WO2020107292A1 - 云台的控制方法、云台、移动平台和计算机可读存储介质 - Google Patents

云台的控制方法、云台、移动平台和计算机可读存储介质 Download PDF

Info

Publication number
WO2020107292A1
WO2020107292A1 PCT/CN2018/118025 CN2018118025W WO2020107292A1 WO 2020107292 A1 WO2020107292 A1 WO 2020107292A1 CN 2018118025 W CN2018118025 W CN 2018118025W WO 2020107292 A1 WO2020107292 A1 WO 2020107292A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
gimbal
shaft structure
joint angle
rotating shaft
Prior art date
Application number
PCT/CN2018/118025
Other languages
English (en)
French (fr)
Inventor
范庆鹤
马天航
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/118025 priority Critical patent/WO2020107292A1/zh
Priority to CN201880038820.6A priority patent/CN110832423B/zh
Priority to EP18941367.7A priority patent/EP3889729A4/en
Publication of WO2020107292A1 publication Critical patent/WO2020107292A1/zh
Priority to US17/202,788 priority patent/US20210200247A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path

Definitions

  • the invention relates to the technical field of PTZ, in particular to a PTZ control method, PTZ, mobile platform and computer-readable storage medium.
  • the gimbal will be powered off after the machine is turned off. At this time, the gimbal may be in any shape. If you want to put the gimbal in the storage box, you need to use two hands to put the gimbal into the predetermined shape before you can put it Into the storage box. This method is difficult to operate and will waste users a long time.
  • Embodiments of the present invention provide a control method of a gimbal, a gimbal, a mobile platform, and a computer-readable storage medium.
  • the control method according to an embodiment of the present invention is used for a pan/tilt head, the pan/tilt head includes at least one rotating shaft structure, and the method includes: when a trigger event indicating that the pan/tilt head enters a storage mode is detected, controlling the rotating shaft structure to rotate to Setting a position so that the gimbal meets a preset storage form; controlling the rotation shaft structure to maintain a preset duration at the setting position.
  • the gimbal includes at least one rotating shaft structure and a processor, and the processor is configured to: when a triggering event indicating that the gimbal enters the storage mode is detected, control the rotating shaft structure to rotate to a set position to Make the gimbal meet the preset storage form; control the rotating shaft structure to maintain the preset duration at the set position.
  • the mobile platform according to an embodiment of the present invention includes a body and the above-mentioned cloud platform, and the cloud platform is disposed on the body.
  • the computer-readable storage medium of the embodiment of the present invention has stored thereon a computer program which can be executed by a processor to complete the above control method.
  • Embodiments of the present invention provide a control method for a pan/tilt, a pan/tilt, a mobile platform, and a computer-readable storage medium.
  • the rotating shaft structure is controlled to rotate to the set position, so that the gimbal meets the preset storage form, so that the user can conveniently put the gimbal into the storage box without swinging the gimbal, which can save the user The time required to store the gimbal.
  • FIG. 1 is a schematic flowchart of a method of controlling a gimbal according to some embodiments of the present invention
  • FIG. 2 is a schematic structural diagram of a gimbal according to some embodiments of the present invention.
  • 3 to 5 are schematic flowcharts of the control method of the gimbal according to some embodiments of the present invention.
  • FIG. 6 is a schematic diagram of a joint angle closed-loop control method of some embodiments of the present invention.
  • FIG. 7 and 8 are schematic flowcharts of a control method of a gimbal according to some embodiments of the present invention.
  • FIG. 9 is a schematic diagram of a closed-loop attitude control mode of some embodiments of the present invention.
  • 10 to 12 are schematic flowcharts of the control method of the gimbal according to some embodiments of the present invention.
  • FIG. 13 is a schematic diagram of a mobile platform of some embodiments of the present invention.
  • FIG. 14 is a schematic diagram of the connection between the gimbal and the computer-readable storage medium according to some embodiments of the present invention.
  • Aircraft 1000 Aircraft 1000, gimbal 100, rotation axis structure 10, roll rotation axis structure 11, pitch rotation axis structure 12, yaw rotation axis structure 13, roll axis motor 142, pitch axis motor 144, yaw axis motor 146, roll axis frame 152 , A pitch axis frame 154, a yaw axis frame 156, a processor 20, an imaging unit 30, a display screen 40, a hand-held unit 50, a storage box 200, a body 300, and a computer-readable storage medium 400.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or integrally connected; may be mechanical, electrical, or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction of two elements relationship.
  • control method of the embodiment of the present invention may be used for the gimbal 100, and the gimbal 100 includes at least one rotating shaft structure 10.
  • Methods include:
  • the gimbal 100 includes at least one rotating shaft structure 10 and a processor 20.
  • the processor 20 is configured to: when detecting a triggering event indicating that the gimbal 100 enters the storage mode, control the rotating shaft structure 10 Turn to the set position, so that the gimbal 100 meets the preset storage form; control the rotating shaft structure 10 to maintain the preset duration at the set position.
  • control method according to the embodiment of the present invention may be implemented by the gimbal 100 according to the embodiment of the present invention, wherein step 01 and step 02 may be implemented by the processor 20.
  • FIG. 2 is only a schematic illustration, and is not limited. After the description here, the definition will not be repeated later.
  • the setting position may be set before the gimbal 100 leaves the factory, or may be customized by the user.
  • the gimbal 100 can have multiple different preset storage forms to match different storage boxes 200, and the user can select the corresponding storage box 200 according to the usage requirements And select the corresponding preset storage form.
  • the control method of the pan/tilt head 100 and the pan/tilt head 100 control the rotating shaft structure 10 to rotate to a set position, so that the pan/tilt head 100 satisfies the preset storage form, so that the user can conveniently move
  • the gimbal 100 is placed in the storage space, which can save the time required for the user to store the gimbal 100.
  • the rotary shaft structure 10 is controlled to maintain the preset duration at the set position, so that the gimbal 100 maintains the preset storage form within the preset duration, which is convenient for the user to put the pan/tilt 100 into the storage space within the preset duration .
  • the preset duration is 5 seconds, which not only meets the user's need to store the gimbal 100, but also reduces the power consumption of the gimbal 100.
  • the preset duration can also be 3 seconds, 8 seconds, 12 seconds, 15 seconds, etc., or it can be customized according to user needs, which is not specifically limited here.
  • the gimbal 100 includes a handheld gimbal 100.
  • the hand-held pan/tilt head 100 further includes, for example, an imaging unit 30, a display screen 40, and a handheld unit 50.
  • the handheld unit 50 is used to support the imaging unit 30, and the display unit 40 is provided on the handheld unit 50.
  • the imaging unit 30 can be used to capture images.
  • the handheld gimbal 100 after using the handheld gimbal 100, the handheld gimbal 100 can be placed in the storage box 200.
  • the control method of the embodiment of the present invention may be used to control the handheld gimbal 100 so that the handheld gimbal 100 satisfies the preset storage form, so that the user can easily put the gimbal 100 into the storage box 200, which reduces Errors that reduce the risk of damage to the handheld gimbal 100.
  • the method further includes:
  • the processor 20 is further used to control the gimbal 100 to enter the shutdown mode or control the cloud after the rotary shaft structure 10 is maintained at the set position for a preset duration.
  • the station 100 enters the standby mode.
  • step 03 may be implemented by the processor 20.
  • the pan/tilt head 100 when the pan/tilt head 100 satisfies the preset storage form, the pan/tilt head 100 is usually not in the working state, that is, the pan/tilt head 100 is not working at this time (for example, the shooting part 30 may not be shooting towards the outside world). Therefore, it is possible to control the gimbal 100 to enter a shutdown mode or a standby mode after a preset time period, thereby reducing meaningless operations on the gimbal 100 and reducing power consumption of the gimbal 100.
  • entering the shutdown mode or entering the standby mode can be set before the gimbal 100 leaves the factory, or can be customized by the user.
  • the custom setting can be in the cloud
  • the setting of the platform 100 before reaching the setting position may also be the setting of the gimbal 100 in the process of maintaining the preset duration at the preset position, which is not specifically limited here.
  • step 01 includes:
  • Step 02 includes:
  • the processor 20 is used to: control the rotation shaft structure 10 to rotate to a preset joint angle; and control the rotation shaft structure 10 to maintain the preset joint angle for a preset duration.
  • step 011 and step 021 can be implemented by the processor 20.
  • the rotation angle structure 10 can be rotated to a set position by controlling the joint angle of the rotation shaft structure 10, wherein the control of the joint angle can be achieved by the joint angle closed-loop control method, which is not configured by the gimbal 100
  • the locking limit of the universal joint caused by the shape is easy to adjust the rotating shaft structure 10 to any position that meets the storage needs.
  • step 011 includes:
  • 0112 Determine the joint angle deviation between the current joint angle of the rotating shaft structure 10 and the preset joint angle
  • the processor 20 is used to: determine the joint angle deviation between the current joint angle of the rotary shaft structure 10 and the preset joint angle; control the rotary shaft according to the joint angle deviation The structure 10 rotates to the preset joint angle.
  • step 0112 and step 0114 can be implemented by the processor 20.
  • the current joint angle and the preset joint angle of the rotary shaft structure 10 may be determined first.
  • the current joint angle can be obtained by an angle sensor
  • the preset joint angle is the joint angle when the rotating shaft structure 10 is at the set position, and can be preset in the storage element of the gimbal 100, and then calculate the current joint angle and the preset joint angle
  • the working current and/or torque of the rotating shaft structure 10 can be determined by the joint angle deviations.
  • the rotation of the rotating shaft structure 10 can be controlled to rotate the rotating shaft structure 10 to a preset joint angle. In this way, the rotary shaft structure 10 can be adjusted to the set position simply, quickly and accurately through the closed-loop control of the joint angle.
  • At least one rotation shaft structure 10 includes a roll rotation shaft structure 11 configured to rotate about a roll axis, and a pitch rotation shaft configured to rotate about a pitch axis. At least one of the structure 12 and the yaw axis structure 13 configured to rotate around a yaw axis.
  • Each rotation shaft structure 10 may include a rotation shaft motor and a rotation shaft frame, that is, the roll rotation shaft structure 11 may include a roll shaft motor 142 and a roll shaft frame 152, and the pitch rotation shaft structure 12 may include a pitch shaft motor 144 and a pitch shaft frame 154.
  • the yaw axis structure 13 may include a yaw axis motor 146 and a yaw axis frame 156.
  • the rotating shaft structure 10 further includes an electronic governor (not shown), the angle sensor includes a magnetic ring and a magnetic encoder, the magnetic ring is disposed on the rotor of the rotating shaft motor, and the magnetic encoder is disposed on the electronic speed governor In the encoder, the magnetic encoder can obtain the rotation position of the magnetic ring, thereby determining the position of the rotor to determine the current joint angle.
  • the magnetic encoder can obtain the rotation position of the magnetic ring, thereby determining the position of the rotor to determine the current joint angle.
  • the offset angle is detected through experiments and stored in the storage element of the gimbal 100, so that the rotation position of the rotor can be determined by the rotation position of the magnetic ring and the offset angle to determine the current joint angle.
  • the joint angle of the roll axis structure 11 is the first set joint angle, and the preset joint angle corresponding to the roll axis structure 11
  • the absolute difference from the first set joint angle is 90 degrees; and/or, when the roll axis, pitch axis, and yaw axis are respectively orthogonal, the joint angle of the pitch rotation shaft structure 12 is the second set joint angle,
  • the absolute difference between the preset joint angle corresponding to the pitch axis structure 12 and the second set joint angle is 0 degrees; and/or, when the roll axis, pitch axis, and yaw axis are respectively orthogonal, the yaw axis structure 13
  • the joint angle of is the third set joint angle, and the absolute difference between the preset joint angle corresponding to the yaw axis structure 13 and the third set joint angle is 90 degrees.
  • the first set joint angle, the second set joint angle, and the third set joint angle may be viewed as At 0 degrees, the roll axis structure 11, the pitch axis structure 12 and the yaw axis structure 13 are all at the zero position.
  • the joint angle is a vector, and one rotation direction of the rotating shaft structure 10 can be defined as a positive rotation direction, and the other rotation direction is a reverse rotation direction.
  • the joint angle is positive
  • the rotation direction is a positive rotation direction.
  • the joint angle is negative
  • the rotation direction is the reverse rotation direction.
  • each rotating shaft structure 10 includes a corresponding positive rotation direction and a reverse rotation direction.
  • the absolute difference between the preset joint angle corresponding to the roll axis structure 11 and the first set joint angle is 90 degrees, which may be the difference between the preset joint angle corresponding to the roll axis structure 11 and the first set joint angle It is positive 90 degrees, that is, the direction of the preset joint angle of the roll shaft structure 11 with respect to the first set joint angle is the positive rotation direction, and the angle is 90 degrees.
  • the absolute difference between the preset joint angle corresponding to the pitch axis structure 12 and the second set joint angle is 0 degrees, that is, the second set joint angle is the preset joint angle corresponding to the pitch axis structure 12.
  • the absolute difference between the preset joint angle corresponding to the yaw axis structure 13 and the third set joint angle is 90 degrees
  • the difference between the preset joint angle corresponding to the yaw axis structure 13 and the third set joint angle is Negative 90 degrees, that is, the direction of the preset joint angle of the yaw rotation shaft structure 13 with respect to the third set joint angle is the reverse rotation direction, and the angle is 90 degrees.
  • the roll axis structure 11, the pitch axis structure 12 and the yaw axis structure 13 are relatively converged, so that the volume occupied by the gimbal 100 is minimized, and the storage space required by the gimbal 100 can be reduced.
  • first set joint angle, the second set joint angle, and the third set joint angle may also be other set values, such as 20 degrees, 90 degrees, and 125 degrees.
  • the absolute difference between the preset joint angle corresponding to the roll axis structure 11 and the first set joint angle, the absolute difference between the preset joint angle corresponding to the pitch axis structure 12 and the second set joint angle, and the yaw axis structure 13 The absolute difference between the corresponding preset joint angle and the third set joint angle can also be set as needed.
  • the absolute difference can be set according to the storage shape of the storage box 200, so that each rotating shaft structure 10 can be rotated to the corresponding When the joint angle is preset, the gimbal 100 can be conveniently placed in the storage box 200.
  • the gimbal 100 includes a hand-held portion 50, and at least one rotating shaft structure 10 is provided on the hand-held portion 50.
  • Step 01 includes:
  • Step 02 includes:
  • the gimbal 100 includes a hand-held portion 50, at least one rotating shaft structure 10 is provided on the hand-held portion 50, and the processor 20 is used to: control the rotating shaft structure 10 to rotate to Relative to the hand-held part 50 is a preset posture; the control shaft structure 10 is maintained at the preset posture for a preset duration.
  • step 012 and step 022 may be implemented by the processor 20.
  • the rotation of the rotating shaft structure 10 can be rotated to a set position by controlling the posture of the rotating shaft structure 10, wherein the control of the posture can be realized by the closed-loop control of the posture or the closed loop of the joint angle, so that the rotating shaft structure 10 can be accurately adjusted To the set position.
  • posture control is implemented by posture closed-loop control.
  • Step 012 includes:
  • 0122 Determine the posture deviation between the current posture of the rotating shaft structure 10 relative to the hand-held portion 50 and the preset posture of the rotating shaft structure 10 relative to the hand-held portion 50;
  • the processor 20 is used to: determine the current posture of the rotating shaft structure 10 relative to the hand-held portion 50 and the preset posture of the rotating shaft structure 10 relative to the hand-held portion 50 The posture deviation between; the rotation of the rotating shaft structure 10 according to the posture deviation is controlled to a preset posture relative to the hand-held part 50.
  • step 0122 and step 0124 can be implemented by the processor 20.
  • the current posture and the preset posture of the rotary shaft structure 10 relative to the hand-held portion 50 can be determined first.
  • the current posture of the rotating shaft structure 10 relative to the hand-held portion 50 may be determined by the current posture of the rotating shaft structure 10 in Euler coordinates, and the current posture of the rotating shaft structure 10 in the Euler coordinate system may be set in the cloud
  • the inertial measurement unit for example, gyroscope, accelerometer
  • the preset gesture is determined as follows:
  • q cam is the target attitude of the load on the gimbal 100 in the geodetic coordinate system
  • q base is the attitude of the hand-held part 50 of the gimbal 100 or the gimbal base in geodetic coordinates
  • q base ⁇ out is the hand-held part 50
  • q out ⁇ mid is the rotation quaternary of the gimbal 100 frame to the middle frame of the gimbal 100
  • the number is constructed from the preset joint angle corresponding to the middle frame
  • q mid ⁇ inn is the quaternion of rotation from the middle frame of the gimbal 100 to the inner frame of the gimbal 100, and is constructed from the preset joint angle corresponding to the inner frame.
  • the target posture of the corresponding rotating shaft structure 10 can be converted to the gimbal body coordinate system to obtain the preset posture of the rotating shaft structure 10 relative to the hand-held portion 50.
  • the current rotating shaft structure 10 can be The posture is converted into the gimbal body coordinate system, so that the posture deviation between the current posture and the preset posture of the rotating shaft structure 10 relative to the hand-held part 50 is calculated under the gimbal body coordinate system.
  • the working current and/or torque of the rotating shaft structure 10 is determined, and according to the working current and/or the torque, the rotating shaft structure 10 can be controlled to rotate to rotate the rotating shaft structure 10 to a preset posture relative to the hand-held portion 50.
  • step 012 includes: acquiring the current joint angle and the preset joint angle of the rotating shaft structure 10, and determining the rotating shaft structure 10 according to the current joint angle and the preset joint angle
  • the desired joint angular velocity can be determined according to the deviation between the current joint angle and the preset joint angle, and the size can be adjusted as needed
  • the expected joint angular velocity of the rotary shaft structure 10 is converted to the Euler coordinate system
  • the desired Euler angular velocity so that a corresponding preset attitude can be obtained according to the desired Euler angular velocity, and then the rotating shaft structure 10 is controlled to rotate to a preset attitude relative to the hand-held portion 50 according to the desired Euler angular velocity.
  • the yaw axis motor 146 is used to drive the yaw axis frame 156 to rotate, to drive the roll axis motor 142 and the roll axis frame 152, the pitch axis motor 144 and the pitch axis frame 154, and the load mounted on the gimbal 100 to rotate
  • the roll axis motor 142 is used to drive the roll axis frame 152 to rotate to drive the pitch axis motor 144 and the pitch axis frame 154 and the load to rotate.
  • the pitch axis motor 144 is used to drive the pitch axis frame 154 to rotate to
  • the conversion relationship between the gimbal joint angular coordinate system and the gimbal body coordinate system is related to the configuration of the gimbal 100, and the gimbal configuration is different, The conversion relationship is different.
  • the rotary shaft axis V outz joint yaw axis angle is [0,0,1]
  • V midx rotation shaft axis joint roll axis angle is [1,0,0]
  • the rotation axis V inny of the coordinate axis of the axis joint angle is [0, 1, 0].
  • the V outz, V midx, V inny head body are converted to the coordinate system:
  • V outz ⁇ b Ry'*Rx'*Rz'*V outz
  • V midx ⁇ b Ry'*Rx'*V midx
  • V inny ⁇ b Ry'*V inny
  • Ry', Rx', Rz' correspond to the transpose of Ry, Rx, Rz respectively
  • Ry, Rx, Rz are the joint angle coordinate system around the Y axis (pitch axis), X axis (roll axis), Z axis respectively (Yaw axis) rotation matrix to reference coordinate system.
  • Ry, Rx, Rz can be as follows:
  • the reference coordinate system is a coordinate system with a joint angle of 0, and A is a conversion angle of the joint angle coordinate system to the reference coordinate system.
  • W b R j ⁇ b *W j ;
  • R j ⁇ b is the conversion relationship between the gimbal joint angle coordinate system and the gimbal body coordinate system, as shown below:
  • inn_joint_ang_rad is the inner frame joint angle
  • mid_joint_ang_rad is the middle frame joint angle
  • the desired body angular velocity can be converted into the desired Euler angular velocity according to the conversion relationship between the desired body angular velocity, the gimbal body coordinate system and the Euler coordinate system.
  • the calculation formula of the expected Euler angular velocity W ⁇ is as follows:
  • R b ⁇ is the conversion relationship between the PTZ body coordinate system and the Euler coordinate system, as follows:
  • inn_euler_ang_rad is the inner frame Euler angle
  • mid_euler_ang_rad is the middle frame Euler angle
  • the inner frame Euler angle and the middle frame Euler angle are the expected Euler angles of the gimbal 100 when the last closed loop, that is, the last closed loop ends Real-time attitude of the gimbal 100.
  • the desired joint angular velocity can be converted to the desired Euler angular velocity via the gimbal body coordinate system.
  • the desired attitude of the gimbal 100 can be determined according to the expected Euler angular velocity and the current attitude of the gimbal 100. Assuming that the movement duration of the gimbal 100 is t, the desired posture can be as follows:
  • tar_euler_roll(t) is the component corresponding to the roll axis in the desired attitude
  • tar_euler_pitch(t) is the component corresponding to the pitch axis in the desired attitude
  • tar_euler_yaw(t) is the component corresponding to the yaw axis in the desired attitude
  • Wx is the corresponding horizontal axis
  • the expected Euler angular velocity of the roller Wy is the expected Euler angular velocity corresponding to the pitch axis
  • Wz is the expected Euler angular velocity corresponding to the yaw axis
  • tar_euler_roll_init is the Euler angle corresponding to the roll axis in the current attitude
  • tar_euler_pitch_init is the current attitude
  • tar_euler_yaw_init is the Euler angle of the corresponding yaw axis in the current attitude.
  • the desired posture of the gimbal 100 at any time can be learned, that is, the preset joint angle corresponding to each frame in the gimbal 100.
  • the closed-loop posture can be used to control the gimbal 100, so that the rotating shaft structure 10 in the gimbal 100 can maintain a preset posture relative to the hand-held portion 50, so that the gimbal 100 Conform to the preset storage form.
  • the yaw axis frame 156 is the outer frame
  • the roll axis frame 152 is the middle frame
  • the pitch axis frame 154 is the inner frame. It can be understood that in other embodiments, the connection relationship of each frame may also be other. This is not specifically limited.
  • the corresponding rotating shaft structures 10 can be controlled correspondingly according to the operating parameters of each rotating shaft structure 10.
  • the rotation shaft structure 10 includes a roll rotation shaft structure 11, a pitch rotation shaft structure 12, and a yaw rotation shaft structure 13.
  • the current joint angle of each rotation shaft structure 10 can be obtained through the angle sensor of each rotation shaft structure 10, and then the current joint of each rotation shaft structure 10
  • the angle and the preset joint angle perform closed-loop control of the joint angle of the rotating shaft structure 10.
  • the posture closed-loop control of the rotary shaft structure 10 can also be performed according to the current posture and preset posture of each rotary shaft structure 10 relative to the hand-held portion 50.
  • the current posture and the preset posture should be understood as posture components.
  • the current posture (roll, pitch, yaw) of the gimbal 100 is (A, B, C), and the current posture component of the roll axis structure 11 is A,
  • the current attitude component of the pitch axis structure 12 is B, and the current attitude component of the yaw axis structure 13 is C.
  • the joint angle closed-loop control method can be used to rotate the rotating shaft structure 10 to any joint angle.
  • the attitude closed-loop control method due to the attitude closed-loop control method, there are Due to the limitation of the joint lock, the attitude closed-loop control method cannot adjust the joint angle of the roll shaft structure 11 to be positive 90 degrees or negative 90 degrees.
  • a closed joint angle control when the roll axis, the pitch axis, and the yaw axis are non-orthogonal, or when orthogonal, there is no need to perform a positive 90 degree or negative 90 degree on the joint angle of the roll axis relative to 0 degrees.
  • the rotation range of the rotary shaft structure 10 is greater than 360 degrees
  • the preset joint angle corresponding to the structure 11 may also be 90 degrees +360 degrees, 90 degrees +720 degrees, 90 degrees -360 degrees, and so on.
  • the joint angles corresponding to the pitch rotation shaft structure 12 and the yaw rotation shaft structure 13 are similar, which will not be repeated here.
  • the preset posture of the rotating shaft structure 10 with respect to the hand-held portion 50 is unique.
  • the plane where the roll shaft frame 152 of the roll shaft structure 11 lies is inclined at 45 degrees relative to the hand-held portion 50 as the preset posture, and its corresponding preset There can be multiple joint angles.
  • step 01 includes:
  • the processor 20 is used to control the rotating shaft structure 10 to rotate to a set position at a preset speed.
  • step 013 may be implemented by the processor 20.
  • the rotating shaft structure 10 when the rotating shaft structure 10 is controlled, the rotating shaft structure 10 may rotate at a preset speed, and the preset speed may be preset in the storage element of the gimbal 100.
  • the preset speed is, for example, a constant value, so that it is convenient to control the rotating shaft structure 10.
  • the preset speed can also have a tendency to increase first and then decrease, so that you can first approach the set position at a higher speed to reduce the time required to turn to the set position and decrease the speed after approaching the set position In order to prevent hitting the limit of the rotating shaft structure 10, and can avoid the situation of returning after exceeding the set position.
  • the preset speed can also be determined according to the difference between the current position and the set position of the rotary shaft structure 10, where the difference between the current position and the set position can refer to a joint angle deviation or a posture deviation.
  • the speed can be determined in real time according to actual operation needs. For example, when the difference between the current position and the set position is relatively large, the preset speed can be relatively large, and when the difference between the current position and the set position is relatively small, the preset speed can be Relatively small, not specifically limited here.
  • the method further includes:
  • the processor 20 is further used to: determine whether a power-on event occurs within a preset duration; when a power-on event occurs, control the gimbal 100 to exit the storage mode and Switch to boot mode.
  • step 04 and step 05 can be implemented by the processor 20.
  • the pan/tilt head 100 when the pan/tilt head 100 is in the storage mode, the pan/tilt head 100 is generally not in the working state. Therefore, if it is determined that a power-on event occurs within a preset duration, the pan/tilt head 100 can be controlled to exit the storage mode and switch to the power-on mode. Among them, in the start-up mode, the rotating shaft motor can perform self-check again (for example, whether the self-check hits the limit) and complete the entire process required for start-up. When no power-on event occurs within the preset time period, the gimbal 100 can be controlled to enter the shutdown mode or enter the standby mode after the preset time period.
  • the triggering event and/or the power-on event are one or more of pressing a button, human touch operation, human biometric verification, movement of the gimbal 100, and state change of the gimbal 100 To trigger.
  • the trigger event and/or power-on event of entering the storage mode is triggered by pressing a button, which may be: for example, a physical button (such as a power button) is included on the gimbal 100, and the gimbal 100 may be turned on In the mode, press (short press or long press) the switch button to enter the storage mode, the gimbal 100 can enter the storage mode by pressing (short press or long press) the switch button when in the shutdown mode or storage mode .
  • the gimbal 100 can be controlled to enter the storage mode or enter the normal shutdown mode by short or long presses, and the trigger event and the power-on event can also be implemented by different buttons, respectively.
  • the trigger event and/or power-on event of entering the storage mode can also be triggered by pressing a button of the remote controller, where the remote controller communicates with the pan/tilt 100, which is not specifically limited herein.
  • the storage mode and the shutdown mode of the gimbal 100 can be triggered by a trigger event.
  • a trigger event For example, by short-pressing the switch button, the storage mode can be entered, and the shutdown mode is automatically entered after a preset duration.
  • the storage mode and the standby mode of the gimbal 100 can also be triggered by a trigger event.
  • the button may also be a virtual button, such as an icon on the touch display screen on the gimbal 100, and a trigger event and/or a power-on event to enter the storage mode may be triggered by human touch operation.
  • the virtual button can also be provided on a remote controller that communicates with the pan/tilt head 100.
  • the triggering event and/or power-on event is triggered by human biometric verification, which may be: triggering the triggering event and/or power-on entering the storage mode through face recognition, iris recognition, fingerprint recognition, etc. Events, for example, when the user's left index finger is detected through fingerprint recognition, a trigger event to enter the storage mode is triggered; when the user's left hand thumb is detected through fingerprint recognition, a power-on event is triggered.
  • this biometric verification can also be achieved by a remote controller communicating with the pan/tilt head 100.
  • the trigger event and/or the power-on event are triggered by the movement of the gimbal 100, which may be: the trigger event and/or the power-on event that triggers the entry into the storage mode when the gimbal 100 meets a predetermined movement trajectory, for example When the movement trajectory of the gimbal 100 is upward, a trigger event to enter the storage mode is triggered; when the movement trajectory of the gimbal 100 is left and right shaking, a power-on event is triggered.
  • the trigger event and/or power-on event is triggered by the state change of the gimbal 100, which may be: triggering the trigger event and/or power-on according to the posture change of the pivot structure 10 of the gimbal 100 to enter the storage mode
  • An event for example, when the user swings the rotating shaft structure 10 to close the rotating shaft structure 10, a trigger event to enter the storage mode is triggered; when the user swings the rotating shaft structure 10 to expand the rotating shaft structure 10, a power-on event is triggered.
  • the method before controlling the rotation of the rotating shaft structure 10 to the set position, the method further includes:
  • the processor 20 is further used to detect whether the gimbal 100 meets the preset storage form; if the gimbal 100 does not meet the preset storage form, then The trigger execution control rotation shaft structure 10 is rotated to a set position, so that the gimbal 100 satisfies the preset storage form.
  • step 06 and step 07 can be implemented by the processor 20.
  • the gimbal 100 before rotating the rotating shaft structure 10, it may be detected whether the gimbal 100 satisfies the preset storage form, that is, whether the current position of the rotating shaft structure 10 is the set position (for example, whether the current joint angle is the preset joint angle, Or detect whether the current posture of the rotating shaft structure 10 relative to the hand-held portion 50 is a preset posture), when the current position of the rotating shaft structure 10 is not the set position, the gimbal 100 does not meet the preset storage form, and the rotating shaft structure can be rotated at this time 10 to rotate the rotating shaft structure 10 to a set position, so that the pan/tilt head 100 can satisfy the preset storage form to be conveniently placed in the storage box 200.
  • the preset storage form that is, whether the current position of the rotating shaft structure 10 is the set position (for example, whether the current joint angle is the preset joint angle, Or detect whether the current posture of the rotating shaft structure 10 relative to the hand-held portion 50 is a preset posture
  • the method further includes:
  • the processor 20 is further used to control the gimbal 100 to maintain the preset duration in the preset storage configuration if the gimbal 100 satisfies the preset storage configuration. .
  • step 08 may be implemented by the processor 20.
  • the pan/tilt head 100 when it is detected that the pan/tilt head 100 satisfies the preset storage form, the pan/tilt head 100 can be directly controlled to maintain the preset duration in the preset storage form, so that the user can put the pan/tilt head 100 into the storage box within the preset duration 200.
  • unnecessary rotation of the rotating shaft structure 10 when it is detected that the gimbal 100 satisfies the preset storage form, unnecessary rotation of the rotating shaft structure 10 can be avoided, so that the power consumption of the gimbal 100 can be reduced.
  • the gimbal 100 according to the embodiment of the present invention may be applied to a mobile platform, that is, the mobile platform may include the gimbal 100 according to any one of the above embodiments.
  • the mobile platform may further include a body, and the pan/tilt head 100 is provided on the body.
  • the body of the mobile platform may be the handheld part of the handheld gimbal.
  • the mobile platform may include, for example, a car, an aircraft, a robot, etc., and the gimbal 100 on the body may be equipped with an imaging device and/or a shooting device and/or other functional modules.
  • the body as the body of the mobile platform may serve as The hand-held part of the gimbal 100.
  • the gimbal 100 is provided on the body of the mobile platform, any part of the mobile platform that can be held anywhere can be used as the hand-held part of the gimbal 100 except for the body.
  • the embodiment of the present invention takes the mobile platform as an aircraft 1000 as an example.
  • the aircraft 1000 includes a gimbal 100 and a body 300.
  • the body 300 includes a center frame, an arm connected to the center frame, and an arm Connected power units, etc.
  • the aircraft 1000 is further provided with a storage slot (not shown).
  • a storage slot (not shown).
  • the rotating shaft structure 10 is controlled to rotate to a set position, so that the gimbal 100 is satisfied
  • the preset storage form can further store the gimbal 100 in the storage slot.
  • the body of the mobile platform corresponds to the type of the mobile platform. For example, when the mobile platform is a cart, the body is a cart.
  • the aircraft 1000 may not be provided with a storage slot. By controlling the position of the gimbal 100 relative to the body to be unchanged within a preset time period, the storage of the aircraft 1000 may also be facilitated.
  • the computer-readable storage medium 400 includes a computer program, and the computer program can be executed by the processor 20 to complete the control method in any one of the foregoing embodiments.
  • the computer program may be executed by the processor 20 to complete the control method described in the following steps:
  • the computer program may also be executed by the processor 20 to complete the control method described in the following steps:
  • Any process or method description in a flowchart or otherwise described herein may be understood as representing a module, segment, or portion of code that includes one or more executable instructions for performing specific logical functions or steps of the process , And the scope of the preferred embodiment of the present invention includes additional executions, in which the order may not be shown or discussed, including performing the functions in a substantially simultaneous manner or in reverse order according to the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present invention belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • each part of the present invention may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be performed using software or firmware stored in memory and executed by a suitable instruction execution system.
  • a logic gate circuit for performing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules may be executed in the form of hardware or software function modules. If the integrated module is executed in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台(100)的控制方法、云台(100)、移动平台和计算机可读存储介质(400)。控制方法包括:在检测到指示云台(100)进入收纳模式的触发事件时,控制转轴结构(10)转动至设定位置,以使得云台(100)满足预设的收纳形态(01);控制转轴结构(10)在设定位置保持预设时长(02)。

Description

云台的控制方法、云台、移动平台和计算机可读存储介质 技术领域
本发明涉及云台技术领域,特别涉及一种云台的控制方法、云台、移动平台和计算机可读存储介质。
背景技术
云台在关机后会整机掉电,此时云台可能处于任意形态,用户若想将云台放入收纳盒中,需要用两只手先将云台的形态摆成预定形态,然后才能放进收纳盒中。这种做法操作困难,会浪费用户较长时间。
发明内容
本发明的实施方式提供一种云台的控制方法、云台、移动平台和计算机可读存储介质。
本发明实施方式的控制方法用于云台,所述云台包括至少一个转轴结构,所述方法包括:在检测到指示所述云台进入收纳模式的触发事件时,控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态;控制所述转轴结构在所述设定位置保持预设时长。
本发明实施方式的云台包括至少一个转轴结构和处理器,所述处理器用于:在检测到指示所述云台进入收纳模式的触发事件时,控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态;控制所述转轴结构在所述设定位置保持预设时长。
本发明实施方式的移动平台包括本体和上述云台,所述云台设置在所述本体上。
本发明实施方式的计算机可读存储介质,其上存储有计算机程序,所述计算机程序可被处理器执行以完成上述控制方法。
本发明实施方式提供了一种云台的控制方法、云台、移动平台和计算机可读存储介质。在云台的控制方法中,控制转轴结构转动至设定位置,以使得云台满足预设的收纳形态,从而用户无需摆动云台即可方便地将云台放入收纳盒中,能够节省用户收纳云台所需要的时间。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明 显和容易理解,其中:
图1是本发明某些实施方式的云台的控制方法的流程示意图;
图2是本发明某些实施方式的云台的结构示意图;
图3至图5是本发明某些实施方式的云台的控制方法的流程示意图;
图6是本发明某些实施方式的关节角闭环控制方式的示意图;
图7和图8是本发明某些实施方式的云台的控制方法的流程示意图;
图9是本发明某些实施方式的姿态闭环控制方式的示意图;
图10至图12是本发明某些实施方式的云台的控制方法的流程示意图;
图13是本发明某些实施方式的移动平台的示意图;
图14是本发明某些实施方式的云台和计算机可读存储介质的连接示意图。
主要元件符号附图说明:
飞行器1000、云台100、转轴结构10、横滚转轴结构11、俯仰转轴结构12、偏航转轴结构13、横滚轴电机142、俯仰轴电机144、偏航轴电机146、横滚轴框架152、俯仰轴框架154、偏航轴框架156、处理器20、拍摄部30、显示屏40、手持部50、收纳盒200、本体300、计算机可读存储介质400。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这 种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参阅图1和图2,本发明实施方式的控制方法可以用于云台100,云台100包括至少一个转轴结构10。方法包括:
01:在检测到指示云台100进入收纳模式的触发事件时,控制转轴结构10转动至设定位置,以使得云台100满足预设的收纳形态;
02:控制转轴结构10在设定位置保持预设时长。
请继续参阅图2,本发明实施方式的云台100包括至少一个转轴结构10和处理器20,处理器20用于:在检测到指示云台100进入收纳模式的触发事件时,控制转轴结构10转动至设定位置,以使得云台100满足预设的收纳形态;控制转轴结构10在设定位置保持预设时长。
也即是说,本发明实施方式的控制方法可以由本发明实施方式的云台100实现,其中,步骤01和步骤02可以由处理器20实现。
可以理解,图2中所示处理器的位置仅为示意性说明,并不进行限定,此处说明之后,在后面即不再重复限定。
可以理解,设定位置可以在云台100出厂前设定,也可以是由用户进行自定义设置。其中,当设定位置在由用户进行自定义设置时,可以使得云台100有多个不同的预设的收纳形态,以匹配不同的收纳盒200,用户可以根据使用需求选择相应的收纳盒200,并选择相应的预设的收纳形态。
本发明实施方式的云台100的控制方法和云台100,控制转轴结构10转动至设定位置,以使得云台100满足预设的收纳形态,从而用户无需摆动云台100即可方便地将云台100放入收纳空间内,能够节省用户收纳云台100所需要的时间。另外,控制转轴结构10在设定位置保持预设时长,从而使得在该预设时长内云台100维持预设的收纳形态,便于用户在该预设时长内将云台100放入收纳空间内。
在一个实施方式中,预设时长为5秒,如此,既可以满足用户收纳云台100的需要,又能降低云台100的功耗。当然,预设时长也可以为3秒、8秒、12秒、15秒等,还可以是根据用户需求进行自定义设置,在此不做具体限定。
请继续参阅图2,在某些实施方式中,云台100包括手持云台100。手持云台100例如 还包括拍摄部30、显示屏40和手持部50,手持部50用于支撑拍摄部30,显示屏40设置在手持部50上。拍摄部30可以用于拍摄图像。为了保护手持云台100,在手持云台100使用后,可以将手持云台100放入收纳盒200中,若用户通过双手摆动手持云台100以将云台100放入收纳盒200中,这种做法操作困难,会浪费用户较长时间,并且若用户操作错误,容易导致手持云台100放入收纳盒200时造成损坏。因此,可以采用本发明实施方式的控制方法控制手持云台100以使得手持云台100满足预设的收纳形态,从而用户可以将云台100轻松地放入收纳盒200中,减少用户手动操作导致的错误,降低手持云台100损坏的风险。
请参阅图3,在某些实施方式中,在步骤02后,方法还包括:
03:控制云台100进入关机模式,或控制云台100进入待机模式。
以图2的手持云台100为例,在某些实施方式中,处理器20还用于在控制转轴结构10在设定位置保持预设时长后,控制云台100进入关机模式,或控制云台100进入待机模式。
也即是说,步骤03可以由处理器20实现。
具体地,云台100满足预设的收纳形态时,通常云台100不是处于工作状态,即云台100此时不工作(例如,此时拍摄部30可能不是面向外界进行拍摄)。因此,可以在预设时长后,控制云台100进入关机模式或进入待机模式,从而可以减少对云台100进行无意义的操作,降低云台100的功耗。
其中,在云台100在设定位置保持预设时长后,进入关机模式或进入待机模式可以在云台100出厂前设定,也可以由用户进行自定义设置,该自定义设置可以是在云台100到达设定位置之前设定,也可以是云台100在预设位置保持预设时长的过程中设定,此处不做具体限定。
请参阅图4,在某些实施方式中,步骤01包括:
011:控制转轴结构10转动至预设关节角;
步骤02包括:
021:控制转轴结构10在预设关节角保持预设时长。
以图2的手持云台100为例,在某些实施方式中,处理器20用于:控制转轴结构10转动至预设关节角;控制转轴结构10在预设关节角保持预设时长。
也即是说,步骤011和步骤021可以由处理器20实现。
具体地,可以通过控制转轴结构10的关节角来使得转轴结构10转动至设定位置,其中,关节角的控制可以通过关节角闭环控制方式实现,关节角闭环控制方式不受云台100的构型导致的万向节锁死限制,因此便于将转轴结构10调整到满足收纳需要的任意位置。
请参阅图5,在某些实施方式中,步骤011包括:
0112:确定转轴结构10的当前关节角与预设关节角之间的关节角偏差;
0114:根据关节角偏差控制转轴结构10转动至预设关节角。
以图2的手持云台100为例,在某些实施方式中,处理器20用于:确定转轴结构10的当前关节角与预设关节角之间的关节角偏差;根据关节角偏差控制转轴结构10转动至预设关节角。
也即是说,步骤0112和步骤0114可以由处理器20实现。
具体地,请参阅图6,在利用关节角闭环控制方式控制转轴结构10时,可以先确定转轴结构10的当前关节角和预设关节角。其中,当前关节角可以通过角度传感器获取,预设关节角为转轴结构10处于设定位置时的关节角,可以预先设置在云台100的存储元件中,然后计算当前关节角与预设关节角之间的关节角偏差,通过关节角偏差可以确定转轴结构10的工作电流和/或扭矩。根据该工作电流和/或该扭矩可以控制转轴结构10转动以将转轴结构10转动至预设关节角。如此,可以通过关节角闭环控制简单、快速且准确地将转轴结构10调整到设定位置。
请继续参阅图2,在某些实施方式中,至少一个转轴结构10包括被配置为绕横滚(roll)轴旋转的横滚转轴结构11、被配置为绕俯仰(pitch)轴旋转的俯仰转轴结构12和被配置为绕偏航(yaw)轴旋转的偏航转轴结构13中的至少一个。每个转轴结构10可以包括转轴电机和转轴框架,即横滚转轴结构11可以包括横滚轴电机142和横滚轴框架152,俯仰转轴结构12可以包括俯仰轴电机144和俯仰轴框架154,偏航转轴结构13可以包括偏航轴电机146和偏航轴框架156。
在某些实施方式中,转轴结构10还包括电子调速器(图未示),角度传感器包括磁环和磁编码器,磁环设置在转轴电机的转子上,磁编码器设置在电子调速器中,磁编码器可以获取磁环的转动位置,从而确定转子的位置以确定当前关节角。其中,在设置磁环时,由于磁环与转子之间的位置关系的不确定性,磁编码器获取磁环的转动位置和转子的转动位置之间一般存在一个偏置角度(offset),可以通过实验检测出该偏置角度并将该偏置角度保存在云台100的存储元件中,从而可以通过磁环的转动位置和该偏置角度确定转子的转动位置以确定当前关节角。
在某些实施方式中,当横滚轴、俯仰轴、偏航轴分别正交时,横滚转轴结构11的关节角为第一设定关节角,横滚转轴结构11对应的预设关节角与第一设定关节角的绝对差值为90度;和/或,当横滚轴、俯仰轴、偏航轴分别正交时,俯仰转轴结构12的关节角为第二设定关节角,俯仰转轴结构12对应的预设关节角与第二设定关节角的绝对差值为0度;和/或,当横滚轴、俯仰轴、偏航轴分别正交时,偏航转轴结构13的关节角为第三设定关节 角,偏航转轴结构13对应的预设关节角与第三设定关节角的绝对差值为90度。
具体地,在某些实施方式中,当横滚轴、俯仰轴、偏航轴分别正交时,可以将第一设定关节角、第二设定关节角和第三设定关节角均视作0度,即横滚转轴结构11、俯仰转轴结构12和偏航转轴结构13均处于零位。
在本发明实施方式中,关节角为矢量,可以通过定义转轴结构10的一个旋转方向为正旋转方向,另一个旋转方向为反旋转方向,关节角为正时,说明旋转方向为正旋转方向,关节角为负时,说明旋转方向为反旋转方向。其中,各个转轴结构10均包括对应的正旋转方向和反旋转方向。横滚转轴结构11对应的预设关节角与第一设定关节角的绝对差值为90度,可以是横滚转轴结构11对应的预设关节角相对于第一设定关节角的差值为正90度,即横滚转轴结构11的预设关节角相对于第一设定关节角的方向为正旋转方向,角度为90度。俯仰转轴结构12对应的预设关节角与第二设定关节角的绝对差值为0度,即第二设定关节角即为俯仰转轴结构12对应的预设关节角。偏航转轴结构13对应的预设关节角与第三设定关节角的绝对差值为90度,可以偏航转轴结构13对应的预设关节角相对于第三设定关节角的差值为负90度,即偏航转轴结构13的预设关节角相对于第三设定关节角的方向为反旋转方向,角度为90度。如此,横滚转轴结构11、俯仰转轴结构12和偏航转轴结构13均相对收敛,使得云台100所占的体积最小,能够减少云台100所需的收纳空间。
当然,第一设定关节角、第二设定关节角和第三设定关节角也可以是其他设定值,例如20度、90度、125度等。横滚转轴结构11对应的预设关节角与第一设定关节角的绝对差值、俯仰转轴结构12对应的预设关节角与第二设定关节角的绝对差值、偏航转轴结构13对应的预设关节角与第三设定关节角的绝对差值,也可以根据需要进行设置,例如可以根据收纳盒200的收纳形状设置该绝对差值,从而可以使得各个转轴结构10转动至对应的预设关节角时,云台100能够便于放入收纳盒200中。
请参阅图2和图7,在某些实施方式中,云台100包括手持部50,至少一个转轴结构10设于手持部50上,步骤01包括:
012:控制转轴结构10转动至相对于手持部50为预设姿态;
步骤02包括:
022:控制转轴结构10在预设姿态保持预设时长。
以图2的手持云台100为例,在某些实施方式中,云台100包括手持部50,至少一个转轴结构10设于手持部50上,处理器20用于:控制转轴结构10转动至相对于手持部50为预设姿态;控制转轴结构10在预设姿态保持预设时长。
也即是说,步骤012和步骤022可以由处理器20实现。
具体地,可以通过控制转轴结构10的姿态来使得转轴结构10转动至设定位置,其中, 姿态的控制可以通过姿态闭环控制方式实现或者通过关节角闭环实现,从而能够准确地将转轴结构10调整到设定位置。
其中,在通过关节角闭环来实现时,可以参考图4所示实施例以及图5所示实施例的内容,此处不再赘述。
请参阅图8,在某些实施方式中,姿态的控制通过姿态闭环控制方式实现,步骤012包括:
0122:确定转轴结构10相对于手持部50的当前姿态与转轴结构10相对于手持部50的预设姿态之间的姿态偏差;
0124:根据姿态偏差控制转轴结构10转动至相对于手持部50为预设姿态。
以图2的手持云台100为例,在某些实施方式中,处理器20用于:确定转轴结构10相对于手持部50的当前姿态与转轴结构10相对于手持部50的预设姿态之间的姿态偏差;根据姿态偏差控制转轴结构10转动至相对于手持部50为预设姿态。
也即是说,步骤0122和步骤0124可以由处理器20实现。
请参阅图9,具体地,在利用姿态闭环控制方式控制转轴结构10时,可以先确定转轴结构10相对于手持部50的当前姿态和预设姿态。
在某些实施方式中,转轴结构10相对于手持部50的当前姿态可以通过转轴结构10在欧拉坐标下的当前姿态确定,转轴结构10在欧拉坐标系下的当前姿态可以通过设置在云台100上的惯性测量单元(例如陀螺仪、加速度计)等测量获得。其中,预设姿态的确定方式如下:
q cam=q base·q base→out·q out→mid·q mid→inn
其中,q cam为云台100上的负载在大地坐标系下的目标姿态,q base为云台100的手持部50或云台基座在大地坐标下的姿态,q base→out为手持部50或云台基座到云台100外框的旋转四元数,由外框对应的预设关节角构造而成,q out→mid为云台100外框到云台100中框的旋转四元数,由中框对应的预设关节角构造而成,q mid→inn为云台100中框到云台100内框的旋转四元数,由内框对应的预设关节角构造而成。
得到上述目标姿态后,可以将相应的转轴结构10的目标姿态转换到至云台本体坐标系下,得到转轴结构10相对于手持部50的预设姿态,同理,可以将转轴结构10的当前姿态转换至云台本体坐标系中,从而在云台本体坐标系下计算转轴结构10相对于手持部50的当前姿态和预设姿态之间的姿态偏差,基于姿态闭环控制方式,通过姿态偏差可以确定转轴结构10的工作电流和/或扭矩,根据该工作电流和/或该扭矩可以控制转轴结构10转动,以将转轴结构10转动至相对于手持部50为预设姿态。
在某些实施方式中,姿态的控制根据转轴结构10的关节角实现,步骤012包括:获取 转轴结构10的当前关节角和预设关节角,根据当前关节角和预设关节角确定转轴结构10的期望关节角速度(可以根据当前关节角与预设关节角之间的偏差确定,可以根据需要进行大小调整),再通过坐标转换关系将转轴结构10的期望关节角速度转换为在欧拉坐标系下的期望欧拉角速度,从而可以根据该期望欧拉角速度获得对应的预设姿态,再根据该期望欧拉角速度控制转轴结构10转动至相对于手持部50为预设姿态。
以图2中所示的ZXY三个三轴云台100为例。其中,假设Z为偏航轴,X为横滚轴,Y为俯仰轴,在该构型中,偏航轴框架156为外框,横滚轴框架152为中框,俯仰轴框架154为内框,偏航轴电机146用于驱动偏航轴框架156转动,以驱动横滚轴电机142和横滚轴框架152、俯仰轴电机144和俯仰轴框架154以及搭载在云台100上的负载转动,横滚轴电机142用于驱动横滚轴框架152转动,以驱动俯仰轴电机144和俯仰轴框架154以及负载转动,俯仰轴电机144用于驱动俯仰轴框架154转动,以驱动负载转动。
其中,在将期望关节角速度转换为期望欧拉角速度的过程中,云台关节角坐标系和云台本体坐标系之间的转换关系与云台100的构型相关,云台的构型不同,其转换关系不同。
本实施例中,偏航轴关节角的坐标轴的旋转轴V outz为[0,0,1],横滚轴关节角的坐标轴的旋转轴V midx为[1,0,0],俯仰轴关节角的坐标轴的旋转轴V inny为[0,1,0]。将V outz、V midx、V inny分别转换至云台本体坐标系:
V outz→b=Ry'*Rx'*Rz'*V outz
V midx→b=Ry'*Rx'*V midx
V inny→b=Ry'*V inny
其中,Ry'、Rx'、Rz'分别对应Ry、Rx、Rz的转置,Ry、Rx、Rz分别为关节角坐标系绕Y轴(俯仰轴)、X轴(横滚轴)、Z轴(偏航轴)到参考坐标系的旋转矩阵。例如,Ry、Rx、Rz可分别如下:
Figure PCTCN2018118025-appb-000001
Figure PCTCN2018118025-appb-000002
Figure PCTCN2018118025-appb-000003
其中,参考坐标系为关节角为0的坐标系,A为关节角坐标系到参考坐标系的转换角度。
具体的,期望本体角速度W b的计算公式如下:
W b=R j→b*W j
其中,R j→b为云台关节角坐标系和云台本体坐标系之间的转换关系,如下所示:
Figure PCTCN2018118025-appb-000004
其中,inn_joint_ang_rad为内框关节角,mid_joint_ang_rad为中框关节角。
针对两轴云台,云台关节角坐标系和云台本体坐标系之间的转换关系R j→b的转换如下:
Figure PCTCN2018118025-appb-000005
进一步的,可以依据期望本体角速度、云台本体坐标系和欧拉坐标系之间的转换关系,将期望本体角速度转换成期望欧拉角速度。其中,期望欧拉角速度W φ的计算公式如下:
W φ=R b→φ*W b
其中,R b→φ为云台本体坐标系和欧拉坐标系之间的转换关系,具体如下:
Figure PCTCN2018118025-appb-000006
其中,inn_euler_ang_rad为内框欧拉角,mid_euler_ang_rad为中框欧拉角,内框欧拉角和中框欧拉角均为上一次闭环时云台100的期望欧拉角,也即上一次闭环结束时云台100的实时姿态。
如此,通过上述流程,可以将期望关节角速度经由云台本体坐标系转换为期望欧拉角速度。并在确定期望欧拉角速度后,可以依据期望欧拉角速度和云台100的当前姿态,确定云台100的期望姿态。假设云台100的运动时长为t,期望姿态可如下所示:
Figure PCTCN2018118025-appb-000007
其中,tar_euler_roll(t)为期望姿态中对应横滚轴的分量,tar_euler_pitch(t)为期望姿态中对应俯仰轴的分量,tar_euler_yaw(t)为期望姿态中对应偏航轴的分量,Wx为对应横滚轴的期望欧拉角速度,Wy为对应俯仰轴的期望欧拉角速度,Wz为对应偏航轴的期望欧拉角速度,tar_euler_roll_init为当前姿态中对应横滚轴的欧拉角,tar_euler_pitch_init为当前姿态中对应俯仰轴的欧拉角,tar_euler_yaw_init为当前姿态中对应偏航轴的欧拉角。
综上,根据云台100的运动时长t以及预设关节角,可获悉云台100在任意时刻的期望姿态,也即,云台100中各个框架对应的预设关节角。同时,可以根据当前姿态以及得 到的期望姿态,可以利用姿态闭环实现对云台100的控制,以使得云台100中的转轴结构10相对于手持部50可以保持预设姿态,从而使得云台100符合预设的收纳形态。
在上述示例中偏航轴框架156为外框、横滚轴框架152为中框、俯仰轴框架154为内框,可以理解,在其他实施方式中,各个框架的连接关系也可以是其他,在此不作具体限定。
可以理解,在转轴结构10为多个时,可以根据每个转轴结构10的工作参数分别对各个转轴结构10进行对应的控制。例如转轴结构10包括横滚转轴结构11、俯仰转轴结构12和偏航转轴结构13,可以通过各个转轴结构10的角度传感器获取各个转轴结构10的当前关节角,再根据各个转轴结构10的当前关节角和预设关节角对转轴结构10进行关节角闭环控制。同理,也可以根据各个转轴结构10相对于手持部50的当前姿态和预设姿态对转轴结构10进行姿态闭环控制。其中,当前姿态和预设姿态应当理解为姿态分量,例如云台100的当前姿态(roll,pitch,yaw)为(A,B,C),则横滚转轴结构11的当前姿态分量为A,俯仰转轴结构12的当前姿态分量为B,偏航转轴结构13的当前姿态分量为C。
在某些实施方式中,当横滚轴、俯仰轴、偏航轴分别正交,且第一设定关节角、第二设定关节角和第三设定关节角均为0度时,则通过关节角闭环控制方式可以将转轴结构10转动至任意关节角,而在特殊构型的云台100(例如pitch-roll-yaw三轴正交的构型)中,由于姿态闭环控制方式存在万向节锁死的限制,则姿态闭环控制方式不能将横滚转轴结构11的关节角调整为正90度或负90度。因此,在上述情况下,若需要对横滚轴结构相对于0度的关节角进行正90度或负90度的调整,可以优先选择利用关节角闭环进行控制。而在其他实施方式中,当横滚轴、俯仰轴、偏航轴中存在非正交情况,或者在正交时不需要对横滚轴相对于0度的关节角进行正90度或负90度的调整时,可以选择关节角闭环或姿态闭环的方式进行控制,以使得云台100符合预设的收纳形态。
其中,对于转轴结构10的转动范围大于360度的情况而言,转轴结构10在同一姿态对应的预设关节角可以存在多个,例如,当横滚轴结构11相对于手持部50的姿态为预设姿态时,若横滚转轴结构11对应的预设关节角相对于第一设定关节角的差值可以为正90度,则在第一设定关节角为0度时,横滚转轴结构11对应的预设关节角还可以为90度+360度,90度+720度,90度-360度等。同样地,俯仰转轴结构12和偏航转轴结构13对应的关节角类似,在此不再赘述。而转轴结构10相对于手持部50的预设姿态是唯一的,例如横滚转轴结构11的横滚轴框架152所在的平面相对于手持部50倾斜45度为预设姿态,其对应的预设关节角可以为多个。
如此,可知,在当转轴结构10的转动范围大于360度的情况下,可以在多个预设关节角中进行选择,以选择有利于控制转轴结构10的预设关节角,例如,以减小转轴结构10 的转动行程或转动时间为目的,在多个预设关节角中选择与当前关节角的差值最小的一个预设关节角作为进行姿态控制的关节角。
请参阅图10,在某些实施方式中,步骤01包括:
013:控制转轴结构10以预设速度转动至设定位置。
以图2的手持云台100为例,在某些实施方式中,处理器20用于控制转轴结构10以预设速度转动至设定位置。
也即是说,步骤013可以由处理器20实现。
具体地,控制转轴结构10时,转轴结构10可以以预设速度进行转动,该预设速度可以预先设置在云台100的存储元件中。预设速度例如为恒定值,如此,便于对转轴结构10进行控制。预设速度还可以具有先增大再减小的变化趋势,如此,可以先以较大的速度接近设定位置以减少转动至设定位置所需的时间,在接近设定位置后减小速度以防止撞到转轴结构10的限位,并且可以避免出现超过设定位置后再返回的情况。另外,预设速度还可以根据转轴结构10的当前位置与设定位置之间的差异确定,其中,当前位置与设定位置之间的差异可以是指关节角偏差或姿态偏差,如此,预设速度可以根据实际操作需要实时确定,例如在当前位置与设定位置之间的差异比较大时,预设速度可以比较大,在当前位置与设定位置之间的差异比较小时,预设速度可以比较小等,在此不做具体限定。
请参阅图11,在某些实施方式中,方法还包括:
04:在预设时长内判断是否发生开机事件;
05:在发生开机事件时,控制云台100退出收纳模式并切换至开机模式。
以图2的手持云台100为例,在某些实施方式中,处理器20还用于:在预设时长内判断是否发生开机事件;在发生开机事件时,控制云台100退出收纳模式并切换至开机模式。
也即是说,步骤04和步骤05可以由处理器20实现。
具体地,在云台100处于收纳模式时,通常云台100不是处于工作状态,因此,若在预设时长内判断发生开机事件,则可以控制云台100退出收纳模式并切换至开机模式。其中,在开机模式下转轴电机可以重新进行自检(例如自检是否撞限位)并完成开机所需要的整个流程。在预设时长内没发生开机事件时,则可以在预设时长后控制云台100进入关机模式或进入待机模式。
在某些实施方式中,触发事件和/或开机事件通过按下按钮、人的触控操作、人的生物特征验证、云台100的移动、云台100的状态改变中的一种或多种来触发。
在某些实施方式中,进入收纳模式的触发事件和/或开机事件通过按下按钮来触发,可以是:云台100上例如包括物理按钮(比如开关机按钮),云台100可以在处于开机模式时通过按下(短按或者长按)该开关机按钮进入收纳模式,云台100可以在处于关机模式或 收纳模式时,通过按下(短按或者长按)该开关机按钮进入收纳模式。当然,在其他实施方式中,可以通过短按或者长按来控制云台100进入收纳模式还是进入正常的关机模式,也可以通过不同的按钮分别实现触发事件和开机事件。另外,还可以通过按下遥控器的按钮来触发进入收纳模式的触发事件和/或开机事件,其中,遥控器与云台100进行通信,在此不做具体限定。
可以理解,云台100的收纳模式与关机模式可以由一次触发事件来触发,例如,通过短按开关机按钮,可以进入收纳模式,并在预设时长后自动进入关机模式。同样地,云台100的收纳模式与待机模式也可以由一次触发事件来触发。
在某些实施方式中,按钮也可以是虚拟按钮,例如云台100上的触摸显示屏上的图标,可以通过人的触控操作来触发进入收纳模式的触发事件和/或开机事件。当然,该虚拟按钮也可以设于与云台100通信的遥控器上。
在某些实施方式中,触发事件和/或开机事件通过人的生物特征验证来触发,可以是:通过人脸识别、虹膜识别、指纹识别等方式来触发进入收纳模式的触发事件和/或开机事件,例如当通过指纹识别检测到用户的左手食指时,触发进入收纳模式的触发事件;当通过指纹识别检测到用户的左手大拇指时,触发开机事件。当然,该生物特征验证也可以通过与云台100通信的遥控器来实现。
在某些实施方式中,触发事件和/或开机事件通过云台100的移动来触发,可以是:在云台100满足预定的移动轨迹时触发进入收纳模式的触发事件和/或开机事件,例如当云台100的移动轨迹为向上移动时,触发进入收纳模式的触发事件;当云台100的移动轨迹为左右晃动时,触发开机事件。
在某些实施方式中,触发事件和/或开机事件通过云台100的状态改变来触发,可以是:根据云台100的转轴结构10的姿态变化来触发进入收纳模式的触发事件和/或开机事件,例如当用户摆动转轴结构10以使转轴结构10合拢时,触发进入收纳模式的触发事件;当用户摆动转轴结构10以使转轴结构10展开时,触发开机事件。
请参阅图12,在某些实施方式中,在控制转轴结构10转动至设定位置之前,方法还包括:
06:检测云台100是否满足预设的收纳形态;
07:若云台100不满足预设的收纳形态,则触发执行控制转轴结构10转动至设定位置,以使得云台100满足预设的收纳形态。
以图2的手持云台100为例,在某些实施方式中,处理器20还用于:检测云台100是否满足预设的收纳形态;若云台100不满足预设的收纳形态,则触发执行控制转轴结构10转动至设定位置,以使得云台100满足预设的收纳形态。
也即是说,步骤06和步骤07可以由处理器20实现。
具体地,在转动转轴结构10前,可以先检测云台100是否满足预设的收纳形态,即检测转轴结构10的当前位置是否为设定位置(例如检测当前关节角是否为预设关节角,或检测转轴结构10相对于手持部50的当前姿态是否为预设姿态),在转轴结构10的当前位置不是设定位置时,云台100不满足预设的收纳形态,此时可以转动转轴结构10以使转轴结构10转动至设定位置,从而云台100能够满足预设的收纳形态以方便放入收纳盒200中。
请再次参阅图12,在某些实施方式中,在步骤06之后,方法还包括:
08:若云台100满足预设的收纳形态,则控制云台100以预设的收纳形态保持预设时长。
以图2的手持云台100为例,在某些实施方式中,处理器20还用于若云台100满足预设的收纳形态,则控制云台100以预设的收纳形态保持预设时长。
也即是说,步骤08可以由处理器20实现。
如此,可以在检测到云台100满足预设的收纳形态时,直接控制云台100以预设的收纳形态保持预设时长,从而用户可以在该预设时长内将云台100放入收纳盒200中。另外,在检测到云台100满足预设的收纳形态时,可以避免对转轴结构10进行不必要的转动,从而可以降低云台100的功耗。
本发明实施方式的云台100可以应用于移动平台,也即是说,移动平台可以包括上述任意一种实施方式的云台100。另外,移动平台还可以包括本体,云台100设置在本体上。其中,当移动平台为手持云台时,移动平台的本体可以为手持云台的手持部。当然,移动平台可以例如包括小车、飞行器、机器人等,其本体上的云台100可以搭载有成像装置和/或射击装置和/或其它功能模块,同时,本体作为移动平台的机身,可以作为云台100的手持部。当然,在移动平台的本体上设有云台100时,除本体外,移动平台中任一处可手持的部分均可以作为云台100的手持部。
请参阅图13,本发明实施方式以移动平台为飞行器1000为例,飞行器1000包括云台100和本体300,本体300例如包括中心架、与所述中心架连接的机臂以及与所述机臂连接的动力单元等。
在一个实施例中,飞行器1000还开设有收纳槽(图未示),在检测到指示云台100进入收纳模式的触发事件时,控制转轴结构10转动至设定位置,从而使得云台100满足预设的收纳形态,进而可以将云台100收纳到收纳槽中。可以理解,移动平台的本体与移动平台的类型相对应,例如移动平台为小车时,本体为小车。
可以理解,飞行器1000也可以不设有收纳槽,通过控制云台100相对于本体的位置在预设时长内不变,也可以便于飞行器1000的收纳。
请参阅图14,本发明实施方式的计算机可读存储介质400包括计算机程序,所述计算机程序可被处理器20执行以完成上述任意一种实施方式的控制方法。
例如,请结合图1和图14,计算机程序可被处理器20执行以完成以下步骤所述的控制方法:
01:在检测到指示云台100进入收纳模式的触发事件时,控制转轴结构10转动至设定位置,以使得云台100满足预设的收纳形态;
02:控制转轴结构10在设定位置保持预设时长。
再例如,请结合图3和图14,计算机程序还可被处理器20执行以完成以下步骤所述的控制方法:
03:控制云台100进入关机模式,或控制云台100进入待机模式。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (32)

  1. 一种云台的控制方法,所述云台包括至少一个转轴结构,其特征在于,所述方法包括:
    在检测到指示所述云台进入收纳模式的触发事件时,控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态;
    控制所述转轴结构在所述设定位置保持预设时长。
  2. 根据权利要求1所述的方法,其特征在于,在所述控制所述转轴结构在所述设定位置保持预设时长后,所述方法还包括:
    控制所述云台进入关机模式,或控制所述云台进入待机模式。
  3. 根据权利要求1所述的方法,其特征在于,所述控制所述转轴结构转动至设定位置,包括:
    控制所述转轴结构转动至预设关节角;
    所述控制所述转轴结构在所述设定位置保持预设时长,包括:
    控制所述转轴结构在所述预设关节角保持所述预设时长。
  4. 根据权利要求3所述的方法,其特征在于,所述控制所述转轴结构转动至预设关节角,包括:
    确定所述转轴结构的当前关节角与预设关节角之间的关节角偏差;
    根据所述关节角偏差控制所述转轴结构转动至所述预设关节角。
  5. 根据权利要求3所述的方法,其特征在于,至少一个所述转轴结构包括被配置为绕横滚轴旋转的横滚转轴结构、被配置为绕俯仰轴旋转的俯仰转轴结构和被配置为绕偏航轴旋转的偏航转轴结构中的至少一个。
  6. 根据权利要求5所述的方法,其特征在于,当所述横滚轴、所述俯仰轴、所述偏航轴分别正交时,所述横滚转轴结构的关节角为第一设定关节角,所述横滚转轴结构对应的预设关节角与所述第一设定关节角的绝对差值为90度;和/或
    当所述横滚轴、所述俯仰轴、所述偏航轴分别正交时,所述俯仰转轴结构的关节角为第二设定关节角,所述俯仰转轴结构对应的预设关节角与所述第二设定关节角的绝对差值为0度;和/或
    当所述横滚轴、所述俯仰轴、所述偏航轴分别正交时,所述偏航转轴结构的关节角为第三设定关节角,所述偏航转轴结构对应的预设关节角与所述第三设定关节角的绝对差值为90度。
  7. 根据权利要求1所述的方法,其特征在于,所述云台包括手持部,至少一个所述转轴结构设于所述手持部上,所述控制所述转轴结构转动至设定位置,包括:
    控制所述转轴结构转动至相对于所述手持部为预设姿态;
    所述控制所述转轴结构在所述设定位置保持预设时长,包括:
    控制所述转轴结构在所述预设姿态保持所述预设时长。
  8. 根据权利要求7所述的方法,其特征在于,所述控制所述转轴结构转动至相对于所述手持部为预设姿态,包括:
    确定所述转轴结构相对于所述手持部的当前姿态与所述转轴结构相对于所述手持部的预设姿态之间的姿态偏差;
    根据所述姿态偏差控制所述转轴结构转动至相对于所述手持部为所述预设姿态。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述控制所述转轴结构转动至设定位置,包括:
    控制所述转轴结构以预设速度转动至所述设定位置。
  10. 根据权利要求9所述的方法,其特征在于,所述预设速度具有先增大再减小的变化趋势。
  11. 根据权利要求9所述的方法,其特征在于,所述预设速度为根据所述转轴结构的当前位置与所述设定位置之间的差异确定。
  12. 根据权利要求1至8任意一项所述的方法,其特征在于,所述方法还包括:
    在所述预设时长内判断是否发生开机事件;
    在发生所述开机事件时,控制所述云台退出所述收纳模式并切换至开机模式。
  13. 根据权利要求12所述的方法,其特征在于,所述触发事件和/或所述开机事件通过按下按钮、人的触控操作、人的生物特征验证、所述云台的移动、所述云台的状态改变中的一种或多种来触发。
  14. 根据权利要求1至8任意一项所述的方法,其特征在于,在控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态之前,所述方法还包括:
    检测所述云台是否满足所述预设的收纳形态;
    若所述云台不满足所述预设的收纳形态,则触发执行所述控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态。
  15. 根据权利要求14所述的方法,其特征在于,在检测所述云台是否满足所述预设的收纳形态之后,所述方法还包括:
    若所述云台满足所述预设的收纳形态,则控制所述云台以所述预设的收纳形态保持所述预设时长。
  16. 一种云台,其特征在于,所述云台包括至少一个转轴结构和处理器,其特征在于,所述处理器用于:
    在检测到指示所述云台进入收纳模式的触发事件时,控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态;
    控制所述转轴结构在所述设定位置保持预设时长。
  17. 根据权利要求16所述的云台,其特征在于,所述处理器还用于:
    在所述控制所述转轴结构在所述设定位置保持预设时长后,控制所述云台进入关机模式,或控制所述云台进入待机模式。
  18. 根据权利要求16所述的云台,其特征在于,所述处理器用于:
    控制所述转轴结构转动至预设关节角;
    控制所述转轴结构在所述预设关节角保持所述预设时长。
  19. 根据权利要求18所述的云台,其特征在于,所述处理器用于:
    确定所述转轴结构的当前关节角与预设关节角之间的关节角偏差;
    根据所述关节角偏差控制所述转轴结构转动至所述预设关节角。
  20. 根据权利要求18所述的云台,其特征在于,至少一个所述转轴结构包括被配置为绕横滚轴旋转的横滚转轴结构、被配置为绕俯仰轴旋转的俯仰转轴结构和被配置为绕偏航轴旋转的偏航转轴结构中的至少一个。
  21. 根据权利要求20所述的云台,其特征在于,当所述横滚轴、所述俯仰轴、所述偏航轴分别正交时,所述横滚转轴结构的关节角为第一设定关节角,所述横滚转轴结构对应的预设关节角与所述第一设定关节角的绝对差值为90度;和/或
    当所述横滚轴、所述俯仰轴、所述偏航轴分别正交时,所述俯仰转轴结构的关节角为第二设定关节角,所述俯仰转轴结构对应的预设关节角与所述第二设定关节角的绝对差值为0度;和/或
    当所述横滚轴、所述俯仰轴、所述偏航轴分别正交时,所述偏航转轴结构的关节角为第三设定关节角,所述偏航转轴结构对应的预设关节角与所述第三设定关节角的绝对差值为90度。
  22. 根据权利要求16所述的云台,其特征在于,所述云台包括手持部,至少一个所述转轴结构设于所述手持部上,所述处理器用于:
    控制所述转轴结构转动至相对于所述手持部为预设姿态;
    控制所述转轴结构在所述预设姿态保持所述预设时长。
  23. 根据权利要求22所述的云台,其特征在于,所述处理器用于:
    确定所述转轴结构相对于所述手持部的当前姿态与所述转轴结构相对于所述手持部的预设姿态之间的姿态偏差;
    根据所述姿态偏差控制所述转轴结构转动至相对于所述手持部为所述预设姿态。
  24. 根据权利要求16至23任意一项所述的云台,其特征在于,所述处理器用于:
    控制所述转轴结构以预设速度转动至所述设定位置。
  25. 根据权利要求24所述的云台,其特征在于,所述预设速度具有先增大再减小的变化趋势。
  26. 根据权利要求24所述的云台,其特征在于,所述预设速度为根据所述转轴结构的当前位置与所述设定位置之间的差异确定。
  27. 根据权利要求16至23任意一项所述的云台,其特征在于,所述处理器还用于:
    在所述预设时长内判断是否发生开机事件;
    在发生所述开机事件时,控制所述云台退出所述收纳模式并切换至开机模式。
  28. 根据权利要求27所述的云台,其特征在于,所述触发事件和/或所述开机事件通过按下按钮、人的触控操作、人的生物特征验证、所述云台的移动、所述云台的状态改变中的一种或多种来触发。
  29. 根据权利要求16至23任意一项所述的云台,其特征在于,所述处理器还用于:
    检测所述云台是否满足所述预设的收纳形态;
    若所述云台不满足所述预设的收纳形态,则触发执行所述控制所述转轴结构转动至设定位置,以使得所述云台满足预设的收纳形态。
  30. 根据权利要求29所述的云台,其特征在于,所述处理器还用于:
    若所述云台满足所述预设的收纳形态,则控制所述云台以所述预设的收纳形态保持所述预设时长。
  31. 一种移动平台,其特征在于,所述移动平台包括本体和权利要求16至30中任一项所述的云台,所述云台设置在所述本体上。
  32. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序可被处理器执行以完成权利要求1至15中任一项所述的控制方法。
PCT/CN2018/118025 2018-11-28 2018-11-28 云台的控制方法、云台、移动平台和计算机可读存储介质 WO2020107292A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/118025 WO2020107292A1 (zh) 2018-11-28 2018-11-28 云台的控制方法、云台、移动平台和计算机可读存储介质
CN201880038820.6A CN110832423B (zh) 2018-11-28 2018-11-28 云台的控制方法、云台、移动平台和计算机可读存储介质
EP18941367.7A EP3889729A4 (en) 2018-11-28 2018-11-28 ORDERING METHOD FOR GIMBAL, GIMBAL, MOBILE PLATFORM AND COMPUTER READABLE DATA MEDIA
US17/202,788 US20210200247A1 (en) 2018-11-28 2021-03-16 Gimbal control method, gimbal, mobile platform and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118025 WO2020107292A1 (zh) 2018-11-28 2018-11-28 云台的控制方法、云台、移动平台和计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/202,788 Continuation US20210200247A1 (en) 2018-11-28 2021-03-16 Gimbal control method, gimbal, mobile platform and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020107292A1 true WO2020107292A1 (zh) 2020-06-04

Family

ID=69547499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118025 WO2020107292A1 (zh) 2018-11-28 2018-11-28 云台的控制方法、云台、移动平台和计算机可读存储介质

Country Status (4)

Country Link
US (1) US20210200247A1 (zh)
EP (1) EP3889729A4 (zh)
CN (1) CN110832423B (zh)
WO (1) WO2020107292A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375992B (zh) * 2018-02-09 2019-01-22 桂林智神信息技术有限公司 手持云台的控制方法和控制装置
CN114585851A (zh) * 2020-09-28 2022-06-03 深圳市大疆创新科技有限公司 收纳装置和拍摄设备
WO2022205091A1 (zh) * 2021-03-31 2022-10-06 深圳市大疆创新科技有限公司 云台控制方法、云台和移动平台
CN117642708A (zh) * 2021-09-09 2024-03-01 深圳市大疆创新科技有限公司 手持云台、手持云台的控制方法、控制装置及存储介质
CN117648001B (zh) * 2024-01-29 2024-04-09 微网优联科技(成都)有限公司 基于云台机的追踪校正方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置
WO2017222541A1 (en) * 2016-06-24 2017-12-28 Intel IP Corporation Unmanned aerial vehicle
CN108323191A (zh) * 2018-02-11 2018-07-24 深圳市大疆创新科技有限公司 云台及其控制方法、无人机
CN108413205A (zh) * 2018-04-27 2018-08-17 广东思锐光学股份有限公司 云台
CN108780328A (zh) * 2017-12-18 2018-11-09 深圳市大疆灵眸科技有限公司 一种云台控制方法、无人机、云台及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482530B2 (en) * 2013-11-05 2016-11-01 Raytheon Company Nadir/zenith inertial pointing assistance for two-axis gimbals
JP6113365B2 (ja) * 2014-06-30 2017-04-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 雲台パラメータの調整方法、装置及び雲台機器
CN104469292B (zh) * 2014-11-27 2017-09-19 国网上海市电力公司 一种姿态自校正云台摄像机控制装置及其方法
CN113188027B (zh) * 2016-06-24 2023-04-18 深圳市大疆灵眸科技有限公司 手持云台
CN205908977U (zh) * 2016-06-27 2017-01-25 祁家亮 自平衡云台、手持云台和自拍杆
CN106227240B (zh) * 2016-07-28 2019-06-18 纳恩博(北京)科技有限公司 一种云台控制方法和装置
CN106339093B (zh) * 2016-08-31 2019-12-13 纳恩博(北京)科技有限公司 一种云台控制方法和装置
EP3564574B1 (en) * 2016-12-30 2021-11-10 SZ DJI Osmo Technology Co., Ltd. Method and device for controlling cradle head, and cradle head
CN108496137B (zh) * 2017-04-21 2022-05-31 深圳市大疆灵眸科技有限公司 遥控器、云台及云台控制方法、装置、***
CN207112256U (zh) * 2017-07-31 2018-03-16 深圳市大疆灵眸科技有限公司 云台拍摄器
CN111503479B (zh) * 2017-07-31 2022-08-09 深圳市大疆灵眸科技有限公司 云台拍摄器
CN110908223B (zh) * 2017-07-31 2022-03-18 深圳市大疆灵眸科技有限公司 云台拍摄器
CN108521777B (zh) * 2017-11-22 2022-06-03 深圳市大疆创新科技有限公司 云台的控制方法、云台以及无人飞行器
CN108778932B (zh) * 2017-12-29 2021-08-24 深圳市大疆创新科技有限公司 控制云台复位的方法和装置、云台、无人飞行器
CN108375992B (zh) * 2018-02-09 2019-01-22 桂林智神信息技术有限公司 手持云台的控制方法和控制装置
CN108803669B (zh) * 2018-07-05 2021-08-24 北京淳中科技股份有限公司 云台转向控制方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222541A1 (en) * 2016-06-24 2017-12-28 Intel IP Corporation Unmanned aerial vehicle
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置
CN108780328A (zh) * 2017-12-18 2018-11-09 深圳市大疆灵眸科技有限公司 一种云台控制方法、无人机、云台及存储介质
CN108323191A (zh) * 2018-02-11 2018-07-24 深圳市大疆创新科技有限公司 云台及其控制方法、无人机
CN108413205A (zh) * 2018-04-27 2018-08-17 广东思锐光学股份有限公司 云台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889729A4 *

Also Published As

Publication number Publication date
CN110832423A (zh) 2020-02-21
EP3889729A4 (en) 2022-07-13
US20210200247A1 (en) 2021-07-01
EP3889729A1 (en) 2021-10-06
CN110832423B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2020107292A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质
US11184548B2 (en) Imaging device, and method and apparatus for controlling the imaging device
KR102570777B1 (ko) 복수의 터치 디스플레이들을 포함하는 전자 장치 및 이의 상태 전환 방법
WO2021081843A1 (zh) 云台***的校准方法、装置、云台***和计算机可读介质
CN215929180U (zh) 云台
WO2021026753A1 (zh) 云台控制方法、云台及计算机可读存储介质
TW201622790A (zh) 飛行裝置及使用其之遙控飛行方法
WO2021026789A1 (zh) 基于手持云台的拍摄方法、手持云台及存储介质
US20150206284A1 (en) Electronic device capable of rotating display image and display image rotating method thereof
US20220205583A1 (en) Gimbal control method, gimbal and machine-readable storage medium
WO2020237493A1 (zh) 云台零位标定方法和云台
WO2020062298A1 (zh) 云台及其控制方法、可移动平台
CN112154651A (zh) 云台控制方法、云台及计算机可读存储介质
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2021134644A1 (zh) 云台的控制方法和云台
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2018152827A1 (zh) 无人机的远程控制方法、设备和***
WO2021248287A1 (zh) 云台控制方法、手持云台及计算机可读存储介质
WO2022021092A1 (zh) 云台控制方法、装置、设备及计算机可读存储介质
US11454646B2 (en) Initiation of calibration of multiple sensor modules related to an orientation of a user of the sensor modules
US11249562B2 (en) Pointing electronic device with fast start-up recovery and corresponding method
KR101956694B1 (ko) 드론 컨트롤러 및 그 제어 방법
US20220197278A1 (en) Moving body, steering system, control method, and program
US10809797B1 (en) Calibration of multiple sensor modules related to an orientation of a user of the sensor modules
WO2020062280A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018941367

Country of ref document: EP

Effective date: 20210628