WO2020103821A1 - 一种故障感知方法及装置和控制器 - Google Patents

一种故障感知方法及装置和控制器

Info

Publication number
WO2020103821A1
WO2020103821A1 PCT/CN2019/119442 CN2019119442W WO2020103821A1 WO 2020103821 A1 WO2020103821 A1 WO 2020103821A1 CN 2019119442 W CN2019119442 W CN 2019119442W WO 2020103821 A1 WO2020103821 A1 WO 2020103821A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
network
optical
link
analysis result
Prior art date
Application number
PCT/CN2019/119442
Other languages
English (en)
French (fr)
Inventor
杨琴
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020103821A1 publication Critical patent/WO2020103821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems

Definitions

  • the present application relates to, but is not limited to, in particular to a fault sensing method, device and controller.
  • IP Internet Protocol
  • optical network the optical network side
  • Interworking of traffic that is to say, what impact will the link failure on the optical side have on the service on the IP side, only when the failure actually occurs can it be discovered through IP side, service alarm, etc., so that the user cannot perceive in advance Arrived.
  • the present application provides a fault sensing method, device and controller, and realizes the automatic learning of the impact of the fault on the network in the scenario of IP + optical collaboration.
  • This application provides a fault awareness method, including:
  • the controller mirrors the current network resources
  • the controller Based on the obtained fault perception conditions, the controller performs fault simulation on the network resources obtained by the mirror to obtain the result of the impact of the fault on the network.
  • the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to perform any one of the foregoing fault sensing methods.
  • the present application further provides a controller, including a processor and a memory; wherein, the memory stores a computer program that can run on the processor: configured to perform any of the steps of the above-mentioned fault sensing method.
  • This application also provides a fault sensing device, including: a preprocessing module and a processing module; wherein,
  • Pre-processing module set to mirror the current network resources
  • the processing module is configured to perform fault simulation on the network resources obtained by the mirroring according to the obtained fault perception conditions, and obtain the impact result of the fault on the network.
  • This application at least includes: the controller performs mirror processing on the current network resources; the controller performs a fault simulation on the mirrored network resources according to the obtained fault perception conditions, and obtains the impact of the fault on the network.
  • This application realizes the automatic learning of the impact of the fault on the network in the scenario of IP + optical collaboration, and provides an effective and intuitive method for evaluating network quality and network resources for network operation and maintenance personnel.
  • Figure 1 is a schematic diagram of the application scenario of IP + optical collaboration
  • FIG. 2 is a schematic flowchart of a fault sensing method of this application
  • FIG. 3 is a schematic flowchart of an embodiment of triggering fault detection in this application.
  • FIG. 4 is a schematic flowchart of an embodiment of simulating optical fiber failure in failure detection of the present application
  • FIG. 5 is a schematic flowchart of an embodiment of simulating a link fault in fault sensing of the present application
  • FIG. 6 is a schematic diagram of the composition structure of the fault sensing device of the present application.
  • IP + Optical Collaboration you can establish IP-side services, network and optical-side services, and network-based services through the IP + Optical Collaboration Software Defined Network (SDN) controller (hereinafter referred to as the controller).
  • SDN Software Defined Network
  • the inventor of the present application found through research that if IP + optical and SDN controllers are used to simulate link failures, link failures such as optical layer links between IP devices and optical devices can be addressed.
  • the impact of the user-side interface link (UNI-Link) failure on the IP layer link such as the IP layer virtual traffic engineering link (VTE-Link) and the IP service, gives a diagnosis result.
  • UNI-Link user-side interface link
  • VTE-Link IP layer virtual traffic engineering link
  • an analysis report can be given on the impact of the IP layer link and IP services, so that users or network operation and maintenance personnel are performing optical / IP network reconstruction, maintenance or other changes to the optical / IP network physical topology, you can combine the analysis report to analyze, for example: the impact of fiber breakage on the network, so as to avoid links that are prone to network turbulence; or, for For links that have no impact on the network after the fault, you can consider saving the deployment and maintenance of such links to reduce network costs.
  • FIG. 2 is a schematic flowchart of the fault sensing method of the present application. As shown in FIG. 2, it includes:
  • Step 200 The controller performs mirror processing on the current network resources.
  • the controller copies the topology information of the current network resource from the background database, so that the subsequent fault-aware processing process is performed based on the mirrored topology information of the current network resource.
  • the fault-awareness of the present application is guaranteed The method will not affect the normal operation of the network; on the other hand, it also makes the fault detection method of the present application based on the current network, which ensures the authenticity of the fault detection result.
  • the controller may be an IP + optical cooperative SDN controller.
  • the method may further include:
  • the controller determines that the pre-set trigger condition is met, the controller triggers a perceptual analysis of the fault, that is, executes the step of the controller performing mirror processing on the current network resource.
  • the trigger condition includes but is not limited to any one of the following:
  • the preset network resources are changed.
  • Step 201 The controller performs fault simulation on the network resources obtained by the mirroring according to the obtained fault perception conditions, and obtains the impact result of the fault on the network.
  • the method may further include:
  • the controller obtains the fault awareness condition.
  • the controller may receive a fault-aware start instruction sent from a user terminal through a pre-installed application (Application, APP for short), and the fault-aware start instruction carries a fault-aware condition.
  • a pre-installed application Application, APP for short
  • a fault perception condition input from the user can be received.
  • the fault awareness condition may include any one or any combination of the following:
  • the fault-aware condition may also include, but is not limited to:
  • fault sensing conditions may also include options, which may also be set in the controller, not necessarily from the user terminal.
  • step 201 may include:
  • the controller receives the first analysis result from the optical controller, where the first analysis result is that the optical controller traverses the optical fiber in the mirrored network resource, simulates the optical fiber failure according to the obtained fault perception condition, and obtains after analyzing the optical fiber The impact of the failure on the network;
  • the controller traverses the interconnected link between the IP device and the optical device in the mirrored network resources, and simulates the link fault according to the obtained fault perception condition to analyze the fault of the link between the IP device and the optical device and obtain the fault pair
  • the second analysis result produced by the network
  • the first analysis result and the second analysis result are aggregated to obtain the effect of the simulated fiber failure and / or the simulated link failure on the IP layer link.
  • the first analysis result may include but is not limited to:
  • the first analysis result shows that the failure has no impact on the network; if the optical layer services can be restored but the business attributes (such as shared risk link group ( Sjared Risk Links (SRLG), actual delay, etc.) or the optical layer service cannot be recovered directly, then the first analysis result shows that the fault has an impact on the network.
  • the first analysis result Specific impact results will be recorded, such as including but not limited to: number of businesses affected, risk factor, etc.
  • the second analysis result may include, but is not limited to:
  • the second analysis result shows that the failure has no impact on the network; if the IP layer link status is online (UP) is changed to DOWN, or the status of the IP layer link has not changed but the service attributes (such as SRLG, actual delay, bandwidth, etc.) have changed, then the second analysis result shows that the fault pair The network has an impact.
  • specific impact results will be recorded in the second analysis result, such as, but not limited to: the number of IP layer links affected, risk factors, and so on.
  • summarizing the first analysis result and the second analysis result may include:
  • the corresponding IP layer link is found in the first analysis result; according to the second analysis result, for the IP layer link, the fiber that affects the network is determined, or the The link between the IP device and the optical device that affects the network, that is, which optical fiber, or which link between the IP device and the optical device will affect the network.
  • This application realizes the automatic learning of the impact of the fault on the network in the scenario of IP + optical collaboration, and provides an effective and intuitive method for evaluating network quality and network resources for network operation and maintenance personnel.
  • the fault sensing method of the present application may further include:
  • Step 202 Based on the impact on the IP layer link, the controller analyzes the impact of the IP layer link failure on the tunnel and virtual private network (Virtual Private Network, VPN for short) services and records it as the third result.
  • virtual private network Virtual Private Network, VPN for short
  • this step may include:
  • the controller calculates (for example, based on the path calculation element (PCE) algorithm, etc.) the impact of the IP layer link failure on which tunnel's Layered Service Provider (LSP) path, which records as the impact includes
  • PCE path calculation element
  • LSP Layered Service Provider
  • the fault sensing method of the present application may further include: deleting network resources obtained by mirroring.
  • the fault sensing method of the present application may further include:
  • the controller sends the third result to the user terminal, so that the user can view the result of this fault perception through the APP pre-installed in the user terminal.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to perform any of the fault-aware methods described above.
  • An embodiment of the present application further provides a controller, including a processor and a memory; wherein, the memory stores a computer program that can run on the processor: configured to perform any of the steps of the above-mentioned fault sensing method.
  • FIG. 3 is a schematic flowchart of an embodiment of triggering fault detection in this application.
  • the controller is an IP + optical cooperative SDN controller as an example, as shown in FIG. 3, including:
  • Step 301 The IP + optical cooperative SDN controller judges whether the obtained trigger condition reaches the preset trigger period. If the obtained trigger condition reaches the preset trigger period, go to step 302; if the obtained trigger condition does not reach the preset condition To trigger the cycle, go to step 303.
  • Step 302 The IP + optical cooperative SDN controller establishes a timing task and starts a timer. When the timing time arrives, step 305 is entered.
  • Step 303 The IP + Optical Collaboration SDN controller determines whether the obtained trigger condition is a change in a preset network resource. If the obtained trigger condition is a change in a preset network resource, go to step 304; if the obtained trigger condition is not If the preset network resource is changed, the process proceeds to step 305.
  • Step 304 Monitor whether there is a change in network resources. If the preset resources change, go to step 305; otherwise, continue to monitor network resources.
  • This step can be implemented by IP + Optical Collaboration with SDN Controller and Optical Controller to establish monitoring tasks respectively, and monitor network resources under their respective jurisdictions to know whether any resources have changed.
  • Step 305 The IP + optical cooperative SDN controller mirrors the topology information of the network resources, including but not limited to: link information between the IP device and the optical device, IP layer link information, IP service information, and optical layer service information.
  • FIG. 4 is a schematic flowchart of an embodiment of simulating a fiber fault in the fault sensing of the present application.
  • fault sensing is performed by simulating a fiber fault.
  • the fiber fault is simulated by an optical controller, and the first analysis result is sent to
  • the IP + Optical Collaboration SDN Controller includes:
  • Step 401 The optical controller judges whether the specified fault perception condition specifies whether to perform fiber-by-fiber simulation or multiple fiber-by-fiber simulation. If it is fiber-by-fiber simulation, proceed to step 402, if it is for multiple fibers Perform fault simulation and go to step 403.
  • Step 402 The optical controller traverses the mirrored network resource topology information, performs a fault simulation test on each of the optical fibers, and proceeds to step 406.
  • Step 403 The optical controller judges whether the obtained fault perception conditions are to perform failure simulation on multiple optical fibers (referred to as successive failures) or simultaneously to simulate failures on multiple optical fibers (referred to as simultaneous failures).
  • the optical fiber performs fault simulation and proceeds to step 404. If the fault simulation is performed on multiple optical fibers at the same time, proceeds to step 405.
  • Step 404 The optical controller traverses the mirrored network resource topology information, first simulates a fiber failure, and then on this basis, breaks the next fiber to simulate the next fiber failure until the failure is simulated for multiple fibers. After simulating the failure of a pair of optical fibers, the process proceeds to step 406 to record until the traversal is completed.
  • Step 405 The optical controller traverses the mirrored network resource topology information, and performs fault simulation on multiple optical fibers at the same time, and proceeds to step 406 after completion.
  • Step 406 Record the first analysis result after simulating the failure of the light.
  • the optical layer service can be restored and the service attribute does not change, then it indicates that the failure has no impact on the network, and accordingly, the corresponding first analysis result will be recorded as no impact on the network; if the optical layer service Can be restored but the business attributes (such as SRLG, actual delay, etc.) have changed, or the optical layer business cannot be directly restored, then it indicates that the fault has an impact on the network, and accordingly, the corresponding first analysis result will be recorded as Has an impact on the network.
  • the business attributes such as SRLG, actual delay, etc.
  • the specific analysis result will be recorded in the first analysis result, such as including but not limited to: the number of affected businesses, risk factor, etc.
  • Step 407 The traversal of the optical controller ends, and all the analysis results generated in step 406 are reported to the IP + optical cooperative SDN controller.
  • FIG. 5 is a schematic flowchart of an embodiment of simulating a link failure in the failure sensing of the present application.
  • the failure of the link is simulated by simulating the link failure between the IP device and the optical device.
  • the SDN controller as shown in Figure 5, includes:
  • Step 501 The IP + optical cooperative SDN controller determines whether the specified fault perception condition specifies whether to link the interconnection between the IP device and the optical device one by one as in the UNI-Link fault simulation in FIG. 5 or multiple IP devices and optical devices Perform fault simulation on the interconnected links. If it is a fault simulation on the link between the IP device and the optical device, proceed to step 502. If it is a fault simulation on the link between multiple IP devices and the optical device And go to step 503.
  • Step 502 The IP + optical cooperative SDN controller traverses the mirrored network resource topology information, performs a fault simulation test on each of the interconnected links between each IP device and the optical device, and proceeds to step 506.
  • Step 503 The IP + Optical Collaboration SDN controller determines whether the obtained fault perception condition is to perform a failure simulation (referred to as successive failures) of multiple IP devices and optical devices in succession or to simultaneously analyze multiple IP devices and optical devices. Perform fault simulation on the inter-connected links (referred to as simultaneous failures for short). If the fault is simulated on the interconnected links between multiple IP devices and optical devices, proceed to step 504. If multiple IP devices and optical devices are connected simultaneously Perform fault simulation on the interconnected link and proceed to step 505.
  • a failure simulation referred to as successive failures
  • simultaneous failures for short
  • Step 504 The IP + optical cooperative SDN controller traverses the mirrored network resource topology information, first simulates a link failure between the IP device and the optical device, and then on this basis, disconnects the interconnection between the IP device and the optical device The link then simulates the failure of the link between the next IP device and the optical device until the failure of the link between multiple IP devices and the optical device is simulated. After each pair of links between an IP device and an optical device is simulated, the fault enters step 506 to record until the traversal is completed.
  • Step 505 The IP + Optical Collaboration SDN controller traverses the mirrored network resource topology information, and simultaneously performs a fault simulation on multiple interconnected links between the IP device and the optical device, and proceeds to step 506 after completion.
  • Step 506 Record a second analysis result after simulating a fault on the link between the IP device and the optical device.
  • the IP layer link After the link between the IP device and the optical device fails, if the IP layer link does not change as shown in the VTE-Link status and attributes in Figure 5, then this indicates that the failure has no impact on the network. Accordingly, it will Record the corresponding second analysis result as no impact on the network; if the IP layer link status changes from UP to DOWN, or the IP layer link status has not changed but the business attributes (such as SRLG, actual delay, bandwidth, etc.) If a change occurs, it indicates that the fault has an impact on the network, and accordingly, the corresponding second analysis result will be recorded as having an impact on the network.
  • the business attributes such as SRLG, actual delay, bandwidth, etc.
  • the specific analysis result will be recorded in the second analysis result, such as including but not limited to: the number of affected IP layer links, risk factor, etc.
  • Step 507 The traversal of the IP + Optical Collaborative SDN Controller is completed, and all the analysis results generated in Step 506 are summarized. That is, according to the services that are affected by the fiber failure reported by the optical controller, the corresponding IP layer link is found in the first analysis result; according to the second analysis result, for the IP layer link, determine which fibers or which IP devices are used for the IP layer link The interconnection link with the optical equipment will affect the network.
  • the IP + Optical Collaborative SDN Controller summarizes the first analysis result and the second analysis result, for example, statistical calculation, the link failure between the simulated IP device and the optical device this time has no effect on the IP layer link
  • the number and proportion of IP layer links affected by the fault In this way, the summary result can be reported to the APP of the user terminal for presentation, so that the user can use it.
  • FIG. 6 is a schematic diagram of the composition structure of the fault sensing device of the present application. As shown in FIG. 6, a preprocessing module 601 and a processing module 602;
  • the pre-processing module 601 is set to perform mirror processing on the current network resources
  • the processing module 602 is configured to perform fault simulation on the network resources obtained by the mirroring according to the obtained fault perception conditions, and obtain the impact result of the fault on the network.
  • the pre-processing module 601 is specifically configured to: perform mirror processing on the current network resource when the preset trigger condition is satisfied.
  • processing module 602 is specifically set as:
  • the optical controller Receive the first analysis result from the optical controller, where the first analysis result is that the optical controller traverses the optical fiber in the mirrored network resource, simulates the optical fiber failure according to the obtained fault perception conditions, and obtains the failure after analyzing the optical fiber The results of the impact on the network;
  • the first analysis result and the second analysis result are aggregated to obtain the effect of the simulated fiber failure and / or the simulated link failure on the IP layer link.
  • processing module is also set to:
  • the fault sensing device of the present application may be installed in, for example, an IP + optical cooperative SDN controller.
  • This application uses the IP + Optical Collaboration with SDN Controller to simulate link failures.
  • link failures between IP devices and optical devices such as optical layer links or user-side interface links (UNI-Link) failures
  • the IP layer links For example, the virtual traffic engineering link (VTE-Link) at the IP layer and the impact of IP services give diagnostic results.
  • VTE-Link virtual traffic engineering link

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请公开了一种故障感知方法及装置和控制器,该方法包括:控制器对当前网络资源进行镜像处理;控制器根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。本申请实现了IP+光协同的场景下自动获知故障对网络的影响,为网络运维人员提供了一种有效、直观的对网络质量以及网络资源的评估办法。

Description

一种故障感知方法及装置和控制器
本申请要求于2018年11月19日提交中国专利局、申请号为201811375087.5、发明名称“一种故障感知方法及装置和控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于,尤指一种故障感知方法及装置和控制器。
背景技术
在网际协议(Internet Protocol,简称IP)网络和光网络混合部署的场景下,IP网络和光网络是分开维护的,需要通过手工配置来实现IP网络侧(下文检测IP侧)和光网络侧(下文简称光恻)的流量互通,也就是说,光侧的链路故障对IP侧的业务会产生什么影响,只有故障实际发生了才能够通过IP侧、业务告警等方式发现,这样,用户是不能提前感知到的。
发明内容
本申请提供一种故障感知方法及装置和控制器,实现了IP+光协同的场景下自动获知故障对网络的影响。
本申请提供了一种故障感知方法,包括:
控制器对当前网络资源进行镜像处理;
控制器根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。
本申请还提供了一种计算机可读存储介质,存储有计算机可执行指令,上述计算机可执行指令用于执行上述任一项上述的故障感知方法。
本申请再提供了一种控制器,包括处理器、存储器;其中,存储器上 存储有可在处理器上运行的计算机程序:设置为执行上述任一项故障感知方法的步骤。
本申请又提供了一种故障感知装置,包括:预处理模块、处理模块;其中,
预处理模块,设置为对当前网络资源进行镜像处理;
处理模块,设置为根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。
本申请至少包括:控制器对当前网络资源进行镜像处理;控制器根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。本申请实现了IP+光协同的场景下自动获知故障对网络的影响,为网络运维人员提供了一种有效、直观的对网络质量以及网络资源的评估办法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请IP+光协同的场景示意图;
图2为本申请故障感知方法的流程示意图;
图3为本申请触发进行故障感知的实施例流程示意图;
图4为本申请故障感知中模拟光纤故障的实施例的流程示意图;
图5为本申请故障感知中模拟链路故障的实施例的流程示意图;
图6为本申请故障感知装置的组成结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在IP+光协同的场景下,可以通过IP+光协同软件定义网络(Software Defined Network,简称SDN)控制器(下文中可以简称为控制器)建立IP侧的业务、网络与光侧的业务、网络的关联关系,如图1所示,本申请发明人通过研究发现,如果通过IP+光协同SDN控制器模拟链路故障的方式,可以针对IP设备和光设备之间互联的链路故障如光层链路或者用户侧接口链路(UNI-Link)故障对IP层链路如IP层的虚拟流量工程链路(VTE-Link)以及IP业务产生怎样的影响给出诊断结果。也就是说,在IP+光协同的场景下,通过分析光纤故障以及UNI-Link故障,可以对IP层的链路以及IP业务的影响给出分析报告,这样,用户或者网络运维人员在进行光/IP网络改造、维护或者对光/IP网络物理拓扑进行其他变更前,可以结合该分析报告分析如:断纤对网络的影响,从而避开容易导致网络发生动荡的链路;或者,对于发生故障后对网络丝毫不产生影响的链路,则可以考虑节省此类链路的部署和维护,以降低网络成本。
图2为本申请故障感知方法的流程示意图,如图2所示,包括:
步骤200:控制器对当前网络资源进行镜像处理。
本步骤中,控制器通过从后台数据库中拷贝一份当前网络资源的拓扑信息,以使得后续的故障感知处理过程基于镜像的当前网络资源的拓扑信息进行,一方面,保证了本申请的故障感知方法不会影响网络的正常运行;另一方面,也使得本申请故障感知方法基于当前网络进行,保证了故障感知结果的真实性。
本申请故障感知方法中,控制器可以是IP+光协同SDN控制器。
在一种示例性实例中,本步骤之前还可以包括:
当控制器确定出满足预先设置的触发条件时,控制器触发对故障的感知分析即执行控制器对当前网络资源进行镜像处理的步骤。
在一种示例性实例中,触发条件包括但不限于以下任一项:
到达预先设置的触发周期;
预先设定的网络资源发生变更。
步骤201:控制器根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。
在一种示例性实例中,本步骤之前还可以包括:
控制器获取故障感知条件。
在一种示例性实例中,控制器可以接收来自用户终端通过预先安装的应用程序(Application,简称APP)发送的故障感知启动指令,在故障感知启动指令中携带有故障感知条件。
在一种示例性实例中,通过该APP提供的用户界面,可以接收来自用户输入的故障感知条件。
在一种示例性实例中,故障感知条件可以包括以下任一项或任意项组合:
逐条对光纤进行故障模拟;
对多条光纤进行故障模拟,并先后对这多条光纤进行故障模拟;
对多条光纤进行故障模拟,并同时对这多条光纤进行故障模拟;
逐条对链路进行故障模拟;
对多条链路进行故障模拟,并先后对这多条链路进行故障模拟;
对多条链路进行故障模拟,并同时对这多条链路进行故障模拟。
在一种示例性实例中,故障感知条件还可以包括但不限于:
采用周期性触发故障感知的方式,以及触发周期、触发周期的起始时 间;
或者,采用网络资源发生变更触发故障感知的方式,以及网路资源标识、网络资源已发生变更的情况及发生了何种变更,比如网元、链路状态变为掉线(DOWN)等。
这里需要说明的是,上述故障感知条件还可以包括的选项,也可以是在控制器中设置,而不必是来自用户终端的设置。
在一种示例性实例中,步骤201可以包括:
控制器接收来自光控制器的第一分析结果,其中,第一分析结果是光控制器遍历镜像的网络资源中的光纤,按照获得的故障感知条件模拟光纤故障,以对光纤进行故障分析后获取的故障对网络产生的影响结果;
控制器遍历镜像的网络资源中的IP设备和光设备之间互联的链路,按照获得的故障感知条件模拟链路故障,以对IP设备和光设备之间互联的链路进行故障分析并获取故障对网络产生的第二分析结果;
汇总第一分析结果和第二分析结果,以获得模拟光纤故障和/或模拟链路故障对IP层链路的影响。
需要说明的是,本步骤中对光纤和对链路的故障模拟顺序并没有严格的先后顺序,也就是说,上述描述的先后顺序并不用于限定本申请的保护范围。而且对光纤和对链路的故障模拟还可以同时进行。
在一种示例性实例中,第一分析结果可以包括但不限于:
光纤发生故障后,如果光层业务能恢复且业务属性不发生变更,那么,第一分析结果显示为该故障对网络无影响;如果光层业务能恢复但业务属性(如共享风险链路组(Sjared Risk Link Groups,简称SRLG)、实际时延等)发生了变更,或者光层业务不能直接恢复的,那么,第一分析结果显示为该故障对网络有影响,此时,第一分析结果中会记录具体的影响结果,如包含但不限于:影响的业务个数、风险系数等等。
在一种示例性实例中,第二分析结果可以包括但不限于:
IP设备和光设备之间互联的链路发生故障后,如果IP层链路状态和属性都不发生变化,那么,第二分析结果显示为该故障对网络无影响;如果IP层链路状态由在线(UP)变更为掉线(DOWN)了,或者IP层链路状态未发生变更但业务属性(如SRLG、实际时延、带宽等)发生了变更,那么,第二分析结果显示为该故障对网络有影响,此时,第二分析结果中会记录具体的影响结果,如包含但不限于:影响的IP层链路个数、风险系数等等。
在一种示例性实例中,汇总第一分析结果和第二分析结果可以包括:
根据来自光控制器上报的光纤故障产生影响的业务,在第一分析结果中查找到对应的IP层链路;根据第二分析结果,针对IP层链路,确定网络产生影响的光纤,或者对网络产生影响的IP设备和光设备之间互联的链路,也就是说,哪些光纤,或者哪些IP设备和光设备之间互联的链路会对网络产生了影响。
本申请实现了IP+光协同的场景下自动获知故障对网络的影响,为网络运维人员提供了一种有效、直观的对网络质量以及网络资源的评估办法。
可选地,本申请故障感知方法还可以包括:
步骤202:控制器根据对IP层链路的影响,分析IP层链路故障对隧道、虚拟专网(Virtual Private Network,简称VPN)业务产生的影响并记录为第三结果。
在一种示例性实例中,本步骤可以包括:
控制器计算(比如根据基于路径计算单元(PCE)算法等)IP层链路故障对哪些隧道的分层服务提供商(Layered Service Provider,简称LSP)路径发生影响,其中,记录为影响的情况包括但不限于:隧道的LSP路径发生变更,能计算出新路径或者计算不出新路径,时延、度量(metric)值、开销(cost)值等发生变更;以及,对于使用了发生变更的隧道的VPN业务,则记录为IP层链路故障对这些业务产生了影响。
可选地,本申请故障感知方法还可以包括:删除镜像得到的网络资源。
可选地,本申请故障感知方法还可以包括:
控制器将第三结果发送给用户终端,这样,用户可以通过用户终端中预先安装的APP查看本次故障感知的结果。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行上述任一项的故障感知方法。
本申请实施例还提供一种控制器,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:设置为执行上述任一项故障感知方法的步骤。
图3为本申请触发进行故障感知的实施例的流程示意图,本实施例中,以控制器为IP+光协同SDN控制器为例,如图3所示,包括:
步骤301:IP+光协同SDN控制器判断获得的触发条件是否为到达预先设置的触发周期,如果获得的触发条件是到达预先设置的触发周期,进入步骤302;如果获得的触发条件不是到达预先设置的触发周期,进入步骤303。
步骤302:IP+光协同SDN控制器建立定时任务并启动定时器,当定时时间到达时,进入步骤305。
步骤303:IP+光协同SDN控制器判断获得的触发条件是否为预先设定的网络资源发生变更,如果获得的触发条件是预先设定的网络资源发生变更,进入步骤304;如果获得的触发条件不是预先设定的网络资源发生变更,进入步骤305。
步骤304:监听是否有网络资源发生变更,如果预先设置的资源发生了变更,则进入步骤305;否则,继续监听网络资源。
本步骤的实现可以通过IP+光协同SDN控制器以及光控制器分别建立监听任务,各自监听各自管辖的网络资源,以获知是否有资源发生变更。
步骤305:IP+光协同SDN控制器镜像网络资源的拓扑信息,包括但不限于:IP设备和光设备之间互联的链路信息、IP层链路信息,IP业务 信息、光层业务信息等。
图4为本申请故障感知中模拟光纤故障的实施例的流程示意图,本实施例通过模拟光纤故障来进行故障感知,对光纤的故障模拟是光控制器实现,并将获得第一分析结果发送给IP+光协同SDN控制器的,如图4所示,包括:
步骤401:光控制器判断获得的故障感知条件中指定的是逐条对光纤进行故障模拟还是对多条光纤进行故障模拟,如果是逐条对光纤进行故障模拟,进入步骤402,如果是对多条光纤进行故障模拟,进入步骤403。
步骤402:光控制器遍历镜像的网络资源拓扑信息,对其中的每条光纤逐条进行故障模拟测试,进入步骤406。
步骤403:光控制器判断获得的故障感知条件中是先后对多条光纤进行故障模拟(简称为先后故障)还是同时对多条光纤进行故障模拟(简称为同时故障),如果是先后对多条光纤进行故障模拟,进入步骤404,如果是同时对多条光纤进行故障模拟,进入步骤405。
步骤404:光控制器遍历镜像的网络资源拓扑信息,先模拟一条光纤故障,然后在此基础上,再断下一条光纤即再模拟下一条光纤故障,直到对多条光纤模拟完故障。每对一条光纤模拟完故障均进入进行步骤406记录直到遍历完成。
步骤405:光控制器遍历镜像的网络资源拓扑信息,对多条光纤同时进行故障模拟,完成后进入步骤406。
步骤406:对光线模拟故障后记录第一分析结果。
光纤发生故障后,如果光层业务能恢复且业务属性不发生变更,那么,表明该故障对网络无影响,相应地,会将对应的第一分析结果记录为对网络无影响;如果光层业务能恢复但业务属性(如SRLG、实际时延等)发生了变更,或者光层业务不能直接恢复的,那么,表明该故障对网络有影响,相应地,会将对应的第一分析结果记录为对网络有影响。
当第一分析结果记录为对网络有影响,第一分析结果中会记录具体的 影响结果,比如包含但不限于:影响的业务个数、风险系数等等。
步骤407:光控制器遍历结束,将步骤406中产生的所有分析结果上报给IP+光协同SDN控制器。
图5为本申请故障感知中模拟链路故障的实施例的流程示意图,本实施例通过模拟IP设备和光设备之间互联的链路故障来进行故障感知,对链路的故障模拟是IP+光协同SDN控制器实现的,如图5所示,包括:
步骤501:IP+光协同SDN控制器判断获得的故障感知条件中指定的是逐条对IP设备和光设备之间互联的链路如图5中的UNI-Link进行故障模拟还是对多条IP设备和光设备之间互联的链路进行故障模拟,如果是逐条对IP设备和光设备之间互联的链路进行故障模拟,进入步骤502,如果是对多条IP设备和光设备之间互联的链路进行故障模拟,进入步骤503。
步骤502:IP+光协同SDN控制器遍历镜像的网络资源拓扑信息,对其中的每条IP设备和光设备之间互联的链路逐条进行故障模拟测试,进入步骤506。
步骤503:IP+光协同SDN控制器判断获得的故障感知条件中是先后对多条IP设备和光设备之间互联的链路进行故障模拟(简称为先后故障)还是同时对多条IP设备和光设备之间互联的链路进行故障模拟(简称为同时故障),如果是先后对多条IP设备和光设备之间互联的链路进行故障模拟,进入步骤504,如果是同时对多条IP设备和光设备之间互联的链路进行故障模拟,进入步骤505。
步骤504:IP+光协同SDN控制器遍历镜像的网络资源拓扑信息,先模拟一条IP设备和光设备之间互联的链路故障,然后在此基础上,再断下一条IP设备和光设备之间互联的链路即再模拟下一条IP设备和光设备之间互联的链路故障,直到对多条IP设备和光设备之间互联的链路模拟完故障。每对一条IP设备和光设备之间互联的链路模拟完故障均进入步骤506进行记录直到遍历完成。
步骤505:IP+光协同SDN控制器遍历镜像的网络资源拓扑信息,对 多条IP设备和光设备之间互联的链路同时进行故障模拟,完成后进入步骤506。
步骤506:对IP设备和光设备之间互联的链路模拟故障后记录第二分析结果。
IP设备和光设备之间互联的链路发生故障以后,如果IP层链路如图5中的VTE-Link状态和属性都不发生变化的,那么,表明该故障对网络无影响,相应地,会将对应的第二分析结果记录为对网络无影响;如果IP层链路状态由UP变为DOWN了,或者IP层链路状态未发生变更但业务属性(如SRLG、实际时延、带宽等)发生了变更,那么,表明该故障对网络有影响,相应地,会将对应的第二分析结果记录为对网络有影响。
当第二分析结果记录为对网络有影响,第二分析结果中会记录具体的影响结果,比如包含但不限于:影响的IP层链路个数,风险系数等。
步骤507:IP+光协同SDN控制器遍历结束,汇总步骤506中产生的所有分析结果。即根据来自光控制器上报的光纤故障产生影响的业务,在第一分析结果中查找到对应的IP层链路;根据第二分析结果,针对IP层链路,确定哪些光纤,或者哪些IP设备和光设备之间互联的链路会对网络产生影响。
本步骤IP+光协同SDN控制器对第一分析结果和第二分析结果进行汇总,比如统计计算出,本次模拟IP设备和光设备之间互联的链路故障,对IP层链路毫无影响的IP设备和光设备之间互联的链路的个数、占比;使得IP层链路的状态变更为Down的IP设备和光设备之间互联的链路的个数、占比、风险系数;使得IP层链路属性(如SRLG、实际时延等)发生变更的IP设备和光设备之间互联的链路的个数、占比、风险系数;完全不受IP设备和光设备之间互联的链路的故障影响的IP层链路的个数、占比等。这样,汇总结果可以上报给用户终端的APP呈现,以便用户使用。
图6为本申请故障感知装置的组成结构示意图,如图6所示,预处理 模块601、处理模块602;其中,
预处理模块601,设置为对当前网络资源进行镜像处理;
处理模块602,设置为根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。
可选地,预处理模块601具体设置为:当满足预先设置的触发条件时,对当前网络资源进行镜像处理。
可选地,处理模块602具体设置为:
接收来自光控制器的第一分析结果,其中,第一分析结果是光控制器遍历镜像的网络资源中的光纤,按照获得的故障感知条件模拟光纤故障,以对光纤进行故障分析后获取的故障对网络产生的影响结果;
遍历镜像的网络资源中的IP设备和光设备之间互联的链路,按照获得的故障感知条件模拟链路故障,以对IP设备和光设备之间互联的链路进行故障分析并获取故障对网络产生的第二分析结果;
汇总第一分析结果和第二分析结果,以获得模拟光纤故障和/或模拟链路故障对IP层链路的影响。
可选地,处理模块还设置为:
根据对IP层链路的影响,分析IP层链路故障对隧道、VPN业务产生的影响并记录为第三结果。
本申请故障感知装置可以设置在如IP+光协同SDN控制器中。
以上实施例,仅为本申请的较佳实例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请利用IP+光协同SDN控制器模拟链路故障的方式,针对IP设 备和光设备之间互联的链路故障如光层链路或者用户侧接口链路(UNI-Link)故障对IP层链路如IP层的虚拟流量工程链路(VTE-Link)以及IP业务产生的影响给出诊断结果。在IP+光协同的场景下,通过分析光纤故障以及UNI-Link故障,对IP层的链路以及IP业务的影响给出分析报告,进而在进行光/IP网络改造、维护或者对光/IP网络物理拓扑进行其他变更前,结合该分析报告分析如:断纤对网络的影响,从而避开容易导致网络发生动荡的链路;或者,对于发生故障后对网络丝毫不产生影响的链路,进而达到节省此类链路的部署和维护的目的,从而实现降低网络成本的效果。

Claims (18)

  1. 一种故障感知方法,包括:
    控制器对当前网络资源进行镜像处理;
    控制器根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。
  2. 根据权利要求1所述的故障感知方法,所述控制器对当前网络资源进行镜像处理之前,还包括:所述控制器确定出满足预先设置的触发条件。
  3. 根据权利要求2所述的故障感知方法,其中,所述触发条件包括:
    到达预先设置的触发周期;或者,
    预先设定的网络资源发生变更。
  4. 根据权利要求1所述的故障感知方法,其中,所述对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果,包括:
    所述控制器接收来自光控制器的第一分析结果;其中,第一分析结果是光控制器遍历所述镜像的网络资源中的光纤,按照所述故障感知条件模拟光纤故障,以对光纤进行故障分析后获取的故障对网络产生的影响结果;
    所述控制器遍历所述镜像的网络资源中的IP设备和光设备之间互联的链路,按照所述故障感知条件模拟链路故障,以对IP设备和光设备之间互联的链路进行故障分析并获取故障对网络产生的第二分析结果;
    汇总第一分析结果和第二分析结果,以获得模拟光纤故障和/或模拟链路故障对IP层链路的影响。
  5. 根据权利要求4所述的故障感知方法,所述方法还包括:
    所述控制器根据所述对IP层链路的影响,分析所述IP层链路故障对隧道、虚拟专网VPN业务产生的影响并记录为第三结果。
  6. 根据权利要求4或5所述的故障感知方法,所述方法还包括:
    删除所述镜像得到的网络资源。
  7. 根据权利要求5所述的故障感知方法,所述分析IP层链路故障对隧道、VPN业务产生的影响并记录为第三结果,包括:
    所述控制器计算所述IP层链路故障对哪些隧道的分层服务提供商LSP路径发生影响;以及,对于使用发生变更的隧道的VPN业务,记录为所述IP层链路故障已对这些业务产生影响。
  8. 根据权利要求4或5所述的故障感知方法,其中,所述第一分析结果包括:
    所述光纤发生故障后,如果光层业务能恢复且业务属性不发生变更,所述第一分析结果为对网络无影响;如果光层业务能恢复但业务属性发生了变更,或者光层业务不能直接恢复的,所述第一分析结果为对网络有影响,在所述第一分析结果中记录影响结果。
  9. 根据权利要求4或5所述的故障感知方法,其中,所述第二分析结果包括:
    所述IP设备和光设备之间互联的链路发生故障后,如果所述IP层链路状态和属性都不发生变化,所述第二分析结果为对网络无影响;如果所述IP层链路状态由在线UP变更为掉线DOWN,或者所述IP层链路状态未发生变更但业务属性发生了变更,所述第二分析结果为对网络有影响,在所述第二分析结果中记录影响结果。
  10. 根据权利要求4或5所述的故障感知方法,其中,所述汇总第一 分析结果和第二分析结果,包括:
    根据来自光控制器上报的光纤故障产生影响的业务,在所述第一分析结果中查找到对应的IP层链路;
    根据所述第二分析结果,针对IP层链路,确定对网络产生影响的光纤,或者对网络产生影响的IP设备和光设备之间互联的链路。
  11. 根据权利要求1或4或5所述的故障感知方法,其中,所述故障感知条件包括以下任一项或任意项组合:
    逐条对光纤进行故障模拟;
    对多条光纤进行故障模拟,并先后对所述多条光纤进行故障模拟;
    对多条光纤进行故障模拟,并同时对所述多条光纤进行故障模拟;
    逐条对链路进行故障模拟;
    对多条链路进行故障模拟,并先后对所述多条链路进行故障模拟;
    对多条链路进行故障模拟,并同时对所述多条链路进行故障模拟。
  12. 根据权利要求11所述的故障感知方法,当所述触发条件包括到达预先设置的触发周期时,所述故障感知条件还包括:
    采用周期性触发故障感知的方式,以及触发周期、触发周期的起始时间;
    当所述触发条件包括预先设定的网络资源发生变更时,所述故障感知条件还包括:
    采用网络资源发生变更触发故障感知的方式,以及网路资源标识、网络资源发生变更的情况。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于设置为执行权利要求1~权利要求12任一项所述的故障感知方法。
  14. 一种控制器,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于设置为执行权利要求1~权利要求12任一项故障感知方法的步骤。
  15. 一种故障感知装置,包括:预处理模块、处理模块;其中,
    预处理模块,设置为对当前网络资源进行镜像处理;
    处理模块,设置为根据获得的故障感知条件,对镜像得到的网络资源进行故障模拟,获取故障对网络产生的影响结果。
  16. 根据权利要求14所述的故障感知装置,其中,所述预处理模块具体设置为:当满足预先设置的触发条件时,对所述当前网络资源进行镜像处理。
  17. 根据权利要求14所述的故障感知装置,其中,所述处理模块具体设置为:
    接收来自光控制器的第一分析结果,其中,第一分析结果是光控制器遍历所述镜像的网络资源中的光纤,按照所述故障感知条件模拟光纤故障,以对光纤进行故障分析后获取的故障对网络产生的影响结果;
    遍历所述镜像的网络资源中的IP设备和光设备之间互联的链路,按照所述故障感知条件模拟链路故障,以对IP设备和光设备之间互联的链路进行故障分析并获取故障对网络产生的第二分析结果;
    汇总第一分析结果和第二分析结果,以获得模拟光纤故障和/或模拟链路故障对IP层链路的影响。
  18. 根据权利要求16所述的故障感知装置,所述处理模块还设置为:
    根据对IP层链路的影响,分析IP层链路故障对隧道、VPN业务产生的影响并记录为第三结果。
PCT/CN2019/119442 2018-11-19 2019-11-19 一种故障感知方法及装置和控制器 WO2020103821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811375087.5 2018-11-19
CN201811375087.5A CN111200506B (zh) 2018-11-19 2018-11-19 一种故障感知方法及装置和控制器

Publications (1)

Publication Number Publication Date
WO2020103821A1 true WO2020103821A1 (zh) 2020-05-28

Family

ID=70745980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119442 WO2020103821A1 (zh) 2018-11-19 2019-11-19 一种故障感知方法及装置和控制器

Country Status (2)

Country Link
CN (1) CN111200506B (zh)
WO (1) WO2020103821A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412447B (zh) * 2022-08-19 2024-05-24 浪潮思科网络科技有限公司 一种基于sdn的业务测试方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817301A (zh) * 2015-11-30 2017-06-09 中兴通讯股份有限公司 故障恢复方法及装置、控制器、软件定义网络
CN108009050A (zh) * 2017-11-29 2018-05-08 郑州云海信息技术有限公司 一种存储节点故障重启后的服务可靠性测试方法及装置
WO2018133573A1 (zh) * 2017-01-18 2018-07-26 华为技术有限公司 业务生存性分析方法及装置
CN108712285A (zh) * 2018-05-18 2018-10-26 国家电网公司信息通信分公司 一种光传输网络的模拟仿真方法及装置
CN108768793A (zh) * 2018-07-11 2018-11-06 郑州云海信息技术有限公司 一种存储双活链路故障测试方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856627B2 (en) * 1999-01-15 2005-02-15 Cisco Technology, Inc. Method for routing information over a network
CN101854565B (zh) * 2009-03-31 2013-08-28 华为技术有限公司 信息传送方法、业务保护方法及***和设备
CN101867505B (zh) * 2010-06-25 2012-10-17 华为技术有限公司 一种网络仿真方法和装置
CN102136940B (zh) * 2010-12-31 2013-10-09 华为技术有限公司 一种网络恢复方法和装置
EP2814203B1 (en) * 2013-06-11 2018-11-28 Alcatel Lucent Method for performing a failure analysis of a communication network
US9258238B2 (en) * 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers
CN103746841A (zh) * 2013-12-30 2014-04-23 华为技术有限公司 故障恢复的方法及控制器
JP5750175B1 (ja) * 2014-02-20 2015-07-15 日本電信電話株式会社 ネットワークシミュレータおよびネットワークシミュレーション方法
CN104243015B (zh) * 2014-10-11 2018-04-27 北京邮电大学 一种光网络用户网络接口故障恢复方法
CN106233679B (zh) * 2015-01-31 2019-10-01 华为技术有限公司 一种网络业务建立方法、协作控制中心及网络***
CN104734775A (zh) * 2015-04-10 2015-06-24 江苏通软科技有限公司 光缆通信网络故障处理方法及***
US10097376B2 (en) * 2016-03-31 2018-10-09 Fujitsu Limited Resilient virtual optical switches over less reliable optical networks
CN106789240B (zh) * 2016-12-20 2020-09-01 广东电网有限责任公司电力调度控制中心 一种通过软件手段仿真传输sdh通信网络的方法及***
CN107026691B (zh) * 2017-04-14 2020-02-11 云南电网有限责任公司电力科学研究院 一种自动隔离配电光纤环网故障的方法及***
CN107026780B (zh) * 2017-04-14 2020-04-17 云南电网有限责任公司电力科学研究院 一种基于物联网的配电光纤环网故障点定位方法及***
CN107682211B (zh) * 2017-11-14 2021-04-09 华信咨询设计研究院有限公司 一种网络拓扑结构确定方法、装置及计算机可读存储介质
CN108540328B (zh) * 2018-04-20 2020-09-22 北京邮电大学 Ason的控制平面建模方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817301A (zh) * 2015-11-30 2017-06-09 中兴通讯股份有限公司 故障恢复方法及装置、控制器、软件定义网络
WO2018133573A1 (zh) * 2017-01-18 2018-07-26 华为技术有限公司 业务生存性分析方法及装置
CN108009050A (zh) * 2017-11-29 2018-05-08 郑州云海信息技术有限公司 一种存储节点故障重启后的服务可靠性测试方法及装置
CN108712285A (zh) * 2018-05-18 2018-10-26 国家电网公司信息通信分公司 一种光传输网络的模拟仿真方法及装置
CN108768793A (zh) * 2018-07-11 2018-11-06 郑州云海信息技术有限公司 一种存储双活链路故障测试方法及装置

Also Published As

Publication number Publication date
CN111200506B (zh) 2023-08-29
CN111200506A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
US6363384B1 (en) Expert system process flow
US6529954B1 (en) Knowledge based expert analysis system
CN111147287B (zh) 一种sdn场景下的网络仿真方法及***
US11614943B2 (en) Determining problem dependencies in application dependency discovery, reporting, and management tool
US6526044B1 (en) Real-time analysis through capture buffer with real-time historical data correlation
EP2457164B1 (en) Method of monitoring the performance of a software application
US7804766B2 (en) Devices, systems, and/or methods regarding virtual routing forwarding
CN105721184B (zh) 一种网络链路质量的监控方法及装置
US8245079B2 (en) Correlation of network alarm messages based on alarm time
US11675692B2 (en) Testing agent for application dependency discovery, reporting, and management tool
US20080222287A1 (en) Constructing an Inference Graph for a Network
US20150304191A1 (en) Method and apparatus for automatically determining causes of service quality degradation
US9847926B2 (en) Presenting application performance monitoring data in distributed computer systems
CN106385339B (zh) 企业网络的访问性能的监控方法和监控***
CN108306747B (zh) 一种云安全检测方法、装置和电子设备
CN110716842A (zh) 集群故障检测方法和装置
Xu et al. Lightweight and adaptive service api performance monitoring in highly dynamic cloud environment
CN107749778B (zh) 一种通信光缆故障预警方法及装置
CN105812210A (zh) 分布式网络性能测量***
WO2020103821A1 (zh) 一种故障感知方法及装置和控制器
US8036132B1 (en) Systems, devices, and methods for determining network failures
CN113708956B (zh) 一种电路质量评测方法
CN112003747A (zh) 云虚拟网关的故障定位方法
CN110943877B (zh) 网络状态测量方法、设备及***
CN110474821A (zh) 节点故障检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19887631

Country of ref document: EP

Kind code of ref document: A1