WO2020108057A1 - 一种改性木质素/壳聚糖橡胶增强填料的制备方法 - Google Patents

一种改性木质素/壳聚糖橡胶增强填料的制备方法 Download PDF

Info

Publication number
WO2020108057A1
WO2020108057A1 PCT/CN2019/107744 CN2019107744W WO2020108057A1 WO 2020108057 A1 WO2020108057 A1 WO 2020108057A1 CN 2019107744 W CN2019107744 W CN 2019107744W WO 2020108057 A1 WO2020108057 A1 WO 2020108057A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
chitosan
add
solution
modified lignin
Prior art date
Application number
PCT/CN2019/107744
Other languages
English (en)
French (fr)
Inventor
陶伟珍
Original Assignee
陶伟珍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶伟珍 filed Critical 陶伟珍
Publication of WO2020108057A1 publication Critical patent/WO2020108057A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Definitions

  • the invention relates to the field of rubber fillers, in particular to a method for preparing modified lignin/chitosan rubber reinforced fillers.
  • Lignin is present in the xylem of most land plants, and forms the skeleton of the plant with cellulose and hemicellulose. It is a complex polymer compound. It is generally believed that the basic structural unit of lignin is phenylpropane, and there are three basic structures: guaiacyl propane, syringyl propane, and p-hydroxyphenyl propane. There are many functional groups on the structural unit of lignin, such as aromatic group, phenolic hydroxyl group, alcoholic hydroxyl group, carboxyl group, etc. The presence of these functional groups makes lignin have strong reactivity. Lignin can be used as an additive in rubber. The phenolic and carboxyl groups in its molecule can not only improve the anti-aging effect of the material, but also improve the physical and mechanical properties of the material.
  • Chitosan is a renewable resource obtained by chitin through different degrees of deacetylation.
  • the CS molecule has active hydroxyl and amino groups, and has strong chemical reaction ability. It is prone to hydrolysis, alkylation, acylation, hydroxylation, grafting, quaternary ammonium saltation and other reactions, and can generate various derivatives with different properties.
  • the substance has a realistic basis for combining with other substances and giving the copolymer its own characteristics.
  • Natural rubber is generally a concentrated natural latex or granular rubber collected from Brazilian trefoil rubber and processed through a series of processes, with excellent comprehensive performance. Although both CS and NR are very popular natural polymers with unique properties and potential use value in materials research, the mixing of the two to give the new composite with its own characteristics can be achieved by simple mixing.
  • the present invention will modify CS as a reinforcing material.
  • the purpose of the present invention is to provide a method for preparing modified lignin/chitosan rubber reinforced filler, and the prepared filler has good reinforcement effect.
  • a method for preparing modified lignin/chitosan rubber reinforced filler including the following steps:
  • Oxidation and sulfonation of lignin add lignin to deionized water containing sodium hydroxide, heat until lignin is completely dissolved, adjust the pH of the solution to 5, then add hydrogen peroxide and ferrous sulfate to react, After reaching the reaction time, add alkali to adjust the pH of the solution to 9, add formaldehyde and diethanolamine, and then react at 70-80 °C, then increase the temperature to 90 °C, add sodium sulfite, after the reaction is complete, add acid to precipitate lignin, wash and dry Oxidized sulfonated lignin;
  • Lignin/chitosan compound dissolve the lignin prepared in step S2 in dioxane-water solution, dissolve chitosan in acetic acid aqueous solution, mix the two solutions, add glutaraldehyde Union, finally suction filtered at room temperature, washed, and dried in an infrared box to obtain lignin / chitosan composite powder;
  • modified lignin/chitosan add the lignin/chitosan composite powder prepared in step S3 to deionized water, heat and stir until completely dissolved, adjust the pH to 10, and then add double stearin dropwise Amide ethyl epoxypropyl ammonium chloride, the reaction is complete under stirring, and then filtered by suction to dry to obtain modified lignin/chitosan.
  • volume ratio of dioxane-water in step S1 is 9:1.
  • the solution prepared by dissolving the lignin prepared in step S2 in dioxane-water is configured with a concentration of 3%, and the chitosan is dissolved in a 2-3% aqueous acetic acid solution with a concentration of 2 -5% solution, mix the two solutions at a volume ratio of 1:0.5-1.5, add 0.3-0.8% glutaraldehyde for cross-linking, and finally filter with suction at room temperature, wash, and dry in an infrared box to obtain Lignin/chitosan composite powder.
  • step S4 the concentration of distearoyl diethylene triamine and epichlorohydrin dissolved in benzene is 0.8-1 mol/L.
  • step S5 the lignin/chitosan composite powder prepared in step S3 is added to deionized water to prepare a solution with a concentration of 0.5 mol/L, heated to 40-50°C and stirred until completely dissolved, adjusted When the pH is 10, then add bisstearic acid ethyl epoxypropyl ammonium chloride dropwise, react with stirring for 1-3 hours, and then filter and dry to obtain modified lignin/chitosan.
  • the modified lignin/chitosan rubber reinforced filler of the present invention has the following advantages: through the modification of chitosan and lignin, the reactivity is further improved, and the mechanical properties of the rubber are significantly improved. Good synergy.
  • a method for preparing modified lignin/chitosan rubber reinforced filler includes the following steps:
  • Oxidation and sulfonation of lignin add lignin to deionized water containing sodium hydroxide, heat until lignin is completely dissolved, adjust the pH of the solution to 5, then add hydrogen peroxide and ferrous sulfate to react, After reaching the reaction time, add alkali to adjust the pH of the solution to 9, add formaldehyde and diethanolamine, react at 70 °C, then increase the temperature to 90 °C, add sodium sulfite, after the reaction is complete, add acid to precipitate lignin, wash and dry to obtain oxidation Sulfonated lignin;
  • Compound of lignin/chitosan dissolve the lignin prepared in step S2 in dioxane-water solution with a concentration of 3%, and dissolve chitosan in 2% aqueous acetic acid with a concentration of 5% solution, mix the two solutions at a volume ratio of 1:0.5, add 0.3% glutaraldehyde for cross-linking, and finally suction filter at room temperature, wash, and dry in an infrared oven to obtain lignin/chitosan Sugar compound powder;
  • modified lignin/chitosan the lignin/chitosan composite powder prepared in step S3 is added to deionized water to prepare a solution with a concentration of 0.5mol/L, heated to 40°C and stirred until complete Dissolve, adjust the pH to 10, then add bisstearic acid ethyl epoxypropyl ammonium chloride dropwise, react for 1h with stirring, and then filter and dry to obtain modified lignin/chitosan.
  • a method for preparing modified lignin/chitosan rubber reinforced filler includes the following steps:
  • Oxidation and sulfonation of lignin add lignin to deionized water containing sodium hydroxide, heat until lignin is completely dissolved, adjust the pH of the solution to 5, then add hydrogen peroxide and ferrous sulfate to react, After reaching the reaction time, add alkali to adjust the pH of the solution to 9, add formaldehyde and diethanolamine, react at 80 °C, then increase the temperature to 90 °C, add sodium sulfite, after the reaction is complete, add acid to precipitate lignin, wash and dry to obtain oxidation Sulfonated lignin;
  • Compound of lignin/chitosan dissolve the lignin prepared in step S2 in dioxane-water solution with a concentration of 3%, and dissolve chitosan in 3% aqueous acetic acid with a concentration of 2% solution, mix the two solutions at a volume ratio of 1:1.5, add 0.8% glutaraldehyde for cross-linking, and finally suction filter at room temperature, wash, and dry in an infrared oven to obtain lignin/chitosan Sugar compound powder;
  • modified lignin/chitosan add the composite powder of lignin/chitosan prepared in step S3 to deionized water to prepare a solution with a concentration of 0.5mol/L, heat to 50°C and stir until complete Dissolve, adjust the pH to 10, then dropwise add bisstearic acid ethyl epoxypropyl ammonium chloride, react for 3 hours with stirring, and then filter and dry to obtain modified lignin/chitosan.
  • a method for preparing modified lignin/chitosan rubber reinforced filler includes the following steps:
  • Oxidation and sulfonation of lignin add lignin to deionized water containing sodium hydroxide, heat until lignin is completely dissolved, adjust the pH of the solution to 5, then add hydrogen peroxide and ferrous sulfate to react, After the reaction time is reached, add alkali to adjust the pH of the solution to 9, add formaldehyde and diethanolamine, react at 75°C, then increase the temperature to 90°C, add sodium sulfite, after the reaction is complete, add acid to precipitate lignin, wash and dry to obtain oxidation Sulfonated lignin;
  • Compound of lignin/chitosan dissolve the lignin prepared in step S2 in dioxane-water solution with a concentration of 3%, and dissolve chitosan in 2.2% aqueous acetic acid with a concentration of 3-4% solution, mix the two solutions at a volume ratio of 1:1.2, add 0.4% glutaraldehyde for crosslinking, and finally suction filter at room temperature, wash, and dry in an infrared oven to obtain lignin/ Chitosan compound powder;
  • modified lignin/chitosan add the composite powder of lignin/chitosan prepared in step S3 to deionized water to prepare a solution with a concentration of 0.5mol/L, heat to 45°C and stir until complete Dissolve, adjust the pH to 10, then add bisstearic acid ethyl epoxypropyl ammonium chloride dropwise, react with stirring for 2h, and then filter and dry to obtain modified lignin/chitosan.
  • a method for preparing modified lignin/chitosan rubber reinforced filler includes the following steps:
  • Oxidation and sulfonation of lignin add lignin to deionized water containing sodium hydroxide, heat until lignin is completely dissolved, adjust the pH of the solution to 5, then add hydrogen peroxide and ferrous sulfate to react, After reaching the reaction time, add alkali to adjust the pH of the solution to 9, add formaldehyde and diethanolamine, react at 80 °C, then increase the temperature to 90 °C, add sodium sulfite, after the reaction is complete, add acid to precipitate lignin, wash and dry to obtain oxidation Sulfonated lignin;
  • Compound of lignin/chitosan dissolve the lignin prepared in step S2 in dioxane-water solution with a concentration of 3%, and dissolve chitosan in 2.8% acetic acid aqueous solution with a concentration of 3-4% solution, mix the two solutions at a volume ratio of 1:0.8, add 0.6% glutaraldehyde for cross-linking, and finally suction filter at room temperature, wash, and dry in an infrared oven to obtain lignin/ Chitosan compound powder;
  • modified lignin/chitosan add the composite powder of lignin/chitosan prepared in step S3 to deionized water to prepare a solution with a concentration of 0.5mol/L, heat to 50°C and stir until complete Dissolve, adjust the pH to 10, then dropwise add bisstearic acid ethyl epoxypropyl ammonium chloride, react for 3 hours with stirring, and then filter and dry to obtain modified lignin/chitosan.
  • a method for preparing modified lignin/chitosan rubber reinforced filler includes the following steps:
  • Oxidation and sulfonation of lignin add lignin to deionized water containing sodium hydroxide, heat until lignin is completely dissolved, adjust the pH of the solution to 5, then add hydrogen peroxide and ferrous sulfate to react, After the reaction time is reached, add alkali to adjust the pH of the solution to 9, add formaldehyde and diethanolamine, react at 78°C, then increase the temperature to 90°C, add sodium sulfite, after the reaction is complete, add acid to precipitate lignin, wash and dry to obtain oxidation Sulfonated lignin;
  • Compound of lignin/chitosan dissolve the lignin prepared in step S2 in dioxane-water solution with a concentration of 3%, and dissolve chitosan in 2.5% aqueous acetic acid with a concentration of 3.5% solution, mix the two solutions at a volume ratio of 1:1, add 0.5% glutaraldehyde for crosslinking, and finally filter with suction at room temperature, wash, and dry in an infrared oven to obtain lignin/chitosan Sugar compound powder;
  • modified lignin/chitosan add the composite powder of lignin/chitosan prepared in step S3 to deionized water to prepare a solution with a concentration of 0.5mol/L, heat to 48°C and stir until complete Dissolve, adjust the pH to 10, then add bisstearic acid ethyl epoxypropyl ammonium chloride dropwise, react with stirring for 2h, and then filter and dry to obtain modified lignin/chitosan.
  • the formula of the rubber sample is as follows: 110 parts of natural rubber, 20 parts of modified lignin/chitosan rubber reinforced filler, 30 parts of carbon black, 5 parts of stearic acid, 3 parts of ZnO, 5 parts of antioxidant, 2 parts of sulfur, vulcanization 2 copies of accelerator.
  • Shore A hardness is measured according to GB/T 531
  • tensile properties and tear strength are according to GB/T 528 and GB/T 529, respectively, and the tensile rate is 500 mm ⁇ min -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)
  • Tires In General (AREA)

Abstract

本发明提供了一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:S1.木质素的纯化;S2.木质素的氧化和磺化;S3.木质素/壳聚糖的复合;S4.双硬脂酰乙基环氧丙基氯化铵的合成;S5.改性木质素/壳聚糖的制备。本发明的改性木质素/壳聚糖橡胶增强填料具有以下优点:通过壳聚糖和木质素的改性,进一步提高了反应活性,显著提高橡胶的力学性能,同时二者具有很好的协同作用。

Description

一种改性木质素/壳聚糖橡胶增强填料的制备方法 技术领域
本发明涉及橡胶填料领域,具体涉及一种改性木质素/壳聚糖橡胶增强填料的制备方法。
背景技术
木质素存在于大部分陆地植物木质部中,与纤维素和半纤维素构成植物的骨架,是一种复杂的高分子化合物。一般认为,木质素的基本结构单元是苯丙烷,共有3种基本结构:愈创木基丙烷、紫丁香基丙烷和对羟苯基丙烷。木质素的结构单元上有许多功能基团,如芳香基、酚羟基、醇羟基、羧基等,这些功能基团的存在使木质素具有很强的反应活性。木质素可作为添加剂用于橡胶中,其分子中的酚基和羧基等基团,不仅能提高材料的防老化效果,还能提高材料的物理机械性能。
壳聚糖(CS)是甲壳素经过不同程度的脱乙酰作用得到的可再生资源。CS分子有活泼的羟基和氨基,具有较强的化学反应能力,易发生水解、烷基化、酰基化、羟基化、接枝、季铵盐化等反应,可生成各种具有不同性能的衍生物,具备与其他物质结合、赋予共聚物以自身特性的现实基础。
天然橡胶(NR)一般为由巴西三叶橡胶采集得到的经系列加工得到的浓缩天然胶乳或颗粒胶,具有优异的综合性能。尽管CS与NR均为材料研究中非常热门的具有独特性能和潜在利用价值的天然高分子,但两者相互混合赋予新复合物以各自特性却非简单混合即可实现。本发明将对CS作为增强材料的改性。
发明内容
要解决的技术问题:本发明的目的是提供改性木质素/壳聚糖橡胶增强填料的制备方法,制备得到的填料增强效果好。
技术方案:一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:
S1.木质素的纯化:将木质素溶解于二氧六环-水溶液中,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在70-80℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液,壳聚糖溶 解于醋酸水溶液中,将两种溶液混合,加入戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,搅拌至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中,加热搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应完全,再抽滤干燥,得到改性木质素/壳聚糖。
进一步的,所述步骤S1中二氧六环-水的体积比为9∶1。
进一步的,所述步骤S3中将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为3%的溶液,壳聚糖溶解于2-3%醋酸水溶液中配置浓度为2-5%的溶液,将两种溶液按体积比1∶0.5-1.5混合,加入0.3-0.8%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末。
进一步的,所述步骤S4中双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为0.8-1mol/L。
进一步的,所述步骤S5中将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至40-50℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应1-3h,再抽滤干燥,得到改性木质素/壳聚糖。
有益效果:本发明的改性木质素/壳聚糖橡胶增强填料具有以下优点:通过壳聚糖和木质素的改性,进一步提高了反应活性,显著提高橡胶的力学性能,同时二者具有很好的协同作用。
具体实施方式
实施例1
一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:
S1.木质素的纯化:将5倍重量份木质素溶解于100倍重量份的二氧六环-水溶液中,二氧六环-水的体积比为9∶1,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在70℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为 3%的溶液,壳聚糖溶解于2%醋酸水溶液中配置浓度为5%的溶液,将两种溶液按体积比1∶0.5混合,加入0.3%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为0.8mol/L,搅拌至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至40℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应1h,再抽滤干燥,得到改性木质素/壳聚糖。
实施例2
一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:
S1.木质素的纯化:将10倍重量份木质素溶解于100倍重量份的二氧六环-水溶液中,二氧六环-水的体积比为9∶1,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在80℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为3%的溶液,壳聚糖溶解于3%醋酸水溶液中配置浓度为2%的溶液,将两种溶液按体积比1∶1.5混合,加入0.8%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为1mol/L,搅拌至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至50℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应3h,再抽滤干燥,得到改性木质素/壳聚糖。
实施例3
一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:
S1.木质素的纯化:将6倍重量份木质素溶解于100倍重量份的二氧六环-水溶液中,二氧六 环-水的体积比为9∶1,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在75℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为3%的溶液,壳聚糖溶解于2.2%醋酸水溶液中配置浓度为3-4%的溶液,将两种溶液按体积比1∶1.2混合,加入0.4%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为0.9mol/L,搅拌至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至45℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应2h,再抽滤干燥,得到改性木质素/壳聚糖。
实施例4
一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:
S1.木质素的纯化:将9倍重量份木质素溶解于100倍重量份的二氧六环-水溶液中,二氧六环-水的体积比为9∶1,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在80℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为3%的溶液,壳聚糖溶解于2.8%醋酸水溶液中配置浓度为3-4%的溶液,将两种溶液按体积比1∶0.8混合,加入0.6%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为0.8mol/L,搅拌 至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至50℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应3h,再抽滤干燥,得到改性木质素/壳聚糖。
实施例5
一种改性木质素/壳聚糖橡胶增强填料的制备方法,包括以下步骤:
S1.木质素的纯化:将8倍重量份木质素溶解于100倍重量份的二氧六环-水溶液中,二氧六环-水的体积比为9∶1,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在78℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为3%的溶液,壳聚糖溶解于2.5%醋酸水溶液中配置浓度为3.5%的溶液,将两种溶液按体积比1∶1混合,加入0.5%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为0.9mol/L,搅拌至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至48℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应2h,再抽滤干燥,得到改性木质素/壳聚糖。
对比例1
不添加木质素,其余和实施例1相同。
对比例2
不添加壳聚糖,其余和实施例1相同。
橡胶试样的配方如下:天然橡胶110份,改性木质素/壳聚糖橡胶增强填料20份,炭黑30份,硬脂酸5份,ZnO3份,防老剂5份,硫磺2份,硫化促进剂2份。
物理性能:邵尔A型硬度按GB/T 531测定,拉伸性能和撕裂强度分别按GB/T 528和GB/T 529,拉伸速率为500mm·min -1
Figure PCTCN2019107744-appb-000001

Claims (5)

  1. 一种改性木质素/壳聚糖橡胶增强填料的制备方法,其特征在于,包括以下步骤:
    S1.木质素的纯化:将木质素溶解于二氧六环-水溶液中,离心得到离心液,在离心液中滴加***,得到沉淀,将沉淀洗涤干燥,得到纯化的木质素;
    S2.木质素的氧化和磺化:将木质素加入至含有氢氧化钠的去离子水中,加热至木质素完全溶解,调节溶液的pH值至5,然后加入过氧化氢和硫酸亚铁反应,待达到反应时间后加碱调节溶液pH至9,加入甲醛和二乙醇胺,在70-80℃下反应后,再升温至90℃,加入亚硫酸钠,反应完全后,加酸使得木质素沉淀,洗涤干燥得到氧化磺化的木质素;
    S3.木质素/壳聚糖的复合:将步骤S2中制备的木质素溶解于二氧六环-水的溶液,壳聚糖溶解于醋酸水溶液中,将两种溶液混合,加入戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末;
    S4.双硬脂酰乙基环氧丙基氯化铵的合成:将双硬脂酰基二乙烯三胺和苯加热回流反应,并滴加环氧氯丙烷,搅拌至反应完全后蒸发出苯和过量的环氧氯丙烷,得到双硬脂酰胺乙基环氧丙基氯化铵;
    S5.改性木质素/壳聚糖的制备:将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中,加热搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应完全,再抽滤干燥,得到改性木质素/壳聚糖。
  2. 根据权利要求1所述的改性木质素/壳聚糖橡胶增强填料的制备方法,其特征在于:所述步骤S1中二氧六环-水的体积比为9∶1。
  3. 根据权利要求1所述的改性木质素/壳聚糖橡胶增强填料的制备方法,其特征在于:所述步骤S3中将步骤S2中制备的木质素溶解于二氧六环-水的溶液配置浓度为3%的溶液,壳聚糖溶解于2-3%醋酸水溶液中配置浓度为2-5%的溶液,将两种溶液按体积比1∶0.5-1.5混合,加入0.3-0.8%的戊二醛交联,最后在室温下抽滤,洗涤,并在红外箱中烘干,得到木质素/壳聚糖复合粉末。
  4. 根据权利要求1所述的改性木质素/壳聚糖橡胶增强填料的制备方法,其特征在于:所述步骤S4中双硬脂酰基二乙烯三胺和环氧氯丙烷溶解于苯中的浓度为0.8-1mol/L。
  5. 根据权利要求1所述的改性木质素/壳聚糖橡胶增强填料的制备方法,其特征在于:所述步骤S5中将步骤S3制备的木质素/壳聚糖复合粉末加入至去离子水水中配置成浓度为0.5mol/L的溶液,加热至40-50℃搅拌至完全溶解,调节pH为10,然后滴加双硬脂酰胺乙基环氧丙基氯化铵,搅拌下反应1-3h,再抽滤干燥,得到改性木质素/壳聚糖。
PCT/CN2019/107744 2018-11-29 2019-09-25 一种改性木质素/壳聚糖橡胶增强填料的制备方法 WO2020108057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811433559.8A CN109749145B (zh) 2018-11-29 2018-11-29 一种改性木质素/壳聚糖橡胶增强填料的制备方法
CN201811433559.8 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020108057A1 true WO2020108057A1 (zh) 2020-06-04

Family

ID=66402564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107744 WO2020108057A1 (zh) 2018-11-29 2019-09-25 一种改性木质素/壳聚糖橡胶增强填料的制备方法

Country Status (2)

Country Link
CN (1) CN109749145B (zh)
WO (1) WO2020108057A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109749145B (zh) * 2018-11-29 2020-08-21 陶伟珍 一种改性木质素/壳聚糖橡胶增强填料的制备方法
CN111087072A (zh) * 2019-12-31 2020-05-01 龙岩水发环境发展有限公司 新型高效污水脱氮处理方法
CN111423519A (zh) * 2020-04-10 2020-07-17 广西大学 一种改性蔗髓重金属钝化剂及其制备方法和应用
CN111423597A (zh) * 2020-04-10 2020-07-17 广西大学 一种改性蔗髓木素、制备方法及其应用
CN115260663B (zh) * 2022-08-11 2023-06-16 宁波艾克姆新材料股份有限公司 一种环保低气味密封条及其制备方法
CN115538221B (zh) * 2022-10-24 2023-05-12 启东欣联壁纸有限公司 一种抑菌阻燃型装饰墙纸及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322920A (zh) * 2007-06-11 2008-12-17 东北林业大学 一种木质素壳聚糖反应膜的制备方法
US20160086685A1 (en) * 2013-05-17 2016-03-24 Biotectix, LLC Impregnation of a non-conductive material with an intrinsically conductive polymer through in-situ polymerization
CN105733106A (zh) * 2016-04-25 2016-07-06 铜陵百锐设备配件有限公司 一种耐低温耐腐蚀橡胶密封件
CN108864668A (zh) * 2018-07-24 2018-11-23 常州达奥新材料科技有限公司 一种高透型tpe类弹性玩具高光润滑母料
CN109054174A (zh) * 2018-07-13 2018-12-21 安徽义林塑业有限公司 一种包装用高阻燃耐老化聚丙烯复合材料
CN109749145A (zh) * 2018-11-29 2019-05-14 陶伟珍 一种改性木质素/壳聚糖橡胶增强填料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960617B2 (en) * 2002-04-22 2005-11-01 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
CN105820448A (zh) * 2016-04-21 2016-08-03 安徽伊法拉电气有限公司 一种纤维素树脂橡胶材料
CN107081077A (zh) * 2017-05-12 2017-08-22 大连理工大学 一种荷正电复合纳滤膜及其制备方法
CN107880325B (zh) * 2017-12-06 2020-07-10 范一鸣 一种基于改性壳聚糖的3d打印材料
CN108440794A (zh) * 2018-03-12 2018-08-24 华侨大学 一种壳聚糖纳米纤维素纳米二氧化钛复合膜的制备方法
CN108642879B (zh) * 2018-05-10 2020-12-11 浙江科峰新材料有限公司 一种柔软剂软片的制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322920A (zh) * 2007-06-11 2008-12-17 东北林业大学 一种木质素壳聚糖反应膜的制备方法
US20160086685A1 (en) * 2013-05-17 2016-03-24 Biotectix, LLC Impregnation of a non-conductive material with an intrinsically conductive polymer through in-situ polymerization
CN105733106A (zh) * 2016-04-25 2016-07-06 铜陵百锐设备配件有限公司 一种耐低温耐腐蚀橡胶密封件
CN109054174A (zh) * 2018-07-13 2018-12-21 安徽义林塑业有限公司 一种包装用高阻燃耐老化聚丙烯复合材料
CN108864668A (zh) * 2018-07-24 2018-11-23 常州达奥新材料科技有限公司 一种高透型tpe类弹性玩具高光润滑母料
CN109749145A (zh) * 2018-11-29 2019-05-14 陶伟珍 一种改性木质素/壳聚糖橡胶增强填料的制备方法

Also Published As

Publication number Publication date
CN109749145A (zh) 2019-05-14
CN109749145B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2020108057A1 (zh) 一种改性木质素/壳聚糖橡胶增强填料的制备方法
CN110624514B (zh) 一种提高腐植酸对金属离子吸附量的方法
CN104017090B (zh) 一种采用过氧化氢制备羧基纤维素的方法
CN107254147B (zh) 一种可降解木塑复合材料的制备方法
CN105111545A (zh) 一种柔性工业帆布的浸胶液及其制备方法
CN110551327A (zh) 一种吡咯接枝纳米纤维素制备导电复合材料的方法
CN102675569A (zh) 一种环氧化sbs及环氧化sbs聚合物
CN106146906A (zh) 一种天然乳胶填料的制备方法和应用
CN104140508A (zh) 一种酶解木质素基酚醛树脂的制备方法
CN104164198A (zh) 甲基纤维素-酚醛树脂混合胶黏剂配方及其制备工艺
CN106497149A (zh) 一种利用木质素规模化制备纳米碳黑的方法
CN105568761A (zh) 一种造纸用抗撕裂强度增强剂及其制备方法
CN105646722A (zh) 一种胺化纳米纤维素晶体及其制备方法
CN108484984B (zh) 一种高强度纤维素基复合薄膜的制备方法
CN101134748A (zh) 橡胶硫化促进剂dm的生产方法
CN101874997A (zh) 淀粉基复配型asa配套乳化剂的生产工艺
CN108440902B (zh) 一种有关环氧树脂增强增韧的共混材料
CN109535770B (zh) 一种功能化氧化石墨烯及其制备方法和应用
CN101768280B (zh) 两性木质素磺酸盐多齿螯合树脂生产方法
CN112760991B (zh) 一种绿色化制备阴离子交换膜的方法
CN110272365A (zh) 一种橡胶促进剂二乙基二硫代氨基甲酸硒的制备方法
CN112126391B (zh) 一种防水型木质素基环氧树脂胶黏剂及其制备方法
CN105985527A (zh) 一种高取代度木质素磺酸盐减水剂的合成新工艺
CN113024917B (zh) 一种基于二硫缩醛交换反应制备可重复加工橡胶的方法
CN105080514B (zh) 一种纤维素基吸附剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888356

Country of ref document: EP

Kind code of ref document: A1