WO2020103431A1 - 手术机器人定位***精度检测方法及检测装置 - Google Patents

手术机器人定位***精度检测方法及检测装置

Info

Publication number
WO2020103431A1
WO2020103431A1 PCT/CN2019/090935 CN2019090935W WO2020103431A1 WO 2020103431 A1 WO2020103431 A1 WO 2020103431A1 CN 2019090935 W CN2019090935 W CN 2019090935W WO 2020103431 A1 WO2020103431 A1 WO 2020103431A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
detection point
surgical robot
point
points
Prior art date
Application number
PCT/CN2019/090935
Other languages
English (en)
French (fr)
Inventor
张维军
李寅岩
孔维燕
Original Assignee
北京天智航医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天智航医疗科技股份有限公司 filed Critical 北京天智航医疗科技股份有限公司
Publication of WO2020103431A1 publication Critical patent/WO2020103431A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • G01S5/166Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves using gamma or X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00915Material properties transparent or translucent for radioactive radiation
    • A61B2017/0092Material properties transparent or translucent for radioactive radiation for X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39011Fixed camera detects deviation end effector from reference on workpiece, object

Definitions

  • the invention relates to the field of medical instruments, and in particular to a method and device for detecting the accuracy of a positioning system for a surgical robot.
  • the use of surgical robots for surgical operations has become increasingly popular.
  • robots for positioning surgical instruments or implants
  • the positioning accuracy of the robot is a very important indicator that affects the success of the operation.
  • Correct evaluation of the positioning accuracy of the system is a key task to ensure the safety and smooth completion of the operation.
  • the indexes for evaluating the positioning accuracy of surgical robot systems include absolute accuracy and repeated positioning accuracy.
  • the most important application of surgical robots in the actual operation is to determine the path of the operation. This path can be described by a spatial line.
  • the accuracy requirements of the surgical robot system are not only the point positioning error requirements, but also the error requirements of both fixed point and orientation. In some cases, the orientation requirements are even more important. Therefore, absolute accuracy and repeated positioning accuracy, which simply express fixed-point errors, cannot fully evaluate the accuracy of surgical robots. However, in practice, accurate measurement of the distance between spatial points is very difficult.
  • the invention provides a method and a device for detecting the accuracy of a positioning system of a surgical robot to solve the problem that the accuracy of the positioning system of a surgical robot is difficult to detect.
  • the present invention provides a method for detecting the accuracy of a surgical robot positioning system, which is used to detect the accuracy of the surgical robot positioning system.
  • the method includes:
  • the step of obtaining the spatial position coordinates of the first detection point and the second detection point is to obtain the spatial positions of the first detection point and the second detection point measured by a three-dimensional measuring instrument coordinate.
  • the step of acquiring spatial axis information when the surgical robot reaches the planned path includes:
  • the method further includes the step of registering the scanned image with the first detection point and the second detection point.
  • it further includes:
  • the position information of the first detection point and the second detection point is acquired at a certain frequency, and when the position information of the detection point changes, the planned path is adjusted accordingly.
  • the step of acquiring spatial axis information when the surgical robot moves to the planned path is to acquire central axis information of the test probe at the execution end of the surgical robot by measuring the spatial axis information .
  • the central axis information of the test probe at the execution end of the measuring surgical robot is the central axis information of the test probe measured by a three-dimensional measuring instrument.
  • the axis information of the measurement probe at the execution end of the surgical robot is:
  • the position of the central axis of the test probe is obtained by fitting according to the coordinates of at least two fitting points.
  • the step of acquiring the coordinates of at least two fitting points of the central axis of the test probe is to use the central holes at both ends of the detection probe as the first fitting point and the second Joining points, obtaining the coordinates of the first fitting point as P1 (x 1 , y 1 , z 1 ), and obtaining the coordinates of the second fitting point as P2 (x 2 , y 2 , z 2 ).
  • the coordinates of the first detection point are Xa (x a , y a , z a ), and the coordinates of the second detection point are Xb (x b , y b , z b ) ,
  • the step of calculating the first distance and the second distance between the first detection point and the second detection point reaching the space axis includes calculating the first distance and the second distance by the following formula:
  • i is a or b
  • La is the first distance
  • Lb is the second distance
  • the length of the test probe is 50-150 mm.
  • it further includes:
  • the present invention provides a precision detection device for a positioning system of a surgical robot, which is used to perform precision detection on a positioning system of a surgical robot, including:
  • each of the struts includes opposing first and second ends, the first end being connected to the base;
  • Two or more X-ray opaque detection points are correspondingly arranged on the second end of the pillar.
  • the diameter of the detection point is 2.5-3.5 mm.
  • it further includes:
  • a plurality of X-ray registration reference points are arranged on the base according to a predetermined rule.
  • the diameter of the registered reference point is 1.0-2.0 mm.
  • it further includes:
  • the tracer fixed to the base, is used to show the spatial position of the base.
  • the tracer includes:
  • More than three identification points are provided on the bracket, at least one of the identification points is not collinear with the other identification points.
  • the base has a mounting surface, and the mounting surface is provided with more than two mounting holes, and the first end of the pillar is detachably connected to the mounting hole.
  • the pillar is perpendicular to the mounting surface, and the two or more pillars include a first group of pillars, a second group of pillars, and a third group of pillars arranged in pairs, wherein the first The length of a group of pillars is 80 to 90 mm and 20 to 30 mm, the length of the second group of pillars is 45 to 55 mm and 20 to 30 mm, and the length of the first group of pillars is 20 to 30 Mm, 20 to 30 mm.
  • the array of two or more mounting holes is arranged, wherein the row spacing of the two or more mounting holes is 50 to 70 mm, and the column spacing is 20 to 40 mm.
  • the hole diameter of the mounting hole is 5 to 8 mm, and the hole depth is 5 to 8 mm;
  • the pillar is a hollow pillar, one end of the pillar is provided with a connector matching the mounting hole, the outer diameter of the pillar is 5 to 8 mm, the inner diameter is 4 to 7 mm, and the outer diameter of the connector It is 5 to 8 mm, and the connecting member extends 5 to 8 mm from one end of the pillar.
  • the mounting surface is a top surface of the base, and the mounting surface is rectangular, including adjacent first and second sides, and the length of the first side is 80 Up to 100 mm, the length of the second side is 100 to 120 mm, and the height of the base is 70 to 90 mm.
  • a predetermined path is planned with the first detection point and the second detection point, the detection probe is introduced on the path, and the first detection point is acquired to the central axis of the test probe.
  • the first distance and the second distance between the second detection point and the central axis of the test probe can obtain the system accuracy of the surgical robot at the first detection point and the second detection point, and realize accurate detection of the accuracy of the surgical robot system.
  • the precision detection of multiple detection points can be completed in one position scan, calibration registration and path planning, which improves the detection efficiency of the surgical robot system accuracy.
  • FIG. 1 shows a schematic structural diagram of a surgical robot positioning system
  • FIG. 2 shows a flowchart of a method for detecting accuracy of a positioning system for a surgical robot according to an embodiment of the present invention
  • FIG. 3 shows a flowchart of steps of acquiring spatial axis information when the surgical robot reaches the planned path according to the detection method of the embodiment of the present invention
  • FIG. 4 shows a schematic cross-sectional view of a test probe in a method for detecting accuracy of a surgical robot positioning system according to an embodiment of the present invention
  • FIG. 5 shows a schematic structural diagram of an accuracy detection device of a surgical robot according to an embodiment of the present invention
  • FIG. 6 shows a top view of a base of an accuracy detection device of a surgical robot according to an embodiment of the present invention
  • FIG. 7 shows a schematic cross-sectional view in the MM direction in FIG. 6;
  • FIG. 8 shows a schematic cross-sectional view of a pillar of an accuracy detection device of a surgical robot according to an embodiment of the present invention.
  • FIG. 1 shows a schematic structural diagram of the surgical robot positioning system.
  • the accuracy detection method of the present invention can detect a positioning system including a surgical robot 300, a host computer 400, and an imaging device 500 (which may be two-dimensional or three-dimensional imaging devices, taking the three-dimensional imaging device as an example in the embodiments described below).
  • a positioning system that realizes more functions can also be detected.
  • the positioning system for surgical robots shown in FIG. 1 includes a surgical robot 300, a host computer 400, an imaging device 500, and an optical tracker 600. Among them, the surgical robot 300 may be provided with a tracer.
  • the detection device 100 is set within the imaging field of view of the imaging device 500 to perform image acquisition to obtain a scanned image corresponding to the detection device 100. For different positioning systems, a corresponding accuracy detection system is formed.
  • FIG. 2 shows a flowchart of a method for detecting accuracy of a surgical robot positioning system according to an embodiment of the present invention.
  • the method includes steps S100 to S300.
  • step S100 the spatial position coordinates of the first detection point and the second detection point are acquired.
  • the first detection point and the second detection point are obtained from several detection points.
  • the first detection point and the second detection point may be detection points provided on the precision detection device 100 of the predetermined surgical robot system.
  • the precision detection device 100 is placed in the effective working space of the surgical robot 300.
  • the robot accuracy detection device 100 will be described in detail.
  • the obtained coordinates of the first detection point are Xa (x a , y a , z a )
  • the coordinates of the second detection point are Xb (x b , y b , z b ).
  • the step of obtaining the spatial position coordinates of the first detection point and the second detection point is to obtain the spatial position coordinates of the first detection point and the second detection point measured by a three-dimensional measuring instrument.
  • the detection device 100 is placed in the imaging field of view of the three-dimensional imaging device 500 for scanning, and the three-dimensional imaging device 500 acquires the image of the detection device 100 (the image of the detection device 100 includes the detection point image, and may further include the registered reference point image) Transmission to the host computer 400.
  • the registration of the image may be completed by setting a registration reference point on the detection device 100, or the registration of the image may be achieved by using a separate positioning device provided with a registration point.
  • the detection device 100 sets a registration reference point as an example for description.
  • a tracer may be provided on the detection device. While performing three-dimensional scanning on the detection device 100, the optical tracker 600 acquires the coordinates of the tracer and transmits it to the host computer 400, thereby realizing real-time tracking.
  • step S200 spatial axis information when the surgical robot 300 reaches a planned path is obtained, wherein the planned path is formed based on the first detection point and the second detection point.
  • the same test device can be used for testing to obtain the spatial position coordinates and spatial axis information of the detection point, for example, using a three-dimensional measuring instrument.
  • the data acquired in step S100 and step S200 may be in the same coordinate system.
  • the data after the test device detects is transmitted to the upper computer 400.
  • FIG. 3 shows a flowchart of steps of acquiring spatial axis information when the surgical robot reaches the planned path according to the detection method of the embodiment of the present invention.
  • step S200 includes steps S210 to S240.
  • step S210 scan images of the first detection point and the second detection point under the positioning system of the surgical robot 300 are acquired.
  • step S220 is also included, that is, the step of performing image registration registration on the scanned image with the first detection point and the second detection point.
  • the registration process may be: the host computer 400 compares the registered reference point in the image with the geometric feature of the preset positioning point to realize the corresponding recognition of the registered reference point in the detection device 100 and the positioning reference point in the image.
  • step S230 the imaging path of the first detection point and the second detection point in the scanned image is used as the entry point and the exit point to form a planned path.
  • the first detection point and the second detection point are respectively selected as entry points / out points on the registered image to form a planned path.
  • the coordinate system in which one of the image or the detection device 100 is located may be selected as the world coordinate system.
  • the spatial coordinates of the planned path are expressed as a straight line in the world coordinate system, and the straight line is output as the planned path.
  • the positioning system of the surgical robot 300 may further include the optical tracker 600 to realize real-time tracking of other devices.
  • the spatial position of the detection device 100 can be monitored in real time to prevent the accuracy detection from being misaligned when a position change occurs.
  • the accuracy detection method further includes acquiring position information of the first detection point and the second detection point, and when the position information of the detection point changes, correspondingly adjusting the planned path.
  • the optical tracker 600 with real-time tracking function monitors the movement of the detection device 100 in real time (that is, monitors the tracer on the detection device 100), calculates the direction and size of the movement, and uploads it to the host computer 400,
  • the upper computer 400 controls the surgical robot 300 to correct its own motion according to the data such as the direction and size of movement, so as to ensure that the guide and the planned path are accurately consistent.
  • the optical tracker 600 can refresh the monitoring data at a certain frequency.
  • step S240 spatial axis information when the surgical robot 300 moves to the planned path is acquired.
  • the step of acquiring the spatial axis information when the surgical robot 300 moves to the planned path may be acquiring central axis information at the execution end of the surgical robot 300 by measuring the spatial axis information.
  • the central axis information can be obtained by installing a test probe at the execution end.
  • the execution end of the surgical robot 300 includes a guide device, and the test probe is installed on the guide device of the surgical robot 300.
  • the upper computer controls the surgical robot 300 to move accurately, so that the guide connected to its end points to the planned path.
  • the central axis of the test probe is also the axis of the guide, that is, the position where the surgical robot 300 actually navigates.
  • the test probe 200 has a column shape, and both ends of the test probe 200 have central holes 210.
  • the length L1 of the test probe 200 is 50 to 150 mm, for example, 100 mm, and the tolerance is within 0.05 mm. Considering the characteristics of the positioning system, when the test probe is 100 mm, the accuracy of the detection data and the occupied space rate are relatively balanced. In different application scenarios, the diameter of the test probe 200 and the size of the central hole 210 can be designed according to the actual requirements of the surgical robot 300.
  • the measurement of the central axis information of the test probe at the execution end of the surgical robot 300 is the measurement of the central axis information of the test probe by a three-dimensional measuring instrument.
  • the same test device is used to test the spatial position of the detection point and the test probe, so as to ensure that the data transmitted to the upper computer 400 is in the same coordinate system, and the accuracy of the test is ensured.
  • the measurement axis information of the test probe at the execution end of the surgical robot 300 may be: the coordinates of at least two fitting points obtained through the central axis of the test probe; and the coordinates based on the coordinates of at least two of the fitting points The position of the central axis of the test probe is combined.
  • the step of acquiring the coordinates of at least two fitting points of the central axis of the test probe is to use the central holes at both ends of the detection probe as the first fitting point and the second fitting point to obtain the first fitting point
  • the coordinates are P1 (x 1 , y 1 , z 1 ), and the coordinates of the obtained second fitting point are P2 (x 2 , y 2 , z 2 ).
  • the central axis information is obtained by testing at other axis positions of the test probe.
  • step S300 a first distance La and a second distance Lb at which the first detection point and the second detection point reach the space axis are calculated.
  • the first distance La and the second distance Lb are the system accuracy of the surgical robot 300 at the first detection point and the second detection point.
  • the steps of calculating the first distance La and the second distance Lb of the first detection point and the second detection point to the space axis include calculating the first distance La and the second distance Lb by the following formula:
  • i is a or b. Bring a or b into i in the formula can get La or La.
  • La is the first distance and Lb is the second distance.
  • the surgical robot positioning system accuracy detection method further includes selecting two detection points other than the first detection point and the second detection point from the plurality of detection points to repeat the accuracy detection.
  • the first detection point and the second detection point in the above method can be replaced with the third detection point.
  • the fourth detection point repeat the above steps to obtain the system accuracy of the surgical robot positioning system at the third detection point and the fourth detection point.
  • Six detection points repeat the above steps to obtain the system accuracy of the surgical robot positioning system at the fifth detection point and the sixth detection point.
  • a predetermined path is planned with the first detection point and the second detection point, the detection probe is introduced on the path, and the first detection point is acquired to the central axis of the test probe
  • the first distance La and the second distance Lb from the second detection point to the central axis of the test probe, the system accuracy of the surgical robot positioning system at the first detection point and the second detection point can be obtained, and the accuracy of the surgical robot positioning system can be achieved Accurate detection.
  • the precision detection of multiple detection points can be completed in one position scan, calibration registration, and path planning, which improves the detection efficiency of the surgical robot positioning system accuracy.
  • the present invention overcomes the problem that the distance between the dot and line is difficult to detect during the accuracy detection in the prior art, and improves the accuracy of the accuracy detection of the positioning system.
  • the embodiment of the present invention also provides an accuracy detection device 100 of the surgical robot 300, which can be applied to the detection of the system accuracy of the surgical robot 300 at a predetermined detection point in the detection method of the positioning system of the surgical robot 300 in the above embodiment.
  • the accuracy detection device 100 of the surgical robot 300 includes a base 110, two or more pillars 120, and two or more X-ray opaque detection points 130.
  • Each pillar 120 includes a first end and a second end opposite to each other. The first end of each pillar 120 is connected to the base 110, and two or more detection points 130 are corresponding to the second end of the pillar 120.
  • the base 110 may be made of polymethyl methacrylate (PMMA) material with better X-ray transmission performance
  • the pillar 120 may be a hollow column shape, which may be made of carbon fiber and engineering plastic.
  • the accuracy detection device 100 of the surgical robot 300 can cooperate to complete the accurate detection of the system accuracy of the surgical robot 300.
  • a plurality of detection points 130 may be provided on the accuracy detection device 100, and the accuracy detection of the plurality of detection points 130 may be completed in one position scan, calibration registration, and path planning, thereby improving the detection efficiency of the system accuracy of the surgical robot 300.
  • the X-ray-opaque detection point 130 may be a first metal ball, for example, a stainless steel ball, and the imaging is clearer in the medical image.
  • the diameter of the first metal ball is 2.5 to 3.5 mm. For example, it is 3 mm, and the diameter error is within 0.02 mm.
  • the accuracy detection device 100 further includes a plurality of X-ray opaque registration reference points 140, which are arranged on a predetermined plane of the base 110 according to a predetermined rule for completing registration.
  • the registration reference point 140 may be a second metal ball, for example, a stainless steel ball, and the imaging is clearer in the medical image.
  • the diameter of the second metal ball is 1.5 mm, and the diameter error is within 0.02 mm.
  • the accuracy detection device 100 may further include a tracer 150 that is fixed to the base 110 and used to show the spatial position of the base 110.
  • the tracer 150 of this embodiment includes a bracket 152 and more than three identification points 151.
  • the bracket 152 includes a central portion and three or more connecting portions radiating outward from the central portion.
  • the central portion of the bracket 152 is connected to the base 110. More than three identification points 151 are correspondingly provided at the connecting portion of the bracket 152, wherein at least one identification point 151 is not collinear with other identification points 151.
  • the bracket 152 of this embodiment includes four connecting portions that are crossed, and correspondingly, four marking points 151 are provided at the ends of the four connecting portions. In other embodiments, on the premise of ensuring that the tracer is recognized, the bracket can be modified at will.
  • FIG. 5 shows a top view of the base 110 of the accuracy detection device 100 of the surgical robot 300 according to an embodiment of the present invention
  • FIG. 6 shows a schematic cross-sectional view in the MM direction in FIG. 5.
  • the base 110 has a mounting surface 111, and the mounting surface 111 is provided with two or more mounting holes 112, and the first end of the pillar 120 is detachably connected to the mounting hole 112.
  • the mounting surface 111 may be the top surface of the base 110.
  • the mounting surface 111 in this embodiment is rectangular and includes adjacent first and second sides.
  • the length L2 of the first side is 80 to 100 mm, for example, 90 mm
  • the length L3 of the second side is 100 to 120 mm, for example 110 mm
  • the height H1 of the base 110 is 70 to 90 mm, for example 80 mm.
  • the base 110 of this embodiment has a space inside, wherein the height H2 of the space is 60 to 80 mm, for example, 72 mm.
  • more than two mounting holes 112 are arranged in an array, wherein the row spacing D1 of the two or more mounting holes 112 is 50 to 70 mm, for example 60 mm, and the column spacing D2 is 20 to 40 mm, for example 30 mm .
  • the pillars 120 are perpendicular to the mounting surface 111.
  • the two or more pillars 120 include a first group of pillars 120, a second group of pillars 120, and a third group of pillars 120 arranged in pairs.
  • the length of the first group of pillars L4 is 80 to 90 mm, 20 to 30 mm
  • the length of the second group of pillars L4 is 45 to 55 mm
  • the length of the first group of pillars L4 is 20 To 30 mm, 20 to 30 mm.
  • the length L4 of the first group of pillars 120 is 85 mm and 25 mm
  • the length L4 of the second group of pillars 120 is 50 mm and 25 mm
  • the length L4 of the first group of pillars 120 is 25 mm and 25 mm, respectively.
  • the lengths of the plurality of pillars 120 may be other values.
  • the hole diameter of the mounting hole 112 is 5 to 8 mm, for example, 6 mm, and the hole depth is 4 to 6 mm, for example, 5 mm.
  • the pillar 120 is a hollow pillar. One end of the pillar 120 is provided with a connector 121 matching the mounting hole 112.
  • the outer diameter D3 of the pillar 120 is 5 to 8 mm, for example 6 mm, and the inner diameter D4 is 4 to 7 mm, for example 5 Mm
  • the outer diameter D5 of the connecting member 121 is 5 to 8 mm, for example, 6 mm
  • the length L5 of the connecting member 121 extending from one end of the pillar 120 is 5 to 8 mm, for example, 5 mm
  • the connecting member 121 may be partially inside It is embedded in the pillar 120, wherein the length L6 of the embedded portion is 5 to 8 mm, for example, 5 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人定位***精度检测方法,包括:获取第一检测点、第二检测点的空间位置坐标(S100);获取手术机器人到达规划路径时的空间轴线信息(S200),其中,规划路径以第一检测点和第二检测点为基础形成;计算第一检测点和第二检测点到达空间轴线的第一距离和第二距离(S300)。还涉及一种手术机器人定位***精度检测装置。

Description

手术机器人定位***精度检测方法及检测装置
本申请要求了2018年11月23日提交的、申请号为201811409733.5、发明名称为“手术机器人定位***精度检测方法及检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械领域,具体涉及一种手术机器人定位***精度检测方法及检测装置。
背景技术
利用手术机器人进行手术操作已经日益普及,手术中使用机器人进行定位(手术器械或植入物定位)时,机器人的定位精度是影响手术成功与否非常重要的一项指标。正确评价***的定位精度是确保手术安全、顺利完成的一项关键工作。目前评价手术机器人***定位精度的指标有绝对精度、重复定位精度等。
实际手术过程中手术机器人最重要的应用是确定手术的路径,这条路径可以用一条空间直线来描述。对手术机器人***的精度要求不仅仅在于点定位误差要求,而是同时兼顾定点和定向的误差要求,在某些情况下定向的要求甚至更加重要。因此,绝对精度和重复定位精度这种单纯表述定点误差的方法,不能全面评价手术机器人的精度。然而在实践中,空间点距离的精确测量非常困难的。
发明内容
本发明提供一种手术机器人定位***精度检测方法及检测装置,解决手术机器人定位***精度难以检测的问题。
一方面,本发明提供一种手术机器人定位***精度检测方法,用于检 测所述手术机器人定位***精度,所述方法包括:
获取第一检测点、第二检测点的空间位置坐标;
获取手术机器人到达规划路径时的空间轴线信息,其中,所述规划路径以所述第一检测点和第二检测点为基础形成;
计算所述第一检测点和第二检测点到达所述空间轴线的第一距离和第二距离。
根据本发明实施例的一个方面,所述获得第一检测点、第二检测点的空间位置坐标的步骤,为获取通过三维测量仪测量的所述第一检测点、第二检测点的空间位置坐标。
根据本发明实施例的一个方面,获取手术机器人到达规划路径时的空间轴线信息的步骤,包括:
获取所述第一检测点、第二检测点在所述手术机器人定位***下的扫描图像;
以所述第一检测点和第二检测点在所述扫描图像中的成像点作为入点和出点形成所述规划路径;
获取手术机器人运动至所述规划路径时的空间轴线信息。
根据本发明实施例的一个方面,在获取所述扫描图像之后还包括对所述扫描图像与所述第一检测点和第二检测点进行图像配准注册的步骤。
根据本发明实施例的一个方面,还包括:
以一定频率获取所述第一检测点和第二检测点的位置信息,当所述检测点位置信息变化时,对应调整所述规划路径。
根据本发明实施例的一个方面,所述获取手术机器人运动至所述规划路径时的空间轴线信息的步骤,为获取通过测量手术机器人执行端处测试探针的中心轴线信息作为所述空间轴线信息。
根据本发明实施例的一个方面,所述测量手术机器人执行端处测试探针的中心轴线信息为通过三维测量仪测量测试探针的中心轴线信息。
根据本发明实施例的一个方面,所述测量手术机器人执行端处测试探针的轴线信息为:
获取过所述测试探针中心轴线的至少两个拟合点的坐标;以及
根据至少两个所述拟合点的坐标拟合得到所述测试探针中心轴线的位置。
根据本发明实施例的一个方面,所述获取过测试探针中心轴线的至少两个拟合点的坐标的步骤为以所述检测探针两端的中心孔作为第一拟合点、第二拟合点,获取所述第一拟合点的坐标为P1(x 1,y 1,z 1),获得所述第二拟合点的坐标为P2(x 2,y 2,z 2)。
根据本发明实施例的一个方面,所述第一检测点的坐标为Xa(x a,y a,z a),所述第二检测点的坐标为Xb(x b,y b,z b),
计算所述第一检测点和第二检测点到达所述空间轴线的第一距离和第二距离的步骤包括通过以下公式计算所述第一距离以及所述第二距离:
Figure PCTCN2019090935-appb-000001
其中,
Figure PCTCN2019090935-appb-000002
i为a或b;
La为所述第一距离,Lb为所述第二距离。
根据本发明实施例的一个方面,所述测试探针的长度为50-150毫米。
根据本发明实施例的一个方面,还包括:
从多个检测点中选择第一检测点和第二检测点之外的两个检测点重复进行精度检测。
另一方面,本发明提供一种手术机器人定位***精度检测装置,用于对手术机器人定位***进行精度检测,包括:
底座;
两个以上支柱,每个所述支柱包括相对的第一端和第二端,所述第一端连接于所述底座;以及
两个以上不透X光检测点,一一对应设置于所述支柱的所述第二端。
根据本发明实施例的一个方面,所述检测点直径为2.5-3.5毫米。
根据本发明实施例的一个方面,还包括:
多个不透X光注册参考点,以预定规则排布于所述底座。
根据本发明实施例的一个方面,所述注册参考点的直径为1.0-2.0毫米。
根据本发明实施例的一个方面,还包括:
示踪器,与所述底座固定,用于示出所述底座的空间位置。
根据本发明实施例的一个方面,所述示踪器包括:
支架;以及
三个以上标识点,设置于所述支架,其中至少一个所述标识点与其它所述标识点不共线。
根据本发明实施例的一个方面,所述底座具有安装面,所述安装面上设有两个以上安装孔,所述支柱的所述第一端与所述安装孔可拆卸连接。
根据本发明实施例的一个方面,所述支柱垂直于所述安装面,两个以上所述支柱包括成对设置的第一组支柱、第二组支柱以及第三组支柱,其中,所述第一组支柱的长度分别为80至90毫米、20至30毫米,所述第二组支柱的长度分别为45至55毫米、20至30毫米,所述第一组支柱的长度分别为20至30毫米、20至30毫米。
根据本发明实施例的一个方面,两个以上所述安装孔阵列排布,其中两个以上所述安装孔的行间距为50至70毫米,列间距为20至40毫米。
根据本发明实施例的一个方面,所述安装孔的孔径为5至8毫米,孔深为5至8毫米;
所述支柱为空心柱,所述支柱的一端设有与所述安装孔匹配的连接件,所述支柱的外径为5至8毫米,内径为4至7毫米,所述连接件的外径为5至8毫米,所述连接件自所述支柱的一端外延5至8毫米。
根据本发明实施例的一个方面,所述安装面为所述底座的顶面,所述安装面为矩形状,包括相邻的第一边和第二边,所述第一边的长度为80至100毫米,所述第二边的长度为100至120毫米,所述底座高70至90毫米。
根据本发明实施例的手术机器人定位***精度检测方法,以第一检测点、第二检测点规划预定路径,引入检测探针设置在该路径上,通过获取第一检测点到测试探针中心轴线的第一距离、第二检测点到测试探针中心轴线的第二距离,即可得到手术机器人在第一检测点、第二检测点处的系 统精度,实现手术机器人***精度的精确检测。多个检测点的精度检测可以在一次位置扫描、标定注册以及路径规划中完成,提高手术机器人***精度的检测效率。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1示出手术机器人定位***的结构示意图;
图2示出根据本发明实施例手术机器人定位***精度检测方法的流程图;
图3示出根据本发明实施例的检测方法的获取手术机器人到达规划路径时的空间轴线信息的步骤的流程图;
图4示出根据本发明实施例的手术机器人定位***精度检测方法中的测试探针的截面示意图;
图5示出根据本发明实施例的手术机器人的精度检测装置的结构示意图;
图6示出根据本发明实施例的手术机器人的精度检测装置的底座的俯视图;
图7示出图6中MM向的截面示意图;
图8示出根据本发明实施例的手术机器人的精度检测装置的支柱的截面示意图。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实 施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
应当理解,在描述部件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将部件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。
本发明实施例的提高一种手术机器人定位***精度检测方法,用于检测手术机器人定位***精度,图1示出该手术机器人定位***的结构示意图。本发明的精度检测方法,可以检测包括手术机器人300、上位机400以及成像设备500(可以为二维或者三维成像设备,如下所述实施例以三维成像设备为例)的定位***。也可以检测实现更多功能的定位***,如图1所示的手术机器人定位***,包括手术机器人300、上位机400、成像设备500以及光学***600。其中,手术机器人300可以设有示踪器。如图1所示,在完成定位***精度检测时,将检测装置100设置于成像设备500的成像视野范围内,进行图像采集获取检测装置100对应的扫描图像。针对不同的定位***,形成对应的精度检测***。
图2示出根据本发明实施例手术机器人定位***精度检测方法的流程图,该检测方法包括步骤S100至步骤S300。
在步骤S100中,获取第一检测点、第二检测点的空间位置坐标。该第一检测点、第二检测点从若干检测点中获取。其中第一检测点、第二检 测点可以是设置在预定手术机器人***精度检测装置100上的检测点,该精度检测装置100放置在手术机器人300的有效工作空间内,下文中将会对该手术机器人的精度检测装置100进行详细描述。在本实施例中,获得的第一检测点的坐标为Xa(x a,y a,z a),第二检测点的坐标为Xb(x b,y b,z b)。
在本实施例中,获得第一检测点、第二检测点的空间位置坐标的步骤,为获取通过三维测量仪测量所述第一检测点、第二检测点的空间位置坐标。
其中,检测装置100放置在三维成像设备500的成像视野内进行扫描,三维成像设备500获取检测装置100的图像(检测装置100的图像包括检测点图像,也可以进一步包括注册参考点图像),并传输给上位机400。可以通过在检测装置100上设置注册参考点完成图像的配准,也可以通过使用单独的设置有注册点的定位装置实现图像的注册。这里以检测装置100设置注册参考点为例进行说明。进一步的,检测装置上可以设置示踪器,在对检测装置100进行三维扫描的同时,光学***600获取示踪器的坐标并传输给上位机400,从而实现实时跟踪。
在步骤S200中,获取手术机器人300到达规划路径时的空间轴线信息,其中,所述规划路径以所述第一检测点和第二检测点为基础形成。
对于步骤S100和S200,可以使用同一个测试装置测试,获取检测点的空间位置坐标和空间轴线信息,例如使用三维测量仪测量。这样,步骤S100和步骤S200获取的数据可以处于同一个坐标系下。测试装置检测之后的数据传输给上位机400。
图3示出根据本发明实施例的检测方法的获取手术机器人到达规划路径时的空间轴线信息的步骤的流程图。具体地步骤S200包括步骤S210至步骤S240。
在步骤S210中,获取所述第一检测点、第二检测点在所述手术机器人300定位***下的扫描图像。
在步骤S210后,还包括步骤S220,即对扫描图像与第一检测点和第二检测点进行图像配准注册的步骤。
注册的过程可以是:上位机400对图像中的注册参考点与预先设置的定位点几何特征进行比较,实现检测装置100中的注册参考点与图像中的 定位参考点的对应识别。
在步骤S230中,以第一检测点和第二检测点在扫描图像中的成像点作为入点和出点形成规划路径。
本实施例中在注册后的图像上选择第一检测点和第二检测点分别作为入点/出点,形成规划路径。在不同的操作环境下,也可以在图像中选择两个点,再测对应检测点的空间坐标。
在一些实施例中,注册后可以选择图像或者检测装置100之一所在坐标系为世界坐标系。此时,规划路径的空间坐标也即被表达为世界坐标系中的一条直线,该直线作为规划路径输出。
如上所述,手术机器人300定位***还可以包括光学***600,实现对其它装置的实时跟踪。为了确保精度检测的准确度,可以实时监测检测装置100的空间位置,以防发生位置变动时导致精度检测失准。由此,精度检测方法还包括获取第一检测点和第二检测点的位置信息,当检测点位置信息变化时,对应调整所述规划路径。
在上述过程中,具有实时跟踪功能的光学***600实时监控检测装置100移动(也即,监测检测装置100上的示踪器),并计算出移动的方向和大小,上传给上位机400,上位机400控制手术机器人300可以根据移动的方向和大小等数据进行自身运动的修正,从而保证导向器与规划路径精确一致。为了实现实时监测,光学***600可以以一定频率刷新监测数据。
在步骤S240中,获取手术机器人300运动至规划路径时的空间轴线信息。
在本实施例中,获取手术机器人300运动至规划路径时的空间轴线信息的步骤,可以为获取通过测量手术机器人300执行端处的中心轴线信息作为空间轴线信息。作为一种实施方式,可以通过在执行端处安装测试探针获取中心轴线信息。
在本实施例中,手术机器人300的执行端包括导向装置,测试探针安装在手术机器人300的导向装置上。计算出规划路径后,上位机控制手术 机器人300精确运动,使与其末端相连接的导向器指向此规划路径。测试探针的中心轴线也是导向器的轴线,即手术机器人300实际导航的位置。
图4示出根据本发明实施例的手术机器人定位***精度检测方法中的测试探针的截面示意图。该测试探针200呈柱状,测试探针200的两端具有中心孔210。其中测试探针200的长度L1为50至150毫米,例如是100毫米,其公差在0.05毫米以内。考虑定位***的特点,测试探针为100毫米时,检测数据精准度和占用空间率相对平衡。在不同的应用场景,测试探针200的直径和中心孔210的大小可以根据手术机器人300的实际需求设计。
在一些实施例中,上述测量手术机器人300执行端处测试探针的中心轴线信息为通过三维测量仪测量测试探针的中心轴线信息。
在本实施例中,使用同一个测试装置测试检测点和测试探针的空间位置,从而保证传输给上位机400的数据是在同一个坐标系下,保证测试的精准度。
具体地,上述测量手术机器人300执行端处测试探针的轴线信息可以为:获取过测试探针中心轴线的至少两个拟合点的坐标;以及根据至少两个所述拟合点的坐标拟合得到测试探针中心轴线的位置。
其中,获取过测试探针中心轴线的至少两个拟合点的坐标的步骤为以检测探针两端的中心孔作为第一拟合点、第二拟合点,获取该第一拟合点的坐标为P1(x 1,y 1,z 1),获得该第二拟合点的坐标为P2(x 2,y 2,z 2)。在其他的实施方式中,也不排除在测试探针的其他轴线位置测试获取中心轴线信息。
在步骤S300中,计算所述第一检测点和第二检测点到达所述空间轴线的第一距离La和第二距离Lb。第一距离La、第二距离Lb为手术机器人300在第一检测点、第二检测点处的***精度。
在本实施例中,计算第一检测点和第二检测点到达空间轴线的第一距离La和第二距离Lb的步骤包括通过以下公式计算第一距离La以及第二距离Lb:
Figure PCTCN2019090935-appb-000003
Figure PCTCN2019090935-appb-000004
其中上述公式中,
Figure PCTCN2019090935-appb-000005
i为a或b,将a或b带入式中的i,可以得到La或La,La为第一距离,Lb为第二距离。
此外,在一些实施例中,手术机器人定位***精度检测方法还包括从多个检测点中选择第一检测点和第二检测点之外的两个检测点重复进行精度检测。
当捡取第三检测点、第四检测点以及第五检测点、第六检测点等作为检测点时,可以将上述方法中的第一检测点、第二检测点替换为第三检测点、第四检测点,重复上述步骤得到手术机器人定位***在第三检测点、第四检测点处的***精度,将上述方法中的第一检测点、第二检测点替换为第五检测点、第六检测点,重复上述步骤得到手术机器人定位***在第五检测点、第六检测点处的***精度。手术机器人定位***在上述任意一对检测点的***精度均满足预先声明的要求时,说明手术机器人定位***在该处的***精度合格。
根据本发明实施例的手术机器人定位***精度检测方法,以第一检测点、第二检测点规划预定路径,引入检测探针设置在该路径上,通过获取第一检测点到测试探针中心轴线的第一距离La、第二检测点到测试探针中心轴线的第二距离Lb,即可得到手术机器人定位***在第一检测点、第二检测点处的***精度,实现手术机器人定位***精度的精确检测。多个检测点的精度检测可以在一次位置扫描、标定注册以及路径规划中完成,提高手术机器人定位***精度的检测效率。而且,本发明克服了现有技术中精度检测时点线的距离难以检测的问题,提高了定位***精度检测的精度。
本发明实施例还提供一种手术机器人300的精度检测装置100,其可以应用于上述实施例中手术机器人300定位***检测方法中对手术机器人300在预定检测点处的***精度的检测。手术机器人300的精度检测装置100包括底座110、两个以上支柱120以及两个以上不透X光检测点130。其中每个支柱120包括相对的第一端和第二端,每个支柱120的第一端连 接于底座110,两个以上检测点130一一对应设置于支柱120的第二端。
底座110可以是透X射线性能较好的聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)材料制成,支柱120可以为空心柱状,其可以采用碳纤维以及工程塑料制成。
根据本发明实施例的手术机器人300的精度检测装置100,可以配合完成实现手术机器人300***精度的精确检测。精度检测装置100上可以设置多个检测点130,多个检测点130的精度检测可以在一次位置扫描、标定注册以及路径规划中完成,提高手术机器人300***精度的检测效率。
在一些实施例中,不透X光的检测点130可以为第一金属球,例如是不锈钢球,在医学图像中成像更加清晰。该第一金属球的直径为2.5至3.5毫米。例如是3毫米,直径的误差为0.02毫米以内。
在本实施例中,精度检测装置100还包括多个不透X光注册参考点140,该多个注册参考点140以预定规则排布于底座110的预定平面,用于完成注册。在本实施例中,注册参考点140可以为第二金属球,例如是不锈钢球,在医学图像中成像更加清晰。第二金属球的直径为1.5毫米、直径的误差为0.02毫米以内。通过设置多个注册参考点140,将注册标尺集成于精度检测装置100上,方便进行手术机器人300精度检测时的快速标定注册。
精度检测装置100还可以包括示踪器150,示踪器150与底座110固定,用于示出底座110的空间位置。本实施例的示踪器150包括支架152以及三个以上标识点151。
支架152包括中心部以及自中心部向外辐射设置的三个以上连接部,支架152的中心部与底座110连接。三个以上标识点151对应设置于支架152的连接部,其中至少一个标识点151与其它标识点151不共线。本实施例的支架152包括呈十字交叉的四个连接部,对应地,四个连接部的端部共设置有四个标识点151。在其他实施例中,在保证示踪器被识别的前提下,支架可以做任意改动设计。
图5示出根据本发明实施例的手术机器人300的精度检测装置100的底座110的俯视图,图6示出图5中MM向的截面示意图。底座110具有 安装面111,安装面111上设有两个以上安装孔112,支柱120的第一端与安装孔112可拆卸连接。
安装面111可以是底座110的顶面,本实施例的安装面111为矩形状,包括相邻的第一边和第二边,第一边的长度L2为80至100毫米,例如是90毫米,第二边的长度L3为100至120毫米,例如是110毫米,底座110的高度H1为70至90毫米,例如是80毫米。本实施例的底座110内部具有空间,其中空间的高度H2为60至80毫米,例如是72毫米。
本实施例中,两个以上安装孔112阵列排布,其中两个以上安装孔112的行间距D1为50至70毫米,例如是60毫米,列间距D2为20至40毫米,例如是30毫米。
图7示出根据本发明实施例的手术机器人300的精度检测装置100的支柱120的截面示意图,其中L4为支柱120的长度。本实施例中,支柱120垂直于安装面111,两个以上支柱120包括成对设置的第一组支柱120、第二组支柱120以及第三组支柱120,即每组包括两个支柱120。其中,第一组支柱的长度L4分别为80至90毫米、20至30毫米,第二组支柱的长度L4分别为45至55毫米、20至30毫米,第一组支柱的长度L4分别为20至30毫米、20至30毫米。例如,第一组支柱120的长度L4分别为85毫米、25毫米,第二组支柱120的长度L4分别为50毫米、25毫米,第一组支柱120的长度L4分别为25毫米、25毫米。在其它实施例中,多个支柱120的长度也可以是其它值。
在本实施例中,安装孔112的孔径为5至8毫米,例如是6毫米,孔深为4至6毫米,例如是5毫米。支柱120为空心柱,支柱120的一端设有与安装孔112匹配的连接件121,支柱120的外径D3为5至8毫米,例如是6毫米,内径D4为4至7毫米,例如是5毫米,连接件121的外径D5为5至8毫米,例如是6毫米,连接件121自支柱120的一端外延L5的长度L5为5至8毫米,例如是5毫米,连接件121可以部分内嵌于支柱120内,其中内嵌部分的长度L6为5至8毫米,例如是5毫米。
依照本发明如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可 作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (23)

  1. 一种手术机器人定位***精度检测方法,用于检测所述手术机器人定位***精度,其特征在于,所述方法包括:
    获取第一检测点、第二检测点的空间位置坐标;
    获取手术机器人到达规划路径时的空间轴线信息,其中,所述规划路径以所述第一检测点和第二检测点为基础形成;
    计算所述第一检测点和第二检测点到达所述空间轴线的第一距离和第二距离。
  2. 根据权利要求1所述的方法,其特征在于,所述获得第一检测点、第二检测点的空间位置坐标的步骤,为获取通过三维测量仪测量的所述第一检测点、第二检测点的空间位置坐标。
  3. 根据权利要求1所述的方法,其特征在于,获取手术机器人到达规划路径时的空间轴线信息的步骤,包括:
    获取所述第一检测点、第二检测点在所述手术机器人定位***下的扫描图像;
    以所述第一检测点和第二检测点在所述扫描图像中的成像点作为入点和出点形成所述规划路径;
    获取手术机器人运动至所述规划路径时的空间轴线信息。
  4. 根据权利要求3所述的方法,其特征在于,在获取所述扫描图像之后还包括对所述扫描图像与所述第一检测点和第二检测点进行图像配准注册的步骤。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    以一定频率获取所述第一检测点和第二检测点的位置信息,当所述检测点位置信息变化时,对应调整所述规划路径。
  6. 根据权利要求3所述的方法,其特征在于,所述获取手术机器人运动至所述规划路径时的空间轴线信息的步骤,为获取通过测量手术机器人执行端处测试探针的中心轴线信息作为所述空间轴线信息。
  7. 根据权利要求6所述的方法,其特征在于,所述测量手术机器人 执行端处测试探针的中心轴线信息为通过三维测量仪测量测试探针的中心轴线信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述测量手术机器人执行端处测试探针的轴线信息为:
    获取过所述测试探针中心轴线的至少两个拟合点的坐标;以及
    根据至少两个所述拟合点的坐标拟合得到所述测试探针中心轴线的位置。
  9. 根据权利要求8所述的方法,其特征在于,所述获取过测试探针中心轴线的至少两个拟合点的坐标的步骤为以所述检测探针两端的中心孔作为第一拟合点、第二拟合点,获取所述第一拟合点的坐标为P1(x 1,y 1,z 1),获得所述第二拟合点的坐标为P2(x 2,y 2,z 2)。
  10. 根据权利要求9所述的方法,其特征在于,所述第一检测点的坐标为Xa(x a,y a,z a),所述第二检测点的坐标为Xb(x b,y b,z b),
    计算所述第一检测点和第二检测点到达所述空间轴线的第一距离和第二距离的步骤包括通过以下公式计算所述第一距离以及所述第二距离:
    Figure PCTCN2019090935-appb-100001
    其中,
    Figure PCTCN2019090935-appb-100002
    i为a或b;
    La为所述第一距离,Lb为所述第二距离。
  11. 根据权利要求5所述的方法,其特征在于,所述测试探针的长度为50-150毫米。
  12. 根据权利要求1所述的方法,其特征在于,还包括:
    从多个检测点中选择第一检测点和第二检测点之外的两个检测点重复进行精度检测。
  13. 一种手术机器人定位***精度检测装置,用于对手术机器人定位***进行精度检测,其特征在于,包括:
    底座;
    两个以上支柱,每个所述支柱包括相对的第一端和第二端,所述第一端连接于所述底座;以及
    两个以上不透X光检测点,一一对应设置于所述支柱的所述第二端。
  14. 根据权利要求13所述的检测装置,其特征在于,所述检测点直径为2.5-3.5毫米。
  15. 根据权利要求13所述的检测装置,其特征在于,还包括:
    多个不透X光注册参考点,以预定规则排布于所述底座。
  16. 根据权利要求15所述的检测装置,其特征在于,所述注册参考点的直径为1.0-2.0毫米。
  17. 根据权利要求13所述的检测装置,其特征在于,还包括:
    示踪器,与所述底座固定,用于示出所述底座的空间位置。
  18. 根据权利要求17所述的检测装置,其特征在于,所述示踪器包括:
    支架;以及
    三个以上标识点,设置于所述支架,其中至少一个所述标识点与其它所述标识点不共线。
  19. 根据权利要求13所述的检测装置,其特征在于,所述底座具有安装面,所述安装面上设有两个以上安装孔,所述支柱的所述第一端与所述安装孔可拆卸连接。
  20. 根据权利要求19所述的检测装置,其特征在于,所述支柱垂直于所述安装面,两个以上所述支柱包括成对设置的第一组支柱、第二组支柱以及第三组支柱,其中,所述第一组支柱的长度分别为80至90毫米、20至30毫米,所述第二组支柱的长度分别为45至55毫米、20至30毫米,所述第一组支柱的长度分别为20至30毫米、20至30毫米。
  21. 根据权利要求19所述的检测装置,其特征在于,两个以上所述安装孔阵列排布,其中两个以上所述安装孔的行间距为50至70毫米,列间距为20至40毫米。
  22. 根据权利要求19所述的检测装置,其特征在于,所述安装孔的孔径为5至8毫米,孔深为5至8毫米;
    所述支柱为空心柱,所述支柱的一端设有与所述安装孔匹配的连接件,所述支柱的外径为5至8毫米,内径为4至7毫米,所述连接件的外径为5至8毫米,所述连接件自所述支柱的一端外延5至8毫米。
  23. 根据权利要求19所述的检测装置,其特征在于,所述安装面为所述底座的顶面,所述安装面为矩形状,包括相邻的第一边和第二边,所述第一边的长度为80至100毫米,所述第二边的长度为100至120毫米,所述底座高70至90毫米。
PCT/CN2019/090935 2018-11-23 2019-06-12 手术机器人定位***精度检测方法及检测装置 WO2020103431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811409733.5A CN109490830A (zh) 2018-11-23 2018-11-23 手术机器人定位***精度检测方法及检测装置
CN201811409733.5 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103431A1 true WO2020103431A1 (zh) 2020-05-28

Family

ID=65696550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090935 WO2020103431A1 (zh) 2018-11-23 2019-06-12 手术机器人定位***精度检测方法及检测装置

Country Status (3)

Country Link
US (1) US10932865B2 (zh)
CN (1) CN109490830A (zh)
WO (1) WO2020103431A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176777A (zh) * 2021-12-20 2022-03-15 北京诺亦腾科技有限公司 手术辅助导航***的精度检测方法、装置、设备及介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213965A1 (de) * 2016-07-28 2018-02-01 Kuka Roboter Gmbh Einsteckadapter, Justageinstrument und zugehöriger Roboter
CN109490830A (zh) * 2018-11-23 2019-03-19 北京天智航医疗科技股份有限公司 手术机器人定位***精度检测方法及检测装置
CN111037561B (zh) * 2019-12-27 2021-09-07 武汉联影智融医疗科技有限公司 一种空间注册方法和装置
CN111110351B (zh) * 2020-01-10 2021-04-30 北京天智航医疗科技股份有限公司 用于检测关节置换手术机器人***精度的组件和方法
CN112006779B (zh) * 2020-09-27 2024-05-03 安徽埃克索医疗机器人有限公司 一种手术导航***精度检测方法
CN112378421B (zh) * 2020-11-20 2022-07-08 山东威高医疗科技有限公司 用于测试电磁导航***定位精度的装置及方法
CN112710228A (zh) * 2020-11-30 2021-04-27 中国航空工业集团公司北京长城航空测控技术研究所 一种基于全局测量的机器人铣边路径规划***及方法
CN112998852A (zh) * 2021-02-19 2021-06-22 杭州柳叶刀机器人有限公司 一种验证精度的方法、装置、终端及存储介质
CN113199510B (zh) * 2021-06-09 2022-08-16 杭州柳叶刀机器人有限公司 手术导航机器人精度检验方法
CN114052915B (zh) * 2021-11-02 2023-11-21 武汉联影智融医疗科技有限公司 手术机器人定位精度的测试方法、***和模体
CN113813049B (zh) * 2021-11-19 2022-02-18 极限人工智能有限公司 手术机器人***及校验方法
CN114159162B (zh) * 2021-12-06 2022-08-05 北京诺亦腾科技有限公司 手术规划路径的精度检测方法、装置、设备及介质
CN113974840A (zh) * 2021-12-29 2022-01-28 北京壹点灵动科技有限公司 示踪器安装组件、手术器械装置及手术用机械手
CN114366356B (zh) * 2022-01-17 2023-03-14 北京理工大学 自主式种植牙机器人定位精度评估装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448398A (zh) * 2009-06-01 2012-05-09 皇家飞利浦电子股份有限公司 基于距离的位置跟踪方法和***
WO2012108578A1 (ko) * 2011-02-11 2012-08-16 전남대학교 산학협력단 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템
CN104083217A (zh) * 2014-07-03 2014-10-08 北京天智航医疗科技股份有限公司 一种手术定位装置和方法以及机器人手术***
CN105066916A (zh) * 2015-09-01 2015-11-18 北京天智航医疗科技股份有限公司 一种手术机器人***精度检测装置及方法
CN106691600A (zh) * 2016-11-21 2017-05-24 胡磊 一种脊柱椎弓根钉植入定位装置
CN107468351A (zh) * 2016-06-08 2017-12-15 北京天智航医疗科技股份有限公司 一种手术定位装置、定位***及定位方法
CN109490830A (zh) * 2018-11-23 2019-03-19 北京天智航医疗科技股份有限公司 手术机器人定位***精度检测方法及检测装置
CN209296906U (zh) * 2018-11-23 2019-08-23 北京天智航医疗科技股份有限公司 手术机器人定位***精度检测装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004024378B4 (de) * 2004-05-17 2009-05-20 Kuka Roboter Gmbh Verfahren zur robotergestützten Vermessung von Objekten
DE602007010753D1 (de) * 2006-04-21 2011-01-05 Faro Tech Inc Kamerabasierte vorrichtung zur zielmessung und zielverfolgung mit sechs freiheitsgraden und drehbarem spiegel
WO2008062285A2 (en) * 2006-11-22 2008-05-29 Health Robotics S.R.L. Method and machine for manipulating toxic substances
CN100581447C (zh) * 2007-01-15 2010-01-20 杭州市萧山区中医院 骨科手术导航***
DE102007055205A1 (de) * 2007-11-19 2009-05-20 Kuka Roboter Gmbh Verfahren zum Ermitteln eines Aufstellortes und zum Aufstellen einer Erfassungsvorrichtung eines Navigationssystems
JP5216949B2 (ja) * 2008-06-04 2013-06-19 国立大学法人 東京大学 手術支援装置
CN103759635B (zh) * 2013-12-25 2016-10-26 合肥工业大学 一种精度与机器人无关的扫描测量机器人检测方法
CN104799933A (zh) * 2015-03-18 2015-07-29 清华大学 一种用于骨外科定位引导的手术机器人运动补偿方法
GB201509341D0 (en) * 2015-05-29 2015-07-15 Cambridge Medical Robotics Ltd Characterising robot environments
CN106610264B (zh) * 2015-10-22 2019-04-30 沈阳新松机器人自动化股份有限公司 预对准机坐标系的标定方法
US10596706B2 (en) * 2016-04-08 2020-03-24 Delta Electronics, Inc. Mechanism-parameter-calibration method for robotic arm system
US10723022B2 (en) * 2016-09-16 2020-07-28 Carbon Robotics, Inc. System and calibration, registration, and training methods
CN107714176A (zh) * 2017-11-10 2018-02-23 威海威高骨科手术机器人有限公司 导航参考件
CN108577977B (zh) * 2018-03-19 2020-10-30 山东大学 穿刺针及穿刺针运动轨迹的三维重建方法及***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448398A (zh) * 2009-06-01 2012-05-09 皇家飞利浦电子股份有限公司 基于距离的位置跟踪方法和***
WO2012108578A1 (ko) * 2011-02-11 2012-08-16 전남대학교 산학협력단 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템
CN104083217A (zh) * 2014-07-03 2014-10-08 北京天智航医疗科技股份有限公司 一种手术定位装置和方法以及机器人手术***
CN105066916A (zh) * 2015-09-01 2015-11-18 北京天智航医疗科技股份有限公司 一种手术机器人***精度检测装置及方法
CN107468351A (zh) * 2016-06-08 2017-12-15 北京天智航医疗科技股份有限公司 一种手术定位装置、定位***及定位方法
CN106691600A (zh) * 2016-11-21 2017-05-24 胡磊 一种脊柱椎弓根钉植入定位装置
CN109490830A (zh) * 2018-11-23 2019-03-19 北京天智航医疗科技股份有限公司 手术机器人定位***精度检测方法及检测装置
CN209296906U (zh) * 2018-11-23 2019-08-23 北京天智航医疗科技股份有限公司 手术机器人定位***精度检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176777A (zh) * 2021-12-20 2022-03-15 北京诺亦腾科技有限公司 手术辅助导航***的精度检测方法、装置、设备及介质
CN114176777B (zh) * 2021-12-20 2022-07-01 北京诺亦腾科技有限公司 手术辅助导航***的精度检测方法、装置、设备及介质

Also Published As

Publication number Publication date
US20200163725A1 (en) 2020-05-28
US10932865B2 (en) 2021-03-02
CN109490830A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2020103431A1 (zh) 手术机器人定位***精度检测方法及检测装置
CN112006779B (zh) 一种手术导航***精度检测方法
CN107042528B (zh) 一种工业机器人的运动学标定***及方法
KR102086940B1 (ko) 3차원 비접촉 스캐닝 시스템의 현장 교정
US6311540B1 (en) Calibration method and apparatus for calibrating position sensors on scanning transducers
CA2565520C (en) Targets and methods for ultrasound catheter calibration
CN107209003A (zh) 用于机器人校准和监测的激光测量仪
Leotta An efficient calibration method for freehand 3-D ultrasound imaging systems
JP2005134394A (ja) 3d測定装置をキャリブレーションする方法
JP2005152187A (ja) 3次元超音波ファントム
US8887551B2 (en) Calibration of instrument relative to ultrasonic probe
CN111256591B (zh) 一种结构光传感器的外参标定装置及方法
US20080123110A1 (en) Multifaceted digitizer adapter
KR100996826B1 (ko) 수술용 항법 장치용 도구의 교정 방법
CN117717417A (zh) 一种手术导航机器人标志点识别配准方法、***及设备
CN111145247B (zh) 基于视觉的位置度检测方法及机器人、计算机存储介质
JP5098174B2 (ja) 3次元形状測定装置
CN209296906U (zh) 手术机器人定位***精度检测装置
WO2020041941A1 (en) Method for measuring positions
CN115619836A (zh) 一种焦屏距校准方法及装置
Xue et al. Architectural stability analysis of the rotary-laser scanning technique
Franaszek et al. Gauging the repeatability of 3-d imaging systems by sphere fitting
CN111821026B (zh) 单点定位手术器械、标定工具及标定方法
CN114366356B (zh) 自主式种植牙机器人定位精度评估装置和方法
CN106651947A (zh) 一种超声成像弧度测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887148

Country of ref document: EP

Kind code of ref document: A1