かつ均一に塗布できる方法であればいかなる方法でも用いることができる。さらに、塗布温度は20℃から25℃程度の常温で、塗膜形成可能である。
この結果、熱線・紫外線遮蔽膜の形成の生産性は非常に高いものとなった。得られた熱線・紫外線遮蔽膜は、表面硬度が高く透明性に優れながら、高い熱線・紫外線遮蔽機能を有していた。さらに、当該熱線・紫外線遮蔽膜が片面あるいは両面に形成された透明基材は、高い機械的耐久性と透明性とを有し、高い熱線・紫外線遮蔽機能を有していた。そして、当該熱線・紫外線遮蔽膜は前記基材自体の紫外線による劣化をも抑制する。
The coating method of the coating solution for forming the heat ray / ultraviolet shielding film is not particularly limited, and the processing solution is flat such as spin coating method, spray coating method, dip coating method, screen printing method, coating method using cloth or brush. Any method can be used as long as it can be applied thinly and uniformly. Furthermore, the coating temperature can be formed at a room temperature of about 20 ° C. to 25 ° C.
As a result, the productivity of forming the heat ray / ultraviolet shielding film was extremely high. The obtained heat ray / ultraviolet shielding film had a high heat ray / ultraviolet ray shielding function while having high surface hardness and excellent transparency. Further, the transparent substrate on which the heat ray / ultraviolet ray shielding film is formed on one side or both sides has high mechanical durability and transparency, and has a high heat ray / ultraviolet ray shielding function. The heat ray / ultraviolet shielding film also suppresses deterioration of the substrate itself due to ultraviolet rays.

以下、本発明を、実施例を用いてさらに詳細に説明する。
なお、実施例および比較例に用いた熱線・紫外線遮蔽膜形成用塗布液の構成成分、該熱線・紫外線遮蔽膜形成用塗布液を用いて形成した熱線・紫外線遮蔽膜の光学特性の一覧表を表1に示した。
Hereinafter, the present invention will be described in more detail with reference to examples.
The components of the coating solution for forming the heat ray / ultraviolet shielding film used in the examples and comparative examples, and a list of optical characteristics of the heat ray / ultraviolet shielding film formed using the coating solution for forming the heat ray / ultraviolet shielding film are shown. It is shown in Table 1.

[実施例1]
<複合タングステン酸化物微粒子分散液>
メタタングステンアンモニウム水溶液(WO換算で50wt%)と塩化セシウムの水溶液とを、WとCsとのモル比が1対0.33となるように所定量秤量し、両液を混合し
て混合溶液を得た。この混合溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後、800℃アルゴン雰囲気中で1時間加熱することで、Cs0.33WOの粉末を製造した。この粉末の比表面積は20m/gであっ
た。また、当該Cs0.33WO粉末についてX線回折による結晶相の同定の結果、六方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。このCs0.33WO粉末20gと、トルエン75gと、分散剤5gとを混合し分散処理を行い、平均分散粒子径80nmの分散液(A液)とした。
[Example 1]
<Composite tungsten oxide fine particle dispersion>
A predetermined amount of an aqueous metatungsten ammonium solution (50 wt% in terms of WO 3 ) and an aqueous solution of cesium chloride were weighed so that the molar ratio of W to Cs was 1: 0.33, and both solutions were mixed to obtain a mixed solution. Got. This mixed solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated at 550 ° C. for 1 hour in a reducing atmosphere (argon / hydrogen = 95/5 volume ratio). Then, once After returning to room temperature, by heating 1 hour at 800 ° C. in an argon atmosphere to prepare a powder of the Cs 0.33 WO 3. The specific surface area of this powder was 20 m 2 / g. Further, as a result of identification of the crystal phase of the Cs 0.33 WO 3 powder by X-ray diffraction, a crystal phase of hexagonal tungsten bronze (composite tungsten oxide fine particles) was observed. 20 g of this Cs 0.33 WO 3 powder, 75 g of toluene, and 5 g of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (A liquid) having an average dispersed particle diameter of 80 nm.

<紫外線吸収剤(バインダー成分)>
2、2’、4、4’−テトラヒドロキシベンゾフェノン28.4gとγ−イソシアネートプロピルトリエトキシシラン71.1gをビーカーにとり、ジブチルスズジラウレートを0.5g加えてメカニカルスターラーで混合撹拌を行った。
当該混合液中のγ−イソシアネートプロピルトリエトキシシラン量は、2、2’、4、4’−テトラヒドロキシベンゾフェノン1モルに対して2.5モルとした。
発熱反応が起こるがそのまま約1時間放置冷却し、目的の反応性紫外線吸収剤を含む赤褐色、高粘度の液を得た(当該本発明に係る硬化性紫外線吸収剤(バインダー成分)を含む赤褐色、高粘度の液を、以降において「合成液1」と記載する。)。
<Ultraviolet absorber (binder component)>
2,2 ′, 4,4′-Tetrahydroxybenzophenone (28.4 g) and γ-isocyanatopropyltriethoxysilane (71.1 g) were placed in a beaker, 0.5 g of dibutyltin dilaurate was added, and the mixture was stirred with a mechanical stirrer.
The amount of γ-isocyanatopropyltriethoxysilane in the mixed solution was 2.5 mol with respect to 1 mol of 2,2 ′, 4,4′-tetrahydroxybenzophenone.
Although an exothermic reaction takes place, it was left to cool for about 1 hour, and a reddish brown, high-viscosity liquid containing the desired reactive ultraviolet absorbent (reddish brown containing the curable ultraviolet absorbent (binder component) according to the present invention, The high-viscosity liquid is hereinafter referred to as “synthetic liquid 1”.

<熱線・紫外線遮蔽膜形成用塗布液>
25gの「合成液1」と、希釈溶媒である39.8gのイソブチルアルコールと20gのプロピレングリコールモノエチルエーテルと、15gのA液とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
<Coating liquid for forming heat ray / ultraviolet shielding film>
25 g of “Synthetic solution 1”, 39.8 g of isobutyl alcohol as a diluting solvent, 20 g of propylene glycol monoethyl ether, and 15 g of solution A are mixed and stirred. Further, paratoluenesulfonic acid (monohydric acid) is used as a curing catalyst. A coating solution for forming a heat ray / ultraviolet shielding film was prepared by adding 0.2 g and stirring.

<熱線・紫外線遮蔽膜>
この熱線・紫外線遮蔽膜形成用塗布液を、厚さ3mmのソーダライム系ガラス基板上にバーコーターを用いて塗布し、常温で放置して熱線・紫外線遮蔽膜を得た。
得られた熱線・紫外線遮蔽膜の光の透過率を、日立製作所(社)製の分光光度計を用いて測定し、JIS R 3106にしたがって可視光透過率(τv)、日射透過率(τe)を、ISO 9050にしたがって紫外線透過率(τuv)を算出した。
次に、熱線・紫外線遮蔽膜の色調は、JIS Z 8729にしたがってL表色系における色度bを算出した。
さらに、膜の表面硬度を、摩耗試験前後のへイズの変化量(ΔH)から評価した。具体的には、摩耗試験として、テーバー摩耗試験機に摩耗輪CS10fを用い、荷重250g、50回転を行った。へイズは村上色彩技術研究所(社)製の反射・透過率計で測定した。
<Heat ray / UV shielding film>
This coating solution for forming a heat ray / ultraviolet shielding film was applied onto a 3 mm thick soda lime glass substrate using a bar coater and left at room temperature to obtain a heat ray / ultraviolet shielding film.
The light transmittance of the obtained heat ray / ultraviolet shielding film was measured using a spectrophotometer manufactured by Hitachi, Ltd., and visible light transmittance (τv), solar transmittance (τe) according to JIS R 3106. The UV transmittance (τuv) was calculated according to ISO 9050.
Next, for the color tone of the heat ray / ultraviolet shielding film, chromaticity b * in the L * a * b * color system was calculated according to JIS Z 8729.
Furthermore, the surface hardness of the film was evaluated from the amount of change in the haze (ΔH) before and after the wear test. Specifically, as a wear test, a wear wheel CS10f was used in a Taber wear tester, and a load of 250 g and 50 rotations were performed. The haze was measured with a reflection / transmittance meter manufactured by Murakami Color Research Laboratory.

実施例1で得られた熱線・紫外線遮蔽膜形成用塗布液は常温で硬化可能であり、容易に熱線・紫外線遮蔽膜を得ることができた。
また膜のτvは81.5%、τeは51.0%、τuvは0.2%であり、可視光透過性に優れ、熱線・紫外線遮蔽能があることが判明した。
さらに、bは−0.3であり、塗布前のガラス基板との色調の差が小さいことが判明した。ΔHは12.5%であり、爪で強く引っ掻いても傷のつかない実用的な表面硬度の膜が形成されていた。
The coating solution for forming a heat ray / ultraviolet shielding film obtained in Example 1 was curable at room temperature, and a heat ray / ultraviolet shielding film could be easily obtained.
Further, it was found that τv of the film was 81.5%, τe was 51.0%, and τuv was 0.2%, which was excellent in visible light permeability and had a heat ray / ultraviolet ray shielding ability.
Further, b * was −0.3, and it was found that the difference in color tone from the glass substrate before coating was small. ΔH was 12.5%, and a film having a practical surface hardness that was not damaged even when strongly scratched with a nail was formed.

[実施例2]
<熱線・紫外線遮蔽膜形成用塗布液>
25gの実施例1で調製した「合成液1」と、希釈溶媒である44.8gのイソブチルアルコールと20gのプロピレングリコールモノエチルエーテルと、10gのA液とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Example 2]
<Coating liquid for forming heat ray / ultraviolet shielding film>
25 g of “Synthetic solution 1” prepared in Example 1, 44.8 g of isobutyl alcohol as a diluting solvent, 20 g of propylene glycol monoethyl ether, and 10 g of solution A were mixed and stirred, and further, paraffin was used as a curing catalyst. A coating solution for forming a heat ray / ultraviolet shielding film was prepared by adding 0.2 g of toluenesulfonic acid (monohydrate) and stirring.

<熱線・紫外線遮蔽膜>
この熱線・紫外線遮蔽膜形成用塗布液を、厚さ3mmのソーダライム系ガラス基板上にバーコーターを用いて塗布し、常温で放置して熱線・紫外線遮蔽膜を得た。
得られた熱線・紫外線遮蔽膜の可視光透過率(τv)、日射透過率(τe)、紫外線透過率(τuv)を実施例1と同様に算出した。
また、熱線・紫外線遮蔽膜の色調の色度bについても、実施例1と同様に算出した。
さらに、膜の表面硬度についても実施例1と同様に評価した。
<Heat ray / UV shielding film>
This coating solution for forming a heat ray / ultraviolet shielding film was applied onto a 3 mm thick soda lime glass substrate using a bar coater and left at room temperature to obtain a heat ray / ultraviolet shielding film.
The visible light transmittance (τv), solar transmittance (τe), and ultraviolet transmittance (τuv) of the obtained heat ray / ultraviolet shielding film were calculated in the same manner as in Example 1.
The chromaticity b * of the color tone of the heat ray / ultraviolet shielding film was also calculated in the same manner as in Example 1.
Furthermore, the surface hardness of the film was also evaluated in the same manner as in Example 1.

実施例1で得られた熱線・紫外線遮蔽膜形成用塗布液は常温で硬化可能であり、容易に熱線・紫外線遮蔽膜を得ることができた。
また膜のτvは83.5%、τeは57.5%、τuvは0.3%であり、可視光透過性に優れ、熱線・紫外線遮蔽能があることが判明した。
また、bは0.4であり、塗布前のガラス基板との色調の差が小さいことが判明した。ΔHは10.2%であり、爪で強く引っ掻いても傷のつかない実用的な表面硬度の膜が形成されていた。
The coating solution for forming a heat ray / ultraviolet shielding film obtained in Example 1 was curable at room temperature, and a heat ray / ultraviolet shielding film could be easily obtained.
Further, it was found that τv of the film was 83.5%, τe was 57.5%, and τuv was 0.3%, which was excellent in visible light permeability and had a heat ray / ultraviolet ray shielding ability.
Moreover, b * was 0.4, and it turned out that the difference of a color tone with the glass substrate before application | coating is small. ΔH was 10.2%, and a film having a practical surface hardness that was not damaged even when strongly scratched with a nail was formed.

[実施例3]
<熱線・紫外線遮蔽膜形成用塗布液>
25gの実施例1で調製した「合成液1」と、希釈溶媒である24.8gのイソブチルアルコールと20gのプロピレングリコールモノエチルエーテルと、30gのA液とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Example 3]
<Coating liquid for forming heat ray / ultraviolet shielding film>
25 g of “Synthetic solution 1” prepared in Example 1, 24.8 g of isobutyl alcohol as a diluting solvent, 20 g of propylene glycol monoethyl ether, and 30 g of A solution were mixed and stirred, and further, paraffin was used as a curing catalyst. A coating solution for forming a heat ray / ultraviolet shielding film was prepared by adding 0.2 g of toluenesulfonic acid (monohydrate) and stirring.

<熱線・紫外線遮蔽膜>
この熱線・紫外線遮蔽膜形成用塗布液を、厚さ3mmのソーダライム系ガラス基板上にバーコーターを用いて塗布し、常温で放置して熱線・紫外線遮蔽膜を得た。
得られた熱線・紫外線遮蔽膜の可視光透過率(τv)、日射透過率(τe)、紫外線透過率(τuv)を実施例1と同様に算出した。
また、熱線・紫外線遮蔽膜の色調の色度bについても、実施例1と同様に算出した。
さらに、膜の表面硬度についても実施例1と同様に評価した。
実施例3で得られた熱線・紫外線遮蔽膜形成用塗布液は常温で硬化可能であり、容易に熱線・紫外線遮蔽膜を得ることができた。
<Heat ray / UV shielding film>
This coating solution for forming a heat ray / ultraviolet shielding film was applied onto a 3 mm thick soda lime glass substrate using a bar coater and left at room temperature to obtain a heat ray / ultraviolet shielding film.
The visible light transmittance (τv), solar transmittance (τe), and ultraviolet transmittance (τuv) of the obtained heat ray / ultraviolet shielding film were calculated in the same manner as in Example 1.
The chromaticity b * of the color tone of the heat ray / ultraviolet shielding film was also calculated in the same manner as in Example 1.
Furthermore, the surface hardness of the film was also evaluated in the same manner as in Example 1.
The coating solution for forming a heat ray / ultraviolet shielding film obtained in Example 3 was curable at room temperature, and a heat ray / ultraviolet shielding film could be easily obtained.

また膜のτvは78.5%、τeは45.0%、τuvは0.1%であり、可視光透過性に優れ、熱線・紫外線遮蔽能があることが判明した。
また、bは−1.8であり、塗布前のガラス基板との色調の差が小さいことが判明した。ΔHは14.5%であり、爪で強く引っ掻いても傷のつかない実用的な表面硬度の膜が形成されていた。
Further, it was found that τv of the film was 78.5%, τe was 45.0%, and τuv was 0.1%, so that it was excellent in visible light permeability and had heat ray / ultraviolet ray shielding ability.
Further, b * was −1.8, and it was found that the difference in color tone from the glass substrate before coating was small. ΔH was 14.5%, and a film having a practical surface hardness that was not damaged even when strongly scratched with a nail was formed.

[比較例1]
比較のため、3mmのソーダライム系ガラス基板のみを試料として、実施例1と同様の測定を行った。
その結果、当該ソーダライム系ガラス基板のτvは90.3%、τeは87.3%、τuvは70.7%であった。
[Comparative Example 1]
For comparison, the same measurement as in Example 1 was performed using only a 3 mm soda lime glass substrate as a sample.
As a result, the soda-lime glass substrate had τv of 90.3%, τe of 87.3%, and τuv of 70.7%.

[比較例2]
25gの実施例1で調製した「合成液1」と、希釈溶媒である42.3gのイソブチルアルコールと30gのプロピレングリコールモノエチルエーテルと、2.5gのA液とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 2]
25 g of “Synthetic liquid 1” prepared in Example 1, 42.3 g of isobutyl alcohol as a diluent solvent, 30 g of propylene glycol monoethyl ether, and 2.5 g of liquid A were mixed and stirred, and further a curing catalyst. As a solution, 0.2 g of paratoluenesulfonic acid (monohydrate) was added and stirred to prepare a coating solution for forming a heat ray / ultraviolet shielding film.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例2により得られた熱線・紫外線遮蔽膜のτvは87.5%、τeは75.5%、τuvは0.2%、bは1.2であったことから、可視光透過性に優れ、十分な紫外線遮蔽能を有し、塗布前のガラス基板との色調の差が小さくなったが、日射遮蔽能が不十分であることが判明した。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
The heat ray / ultraviolet shielding film obtained in Comparative Example 2 had τv of 87.5%, τe of 75.5%, τuv of 0.2%, and b * of 1.2. It was found that the solar radiation shielding ability was insufficient, although it was excellent in that it had sufficient ultraviolet shielding ability and the difference in color tone from the glass substrate before coating was reduced.

[比較例3]
25gの実施例1で調製した「合成液1」と、希釈溶媒である10gのイソブチルアルコールと4.8gのプロピレングリコールモノエチルエーテルと、60gのA液とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 3]
25 g of “Synthetic solution 1” prepared in Example 1, 10 g of isobutyl alcohol as a diluting solvent, 4.8 g of propylene glycol monoethyl ether, and 60 g of A solution were mixed and stirred, and further, paraffin as a curing catalyst. A coating solution for forming a heat ray / ultraviolet shielding film was prepared by adding 0.2 g of toluenesulfonic acid (monohydrate) and stirring.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例3により得られた熱線・紫外線遮蔽膜のτvは75.2%、τeは41.5%、τuvは0.1%、bは−2.5であったことから、可視光透過性に優れ、十分な熱線・紫外線遮蔽能を有し、塗布前のガラス基板との色調の差が小さいことが判明した。しかしながら、ΔHは24%であり、爪で引っ掻くと塗膜に傷がつき、表面硬度の弱い膜であった。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
In the heat ray / ultraviolet shielding film obtained in Comparative Example 3, τv was 75.2%, τe was 41.5%, τuv was 0.1%, and b * was −2.5. It has been found that it has excellent heat properties, has sufficient heat ray / ultraviolet ray shielding ability, and has a small difference in color tone from the glass substrate before coating. However, ΔH was 24%. When scratched with a nail, the coating film was damaged, and the film had a low surface hardness.

[比較例4]
45gの実施例1で調製した「合成液1」と、希釈溶媒である19.8gのイソブチルアルコールと20gのプロピレングリコールモノエチルエーテルと、15gのA液とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 4]
45 g of “Synthetic solution 1” prepared in Example 1, 19.8 g of isobutyl alcohol as a diluting solvent, 20 g of propylene glycol monoethyl ether, and 15 g of A solution were mixed and stirred, and further, paraffin was used as a curing catalyst. A coating solution for forming a heat ray / ultraviolet shielding film was prepared by adding 0.2 g of toluenesulfonic acid (monohydrate) and stirring.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例4により得られた熱線・紫外線遮蔽膜形成用塗布液は粘度が著しく高く、均一な塗布が行えなかった。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
The coating solution for forming a heat ray / ultraviolet shielding film obtained in Comparative Example 4 had a remarkably high viscosity and could not be applied uniformly.

[比較例5]
グリシドキシプロピルトリメトキシシラン60gとアミノプロピルトリエトキシシラン40gとを混合し、マグネティックスターラーで1時間撹拌後、室温で14日間熟成させて、比較例に係るバインダー成分100gを得た(当該比較例に係るバインダー成分を以降において「合成液2」と記載する。)。
[Comparative Example 5]
60 g of glycidoxypropyltrimethoxysilane and 40 g of aminopropyltriethoxysilane were mixed, stirred for 1 hour with a magnetic stirrer and then aged at room temperature for 14 days to obtain 100 g of a binder component according to a comparative example (the comparative example) Hereinafter, the binder component is described as “synthetic solution 2”.)

RuO粉末15gと、N−メチル−2−ピロリドン(NMP)23gと、ジアセトンアルコール(DAA)14gと、メチルエチルケトン47.5gと分散剤0.5gとを混合し分散処理を行い、平均分散粒子径80nmの分散液(B液)とした。
FeOOH微粒子15gと、プロピレングリコールモノエチルエーテル80gと、分散剤5gとを混合して分散処理を行い、平均分散粒子径80nmの分散液(C液)とした。
25gの「合成液2」と、希釈溶媒である21.7gのイソブチルアルコールと20gのプロピレングリコールモノエチルエーテルと、3.3gのB液と、20gのC液とを混合撹拌し、さらに硬化触媒として三弗化ホウ素ピペリジンのイソブチルアルコール溶液(濃度:1重量%)10gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
15 g of RuO 2 powder, 23 g of N-methyl-2-pyrrolidone (NMP), 14 g of diacetone alcohol (DAA), 47.5 g of methyl ethyl ketone and 0.5 g of dispersing agent are mixed and dispersed to obtain average dispersed particles A dispersion liquid (liquid B) having a diameter of 80 nm was obtained.
Dispersion processing was performed by mixing 15 g of FeOOH fine particles, 80 g of propylene glycol monoethyl ether, and 5 g of a dispersant to obtain a dispersion liquid (liquid C) having an average dispersed particle diameter of 80 nm.
25 g of “Synthetic liquid 2”, 21.7 g of isobutyl alcohol as a diluting solvent, 20 g of propylene glycol monoethyl ether, 3.3 g of B liquid, and 20 g of C liquid are mixed and stirred, and further a curing catalyst Then, 10 g of a solution of boron trifluoride piperidine in isobutyl alcohol (concentration: 1% by weight) was added and stirred to prepare a coating solution for forming a heat ray / ultraviolet shielding film.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例5により得られた熱線・紫外線遮蔽膜のτvは68.8%、τeは61.6%、τuvは2.2%、bは17.8であったことから、熱線・紫外線遮蔽能には優れるが、基材への着色が強く、塗布前のガラス基板との色調の差が大きいことが判明した。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
The heat ray / ultraviolet shielding film obtained in Comparative Example 5 had τv of 68.8%, τe of 61.6%, τuv of 2.2%, and b * of 17.8. Although it was excellent in performance, it was found that the base material was strongly colored and the color difference from the glass substrate before coating was large.

[比較例6]
LaB粉末10g、トルエン83gおよび分散剤7gとを混合し分散処理を行い、平均粒径90nmの分散液(D液)とした。
25gの比較例5で調製した「合成液2」と、希釈溶媒である20gのイソブチルアルコールと20gのプロピレングリコールモノエチルエーテルと、5gのD液と、20gのC液とを混合撹拌し、さらに硬化触媒として三弗化ホウ素ピペリジンのイソブチルアルコール溶液(濃度:1重量%)10gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 6]
10 g LaB 6 powder, 83 g toluene, and 7 g dispersant were mixed and dispersed to obtain a dispersion liquid (D liquid) having an average particle diameter of 90 nm.
25 g of “Synthetic solution 2” prepared in Comparative Example 5, 20 g of isobutyl alcohol as a diluent solvent, 20 g of propylene glycol monoethyl ether, 5 g of D solution, and 20 g of C solution were mixed and stirred. As a curing catalyst, 10 g of an isobutyl alcohol solution of boron trifluoride piperidine (concentration: 1% by weight) was added and stirred to prepare a coating solution for forming a heat ray / ultraviolet shielding film.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例6により得られた熱線・紫外線遮蔽膜のτvは72.2%、τeは53.5%、τuvは1.5%、bは19.8であったことから、熱線・紫外線遮蔽能には優れるが、基材への着色が強く、塗布前のガラス基板との色調の差が大きいことが判明した。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
Τv of the heat ray / ultraviolet shielding film obtained in Comparative Example 6 was 72.2%, τe was 53.5%, τuv was 1.5%, and b * was 19.8. Although it was excellent in performance, it was found that the base material was strongly colored and the color difference from the glass substrate before coating was large.

[比較例7]
25gの比較例5で調製した「合成液2」と、希釈溶媒である30gのイソブチルアルコールと15gのプロピレングリコールモノエチルエーテルと、15gの(A液)と、20gの(C液)とを混合撹拌し、さらに触媒として三弗化ホウ素ピペリジンのイソブチルアルコール溶液(濃度:1重量%)10gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 7]
25 g of “Synthetic liquid 2” prepared in Comparative Example 5 was mixed with 30 g of isobutyl alcohol as a diluent solvent, 15 g of propylene glycol monoethyl ether, 15 g of (A liquid), and 20 g of (C liquid). Further, 10 g of an isobutyl alcohol solution of boron trifluoride piperidine (concentration: 1% by weight) was added as a catalyst and stirred to prepare a coating solution for forming a heat ray / ultraviolet shielding film.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例7により得られた熱線・紫外線遮蔽膜のτvは76.4%、τeは49.8%、τuvは2.1%、bは14.4であったことから、熱線・紫外線遮蔽能には優れるが、基材への着色が強く、塗布前のガラス基板との色調の差が大きいことが判明した。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
Τv of the heat ray / ultraviolet shielding film obtained in Comparative Example 7 was 76.4%, τe was 49.8%, τuv was 2.1%, and b * was 14.4. Although it was excellent in performance, it was found that the base material was strongly colored and the color difference from the glass substrate before coating was large.

[比較例8]
25gの実施例1で調製した「合成液1」と、希釈溶媒である41.5gのイソブチルアルコールと30gのプロピレングリコールモノエチルエーテルと、3.3gの(B液)とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 8]
25 g of “Synthetic solution 1” prepared in Example 1, 41.5 g of isobutyl alcohol as a diluent solvent, 30 g of propylene glycol monoethyl ether, and 3.3 g of (Liquid B) were mixed and stirred. A coating solution for forming a heat ray / ultraviolet ray shielding film was prepared by adding 0.2 g of paratoluenesulfonic acid (monohydrate) as a curing catalyst and stirring.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例8により得られた熱線・紫外線遮蔽膜のτvは70.5%、τeは63.2%、τuvは0.2%、bは4.5であったことから、熱線・紫外線遮蔽能には優れるが、基材への着色が強く、塗布前のガラス基板との色調の差が大きいことが判明した。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
Τv of the heat ray / ultraviolet shielding film obtained in Comparative Example 8 was 70.5%, τe was 63.2%, τuv was 0.2%, and b * was 4.5. Although it was excellent in performance, it was found that the base material was strongly colored and the color difference from the glass substrate before coating was large.

[比較例9]
25gの実施例1で調製した「合成液1」と、希釈溶媒である39.8gのイソブチルアルコールと30gのプロピレングリコールモノエチルエーテルと、5gの(D液)とを混合撹拌し、さらに硬化触媒としてパラトルエンスルホン酸(一水和物)0.2gを加えて撹拌することによって熱線・紫外線遮蔽膜形成用塗布液を製造した。
[Comparative Example 9]
25 g of “Synthetic solution 1” prepared in Example 1, 39.8 g of isobutyl alcohol as a diluent solvent, 30 g of propylene glycol monoethyl ether, and 5 g of (D solution) were mixed and stirred, and further a curing catalyst As a solution, 0.2 g of paratoluenesulfonic acid (monohydrate) was added and stirred to prepare a coating solution for forming a heat ray / ultraviolet shielding film.

つぎに実施例1と同様な手順で熱線・紫外線遮蔽膜を形成し、膜の評価を行った。
比較例9により得られた熱線・紫外線遮蔽膜のτvは74.5%、τeは55.5%、τuvは0.2%、bは5.5であったことから、熱線・紫外線遮蔽能には優れるが、基材への着色が強く、塗布前のガラス基板との色調の差が大きいことが判明した。
Next, a heat ray / ultraviolet shielding film was formed in the same procedure as in Example 1, and the film was evaluated.
Τv of the heat ray / ultraviolet shielding film obtained in Comparative Example 9 was 74.5%, τe was 55.5%, τuv was 0.2%, and b * was 5.5. Although it was excellent in performance, it was found that the base material was strongly colored and the color difference from the glass substrate before coating was large.

Figure 0005136832
Figure 0005136832

Claims (6)

硬化性紫外線吸収剤と、近赤外線遮蔽成分と、希釈溶媒と、硬化触媒とを含有する熱線・紫外線遮蔽膜形成用塗布液であって、
前記硬化性紫外線吸収剤が10〜40重量%含まれ、且つ、前記近赤外線遮蔽成分が1〜10重量%含まれ、
前記硬化性紫外線吸収剤の少なくとも1種が、2、2’、4、4’−テトラヒドロキシベンゾフェノン1モルに対しイソシアノ基をもつアルコキシシランを2モル以上10モル未満の割合で配合し、触媒の存在下で反応させて得られた一般式(化1)で示される反応物であり、
前記近赤外線遮蔽成分が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物を含む平均粒径200nm以下の微粒子であることを特徴とする熱線・紫外線遮蔽膜形成用塗布液。
Figure 0005136832
(但し、一般式(化1)中のXは、加水分解によってシラノールを生じるアルコキシル基を示し、一般式(化1)中のRは、炭素数1〜3のアルキレン鎖を示す。)
A coating solution for forming a heat ray / ultraviolet shielding film containing a curable ultraviolet absorber, a near infrared shielding component, a diluting solvent, and a curing catalyst,
10 to 40 wt% of the curable ultraviolet absorber is included, and 1 to 10 wt% of the near infrared ray shielding component is included,
At least one of the curable ultraviolet absorbers is blended in an amount of 2 mol or more and less than 10 mol of alkoxysilane having an isocyano group with respect to 1 mol of 2,2 ′, 4,4′-tetrahydroxybenzophenone. A reaction product represented by the general formula (Chemical Formula 1) obtained by reacting in the presence of
The near-infrared shielding component has a general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni) , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb , V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2. 2. A coating solution for forming a heat ray / ultraviolet shielding film, which is a fine particle having an average particle size of 200 nm or less containing a composite tungsten oxide represented by 2 ≦ z / y ≦ 3.0).
Figure 0005136832
(However, X in the general formula (Chemical Formula 1) represents an alkoxyl group that generates silanol by hydrolysis, and R in the general formula (Chemical Formula 1) represents an alkylene chain having 1 to 3 carbon atoms.)
前記複合タングステン酸化物微粒子が、六方晶、正方晶、立方晶の結晶構造のいずれか1つ以上を含むことを特徴とする請求項1に記載の熱線・紫外線遮蔽膜形成用塗布液。 2. The coating solution for forming a heat ray / ultraviolet shielding film according to claim 1, wherein the composite tungsten oxide fine particles include one or more of a hexagonal crystal, a tetragonal crystal, and a cubic crystal structure. 前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snから選択される1種類以上の元素であることを特徴とする請求項1または2に記載の熱線・紫外線遮蔽膜形成用塗布液。 3. The element according to claim 1, wherein the M element is one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Coating liquid for forming heat ray / ultraviolet shielding film. 前記硬化触媒がパラトルエンスルホン酸であり、前記熱線・紫外線遮蔽膜形成用塗布液中における当該硬化触媒の含有量が0.1〜3重量%であることを特徴とする請求項1からのいずれかに記載の熱線・紫外線遮蔽膜形成用塗布液。 Wherein the curing catalyst is p-toluenesulfonic acid, of claims 1 to 3 in which the content of the curing catalyst in the heat ray-UV-screening film-forming coating liquid is characterized in that 0.1 to 3 wt% The coating solution for forming a heat ray / ultraviolet shielding film according to any one of the above. 請求項1からのいずれかに記載された熱線・紫外線遮蔽膜形成用塗布液を硬化して得られることを特徴とする熱線・紫外線遮蔽膜。 Heat ray-ultraviolet shielding film, which is obtained by curing the heat-ray-UV-screening film-forming coating solution as claimed in any of claims 1 to 4. 請求項に記載の熱線・紫外線遮蔽膜が、基板の少なくとも片面に形成されている熱線・紫外線遮蔽基材であって、
前記熱線・紫外線遮蔽膜形成用塗布液を塗布して得られた基材の可視光透過率と塗布前の基材の可視光透過率との差が10%以下であり、且つ、紫外線透過率が5%以下であり、且つ、日射透過率が65%以下であり、且つ塗布前後の基材のL表色系における色度b値の差が2以下であることを特徴とする熱線・紫外線遮蔽基材。
The heat ray / ultraviolet ray shielding film according to claim 5 is a heat ray / ultraviolet ray shielding base material formed on at least one surface of the substrate,
The difference between the visible light transmittance of the substrate obtained by applying the coating solution for forming the heat ray / ultraviolet shielding film and the visible light transmittance of the substrate before coating is 10% or less, and the ultraviolet transmittance Is 5% or less, the solar transmittance is 65% or less, and the difference in chromaticity b * values in the L * a * b * color system of the base material before and after coating is 2 or less. Characteristic heat ray / ultraviolet shielding base material.
JP2007215046A 2007-08-21 2007-08-21 Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate Active JP5136832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215046A JP5136832B2 (en) 2007-08-21 2007-08-21 Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215046A JP5136832B2 (en) 2007-08-21 2007-08-21 Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate

Publications (2)

Publication Number Publication Date
JP2009046609A JP2009046609A (en) 2009-03-05
JP5136832B2 true JP5136832B2 (en) 2013-02-06

Family

ID=40499125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215046A Active JP5136832B2 (en) 2007-08-21 2007-08-21 Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate

Country Status (1)

Country Link
JP (1) JP5136832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655160B2 (en) 2017-05-05 2023-05-23 William Blythe Limited Tungsten oxide-based material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625609B2 (en) * 2015-03-06 2019-12-25 日本板硝子株式会社 Transparent article, method for producing the same, and film forming solution used therefor
CN114891215B (en) * 2022-06-20 2023-03-24 江南大学 Three-dimensional near-infrared photoinitiator and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191957A (en) * 1998-12-24 2000-07-11 Sumitomo Metal Mining Co Ltd Coating liquid for forming film for shielding heat rays and ultraviolet light and film using the same, substrate
JP3760671B2 (en) * 1999-05-06 2006-03-29 住友金属鉱山株式会社 Heat ray / ultraviolet shielding film forming coating liquid and heat ray / ultraviolet shielding film using the same
JP2002275416A (en) * 2001-03-16 2002-09-25 Sumitomo Metal Mining Co Ltd Coating liquid for forming ultraviolet light-screening film and ultraviolet light-screening film and laminate having the ultraviolet light-screening film
JP2006010759A (en) * 2004-06-22 2006-01-12 Sumitomo Metal Mining Co Ltd Near-infrared shielding material fine particle dispersion, near-infrared shielding body, and method for adjusting color tone of visible light passing through the near-infrared shielding material
JP4826126B2 (en) * 2005-04-20 2011-11-30 住友金属鉱山株式会社 Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655160B2 (en) 2017-05-05 2023-05-23 William Blythe Limited Tungsten oxide-based material

Also Published As

Publication number Publication date
JP2009046609A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2008194563A (en) Solar radiation barrier film and wavelength selection type barrier film
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
JP5245283B2 (en) Heat ray shielding vinyl chloride film composition, method for producing the same, and heat ray shielding vinyl chloride film
CN103703084B (en) Manufacture the method for the composition containing hot radiation shielding particulate and the composition containing hot radiation shielding particulate, use this to contain the hot radiation shielding film of the composition of hot radiation shielding particulate, and use the laminated transparent matrix material of hot radiation shielding of this hot radiation shielding film
CN105555729A (en) Tempered glass plate with low reflective coating and production method therefor
JPWO2007097284A1 (en) Uniformly dispersible photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained using the same
JP6187540B2 (en) Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP4938985B2 (en) Metal oxide particles and uses thereof
CN108531076B (en) Coating liquid for forming solar radiation shielding film, and adhesive, solar radiation shielding film and substrate using the same
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP6613674B2 (en) Heat ray shielding fine particles and heat ray shielding fine particle dispersion
JP5136832B2 (en) Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
JP4058850B2 (en) Coating solution for solar filter film formation
JP2011175252A (en) Hydrophilic low-reflection member
WO2019216152A1 (en) Surface-treated infrared-absorbing fine particle dispersion and infrared-absorbing transparent substrate
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP3760671B2 (en) Heat ray / ultraviolet shielding film forming coating liquid and heat ray / ultraviolet shielding film using the same
JP2005263612A (en) Metal oxide particle and its use
EP3141533A1 (en) Glass article
JP4058878B2 (en) Coating liquid for forming room temperature curable solar radiation shielding film, solar radiation shielding film using the same, and substrate having solar radiation shielding function
JP2012188636A (en) Coating agent having absorbing/shielding function of infrared ray
JP7371638B2 (en) Surface-treated infrared absorbing fine particle dispersion and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Ref document number: 5136832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3