WO2020106389A1 - Active textile tailoring - Google Patents

Active textile tailoring

Info

Publication number
WO2020106389A1
WO2020106389A1 PCT/US2019/057091 US2019057091W WO2020106389A1 WO 2020106389 A1 WO2020106389 A1 WO 2020106389A1 US 2019057091 W US2019057091 W US 2019057091W WO 2020106389 A1 WO2020106389 A1 WO 2020106389A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
textile
inactive
active
fibers
Prior art date
Application number
PCT/US2019/057091
Other languages
French (fr)
Inventor
Skylar J.E. TIBBITS
Jared Smith LAUCKS
Schendy G. KERNIZAN
Lavender Rose TESSMER
Carmel Marie DUNLAP
Gihan S. AMARASIRIWARDENA
Original Assignee
Massachusetts Institute Of Technology
Ministry Of Supply Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute Of Technology, Ministry Of Supply Inc. filed Critical Massachusetts Institute Of Technology
Priority to US17/280,040 priority Critical patent/US20210310162A1/en
Publication of WO2020106389A1 publication Critical patent/WO2020106389A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/567Shapes or effects upon shrinkage
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/10Bamboo
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0114Dissimilar front and back faces with one or more yarns appearing predominantly on one face, e.g. plated or paralleled yarns
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/023Fabric with at least two, predominantly unlinked, knitted or woven plies interlaced with each other at spaced locations or linked to a common internal co-extensive yarn system
    • D10B2403/0231Fabric with at least two, predominantly unlinked, knitted or woven plies interlaced with each other at spaced locations or linked to a common internal co-extensive yarn system including contracting yarn, e.g. blister fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0243Fabric incorporating additional compounds enhancing functional properties

Definitions

  • Described herein are textiles / garments that can self-transform to adapt to a person’s body shape/fit/comfort.
  • described herein are method of creating active textiles with specific fiber/yam compositions and knit structures that promote a single direction material transformation based on moisture or temperature activation, inducing a physical shape-change around the user’s body.
  • One or more of the fibers is an active material within the knit structure that has the capability to shrink, swell, curl or otherwise self-transform based on an activation (heat, moisture, UV light or other forms of energy).
  • the active fiber causes a local change in the structure of the knit causing it to contract/shrink inwards. This contraction causes the garment to shrink with specific force and direction, adapting to the wearer’s body.
  • the garment can have zonal placement of active fibers and non-active fibers as well as zonal activation to control the location, amount and type of transformation in the garment.
  • a textile includes a region that has an active fiber and an inactive fiber that are knit or woven together.
  • the active fibers can be formed of a material that exhibits a greater coefficient of thermal expansion compared to the inactive fibers.
  • the active fibers contract relative to the inactive fibers.
  • the active fiber can be a thermoplastic that contracts upon exposure to an increase in temperature.
  • the thermoplastic can be polyethylene (PE).
  • the inactive fiber can be cotton, polyester, rayon, TENCEL, wool, silk, or bamboo.
  • the textile can include a first row region of at least one active fiber and a second row region of at least one active fiber; at least one inactive fiber stitched with the at least one active fiber; at least one inactive fiber float; and an elongated active fiber loop across the inactive fiber float that joins the first row region of at least one active fiber with the second row region of at least one active fiber.
  • the first row region and second row region can be stitched together.
  • the stitches are jersey stitches, but a variety of other stitches are suitable.
  • the at least one inactive fiber float can be from six to ten inactive fiber floats.
  • the textile can include a first region of active fiber stitching that overlies at least one first float of an inactive fiber; a second region of active fiber stitching that overlies at least one second float of an inactive fiber; and an active fiber float that overlies inactive fiber stitching and connects the first region of active fiber stitching to the second region of active fiber stitching.
  • the active fiber float can be diagonal, vertical, horizontal, or any other angle.
  • the active fiber float can be a set of active fiber floats.
  • the at least one first float of an inactive fiber can be a set of inactive fiber floats.
  • the at least one second float of an inactive fiber can be a set of inactive fiber floats.
  • the at least one first float of an inactive fiber can be from two to six inactive fiber floats.
  • the at least one second float of an inactive fiber can be from two to six inactive fiber floats.
  • the textile can include stitches of at least one active fiber with at least one inactive fiber.
  • The can be an active fiber with a front stitch with inactive fibers with a front tuck, along with an active fiber with a back tuck with an inactive fiber with a back stitch.
  • the stitches can form first and second columns.
  • the first column can include the active fiber with a front stitch with the inactive fibers with a front tuck.
  • the second column can include the active fiber with a back tuck with the inactive fibers with a back stitch.
  • the first and second columns can alternate.
  • a plurality of first columns can be adjacent to each other, which can be adjacent to a plurality of second columns.
  • the stitching can include a plurality of adjacent front stitches of active fiber.
  • the stitching can include a plurality of adjacent back stitches of active fiber.
  • the textile can include active fibers that are knit or woven together in higher proportion with each other than with inactive fibers at locations that change knit or weave gauge as a function of temperature than at locations that exhibit little or no change of knit or weave effective gauge as a function of temperature.
  • the active fiber can be confined to a portion of the textile (e.g. confined to a portion of a garment).
  • FIGs. 1 A-C are schematics illustrating linear shape change that may be contraction or expansion due to moisture or heat exposure.
  • FIGs. 2A-B are schematics illustrating cross-sectional shape change that may be due to material swelling/contraction due to moisture gain/loss or thermal exposure.
  • FIGs. 3 A-C are schematics illustrating wave and helical response structures that may occur due to a bi-component extrusion with different expansion rates or geometrical cross-section that invokes a specific shape change.
  • FIG. 4 is a photograph showing a tessellation of a mesh-matrix structure with a primary mesh material and a secondary void-filler material that are combined to transforms the porosity and curvature upon activation.
  • FIG. 5 is a photograph showing a tessellation of a simple knit structure made of active and non-active material. This sample shows control over the open/closed area in the central vertical region through active and non-active materials.
  • FIG. 6 is a photograph showing the linear repetition of active and non-active material creating an accordion effect when activated. Active zones consist of two plated materials that respond differently to applied moisture, producing additional curvature of the active zones by exploiting the curling tendency of single-jersey knit structure.
  • FIG. 7 is a photograph showing axial compression that can be zonally controlled when activated.
  • FIG. 8 is a schematic showing robotic tailoring along a continuous path, as well as amplitude control of the activation energy by modulating the speed, distance and temperature of the source.
  • FIG. 9 is a schematic showing robotic tailoring to create various sizes that can be tailored to the individual by controlling and setting shrinkage / expansion in fixed areas.
  • FIG. 10 is a series of images illustrating different individuals and their body scan with a correlated garment program that has different zones that can be activated through robotic tailoring.
  • FIG. 11 is a schematic showing a knit program with various knit structures to achieve controlled and localized shape change.
  • FIG. 12 is a schematic showing a user experience in which a user enters a retail space, is imaged, and then a custom program is developed on-demand for the user.
  • a garment is then knit on location and can either be robotically activated on a form or on the individual or in an environmental chamber for activation.
  • FIGs. 13 A and 13B are photographs of a textile.
  • FIG. 13 A is a photograph of the textile when the active material is not activated.
  • FIG. 13B is a photograph of the textile when the active material is activated.
  • the active material is distributed in a grid where there are floated stitches in the inactive fiber and zero floated stitches in the active fiber.
  • the active fiber is knitted in horizontal rows, where alternating sets of stitches of active fiber are held on the needles while the inactive fiber is knitted for a series of subsequent rows. This produces a series of elongated stitches where the fiber is held, maximizing the potential of the fibers to contract. When exposed to heat, the resulting pattern produces localized shrinkage in the fabric enabled by the large stitch sizes of the active material where the stitches have been held during knitting.
  • FIG. 13C is a textile pattern for the textile of FIGs. 13A and 13B
  • FIGs. 14A and 14B are photographs of a textile.
  • FIG. 14A is a photograph of the textile when the active material is not activated.
  • FIG. 14B is a photograph of the textile when the active material is activated.
  • the active material is knitted in small clusters of stitches that are interspersed through areas of inactive stitches.
  • the active clusters are linked together with floats on the reverse side of the fabric that connect the active areas in a diagonal grid. When heat is applied to the material, the active floats contract to produce localized gathering in the inactive material. Floats are used to elongate the areas of active fiber, producing fabric contraction.
  • FIG. 14C is a textile pattern for the textile of FIGs. 14A and 14B.
  • FIGs. 15A and 15B are photographs of a textile.
  • FIG. 15A is a photograph of the textile when the active material is not activated.
  • FIG. 15B is a photograph of the textile when the active material is activated. Active material is applied to one fabric face, and inactive material is applied to the reverse face in a two-material rib knit structure. When heat is applied to the active face of the fabric, the fibers contract and reveal the color of the inactive material; this produces a localized visual effect for the purpose of applying customizable patterning through heat.
  • FIG. 15C is a textile pattern for the textile of FIGs. 15A and 15B.
  • Shape change is created by either a thermal and/or moisture-based response to an environmental change.
  • the activation includes, but is not limited to, lengthening, shrinking and axial expansion of the fiber or filament.
  • the active material can be a combination of spun fibers, monofilaments, and braided or twisted versions and combinations thereof.
  • composition of the yams and monofilaments are variations and combinations of both naturally yarns (wool, cotton, linen and other animal hairs) , as well as naturally-derived yarns (rayon, viscose, bio-PET, bio-PTT) as well as synthetics (including but not limited to: nylon, nylon-6, nylon-6-6, polyethylene terephthalate (PET), polyethylene terephthalate (PTT) and polybutylene terephthalate (PBT), high-density polyethylene (HDPE), polyethylene (e.g., high molecular weight polyethylene (HMWPE)).
  • Some fibers exhibit contraction or expansion due to moisture gain through fiber swelling, or thermal
  • This single directional change can be mechanical, by which thermal or moisture shrinking can cause “ratcheting” of microfibrils (as in scaled animal fibers) of parallel fibers to mechanically lock in one direction, which may be released by an opposite mechanical force.
  • Other materials such as synthetics may enter a thermoplastic phase, and exposure to increased heat can thermally set the fiber to a final state.
  • chemical -structural change can be used in protein based yams such as animal fibers causing changes to primary, secondary and tertiary protein structures with exposure to heat.
  • Moisture or temperature gain can cause axial and helical expansion of fibers, particularly in the case of bi-component fibers causing spiral yarns to increase in loft due to moisture absorption.
  • active energies can cause curling/twisting behaviors in a fiber whereby a straight element is then curled/twisted/folded when subject to moisture or temperature.
  • a fiber can shrink or expand when subjected to an activation energy.
  • the activation energy can come as single or multiple input for example, Dry Heat (-40°C - 500°C), Moisture (0-100% relative humidity (RH%) at ambient temperatures) and combinations (Steam). While nonambient temperatures and moisture levels may be used for single activation (outside of the realm of human comfort), bi-directional change is ideal in the -20°C - 50°C range which encompasses normal operating environments for the wearer as well as the body-garment microclimate.
  • a diversity of non-active fibers/yams can be juxtaposed with active materials to gain control over zones, constrain certain regions, or amplify effects of the transformation.
  • a non-active material can be used which does not react to heat and continues to keep its form as the active fiber transforms.
  • the non-active materials can consist of cotton, polyester, rayon, TENCEL, wool, and as well as 2nd generation synthetics, bio engineered silks, and bamboo etc. 2. Knit Structure
  • a myriad of knit structures can be used in combination with active and inactive fibers/yarns. We have used a variety of primary-knit structures that exhibit controlled shape change, and can be used as a component knit pattern on its own or in combination with other structures to create a macro-shape change.
  • the knit structures can be characterized has having columns, also referred to as wales in knitting and warp in weaving, and rows, also referred to as courses in knitting and weft in weaving.
  • regions of a textile can be characterized as having different patterns.
  • a region of a textile can have active fiber stitches. That region can be joined to another region of the textile that also have active fiber stitches. The two regions can be joined by a float of the active fiber.
  • the active fiber float can be horizontal, vertical, diagonal, or any other angle depending upon the desired pattern.
  • first row region and the second row region can be interconnected together.
  • first row region and second row region can be stitched together using a single fiber.
  • a wide variety of stitches can be used, including jersey stitches, combinations of front and back stitches, link-link stitches, garter stitches, knit stitches, and pearl stitches.
  • One form of knit structure used has been the“mesh-matrix” structure which is created by various geometries of squares, hexagons and circles that create a mesh-matrix which can be either active or non-active fiber/yams, wherein the voids in the shapes are filled with the complementary yarn (non-active or active respectively). In some cases this may be spun fibers or monofilaments that create the mesh-matrix, and the filled voids are created by using short / dropped rows or yarn floats. This results in either compression of the void area where the material protrudes orthogonal to the plane increasing material thickness, or by stretching the void to cause the knit structure to become more porous.
  • a first set of active fibers 110 are knit with inactive fibers 121.
  • the individual active fibers 111 can be formed of a single active fiber 111, which has been looped around in the stitching pattern.
  • the individual inactive fibers 121 can be formed of a single active fiber 121.
  • Plain stitches 130 are formed among the active fibers 111, among the active fibers 111 and inactive fibers 121, and among the inactive fibers 121. While the stitches 130 illustrated in FIG. 13C are jersey stitches, a wide variety of stitches are suitable.
  • a set of horizontal floats 140 is formed of a plurality of individual horizontal floats 141 of the inactive fibers 121. In some cases, there is only one horizontal float 141. Across the set of horizontal floats 140, an elongated loop (held stitch) 150 is formed in the active fiber. As illustrated in FIG. 3C, there are two sets of active fibers 110, but more can be included. FIG. 3C illustrates eight floats 141 of the inactive fibers, but more or less can be included. More floats produces a greater transformation than fewer floats.
  • a textile can include one or more regions of active fibers that overlie (or underlie) one or more floats 241 of inactive fibers 221.
  • FIG. 14C illustrates seven regions of active fibers that overlie (or underlie) one or more floats 241 of inactive fibers 221.
  • a first region of active fiber stitching can overlie at least one float 241 of an inactive fiber 221.
  • a second region of active fiber stitching can overlie at least one float 241 of an inactive fiber 221.
  • An active fiber float 261 that overlies stitching inactive fibers 221 can connect, or join, the first region of active fibers to the second region of active fibers.
  • a first set of active fibers 210 formed of individual active fibers 211, can be knit with inactive fibers 221. Stitches 230 are formed among the active fibers 211, among the active fibers 211 and inactive fibers 221, and among the inactive fibers 221. While jersey stitches 230 are illustrated, other types of stitches are suitable.
  • a set of floats 240 is formed of a plurality of individual floats 241 of the inactive fibers. As illustrated, individual floats 241 are horizontal.
  • Sets of floats 260 are formed of a plurality of individual diagonal floats 261 of the active fibers 211. As illustrated, the floats 261 extend diagonally, but the can extend vertically, horizontally, or at other angles.
  • plating which is achieved by using machine knitting to create a face and back to the knit structure of two different materials. This results in a planar shape change that causes curling as one face expands or contracts relative to the other face. The direction of this can be alternated to create an undulating surface or cause a curl along the x axis due to heat and the y-axis due to moisture.
  • FIG. 15C Another example is FIG. 15C, where active fibers 311 are stitched with inactive fibers 321. As illustrated, an active fiber 311 is stitched in an alternating pattern, by forming a back tuck 311a followed by a front stitch 31 lb.
  • Inactive fibers are stitched in an alternating pattern, by forming a front tuck 321a followed by a back stitch 321b.
  • the resulting textile has a column 370 of active fibers with a front stitch 311b and inactive fibers with a front tuck 321a.
  • the resulting textile also has a column 380 of active fibers with a back tuck 311a and inactive fibers with a back stitch 321b.
  • the two columns 370 and 380 are alternating in sequence.
  • the knit structure of FIG. 15C can be used to selectively reveal an underlying layer, such as an underlying layer of another material that can be of a different color.
  • a wide variety of alternatives patterns can be stitched, and the stitching need not be in rigid patterns. In some instances, adjacent columns of stitches can be identical; in some instances, adjacent columns of stitches need not be identical.
  • Alternation of simple knit structures (e.g. jersey) in active and non-active material can cause an accordion-like structure that expands or contracts based on temperature or moisture. Tessellation of triangles, trapezoids, rectangles and other shapes can create a similar effect.
  • the type, amount and location of the applied activation energy to the active textile can create different transformation characteristics based on the pattern and amount of active material.
  • the textile material without the active fiber should not respond to the heat, only the heat-active fibers will cause local transformation based on the structure of the knit and amount of active fibers. If the entire textile structure is created with heat-active fibers, the entire textile or zone may transform. However, if the heat is applied in a precise and local pattern, then a smaller local transformation may occur. This demonstrates that the location of the applied energy has a direct impact on the type of transformation. Similarly, the amount of activation will cause different transformation characteristics. For example, if more heat is applied in a short amount of time it may speed up the transformation, depending on the active material’s characteristics.
  • the location and type of active material based on the supplied activation energy allows for many different transformations with different activations energies, at different times and should be designed specifically for the application and environment of use.
  • Robotic activation of the garment is intended to translate or“program” a garment with a specific conformational response based on aesthetic design, comfort/fit, functional output or user-body mapping.
  • Robotic activation can be any computer-numerically controlled process that allows the application of activation energy (heat, moisture, light etc.) in a controlled fashion. This can include light activation or controlled moisture or heat application through some combination of heat/moisture source that moves relative to the garment. This movement can be controlled using a 5-axis robotic arm and/or turntable that moves the heat/moisture source in a defined 3D path over the garment. This can either be a raster or vector process for translating the information map to the garment.
  • activation energy heat, moisture, light etc.
  • This movement can be controlled using a 5-axis robotic arm and/or turntable that moves the heat/moisture source in a defined 3D path over the garment. This can either be a raster or vector process for translating the information map to the garment.
  • Activation can also be achieved, particularly for uniform shape or zonal change rather than porosity change, by having the user wear the garment in an environmental chamber with controllable moisture or heat that is comfortable for the wearer but exceeds the activation range.
  • a unique geometry can be conformed to the wearer, or body-mapping of the wear can be translated into a knit program unique to the wearer and pre knit into the garment that is then finally“set” once exposed to the activation temperature / Rh% level.
  • Amplitude of the activation energy can either be controlled at the source or by varying the robotic path. Varying relative distance and speed to the garment enables fast control of the dynamic range of the activation energy source, as in the example of a heat gun, the latency of heating elements to heat up or down is much longer than the drop off in energy exposure due to (Relative Distance) A (-2).
  • This activation can be formed on a molded mannequin or the user depending on the activation energy.
  • the knit textile can contains zones with different material compositions or knit structures that amplify or constraint the types of transformations. This zonal design can be created based on the specific user or more genetically designed for different regions of any garment.
  • the textiles allow for precise control over transformations in a textile garment - either uniformly across the garment or applied in specific zones for variable transformation based on the user’s preferences. This method produces predictable and precise
  • custom/personalized fit and styling and perfect tailoring This could be achieved with standard sized - s, m, 1, xl - and then post-activated on the body or this could be created with custom knit structures that are activated in a uniform manner within an environmental chamber.
  • Body-mapping of the individual can be translated into a garment that has a controlled distance between the skin and the garment to create“the perfect fit” - and gives control that is not possible with 2-D construction techniques.
  • controlled activation paths enable aesthetic structures that give a unique look that can be personalized to the wearer.
  • This personalized garment can be tailored to a person’s style or aesthetic preferences as well as individualized comfort profiles.
  • Compression and shape constraint or flexibility/mobility can be achieved by following paths that are unique to the user's biomechanics, gait etc. This can create structures that aren’t possible due to the limitations of traditional 2-dimensional garment construction. For example, compression tights that provide mobility at the knee, localized to the wearers geometry, but compression in the thigh and calf, while also providing gradual compression to facilitate blood flow. 4.3 Body-Mapped Moisture/Heat Ventilated Garments
  • An application of this process may include the translation of thermal body mapping to a personalized garment that reflects the user’s unique heat signature thereby allocating the right knit structure in the right zone. Closed or open pores, or active and non active regions can be controlled based on the thermal and moisture variability of different areas of the user’s skin surface.
  • This textiles offer significant advantages over traditional methods of tailoring.
  • garments are either produced with standard sizes (S, M, L) or at the high-end, they are manually tailored to fit an individual.
  • manual tailoring is labor intensive, expensive, and time consuming which often makes it difficult for everyday clothes, customers or businesses to realize.
  • manual tailoring often has a limited number of techniques for adjusting a garment - hem, tuck etc.
  • the garment can adapt and transform on its own without manual tailoring, reducing the cost/complexity/time needed to have customized garments for every user.
  • the active textile garment can adapt in complex, intricate and nuanced ways that would be difficult or impossible to manually tailor. This allows the garment to adapt to the curvature, size and uniqueness of everyone's individual body or comfort preferences.
  • Sports & Performance Self-transformation process for custom fit for footwear or apparel
  • Medical & Health Custom shaped garments or medical devices (sleeves, compression garments, bandages, casts or even internal applications like
  • Fashion Custom-shape/style of the garment based on the user’s activation or the setting/environment where it is being worn. In-store experience where the customer is able to make their own garment - customized to their body shape/comfort level or application (running vs. walking vs. formal wear etc).
  • Furniture & Interior Products Single-direction transformation of textiles around chair frames, or hammock-like surfaces.

Abstract

Textiles formed of active and inactive materials are disclosed. The active and inactive materials are knit together so that the textile exhibits a predetermined shape change upon exposure to an external stimulus, such as heat or moisture.

Description

Active Textile Tailoring
RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No.
62/747,615, filed on October 18, 2018. The entire teachings of the above application are incorporated herein by reference.
GOVERNMENT SUPPORT
[0002] This invention was made with Government support under Grant No. W 15QKN- 16-3-0001 awarded by the Department of Defense. The government has certain rights in the invention.
BACKGROUND
[0003] Traditionally, garments are either produced with standard sizes (S, M, L) or at the high-end, they are manually tailored to fit an individual. However, manual tailoring is labor intensive, expensive, and time consuming, which often makes it difficult for everyday clothes, customers or businesses to realize. Further, manual tailoring often has a limited number of techniques for adjusting a garment - hem, tuck etc.
SUMMARY
[0004] Described herein are textiles / garments that can self-transform to adapt to a person’s body shape/fit/comfort. In particular, described herein are method of creating active textiles with specific fiber/yam compositions and knit structures that promote a single direction material transformation based on moisture or temperature activation, inducing a physical shape-change around the user’s body.
[0005] Described are textile structures with active fibers incorporated into the knit. One or more of the fibers is an active material within the knit structure that has the capability to shrink, swell, curl or otherwise self-transform based on an activation (heat, moisture, UV light or other forms of energy). The active fiber causes a local change in the structure of the knit causing it to contract/shrink inwards. This contraction causes the garment to shrink with specific force and direction, adapting to the wearer’s body. The garment can have zonal placement of active fibers and non-active fibers as well as zonal activation to control the location, amount and type of transformation in the garment. The combination of active fibers and specific knit structures with controlled activation allows for standard sized/styled garments to be mass produced and then locally activated in the store or at home, ultimately becoming customized in style/shape/fit/comfort based on the wearer’s body and preferences.
[0006] Described herein are textiles. In some embodiments, a textile includes a region that has an active fiber and an inactive fiber that are knit or woven together. In some embodiments, the active fibers can be formed of a material that exhibits a greater coefficient of thermal expansion compared to the inactive fibers. In some embodiments, the active fibers contract relative to the inactive fibers.
[0007] In some embodiments, the active fiber can be a thermoplastic that contracts upon exposure to an increase in temperature. In some embodiments, the thermoplastic can be polyethylene (PE). In some embodiments, the inactive fiber can be cotton, polyester, rayon, TENCEL, wool, silk, or bamboo.
[0008] The textile can include a first row region of at least one active fiber and a second row region of at least one active fiber; at least one inactive fiber stitched with the at least one active fiber; at least one inactive fiber float; and an elongated active fiber loop across the inactive fiber float that joins the first row region of at least one active fiber with the second row region of at least one active fiber. The first row region and second row region can be stitched together. The stitches are jersey stitches, but a variety of other stitches are suitable. The at least one inactive fiber float can be from six to ten inactive fiber floats.
[0009] The textile can include a first region of active fiber stitching that overlies at least one first float of an inactive fiber; a second region of active fiber stitching that overlies at least one second float of an inactive fiber; and an active fiber float that overlies inactive fiber stitching and connects the first region of active fiber stitching to the second region of active fiber stitching. The active fiber float can be diagonal, vertical, horizontal, or any other angle. The active fiber float can be a set of active fiber floats. The at least one first float of an inactive fiber can be a set of inactive fiber floats. The at least one second float of an inactive fiber can be a set of inactive fiber floats. The at least one first float of an inactive fiber can be from two to six inactive fiber floats. The at least one second float of an inactive fiber can be from two to six inactive fiber floats.
[0010] The textile can include stitches of at least one active fiber with at least one inactive fiber. The can be an active fiber with a front stitch with inactive fibers with a front tuck, along with an active fiber with a back tuck with an inactive fiber with a back stitch. The stitches can form first and second columns. The first column can include the active fiber with a front stitch with the inactive fibers with a front tuck. The second column can include the active fiber with a back tuck with the inactive fibers with a back stitch. The first and second columns can alternate. A plurality of first columns can be adjacent to each other, which can be adjacent to a plurality of second columns. The stitching can include a plurality of adjacent front stitches of active fiber. The stitching can include a plurality of adjacent back stitches of active fiber.
[0011] The textile can include active fibers that are knit or woven together in higher proportion with each other than with inactive fibers at locations that change knit or weave gauge as a function of temperature than at locations that exhibit little or no change of knit or weave effective gauge as a function of temperature.
[0012] The active fiber can be confined to a portion of the textile (e.g. confined to a portion of a garment).
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The foregoing will be apparent from the following more particular description of example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments.
[0014] FIGs. 1 A-C are schematics illustrating linear shape change that may be contraction or expansion due to moisture or heat exposure.
[0015] FIGs. 2A-B are schematics illustrating cross-sectional shape change that may be due to material swelling/contraction due to moisture gain/loss or thermal exposure.
[0016] FIGs. 3 A-C are schematics illustrating wave and helical response structures that may occur due to a bi-component extrusion with different expansion rates or geometrical cross-section that invokes a specific shape change.
[0017] FIG. 4 is a photograph showing a tessellation of a mesh-matrix structure with a primary mesh material and a secondary void-filler material that are combined to transforms the porosity and curvature upon activation.
[0018] FIG. 5 is a photograph showing a tessellation of a simple knit structure made of active and non-active material. This sample shows control over the open/closed area in the central vertical region through active and non-active materials. [0019] FIG. 6 is a photograph showing the linear repetition of active and non-active material creating an accordion effect when activated. Active zones consist of two plated materials that respond differently to applied moisture, producing additional curvature of the active zones by exploiting the curling tendency of single-jersey knit structure.
[0020] FIG. 7 is a photograph showing axial compression that can be zonally controlled when activated.
[0021] FIG. 8 is a schematic showing robotic tailoring along a continuous path, as well as amplitude control of the activation energy by modulating the speed, distance and temperature of the source.
[0022] FIG. 9 is a schematic showing robotic tailoring to create various sizes that can be tailored to the individual by controlling and setting shrinkage / expansion in fixed areas.
[0023] FIG. 10 is a series of images illustrating different individuals and their body scan with a correlated garment program that has different zones that can be activated through robotic tailoring.
[0024] FIG. 11 is a schematic showing a knit program with various knit structures to achieve controlled and localized shape change.
[0025] FIG. 12 is a schematic showing a user experience in which a user enters a retail space, is imaged, and then a custom program is developed on-demand for the user. A garment is then knit on location and can either be robotically activated on a form or on the individual or in an environmental chamber for activation.
[0026] FIGs. 13 A and 13B are photographs of a textile. FIG. 13 A is a photograph of the textile when the active material is not activated. FIG. 13B is a photograph of the textile when the active material is activated. The active material is distributed in a grid where there are floated stitches in the inactive fiber and zero floated stitches in the active fiber. The active fiber is knitted in horizontal rows, where alternating sets of stitches of active fiber are held on the needles while the inactive fiber is knitted for a series of subsequent rows. This produces a series of elongated stitches where the fiber is held, maximizing the potential of the fibers to contract. When exposed to heat, the resulting pattern produces localized shrinkage in the fabric enabled by the large stitch sizes of the active material where the stitches have been held during knitting. FIG. 13C is a textile pattern for the textile of FIGs. 13A and 13B
[0027] FIGs. 14A and 14B are photographs of a textile. FIG. 14A is a photograph of the textile when the active material is not activated. FIG. 14B is a photograph of the textile when the active material is activated. The active material is knitted in small clusters of stitches that are interspersed through areas of inactive stitches. The active clusters are linked together with floats on the reverse side of the fabric that connect the active areas in a diagonal grid. When heat is applied to the material, the active floats contract to produce localized gathering in the inactive material. Floats are used to elongate the areas of active fiber, producing fabric contraction. FIG. 14C is a textile pattern for the textile of FIGs. 14A and 14B.
[0028] FIGs. 15A and 15B are photographs of a textile. FIG. 15A is a photograph of the textile when the active material is not activated. FIG. 15B is a photograph of the textile when the active material is activated. Active material is applied to one fabric face, and inactive material is applied to the reverse face in a two-material rib knit structure. When heat is applied to the active face of the fabric, the fibers contract and reveal the color of the inactive material; this produces a localized visual effect for the purpose of applying customizable patterning through heat. FIG. 15C is a textile pattern for the textile of FIGs. 15A and 15B.
DETAILED DESCRIPTION
[0029] A description of example embodiments follows.
1. Material Behavior
[0030] Shape change is created by either a thermal and/or moisture-based response to an environmental change. The activation includes, but is not limited to, lengthening, shrinking and axial expansion of the fiber or filament. The active material can be a combination of spun fibers, monofilaments, and braided or twisted versions and combinations thereof. The composition of the yams and monofilaments are variations and combinations of both naturally yarns (wool, cotton, linen and other animal hairs) , as well as naturally-derived yarns (rayon, viscose, bio-PET, bio-PTT) as well as synthetics (including but not limited to: nylon, nylon-6, nylon-6-6, polyethylene terephthalate (PET), polyethylene terephthalate (PTT) and polybutylene terephthalate (PBT), high-density polyethylene (HDPE), polyethylene (e.g., high molecular weight polyethylene (HMWPE)). Some fibers exhibit contraction or expansion due to moisture gain through fiber swelling, or thermal
expansion/contraction, or a combination of both. In some cases material such as HMWPE exhibit thermal contraction with rising temperature which can be used to activate certain pore structures and geometries. Active fibers can also combine temperature and moisture activations to have different functionalities in a wet environment versus a hot environment or a steam (hot and wet) environment. [0031] In some applications dynamic and bi-directional shape change is desired such as active thermal control, in others single-direction shape change yields the ability to
programmatically control or fix a shape based on body-mapping or comfort/fit. This single directional change can be mechanical, by which thermal or moisture shrinking can cause “ratcheting” of microfibrils (as in scaled animal fibers) of parallel fibers to mechanically lock in one direction, which may be released by an opposite mechanical force. Other materials such as synthetics may enter a thermoplastic phase, and exposure to increased heat can thermally set the fiber to a final state. Third, chemical -structural change can be used in protein based yams such as animal fibers causing changes to primary, secondary and tertiary protein structures with exposure to heat.
[0032] Moisture or temperature gain can cause axial and helical expansion of fibers, particularly in the case of bi-component fibers causing spiral yarns to increase in loft due to moisture absorption. Similarly, active energies can cause curling/twisting behaviors in a fiber whereby a straight element is then curled/twisted/folded when subject to moisture or temperature. Finally, a fiber can shrink or expand when subjected to an activation energy.
1.1.1. Activation Energy
[0033] The activation energy can come as single or multiple input for example, Dry Heat (-40°C - 500°C), Moisture (0-100% relative humidity (RH%) at ambient temperatures) and combinations (Steam). While nonambient temperatures and moisture levels may be used for single activation (outside of the realm of human comfort), bi-directional change is ideal in the -20°C - 50°C range which encompasses normal operating environments for the wearer as well as the body-garment microclimate.
1.2. Non-Active Material
[0034] A diversity of non-active fibers/yams can be juxtaposed with active materials to gain control over zones, constrain certain regions, or amplify effects of the transformation. To amplify the transformation, a non-active material can be used which does not react to heat and continues to keep its form as the active fiber transforms. The non-active materials can consist of cotton, polyester, rayon, TENCEL, wool, and as well as 2nd generation synthetics, bio engineered silks, and bamboo etc. 2. Knit Structure
[0035] A myriad of knit structures can be used in combination with active and inactive fibers/yarns. We have used a variety of primary-knit structures that exhibit controlled shape change, and can be used as a component knit pattern on its own or in combination with other structures to create a macro-shape change.
[0036] Typically, the knit structures can be characterized has having columns, also referred to as wales in knitting and warp in weaving, and rows, also referred to as courses in knitting and weft in weaving.
[0037] In some instances, regions of a textile can be characterized as having different patterns. For example, there can be row region of an active fiber. Row regions can be jointed together (floated together) by floats of active fibers.
[0038] In other instances, a region of a textile can have active fiber stitches. That region can be joined to another region of the textile that also have active fiber stitches. The two regions can be joined by a float of the active fiber. The active fiber float can be horizontal, vertical, diagonal, or any other angle depending upon the desired pattern.
[0039] In some instances, the first row region and the second row region can be interconnected together. In other words, the first row region and second row region can be stitched together using a single fiber.
[0040] A wide variety of stitches can be used, including jersey stitches, combinations of front and back stitches, link-link stitches, garter stitches, knit stitches, and pearl stitches.
2.1. Mesh-Matrix Structure
[0041] One form of knit structure used has been the“mesh-matrix” structure which is created by various geometries of squares, hexagons and circles that create a mesh-matrix which can be either active or non-active fiber/yams, wherein the voids in the shapes are filled with the complementary yarn (non-active or active respectively). In some cases this may be spun fibers or monofilaments that create the mesh-matrix, and the filled voids are created by using short / dropped rows or yarn floats. This results in either compression of the void area where the material protrudes orthogonal to the plane increasing material thickness, or by stretching the void to cause the knit structure to become more porous.
[0042] As illustrated in FIG. 13C, a first set of active fibers 110, formed of individual active fibers 111, are knit with inactive fibers 121. One of skill in the art will appreciate that the individual active fibers 111 can be formed of a single active fiber 111, which has been looped around in the stitching pattern. Similar, the individual inactive fibers 121 can be formed of a single active fiber 121. Plain stitches 130 are formed among the active fibers 111, among the active fibers 111 and inactive fibers 121, and among the inactive fibers 121. While the stitches 130 illustrated in FIG. 13C are jersey stitches, a wide variety of stitches are suitable. A set of horizontal floats 140 is formed of a plurality of individual horizontal floats 141 of the inactive fibers 121. In some cases, there is only one horizontal float 141. Across the set of horizontal floats 140, an elongated loop (held stitch) 150 is formed in the active fiber. As illustrated in FIG. 3C, there are two sets of active fibers 110, but more can be included. FIG. 3C illustrates eight floats 141 of the inactive fibers, but more or less can be included. More floats produces a greater transformation than fewer floats.
[0043] As illustrated in FIG. 14C, a textile can include one or more regions of active fibers that overlie (or underlie) one or more floats 241 of inactive fibers 221. FIG. 14C illustrates seven regions of active fibers that overlie (or underlie) one or more floats 241 of inactive fibers 221. A first region of active fiber stitching can overlie at least one float 241 of an inactive fiber 221. A second region of active fiber stitching can overlie at least one float 241 of an inactive fiber 221. An active fiber float 261 that overlies stitching inactive fibers 221 can connect, or join, the first region of active fibers to the second region of active fibers. A first set of active fibers 210, formed of individual active fibers 211, can be knit with inactive fibers 221. Stitches 230 are formed among the active fibers 211, among the active fibers 211 and inactive fibers 221, and among the inactive fibers 221. While jersey stitches 230 are illustrated, other types of stitches are suitable. A set of floats 240 is formed of a plurality of individual floats 241 of the inactive fibers. As illustrated, individual floats 241 are horizontal. Sets of floats 260 are formed of a plurality of individual diagonal floats 261 of the active fibers 211. As illustrated, the floats 261 extend diagonally, but the can extend vertically, horizontally, or at other angles.
2.2. Two-sided structures
[0044] One example is plating, which is achieved by using machine knitting to create a face and back to the knit structure of two different materials. This results in a planar shape change that causes curling as one face expands or contracts relative to the other face. The direction of this can be alternated to create an undulating surface or cause a curl along the x axis due to heat and the y-axis due to moisture. [0045] Another example is FIG. 15C, where active fibers 311 are stitched with inactive fibers 321. As illustrated, an active fiber 311 is stitched in an alternating pattern, by forming a back tuck 311a followed by a front stitch 31 lb. Inactive fibers are stitched in an alternating pattern, by forming a front tuck 321a followed by a back stitch 321b. The resulting textile has a column 370 of active fibers with a front stitch 311b and inactive fibers with a front tuck 321a. The resulting textile also has a column 380 of active fibers with a back tuck 311a and inactive fibers with a back stitch 321b. The two columns 370 and 380 are alternating in sequence. The knit structure of FIG. 15C can be used to selectively reveal an underlying layer, such as an underlying layer of another material that can be of a different color. A wide variety of alternatives patterns can be stitched, and the stitching need not be in rigid patterns. In some instances, adjacent columns of stitches can be identical; in some instances, adjacent columns of stitches need not be identical.
2.3. Geometric Tessellation
[0046] Alternation of simple knit structures (e.g. jersey) in active and non-active material can cause an accordion-like structure that expands or contracts based on temperature or moisture. Tessellation of triangles, trapezoids, rectangles and other shapes can create a similar effect.
2.4. Combined Structures
[0047] Any combination of these structures and geometries can be combined to create localized moisture and or thermal response in specific regions of a garment.
3. Textile Activation
[0048] The type, amount and location of the applied activation energy to the active textile can create different transformation characteristics based on the pattern and amount of active material. The textile material without the active fiber should not respond to the heat, only the heat-active fibers will cause local transformation based on the structure of the knit and amount of active fibers. If the entire textile structure is created with heat-active fibers, the entire textile or zone may transform. However, if the heat is applied in a precise and local pattern, then a smaller local transformation may occur. This demonstrates that the location of the applied energy has a direct impact on the type of transformation. Similarly, the amount of activation will cause different transformation characteristics. For example, if more heat is applied in a short amount of time it may speed up the transformation, depending on the active material’s characteristics. The location and type of active material based on the supplied activation energy allows for many different transformations with different activations energies, at different times and should be designed specifically for the application and environment of use.
3.1. Robotic Activation
[0049] Robotic activation of the garment is intended to translate or“program” a garment with a specific conformational response based on aesthetic design, comfort/fit, functional output or user-body mapping.
[0050] Robotic activation can be any computer-numerically controlled process that allows the application of activation energy (heat, moisture, light etc.) in a controlled fashion. This can include light activation or controlled moisture or heat application through some combination of heat/moisture source that moves relative to the garment. This movement can be controlled using a 5-axis robotic arm and/or turntable that moves the heat/moisture source in a defined 3D path over the garment. This can either be a raster or vector process for translating the information map to the garment.
3.2. Environmental/Chamber Activation
[0051] Activation can also be achieved, particularly for uniform shape or zonal change rather than porosity change, by having the user wear the garment in an environmental chamber with controllable moisture or heat that is comfortable for the wearer but exceeds the activation range. In this case either a unique geometry can be conformed to the wearer, or body-mapping of the wear can be translated into a knit program unique to the wearer and pre knit into the garment that is then finally“set” once exposed to the activation temperature / Rh% level.
3.3. Zonal Activation & Variable Speed/Distance/Temperature
[0052] Amplitude of the activation energy can either be controlled at the source or by varying the robotic path. Varying relative distance and speed to the garment enables fast control of the dynamic range of the activation energy source, as in the example of a heat gun, the latency of heating elements to heat up or down is much longer than the drop off in energy exposure due to (Relative Distance)A(-2). This activation can be formed on a molded mannequin or the user depending on the activation energy. The knit textile can contains zones with different material compositions or knit structures that amplify or constraint the types of transformations. This zonal design can be created based on the specific user or more genetically designed for different regions of any garment.
4. Usage
[0053] The textiles allow for precise control over transformations in a textile garment - either uniformly across the garment or applied in specific zones for variable transformation based on the user’s preferences. This method produces predictable and precise
transformations from a traditionally passive, flat, textile, opening new opportunities for customized and autonomously tailored garments that adapt to the wearer.
4.1 Personalized Fit & Styling
[0054] The controlled active tailoring process enables applications for
custom/personalized fit and styling and perfect tailoring. This could be achieved with standard sized - s, m, 1, xl - and then post-activated on the body or this could be created with custom knit structures that are activated in a uniform manner within an environmental chamber.
[0055] Body-mapping of the individual can be translated into a garment that has a controlled distance between the skin and the garment to create“the perfect fit” - and gives control that is not possible with 2-D construction techniques.
[0056] Similarly, controlled activation paths enable aesthetic structures that give a unique look that can be personalized to the wearer. This personalized garment can be tailored to a person’s style or aesthetic preferences as well as individualized comfort profiles.
4.2 Bio-mechanically optimized Compression
[0057] Compression and shape constraint or flexibility/mobility can be achieved by following paths that are unique to the user's biomechanics, gait etc. This can create structures that aren’t possible due to the limitations of traditional 2-dimensional garment construction. For example, compression tights that provide mobility at the knee, localized to the wearers geometry, but compression in the thigh and calf, while also providing gradual compression to facilitate blood flow. 4.3 Body-Mapped Moisture/Heat Ventilated Garments
[0058] An application of this process may include the translation of thermal body mapping to a personalized garment that reflects the user’s unique heat signature thereby allocating the right knit structure in the right zone. Closed or open pores, or active and non active regions can be controlled based on the thermal and moisture variability of different areas of the user’s skin surface.
5. Advantages & Improvements over Existing Methods
[0059] This textiles offer significant advantages over traditional methods of tailoring. Traditionally, garments are either produced with standard sizes (S, M, L) or at the high-end, they are manually tailored to fit an individual. However, manual tailoring is labor intensive, expensive, and time consuming which often makes it difficult for everyday clothes, customers or businesses to realize. Further, manual tailoring often has a limited number of techniques for adjusting a garment - hem, tuck etc. The garment can adapt and transform on its own without manual tailoring, reducing the cost/complexity/time needed to have customized garments for every user. Similarly, the active textile garment can adapt in complex, intricate and nuanced ways that would be difficult or impossible to manually tailor. This allows the garment to adapt to the curvature, size and uniqueness of everyone's individual body or comfort preferences. By reducing the manual labor, time and skill required to tailor textiles into complex shapes, significant efficiencies and manufacturing opportunities can be realized.
[0060] Whereas traditional techniques use the application of a flat 2D isotropic material that must be conformed to the 3D surface of the body, this technique creates an anisotropic material that more closely reflects the biomechanical properties of the human body and in particular the skin. This means that the textile material can expand/contract with different rates and within different regions across the garment, creating complex curvature and tailored comfort/fit or performance unlike a traditional isotropic textile/garment. Similarly,“3D surfacing” can be achieved by a garment that is activated to transform to the individual without the need for cutting & sewing, thereby maintaining the structural integrity of the garment without the need for uncomfortable seams. 6. Applications
[0061] Sports & Performance: Self-transformation process for custom fit for footwear or apparel
[0062] Medical & Health: Custom shaped garments or medical devices (sleeves, compression garments, bandages, casts or even internal applications like
stents/braids/patches).
[0063] Fashion: Custom-shape/style of the garment based on the user’s activation or the setting/environment where it is being worn. In-store experience where the customer is able to make their own garment - customized to their body shape/comfort level or application (running vs. walking vs. formal wear etc).
[0064] Furniture & Interior Products: Single-direction transformation of textiles around chair frames, or hammock-like surfaces.
[0065] Manufacturing applications: Standard textiles are mass-produced - then they can be activated and stretched/shrunk around frames to create custom products
INCORPORATION BY REFERENCE; EQUIVALENTS
[0066] The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
[0067] While example embodiments have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the embodiments encompassed by the appended claims.

Claims

CLAIMS What is claimed is:
1. A textile comprising:
a region comprising an active fiber and an inactive fiber that are knit or woven together, wherein the active fibers are formed of a material that exhibits a greater coefficient of thermal expansion compared to the inactive fibers or wherein the active fibers contract relative to the inactive fibers.
2. The textile of Claim 1, wherein the active fiber is a thermoplastic that contracts upon exposure to an increase in temperature.
3. The textile of Claim 2, wherein the thermoplastic is polyethylene (PE).
4. The textile of Claim 1, wherein the inactive fiber is cotton, polyester, rayon,
TENCEL, wool, silk, or bamboo.
5. The textile of any one of Claims 1-4, wherein the textile comprises:
a) a first row region of at least one active fiber and a second row region of at least one active fiber;
b) at least one inactive fiber stitched with the at least one active fiber;
c) at least one inactive fiber float; and
d) an elongated active fiber loop across the inactive fiber float that joins the first row region of at least one active fiber with the second row region of at least one active fiber.
6. The textile of Claim 5, wherein the first row region and second row region are
stitched together.
7. The textile of Claim 5, wherein the stitches are jersey stitches.
8. The textile of Claim 5, wherein the at least one inactive fiber float is from six to ten inactive fiber floats.
9. The textile of any one of Claims 1-4, wherein the textile comprises: a) a first region of active fiber stitching that overlies at least one first float of an inactive fiber;
b) a second region of active fiber stitching that overlies at least one second float of an inactive fiber; and
c) an active fiber float that overlies inactive fiber stitching and connects the first region of active fiber stitching to the second region of active fiber stitching.
10. The textile of Claim 9, wherein the active fiber float is diagonal.
11. The textile of Claim 9, wherein the active fiber float is vertical or horizontal.
12. The textile of Claim 9, wherein the active fiber float is a set of active fiber floats.
13. The textile of Claim 9, wherein the at least one first float of an inactive fiber is a set of inactive fiber floats, or wherein the at least one second float of an inactive fiber is a set of inactive fiber floats.
14. The textile of Claim 9, wherein the at least one first float of an inactive fiber is from two to six inactive fiber floats, or wherein the at least one second float of an inactive fiber is from two to six inactive fiber floats.
15. The textile of any one of Claims 1-4, wherein the textile comprises:
a) stitches of at least one active fiber with at least one inactive fiber, further
comprising an active fiber with a front stitch with inactive fibers with a front tuck, and further comprising an active fiber with a back tuck with an inactive fiber with a back stitch.
16. The textile of Claim 15, wherein the stitches form first and second columns, wherein the first column comprises the active fiber with a front stitch with the inactive fibers with a front tuck, and wherein the second column comprises the active fiber with a back tuck with the inactive fibers with a back stitch.
17. The textile of Claim 16, where in the first and second columns alternate.
18. The textile of Claim 16, wherein a plurality of first columns are adjacent to each
other, which are adjacent to a plurality of second columns.
19. The textile of Claim 15, wherein the stitching comprises a plurality of adjacent front stitches of active fiber.
20. The textile of Claim 15, wherein the stitching comprises a plurality of adjacent back stitches of active fiber.
21. The textile of Claim 1, wherein the active fibers are knit or woven together in higher proportion with each other than with inactive fibers at locations that change knit or weave gauge as a function of temperature than at locations that exhibit little or no change of knit or weave effective gauge as a function of temperature.
22. The textile of Claim 1, wherein the active fiber is confined to a portion of the textile.
PCT/US2019/057091 2018-10-18 2019-10-18 Active textile tailoring WO2020106389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,040 US20210310162A1 (en) 2018-10-18 2019-10-18 Active Textile Tailoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862747615P 2018-10-18 2018-10-18
US62/747,615 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020106389A1 true WO2020106389A1 (en) 2020-05-28

Family

ID=70773391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/057091 WO2020106389A1 (en) 2018-10-18 2019-10-18 Active textile tailoring

Country Status (2)

Country Link
US (1) US20210310162A1 (en)
WO (1) WO2020106389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100008042A1 (en) 2021-03-31 2022-10-01 Essepi Srl PADDED KNITTED FABRIC AND PROCESS FOR MANUFACTURING THIS FABRIC

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220195799A1 (en) * 2020-12-22 2022-06-23 Ashot Aroian Reflective Rope Ladder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040214495A1 (en) * 1999-05-27 2004-10-28 Foss Manufacturing Co., Inc. Anti-microbial products
US20090159149A1 (en) * 2005-06-10 2009-06-25 Textronics, Inc. Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
US20170175719A1 (en) * 2015-12-18 2017-06-22 Panasonic Intellectual Property Management Co. Ltd. Actuator and actuator set
WO2017165435A2 (en) * 2016-03-21 2017-09-28 Board Of Regents, The University Of Texas System Actuating textiles containing polymer fiber muscles
US20180195213A1 (en) * 2017-01-12 2018-07-12 Massachusetts Institute Of Technology Active Woven Materials
US20180245249A1 (en) * 2015-02-24 2018-08-30 Calik Denim Tekstil San. Ve Tic. A.S. Filamentary core for an elastic yarn, elastic composite yarn, textile fabric and apparatus and method for manufacturing said elastic yarn

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199633A (en) * 1978-05-16 1980-04-22 Phillips Petroleum Company Napped double knit fabric and method of making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040214495A1 (en) * 1999-05-27 2004-10-28 Foss Manufacturing Co., Inc. Anti-microbial products
US20090159149A1 (en) * 2005-06-10 2009-06-25 Textronics, Inc. Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
US20180245249A1 (en) * 2015-02-24 2018-08-30 Calik Denim Tekstil San. Ve Tic. A.S. Filamentary core for an elastic yarn, elastic composite yarn, textile fabric and apparatus and method for manufacturing said elastic yarn
US20170175719A1 (en) * 2015-12-18 2017-06-22 Panasonic Intellectual Property Management Co. Ltd. Actuator and actuator set
WO2017165435A2 (en) * 2016-03-21 2017-09-28 Board Of Regents, The University Of Texas System Actuating textiles containing polymer fiber muscles
US20180195213A1 (en) * 2017-01-12 2018-07-12 Massachusetts Institute Of Technology Active Woven Materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100008042A1 (en) 2021-03-31 2022-10-01 Essepi Srl PADDED KNITTED FABRIC AND PROCESS FOR MANUFACTURING THIS FABRIC

Also Published As

Publication number Publication date
US20210310162A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US11840054B2 (en) Composite textile fabrics
US10633772B2 (en) Active woven materials
US20190112736A1 (en) Seamless silhouette with engineered insulation property
TWI534313B (en) Textile
EP2540886B1 (en) Dual-layer fabric, in particular for sports and underwear, with improved breathable and insulating properties
US20210071326A1 (en) Reversible Textile Transformation
US20080057809A1 (en) Temperature and moisture responsive smart textile
JP2003041462A (en) Woven/knitted fabric with air self-regulating permeability function
US20210310162A1 (en) Active Textile Tailoring
KR101884181B1 (en) Manufacturing method of fabric using bamboo rayon
JP6847340B2 (en) Woven fabric and its manufacturing method
US20160010247A1 (en) Three Dimensional Weave Fabric
CN107475879B (en) A kind of preparation method of the artificial height fur of jacquard weave
CN106998838A (en) The three-dimensional woven fabric of production weaving article
JP4571232B1 (en) Structure to prevent feather blowout
KR20140027037A (en) Method of manufacturing bedding cloth with crinckle effect and bedding cloth
CN109963971A (en) Product and its implementation with braiding structure
CN102268762A (en) Going-out prevention structure for feather
RU2441948C2 (en) Device for heating of human body and limbs by using heat insulation with gradually changing properties
KR101261476B1 (en) Cushion fabric for bedding
JP2003003355A (en) Method for knitting three-dimensional warp knit fabric having different loop length and three-dimensional warp knit fabric
Liu et al. Three-dimensional knitted textiles
JPH0913252A (en) Composite nonwoven fabric and interlining cloth using the same
Pavko-Čuden et al. Multifunctional foldable knitted structures: fundamentals, advances and applications
GB2193980A (en) Fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887474

Country of ref document: EP

Kind code of ref document: A1