WO2020100992A1 - Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure - Google Patents

Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure Download PDF

Info

Publication number
WO2020100992A1
WO2020100992A1 PCT/JP2019/044741 JP2019044741W WO2020100992A1 WO 2020100992 A1 WO2020100992 A1 WO 2020100992A1 JP 2019044741 W JP2019044741 W JP 2019044741W WO 2020100992 A1 WO2020100992 A1 WO 2020100992A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
coated particles
particles
particle
coated
Prior art date
Application number
PCT/JP2019/044741
Other languages
French (fr)
Japanese (ja)
Inventor
悠人 土橋
昌男 笹平
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020556174A priority Critical patent/JPWO2020100992A1/en
Publication of WO2020100992A1 publication Critical patent/WO2020100992A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to metal-coated particles including base particles and metal parts arranged on the surface of the base particles.
  • the present invention also relates to a particle connected body using the metal-coated particles, a method for producing the particle connected body, a connecting material, and a connecting structure.
  • the above anisotropic conductive material is used to obtain various connection structures.
  • Examples of the connection using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor.
  • Examples include connection between a chip and a glass substrate (COG (Chip on Glass)) and connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)).
  • the anisotropic conductive material for example, when electrically connecting the electrode of the flexible printed board and the electrode of the glass epoxy substrate, the anisotropic conductive material containing conductive particles is arranged on the glass epoxy substrate. To do. Next, the flexible printed boards are laminated, and heated and pressed. As a result, the anisotropic conductive material is cured and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
  • Patent Document 1 discloses conductive particles including a core, a conductive layer that covers the surface of the core, and an insulating layer that covers the surface of the conductive layer.
  • the core has a material whose melting point or softening point is T 1 (° C.) as a main component.
  • the conductive layer contains a material having a melting point of T 2 (° C.) as a main component.
  • the insulating layer is made of a resin composition having a softening point of T 3 (° C.).
  • T 1 , T 2 , and T 3 satisfy the following formula (1).
  • solder is used as the material of the conductive layer.
  • Patent Document 2 discloses a conductive particle having a core particle and a surface layer covering the surface of the core particle.
  • the core particles include a resin material.
  • the surface layer contains a solder material.
  • the melting point of the solder material is equal to or lower than the softening point of the resin material.
  • a plurality of upper electrodes and a plurality of lower electrodes are electrically connected to each other to make a conductive connection.
  • the conductive particles are preferably arranged between the upper and lower electrodes, and are preferably not arranged between adjacent lateral electrodes.
  • the conductive material containing conductive particles may be placed in a specific position on the substrate and then heated in the atmosphere to make conductive connection.
  • the conductive material is heated to a temperature equal to or higher than the melting point of the conductive particles, the conductive particles are melted and a metal such as solder is aggregated between the electrodes, so that the upper and lower electrodes are electrically connected.
  • Conventional conductive particles containing solder may oxidize the solder surface if left in the air atmosphere or heated in the air atmosphere.
  • the conductive particles whose surface of the solder has been oxidized may not be able to sufficiently spread and spread during conductive connection, and the upper and lower electrodes may not be electrically connected.
  • a joint part that electrically connects electrodes may be repeatedly heated due to reflow or the like. When the joint formed by the solder is repeatedly heated, the joint may be remelted, and the electrical connection between the electrodes may not be maintained. As a result, it may be difficult to improve the conduction reliability between the electrodes.
  • An object of the present invention is to provide a metal-coated particle that can effectively enhance conduction reliability when electrically connecting electrodes, and further can effectively enhance insulation reliability. is there. Further, an object of the present invention is to provide a particle connected body using the metal-coated particles, a method for producing the particle connected body, a connecting material and a connecting structure.
  • a metal-coated particle comprising a substrate particle and a metal part arranged on a surface of the substrate particle, the metal-coated particle being in an air atmosphere and at a temperature of 100.
  • the metal part has a property of forming a metal bond by heating under a heating condition of °C or more, and 20 mg of the metal-coated particles are heated from 25 ° C to 250 ° C in an air atmosphere at a heating rate of 1 ° C / min.
  • Metal-coated particles are provided in which one or more exothermic peaks are observed when heated at differential scanning calorimetry.
  • differential scanning calorimetry was performed by heating 20 mg of the metal-coated particles in the atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min. Sometimes no endothermic peak is observed.
  • differential scanning calorimetry was performed by heating 20 mg of the metal-coated particles in the atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min. Occasionally, four or less exothermic peaks are observed.
  • the metal portion has a protrusion on the outer surface thereof.
  • the average height of the protrusions is 3 nm or more and 2000 nm or less.
  • the average diameter of the base of the protrusion is 3 nm or more and 2000 nm or less.
  • the area of the portion having the protrusion is 10% or more in the total surface area of 100% of the outer surface of the metal portion.
  • the material of the metal portion is gold, silver, copper, nickel, tin, indium, zinc, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium. , Bismuth, phosphorus, boron or alloys thereof.
  • the compression elastic modulus of when compressed 10% it is 100 N / mm 2 or more 60000N / mm 2 or less.
  • the metal-coated particles are measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,2
  • the ratio of the intensity ratio is calculated from the sum of the peak intensity values of the (0) plane and the (3,1,1) plane
  • the ratio of the intensity ratio of the (1,1,1) plane is 40% or more.
  • the ratio of the strength ratio of the (2,0,0) plane is 30% or less
  • the ratio of the strength ratio of the (2,2,0) plane is 20% or less
  • the ratio of the surface strength ratio is 20% or less.
  • thermogravimetric measurement when 20 mg of the metal-coated particle is heated in an air atmosphere from 25 ° C. to 600 ° C. at a temperature rising rate of 10 ° C./min, thermogravimetric measurement is performed.
  • the thermal decomposition starting temperature of the metal-coated particles is 180 ° C. or higher, or the metal-coated particles do not thermally decompose.
  • the outer surface of the metal part is surface-treated.
  • a particle connected body including the above-mentioned metal-coated particles and a columnar connecting portion connecting a plurality of the metal-coated particles.
  • the above metal-coated particles are subjected to a pressure condition of 0 MPa or more and 200 MPa or less, and a heating temperature of 100 ° C. or more and 400 ° C. or less and a heating time of 0.5 minutes or more and 300 minutes or less.
  • a method for producing a particle-attached body which comprises a treatment step of obtaining a particle-attached body by treatment, wherein a columnar connecting portion connecting the plurality of metal-coated particles is formed in the heat treatment step.
  • a connecting material including the metal-coated particles described above and a binder.
  • connection target member a first connection target member, a second connection target member, a connection portion connecting the first connection target member, and the second connection target member.
  • the connection structure is provided, in which the material of the connection part is the above-mentioned metal-coated particles or a connection material containing the metal-coated particles and a binder.
  • the metal-coated particles according to the present invention include base particles and metal parts arranged on the surfaces of the base particles.
  • the metal-coated particle according to the present invention has a property of forming a metal bond by heating the metal-coated particle under an air atmosphere under a heating condition of a temperature of 100 ° C. or higher.
  • the metal-coated particles according to the present invention when 20 mg of the metal-coated particles are heated in the air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, one particle is obtained. The above exothermic peaks are observed. Since the metal-coated particles according to the present invention are provided with the above-mentioned constitution, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and the insulation reliability can be effectively improved. Can be increased to
  • FIG. 1 is a cross-sectional view schematically showing metal-coated particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing metal-coated particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing metal-coated particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a particle connected body using the metal-coated particles according to the first embodiment of the present invention.
  • FIG. 5 is sectional drawing which shows typically the modification of the particle connection body which used the metal coating particle which concerns on the 1st Embodiment of this invention.
  • FIG. 5 is sectional drawing which shows typically the modification of the particle connection body which used the metal coating particle which concerns on the 1st Embodiment of this invention.
  • FIG. 6 is a sectional view schematically showing a connection structure using the metal-coated particles according to the first embodiment of the present invention.
  • FIG. 7 is sectional drawing which shows typically the 1st modification of the connection structure using the metal coating particle which concerns on the 1st Embodiment of this invention.
  • FIG. 8 is sectional drawing which shows typically the 2nd modification of the connection structure using the particle
  • 9 is a figure which shows the image of the particle
  • FIG. 10A and 10B are a plan view and a cross-sectional view showing an example of a continuity inspection member.
  • FIG. 10B is a sectional view taken along the line AA in FIG. FIGS.
  • FIG. 11A to 11C are diagrams schematically showing how the electrical characteristics of the electronic circuit device are inspected by using the continuity inspection apparatus.
  • FIG. 12 is sectional drawing which shows typically the touch panel with a tactile feedback function using the particle
  • FIG. 13 is sectional drawing which shows typically the electronic component apparatus using the particle
  • FIG. 14 is an enlarged sectional view showing a joint portion in the electronic component device shown in FIG.
  • the metal-coated particles according to the present invention include base particles and metal parts arranged on the surfaces of the base particles.
  • the metal-coated particle according to the present invention has a property of forming a metal bond by heating the metal-coated particle under an air atmosphere under a heating condition of a temperature of 100 ° C. or higher.
  • the metal-coated particles according to the present invention when 20 mg of the metal-coated particles are heated in the air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, one particle is obtained. The above exothermic peaks are observed.
  • the metal-coated particles according to the present invention are provided with the above-mentioned constitution, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and the insulation reliability can be effectively improved. Can be increased to
  • Conventional conductive particles containing solder may oxidize the solder surface if left in the air atmosphere or heated in the air atmosphere.
  • the conductive particles whose surface of the solder has been oxidized cannot spread sufficiently and may not be able to electrically connect the upper and lower electrodes during conductive connection.
  • a joint part that electrically connects electrodes may be repeatedly heated due to reflow or the like. When the joint formed by the solder is repeatedly heated, the joint may be remelted, and the electrical connection between the electrodes may not be maintained. As a result, it may be difficult to improve the conduction reliability between the electrodes.
  • the miniaturization and narrowing of electronic circuits have progressed, and when conductive connection is made using conventional conductive particles containing solder, the solder may spread when it melts. When the solder wets and spreads, a bridge may be formed between the adjacent electrodes, and the insulation reliability between the adjacent electrodes may decrease.
  • the bridge means a conductive path formed by spreading and spreading solder to an adjacent electrode.
  • the inventors of the present invention use metal-coated particles having a specific metal portion to form a metal bond by metal diffusion or sintering rather than melting the metal portion, so that conduction reliability and insulation reliability between electrodes can be improved. It was found that the sex can be effectively enhanced.
  • the metal bond can be formed with the electrode or the like by diffusing or sintering the metal part, conductive connection is possible even in the atmosphere.
  • the joint portion that electrically connects the electrodes is formed by metal diffusion or sintering, the joint portion is not remelted even if it is repeatedly heated, and the electric power between the electrodes is not remelted. Effective connection can be effectively maintained.
  • the metal portion is diffused rather than melted, so that it does not spread like wetting and does not form a bridge between adjacent electrodes.
  • the metal part and the metal bond can be formed by diffusing or sintering the metal part, when the electrodes are electrically connected, the reliability of conduction between the upper and lower electrodes to be connected is high. And the insulation reliability between adjacent lateral electrodes that must not be connected can be effectively increased.
  • metal diffusion means that metal atoms are diffused at a joint portion such as a metal portion or an electrode by heat, pressure, deformation or the like. Therefore, in the present invention, the metal bond in “(1) the property that the metal part forms a metal bond by heating in the atmosphere and at a temperature of 100 ° C. or higher” is formed by metal diffusion. In that case, the property of (1) can be paraphrased as (1A) below. "(1A) The property of the metal portion diffusing at the joint portion such as the metal portion or the electrode due to heat, pressure, deformation or the like by heating in an atmosphere atmosphere and at a temperature of 100 ° C. or higher"
  • the term “sintering” means that metal atoms move at a temperature lower than the melting point peculiar to the metal, resulting in a bond between the metal parts. Therefore, in the present invention, the metal bond in “(1) the property that the metal part forms a metal bond by heating in an air atmosphere and under a heating condition of a temperature of 100 ° C. or more” is formed by sintering. In that case, the property of (1) can be rephrased as (1B) below. "(1B) The property that when the metal part is heated under a heating condition of 100 ° C. or higher in the air atmosphere, the metal atom moves at a temperature lower than the melting point peculiar to the metal, and a bond is generated between the metal parts. "
  • the metal-coated particles by adjusting the concentration of the metal-coated particles, adjacent metal-coated particles can be metal-bonded by sintering. Therefore, the metal-coated particles can be used as a die-bonding material for bonding a semiconductor chip or the like to a substrate (for forming a metal bonding portion).
  • a dense metal joint, a metal joint having a plurality of minute voids, or the like can be formed depending on conditions for forming the metal joint such as a heating temperature, a heating time, and a pressure at the time of heating. The state of can be controlled.
  • the metal joint portion having a plurality of minute voids can alleviate internal stress generated due to a difference in linear expansion coefficient between constituent materials due to a cooling / heating cycle or the like, and can enhance conduction reliability. Further, by placing the metal-coated particles on the electrode pad of the printed circuit board and sintering the metal-coated particles, a metal bond can be formed between the metal-coated particles and the electrode pad, and the metal-coated particles can be placed on the electrode pad. Can be fixed. 2. Description of the Related Art In recent years, electronic devices have become smaller and more sophisticated, and electrodes and wirings in electronic circuits have also been miniaturized, have multiple pins, and have been miniaturized.
  • the metal-coated particles according to the present invention can be used as a substitute for a metal pin of a connector, a substitute for a solder ball for connecting a semiconductor chip or the like, and can cope with a narrower pitch of electrodes and a larger number of pins. it can.
  • the metal-coated particles according to the present invention in the metal joint it is possible to cope with the thinning of the electrode and enhance the high frequency characteristics.
  • the metal-coated particles according to the present invention include base particles and metal parts arranged on the surfaces of the base particles.
  • the metal part may have a single-layer structure or a multi-layer structure having two or more layers.
  • the metal part preferably has conductivity.
  • the metal-coated particles preferably have conductivity, and are preferably conductive particles.
  • the metal-coated particles have a property of forming a metal bond by heating the metal-coated particles under a heating condition of a temperature of 100 ° C. or higher in the air atmosphere.
  • the conductive connection can be performed under the atmospheric condition, and it is possible to omit the step of performing a condition other than the atmospheric condition such as nitrogen substitution during the conductive connection like the conventional conductive particles containing solder. Therefore, the cost at the time of conductive connection can be effectively reduced.
  • the heating temperature under the above heating conditions is preferably 100 ° C or higher, more preferably 150 ° C or higher, preferably 400 ° C or lower, more preferably 350 ° C or lower, and further preferably 250 ° C or lower.
  • the metal-coated particles have a property of forming a metal bond between the metal parts or between the metal part and the electrode by heating or heating the metal part under the above heating conditions so that the metal part is diffused or sintered. It is preferable to have.
  • the metal-coated particles according to the present invention when 20 mg of the metal-coated particles are heated in the air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, one particle is obtained.
  • the above exothermic peaks are observed.
  • the observed exothermic peak is considered to be derived from metal diffusion or sintering of the metal part.
  • the observed exothermic peak is preferably a peak derived from metal diffusion or sintering of the metal part.
  • the differential scanning calorimetry is carried out by heating from 25 ° C. to 250 ° C. in the atmosphere at a temperature rising rate.
  • melting of metals and the like is an endothermic reaction, and is observed as an endothermic peak in differential scanning calorimetry.
  • the metal part does not melt when the differential scanning calorimetry is performed by heating 20 mg of the above metal-coated particles at a temperature rising rate of 1 ° C./min from 25 ° C. to 250 ° C. in an air atmosphere. It is preferable that the endothermic reaction due to the melting of does not occur.
  • the above metal-coated particles satisfy the above-mentioned preferred embodiments, it is possible to further effectively improve the conduction reliability and further effectively improve the insulation reliability when the electrodes are electrically connected. You can
  • the metal-coated particles when 20 mg of the metal-coated particles are heated in an air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min and a differential scanning calorimetry is performed, no more than 4 exotherms are generated. It is preferable that a peak be observed, and it is more preferable that three or less exothermic peaks be observed. The number of exothermic peaks observed may be two or one. When the number of the exothermic peaks is equal to or less than the upper limit, it is possible to further effectively improve the conduction reliability when the electrodes are electrically connected, and further more effectively improve the insulation reliability. Can be increased.
  • a differential scanning calorimeter (“TA7000” manufactured by Hitachi High-Tech Science Co., Ltd.) or the like is used for the differential scanning calorimetric measurement.
  • the particle diameter of the metal-coated particles is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 30 ⁇ m or less, particularly preferably It is 20 ⁇ m or less.
  • the particle diameter of the metal-coated particles is not less than the lower limit and not more than the upper limit, the contact area between the metal-coated particles and the electrode becomes sufficiently large when the electrodes are connected, and at the time of forming the metal part. It becomes difficult to form the metal-coated particles that have been aggregated into.
  • the distance between the electrodes does not become too large, and the metal part is less likely to peel off from the surface of the base material particles. Further, when the particle diameter of the metal-coated particles is 1 ⁇ m or more and 30 ⁇ m or less, the metal-coated particles suitable for connecting two members to be connected can be obtained.
  • the particle size of the metal-coated particles is preferably the average particle size, and more preferably the number average particle size.
  • the particle diameter of the metal-coated particles is, for example, by observing 50 arbitrary metal-coated particles with an electron microscope or an optical microscope, calculating the average value of the particle diameters of the metal-coated particles, and measuring the laser diffraction particle size distribution. Is obtained by performing. In observation with an electron microscope or an optical microscope, the particle size of each metal-coated particle is determined as the particle size in terms of a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of the circle-equivalent diameter of any 50 metal-coated particles is almost equal to the average particle diameter of the sphere-equivalent diameter. In the laser diffraction type particle size distribution measurement, the particle size of each metal-coated particle is determined as the particle size in terms of sphere equivalent diameter.
  • the average particle size of the metal-coated particles is preferably calculated by laser diffraction particle size distribution measurement.
  • the coefficient of variation (CV value) of the particle diameter of the metal-coated particles is preferably 10% or less, more preferably 5% or less.
  • CV value coefficient of variation
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of metal-coated particles Dn: Average value of particle diameter of metal-coated particles
  • the shape of the metal-coated particles is not particularly limited.
  • the shape of the metal-coated particles may be spherical, may be a shape other than spherical, and may be flat or the like.
  • the compression modulus (10% K value) when the metal-coated particles are compressed by 10% is preferably 100 N / mm 2 or more, more preferably 1000 N / mm. 2 or more, more preferably 3000N / mm 2 or more, and particularly preferably 5000N / mm 2 or more.
  • the compression modulus (10% K value) when the metal-coated particles are compressed by 10% is preferably 60000 N / mm 2 or less, more preferably 25000 N / mm. 2 or less, more preferably 10000 N / mm 2 or less, and particularly preferably 9000 N / mm 2 or less.
  • the compression modulus (10% K value) of the metal-coated particles can be measured as follows.
  • the metal-coated particles are compressed under the conditions of 25 ° C, a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN on the end face of a cylinder (diameter 100 ⁇ m, made of diamond).
  • the load value (N) and the compression displacement (mm) are measured.
  • the compression elastic modulus can be calculated by the following formula.
  • "Fisherscope H-100" manufactured by Fisher, Inc. is used as the above-mentioned micro compression tester.
  • the metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane
  • the ratio of the intensity ratio is calculated from the sum of the peak intensity values.
  • the ratio of the strength ratio of the (1,1,1) plane is preferably 40% or more, more preferably 45% or more, further preferably 55% or more, particularly preferably 56% or more, Most preferably, it is 60% or more.
  • the ratio of the strength ratio of the (1,1,1) plane is equal to or more than the above lower limit, conduction reliability can be further effectively improved when the electrodes are electrically connected, and The insulation reliability can be improved more effectively.
  • the metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane
  • the ratio of the intensity ratio is calculated from the sum of the peak intensity values
  • the ratio of the intensity ratio of the (2,0,0) plane is preferably 30% or less, more preferably 25% or less, further preferably 20%. It is below.
  • the ratio of the strength ratio of the (2,0,0) plane is equal to or less than the upper limit, the conduction reliability can be more effectively enhanced when the electrodes are electrically connected, and further, The insulation reliability can be improved more effectively.
  • the metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane
  • the ratio of the intensity ratio is calculated from the sum of the peak intensity values
  • the ratio of the intensity ratio of the (2,2,0) plane is preferably 20% or less, more preferably 15% or less, further preferably 12%. It is particularly preferably 10% or less.
  • the ratio of the strength ratio of the (2,2,0) plane is equal to or less than the upper limit, the conduction reliability can be more effectively enhanced when the electrodes are electrically connected, and The insulation reliability can be improved more effectively.
  • the metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane
  • the ratio of the intensity ratio of the (3,1,1) plane is preferably 20% or less, more preferably 15% or less, further preferably 13%. It is particularly preferably 10% or less.
  • the ratio of the strength ratio of the (3,1,1) plane is equal to or less than the upper limit, the conduction reliability can be more effectively improved when the electrodes are electrically connected, and The insulation reliability can be improved more effectively.
  • the thermal decomposition start temperature of the metal-coated particles is 180 ° C. It is preferable that the above is satisfied, or the metal-coated particles are not thermally decomposed.
  • the thermal decomposition start temperature of the metal-coated particles is 180 ° C. The above is preferable, and it is more preferable that the metal-coated particles are not thermally decomposed.
  • the thermal decomposition start temperature means the temperature when the weight of the metal-coated particles decreases by 10% (when the weight of the metal-coated particles reaches 18 mg) in thermogravimetric measurement.
  • that the metal-coated particles do not thermally decompose means that the weight of the metal-coated particles does not decrease by 10% in thermogravimetric measurement (the weight of the metal-coated particles does not reach 18 mg).
  • thermogravimetric measurement can be carried out using a thermogravimetric differential thermal analyzer (“Thermo Puls EVO02” manufactured by Rigaku).
  • FIG. 1 is a cross-sectional view schematically showing the metal-coated particles according to the first embodiment of the present invention.
  • the metal-coated particle 1 shown in FIG. 1 has a base particle 11 and a metal part 12.
  • the metal portion 12 is arranged on the surface of the base particle 11.
  • the metal part 12 is in contact with the surface of the base particle 11.
  • the metal part 12 covers the surface of the base particle 11.
  • the metal coated particle 1 is a coated particle in which the surface of the base material particle 11 is coated with the metal portion 12.
  • the metal part 12 is a single-layer conductive layer.
  • the metal-coated particle 1 does not have a core substance, unlike the metal-coated particles 1A and 1B described later.
  • the metal-coated particles 1 do not have protrusions on the conductive surface and do not have protrusions on the outer surface of the metal portion 12.
  • the metal-coated particles 1 are spherical.
  • the metal-coated particles according to the present invention may not have protrusions on the conductive surface, may not have protrusions on the outer surface of the conductive layer, and may be spherical. ..
  • FIG. 2 is a cross-sectional view schematically showing metal-coated particles according to the second embodiment of the present invention.
  • the metal-coated particle 1A shown in FIG. 2 has a base particle 11, a metal part 12A, and a plurality of core substances 13.
  • the metal portion 12A is arranged on the surface of the base particle 11.
  • the plurality of core substances 13 are arranged on the surface of the base particle 11.
  • 12 A of metal parts are arrange
  • the metal portion 12A is a single-layer conductive layer.
  • the metal-coated particle 1A has a plurality of protrusions 1Aa on the outer surface.
  • the metal portion 12A has a plurality of protrusions 12Aa on the outer surface.
  • the plurality of core substances 13 raise the outer surface of the metal portion 12A.
  • the protrusions 1Aa and 12Aa are formed by the outer surface of the metal portion 12A being raised by the plurality of core substances 13.
  • the plurality of core substances 13 are embedded in the metal part 12A.
  • the core substance 13 is disposed inside the protrusions 1Aa and 12Aa.
  • a plurality of core substances 13 are used to form the protrusions 1Aa and 12Aa.
  • the metal-coated particles do not have to include the plurality of core substances.
  • FIG. 3 is a cross-sectional view schematically showing metal-coated particles according to the third embodiment of the present invention.
  • the metal-coated particle 1B shown in FIG. 3 has a base particle 11, a metal part 12B, and a plurality of core substances 13.
  • the metal portion 12B as a whole has a first metal portion 12BA on the base material particle 11 side and a second metal portion 12BB on the opposite side to the base material particle 11 side.
  • the metal part 12BA and the second metal part 12BB may be formed as different metal parts or may be formed as the same metal part.
  • the first metal part 12BA is arranged on the surface of the base particle 11.
  • the first metal portion 12BA is arranged between the base particle 11 and the second metal portion 12BB.
  • the first metal portion 12BA is in contact with the base material particles 11.
  • the second metal portion 12BB is in contact with the first metal portion 12BA.
  • the first metal portion 12BA is arranged on the surface of the base material particle 11, and the second metal portion 12BB is arranged on the surface of the first metal portion 12BA.
  • the metal-coated particle 1B has a plurality of protrusions 1Ba on its outer surface.
  • the metal portion 12B has a plurality of protrusions 12Ba on the outer surface.
  • the first metal portion 12BA has a protrusion 12BAa on the outer surface.
  • the second metal portion 12BB has a plurality of protrusions 12BBa on the outer surface.
  • the metal part 12B is a two-layer conductive layer.
  • the metal part 12B may be three or more conductive layers.
  • (meth) acrylic means one or both of “acrylic” and “methacrylic”
  • (meth) acryloxy means one or both of “acryloxy” and “methacryloxy”.
  • (meth) acrylo means both “acrylo” and “methacrylo”
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”.
  • Base material particles examples include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particle may have a core and a shell arranged on the surface of the core, or may be a core-shell particle.
  • the base particles are preferably base particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particles may be metal particles.
  • the base material particles are resin particles or an organic-inorganic hybrid from the viewpoint of further effectively increasing the conduction reliability and from the viewpoint of further effectively increasing the insulation reliability. More preferably, it is a particle.
  • the base particles may be resin particles or organic-inorganic hybrid particles.
  • the material for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, Phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Examples thereof include polyimide, polyamideimide, polyetheretherketone, polyethersulfone, divinylbenzene polymer, and divinylbenzene-based copolymer.
  • polyolefin resins such as polyethylene, polypropylene, poly
  • divinylbenzene-based copolymer and the like examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.
  • the polymerizable monomer having the ethylenically unsaturated group is a non-crosslinkable monomer. And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene-based monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, Alkyl (meth) acrylate compounds such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth)
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, and 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate,
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method.
  • this method include a method of performing suspension polymerization in the presence of a radical polymerization initiator, and a method of swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles to perform polymerization.
  • the inorganic material for forming the base particles includes silica, titanium oxide, alumina, barium titanate, zirconia and carbon black. Is mentioned.
  • the inorganic substance is preferably not a metal.
  • the particles formed of the above silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is optionally performed. Particles obtained by carrying out are included.
  • the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the base material particles are organic-inorganic hybrid particles having an organic core and an inorganic shell arranged on the surface of the organic core. Preferably.
  • the material of the organic core As the material of the organic core, the material of the resin particles described above and the like can be mentioned.
  • the inorganic substances mentioned as the above-mentioned material of the base particle can be mentioned.
  • the material of the inorganic shell is preferably silica, alumina, or titanium oxide.
  • the inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core and then firing the shell-like material.
  • the metal alkoxide is preferably silane alkoxide.
  • the inorganic shell is preferably made of silane alkoxide.
  • the particle diameter of the core is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, most preferably 20 ⁇ m or less. Is.
  • metal-coated particles suitable for connecting two members to be connected can be obtained. For example, when two connection target members are connected using the above metal-coated particles, the contact area between the metal-coated particles and the connection target member becomes sufficiently large, and it becomes difficult to form agglomerated metal-coated particles.
  • the particle size of the core means the diameter when the core has a spherical shape, and the maximum diameter when the core has a shape other than the spherical shape.
  • the particle size of the core means the average particle size of the core measured by an arbitrary particle size measuring device.
  • a particle size distribution measuring instrument using the principles of laser light scattering, electric resistance change, image analysis after imaging, etc. can be used.
  • the thickness of the shell is preferably 10 nm or more, more preferably 50 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the thickness of the shell is an average thickness per base particle.
  • the thickness of the shell can be controlled by controlling the sol-gel method.
  • the metal for forming the metal particles includes silver, copper, nickel, iron, silicon, gold, platinum, titanium, zinc, cobalt, aluminum, indium, tin and These alloys etc. are mentioned.
  • the alloy include tin alloys such as solder.
  • the base particles are not metal particles.
  • the particle size of the base particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, even more preferably 1 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the particle diameter of the base material particles is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, even more preferably 400 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, and even more particularly preferably. Is 5 ⁇ m or less, most preferably 3 ⁇ m or less.
  • metal-coated particles suitable for connecting two members to be connected can be obtained.
  • the contact area between the metal-coated particles and the member to be connected becomes sufficiently large, and the conduction reliability and the insulation reliability are further effectively improved. Can be increased.
  • the particle diameter of the base particles is particularly preferably 0.5 ⁇ m or more and 30 ⁇ m or less.
  • the particle diameter of the base material particles is in the range of 0.5 ⁇ m or more and 30 ⁇ m or less, metal-coated particles suitable for connecting two members to be connected can be obtained.
  • the particle size of the base particles indicates the diameter when the base particles are spherical, and indicates the maximum diameter when the base particles are not spherical.
  • the particle size of the above-mentioned base particles indicates the number average particle size.
  • the particle size of the above-mentioned base particles can be obtained using a particle size distribution measuring device or the like.
  • the particle diameter of the base material particles is preferably obtained by observing 50 arbitrary base material particles with an electron microscope or an optical microscope and calculating an average value.
  • it can be measured as follows.
  • the base particles are preferably particles containing a silicone resin (silicone particles).
  • the material of the base particles preferably contains a silicone resin.
  • the material of the silicone particles is a silane compound having a radical polymerizable group and a silane compound having a hydrophobic group having 5 or more carbon atoms, or a silane having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms. It is preferably a compound or a silane compound having radically polymerizable groups at both ends. When these materials are reacted, a siloxane bond is formed. In the obtained silicone particles, the radically polymerizable group and the hydrophobic group having 5 or more carbon atoms generally remain. By using such a material, it is possible to easily obtain silicone particles having a primary particle size of 0.1 ⁇ m or more and 500 ⁇ m or less, and to increase the chemical resistance of the silicone particles and reduce the moisture permeability. You can
  • the radically polymerizable group is preferably directly bonded to a silicon atom.
  • the silane compound having a radical polymerizable group only one type may be used, or two or more types may be used in combination.
  • the silane compound having a radically polymerizable group is preferably an alkoxysilane compound.
  • examples of the silane compound having a radical polymerizable group include vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, divinylmethoxyvinylsilane, divinylethoxyvinylsilane, divinyldimethoxysilane, divinyldiethoxysilane, and 1 , 3-divinyltetramethyldisiloxane and the like.
  • the hydrophobic group having 5 or more carbon atoms is directly bonded to a silicon atom.
  • the silane compound having a hydrophobic group having 5 or more carbon atoms may be used alone or in combination of two or more.
  • the silane compound having a hydrophobic group having 5 or more carbon atoms is preferably an alkoxysilane compound.
  • Examples of the silane compound having a hydrophobic group having 5 or more carbon atoms include phenyltrimethoxysilane, dimethoxymethylphenylsilane, diethoxymethylphenylsilane, dimethylmethoxyphenylsilane, dimethylethoxyphenylsilane, hexaphenyldisiloxane, 1,3,3.
  • the radically polymerizable group is preferably directly bonded to a silicon atom, and the hydrophobic group having 5 or more carbon atoms is bonded to a silicon atom.
  • a direct bond is preferred.
  • the silane compound having a radically polymerizable group and having a hydrophobic group having 5 or more carbon atoms may be used alone or in combination of two or more.
  • Examples of the silane compound having a radically polymerizable group and a hydrophobic group having 5 or more carbon atoms include phenylvinyldimethoxysilane, phenylvinyldiethoxysilane, phenylmethylvinylmethoxysilane, phenylmethylvinylethoxysilane and diphenylvinylmethoxysilane. , Diphenylvinylethoxysilane, phenyldivinylmethoxysilane, phenyldivinylethoxysilane, and 1,1,3,3-tetraphenyl-1,3-divinyldisiloxane.
  • the silane compound having the radical polymerizable group and the silane compound having the hydrophobic group having 5 or more carbon atoms are used to obtain the silicone particles
  • the silane compound having the radical polymerizable group and the silane compound having 5 carbon atoms are used.
  • the weight ratio of the above silane compound having a hydrophobic group is preferably 1: 1 to 1:20, and more preferably 1: 5 to 1:15.
  • the number of radically polymerizable groups and the number of hydrophobic groups having 5 or more carbon atoms are preferably 1: 0.5 to 1:20, and 1: 1 to It is more preferably 1:15.
  • the silicone particles are dimethylsiloxane in which two silicon groups are bonded to one silicon atom. It is preferable to have a skeleton, and the material of the silicone particles preferably contains a silane compound in which two methyl groups are bonded to one silicon atom.
  • the silicone particles are obtained by reacting the silane compound described above with a radical polymerization initiator. It is preferable to form a siloxane bond. Generally, it is difficult to obtain a silicone particle having a primary particle diameter of 0.1 ⁇ m or more and 500 ⁇ m or less by using a radical polymerization initiator, and it is particularly difficult to obtain a silicone particle having a primary particle diameter of 100 ⁇ m or less. Is.
  • silicone particles having a primary particle diameter of 0.1 ⁇ m or more and 500 ⁇ m or less can be obtained, and the primary particle diameter of 100 ⁇ m or less can be obtained. It is also possible to obtain silicone particles having
  • the silane compound can be polymerized using the radical polymerization initiator without using the metal catalyst.
  • the metal catalyst can be prevented from being contained in the silicone particles, the content of the metal catalyst in the silicone particles can be reduced, the chemical resistance can be effectively increased, and the moisture permeability can be effectively reduced.
  • the hardness can be controlled to a suitable range by making the hardness low.
  • Specific methods for producing the above silicone particles include a method of producing a silicone particle by polymerizing a silane compound by a suspension polymerization method, a dispersion polymerization method, a mini-emulsion polymerization method, an emulsion polymerization method, or the like. After proceeding the polymerization of the silane compound to obtain an oligomer, a polymerization reaction of a silane compound which is a polymer (such as an oligomer) is performed by a suspension polymerization method, a dispersion polymerization method, a mini-emulsion polymerization method, an emulsion polymerization method, or the like. Silicone particles may be made.
  • a silane compound having a vinyl group may be polymerized to obtain a silane compound having a vinyl group bonded to a silicon atom at a terminal.
  • a silane compound having a phenyl group may be polymerized to obtain a silane compound having a phenyl group bonded to a silicon atom in a side chain as a polymer (oligomer or the like).
  • a silane compound having a vinyl group and a silane compound having a phenyl group By polymerizing a silane compound having a vinyl group and a silane compound having a phenyl group, a phenyl group having a vinyl group bonded to a silicon atom at a terminal and a silicon atom bonded in a side chain as a polymer (oligomer etc.) You may obtain the silane compound which has.
  • the above silicone particles may have a plurality of particles on the outer surface.
  • the silicone particles may include a silicone particle body and a plurality of particles arranged on the surface of the silicone particle body.
  • the plurality of particles include silicone particles and spherical silica. The presence of the plurality of particles can suppress the aggregation of the silicone particles.
  • the metal-coated particles have a metal part.
  • the metal part preferably contains a metal.
  • the whole of the metal-coated particles may contain a metal, or only the surface portion of the metal-coated particles may contain a metal.
  • the metal that is the material of the metal part is not particularly limited.
  • the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, phosphorus, boron. , Silicon and alloys thereof.
  • examples of the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of more effectively improving the conduction reliability and the insulation reliability between the electrodes, the metal preferably contains silver, copper, gold or palladium. The metal may not contain tin.
  • the material of the metal part may include gold, silver, copper, nickel, tin, indium, zinc, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium, bismuth, phosphorus, boron or alloys thereof. preferable.
  • the material of the metal part more preferably contains gold, copper, palladium, tin, zinc or indium, and further preferably contains silver or nickel.
  • the metal portion and the outer surface portion of the metal portion include silver.
  • the content of silver in 100% by weight of the metal part containing silver is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less. is there.
  • the content of silver in 100% by weight of the metal part containing silver may be 80% by weight or less, 60% by weight or less, 40% by weight or less, and 20% by weight or less. Or 10% by weight or less.
  • the content of silver in 100% by weight of the metal part containing silver is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be improved. It is possible to enhance the sex more effectively.
  • the metal portion contains copper.
  • the content of copper in 100% by weight of the metal part containing copper is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less. is there.
  • the content of copper in 100% by weight of the metal part containing copper may be 80% by weight or less, 60% by weight or less, 40% by weight or less, and 20% by weight or less. Or may be 10% by weight or less.
  • the content of copper in 100% by weight of the metal part containing copper is not less than the lower limit and not more than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be improved. It is possible to improve the sex more effectively.
  • the metal portion contains nickel.
  • the content of nickel in 100% by weight of the metal portion containing nickel is preferably 0.1% by weight or more, more preferably 1% by weight or more.
  • the content of nickel in 100% by weight of the metal portion containing nickel is preferably 100% by weight or less, more preferably 90% by weight or less.
  • the content of nickel in 100% by weight of the metal portion containing nickel may be 80% by weight or less, 60% by weight or less, 40% by weight or less, and 20% by weight or less. Or 10% by weight or less.
  • the content of nickel in 100% by weight of the metal part containing nickel is not less than the lower limit and not more than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be improved. It is possible to enhance the sex more effectively.
  • the metal part may be formed of one layer.
  • the metal part may be formed of a plurality of layers. That is, the metal part may have a laminated structure of two or more layers.
  • the method of forming the metal part on the surface of the base particle is not particularly limited.
  • Examples of the method for forming the metal part include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or Examples thereof include a method of coating the surface of the base particles with a paste containing a metal powder and a binder.
  • the method of forming the metal part is preferably electroless plating, electroplating, or a physical collision method.
  • Examples of the physical vapor deposition method include vacuum vapor deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a sheet composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
  • the thickness of the metal part is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the thickness of the metal part is equal to or more than the lower limit and equal to or less than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be more effectively enhanced. it can. Further, the metal-coated particles do not become too hard.
  • the thickness of the metal part of the outermost layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.8 ⁇ m or less, more preferably Is 0.4 ⁇ m or less.
  • the thickness of the metal portion of the outermost layer is not less than the lower limit and not more than the upper limit, the metal portion of the outermost layer is uniform and the corrosion resistance is sufficiently high. Further, the conduction reliability between the electrodes can be further effectively enhanced, and the insulation reliability between the electrodes can be further effectively enhanced.
  • the thickness of the metal part can be measured by observing the cross section of the metal-coated particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the outer surface of the metal portion of the metal-coated particles is surface-treated.
  • the surface treatment include rust prevention treatment, sulfuration resistance treatment, discoloration prevention treatment and the like.
  • the surface treatment may be only one type or may be a combination of two or more types.
  • the outer surface of the metal part is preferably surface-treated.
  • the surface treatment include rust prevention treatment, sulfuration resistance treatment, discoloration prevention treatment and the like.
  • the surface treatment may be only one type or may be a combination of two or more types.
  • Rust-preventing treatment, rust-preventing agent used for sulfurization-resistant treatment and discoloration-preventing treatment, sulfur-proofing agents and discoloration-preventing agents include nitrogen-containing heterocyclic compounds such as benzotriazole compounds and imidazole compounds, mercaptan compounds, thiazole compounds, organic disulfides. Examples thereof include sulfur-containing compounds such as compounds, and phosphorus-containing compounds such as organic phosphoric acid compounds.
  • the outer surface of the metal portion is rust-proofed with a compound having an alkyl group having 6 to 22 carbon atoms.
  • the outer surface of the metal part may be rust-proofed with a phosphorus-free compound or may be rust-proofed with a phosphorus-free compound having an alkyl group having 6 to 22 carbon atoms.
  • the outer surface of the metal portion be rustproofed with an alkylphosphoric acid compound or an alkylthiol.
  • the rust-preventive film is preferably formed of a compound having an alkyl group having 6 to 22 carbon atoms (hereinafter, also referred to as compound A).
  • the outer surface of the metal part is preferably surface-treated with the compound A.
  • the number of carbon atoms in the alkyl group is 6 or more, rust is less likely to occur in the entire metal part, and particularly rust is less likely to occur in the metal part formed of nickel.
  • the number of carbon atoms in the alkyl group is 22 or less, the conductivity of the metal-coated particles and the particle linked body increases. From the viewpoint of further increasing the conductivity of the metal-coated particles and the particle-coupled body, the carbon number of the alkyl group in the compound A is preferably 16 or less.
  • the alkyl group may have a linear structure or a branched structure.
  • the alkyl group preferably has a linear structure.
  • the compound A is not particularly limited as long as it has an alkyl group having 6 to 22 carbon atoms.
  • the compound A is a phosphoric acid ester or salt thereof having an alkyl group having 6 to 22 carbon atoms, a phosphorous acid ester or salt thereof having an alkyl group of 6 to 22 carbon atoms, or an alkyl group having 6 to 22 carbon atoms. It is preferable that the alkoxysilane has.
  • the compound A is preferably an alkylthiol having an alkyl group having 6 to 22 carbon atoms or a dialkyldisulfide having an alkyl group having 6 to 22 carbon atoms.
  • the compound A having an alkyl group having 6 to 22 carbon atoms is preferably a phosphoric acid ester or a salt thereof, a phosphorous acid ester or a salt thereof, an alkoxysilane, an alkylthiol, or a dialkyldisulfide.
  • the compound A is preferably the phosphoric acid ester or a salt thereof, a phosphorous acid ester or a salt thereof, or an alkylthiol, and the phosphoric acid ester or a salt thereof, Alternatively, a phosphite ester or a salt thereof is more preferable.
  • the said compound A only 1 type may be used and 2 or more types may be used together.
  • the compound A preferably has a reactive functional group capable of reacting with the outer surface of the metal part.
  • the compound A preferably has a reactive functional group capable of reacting with an insulating substance described later.
  • the rust preventive film is preferably chemically bonded to the metal part.
  • the rust preventive film is preferably chemically bonded to the insulating substance. It is more preferable that the rust preventive film is chemically bonded to both the metal part and the insulating material.
  • Examples of the phosphoric acid ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include hexyl phosphoric acid ester, heptyl phosphoric acid ester, monooctyl phosphoric acid ester, monononyl phosphoric acid ester, monodecyl phosphoric acid ester, Phosphoric acid monoundecyl ester, phosphoric acid monododecyl ester, phosphoric acid monotridecyl ester, phosphoric acid monotetradecyl ester, phosphoric acid monopentadecyl ester, phosphoric acid monohexyl ester monosodium salt, phosphoric acid monoheptyl ester monosodium salt Salt, monooctyl phosphate monosodium salt, monononyl phosphate monosodium salt, monodecyl ester monosodium salt, monoundecyl ester monosodium phosphate, mono
  • Examples of the phosphite having an alkyl group having 6 to 22 carbon atoms or salts thereof include hexyl phosphite, heptyl phosphite, monooctyl phosphite, monononyl phosphite, and phosphite.
  • Phosphoric acid monodecyl ester Phosphoric acid monodecyl ester, phosphorous acid monoundecyl ester, phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotetradecyl ester, phosphorous acid monopentadecyl ester, phosphorous acid monohexyl ester Ester monosodium salt, phosphorous acid monoheptyl ester monosodium salt, phosphorous acid monooctyl ester monosodium salt, phosphorous acid monononyl ester monosodium salt, phosphorous acid monodecyl ester monosodium salt, phosphorous monounsulfate Decyl ester monosodium salt, phosphorous acid monododecyl ester monosodium salt, phosphorous acid monotridecyl ester monosodium salt, phosphorous acid monotetradecyl ester monos
  • alkoxysilane having an alkyl group having 6 to 22 carbon atoms examples include hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, and nonyltriethoxysilane.
  • alkylthiol having an alkyl group having 6 to 22 carbon atoms examples include hexylthiol, heptylthiol, octylthiol, nonylthiol, decylthiol, undecylthiol, dodecylthiol, tridecylthiol, tetradecylthiol, pentadecyl. Examples thereof include thiol and hexadecyl thiol.
  • the alkylthiol preferably has a thiol group at the end of the alkyl chain.
  • dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms examples include dihexyl disulfide, diheptyl disulfide, dioctyl disulfide, dinonyl disulfide, didecyl disulfide, diundecyl disulfide, didodecyl disulfide, ditridecyl disulfide, ditetradecyl disulfide. Examples thereof include decyl disulfide, dipentadecyl disulfide and dihexadecyl disulfide.
  • the outer surface of the metal part is formed by using a sulfur-containing compound containing a sulfide compound or a thiol compound as a main component, a benzotriazole compound, or a polyoxyethylene ether surfactant. It is preferable that the layer is subjected to sulfurating resistance treatment. By the sulfidation-resistant treatment, a rustproof film can be formed on the outer surface of the metal part.
  • sulfide compound examples include dihexyl sulfide, diheptyl sulfide, dioctyl sulfide, didecyl sulfide, didodecyl sulfide, ditetradecyl sulfide, dihexadecyl sulfide, dioctadecyl sulfide, and the like having about 6 to 40 carbon atoms (preferably having a carbon number of about 6 to 40).
  • dialkyl sulfide alkyl sulfide
  • aromatic having about 12 to 30 carbon atoms such as diphenyl sulfide, phenyl-p-tolyl sulfide, and 4,4-thiobisbenzenethiol Sulfides; thiodicarboxylic acids such as 3,3′-thiodipropionic acid and 4,4′-thiodibutanoic acid.
  • Dialkyl sulfides are especially preferred.
  • Examples of the thiol compound include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-methyl-2-propanethiol and octadecylthiol having about 4 to 40 carbon atoms (more preferably about 6 to 20 carbon atoms).
  • bonded with the carbon group of these compounds replaced by fluorine are mentioned.
  • benzotriazole compound examples include benzotriazole, benzotriazole salts, methylbenzotriazole, carboxybenzotriazole, benzotriazole derivatives and the like.
  • a discoloration preventive agent is used for the discoloration prevention treatment.
  • the discoloration preventing agent include silver discoloration preventing agents.
  • the silver discoloration preventive agent trade names “AC-20”, “AC-70”, “AC-80” manufactured by Kitaike Sangyo Co., Ltd., trade names "Entec CU-56” manufactured by Meltex Co., Ltd., Daiwa Kasei Co., Ltd.
  • Product names “Newdyne Silver” and “Newdine Silver S-1” manufactured by Chiyoda Chemical Co., and product names “B-1057” and “B-1009NS” manufactured by Chiyoda Chemical Co. are listed.
  • the metal-coated particles may be treated with a dispersant in order to improve the dispersibility of the metal-coated particles in the binder.
  • the dispersant is not particularly limited. Examples of the dispersant include fatty acids, fatty acid salts, surfactants, organic metals, protective colloids, and chelate-forming agents. From the viewpoint of more effectively improving the dispersibility of the metal-coated particles in the binder, the dispersant is preferably a fatty acid.
  • the fatty acid is not particularly limited, linoleic acid, linosyl acid, oleic acid, stearic acid, propionic acid, lauric acid, palmitic acid, arachidonic acid, caprylic acid, myristic acid, behenic acid, acrylic acid, and mixtures thereof. Etc.
  • the amount of the dispersant added is preferably 0.1 part by weight or more, and more preferably 6 parts by weight or less, based on 100 parts by weight of the metal-coated particles before being treated with the dispersant.
  • the treatment method with the dispersant is not particularly limited, and the metal-coated particles and the dispersant may be mixed dry, or the metal-coated particles and the dispersant may be mixed with a solvent.
  • the metal-coated particles preferably include a plurality of core substances that raise the surface of the metal portion, and in the metal portion, the surface of the metal portion is raised so as to form the plurality of protrusions. More preferably, it comprises a plurality of core substances present.
  • the metal-coated particles preferably have protrusions on the outer surface of the metal part. By embedding the core substance in the metal part, it is easy to make the metal part have a plurality of protrusions on the outer surface.
  • the core substance does not necessarily have to be used in order to form the protrusions on the outer surfaces of the metal-coated particles and the metal portion.
  • metal nuclei are generated by electroless plating, metal nuclei are attached to the surfaces of base particles or metal parts, and metal is further formed by electroless plating.
  • the method of forming a part is mentioned.
  • the area of the portion having the protrusion is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, in 100% of the total surface area of the outer surface of the metal portion.
  • the upper limit of the area where the protrusion is present is not particularly limited in 100% of the total surface area of the outer surface of the metal portion.
  • the area of the portion having the protrusion may be 99% or less, or 95% or less.
  • the area of the portion with the above-mentioned projection is obtained by observing the metal-coated particles with an electron microscope or an optical microscope and calculating the percentage of the area of the portion with the projection to the projected area of the metal-coated particles.
  • the area of the portion having the protrusions has protrusions when 10 arbitrary metal-coated particles are observed with an electron microscope or a field emission scanning electron microscope (FE-SEM). It is preferable to calculate the average value of the percentage of the area of the part to the projected area of the metal-coated particles.
  • a method for forming the protrusions As a method for forming the protrusions, a method of forming a metal part by electroless plating after depositing a core substance on the surface of the base material particle, and a method of forming a metal part by electroless plating on the surface of the base material particle After that, a method of attaching a core substance and then forming a metal part by electroless plating may be mentioned.
  • the core substance is disposed on the first metal portion, and then the second metal portion is formed. And a method of adding a core substance in the middle of forming the metal part (the first metal part, the second metal part or the like) on the surface of the base material particles.
  • plating is deposited in a protrusion shape on the surface of the metal portion, and further electroless plating is performed. You may use the method of forming a metal part by.
  • a core substance is added to a dispersion liquid of the base material particles, and the core substance is accumulated on the surface of the base material particles, for example, by Van der Waals force. And a method of adhering the core substance to the surface of the base material particles by a mechanical action such as rotation of the container. Since it is easy to control the amount of the core substance to be adhered, a method of accumulating and adhering the core substance on the surface of the base particles in the dispersion liquid is preferable.
  • the core substance By embedding the core substance in the metal part, it is easy to make the metal part have a plurality of protrusions on the outer surface.
  • the core substance does not necessarily have to be used in order to form protrusions on the conductive surface of the metal-coated particles and the surface of the metal portion.
  • the material of the core substance is not particularly limited.
  • Examples of the material of the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene.
  • Examples of the non-conductive substance include silica, alumina, titanium oxide, barium titanate and zirconia. From the viewpoint of further increasing the conductivity and further effectively lowering the connection resistance, the material of the core substance is preferably a metal.
  • the core substance is preferably metal particles. As the metal which is the material of the core substance, the metals mentioned as the material of the metal particles can be appropriately used.
  • the core material has a high Mohs hardness.
  • Materials with high Mohs hardness include barium titanate (Mohs hardness 4.5), nickel (Mohs hardness 5), silica (silicon dioxide, Mohs hardness 6-7), titanium oxide (Mohs hardness 7), zirconia (Mohs hardness). 8 to 9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10) and the like.
  • the core substance is preferably nickel, silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond.
  • the core substance is preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, more preferably titanium oxide, zirconia, alumina, tungsten carbide or diamond, zirconia, alumina, tungsten carbide or Especially preferred is diamond.
  • the Mohs hardness of the core material is preferably 4 or more, more preferably 5 or more, even more preferably 6 or more, still more preferably 7 or more, and particularly preferably 7.5 or more.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably massive.
  • Examples of the core substance include a particulate mass, an agglomerate of a plurality of fine particles, and an amorphous mass.
  • the particle size of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the particle diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be more effectively enhanced.
  • the particle size of the above core substance indicates the number average particle size.
  • the particle size of the core substance is preferably obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope and calculating an average value.
  • the number of protrusions per metal-coated particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited.
  • the upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the metal-coated particles and the use of the metal-coated particles.
  • the number of the protrusions per one metal-coated particle is preferably obtained by observing 50 arbitrary metal-coated particles with an electron microscope or an optical microscope and calculating an average value.
  • the average height of the plurality of protrusions is preferably 1 nm or more, more preferably 50 nm or more, further preferably 200 nm or more, particularly preferably 350 nm or more, preferably 2000 nm or less, more preferably 1500 nm or less, further preferably 1000 nm.
  • the following is particularly preferable, and it is 650 nm or less.
  • the average height of the above protrusions can be measured as follows.
  • the average diameter of the bases of the plurality of protrusions is preferably 3 nm or more, more preferably 5 nm or more, further preferably 50 nm or more, particularly preferably 350 nm or more, most preferably 550 nm or more, preferably 2000 nm or less, more preferably It is 1500 nm or less, more preferably 1150 nm or less.
  • the average diameter of the base of the protrusion is equal to or more than the above lower limit, the protrusion is less likely to break.
  • the average diameter of the base portion of the protrusion is equal to or less than the upper limit, the conduction reliability and insulation reliability between the electrodes can be more effectively enhanced.
  • the average diameter of the bases of the plurality of protrusions can be measured as follows.
  • the metal-coated particles may include an insulating substance disposed on the outer surface of the metal portion.
  • metal-coated particles having an insulating substance can be obtained.
  • metal-coated particles having an insulating substance are used for connecting the electrodes, a short circuit between adjacent electrodes can be prevented.
  • the insulating substance exists between the plurality of electrodes, so that a short circuit between adjacent electrodes in the lateral direction can be prevented, not between the upper and lower electrodes.
  • the metal-coated particles are pressed by the two electrodes, whereby the insulating substance between the metal portion of the metal-coated particles and the electrodes can be easily removed.
  • the metal portion has a plurality of protrusions on the outer surface, the insulating substance between the metal portion of the metal-coated particles and the electrode can be easily removed.
  • the insulating material is preferably insulating particles from the viewpoint of more easily removing the insulating material during pressure bonding between electrodes.
  • Examples of the above polyolefins include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, a styrene-acrylic acid ester copolymer, an SB type styrene-butadiene block copolymer, an SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers.
  • Examples of the thermosetting resin include epoxy resin, phenol resin and melamine resin.
  • Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene
  • the method of disposing the insulating substance on the surface of the metal part there are a chemical method and a physical or mechanical method.
  • the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping method, and vacuum deposition method.
  • the method of disposing the insulating material on the surface of the metal portion is a method of disposing the insulating material on the surface of the metal portion through a chemical bond. Preferably.
  • the outer surface of the metal part and the surface of the insulating particles may be coated with a compound having a reactive functional group.
  • the outer surface of the metal part and the surface of the insulating particles may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to the functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
  • the particle size of the above-mentioned insulating material can be appropriately selected depending on the particle size of the metal-coated particles and the use of the metal-coated particles.
  • the particle diameter of the insulating substance is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the particle diameter of the insulating substance is at least the above lower limit, it becomes difficult for the metal parts of the plurality of metal-coated particles to come into contact with each other when the metal-coated particles are dispersed in the binder.
  • the particle size of the insulating particles is less than or equal to the above upper limit, at the time of connection between the electrodes, in order to eliminate the insulating material between the electrodes and the metal-coated particles, it is not necessary to raise the pressure too high, There is no need to heat to a high temperature.
  • the particle size of the above insulating material indicates the number average particle size.
  • the particle size of the insulating substance can be obtained by using a particle size distribution measuring device or the like, or can be obtained by observing 50 arbitrary insulating substances with an electron microscope or an optical microscope and calculating an average value. ..
  • the metal-coated particles can be used to obtain a particle-connected body.
  • the particle-connected body includes the metal-coated particles described above and a columnar connecting portion that connects a plurality of the metal-coated particles.
  • the above-mentioned method for producing a particle-coupled body is carried out by heating the above-mentioned metal-coated particles under a pressure condition of 0 MPa or more and 200 MPa or less, and a heating temperature of 100 ° C. or more and 400 ° C. or less and a heating time of 0.5 minutes or more and 300 minutes or less. And a treatment step of obtaining a particle linked body.
  • a columnar connecting portion that connects a plurality of the metal-coated particles is formed in the treatment step.
  • the pressure condition in the treatment step is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, preferably 100 MPa or less, more preferably 50 MPa or less.
  • the pressure condition in the treatment step may be 0 MPa or may be a non-pressurized condition.
  • the heating temperature of the heating conditions in the treatment step is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. is there.
  • the heating time under the heating conditions in the treatment step is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 120 minutes or less, more preferably 90 minutes or less.
  • FIG. 4 is a cross-sectional view schematically showing a particle linked body using the metal-coated particles according to the first embodiment of the present invention.
  • the particle connected body 21 shown in FIG. 4 includes a metal-coated particle 1 and a columnar connecting portion 22 that connects two metal-coated particles 1.
  • two metal-coated particles 1 are connected via a columnar connecting portion 22.
  • the columnar connecting portion 22 connects the one metal-coated particle 1 and the other metal-coated particle 1.
  • the columnar connecting portion 22 is arranged between the two metal-coated particles 1.
  • the metal-coated particles 1 are the above-mentioned metal-coated particles.
  • the metal-coated particles 1 may be the metal-coated particles 1A or the metal-coated particles 1B described above.
  • the metal-coated particles may have protrusions on the surface of the metal portion or may have a core substance.
  • the metal part may cover the entire surface of the base particle, or the metal part may cover a part of the surface of the base particle.
  • the columnar connected portion connects the metal portion of the one metal-coated particle and the metal portion of the other metal-coated particle.
  • the columnar connecting portions are formed by the protrusions.
  • FIG. 5 is a cross-sectional view schematically showing a modified example of the particle connected body using the metal-coated particles according to the first embodiment of the present invention.
  • the particle linked body 21A shown in FIG. 5 differs from the particle linked body 21 shown in FIG. 4 only in the number of metal-coated particles 1 and the number of columnar linked portions 22.
  • the particle connecting body 21A four metal-coated particles are connected via the columnar connecting portion 22.
  • the particle-coupled body 21A has the metal-coated particles 1 connected in series.
  • two metal-coated particles may be connected by the columnar connecting portion, or three or more metal-coated particles may be connected by the columnar connecting portion.
  • the metal-coated particles may be connected in series, or the metal-coated particles may be connected in parallel.
  • the particle connected body may have a branched structure.
  • the shape of the columnar connecting portion is not particularly limited as long as it is columnar.
  • the columnar connecting portion may be a columnar connecting portion, a polygonal columnar connecting portion, or an amorphous columnar connecting portion.
  • the cross-sectional shape of the columnar connecting portion may be circular, polygonal, or irregular.
  • the width of each columnar connecting portion may be uniform or may not be uniform.
  • the center of the columnar connecting portion may be thick or the center of the columnar connecting portion may be thin.
  • the widths of the plurality of columnar connecting portions may or may not be uniform.
  • the number of the columnar connecting portions per one metal-coated particle is preferably 1 or more, more preferably 2 or more, preferably 10 or less, more preferably 9 or less. is there.
  • the number of the columnar connecting portions per one piece of the metal-coated particles is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability can be more effectively enhanced when the electrodes are electrically connected. it can.
  • the number of columnar connecting portions connected to one metal-coated particle is calculated by arithmetically averaging the number of columnar connecting portions of 50 metal-coated particles.
  • the number of columnar connecting parts is determined by observing an arbitrary particle connecting body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and arithmetically averaging the number of columnar connecting parts of 50 arbitrary metal-coated particles. It is preferable to calculate by
  • the length of the columnar linked portion is preferably 10 nm or more, more preferably 50 nm or more, preferably 30,000 nm or less, more preferably 20,000 nm or less.
  • the length of the columnar connecting portion is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability can be more effectively enhanced when the electrodes are electrically connected.
  • the length of the columnar connecting portion can be calculated by observing an arbitrary particle connected body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the length of the columnar connecting portion is the minimum distance between the surface of one metal-coated particle in contact with the columnar connecting portion and the surface of the other metal-coated particle in contact with the columnar connecting portion with a straight line. The dimensions are
  • the length of the columnar connecting portion is calculated by observing the arbitrary particle connecting body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and calculating the length of the 50 columnar connecting portions. It is preferable to calculate on average.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the width of the columnar linked portion is preferably 10 nm or more, more preferably 50 nm or more, preferably 30,000 nm or less, more preferably 20,000 nm or less.
  • the width of the columnar connecting portion is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability can be more effectively enhanced when the electrodes are electrically connected.
  • the width of the columnar connecting portion is preferably an average value of the widths of the entire columnar connecting portion.
  • the width of the columnar connecting portion is preferably obtained by measuring the width of the columnar connecting portion at three positions in any columnar connecting portion and calculating an average value.
  • the width of the columnar connecting portion is determined by observing an arbitrary particle connecting body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and arithmetically averaging the widths of the 50 columnar connecting portions. It is preferable to calculate it.
  • the columnar connected portion is formed by metal diffusion or sintering of the metal portion of the metal-coated particle.
  • the material of the columnar connecting portion include the above-mentioned material of the metal portion.
  • the material of the columnar connecting portion preferably contains the material of the metal portion in the metal-coated particles. ..
  • the columnar connecting portion is preferably formed of the material of the metal portion.
  • the material of the columnar connecting portion may be different from the material of the metal portion.
  • the metal part and the columnar connecting part in the metal-coated particles may be integrated. From the viewpoint of more effectively improving the conduction reliability when the electrodes are electrically connected, it is preferable that there is no interface at the contact portion between the metal-coated particles and the columnar connecting portion. There may be an interface at the contact portion between the metal-coated particles and the columnar connecting portion.
  • the method for arranging the columnar connecting portion between the plurality of metal-coated particles so as to connect the plurality of metal-coated particles to produce the particle-connected body examples include the following methods. A method of sintering by reflow heat treatment under pressure. A method of sintering by reflow heat treatment under no pressure. A method of heat treatment in an oven. It is preferable that the method for producing the above-mentioned particle linked body is a method of sintering by reflow heat treatment under pressure.
  • the sintering temperature during sintering is not particularly limited.
  • the sintering temperature is preferably 100 ° C. or higher and 400 ° C. or lower.
  • the sintering temperature is preferably 150 ° C or higher and 350 ° C or lower.
  • the sintering temperature is preferably 200 ° C. or higher and 400 ° C. or lower.
  • the sintering time at the time of sintering is not particularly limited.
  • the sintering time is preferably 0.5 minutes or more and 300 minutes or less.
  • the sintering time is preferably 1 minute or more and 30 minutes or less.
  • the sintering time is preferably 30 minutes or more and 250 minutes or less.
  • the sintering time may be adjusted according to the sintering temperature. For example, if the sintering temperature is set to a higher temperature, the sintering time can be further shortened and the production efficiency of the particle linked body can be increased.
  • sintering may be performed under pressure or may be performed without pressure.
  • the pressure at the time of pressurization is preferably 0.1 MPa or more and 200 MPa or less.
  • sintering may be performed in an air atmosphere, may be performed in a reducing gas atmosphere, or may be performed in an inert gas atmosphere.
  • the reducing gas include formic acid gas, hydrogen gas, carbon monoxide gas, and hydrocarbon gas.
  • the inert gas include nitrogen gas, helium gas, argon gas, and forming gas.
  • the method for producing the above-mentioned particle linked body is preferably a method in which a mixture obtained by mixing metal-coated particles on a metal plate is applied and then sintered.
  • the metal plate is not particularly limited.
  • Examples of the metal plate include a copper substrate.
  • the mixture is not particularly limited.
  • Examples of the mixture include a composition containing metal-coated particles and a binder.
  • Examples of the binder include binders used in connection materials described later.
  • the method of applying the mixture is not particularly limited. Examples of the method of applying the above mixture include a method of applying by a screen printing method and a method of applying by an inkjet method.
  • another metal plate may be arranged on the surface of the applied mixture, and the mixture may be sandwiched between the metal plates for sintering.
  • connection material is used to form a connection part that connects two connection target members.
  • the connecting material includes the metal-coated particles described above and a binder.
  • the connecting material may include the above-mentioned particle linked body.
  • the connection material may include the metal-coated particles, the particle linked body, and a binder.
  • the connection material may include the particle linked body and a binder.
  • the above binder is not particularly limited.
  • a known insulating resin is used as the binder.
  • the binder preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers.
  • the binders may be used alone or in combination of two or more.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer, and styrene-isoprene. -Hydrogenated styrene block copolymers and the like.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the binder may be a solvent.
  • the solvent include water and organic solvents.
  • the solvent is preferably an organic solvent.
  • the organic solvent include alcohol compounds such as ethanol; ketone compounds such as acetone, methyl ethyl ketone and cyclohexanone; aromatic hydrocarbon compounds such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol and methyl carbitol.
  • connection material contains an epoxy resin.
  • the connecting material is, for example, a filler, a filler, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, in addition to the metal-coated particles and the binder.
  • Various additives such as an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the above connecting material is preferably used for conductive connection, and is preferably a conductive connecting material.
  • the connection material is preferably used for anisotropic conductive connection, and is preferably an anisotropic conductive connection material. It is further preferable that the connecting material is used as a die attach connecting material.
  • the die attach connection material is used when bonding a semiconductor element onto a substrate.
  • the connecting material can be used as a paste, a film, or the like. When the connecting material is a film, a film containing no metal-coated particles may be laminated on a film containing metal-coated particles.
  • the paste is preferably a conductive paste, more preferably an anisotropic conductive paste, and even more preferably a die attach paste.
  • the film is preferably a conductive film, more preferably an anisotropic conductive film, and even more preferably a die attach film.
  • the content of the binder is preferably 1% by weight or more, more preferably 5% by weight or more, even more preferably 10% by weight or more, further preferably 30% by weight or more, even more preferably Is 50% by weight or more, particularly preferably 70% by weight or more.
  • the content of the binder is preferably 99.99% by weight or less and more preferably 99.9% by weight or less based on 100% by weight of the connecting material.
  • the content of the metal-coated particles in 100% by weight of the connecting material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more.
  • the content of the metal-coated particles is preferably 99% by weight or less, more preferably 95% by weight or less, even more preferably 80% by weight or less, further preferably 60% by weight or less, It is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the metal-coated particles is not less than the lower limit and not more than the upper limit, the conduction reliability and the insulation reliability between the electrodes can be more effectively enhanced.
  • the metal-coated particles when the content of the metal-coated particles is not less than the lower limit and not more than the upper limit, the metal-coated particles can be sufficiently arranged between the two members to be connected, and the metal-coated particles make two connections. It is possible to further suppress the interval between the target members from becoming narrower. Therefore, it is possible to prevent the heat dissipation of the connection portion from being partially lowered.
  • connection material may include metal atom-containing particles having no base material particles, in addition to the metal-coated particles.
  • the metal atom-containing particles include metal particles and metal compound particles.
  • the metal compound particles include metal atoms and atoms other than the metal atoms.
  • Specific examples of the metal compound particles include metal oxide particles, metal carbonate particles, metal carboxylate particles, and metal complex particles.
  • the metal compound particles are preferably metal oxide particles.
  • the metal oxide particles are sintered in the presence of a reducing agent by being heated at the time of connection to become metal particles.
  • the metal oxide particles are precursors of metal particles.
  • the metal carboxylate particles include metal acetate particles.
  • the metal forming the metal particles and the metal oxide particles examples include silver, copper, nickel and gold. Silver or copper is preferred and silver is particularly preferred. Therefore, the metal particles are preferably silver particles or copper particles, and more preferably silver particles.
  • the metal oxide particles are preferably silver oxide particles or copper oxide particles, and more preferably silver oxide particles. When silver particles and silver oxide particles are used, there is little residue after connection and the volume reduction rate is very small. Examples of silver oxide in the silver oxide particles include Ag 2 O and AgO.
  • the metal atom-containing particles are preferably sintered by heating at a temperature lower than 400 ° C.
  • the temperature at which the metal atom-containing particles are sintered is more preferably 350 ° C or lower, preferably 300 ° C or higher.
  • the temperature at which the metal atom-containing particles are sintered is not more than the above upper limit or less than the above upper limit, it is possible to efficiently perform the sintering, further reduce the energy required for the sintering, and reduce the environmental load. can do.
  • the connecting material containing the metal atom-containing particles is a connecting material containing metal particles having an average particle diameter of 1 nm or more and 100 nm or less, or metal oxide particles having an average particle diameter of 1 nm or more and 50 ⁇ m or less and a reducing agent. It is preferable that the connecting material contains When such a connecting material is used, it is possible to satisfactorily sinter the metal atom-containing particles by heating at the time of connection.
  • the average particle diameter of the metal oxide particles is preferably 5 ⁇ m or less.
  • the particle diameter of the metal atom-containing particles indicates the diameter when the metal atom-containing particles are spherical, and indicates the maximum diameter when the metal atom-containing particles are not spherical.
  • a reducing agent is preferably used when the metal atom-containing particles are metal oxide particles.
  • the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like.
  • the said reducing agent only 1 type may be used and 2 or more types may be used together.
  • Examples of the alcohol compound include alkyl alcohol.
  • Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol.
  • the alcohol compound is not limited to the primary alcohol type compound, and a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol and an alcohol compound having a cyclic structure can also be used.
  • a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol and an alcohol compound having a cyclic structure can also be used.
  • compounds having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used.
  • compounds such as citric acid, ascorbic acid and glucose may be used as the alcohol compound.
  • Examples of the carboxylic acid compound include alkylcarboxylic acids.
  • Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecane.
  • Examples thereof include acids, octadecanoic acid, nonadecanoic acid, and icosanoic acid.
  • carboxylic acid compound is not limited to the primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid and a carboxyl compound having a cyclic structure can also be used.
  • Examples of the above amine compounds include alkylamines.
  • Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine, and icodecylamine. Further, the amine compound may have a branched structure.
  • Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine.
  • the amine compound is not limited to the primary amine type compound, and a secondary amine type compound, a tertiary amine type compound and an amine compound having a cyclic structure can also be used.
  • the reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group, a ketone group or the like, or may be an organic substance such as a carboxylic acid metal salt.
  • the carboxylic acid metal salt is used not only as a precursor for metal particles, but also as a reducing agent for metal oxide particles because it contains an organic substance.
  • a reducing agent having a melting point lower than the sintering temperature (bonding temperature) of the above-mentioned metal atom-containing particles When a reducing agent having a melting point lower than the sintering temperature (bonding temperature) of the above-mentioned metal atom-containing particles is used, it tends to aggregate at the time of bonding and cause voids in the bonded portion.
  • the carboxylic acid metal salt since the carboxylic acid metal salt is not melted by heating at the time of bonding, it is possible to suppress the occurrence of voids.
  • a metal compound containing an organic substance may be used as the reducing agent.
  • the content of the reducing agent in 100% by weight of the connecting material is preferably 1% by weight or more, more preferably 10% by weight or more, preferably 90% by weight or less, It is more preferably 70% by weight or less, still more preferably 50% by weight or less.
  • the content of the reducing agent is not less than the lower limit and not more than the upper limit, the metal atom-containing particles can be sintered more densely. As a result, the heat dissipation and heat resistance of the joint are also improved.
  • the content of the metal atom-containing particles in 100% by weight of the connecting material is preferably 10% by weight or more, more preferably 30% by weight or more, and further preferably Is 60% by weight or more.
  • the content of the metal atom-containing particles in 100% by weight of the connecting material is preferably 99.99% by weight or less, more preferably 99.9% by weight or less, still more preferably 99.5% by weight or less, further preferably Is 99% by weight or less, particularly preferably 90% by weight or less, and most preferably 80% by weight or less.
  • the content of the metal atom-containing particles is not less than the lower limit and not more than the upper limit, it is possible to further effectively lower the connection resistance at the joint portion, and more effectively enhance the heat dissipation at the joint portion. be able to.
  • connection structure includes a first connection target member, a second connection target member, a connection portion connecting the first connection target member, and the second connection target member. Equipped with.
  • the material of the connection part is the metal-coated particles described above, or a connection material containing the metal-coated particles and a binder.
  • the connecting portion is preferably formed of the metal-coated particles or the connecting material.
  • the material of the connecting portion may include the particle connected body.
  • the connecting portion may be formed of the particle linked body.
  • FIG. 6 is a sectional view schematically showing a connection structure using the metal-coated particles according to the first embodiment of the present invention.
  • connection structure 51 shown in FIG. 6 is a connection that connects the first connection target member 52, the second connection target member 53, and the first connection target member 52 and the second connection target member 53. And a section 54.
  • the connecting portion 54 is formed of a connecting material containing the metal-coated particles 1 and a binder.
  • the material of the connecting portion 54 is the above connecting material.
  • the connecting portion 54 is preferably formed by curing a connecting material. In the connection structure 51, the metal-coated particles 1 and the first connection target member 52 are bonded, and the metal-coated particles 1 and the second connection target member 53 are bonded.
  • metal-coated particles such as metal-coated particles 1A and 1B can be used.
  • particle connected bodies such as particle connected bodies 21 and 21A may be used.
  • metal-coated particles such as metal-coated particles 1A and 1B may be used instead of the metal-coated particles 1 connected by the columnar connecting portions 22.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the front surface (lower surface).
  • the first electrode 52a and the second electrode 53a are electrically connected by one or more metal-coated particles 1. Therefore, the first connection target member 52 and the second connection target member 53 are electrically connected by the metal-coated particles 1.
  • the metal-coated particles 1 and the first electrode 52a are joined together, and the metal-coated particles 1 and the second electrode 53a are joined together.
  • connection material is arranged between the first connection target member and the second connection target member to obtain a laminated body, and then the laminated body is heated and pressed. Methods and the like.
  • the pressure applied is about 9.8 ⁇ 10 4 Pa to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 ° C to 500 ° C.
  • connection target member is specifically an electronic component such as a semiconductor chip, an LED chip, a capacitor and a diode, and a circuit board such as a printed board, a flexible printed board, a stretchable board, a glass epoxy board and a glass board. Examples include electronic parts.
  • the connection target member is preferably an electronic component.
  • the metal-coated particles are preferably used for electrical connection of electrodes in electronic parts.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, silver electrodes, SUS electrodes, molybdenum electrodes, and tungsten electrodes.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode or a tungsten electrode.
  • the above-mentioned electrode is an aluminum electrode, it may be an electrode formed of only aluminum or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
  • FIG. 7 is a cross-sectional view schematically showing a first modified example of the connection structure using the metal-coated particles according to the first embodiment of the present invention.
  • connection structure 61 shown in FIG. 7 connects the first connection target member 62, the second connection target members 63 and 64, and the first connection target member 62 and the second connection target members 63 and 64. And connecting parts 65 and 66.
  • the connecting portions 65 and 66 are formed using a connecting material containing the metal-coated particles 1 and the metal atom-containing particles.
  • the material of the connecting portions 65 and 66 is the above connecting material.
  • connection portion 65 and the second connection target member 63 are arranged on the first surface (one surface) side of the first connection target member 62.
  • the connection portion 65 connects the first connection target member 62 and the second connection target member 63.
  • connection portion 66 and the second connection target member 64 are arranged on the second surface (other surface) side opposite to the first surface of the first connection target member 62.
  • the connection portion 66 connects the first connection target member 62 and the second connection target member 64.
  • a connection material containing the metal-coated particles 1 and the metal atom-containing particles is arranged between the first connection target member 62 and the second connection target members 63 and 64, respectively.
  • the metal atom-containing particles are in a state of a sintered product in the connecting portions 65 and 66, and the metal-coated particles 1 are arranged in the sintered product.
  • the metal-coated particles 1 may be in the state of a sintered product.
  • the metal-coated particles 1 are arranged between the first connection target member 62 and the second connection target members 63 and 64.
  • the metal-coated particles 1 connect the first connection target member 62 and the second connection target members 63 and 64.
  • a heat sink 67 is arranged on the surface of the second connection target member 63 opposite to the connection portion 65 side.
  • a heat sink 68 is arranged on the surface of the second connection target member 64 opposite to the connection portion 66 side. Therefore, in the connection structure 61, the heat sink 67, the second connection target member 63, the connection portion 65, the first connection target member 62, the connection portion 66, the second connection target member 64, and the heat sink 68 are laminated in this order. Has a part
  • the first connection target member 62 includes a rectifier diode, a power transistor (power MOSFET, insulated gate bipolar transistor), a thyristor, a gate turn-off thyristor, and a power semiconductor element made of Si, SiC, GaN or the like used for a triac or the like. Is mentioned.
  • a large amount of heat is likely to be generated in the first connection target member 62 when the connection structure 61 is used. Therefore, it is necessary to efficiently dissipate the amount of heat generated from the first connection target member 62 to the heat sinks 67, 68 and the like. Therefore, the connection portions 65 and 66 arranged between the first connection target member 62 and the heat sinks 67 and 68 are required to have high heat dissipation and high reliability.
  • Examples of the second connection target members 63, 64 include substrates made of ceramics, plastics, or the like.
  • connection parts 65 and 66 are formed by heating the connection material and sintering the metal atom-containing particles.
  • FIG. 8 is a sectional view schematically showing a second modified example of the connection structure using the metal-coated particles according to the first embodiment of the present invention.
  • connection structure 61A shown in FIG. 8 connects the first connection target member 62, the second connection target members 63 and 64, and the first connection target member 62 and the second connection target members 63 and 64.
  • connecting parts 65 and 66 are formed using a connection material containing the metal-coated particles 1, the other metal-coated particles 69, and the metal atom-containing particles.
  • the metal-coated particles 1 and the other metal-coated particles 69 differ only in the size of the metal-coated particles.
  • the material of the connecting portions 65 and 66 is the above connecting material.
  • connection structure 61 shown in FIG. 7 and the connection structure 61A shown in FIG. 8 differ only in that the connection parts 65 and 66 include other metal-coated particles 69.
  • the metal-coated particles contained in the connection portion may be metal-coated particles having the same size or may be metal-coated particles having different sizes.
  • the metal-coated particles according to the present invention are preferably used to obtain a continuity inspection member and a continuity inspection device.
  • the above-mentioned continuity inspection member includes a base having a through hole and a conductive portion.
  • the plurality of through holes are arranged in the base.
  • the above-mentioned conductive part is arranged in the above-mentioned penetration hole.
  • the material of the conductive portion contains the above-mentioned metal-coated particles.
  • the conductive portion may be formed of the connecting material described above.
  • the conductive portion may include a cured product of the above-mentioned connecting material.
  • the continuity inspection device includes an ammeter and the continuity inspection member.
  • FIG. 10A and 10B are a plan view and a cross-sectional view showing an example of a continuity inspection member.
  • FIG. 10B is a sectional view taken along the line AA in FIG.
  • the continuity inspection member 31 shown in FIGS. 10A and 10B includes a base 32 having a through hole 32 a, and a conductive portion 33 arranged in the through hole 32 a of the base 32.
  • the material of the conductive portion 33 contains the metal-coated particles.
  • the material of the conductive portion 33 may be the above connection material.
  • the continuity inspection member 31 may be a continuity member.
  • the continuity inspection can be performed by electrically connecting an ammeter (for example, the ammeter 43 shown in FIG. 11C) to the continuity inspection member 31.
  • an ammeter for example, the ammeter 43 shown in FIG. 11C
  • the ammeter is connected to any two conductive parts 33 in the continuity test member 31.
  • the electronic circuit device is connected so as to come into contact with the two conductive parts 33 to which the ammeter is connected (for example, the solder ball 41 of the BGA substrate 42 shown in FIG. 11C is connected to the conductive part 120). By doing so, the continuity test of the electronic circuit device can be performed.
  • the base body is a member that serves as a substrate for the continuity inspection member.
  • the base body preferably has an insulating property, and the base body is preferably made of an insulating material. Examples of the insulating material include insulating resin.
  • the insulating resin that constitutes the base may be, for example, either a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include polyester resin, polystyrene resin, polyethylene resin, polyamide resin, ABS resin, and polycarbonate resin.
  • the thermosetting resin include epoxy resin, urethane resin, polyimide resin, polyetheretherketone resin, polyamideimide resin, polyetherimide resin, silicone resin, and phenol resin.
  • the silicone resin include silicone rubber and the like.
  • the insulating resin that constitutes the base may be used alone or in combination of two or more.
  • the above-mentioned base has, for example, a plate shape or a sheet shape.
  • the sheet shape includes a film shape.
  • the thickness of the substrate can be appropriately set according to the type of the continuity inspection member, and may be, for example, 0.005 mm or more and 50 mm or less.
  • the size of the base body in plan view can be appropriately set according to the intended inspection member or inspection device.
  • the above-mentioned substrate can be obtained, for example, by molding an insulating material such as the above-mentioned insulating resin into a desired shape.
  • a plurality of the through holes of the base are arranged in the base.
  • the through hole preferably penetrates in the thickness direction of the substrate.
  • the through hole of the base body may be formed in a cylindrical shape, but is not limited to a cylindrical shape, and may be formed in other shapes, for example, a polygonal cylindrical shape. Further, the through hole may be formed in a taper shape that is tapered in one direction, or may be formed in a distorted shape.
  • the size of the through-hole for example, the apparent area of the through-hole in a plan view can also be formed in an appropriate size, and the conductive portion can be accommodated and formed in such a size that it can be held. Good. If the through-hole has, for example, a cylindrical shape, the diameter of the through-hole is preferably 0.01 mm or more, and preferably 10 mm or less.
  • all of the through holes of the base may have the same shape and the same size, or a part of the through holes of the base may have a different shape or size from other through holes. .
  • the number of the through holes of the base body can be set in an appropriate range, and it is sufficient that the number of through holes be such that a continuity test can be performed, and the number can be set appropriately according to a target inspection member or inspection device. You can Further, the location of the through hole of the base body can be appropriately set according to the intended inspection member or inspection device.
  • the method of forming the through hole of the substrate is not particularly limited, and the through hole can be formed by a known method (for example, laser processing).
  • the conductive portion in the through hole of the base has conductivity. It is preferable that the metal-coated particles are densely filled in the through holes, and in this case, the conduction inspection member can perform a more reliable conduction inspection. It is preferable that the conductive portion is housed in the through hole so as to be conductive across the front and back of the continuity inspection member or the conductive member.
  • the metal-coated particles are present continuously from the front surface to the back surface of the conductive part while the metal-coated particles are in contact with each other. In this case, the conductivity of the conductive portion is improved.
  • the material of the conductive part may include a material other than the metal-coated particles.
  • the material of the conductive part may include a binder in addition to the metal-coated particles. When the material of the conductive portion contains the binder, the metal-coated particles are more firmly aggregated, and thus the metal-coated particles are easily retained in the through holes.
  • the above binder is not particularly limited.
  • Examples of the binder include the binder that is a material of the above-mentioned connecting material.
  • the method for accommodating the conductive part in the through hole is not particularly limited.
  • the metal-coated particles are filled in the through-hole, and the connection material is cured under appropriate conditions to obtain the conductivity.
  • the portion can be formed in the through hole. Thereby, the conductive portion is housed in the through hole.
  • the connection material may contain a solvent, if necessary.
  • the content of the binder is preferably 5 parts by weight or more, and more preferably 10 parts by weight or more in terms of solid content with respect to 100 parts by weight of the metal-coated particles. It is preferably 99 parts by weight or less, more preferably 50 parts by weight or less.
  • the above-mentioned continuity inspection member can be used as a probe card.
  • the continuity inspection member may include other components as long as the effects of the present invention are not impaired.
  • FIGS. 11A to 11C are diagrams schematically showing how the electrical characteristics of the electronic circuit device are inspected by using the continuity inspection device.
  • the electronic circuit device is a BGA substrate 42 (ball grid array substrate).
  • the BGA board 42 is a board having a structure in which connection pads are arranged in a grid pattern on the multilayer board 40 and solder balls 41 (members to be conducted) are arranged on each pad.
  • the continuity test member 100 is a probe card.
  • the continuity inspection member 100 has a plurality of through holes 110a formed in a base 110, and a conductive portion 120 is housed in the through hole 110a.
  • a BGA substrate 42 and a continuity inspection member 100 are prepared, and as shown in FIG. 11B, the BGA substrate 42 is brought into contact with the continuity inspection member 100 and compressed.
  • the solder ball 41 comes into contact with the conductive portion 120 in the through hole 110a. In this state, as shown in FIG. 11C, it is possible to connect the ammeter 43 and perform a continuity test to determine whether the BGA board 42 is acceptable or not.
  • the metal-coated particles described above are preferably used to obtain a battery electrode material.
  • the above-mentioned cell electrode material is suitably used for obtaining a fuel cell electrode.
  • the cell electrode material is preferably a material for a fuel cell electrode.
  • the above-mentioned cell electrode material may be used to obtain electrodes other than fuel cell electrodes.
  • electrodes other than the fuel cell electrode include a lithium-ion battery electrode and an all-solid-state battery electrode.
  • the fuel cell includes, for example, a first electrode and a second electrode (fuel electrode and air electrode), and an electrolyte. At least one of the first electrode and the second electrode is preferably the fuel cell electrode using the battery electrode material. When only one of the first electrode and the second electrode is the fuel cell electrode using the battery electrode material, the other electrode is not particularly limited. A conventionally known electrode can be used as the other electrode.
  • Examples of the fuel cell include a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (SOFC), and an alkaline electrolyte fuel cell. (AFC), direct fuel cell (DFC), and the like.
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • SOFC solid oxide fuel cell
  • AFC alkaline electrolyte fuel cell
  • DFC direct fuel cell
  • the metal-coated particles described above are suitably used to obtain a touch panel with a tactile feedback function.
  • the touch panel with a tactile feedback function includes a touch sensor, a conductive layer arranged on the first surface side of the touch sensor, and a tactile feedback sensor.
  • the conductive layer include the metal-coated particles described above.
  • the touch panel with tactile feedback function includes a touch sensor, a conductive layer arranged on the first surface side of the touch sensor, and a tactile feedback sensor.
  • the conductive layer includes a plurality of metal-coated particles.
  • the metal-coated particles include base particles, and a metal portion arranged on the surface of the base particles, the metal portion is silver, palladium, or copper. including.
  • FIG. 12 is a cross-sectional view schematically showing a touch panel with a tactile feedback function using the metal-coated particles according to the first embodiment of the present invention.
  • the touch panel 71 with a tactile feedback function shown in FIG. 12 includes a touch sensor 72, a conductive layer 73, and a tactile feedback sensor 74.
  • the tactile feedback sensor 74 can be arranged at an appropriate position.
  • the conductive layer 73 includes a plurality of metal-coated particles (not shown).
  • the conductive layer 73 is arranged on the first surface side of the touch sensor 72.
  • the touch panel 71 with a tactile feedback function includes an insulating layer 75 on the side of the conductive layer 73 opposite to the touch sensor 72 side.
  • the touch panel 71 with a tactile feedback function includes a liquid crystal panel 76 on the second surface side of the touch sensor 72, which is opposite to the first surface.
  • the touch panel 71 with a tactile feedback function is a liquid crystal display device because it has a liquid crystal panel 76.
  • the touch panel with a tactile feedback function shown in FIG. 12 is an example, and the specific configuration of the touch panel with a tactile feedback function may be changed as appropriate.
  • the above-mentioned metal-coated particles are arranged between the first ceramic member and the second ceramic member in the outer peripheral portions of the first ceramic member and the second ceramic member, and serve as a gap control material and a conductive connecting material. It can also be used.
  • FIG. 13 is a sectional view schematically showing an electronic component device using the metal-coated particles according to the first embodiment of the present invention.
  • FIG. 14 is an enlarged sectional view showing a joint portion in the electronic component device shown in FIG.
  • the electronic component device 81 shown in FIGS. 13 and 14 includes a first ceramic member 82, a second ceramic member 83, a joint portion 84, an electronic component 85, and a lead frame 86.
  • the first and second ceramic members 82 and 83 are each made of a ceramic material. Each of the first and second ceramic members 82 and 83 is, for example, a housing.
  • the first ceramic member 82 is, for example, a substrate.
  • the second ceramic member 83 is, for example, a lid.
  • the 1st ceramic member 82 has a convex part which protruded to the 2nd ceramic member 83 side (upper side) in the outer peripheral part.
  • the first ceramic member 82 has, on the second ceramic member 83 side (upper side), a recess that forms an internal space R for housing the electronic component 85.
  • the first ceramic member 82 does not have to have a convex portion.
  • the second ceramic member 83 has, on its outer peripheral portion, a convex portion that protrudes toward the first ceramic member 82 side (lower side).
  • the second ceramic member 83 has, on the first ceramic member 82 side (lower side), a recess that forms an internal space R for housing the electronic component 85.
  • the second ceramic member 83 does not have to have a convex portion.
  • the joint portion 84 joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. Specifically, the joint portion 84 joins the convex portion on the outer peripheral portion of the first ceramic member 82 and the convex portion on the outer peripheral portion of the second ceramic member 83.
  • a package is formed by the first and second ceramic members 82 and 83 joined by the joining portion 84.
  • the package forms an internal space R.
  • the joint portion 84 liquid-tightly and airtightly seals the internal space R.
  • the joint portion 84 is a sealing portion.
  • the electronic component 85 is arranged in the internal space R of the package. Specifically, the electronic component 85 is arranged on the first ceramic member 82. In this embodiment, two electronic components 85 are used.
  • the joint portion 84 includes a plurality of metal-coated particles 1 and glass 84B.
  • the joining portion 84 is formed by using a joining material containing a plurality of metal-coated particles 1 different from the glass particles and the glass 84B.
  • This bonding material is a bonding material for ceramic packages.
  • the bonding material may include a solvent or a resin.
  • the glass 84B such as glass particles is solidified after melting and bonding.
  • Electronic parts include sensor elements, MEMS and bare chips.
  • the sensor element include a pressure sensor element, an acceleration sensor element, a CMOS sensor element, a CCD sensor element, and a housing for the various sensor elements.
  • the lead frame 86 is arranged between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the lead frame 86 extends to the inner space R side and the outer space side of the package.
  • the terminal of the electronic component 85 and the lead frame 86 are electrically connected via a wire.
  • the joining portion 84 partially and directly joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the joint portion 84 has an outer peripheral portion of the first ceramic member 82 in a portion where the lead frame 86 is provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the outer peripheral portion of the second ceramic member 83 are indirectly joined via the lead frame 86.
  • the first ceramic member 82 is in contact with the lead frame 86 at the portion where the lead frame 86 is between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, and the lead frame 86 is It contacts the first ceramic member 82 and the joint portion 84.
  • the joint portion 84 is in contact with the lead frame 86 and the second ceramic member 83, and the second ceramic member 83 is in contact with the joint portion 84.
  • the joint portion 84 is provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 without the lead frame 86, and the outer peripheral portion of the first ceramic member 82 and the second ceramic member 82.
  • the outer peripheral portion of the member 83 is directly joined.
  • the joint portion 84 forms the first ceramic member 82 and the second ceramic member 83. Touches.
  • the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 In a portion where the lead frame 86 is provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the distance of the gap between and is controlled by the plurality of metal-coated particles 1 included in the joint portion 84.
  • the joining portion may be formed by directly or indirectly joining the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member. Note that an electrical connection method other than the lead frame may be adopted.
  • the electronic component device includes, for example, a first ceramic member formed of a ceramic material, a second ceramic member formed of a ceramic material, a joint portion, and an electronic component. May be provided.
  • the joint may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member.
  • the package may be formed by the first and second ceramic members joined by the joining portion.
  • the electronic component may be arranged in the internal space of the package, and the bonding portion may include a plurality of metal-coated particles and glass.
  • the bonding material for ceramic package is used to form the bonding portion in the electronic component device, and includes metal-coated particles and glass.
  • An electrical connection method that includes only metal-coated particles and does not include glass may be adopted.
  • Example 1 Preparation of Metal Coated Particles 1 As base particles (S1), divinylbenzene copolymer resin particles (“Micropearl SP-203, particle size 3 ⁇ m” manufactured by Sekisui Chemical Co., Ltd.) were prepared.
  • base particles (S1) divinylbenzene copolymer resin particles (“Micropearl SP-203, particle size 3 ⁇ m” manufactured by Sekisui Chemical Co., Ltd.) were prepared.
  • the base particles (S1) were taken out by dispersing 10 parts by weight of the base particles (S1) with an ultrasonic disperser in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution, and then filtering the solution. It was Next, the base particles (S1) were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles (S1). After thoroughly washing the surface-activated base material particles (S1) with water, the suspension (A1) was obtained by adding and dispersing 500 parts by weight of distilled water.
  • the suspension (A1) was put into a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixed solution (B1).
  • a plating solution (C1) was prepared.
  • a silver plating solution (D1) prepared by adjusting a mixed solution containing 15 g / L of silver nitrate, 50 g / L of succinimide, and 20 g / L of formaldehyde with ammonia water to pH 8.0 is prepared. did.
  • the copper plating solution (C1) was gradually added dropwise to the particle mixture solution (B1) at 55 ° C to perform electroless copper plating. Electroless copper plating was performed at a dropping rate of the copper plating solution (C1) of 30 mL / min and a dropping time of 30 minutes. In this way, a particle mixed solution (E1) containing particles having copper as the first metal portion (first layer) on the surface of the resin particles was obtained.
  • the particles were taken out by filtering the particle mixture solution (E1) and washed with water to obtain particles in which copper was arranged on the surface of the base material particles (S1). After thoroughly washing the particles with water, the mixture was added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (F1).
  • the silver plating solution (D1) was gradually added dropwise to the particle mixture solution (F1) at 60 ° C to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles are taken out by filtration, washed with water, and dried to obtain metal-coated particles 1 having copper and silver (total metal part thickness: 0.2 ⁇ m) on the surface of the base material particles (S1). It was
  • Example 2 (1) Preparation of Metal-Coated Particles 2 Metal nickel particles (“2020SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle size 200 nm) were dispersed in pure water to prepare a slurry having a concentration of 50% by weight. 1 part by weight of this slurry was added over 3 minutes to the suspension (A1) used in the production of the metal-coated particles 1, and the suspension (A2) containing the base material particles (S1) to which the core substance was attached.
  • 2020SUS Metal nickel particles manufactured by Mitsui Kinzoku Co., Ltd., average particle size 200 nm
  • the suspension (A2) was put into a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixed solution (B2).
  • the copper plating solution (C1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (B2) at 55 ° C. to perform electroless copper plating. Electroless copper plating was performed at a dropping rate of the copper plating solution (C1) of 30 mL / min and a dropping time of 30 minutes. In this way, a particle mixed solution (D2) containing particles in which copper was arranged as the first metal portion (first layer) on the surface of the resin particles and the metal portion having protrusions on the surface was obtained.
  • the particle mixed solution (D2) is filtered to take out the particles, and the particles are washed with water, whereby copper is arranged on the surface of the base material particles (S1) and particles having a metal portion having protrusions on the surface are provided.
  • Got The particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E2).
  • the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E2) at 60 ° C. to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles are taken out by filtration, washed with water, and dried to deposit copper and silver (total metal portion thickness in a portion having no protrusion: 0.2 ⁇ m) on the surface of the base material particle (S1).
  • a metal-coated particle 2 having a metal portion having a plurality of protrusions on its surface was obtained.
  • Example 3 (1) Preparation of metal-coated particles 3
  • the suspension (A1) used in the preparation of metal-coated particles 1 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to prepare a particle mixture solution. (B3) was obtained.
  • an electroless nickel plating solution a mixed solution containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was adjusted to pH 6.5.
  • the prepared nickel plating solution (C3) was prepared.
  • the nickel plating solution (C3) was gradually added dropwise to the particle mixture solution (B3) at 50 ° C to perform electroless nickel plating.
  • the dropping rate of the nickel plating solution (C3) was 25 mL / min, and the dropping time was 60 minutes to carry out electroless nickel plating.
  • the particles were taken out by filtration and washed with water to obtain particles having a nickel-phosphorus alloy on the surface of the base material particles (S1).
  • the particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E3).
  • the silver plating solution (D1) used when the metal-coated particles 1 were prepared was gradually added dropwise to the particle mixture solution (E3) at 60 ° C. to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles are taken out by filtration, washed with water, and dried to obtain metal-coated particles 3 having nickel and silver (total metal part thickness: 0.2 ⁇ m) on the surface of the base material particles (S1). It was
  • Example 4 The suspension (A2) used when producing the metal-coated particles 2 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B4).
  • the nickel plating solution (C3) used when the metal-coated particles 3 were prepared was gradually added dropwise to the particle mixture solution (B4) at 50 ° C. to perform electroless nickel plating.
  • the dropping rate of the nickel plating solution (C3) was 25 mL / min, and the dropping time was 60 minutes to carry out electroless nickel plating.
  • the particles are taken out by filtration and washed with water to obtain particles in which nickel-phosphorus is arranged on the surface of the base material particles (S1) and which has a metal portion having protrusions on the surface.
  • the particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E4).
  • the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E4) at 60 ° C. to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles are taken out by filtering, washed with water, and dried to dispose nickel and silver (the total thickness of the metal portion in the portion having no protrusion: 0.2 ⁇ m) on the surface of the base material particle (S1).
  • nickel and silver the total thickness of the metal portion in the portion having no protrusion: 0.2 ⁇ m
  • Example 5 The suspension (A2) used in the production of the metal-coated particles 2 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B5).
  • an electroless nickel plating solution a mixed solution containing 100 g / L of nickel sulfate, 5 g / L of sodium tungstate, 30 g / L of dimethylamine borane, 10 ppm of bismuth nitrate, and 30 g / L of trisodium citrate was used as sodium hydroxide.
  • An electroless nickel-tungsten-boron alloy plating solution (C5) adjusted to pH 6 with was prepared.
  • the nickel plating solution (C5) was gradually added dropwise to the particle mixture solution (B5) at 50 ° C to perform electroless nickel plating. Electroless nickel plating was performed at a dropping rate of the nickel plating solution (C5) of 25 mL / min and a dropping time of 60 minutes. Then, the particles are taken out by filtration and washed with water to obtain particles in which nickel-tungsten-boron is arranged on the surface of the base material particles (S1) and which has a metal portion having protrusions on the surface. . After thoroughly washing the particles with water, the mixture was added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (E5).
  • the silver plating solution (D1) used when the metal-coated particles 1 were prepared was gradually added dropwise to the particle mixture solution (E5) at 60 ° C. to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles are taken out by filtering, washed with water, and dried to dispose nickel and silver (the total thickness of the metal portion in the portion having no protrusion: 0.2 ⁇ m) on the surface of the base material particle (S1).
  • nickel and silver the total thickness of the metal portion in the portion having no protrusion: 0.2 ⁇ m
  • an electroless displacement gold plating solution (G6) containing 2 g / L of potassium cyanide, 20 g / L of sodium citrate, 3.0 g / L of ethylenediaminetetraacetic acid, and 20 g / L of sodium hydroxide ( pH 6.5) was prepared.
  • a particle mixed solution (E2) used when preparing the metal-coated particles 2 was prepared.
  • the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E2) at 60 ° C. to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles were taken out by filtering and washed with water to obtain particles in which copper and silver were arranged on the surface of the base material particles (S1) and which had a metal portion having protrusions on the surface.
  • the particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (H6).
  • the electroless displacement gold plating solution (G6) was gradually dropped into the particle mixture solution (H6) at 60 ° C to perform electroless displacement gold plating.
  • the electroless displacement gold plating solution (G6) was dropped at a rate of 2 mL / min and for a dropping time of 45 minutes to perform electroless displacement gold plating.
  • the particles are taken out by filtration, washed with water, and dried to obtain copper, silver, and gold (total metal part thickness in a portion having no protrusions: 0.21 ⁇ m) on the surface of the base material particles (S1).
  • Metal-coated particles 6 that were arranged and provided with a metal portion having a plurality of protrusions on the surface were obtained.
  • Example 7 The suspension (A2) used in the preparation of the metal-coated particles 2 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B7).
  • the nickel plating solution (C3) used in the production of the metal-coated particles 3 was gradually dropped into the particle mixture solution (B7) at 50 ° C. to perform electroless nickel plating.
  • the dropping rate of the nickel plating solution (C3) was 25 mL / min, and the dropping time was 60 minutes to carry out electroless nickel plating.
  • the particles are taken out by filtration and washed with water to obtain particles in which nickel-phosphorus is arranged on the surface of the base material particles (S1) and which has a metal portion having protrusions on the surface.
  • the particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E7).
  • the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E7) at 60 ° C. to perform electroless silver plating.
  • the electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
  • the particles were taken out by filtration and washed with water to obtain particles in which nickel and silver were arranged on the surface of the base material particles (S1) and which had a metal part having protrusions on the surface. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H7).
  • the electroless displacement gold plating solution (G6) used in the production of the metal-coated particles 6 was gradually dropped into the particle mixture solution (H7) at 60 ° C. in which the particles are dispersed, to perform electroless displacement gold plating. went.
  • the electroless displacement gold plating solution (G6) was dropped at a rate of 2 mL / min and for a dropping time of 45 minutes to perform electroless displacement gold plating.
  • the particles are taken out by filtration, washed with water, and dried to remove nickel, silver, and gold (the total thickness of the metal part in the part without protrusions: 0.21 ⁇ m) on the surface of the base material particles (S1).
  • Metal-coated particles 7 that were arranged and provided with a metal portion having a plurality of protrusions on the surface were obtained.
  • Example 8 Metal-coated particles 8 were obtained in the same manner as in Example 2 except that alumina particles (particle diameter 150 nm) were used instead of the metal nickel particles.
  • Example 9 Metal-coated particles 9 were obtained in the same manner as in Example 4 except that alumina particles (particle diameter 150 nm) were used instead of the metal nickel particles.
  • Example 10 Metal-coated particles 10 were obtained in the same manner as in Example 2 except that titanium oxide particles (particle size 150 nm) were used instead of the metal nickel particles.
  • Example 11 Metal-coated particles 11 were obtained in the same manner as in Example 4 except that titanium oxide particles (particle diameter 150 nm) were used instead of the metal nickel particles.
  • Example 12 As the base particles (S2), divinylbenzene copolymer resin particles (“Micropearl SP-202” manufactured by Sekisui Chemical Co., Ltd., particle diameter 2 ⁇ m) were prepared.
  • Metal-coated particles 12 were obtained in the same manner as in Example 2 except that the base particles (S2) were used instead of the base particles (S1).
  • Example 13 As the base particles (S2), divinylbenzene copolymer resin particles (“Micropearl SP-202” manufactured by Sekisui Chemical Co., Ltd., particle diameter 2 ⁇ m) were prepared.
  • Metal-coated particles 13 were obtained in the same manner as in Example 4, except that the base particles (S2) were used instead of the base particles (S1).
  • Example 14 As the base particles (S3), divinylbenzene copolymer resin particles (“Micropearl SP-215” manufactured by Sekisui Chemical Co., Ltd., particle diameter 15 ⁇ m) were prepared.
  • Metal-coated particles 14 were obtained in the same manner as in Example 2 except that the base particles (S3) were used instead of the base particles (S1).
  • Example 15 As the base particles (S3), divinylbenzene copolymer resin particles (“Micropearl SP-215” manufactured by Sekisui Chemical Co., Ltd., particle diameter 15 ⁇ m) were prepared.
  • Metal-coated particles 15 were obtained in the same manner as in Example 4, except that the base particles (S3) were used instead of the base particles (S1).
  • Example 16 As the base particles (S4), divinylbenzene copolymer resin particles (“Micropearl SP-230” manufactured by Sekisui Chemical Co., Ltd., particle diameter 30 ⁇ m) were prepared.
  • Metal-coated particles 16 were obtained in the same manner as in Example 2 except that the base particles (S4) were used instead of the base particles (S1).
  • Example 17 As the base particles (S4), divinylbenzene copolymer resin particles (“Micropearl SP-230” manufactured by Sekisui Chemical Co., Ltd., particle diameter 30 ⁇ m) were prepared.
  • Metal-coated particles 17 were obtained in the same manner as in Example 4, except that the base particles (S4) were used instead of the base particles (S1).
  • Example 18 (1) Preparation of Silicone Oligomer 1 part by weight of 1,3-divinyltetramethyldisiloxane and 20 parts by weight of 0.5% by weight p-toluenesulfonic acid aqueous solution were placed in a 100 ml separable flask installed in a warm bath. I put it in. After stirring at 40 ° C. for 1 hour, 0.05 part by weight of sodium hydrogen carbonate was added.
  • aqueous solution B was prepared by mixing with 80 parts by weight of a 5% by weight aqueous solution of "Gohsenol GH-20" manufactured by Synthetic Chemical Industry. The solution A was put in a separable flask installed in a warm bath, and then the solution B was added.
  • emulsification was carried out by using a Shirasu Porous Glass (SPG) membrane (pore average diameter of about 1 ⁇ m). Then, it heated up at 85 degreeC and superposed
  • SPG Shirasu Porous Glass
  • Metal-coated particles 18 were obtained in the same manner as in Example 4 except that the base particles (S5) were used instead of the base particles (S1).
  • Example 19 Polystyrene particles having an average particle diameter of 0.85 ⁇ m were prepared as seed particles.
  • the polystyrene particles (3.0 g), ion-exchanged water (500 g) and a 5 wt% polyvinyl alcohol aqueous solution (120 g) were mixed and ultrasonically dispersed, and then added to a separable flask and uniformly stirred.
  • an internal forming material organic compound A
  • 49 g of cyclohexyl methacrylate 1.5 g of 2,2′-azobis (methyl isobutyrate) (“V-601” manufactured by Wako Pure Chemical Industries, Ltd.
  • triethanol lauryl sulfate 5 wt% polyvinyl alcohol aqueous solution
  • Emulsion A was prepared by adding 3.0 g of amine and 40 g of ethanol to 400 g of ion-exchanged water. In a separable flask to which the polystyrene particles as seed particles were added, the emulsion A was further added, and the mixture was stirred for 4 hours to allow the seed particles to absorb the organic compound A and the internal forming material swelled seed particles. A suspension containing was obtained. Next, as a surface part forming material (organic compound B), 49 g of divinylbenzene (purity 96% by weight), 1.5 g of benzoyl peroxide (“Nyper BW” manufactured by NOF CORPORATION), and triethanolamine lauryl sulfate 3.
  • organic compound B 49 g of divinylbenzene (purity 96% by weight), 1.5 g of benzoyl peroxide (“Nyper BW” manufactured by NOF CORPORATION), and triethanolamine lauryl sulfate 3.
  • Emulsion B was prepared by adding 0 g and 40 g of ethanol to 400 g of ion-exchanged water.
  • the emulsified liquid B was further added to the separable flask containing the suspension, and the mixture was stirred for 4 hours to allow the organic compound B to be absorbed by the seed particles in which the internal forming material was swollen.
  • 360 g of a 5% by weight aqueous solution of polyvinyl alcohol was added, and heating was started to react at 75 ° C. for 5 hours and then at 85 ° C. for 6 hours to obtain base particles (base particles (S6)) having a particle diameter of 3 ⁇ m. Obtained.
  • Metal-coated particles 19 were obtained in the same manner as in Example 4 except that the base particles (S6) were used instead of the base particles (S1).
  • Example 20 Metallic nickel particles (particle diameter 3 ⁇ m) were prepared as the base material particles (S7).
  • a metal-containing cover 20 was obtained in the same manner as in Example 3 except that the base particles (S7) were used instead of the base particles (S1).
  • Example 21 Metallic copper particles (particle diameter 3 ⁇ m) were prepared as the base material particles (S8).
  • Metal-coated particles 21 were obtained in the same manner as in Example 3 except that the base particles (S8) were used instead of the base particles (S1).
  • Example 22 Silica particles (particle diameter 3 ⁇ m) were prepared as the base material particles (S9).
  • Metal-coated particles 22 were obtained in the same manner as in Example 3 except that the base particles (S9) were used instead of the base particles (S1).
  • Example 23 Alumina particles (particle diameter 3 ⁇ m) were prepared as the base material particles (S10).
  • Metal-coated particles 23 were obtained in the same manner as in Example 3 except that the base particles (S10) were used instead of the base particles (S1).
  • Metal-coated particles 24 were obtained in the same manner as in Example 3 except that the base particles (S11) were used instead of the base particles (S1).
  • a silver plating solution (D25) was prepared in which a mixed solution containing 150 g / L of silver nitrate, 300 g / L of succinimide, and 120 g / L of formaldehyde was adjusted to pH 8.0 with aqueous ammonia.
  • Metal-coated particles 25 were obtained in the same manner as in Example 2 except that the electroless silver plating solution (D25) was used instead of the electroless silver plating solution (D1).
  • the metal-coated particles 25 copper and silver (thickness of the entire metal portion in a portion having no protrusion: 0.3 ⁇ m) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
  • Example 26 Metal-coated particles 26 were obtained in the same manner as in Example 4 except that the electroless silver plating solution (D25) was used instead of the electroless silver plating solution (D1).
  • the metal-coated particles 23 nickel and silver (total metal portion thickness in a portion having no protrusion: 0.3 ⁇ m) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
  • a silver plating solution (D27) was prepared in which a mixed solution containing silver nitrate 300 g / L, succinimide 900 g / L, and formaldehyde 360 g / L was adjusted to pH 8.0 with ammonia water.
  • Metal-coated particles 27 were obtained in the same manner as in Example 4, except that the electroless silver plating solution (D27) was used instead of the electroless silver plating solution (D1).
  • the metal-coated particles 27 nickel and silver (thickness of the entire metal portion in a portion having no protrusion: 0.5 ⁇ m) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
  • a silver plating solution (D28) was prepared in which a mixed solution containing 75 g / L of silver nitrate, 150 g / L of sodium pyrophosphate, and 60 g / L of formaldehyde was adjusted to pH 7.0 with aqueous ammonia.
  • Metal-coated particles 28 were obtained in the same manner as in Example 2 except that the electroless silver plating solution (D28) was used instead of the electroless silver plating solution (D1).
  • the metal-coated particles 28 copper and silver (total metal portion thickness in a portion having no protrusion: 0.2 ⁇ m) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
  • Example 29 Metal-coated particles 29 were obtained in the same manner as in Example 4 except that the electroless silver plating solution (D28) was used instead of the electroless silver plating solution (D1).
  • the metal-coated particles 29 nickel and silver (total metal portion thickness in a portion having no protrusion: 0.2 ⁇ m) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
  • Example 30 10 g of the metal-coated particles obtained in Example 4 were subjected to sulfurization resistance treatment (surface treatment) using "Newdyne Silver” manufactured by Daiwa Kasei Co., Ltd. as a silver discoloration inhibitor. Specifically, 10 g of the metal-coated particles obtained in Example 4 are dispersed in 100 parts by weight of an isopropyl alcohol solution containing 10% by weight of New Dine Silver using an ultrasonic disperser, and then the solution is filtered. As a result, metal-coated particles 30 that were subjected to sulfurization resistance treatment were obtained.
  • Example 31 10 g of the metal-coated particles obtained in Example 4 was subjected to sulfurization resistance treatment (surface treatment) using a 2-mercaptobenzothiazole solution as a sulfuration inhibitor. Specifically, after 10 g of the metal-coated particles obtained in Example 4 were dispersed in 100 parts by weight of an isopropyl alcohol solution containing 0.5% by weight of 2-mercaptobenzothiazole using an ultrasonic disperser, The solution was filtered to obtain sulfur-resistant metal-coated particles 31.
  • the suspension (A1) was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B4).
  • an electroless nickel plating solution a mixed solution containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was adjusted to pH 6.5.
  • the prepared nickel plating solution (C4) was prepared.
  • the nickel plating solution (C4) was gradually added dropwise to the particle mixture solution (B4) at 50 ° C to perform electroless nickel plating. Electroless nickel plating was performed at a dropping rate of the nickel plating solution (C4) of 25 mL / min and a dropping time of 60 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain metal-coated particles A having nickel-phosphorus (total metal part thickness: 0.2 ⁇ m) on the surface of the base material particles (S1). It was
  • FE-TEM field emission transmission electron microscope
  • the resulting metal-coated particles were added to "Technobit 4000” manufactured by Kulzer Co., Ltd. so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for inspection.
  • a cross section of the metal-coated particles was cut out by using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so that the metal-coated particles dispersed in the inspection-use embedded resin pass through the vicinity of the center.
  • the image magnification was set to 50,000 times, 50 metal-coated particles were randomly selected, and the protrusions on each metal-coated particle were observed. The height of the protrusions on each metal-coated particle was measured, and they were arithmetically averaged to obtain the average height of the protrusions.
  • FE-SEM field emission scanning electron microscope
  • the image magnification was set to 50,000 times, 50 metal-coated particles were randomly selected, and the protrusions on each metal-coated particle were observed. The diameter of the base portion of the protrusion of each metal-coated particle was measured, and they were arithmetically averaged to obtain the average diameter of the base portion of the protrusion.
  • FE-SEM field emission scanning electron microscope
  • Compressive elastic modulus at 10% compression (10% K value)
  • the above-mentioned compression elastic modulus (10% K value) of the obtained metal-coated particles was measured as follows using a micro compression tester (“Fisherscope H-100” manufactured by Fisher Co.).
  • the metal-coated particles were compressed on a smooth indenter end face of a cylinder (diameter 100 ⁇ m, made of diamond) under the conditions of 25 ° C., compression speed of 0.3 mN / sec, and maximum test load of 20 mN.
  • the load value (N) and compression displacement (mm) at this time were measured. From the obtained measured value, the compression elastic modulus was calculated by the following formula.
  • Planar lattice of metal part The plane lattice of the metallic part in the obtained metal-coated particles was determined by using an X-ray diffractometer (“D8 DISCOVER” manufactured by BRUKER AXS), which is a diffraction line unique to the device. The peak intensity ratio was calculated. From the total peak intensity values of the detected (1,1,1) plane, (2,0,0) plane, (2,2,0) plane, and (3,1,1) plane, (1,1 , 1) ratio of intensity ratio of plane, ratio of intensity ratio of (2, 0, 0) face, ratio of intensity ratio of (2, 2, 0) face, and intensity ratio of (3, 1, 1) face was calculated.
  • D8 DISCOVER manufactured by BRUKER AXS
  • thermogravimetric measurement 20 mg of the obtained metal-coated particles were heated at a heating rate of 10 ° C./min from 25 ° C. to 600 ° C. in an air atmosphere and subjected to thermogravimetric measurement.
  • the thermal decomposition start temperature of the metal-coated particles was calculated from the obtained measurement result.
  • the temperature at which the weight of the metal-coated particles decreased by 10% was defined as the thermal decomposition start temperature.
  • the thermogravimetric measurement result when the weight of the metal-coated particles did not decrease by 10% (the weight of the metal-coated particles did not reach 18 mg), it was determined that thermal decomposition did not occur.
  • the thermogravimetric measurement was carried out using a thermogravimetric differential thermal analyzer (“Thermo Pulse EVO02” manufactured by Rigaku Corporation).
  • FIG. 9 shows an image of a linked particle body produced by using the metal-coated particles of Example 4.
  • a transparent glass substrate having a copper electrode pattern having an L / S of 30 ⁇ m / 30 ⁇ m on its upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern having L / S of 30 ⁇ m / 30 ⁇ m on the lower surface was prepared.
  • an anisotropic conductive paste immediately after preparation was applied so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was laminated on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 0.5 MPa is applied to the anisotropic conductive paste.
  • the layer was cured at 250 ° C. for 10 minutes to obtain a connection structure.
  • the electrodes were connected at a low pressure of 0.5 MPa.
  • connection resistance between the 15 upper and lower electrodes of the obtained connection structure was measured by the 4-terminal method.
  • the continuity reliability was judged according to the following criteria.
  • Average value of connection resistance is 10 7 ⁇ or more ⁇ : Average value of connection resistance is 10 6 ⁇ or more and less than 10 7 ⁇ ⁇ : Average value of connection resistance is 10 5 ⁇ or more and less than 10 6 ⁇ ⁇ : Of connection resistance Average value is less than 10 5 ⁇
  • connection structure (13) Bonding state of metal part
  • the connection structure obtained by the evaluation of the conduction reliability in the connection structure (11) above is used as an embedded resin for connection structure inspection using "Technobit 4000” manufactured by Kulzer. Was produced.
  • a cross section of the metal-coated particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the resin for inspection.
  • the bonding state of the metal part of the metal-coated particles was confirmed by observing the cross section of the obtained connection structure using a scanning electron microscope (FE-SEM).
  • the joining state of the metal part was judged according to the following criteria.
  • connection part In the connection part, the metal part of the metal-coated particles is sintered and bonded to the electrode and other metal-coated particles
  • B In the connection part, the metal part of the metal-coated particles is the electrode and other metal Not bonded to coated particles
  • the above silicone-based copolymer was polymerized by the following method. 162 g (628 mmol) of 4,4′-dicyclohexylmethane diisocyanate (manufactured by Degussa), polydimethylsiloxane modified with an amino group at one end (“TSF4709” manufactured by Momentive Co., Ltd.) (molecular weight 10,000), 900 g (90 mmol) in a metal kneader having an internal capacity of 2 L. Was added, the mixture was dissolved at 70 to 90 ° C., and then stirred for 2 hours.
  • TEZ4709 polydimethylsiloxane modified with an amino group at one end
  • neopentyl glycol manufactured by Mitsubishi Gas Chemical Co., Inc.
  • 65 g (625 mmol) of neopentyl glycol manufactured by Mitsubishi Gas Chemical Co., Inc.
  • the obtained silicone-based copolymer was dissolved in isopropyl alcohol so as to be 20% by weight and used.
  • the disappearance of the isocyanate group was confirmed by IR spectrum.
  • the silicone content was 80% by weight
  • the weight average molecular weight was 25,000
  • the SP value was 7.8, and the SP value of the repeating unit of the structure having a polar group (polyurethane) was 10. there were.
  • silicone rubber was prepared as a base material (sheet-shaped base material formed of an insulating material) for the continuity inspection member.
  • the size of the silicone rubber is 25 mm in width, 25 mm in width and 1 mm in thickness.
  • the silicone rubber is formed with a total of 400 cylindrical through-holes having a diameter of 0.5 mm and having a diameter of 0.5 and 20 in length and 20 in width.
  • the above conductive material was coated on a silicone rubber having a through hole using a knife coater, and the through hole was filled with the conductive material.
  • the silicone rubber in which the through holes were filled with the conductive material was dried in an oven at 50 ° C. for 10 minutes, and then further dried at 200 ° C. for 60 minutes to obtain a member for continuity inspection having a thickness of 1 mm.
  • the contact resistance value of the obtained continuity inspection member was measured using a contact resistance measuring system (“MS7500” manufactured by FactKay). The contact resistance was measured by applying a load of 15 gf with a platinum probe having a diameter of 0.5 mm and applying pressure to the conductive portion of the obtained member for continuity inspection from the vertical direction. At that time, 5 V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.) to measure the contact resistance value. The average value of the contact connection resistance values obtained by measuring the conductive portions at five locations was calculated. The contact resistance value was judged according to the following criteria.
  • connection resistance judgment criteria ⁇ ⁇ : Average value of connection resistance is 50.0 m ⁇ or less ⁇ : Average value of connection resistance is more than 50.0 m ⁇ and 100.0 m ⁇ or less ⁇ : Average value of connection resistance is more than 100.0 m ⁇ and 500.0 m ⁇ or less ⁇ : Connection Average resistance exceeds 500.0 m ⁇
  • the repeated reliability test and the contact resistance value of the obtained continuity inspection member were measured using a contact resistance measurement system (“MS7500” manufactured by FactKay).
  • MS7500 manufactured by FactKay
  • a platinum probe having a diameter of 0.5 mm was used and a load of 15 gf was applied to the conductive portion of the obtained probe sheet repeatedly 1000 times from the vertical direction.
  • 5 V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.) to measure the contact resistance value.
  • MODEL3566 manufactured by Tsuruga Electric Co., Ltd.
  • ⁇ ⁇ ⁇ Average value of connection resistance is 100.0 m ⁇ or less ⁇ ⁇ : Average value of connection resistance is more than 100.0 m ⁇ and 500.0 m ⁇ or less ⁇ : Average value of connection resistance is more than 500.0 m ⁇ and 1000.0 m ⁇ or less ⁇ : Average connection resistance exceeds 1000.0 m ⁇
  • Second electrode 54 ... Connection part 61, 61A ... Connection Structure 62 ... First connection target member 63, 64 ... Second connection target member 65, 66 ... Connection portion 67, 68 ... Heat sink 69 ... Other metal-coated particles 71 ... Touch panel with tactile feedback function 72 ... Touch sensor 73 Conductive layer 74 ... Tactile feedback sensor 75 ... Insulating layer 76 ... Liquid crystal panel 81 ... Electronic component device 82 ... First ceramic member 83 ... Second ceramic member 84 ... Joined portion 84B ... Glass 85 ... Electronic component 86 ... Lead frame 100 ... Continuity inspection member 110 ... Base 110a ... Through hole 120 ... Conductive part R ... Internal space

Abstract

Provided are metal-coated particles with which it is possible to effectively improve the reliability of continuity when connected between electrodes, and with which it is possible to effectively improve insulation reliability. The metal-coated particles according to this invention are metal-coated particles comprising substrate particles and metal portions positioned on the surface of the substrate particles. By heating the metal-coated particles under atmospheric pressure to a temperature of at least 100°C, the metal portions form metal bonds. When 20 mg of the metal-coated particles are heated under atmospheric conditions from a temperature of 25°C to 250°C at a rate of increase in temperature of 1°C/min, and differential scanning calorimetry was performed, one or more exothermic peaks was observed.

Description

金属被覆粒子、粒子連結体、粒子連結体の製造方法、接続材料及び接続構造体Metal-coated particles, particle connected body, method for producing particle connected body, connecting material and connecting structure
 本発明は、基材粒子と、該基材粒子の表面上に配置された金属部とを備える金属被覆粒子に関する。また、本発明は、上記金属被覆粒子を用いた粒子連結体、粒子連結体の製造方法、接続材料及び接続構造体に関する。 The present invention relates to metal-coated particles including base particles and metal parts arranged on the surface of the base particles. The present invention also relates to a particle connected body using the metal-coated particles, a method for producing the particle connected body, a connecting material, and a connecting structure.
 上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The above anisotropic conductive material is used to obtain various connection structures. Examples of the connection using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor. Examples include connection between a chip and a glass substrate (COG (Chip on Glass)) and connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)).
 上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。 By the anisotropic conductive material, for example, when electrically connecting the electrode of the flexible printed board and the electrode of the glass epoxy substrate, the anisotropic conductive material containing conductive particles is arranged on the glass epoxy substrate. To do. Next, the flexible printed boards are laminated, and heated and pressed. As a result, the anisotropic conductive material is cured and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
 下記の特許文献1には、コアと、該コアの表面を被覆する導電層と、該導電層の表面を被覆する絶縁層とを備える導電粒子が開示されている。上記コアは、融点又は軟化点がT(℃)の材料を主成分とする。上記導電層は、融点がT(℃)の材料を主成分とする。上記絶縁層は、軟化点がT(℃)の樹脂組成物から構成される。上記導電粒子では、上記T、上記T、及び上記Tが下記式(1)を満たす。特許文献1の実施例及び比較例では、導電層の材料としてはんだが用いられている。 Patent Document 1 below discloses conductive particles including a core, a conductive layer that covers the surface of the core, and an insulating layer that covers the surface of the conductive layer. The core has a material whose melting point or softening point is T 1 (° C.) as a main component. The conductive layer contains a material having a melting point of T 2 (° C.) as a main component. The insulating layer is made of a resin composition having a softening point of T 3 (° C.). In the conductive particles, T 1 , T 2 , and T 3 satisfy the following formula (1). In the examples and comparative examples of Patent Document 1, solder is used as the material of the conductive layer.
 T>T>T   (1) T 1 > T 2 > T 3 (1)
 下記の特許文献2には、芯粒子と、該芯粒子の表面を覆う表層とを有する導電粒子が開示されている。上記芯粒子は、樹脂材料を含む。上記表層は、はんだ材料を含む。上記導電粒子では、上記はんだ材料の融点は、上記樹脂材料の軟化点以下である。 The following Patent Document 2 discloses a conductive particle having a core particle and a surface layer covering the surface of the core particle. The core particles include a resin material. The surface layer contains a solder material. In the conductive particles, the melting point of the solder material is equal to or lower than the softening point of the resin material.
特開2009-123684号公報JP, 2009-123684, A 特開2017-216300号公報JP, 2017-216300, A
 導電性粒子を含む導電材料を用いて導電接続を行う際には、上方の複数の電極と下方の複数の電極とが電気的に接続されて、導電接続が行われる。導電性粒子は、上下の電極間に配置されることが望ましく、隣接する横方向の電極間には配置されないことが望ましい。導電接続においては、上下の電極間は電気的に接続されることが望ましく、隣接する横方向の電極間は電気的に接続されないことが望ましい。 When conducting a conductive connection using a conductive material containing conductive particles, a plurality of upper electrodes and a plurality of lower electrodes are electrically connected to each other to make a conductive connection. The conductive particles are preferably arranged between the upper and lower electrodes, and are preferably not arranged between adjacent lateral electrodes. In the conductive connection, it is desirable that the upper and lower electrodes are electrically connected, and it is desirable that the adjacent lateral electrodes are not electrically connected.
 導電性粒子を含む導電材料は、基板上の特定の位置に配置された後、大気雰囲気下で加熱されて導電接続が行われることがある。導電材料が導電性粒子の融点以上に加熱されることで、導電性粒子が溶融し、電極間にはんだ等の金属が凝集することで、上下の電極間が電気的に接続される。 The conductive material containing conductive particles may be placed in a specific position on the substrate and then heated in the atmosphere to make conductive connection. When the conductive material is heated to a temperature equal to or higher than the melting point of the conductive particles, the conductive particles are melted and a metal such as solder is aggregated between the electrodes, so that the upper and lower electrodes are electrically connected.
 従来のはんだを含む導電性粒子は、大気雰囲気下で放置されたり、大気雰囲気下で加熱されたりすると、はんだの表面が酸化されることがある。はんだの表面が酸化された導電性粒子は、導電接続時に十分に濡れ拡がることができず、上下の電極間を電気的に接続できないことがある。また、電子部品を作製する際には、リフロー等により、電極間を電気的に接続している接合部が繰り返し加熱されることがある。はんだにより形成された接合部が繰り返し加熱されると、該接合部が再溶融することがあり、電極間の電気的な接続を維持することができないことがある。結果として、電極間の導通信頼性を高めることが困難なことがある。 Conventional conductive particles containing solder may oxidize the solder surface if left in the air atmosphere or heated in the air atmosphere. The conductive particles whose surface of the solder has been oxidized may not be able to sufficiently spread and spread during conductive connection, and the upper and lower electrodes may not be electrically connected. Further, when an electronic component is manufactured, a joint part that electrically connects electrodes may be repeatedly heated due to reflow or the like. When the joint formed by the solder is repeatedly heated, the joint may be remelted, and the electrical connection between the electrodes may not be maintained. As a result, it may be difficult to improve the conduction reliability between the electrodes.
 また、近年、電子回路の微細化及び狭小化が進行しており、従来のはんだを含む導電性粒子を用いて導電接続すると、はんだの溶融時に、はんだが濡れ拡がることがある。はんだが濡れ拡がることにより、隣接する電極間にブリッジが形成され、隣接する電極間の絶縁信頼性が低くなることがある。 Also, in recent years, the miniaturization and narrowing of electronic circuits have progressed, and when conductive connection is made using conventional conductive particles containing solder, the solder may spread when it melts. When the solder wets and spreads, a bridge may be formed between the adjacent electrodes, and the insulation reliability between the adjacent electrodes may decrease.
 本発明の目的は、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる金属被覆粒子を提供することである。また、本発明の目的は、上記金属被覆粒子を用いた粒子連結体、粒子連結体の製造方法、接続材料及び接続構造体を提供することである。 An object of the present invention is to provide a metal-coated particle that can effectively enhance conduction reliability when electrically connecting electrodes, and further can effectively enhance insulation reliability. is there. Further, an object of the present invention is to provide a particle connected body using the metal-coated particles, a method for producing the particle connected body, a connecting material and a connecting structure.
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された金属部とを備える金属被覆粒子であり、前記金属被覆粒子を、大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、前記金属部が金属結合を形成する性質を有し、前記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、1個以上の発熱ピークが観察される、金属被覆粒子が提供される。 According to a broad aspect of the present invention, there is provided a metal-coated particle comprising a substrate particle and a metal part arranged on a surface of the substrate particle, the metal-coated particle being in an air atmosphere and at a temperature of 100. The metal part has a property of forming a metal bond by heating under a heating condition of ℃ or more, and 20 mg of the metal-coated particles are heated from 25 ° C to 250 ° C in an air atmosphere at a heating rate of 1 ° C / min. Metal-coated particles are provided in which one or more exothermic peaks are observed when heated at differential scanning calorimetry.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、吸熱ピークが観察されない。 In one specific aspect of the metal-coated particles according to the present invention, differential scanning calorimetry was performed by heating 20 mg of the metal-coated particles in the atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min. Sometimes no endothermic peak is observed.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、4個以下の発熱ピークが観察される。 In one specific aspect of the metal-coated particles according to the present invention, differential scanning calorimetry was performed by heating 20 mg of the metal-coated particles in the atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min. Occasionally, four or less exothermic peaks are observed.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属部の外表面に突起を有する。 In a specific aspect of the metal-coated particle according to the present invention, the metal portion has a protrusion on the outer surface thereof.
 本発明に係る金属被覆粒子のある特定の局面では、前記突起の平均高さが、3nm以上2000nm以下である。 In a particular aspect of the metal-coated particles according to the present invention, the average height of the protrusions is 3 nm or more and 2000 nm or less.
 本発明に係る金属被覆粒子のある特定の局面では、前記突起の基部の平均径が、3nm以上2000nm以下である。 In a particular aspect of the metal-coated particle according to the present invention, the average diameter of the base of the protrusion is 3 nm or more and 2000 nm or less.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属部の外表面の全表面積100%中、前記突起がある部分の面積が、10%以上である。 In one specific aspect of the metal-coated particle according to the present invention, the area of the portion having the protrusion is 10% or more in the total surface area of 100% of the outer surface of the metal portion.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属部の材料が、金、銀、銅、ニッケル、錫、インジウム、亜鉛、コバルト、鉄、タングステン、モリブデン、ルテニウム、白金、ロジウム、イリジウム、ビスマス、リン、ホウ素又はこれらの合金を含む。 In a particular aspect of the metal-coated particles according to the present invention, the material of the metal portion is gold, silver, copper, nickel, tin, indium, zinc, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium. , Bismuth, phosphorus, boron or alloys thereof.
 本発明に係る金属被覆粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が、100N/mm以上60000N/mm以下である。 In a specific aspect of the metal-coated particles according to the present invention, the compression elastic modulus of when compressed 10%, it is 100 N / mm 2 or more 60000N / mm 2 or less.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属被覆粒子をX線回折装置で測定し、(1,1,1)面、(2,0,0)面、(2,2,0)面、及び(3,1,1)面のピーク強度値の合計から強度比の割合を算出したときに、前記(1,1,1)面の強度比の割合が40%以上であり、前記(2,0,0)面の強度比の割合が30%以下であり、前記(2,2,0)面の強度比の割合が20%以下であり、前記(3,1,1)面の強度比の割合が20%以下である。 In a specific aspect of the metal-coated particles according to the present invention, the metal-coated particles are measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,2 When the ratio of the intensity ratio is calculated from the sum of the peak intensity values of the (0) plane and the (3,1,1) plane, the ratio of the intensity ratio of the (1,1,1) plane is 40% or more. The ratio of the strength ratio of the (2,0,0) plane is 30% or less, the ratio of the strength ratio of the (2,2,0) plane is 20% or less, and the (3,1,1) ) The ratio of the surface strength ratio is 20% or less.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属被覆粒子20mgを、10℃/minの昇温速度で25℃から600℃まで大気雰囲気下で加熱して熱重量測定を行ったときに、前記金属被覆粒子の熱分解開始温度が180℃以上であるか、又は、前記金属被覆粒子が熱分解しない。 In one specific aspect of the metal-coated particle according to the present invention, when 20 mg of the metal-coated particle is heated in an air atmosphere from 25 ° C. to 600 ° C. at a temperature rising rate of 10 ° C./min, thermogravimetric measurement is performed. In addition, the thermal decomposition starting temperature of the metal-coated particles is 180 ° C. or higher, or the metal-coated particles do not thermally decompose.
 本発明に係る金属被覆粒子のある特定の局面では、前記金属部の外表面が、表面処理されている。 In a particular aspect of the metal-coated particle according to the present invention, the outer surface of the metal part is surface-treated.
 本発明の広い局面によれば、上述した金属被覆粒子と、複数の前記金属被覆粒子を連結する柱状連結部とを備える、粒子連結体が提供される。 According to a broad aspect of the present invention, there is provided a particle connected body including the above-mentioned metal-coated particles and a columnar connecting portion connecting a plurality of the metal-coated particles.
 本発明の広い局面によれば、上述した金属被覆粒子を、0MPa以上200MPa以下の圧力条件、並びに100℃以上400℃以下の加熱温度及び0.5分間以上300分間以下の加熱時間の加熱条件で処理して、粒子連結体を得る処理工程を備え、前記加熱処理工程において、複数の前記金属被覆粒子を連結する柱状連結部が形成される、粒子連結体の製造方法が提供される。 According to a broad aspect of the present invention, the above metal-coated particles are subjected to a pressure condition of 0 MPa or more and 200 MPa or less, and a heating temperature of 100 ° C. or more and 400 ° C. or less and a heating time of 0.5 minutes or more and 300 minutes or less. There is provided a method for producing a particle-attached body, which comprises a treatment step of obtaining a particle-attached body by treatment, wherein a columnar connecting portion connecting the plurality of metal-coated particles is formed in the heat treatment step.
 本発明の広い局面によれば、上述した金属被覆粒子と、バインダーとを含む、接続材料が提供される。 According to a broad aspect of the present invention, there is provided a connecting material including the metal-coated particles described above and a binder.
 本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した金属被覆粒子であるか、又は、前記金属被覆粒子とバインダーとを含む接続材料である、接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member, a second connection target member, a connection portion connecting the first connection target member, and the second connection target member. The connection structure is provided, in which the material of the connection part is the above-mentioned metal-coated particles or a connection material containing the metal-coated particles and a binder.
 本発明に係る金属被覆粒子は、基材粒子と、上記基材粒子の表面上に配置された金属部とを備える。本発明に係る金属被覆粒子では、上記金属被覆粒子を、大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が金属結合を形成する性質を有する。本発明に係る金属被覆粒子では、上記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、1個以上の発熱ピークが観察される。本発明に係る金属被覆粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。 The metal-coated particles according to the present invention include base particles and metal parts arranged on the surfaces of the base particles. In the metal-coated particle according to the present invention, the metal-coated particle has a property of forming a metal bond by heating the metal-coated particle under an air atmosphere under a heating condition of a temperature of 100 ° C. or higher. In the metal-coated particles according to the present invention, when 20 mg of the metal-coated particles are heated in the air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, one particle is obtained. The above exothermic peaks are observed. Since the metal-coated particles according to the present invention are provided with the above-mentioned constitution, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and the insulation reliability can be effectively improved. Can be increased to
図1は、本発明の第1の実施形態に係る金属被覆粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing metal-coated particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る金属被覆粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing metal-coated particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る金属被覆粒子を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing metal-coated particles according to the third embodiment of the present invention. 図4は、本発明の第1の実施形態に係る金属被覆粒子を用いた粒子連結体を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a particle connected body using the metal-coated particles according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態に係る金属被覆粒子を用いた粒子連結体の変形例を模式的に示す断面図である。FIG. 5: is sectional drawing which shows typically the modification of the particle connection body which used the metal coating particle which concerns on the 1st Embodiment of this invention. 図6は、本発明の第1の実施形態に係る金属被覆粒子を用いた接続構造体を模式的に示す断面図である。FIG. 6 is a sectional view schematically showing a connection structure using the metal-coated particles according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係る金属被覆粒子を用いた接続構造体の第1の変形例を模式的に示す断面図である。FIG. 7: is sectional drawing which shows typically the 1st modification of the connection structure using the metal coating particle which concerns on the 1st Embodiment of this invention. 図8は、本発明の第1の実施形態に係る粒子連結体を用いた接続構造体の第2の変形例を模式的に示す断面図である。FIG. 8: is sectional drawing which shows typically the 2nd modification of the connection structure using the particle | grain coupling body which concerns on the 1st Embodiment of this invention. 図9は、実施例4の金属被覆粒子を用いて作製された粒子連結体の画像を示す図である。9: is a figure which shows the image of the particle | grain connection body produced using the metal coating particle of Example 4. FIG. 図10(a),(b)は、導通検査用部材の一例を示す平面図及び断面図である。図10(b)は、図10(a)中のA-A線に沿う断面図である。10A and 10B are a plan view and a cross-sectional view showing an example of a continuity inspection member. FIG. 10B is a sectional view taken along the line AA in FIG. 図11(a)~(c)は、電子回路デバイスの電気特性を導通検査装置を用いて検査している様子を模式的に示す図である。FIGS. 11A to 11C are diagrams schematically showing how the electrical characteristics of the electronic circuit device are inspected by using the continuity inspection apparatus. 図12は、本発明の第1の実施形態に係る粒子連結体を用いた触覚フィードバック機能付きタッチパネルを模式的に示す断面図である。FIG. 12: is sectional drawing which shows typically the touch panel with a tactile feedback function using the particle | grain coupling body which concerns on the 1st Embodiment of this invention. 図13は、本発明の第1の実施形態に係る粒子連結体を用いた電子部品装置を模式的に示す断面図である。FIG. 13: is sectional drawing which shows typically the electronic component apparatus using the particle | grain coupling body which concerns on the 1st Embodiment of this invention. 図14は、図13に示す電子部品装置における接合部部分を拡大して示す断面図である。FIG. 14 is an enlarged sectional view showing a joint portion in the electronic component device shown in FIG.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 (金属被覆粒子)
 本発明に係る金属被覆粒子は、基材粒子と、上記基材粒子の表面上に配置された金属部とを備える。本発明に係る金属被覆粒子では、上記金属被覆粒子を、大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が金属結合を形成する性質を有する。本発明に係る金属被覆粒子では、上記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、1個以上の発熱ピークが観察される。
(Metal coated particles)
The metal-coated particles according to the present invention include base particles and metal parts arranged on the surfaces of the base particles. In the metal-coated particle according to the present invention, the metal-coated particle has a property of forming a metal bond by heating the metal-coated particle under an air atmosphere under a heating condition of a temperature of 100 ° C. or higher. In the metal-coated particles according to the present invention, when 20 mg of the metal-coated particles are heated in the air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, one particle is obtained. The above exothermic peaks are observed.
 本発明に係る金属被覆粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。 Since the metal-coated particles according to the present invention are provided with the above-mentioned constitution, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and the insulation reliability can be effectively improved. Can be increased to
 従来のはんだを含む導電性粒子は、大気雰囲気下で放置されたり、大気雰囲気下で加熱されたりすると、はんだの表面が酸化されることがある。はんだの表面が酸化された導電性粒子は十分に濡れ拡がることができず、導電接続時に上下の電極間を電気的に接続できないことがある。また、電子部品を作製する際には、リフロー等により、電極間を電気的に接続している接合部が繰り返し加熱されることがある。はんだにより形成された接合部が繰り返し加熱されると、該接合部が再溶融することがあり、電極間の電気的な接続を維持することができないことがある。結果として、電極間の導通信頼性を高めることが困難なことがある。 Conventional conductive particles containing solder may oxidize the solder surface if left in the air atmosphere or heated in the air atmosphere. The conductive particles whose surface of the solder has been oxidized cannot spread sufficiently and may not be able to electrically connect the upper and lower electrodes during conductive connection. Further, when an electronic component is manufactured, a joint part that electrically connects electrodes may be repeatedly heated due to reflow or the like. When the joint formed by the solder is repeatedly heated, the joint may be remelted, and the electrical connection between the electrodes may not be maintained. As a result, it may be difficult to improve the conduction reliability between the electrodes.
 また、近年、電子回路の微細化及び狭小化が進行しており、従来のはんだを含む導電性粒子を用いて導電接続すると、はんだの溶融時に、はんだが濡れ拡がることがある。はんだが濡れ拡がることにより、隣接する電極間にブリッジが形成され、隣接する電極間の絶縁信頼性が低くなることがある。ブリッジとは、はんだが隣接する電極まで濡れ拡がることにより形成された導通経路を意味する。 Also, in recent years, the miniaturization and narrowing of electronic circuits have progressed, and when conductive connection is made using conventional conductive particles containing solder, the solder may spread when it melts. When the solder wets and spreads, a bridge may be formed between the adjacent electrodes, and the insulation reliability between the adjacent electrodes may decrease. The bridge means a conductive path formed by spreading and spreading solder to an adjacent electrode.
 本発明者らは、特定の金属部を備える金属被覆粒子を用いて、金属部を溶融させるのではなく金属拡散又は焼結により金属結合を形成させることで、電極間の導通信頼性及び絶縁信頼性を効果的に高めることができることを見出した。本発明では、金属部を金属拡散又は焼結させることで電極等と金属結合を形成することができるので、大気雰囲気下であっても導電接続が可能となる。また、本発明では、金属拡散又は焼結により電極間を電気的に接続している接合部が形成されるので、該接合部が繰り返し加熱されても再溶融することがなく、電極間の電気的な接続を効果的に維持することができる。さらに、本発明では、金属部を溶融させるのではなく金属拡散させているので、はんだのように濡れ拡がることがなく、隣接する電極間にブリッジが形成されることがない。本発明では、金属部を金属拡散又は焼結させることで電極と金属結合を形成することができるので、電極間を電気的に接続した場合に、接続されるべき上下の電極間の導通信頼性を効果的に高めることができ、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。 The inventors of the present invention use metal-coated particles having a specific metal portion to form a metal bond by metal diffusion or sintering rather than melting the metal portion, so that conduction reliability and insulation reliability between electrodes can be improved. It was found that the sex can be effectively enhanced. In the present invention, since the metal bond can be formed with the electrode or the like by diffusing or sintering the metal part, conductive connection is possible even in the atmosphere. Further, in the present invention, since the joint portion that electrically connects the electrodes is formed by metal diffusion or sintering, the joint portion is not remelted even if it is repeatedly heated, and the electric power between the electrodes is not remelted. Effective connection can be effectively maintained. Further, in the present invention, the metal portion is diffused rather than melted, so that it does not spread like wetting and does not form a bridge between adjacent electrodes. In the present invention, since the metal part and the metal bond can be formed by diffusing or sintering the metal part, when the electrodes are electrically connected, the reliability of conduction between the upper and lower electrodes to be connected is high. And the insulation reliability between adjacent lateral electrodes that must not be connected can be effectively increased.
 なお、本発明において、金属拡散とは、熱、圧力、変形等により金属原子が金属部や電極等の接合部において拡散することをいう。したがって、本発明において、「(1)大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が金属結合を形成する性質」における該金属結合が、金属拡散によって形成される場合、上記(1)の性質は、以下の(1A)のように言い換えることができる。「(1A)大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が熱、圧力、変形等により金属原子が金属部や電極等の接合部において拡散する性質」 Incidentally, in the present invention, metal diffusion means that metal atoms are diffused at a joint portion such as a metal portion or an electrode by heat, pressure, deformation or the like. Therefore, in the present invention, the metal bond in “(1) the property that the metal part forms a metal bond by heating in the atmosphere and at a temperature of 100 ° C. or higher” is formed by metal diffusion. In that case, the property of (1) can be paraphrased as (1A) below. "(1A) The property of the metal portion diffusing at the joint portion such as the metal portion or the electrode due to heat, pressure, deformation or the like by heating in an atmosphere atmosphere and at a temperature of 100 ° C. or higher"
 また、本発明において、焼結とは、金属特有の融点より低い温度で金属原子の移動が起こり、金属部間に結合が生じることをいう。したがって、本発明において、「(1)大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が金属結合を形成する性質」における該金属結合が、焼結によって形成される場合、上記(1)の性質は、以下の(1B)のように言い換えることができる。「(1B)大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が金属特有の融点より低い温度で金属原子の移動が起こり、金属部間に結合が生じる性質」 Further, in the present invention, the term “sintering” means that metal atoms move at a temperature lower than the melting point peculiar to the metal, resulting in a bond between the metal parts. Therefore, in the present invention, the metal bond in “(1) the property that the metal part forms a metal bond by heating in an air atmosphere and under a heating condition of a temperature of 100 ° C. or more” is formed by sintering. In that case, the property of (1) can be rephrased as (1B) below. "(1B) The property that when the metal part is heated under a heating condition of 100 ° C. or higher in the air atmosphere, the metal atom moves at a temperature lower than the melting point peculiar to the metal, and a bond is generated between the metal parts. "
 また、本発明に係る金属被覆粒子では、金属被覆粒子の濃度を調節することによって、隣接する金属被覆粒子同士を焼結により金属結合させることができる。このため、金属被覆粒子は、ダイボンド材料として半導体チップ等を基板に接合する用途(金属接合部を形成する用途)等に用いることができる。加熱温度、加熱時間、及び加熱時の圧力等の金属接合部を形成する条件によって、緻密な金属接合部、又は複数の微小な空隙を有する金属接合部等を形成することができ、金属接合部の状態を制御することができる。複数の微小な空隙を有する金属接合部は、冷熱サイクル等による構成材料間の線膨張係数の差により発生する内部応力を緩和することができ、導通信頼性を高めることができる。また、プリント基板の電極パッド上に、金属被覆粒子を配置して焼結することで、金属被覆粒子と電極パッドとの間に金属結合を形成することができ、金属被覆粒子を電極パッド上に固定することができる。近年、電子機器の小型化及び高機能化が進行しており、電子回路における電極及び配線においても極小化、多ピン化及び微細化が進行している。本発明に係る金属被覆粒子は、コネクターの金属ピン代替材料、及び半導体チップ等を接続するはんだボール代替材料等に用いることができ、電極の狭ピッチ化、及び多ピン化等に対応することができる。加えて、本発明に係る金属被覆粒子を金属接合部に用いることで、電極の薄型化に対応することができ、高周波特性を高めることができる。 Further, in the metal-coated particles according to the present invention, by adjusting the concentration of the metal-coated particles, adjacent metal-coated particles can be metal-bonded by sintering. Therefore, the metal-coated particles can be used as a die-bonding material for bonding a semiconductor chip or the like to a substrate (for forming a metal bonding portion). A dense metal joint, a metal joint having a plurality of minute voids, or the like can be formed depending on conditions for forming the metal joint such as a heating temperature, a heating time, and a pressure at the time of heating. The state of can be controlled. The metal joint portion having a plurality of minute voids can alleviate internal stress generated due to a difference in linear expansion coefficient between constituent materials due to a cooling / heating cycle or the like, and can enhance conduction reliability. Further, by placing the metal-coated particles on the electrode pad of the printed circuit board and sintering the metal-coated particles, a metal bond can be formed between the metal-coated particles and the electrode pad, and the metal-coated particles can be placed on the electrode pad. Can be fixed. 2. Description of the Related Art In recent years, electronic devices have become smaller and more sophisticated, and electrodes and wirings in electronic circuits have also been miniaturized, have multiple pins, and have been miniaturized. INDUSTRIAL APPLICABILITY The metal-coated particles according to the present invention can be used as a substitute for a metal pin of a connector, a substitute for a solder ball for connecting a semiconductor chip or the like, and can cope with a narrower pitch of electrodes and a larger number of pins. it can. In addition, by using the metal-coated particles according to the present invention in the metal joint, it is possible to cope with the thinning of the electrode and enhance the high frequency characteristics.
 本発明に係る金属被覆粒子は、基材粒子と、上記基材粒子の表面上に配置された金属部とを備える。上記金属部は、単層構造であってもよく、2層以上の複層構造であってもよい。上記金属部は、導電性を有することが好ましい。上記金属被覆粒子は、導電性を有することが好ましく、導電性粒子であることが好ましい。 The metal-coated particles according to the present invention include base particles and metal parts arranged on the surfaces of the base particles. The metal part may have a single-layer structure or a multi-layer structure having two or more layers. The metal part preferably has conductivity. The metal-coated particles preferably have conductivity, and are preferably conductive particles.
 本発明に係る金属被覆粒子では、上記金属被覆粒子を、大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、上記金属部が金属結合を形成する性質を有する。本発明では、大気雰囲気下の条件で導電接続を行うことができ、従来のはんだを含む導電性粒子のように導電接続時に窒素置換等の大気雰囲気下以外の条件にする工程を省略することができ、導電接続時のコストを効果的に低減することができる。上記加熱条件における加熱温度は、好ましくは100℃以上、より好ましくは150℃以上であり、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは250℃以下である。上記加熱温度が上記上限以下であると、得られる接続構造体の熱劣化を抑えることができる。上記金属被覆粒子は、上記加熱条件で加熱することで、上記金属部が金属拡散又は焼結することにより、上記金属部同士や上記金属部と電極等との間で金属結合を形成する性質を有することが好ましい。 In the metal-coated particles according to the present invention, the metal-coated particles have a property of forming a metal bond by heating the metal-coated particles under a heating condition of a temperature of 100 ° C. or higher in the air atmosphere. In the present invention, the conductive connection can be performed under the atmospheric condition, and it is possible to omit the step of performing a condition other than the atmospheric condition such as nitrogen substitution during the conductive connection like the conventional conductive particles containing solder. Therefore, the cost at the time of conductive connection can be effectively reduced. The heating temperature under the above heating conditions is preferably 100 ° C or higher, more preferably 150 ° C or higher, preferably 400 ° C or lower, more preferably 350 ° C or lower, and further preferably 250 ° C or lower. When the heating temperature is equal to or lower than the upper limit, thermal deterioration of the obtained connection structure can be suppressed. The metal-coated particles have a property of forming a metal bond between the metal parts or between the metal part and the electrode by heating or heating the metal part under the above heating conditions so that the metal part is diffused or sintered. It is preferable to have.
 本発明に係る金属被覆粒子では、上記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、1個以上の発熱ピークが観察される。観察される発熱ピークは、金属部の金属拡散又は焼結に由来するものであると考えられる。観察される発熱ピークは、金属部の金属拡散又は焼結に由来するピークであることが好ましい。電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高める観点、及び絶縁信頼性をより一層効果的に高める観点からは、上記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、吸熱ピークが観察されないことが好ましい。一般に、金属等の溶融は吸熱反応であり、示差走査熱量測定では吸熱ピークとして観察される。上記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、金属部が溶融しないことが好ましく、金属部の溶融による吸熱反応が起こらないことが好ましい。上記金属被覆粒子が、上記の好ましい態様を満足すると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、絶縁信頼性をより一層効果的に高めることができる。 In the metal-coated particles according to the present invention, when 20 mg of the metal-coated particles are heated in the air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, one particle is obtained. The above exothermic peaks are observed. The observed exothermic peak is considered to be derived from metal diffusion or sintering of the metal part. The observed exothermic peak is preferably a peak derived from metal diffusion or sintering of the metal part. When electrically connecting the electrodes, from the viewpoint of further effectively increasing the conduction reliability and the effect of further effectively increasing the insulation reliability, 20 mg of the metal-coated particles are added at 1 ° C./min. It is preferable that no endothermic peak is observed when the differential scanning calorimetry is carried out by heating from 25 ° C. to 250 ° C. in the atmosphere at a temperature rising rate. Generally, melting of metals and the like is an endothermic reaction, and is observed as an endothermic peak in differential scanning calorimetry. It is preferable that the metal part does not melt when the differential scanning calorimetry is performed by heating 20 mg of the above metal-coated particles at a temperature rising rate of 1 ° C./min from 25 ° C. to 250 ° C. in an air atmosphere. It is preferable that the endothermic reaction due to the melting of does not occur. When the above metal-coated particles satisfy the above-mentioned preferred embodiments, it is possible to further effectively improve the conduction reliability and further effectively improve the insulation reliability when the electrodes are electrically connected. You can
 上記金属被覆粒子では、上記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、4個以下の発熱ピークが観察されることが好ましく、3個以下の発熱ピークが観察されることがより好ましい。観察される発熱ピークは、2個であってもよく、1個であってもよい。上記発熱ピークの個数が、上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。 In the metal-coated particles, when 20 mg of the metal-coated particles are heated in an air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min and a differential scanning calorimetry is performed, no more than 4 exotherms are generated. It is preferable that a peak be observed, and it is more preferable that three or less exothermic peaks be observed. The number of exothermic peaks observed may be two or one. When the number of the exothermic peaks is equal to or less than the upper limit, it is possible to further effectively improve the conduction reliability when the electrodes are electrically connected, and further more effectively improve the insulation reliability. Can be increased.
 上記示差走査熱量測定には、示差走査熱量測定装置(日立ハイテクサイエンス社製「TA7000」)等が用いられる。 A differential scanning calorimeter (“TA7000” manufactured by Hitachi High-Tech Science Co., Ltd.) or the like is used for the differential scanning calorimetric measurement.
 上記金属被覆粒子の粒子径は、好ましくは0.5μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上であり、好ましくは1000μm以下、より好ましくは100μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。上記金属被覆粒子の粒子径が、上記下限以上及び上記上限以下であると、電極間を接続した場合に、金属被覆粒子と電極との接触面積が十分に大きくなり、かつ金属部を形成する際に凝集した金属被覆粒子が形成され難くなる。また、電極間の間隔が大きくなりすぎず、かつ金属部が基材粒子の表面から剥離し難くなる。また、上記金属被覆粒子の粒子径が、1μm以上30μm以下であると、2つの接続対象部材の接続用途に好適な金属被覆粒子を得ることができる。 The particle diameter of the metal-coated particles is preferably 0.5 μm or more, more preferably 3 μm or more, further preferably 5 μm or more, preferably 1000 μm or less, more preferably 100 μm or less, further preferably 30 μm or less, particularly preferably It is 20 μm or less. When the particle diameter of the metal-coated particles is not less than the lower limit and not more than the upper limit, the contact area between the metal-coated particles and the electrode becomes sufficiently large when the electrodes are connected, and at the time of forming the metal part. It becomes difficult to form the metal-coated particles that have been aggregated into. In addition, the distance between the electrodes does not become too large, and the metal part is less likely to peel off from the surface of the base material particles. Further, when the particle diameter of the metal-coated particles is 1 μm or more and 30 μm or less, the metal-coated particles suitable for connecting two members to be connected can be obtained.
 上記金属被覆粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。金属被覆粒子の粒子径は、例えば、任意の金属被覆粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各金属被覆粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの金属被覆粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の金属被覆粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの金属被覆粒子の粒子径は、球相当径での粒子径として求められる。上記金属被覆粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The particle size of the metal-coated particles is preferably the average particle size, and more preferably the number average particle size. The particle diameter of the metal-coated particles is, for example, by observing 50 arbitrary metal-coated particles with an electron microscope or an optical microscope, calculating the average value of the particle diameters of the metal-coated particles, and measuring the laser diffraction particle size distribution. Is obtained by performing. In observation with an electron microscope or an optical microscope, the particle size of each metal-coated particle is determined as the particle size in terms of a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of the circle-equivalent diameter of any 50 metal-coated particles is almost equal to the average particle diameter of the sphere-equivalent diameter. In the laser diffraction type particle size distribution measurement, the particle size of each metal-coated particle is determined as the particle size in terms of sphere equivalent diameter. The average particle size of the metal-coated particles is preferably calculated by laser diffraction particle size distribution measurement.
 上記金属被覆粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記金属被覆粒子の粒子径の変動係数が、上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。 The coefficient of variation (CV value) of the particle diameter of the metal-coated particles is preferably 10% or less, more preferably 5% or less. When the variation coefficient of the particle diameter of the metal-coated particles is equal to or less than the above upper limit, it is possible to more effectively enhance the conduction reliability and insulation reliability between the electrodes.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:金属被覆粒子の粒子径の標準偏差
 Dn:金属被覆粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of metal-coated particles Dn: Average value of particle diameter of metal-coated particles
 上記金属被覆粒子の形状は特に限定されない。上記金属被覆粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。 The shape of the metal-coated particles is not particularly limited. The shape of the metal-coated particles may be spherical, may be a shape other than spherical, and may be flat or the like.
 接続信頼性をより一層効果的に高める観点からは、上記金属被覆粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは100N/mm以上、より好ましくは1000N/mm以上、さらに好ましくは3000N/mm以上、特に好ましくは5000N/mm以上である。接続信頼性をより一層効果的に高める観点からは、上記金属被覆粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは60000N/mm以下、より好ましくは25000N/mm以下、さらに好ましくは10000N/mm以下、特に好ましくは9000N/mm以下である。 From the viewpoint of further effectively increasing the connection reliability, the compression modulus (10% K value) when the metal-coated particles are compressed by 10% is preferably 100 N / mm 2 or more, more preferably 1000 N / mm. 2 or more, more preferably 3000N / mm 2 or more, and particularly preferably 5000N / mm 2 or more. From the viewpoint of further effectively increasing the connection reliability, the compression modulus (10% K value) when the metal-coated particles are compressed by 10% is preferably 60000 N / mm 2 or less, more preferably 25000 N / mm. 2 or less, more preferably 10000 N / mm 2 or less, and particularly preferably 9000 N / mm 2 or less.
 上記金属被覆粒子の上記圧縮弾性率(10%K値)は、以下のようにして測定できる。 The compression modulus (10% K value) of the metal-coated particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で金属被覆粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 Using a micro compression tester, the metal-coated particles are compressed under the conditions of 25 ° C, a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN on the end face of a cylinder (diameter 100 μm, made of diamond). At this time, the load value (N) and the compression displacement (mm) are measured. From the obtained measured value, the compression elastic modulus can be calculated by the following formula. As the above-mentioned micro compression tester, for example, "Fisherscope H-100" manufactured by Fisher, Inc. is used.
 10%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:金属被覆粒子が10%圧縮変形したときの荷重値(N)
 S:金属被覆粒子が10%圧縮変形したときの圧縮変位(mm)
 R:金属被覆粒子の半径(mm)
10% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the metal-coated particles are compressed and deformed by 10%
S: Compressive displacement (mm) when the metal-coated particles undergo 10% compressive deformation
R: radius of metal-coated particles (mm)
 上記金属被覆粒子をX線回折装置で測定し、(1,1,1)面、(2,0,0)面、(2,2,0)面、及び(3,1,1)面のピーク強度値の合計から強度比の割合を算出する。この算出をしたときに、上記(1,1,1)面の強度比の割合は、好ましくは40%以上、より好ましくは45%以上、さらに好ましくは55%以上、特に好ましくは56%以上、最も好ましくは60%以上である。上記(1,1,1)面の強度比の割合が、上記下限以上であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。上記金属被覆粒子をX線回折装置で測定し、(1,1,1)面、(2,0,0)面、(2,2,0)面、及び(3,1,1)面のピーク強度値の合計から強度比の割合を算出したときに、上記(2,0,0)面の強度比の割合は、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である。上記(2,0,0)面の強度比の割合が、上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。上記金属被覆粒子をX線回折装置で測定し、(1,1,1)面、(2,0,0)面、(2,2,0)面、及び(3,1,1)面のピーク強度値の合計から強度比の割合を算出したときに、上記(2,2,0)面の強度比の割合は、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは12%以下、特に好ましくは10%以下である。上記(2,2,0)面の強度比の割合が、上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。上記金属被覆粒子をX線回折装置で測定し、(1,1,1)面、(2,0,0)面、(2,2,0)面、及び(3,1,1)面のピーク強度値の合計から強度比の割合を算出したときに、上記(3,1,1)面の強度比の割合は、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは13%以下、特に好ましくは10%以下である。上記(3,1,1)面の強度比の割合が、上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。 The metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane The ratio of the intensity ratio is calculated from the sum of the peak intensity values. When this calculation is performed, the ratio of the strength ratio of the (1,1,1) plane is preferably 40% or more, more preferably 45% or more, further preferably 55% or more, particularly preferably 56% or more, Most preferably, it is 60% or more. When the ratio of the strength ratio of the (1,1,1) plane is equal to or more than the above lower limit, conduction reliability can be further effectively improved when the electrodes are electrically connected, and The insulation reliability can be improved more effectively. The metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane When the ratio of the intensity ratio is calculated from the sum of the peak intensity values, the ratio of the intensity ratio of the (2,0,0) plane is preferably 30% or less, more preferably 25% or less, further preferably 20%. It is below. When the ratio of the strength ratio of the (2,0,0) plane is equal to or less than the upper limit, the conduction reliability can be more effectively enhanced when the electrodes are electrically connected, and further, The insulation reliability can be improved more effectively. The metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane When the ratio of the intensity ratio is calculated from the sum of the peak intensity values, the ratio of the intensity ratio of the (2,2,0) plane is preferably 20% or less, more preferably 15% or less, further preferably 12%. It is particularly preferably 10% or less. When the ratio of the strength ratio of the (2,2,0) plane is equal to or less than the upper limit, the conduction reliability can be more effectively enhanced when the electrodes are electrically connected, and The insulation reliability can be improved more effectively. The metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, the (2,0,0) plane, the (2,2,0) plane, and the (3,1,1) plane When the ratio of the intensity ratio is calculated from the sum of the peak intensity values, the ratio of the intensity ratio of the (3,1,1) plane is preferably 20% or less, more preferably 15% or less, further preferably 13%. It is particularly preferably 10% or less. When the ratio of the strength ratio of the (3,1,1) plane is equal to or less than the upper limit, the conduction reliability can be more effectively improved when the electrodes are electrically connected, and The insulation reliability can be improved more effectively.
 上記X線回折装置としては、BRUKER AXS社製「D8 DISCOVER」等が挙げられる。 As the above X-ray diffractometer, "D8 DISCOVER" manufactured by BRUKER AXS, etc. may be mentioned.
 上記金属被覆粒子20mgを、10℃/minの昇温速度で25℃から600℃まで大気雰囲気下で加熱して熱重量測定を行ったときに、上記金属被覆粒子の熱分解開始温度が180℃以上であるか、又は、上記金属被覆粒子が熱分解しないことが好ましい。上記金属被覆粒子20mgを、10℃/minの昇温速度で25℃から600℃まで大気雰囲気下で加熱して熱重量測定を行ったときに、上記金属被覆粒子の熱分解開始温度が180℃以上であることが好ましく、上記金属被覆粒子が熱分解しないことがより好ましい。なお、熱分解開始温度とは、熱重量測定において、金属被覆粒子の重量が10%減少したとき(金属被覆粒子の重量が18mgになったとき)の温度を意味する。また、金属被覆粒子が熱分解しないとは、熱重量測定において、金属被覆粒子の重量が10%減少しないこと(金属被覆粒子の重量が18mgにならないこと)を意味する。上記金属被覆粒子が、上記の好ましい態様を満足すると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。 When 20 mg of the metal-coated particles are heated at a temperature rising rate of 10 ° C./min from 25 ° C. to 600 ° C. in an air atmosphere for thermogravimetric measurement, the thermal decomposition start temperature of the metal-coated particles is 180 ° C. It is preferable that the above is satisfied, or the metal-coated particles are not thermally decomposed. When 20 mg of the metal-coated particles are heated at a temperature rising rate of 10 ° C./min from 25 ° C. to 600 ° C. in an air atmosphere for thermogravimetric measurement, the thermal decomposition start temperature of the metal-coated particles is 180 ° C. The above is preferable, and it is more preferable that the metal-coated particles are not thermally decomposed. The thermal decomposition start temperature means the temperature when the weight of the metal-coated particles decreases by 10% (when the weight of the metal-coated particles reaches 18 mg) in thermogravimetric measurement. In addition, that the metal-coated particles do not thermally decompose means that the weight of the metal-coated particles does not decrease by 10% in thermogravimetric measurement (the weight of the metal-coated particles does not reach 18 mg). When the metal-coated particles satisfy the above-described preferred embodiments, the conduction reliability can be more effectively enhanced when the electrodes are electrically connected, and the insulation reliability can be further effectively enhanced. Can be increased.
 上記熱重量測定は、熱重量示差熱分析装置(リガク社製「Thermo Puls EVO02」)等を用いて測定することができる。 The thermogravimetric measurement can be carried out using a thermogravimetric differential thermal analyzer (“Thermo Puls EVO02” manufactured by Rigaku).
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。なお、本発明は以下の実施形態のみに限定されず、本発明の特徴を損なわない程度に、以下の実施形態は適宜変更、改良等されてもよい。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and the following embodiments may be appropriately modified and improved without impairing the features of the present invention.
 図1は、本発明の第1の実施形態に係る金属被覆粒子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing the metal-coated particles according to the first embodiment of the present invention.
 図1に示す金属被覆粒子1は、基材粒子11と、金属部12とを有する。金属部12は、基材粒子11の表面上に配置されている。金属被覆粒子1では、金属部12は、基材粒子11の表面に接している。金属部12は、基材粒子11の表面を覆っている。金属被覆粒子1は、基材粒子11の表面が金属部12により被覆された被覆粒子である。金属被覆粒子1では、金属部12は、単層の導電層である。 The metal-coated particle 1 shown in FIG. 1 has a base particle 11 and a metal part 12. The metal portion 12 is arranged on the surface of the base particle 11. In the metal-coated particle 1, the metal part 12 is in contact with the surface of the base particle 11. The metal part 12 covers the surface of the base particle 11. The metal coated particle 1 is a coated particle in which the surface of the base material particle 11 is coated with the metal portion 12. In the metal-coated particle 1, the metal part 12 is a single-layer conductive layer.
 金属被覆粒子1は、後述する金属被覆粒子1A、金属被覆粒子1Bとは異なり、芯物質を有しない。金属被覆粒子1は導電性の表面に突起を有さず、金属部12の外表面に突起を有しない。金属被覆粒子1は球状である。 The metal-coated particle 1 does not have a core substance, unlike the metal-coated particles 1A and 1B described later. The metal-coated particles 1 do not have protrusions on the conductive surface and do not have protrusions on the outer surface of the metal portion 12. The metal-coated particles 1 are spherical.
 このように、本発明に係る金属被覆粒子は、導電性の表面に突起を有していなくてもよく、導電層の外表面に突起を有していなくてもよく、球状であってもよい。 As described above, the metal-coated particles according to the present invention may not have protrusions on the conductive surface, may not have protrusions on the outer surface of the conductive layer, and may be spherical. ..
 図2は、本発明の第2の実施形態に係る金属被覆粒子を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing metal-coated particles according to the second embodiment of the present invention.
 図2に示す金属被覆粒子1Aは、基材粒子11と、金属部12Aと、複数の芯物質13とを有する。金属部12Aは、基材粒子11の表面上に配置されている。複数の芯物質13は、基材粒子11の表面上に配置されている。金属部12Aは、基材粒子11と、複数の芯物質13とを覆うように、基材粒子11の表面上に配置されている。金属被覆粒子1Aでは、金属部12Aは、単層の導電層である。 The metal-coated particle 1A shown in FIG. 2 has a base particle 11, a metal part 12A, and a plurality of core substances 13. The metal portion 12A is arranged on the surface of the base particle 11. The plurality of core substances 13 are arranged on the surface of the base particle 11. 12 A of metal parts are arrange | positioned on the surface of the base material particle 11 so that the base material particle 11 and the some core substance 13 may be covered. In the metal-coated particle 1A, the metal portion 12A is a single-layer conductive layer.
 金属被覆粒子1Aは、外表面に複数の突起1Aaを有する。金属被覆粒子1Aでは、金属部12Aは外表面に、複数の突起12Aaを有する。複数の芯物質13は、金属部12Aの外表面を***させている。金属部12Aの外表面が複数の芯物質13によって***されていることで、突起1Aa及び12Aaが形成されている。複数の芯物質13は金属部12A内に埋め込まれている。突起1Aa及び12Aaの内側に、芯物質13が配置されている。金属被覆粒子1Aでは、突起1Aa及び12Aaを形成するために、複数の芯物質13を用いている。上記金属被覆粒子では、上記突起を形成するために、複数の上記芯物質を用いなくてもよい。上記金属被覆粒子では、複数の上記芯物質を備えていなくてもよい。 The metal-coated particle 1A has a plurality of protrusions 1Aa on the outer surface. In the metal-coated particle 1A, the metal portion 12A has a plurality of protrusions 12Aa on the outer surface. The plurality of core substances 13 raise the outer surface of the metal portion 12A. The protrusions 1Aa and 12Aa are formed by the outer surface of the metal portion 12A being raised by the plurality of core substances 13. The plurality of core substances 13 are embedded in the metal part 12A. The core substance 13 is disposed inside the protrusions 1Aa and 12Aa. In the metal-coated particles 1A, a plurality of core substances 13 are used to form the protrusions 1Aa and 12Aa. In the metal-coated particles, it is not necessary to use a plurality of the core substances to form the protrusions. The metal-coated particles do not have to include the plurality of core substances.
 図3は、本発明の第3の実施形態に係る金属被覆粒子を模式的に示す断面図である。 FIG. 3 is a cross-sectional view schematically showing metal-coated particles according to the third embodiment of the present invention.
 図3に示す金属被覆粒子1Bは、基材粒子11と、金属部12Bと、複数の芯物質13とを有する。金属部12Bは全体で、基材粒子11側に第1の金属部12BAと、基材粒子11側とは反対側に第2の金属部12BBとを有する。 The metal-coated particle 1B shown in FIG. 3 has a base particle 11, a metal part 12B, and a plurality of core substances 13. The metal portion 12B as a whole has a first metal portion 12BA on the base material particle 11 side and a second metal portion 12BB on the opposite side to the base material particle 11 side.
 金属被覆粒子1Aと金属被覆粒子1Bとでは、金属部のみが異なっている。すなわち、金属被覆粒子1Aでは、1層構造の金属部12Aが形成されているのに対し、金属被覆粒子1Bでは、2層構造の第1の金属部12BA及び第2の金属部12BBが形成されている。第1の金属部12BAと第2の金属部12BBとは、異なる金属部として形成されていてもよく、同一の金属部として形成されていてもよい。 Only the metal part is different between the metal-coated particles 1A and the metal-coated particles 1B. That is, in the metal-coated particle 1A, the metal portion 12A having a one-layer structure is formed, whereas in the metal-coated particle 1B, the first metal portion 12BA and the second metal portion 12BB having a two-layer structure are formed. ing. The first metal part 12BA and the second metal part 12BB may be formed as different metal parts or may be formed as the same metal part.
 第1の金属部12BAは、基材粒子11の表面上に配置されている。基材粒子11と第2の金属部12BBとの間に、第1の金属部12BAが配置されている。第1の金属部12BAは、基材粒子11に接している。第2の金属部12BBは、第1の金属部12BAに接している。基材粒子11の表面上に第1の金属部12BAが配置されており、第1の金属部12BAの表面上に第2の金属部12BBが配置されている。 The first metal part 12BA is arranged on the surface of the base particle 11. The first metal portion 12BA is arranged between the base particle 11 and the second metal portion 12BB. The first metal portion 12BA is in contact with the base material particles 11. The second metal portion 12BB is in contact with the first metal portion 12BA. The first metal portion 12BA is arranged on the surface of the base material particle 11, and the second metal portion 12BB is arranged on the surface of the first metal portion 12BA.
 金属被覆粒子1Bは、外表面に複数の突起1Baを有する。金属被覆粒子1Bでは、金属部12Bは外表面に、複数の突起12Baを有する。第1の金属部12BAは外表面に、突起12BAaを有する。第2の金属部12BBは外表面に、複数の突起12BBaを有する。金属被覆粒子1Bでは、金属部12Bは、2層の導電層である。金属部12Bは、3層以上の導電層であってもよい。 The metal-coated particle 1B has a plurality of protrusions 1Ba on its outer surface. In the metal-coated particle 1B, the metal portion 12B has a plurality of protrusions 12Ba on the outer surface. The first metal portion 12BA has a protrusion 12BAa on the outer surface. The second metal portion 12BB has a plurality of protrusions 12BBa on the outer surface. In the metal-coated particle 1B, the metal part 12B is a two-layer conductive layer. The metal part 12B may be three or more conductive layers.
 以下、金属被覆粒子の他の詳細を説明する。なお、以下の説明において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリロキシ」は「アクリロキシ」と「メタクリロキシ」との一方又は双方を意味する。また、「(メタ)アクリロ」は、「アクリロ」と「メタクリロ」との双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 Below, other details of the metal-coated particles will be explained. In the following description, “(meth) acrylic” means one or both of “acrylic” and “methacrylic”, and “(meth) acryloxy” means one or both of “acryloxy” and “methacryloxy”. means. Further, “(meth) acrylo” means both “acrylo” and “methacrylo”, and “(meth) acrylate” means one or both of “acrylate” and “methacrylate”.
 (基材粒子)
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、金属粒子であってもよい。
(Base material particles)
Examples of the base particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles. The base particle may have a core and a shell arranged on the surface of the core, or may be a core-shell particle. The base particles are preferably base particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particles may be metal particles.
 電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高める観点、及び絶縁信頼性をより一層効果的に高める観点からは、上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることがさらに好ましい。上記基材粒子は、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、2つの接続対象部材の接続用途に好適な金属被覆粒子を得ることができる。このため、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。 When electrically connecting the electrodes, the base material particles are resin particles or an organic-inorganic hybrid from the viewpoint of further effectively increasing the conduction reliability and from the viewpoint of further effectively increasing the insulation reliability. More preferably, it is a particle. The base particles may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, metal-coated particles suitable for connecting two members to be connected can be obtained. Therefore, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and the insulation reliability can be effectively improved.
 上記樹脂粒子の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are preferably used as the material for the resin particles. Examples of the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, Phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Examples thereof include polyimide, polyamideimide, polyetheretherketone, polyethersulfone, divinylbenzene polymer, and divinylbenzene-based copolymer. Examples of the above-mentioned divinylbenzene-based copolymer and the like include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having the ethylenically unsaturated group is a non-crosslinkable monomer. And a crosslinkable monomer.
 上記非架橋性の単量体としては、例えば、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene-based monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, Alkyl (meth) acrylate compounds such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate Oxygen atom-containing (meth) acrylate compounds such as; nitrile-containing monomers such as (meth) acrylonitrile; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, and stearic acid Acid vinyl ester compounds such as vinyl; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene And the halogen-containing monomer.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, and 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene , Diallyl phthalate, diallyl acrylamide, diallyl ether, and silane-containing monomers such as γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of performing suspension polymerization in the presence of a radical polymerization initiator, and a method of swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles to perform polymerization.
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、酸化チタン、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the base particles are inorganic particles excluding metal particles or organic-inorganic hybrid particles, the inorganic material for forming the base particles includes silica, titanium oxide, alumina, barium titanate, zirconia and carbon black. Is mentioned. The inorganic substance is preferably not a metal. The particles formed of the above silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is optionally performed. Particles obtained by carrying out are included. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. From the viewpoint of more effectively increasing the conduction reliability and the insulation reliability between the electrodes, the base material particles are organic-inorganic hybrid particles having an organic core and an inorganic shell arranged on the surface of the organic core. Preferably.
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 As the material of the organic core, the material of the resin particles described above and the like can be mentioned.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカ、アルミナ、酸化チタンであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 As the material of the above-mentioned inorganic shell, the inorganic substances mentioned as the above-mentioned material of the base particle can be mentioned. The material of the inorganic shell is preferably silica, alumina, or titanium oxide. The inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core and then firing the shell-like material. The metal alkoxide is preferably silane alkoxide. The inorganic shell is preferably made of silane alkoxide.
 上記コアの粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは30μm以下、最も好ましくは20μm以下である。上記コアの粒子径が、上記下限以上及び上記上限以下であると、2つの接続対象部材の接続用途に好適な金属被覆粒子を得ることができる。例えば、上記金属被覆粒子を用いて2つの接続対象部材を接続した場合に、金属被覆粒子と接続対象部材との接触面積が十分に大きくなり、かつ凝集した金属被覆粒子が形成され難くなる。 The particle diameter of the core is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 100 μm or less, further preferably 50 μm or less, particularly preferably 30 μm or less, most preferably 20 μm or less. Is. When the particle diameter of the core is not less than the lower limit and not more than the upper limit, metal-coated particles suitable for connecting two members to be connected can be obtained. For example, when two connection target members are connected using the above metal-coated particles, the contact area between the metal-coated particles and the connection target member becomes sufficiently large, and it becomes difficult to form agglomerated metal-coated particles.
 上記コアの粒子径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒径は、コアを任意の粒子径測定装置により測定した平均粒子径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析等の原理を用いた粒度分布測定機が利用できる。 The particle size of the core means the diameter when the core has a spherical shape, and the maximum diameter when the core has a shape other than the spherical shape. The particle size of the core means the average particle size of the core measured by an arbitrary particle size measuring device. For example, a particle size distribution measuring instrument using the principles of laser light scattering, electric resistance change, image analysis after imaging, etc. can be used.
 上記シェルの厚みは、好ましくは10nm以上、より好ましくは50nm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが、上記下限以上及び上記上限以下であると、2つの接続対象部材の接続用途に好適な金属被覆粒子を得ることができる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。 The thickness of the shell is preferably 10 nm or more, more preferably 50 nm or more, preferably 5 μm or less, more preferably 3 μm or less. When the thickness of the shell is not less than the lower limit and not more than the upper limit, it is possible to obtain metal-coated particles suitable for connecting two members to be connected. The thickness of the shell is an average thickness per base particle. The thickness of the shell can be controlled by controlling the sol-gel method.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、鉄、ケイ素、金、白金、チタン、亜鉛、コバルト、アルミニウム、インジウム、錫及びこれらの合金等が挙げられる。上記合金としては、はんだ等の錫合金等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the base particles are metal particles, the metal for forming the metal particles includes silver, copper, nickel, iron, silicon, gold, platinum, titanium, zinc, cobalt, aluminum, indium, tin and These alloys etc. are mentioned. Examples of the alloy include tin alloys such as solder. However, it is preferable that the base particles are not metal particles.
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、より一層好ましくは1μm以上、さらに好ましくは1.5μm以上、特に好ましくは2μm以上である。上記基材粒子の粒子径は、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは400μm以下、さらに好ましくは100μm以下、さらに一層好ましくは50μm以下、特に好ましくは30μm以下、特により一層好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、2つの接続対象部材の接続用途に好適な金属被覆粒子を得ることができる。例えば、上記金属被覆粒子を用いて2つの接続対象部材を接続した場合に、金属被覆粒子と接続対象部材との接触面積が十分に大きくなり、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。 The particle size of the base particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, even more preferably 1 μm or more, still more preferably 1.5 μm or more, and particularly preferably 2 μm or more. The particle diameter of the base material particles is preferably 1000 μm or less, more preferably 500 μm or less, even more preferably 400 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, particularly preferably 30 μm or less, and even more particularly preferably. Is 5 μm or less, most preferably 3 μm or less. When the particle diameter of the base particles is not less than the lower limit and not more than the upper limit, metal-coated particles suitable for connecting two members to be connected can be obtained. For example, when two members to be connected are connected using the metal-coated particles, the contact area between the metal-coated particles and the member to be connected becomes sufficiently large, and the conduction reliability and the insulation reliability are further effectively improved. Can be increased.
 上記基材粒子の粒子径は、0.5μm以上30μm以下であることが特に好ましい。上記基材粒子の粒子径が、0.5μm以上30μm以下の範囲内であると、2つの接続対象部材の接続用途に好適な金属被覆粒子を得ることができる。 The particle diameter of the base particles is particularly preferably 0.5 μm or more and 30 μm or less. When the particle diameter of the base material particles is in the range of 0.5 μm or more and 30 μm or less, metal-coated particles suitable for connecting two members to be connected can be obtained.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 The particle size of the base particles indicates the diameter when the base particles are spherical, and indicates the maximum diameter when the base particles are not spherical.
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。金属被覆粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the above-mentioned base particles indicates the number average particle size. The particle size of the above-mentioned base particles can be obtained using a particle size distribution measuring device or the like. The particle diameter of the base material particles is preferably obtained by observing 50 arbitrary base material particles with an electron microscope or an optical microscope and calculating an average value. When measuring the particle size of the above-mentioned base particles in the metal-coated particles, for example, it can be measured as follows.
 金属被覆粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した金属被覆粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の金属被覆粒子を無作為に選択し、各金属被覆粒子における基材粒子を観察する。各金属被覆粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 Add metal-coated particles to "Technobit 4000" manufactured by Kulzer so that the content of the metal-coated particles is 30% by weight, and disperse them to prepare an inspection embedded resin. A cross section of the metal-coated particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-coated particles dispersed in the inspection embedded resin. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 25,000 times, 50 metal-coated particles were randomly selected, and the base particles in each metal-coated particle were observed. To do. The particle diameter of the base particles in each metal-coated particle is measured, and the arithmetic mean of them is used as the particle diameter of the base particles.
 応力負荷時のクラックの発生をより一層抑える観点からは、上記基材粒子は、シリコーン樹脂を含む粒子(シリコーン粒子)であることが好ましい。上記基材粒子の材料は、シリコーン樹脂を含むことが好ましい。 From the viewpoint of further suppressing the occurrence of cracks when a stress is applied, the base particles are preferably particles containing a silicone resin (silicone particles). The material of the base particles preferably contains a silicone resin.
 上記シリコーン粒子の材料は、ラジカル重合性基を有するシラン化合物と炭素数5以上の疎水基を有するシラン化合物とであるか、ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物であるか、又は、ラジカル重合性基を両末端に有するシラン化合物であることが好ましい。これらの材料を反応させた場合には、シロキサン結合が形成される。得られるシリコーン粒子において、ラジカル重合性基及び炭素数5以上の疎水基は一般に残存する。このような材料を用いることで、0.1μm以上500μm以下の1次粒子径を有するシリコーン粒子を容易に得ることができ、しかもシリコーン粒子の耐薬品性を高くし、かつ透湿性を低くすることができる。 The material of the silicone particles is a silane compound having a radical polymerizable group and a silane compound having a hydrophobic group having 5 or more carbon atoms, or a silane having a radical polymerizable group and a hydrophobic group having 5 or more carbon atoms. It is preferably a compound or a silane compound having radically polymerizable groups at both ends. When these materials are reacted, a siloxane bond is formed. In the obtained silicone particles, the radically polymerizable group and the hydrophobic group having 5 or more carbon atoms generally remain. By using such a material, it is possible to easily obtain silicone particles having a primary particle size of 0.1 μm or more and 500 μm or less, and to increase the chemical resistance of the silicone particles and reduce the moisture permeability. You can
 上記ラジカル重合性基を有するシラン化合物では、ラジカル重合性基はケイ素原子に直接結合していることが好ましい。上記ラジカル重合性基を有するシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 In the above silane compound having a radically polymerizable group, the radically polymerizable group is preferably directly bonded to a silicon atom. As the silane compound having a radical polymerizable group, only one type may be used, or two or more types may be used in combination.
 上記ラジカル重合性基を有するシラン化合物は、アルコキシシラン化合物であることが好ましい。上記ラジカル重合性基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、ジビニルメトキシビニルシラン、ジビニルエトキシビニルシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、及び1,3-ジビニルテトラメチルジシロキサン等が挙げられる。 The silane compound having a radically polymerizable group is preferably an alkoxysilane compound. Examples of the silane compound having a radical polymerizable group include vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, divinylmethoxyvinylsilane, divinylethoxyvinylsilane, divinyldimethoxysilane, divinyldiethoxysilane, and 1 , 3-divinyltetramethyldisiloxane and the like.
 上記炭素数5以上の疎水基を有するシラン化合物では、炭素数5以上の疎水基はケイ素原子に直接結合していることが好ましい。上記炭素数5以上の疎水基を有するシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 In the silane compound having a hydrophobic group having 5 or more carbon atoms, it is preferable that the hydrophobic group having 5 or more carbon atoms is directly bonded to a silicon atom. The silane compound having a hydrophobic group having 5 or more carbon atoms may be used alone or in combination of two or more.
 上記炭素数5以上の疎水基を有するシラン化合物は、アルコキシシラン化合物であることが好ましい。上記炭素数5以上の疎水基を有するシラン化合物としては、フェニルトリメトキシシラン、ジメトキシメチルフェニルシラン、ジエトキシメチルフェニルシラン、ジメチルメトキシフェニルシラン、ジメチルエトキシフェニルシラン、ヘキサフェニルジシロキサン、1,3,3,5-テトラメチル-1,1,5,5-テトラペニルトリシロキサン、1,1,3,5,5-ペンタフェニル-1,3,5-トリメチルトリシロキサン、ヘキサフェニルシクロトリシロキサン、フェニルトリス(トリメチルシロキシ)シラン、及びオクタフェニルシクロテトラシロキサン等が挙げられる。 The silane compound having a hydrophobic group having 5 or more carbon atoms is preferably an alkoxysilane compound. Examples of the silane compound having a hydrophobic group having 5 or more carbon atoms include phenyltrimethoxysilane, dimethoxymethylphenylsilane, diethoxymethylphenylsilane, dimethylmethoxyphenylsilane, dimethylethoxyphenylsilane, hexaphenyldisiloxane, 1,3,3. 3,5-Tetramethyl-1,1,5,5-tetrapenyltrisiloxane, 1,1,3,5,5-pentaphenyl-1,3,5-trimethyltrisiloxane, hexaphenylcyclotrisiloxane, phenyl Examples thereof include tris (trimethylsiloxy) silane and octaphenylcyclotetrasiloxane.
 上記ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物では、ラジカル重合性基はケイ素原子に直接結合していることが好ましく、炭素数5以上の疎水基はケイ素原子に直接結合していることが好ましい。上記ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 In the silane compound having a radically polymerizable group and a hydrophobic group having 5 or more carbon atoms, the radically polymerizable group is preferably directly bonded to a silicon atom, and the hydrophobic group having 5 or more carbon atoms is bonded to a silicon atom. A direct bond is preferred. The silane compound having a radically polymerizable group and having a hydrophobic group having 5 or more carbon atoms may be used alone or in combination of two or more.
 上記ラジカル重合性基を有しかつ炭素数5以上の疎水基を有するシラン化合物としては、フェニルビニルジメトキシシラン、フェニルビニルジエトキシシラン、フェニルメチルビニルメトキシシラン、フェニルメチルビニルエトキシシラン、ジフェニルビニルメトキシシラン、ジフェニルビニルエトキシシラン、フェニルジビニルメトキシシラン、フェニルジビニルエトキシシラン、及び1,1,3,3-テトラフェニル-1,3-ジビニルジシロキサン等が挙げられる。 Examples of the silane compound having a radically polymerizable group and a hydrophobic group having 5 or more carbon atoms include phenylvinyldimethoxysilane, phenylvinyldiethoxysilane, phenylmethylvinylmethoxysilane, phenylmethylvinylethoxysilane and diphenylvinylmethoxysilane. , Diphenylvinylethoxysilane, phenyldivinylmethoxysilane, phenyldivinylethoxysilane, and 1,1,3,3-tetraphenyl-1,3-divinyldisiloxane.
 シリコーン粒子を得るために、上記ラジカル重合性基を有するシラン化合物と、上記炭素数5以上の疎水基を有するシラン化合物とを用いる場合、上記ラジカル重合性基を有するシラン化合物と、上記炭素数5以上の疎水基を有するシラン化合物とは重量比で、1:1~1:20で用いることが好ましく、1:5~1:15で用いることがより好ましい。 When the silane compound having the radical polymerizable group and the silane compound having the hydrophobic group having 5 or more carbon atoms are used to obtain the silicone particles, the silane compound having the radical polymerizable group and the silane compound having 5 carbon atoms are used. The weight ratio of the above silane compound having a hydrophobic group is preferably 1: 1 to 1:20, and more preferably 1: 5 to 1:15.
 シリコーン粒子を得るためのシラン化合物の全体において、ラジカル重合性基の数と炭素数5以上の疎水基の数とは、1:0.5~1:20であることが好ましく、1:1~1:15であることがより好ましい。 In the whole silane compound for obtaining silicone particles, the number of radically polymerizable groups and the number of hydrophobic groups having 5 or more carbon atoms are preferably 1: 0.5 to 1:20, and 1: 1 to It is more preferably 1:15.
 耐薬品性を効果的に高くし、透湿性を効果的に低くし、硬度を好適な範囲に制御する観点からは、上記シリコーン粒子は、1つのケイ素原子に2つのメチル基が結合したジメチルシロキサン骨格を有することが好ましく、上記シリコーン粒子の材料は、1つのケイ素原子に2つのメチル基が結合したシラン化合物を含むことが好ましい。 From the viewpoints of effectively increasing the chemical resistance, effectively lowering the moisture permeability and controlling the hardness within a suitable range, the silicone particles are dimethylsiloxane in which two silicon groups are bonded to one silicon atom. It is preferable to have a skeleton, and the material of the silicone particles preferably contains a silane compound in which two methyl groups are bonded to one silicon atom.
 耐薬品性を効果的に高くし、透湿性を効果的に低くし、硬度を好適な範囲に制御する観点からは、上記シリコーン粒子は、上述したシラン化合物を、ラジカル重合開始剤により反応させて、シロキサン結合を形成させることが好ましい。一般に、ラジカル重合開始剤を用いて、0.1μm以上500μm以下の1次粒子径を有するシリコーン粒子を得ることは困難であり、100μm以下の1次粒子径を有するシリコーン粒子を得ることが特に困難である。これに対して、ラジカル重合開始剤を用いる場合でも、上記シラン化合物を用いることで、0.1μm以上500μm以下の1次粒子径を有するシリコーン粒子を得ることができ、100μm以下の1次粒子径を有するシリコーン粒子を得ることもできる。 From the viewpoint of effectively increasing the chemical resistance, effectively lowering the moisture permeability, and controlling the hardness within a suitable range, the silicone particles are obtained by reacting the silane compound described above with a radical polymerization initiator. It is preferable to form a siloxane bond. Generally, it is difficult to obtain a silicone particle having a primary particle diameter of 0.1 μm or more and 500 μm or less by using a radical polymerization initiator, and it is particularly difficult to obtain a silicone particle having a primary particle diameter of 100 μm or less. Is. On the other hand, even when a radical polymerization initiator is used, by using the silane compound, silicone particles having a primary particle diameter of 0.1 μm or more and 500 μm or less can be obtained, and the primary particle diameter of 100 μm or less can be obtained. It is also possible to obtain silicone particles having
 上記シリコーン粒子を得るために、ケイ素原子に結合した水素原子を有するシラン化合物を用いなくてもよい。この場合には、金属触媒を用いずに、ラジカル重合開始剤を用いて、シラン化合物を重合させることができる。結果として、シリコーン粒子に金属触媒が含まれないようにすることができ、シリコーン粒子における金属触媒の含有量を少なくすることができ、さらに耐薬品性を効果的に高くし、透湿性を効果的に低くし、硬度を好適な範囲に制御することができる。 In order to obtain the above silicone particles, it is not necessary to use a silane compound having a hydrogen atom bonded to a silicon atom. In this case, the silane compound can be polymerized using the radical polymerization initiator without using the metal catalyst. As a result, the metal catalyst can be prevented from being contained in the silicone particles, the content of the metal catalyst in the silicone particles can be reduced, the chemical resistance can be effectively increased, and the moisture permeability can be effectively reduced. The hardness can be controlled to a suitable range by making the hardness low.
 上記シリコーン粒子の具体的な製造方法としては、懸濁重合法、分散重合法、ミニエマルション重合法、又は乳化重合法等でシラン化合物の重合反応を行い、シリコーン粒子を作製する方法等がある。シラン化合物の重合を進行させてオリゴマーを得た後、懸濁重合法、分散重合法、ミニエマルション重合法、又は乳化重合法等で重合体(オリゴマー等)であるシラン化合物の重合反応を行い、シリコーン粒子を作製してもよい。例えば、ビニル基を有するシラン化合物を重合させて、末端においてケイ素原子に結合したビニル基を有するシラン化合物を得てもよい。フェニル基を有するシラン化合物を重合させて、重合体(オリゴマー等)として、側鎖においてケイ素原子に結合したフェニル基を有するシラン化合物を得てもよい。ビニル基を有するシラン化合物とフェニル基を有するシラン化合物とを重合させて、重合体(オリゴマー等)として、末端においてケイ素原子に結合したビニル基を有しかつ側鎖においてケイ素原子に結合したフェニル基を有するシラン化合物を得てもよい。 Specific methods for producing the above silicone particles include a method of producing a silicone particle by polymerizing a silane compound by a suspension polymerization method, a dispersion polymerization method, a mini-emulsion polymerization method, an emulsion polymerization method, or the like. After proceeding the polymerization of the silane compound to obtain an oligomer, a polymerization reaction of a silane compound which is a polymer (such as an oligomer) is performed by a suspension polymerization method, a dispersion polymerization method, a mini-emulsion polymerization method, an emulsion polymerization method, or the like. Silicone particles may be made. For example, a silane compound having a vinyl group may be polymerized to obtain a silane compound having a vinyl group bonded to a silicon atom at a terminal. A silane compound having a phenyl group may be polymerized to obtain a silane compound having a phenyl group bonded to a silicon atom in a side chain as a polymer (oligomer or the like). By polymerizing a silane compound having a vinyl group and a silane compound having a phenyl group, a phenyl group having a vinyl group bonded to a silicon atom at a terminal and a silicon atom bonded in a side chain as a polymer (oligomer etc.) You may obtain the silane compound which has.
 上記シリコーン粒子は、複数の粒子を外表面に有していてもよい。この場合に、上記シリコーン粒子は、シリコーン粒子本体と、シリコーン粒子本体の表面上に配置された複数の粒子とを備えていてもよい。上記複数の粒子としては、シリコーン粒子及び球状シリカ等が挙げられる。上記複数の粒子の存在によって、シリコーン粒子の凝集を抑えることができる。 The above silicone particles may have a plurality of particles on the outer surface. In this case, the silicone particles may include a silicone particle body and a plurality of particles arranged on the surface of the silicone particle body. Examples of the plurality of particles include silicone particles and spherical silica. The presence of the plurality of particles can suppress the aggregation of the silicone particles.
 (金属部)
 本発明では、上記金属被覆粒子は、金属部を有する。上記金属部は、金属を含むことが好ましい。上記金属被覆粒子の全体が金属を含んでいてもよく、上記金属被覆粒子の表面部分のみが金属を含んでいてもよい。上記金属部の材料である金属は特に限定されない。上記金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、リン、ホウ素、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。電極間の導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記金属は、銀、銅、金又はパラジウムを含むことが好ましい。上記金属は、錫を含んでいなくてもよい。
(Metal part)
In the present invention, the metal-coated particles have a metal part. The metal part preferably contains a metal. The whole of the metal-coated particles may contain a metal, or only the surface portion of the metal-coated particles may contain a metal. The metal that is the material of the metal part is not particularly limited. Examples of the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, phosphorus, boron. , Silicon and alloys thereof. In addition, examples of the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of more effectively improving the conduction reliability and the insulation reliability between the electrodes, the metal preferably contains silver, copper, gold or palladium. The metal may not contain tin.
 上記金属部の材料は、金、銀、銅、ニッケル、錫、インジウム、亜鉛、コバルト、鉄、タングステン、モリブデン、ルテニウム、白金、ロジウム、イリジウム、ビスマス、リン、ホウ素又はこれらの合金を含むことが好ましい。上記金属部の材料は、金、銅、パラジウム、錫、亜鉛又はインジウムを含むことがより好ましく、銀又はニッケルを含むことがさらに好ましい。上記金属部の材料が、上記の好ましい材料を含むことで、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 The material of the metal part may include gold, silver, copper, nickel, tin, indium, zinc, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium, bismuth, phosphorus, boron or alloys thereof. preferable. The material of the metal part more preferably contains gold, copper, palladium, tin, zinc or indium, and further preferably contains silver or nickel. When the material of the metal portion contains the above-mentioned preferable material, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be more effectively enhanced.
 また、電極間の導通信頼性をより一層効果的に高める観点、及び電極間の絶縁信頼性をより一層効果的に高める観点からは、上記金属部及び上記金属部の外表面部分は銀を含むことが好ましい。銀を含む金属部100重量%中の銀の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは100重量%以下、より好ましくは90重量%以下である。銀を含む金属部100重量%中の銀の含有量は、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。上記銀を含む金属部100重量%中の銀の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 Further, from the viewpoint of more effectively increasing the conduction reliability between the electrodes and the viewpoint of further effectively increasing the insulation reliability between the electrodes, the metal portion and the outer surface portion of the metal portion include silver. Preferably. The content of silver in 100% by weight of the metal part containing silver is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less. is there. The content of silver in 100% by weight of the metal part containing silver may be 80% by weight or less, 60% by weight or less, 40% by weight or less, and 20% by weight or less. Or 10% by weight or less. When the content of silver in 100% by weight of the metal part containing silver is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be improved. It is possible to enhance the sex more effectively.
 また、電極間の導通信頼性をより一層効果的に高める観点、及び電極間の絶縁信頼性をより一層効果的に高める観点からは、上記金属部は銅を含むことが好ましい。銅を含む金属部100重量%中の銅の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは100重量%以下、より好ましくは90重量%以下である。銅を含む金属部100重量%中の銅の含有量は、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。上記銅を含む金属部100重量%中の銅の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 Further, from the viewpoint of further effectively increasing the conduction reliability between the electrodes and the viewpoint of further effectively increasing the insulation reliability between the electrodes, it is preferable that the metal portion contains copper. The content of copper in 100% by weight of the metal part containing copper is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, more preferably 90% by weight or less. is there. The content of copper in 100% by weight of the metal part containing copper may be 80% by weight or less, 60% by weight or less, 40% by weight or less, and 20% by weight or less. Or may be 10% by weight or less. When the content of copper in 100% by weight of the metal part containing copper is not less than the lower limit and not more than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be improved. It is possible to improve the sex more effectively.
 また、電極間の導通信頼性をより一層効果的に高める観点、及び電極間の絶縁信頼性をより一層効果的に高める観点からは、上記金属部はニッケルを含むことが好ましい。ニッケルを含む金属部100重量%中のニッケルの含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上である。ニッケルを含む金属部100重量%中のニッケルの含有量は、好ましくは100重量%以下、より好ましくは90重量%以下である。ニッケルを含む金属部100重量%中のニッケルの含有量は、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。上記ニッケルを含む金属部100重量%中のニッケルの含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 Further, from the viewpoint of further effectively increasing the conduction reliability between the electrodes and the viewpoint of further effectively increasing the insulation reliability between the electrodes, it is preferable that the metal portion contains nickel. The content of nickel in 100% by weight of the metal portion containing nickel is preferably 0.1% by weight or more, more preferably 1% by weight or more. The content of nickel in 100% by weight of the metal portion containing nickel is preferably 100% by weight or less, more preferably 90% by weight or less. The content of nickel in 100% by weight of the metal portion containing nickel may be 80% by weight or less, 60% by weight or less, 40% by weight or less, and 20% by weight or less. Or 10% by weight or less. When the content of nickel in 100% by weight of the metal part containing nickel is not less than the lower limit and not more than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be improved. It is possible to enhance the sex more effectively.
 金属被覆粒子1,1Aのように、上記金属部は、1つの層により形成されていてもよい。金属被覆粒子1Bのように、上記金属部は、複数の層により形成されていてもよい。すなわち、金属部は、2層以上の積層構造を有していてもよい。 Like the metal-coated particles 1 and 1A, the metal part may be formed of one layer. Like the metal-coated particles 1B, the metal part may be formed of a plurality of layers. That is, the metal part may have a laminated structure of two or more layers.
 上記基材粒子の表面上に金属部を形成する方法は特に限定されない。上記金属部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記金属部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method of forming the metal part on the surface of the base particle is not particularly limited. Examples of the method for forming the metal part include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or Examples thereof include a method of coating the surface of the base particles with a paste containing a metal powder and a binder. The method of forming the metal part is preferably electroless plating, electroplating, or a physical collision method. Examples of the physical vapor deposition method include vacuum vapor deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a sheet composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
 上記金属部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。上記金属部の厚みが、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。また、金属被覆粒子が硬くなりすぎない。 The thickness of the metal part is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 1 μm or less, more preferably 0.5 μm or less. When the thickness of the metal part is equal to or more than the lower limit and equal to or less than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be more effectively enhanced. it can. Further, the metal-coated particles do not become too hard.
 上記金属部が複数の層により形成されている場合に、最外層の金属部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.8μm以下、より好ましくは0.4μm以下である。上記最外層の金属部の厚みが、上記下限以上及び上記上限以下であると、最外層の金属部が均一になり、耐腐食性が十分に高くなる。また、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 When the metal part is formed of a plurality of layers, the thickness of the metal part of the outermost layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.8 μm or less, more preferably Is 0.4 μm or less. When the thickness of the metal portion of the outermost layer is not less than the lower limit and not more than the upper limit, the metal portion of the outermost layer is uniform and the corrosion resistance is sufficiently high. Further, the conduction reliability between the electrodes can be further effectively enhanced, and the insulation reliability between the electrodes can be further effectively enhanced.
 上記金属部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、金属被覆粒子の断面を観察することにより測定できる。 The thickness of the metal part can be measured by observing the cross section of the metal-coated particles using, for example, a transmission electron microscope (TEM).
 (表面処理)
 金属被覆粒子の腐食を抑え、電極間の接続抵抗を低くするために、上記金属被覆粒子では、上記金属部の外表面が、表面処理されていることが好ましい。上記表面処理としては、防錆処理、耐硫化処理及び変色防止処理等が挙げられる。上記表面処理は、1種類の処理のみであってもよく、2種以上の処理が併用されていてもよい。
(surface treatment)
In order to suppress the corrosion of the metal-coated particles and reduce the connection resistance between the electrodes, it is preferable that the outer surface of the metal portion of the metal-coated particles is surface-treated. Examples of the surface treatment include rust prevention treatment, sulfuration resistance treatment, discoloration prevention treatment and the like. The surface treatment may be only one type or may be a combination of two or more types.
 上記金属部の外表面が表面処理されている上記金属被覆粒子を用いることで、上記金属部の外表面が表面処理されている上記粒子連結体を容易に得ることができる。上記粒子連結体では、上記金属部の外表面が、表面処理されていることが好ましい。上記表面処理としては、防錆処理、耐硫化処理及び変色防止処理等が挙げられる。上記表面処理は、1種類の処理のみであってもよく、2種以上の処理が併用されていてもよい。 By using the above-mentioned metal-coated particles having the outer surface of the metal portion surface-treated, it is possible to easily obtain the linked particle body in which the outer surface of the metal portion is surface-treated. In the particle linked body, the outer surface of the metal part is preferably surface-treated. Examples of the surface treatment include rust prevention treatment, sulfuration resistance treatment, discoloration prevention treatment and the like. The surface treatment may be only one type or may be a combination of two or more types.
 防錆処理、耐硫化処理及び変色防止処理に用いられる防錆剤、耐硫化剤及び変色防止剤としては、ベンゾトリアゾール化合物及びイミダゾール化合物等の含窒素ヘテロ環化合物、メルカプタン化合物、チアゾール化合物、有機ジスルフィド化合物等の含硫黄化合物、並びに有機リン酸化合物等の含リン化合物等が挙げられる。 Rust-preventing treatment, rust-preventing agent used for sulfurization-resistant treatment and discoloration-preventing treatment, sulfur-proofing agents and discoloration-preventing agents include nitrogen-containing heterocyclic compounds such as benzotriazole compounds and imidazole compounds, mercaptan compounds, thiazole compounds, organic disulfides. Examples thereof include sulfur-containing compounds such as compounds, and phosphorus-containing compounds such as organic phosphoric acid compounds.
 導通信頼性をより一層高める観点からは、上記金属部の外表面は、炭素数6~22のアルキル基を有する化合物により、防錆処理されていることが好ましい。上記金属部の外表面は、リンを含まない化合物により防錆処理されていてもよく、炭素数6~22のアルキル基を有しかつリンを含まない化合物により防錆処理されていてもよい。導通信頼性をより一層高める観点からは、上記金属部の外表面は、アルキルリン酸化合物又はアルキルチオールにより、防錆処理されていることが好ましい。防錆処理により、金属部の外表面に、防錆膜を形成できる。 From the viewpoint of further enhancing the conduction reliability, it is preferable that the outer surface of the metal portion is rust-proofed with a compound having an alkyl group having 6 to 22 carbon atoms. The outer surface of the metal part may be rust-proofed with a phosphorus-free compound or may be rust-proofed with a phosphorus-free compound having an alkyl group having 6 to 22 carbon atoms. From the viewpoint of further enhancing the conduction reliability, it is preferable that the outer surface of the metal portion be rustproofed with an alkylphosphoric acid compound or an alkylthiol. By the rustproofing treatment, a rustproof film can be formed on the outer surface of the metal part.
 上記防錆膜は、炭素数6~22のアルキル基を有する化合物(以下、化合物Aともいう)により形成されていることが好ましい。上記金属部の外表面は、上記化合物Aにより表面処理されていることが好ましい。上記アルキル基の炭素数が6以上であると、金属部全体で錆がより一層生じ難くなり、特にニッケルにより形成された金属部に錆がより一層生じ難くなる。上記アルキル基の炭素数が22以下であると、金属被覆粒子及び粒子連結体の導電性が高くなる。金属被覆粒子及び粒子連結体の導電性をより一層高める観点からは、上記化合物Aにおける上記アルキル基の炭素数は16以下であることが好ましい。上記アルキル基は直鎖構造を有していてもよく、分岐構造を有していてもよい。上記アルキル基は、直鎖構造を有することが好ましい。 The rust-preventive film is preferably formed of a compound having an alkyl group having 6 to 22 carbon atoms (hereinafter, also referred to as compound A). The outer surface of the metal part is preferably surface-treated with the compound A. When the number of carbon atoms in the alkyl group is 6 or more, rust is less likely to occur in the entire metal part, and particularly rust is less likely to occur in the metal part formed of nickel. When the number of carbon atoms in the alkyl group is 22 or less, the conductivity of the metal-coated particles and the particle linked body increases. From the viewpoint of further increasing the conductivity of the metal-coated particles and the particle-coupled body, the carbon number of the alkyl group in the compound A is preferably 16 or less. The alkyl group may have a linear structure or a branched structure. The alkyl group preferably has a linear structure.
 上記化合物Aは、炭素数6~22のアルキル基を有していれば特に限定されない。上記化合物Aは、炭素数6~22のアルキル基を有するリン酸エステル又はその塩、炭素数6~22のアルキル基を有する亜リン酸エステル又はその塩、又は炭素数6~22のアルキル基を有するアルコキシシランであることが好ましい。上記化合物Aは、炭素数6~22のアルキル基を有するアルキルチオール、又は炭素数6~22のアルキル基を有するジアルキルジスルフィドであることが好ましい。すなわち、上記炭素数6~22のアルキル基を有する化合物Aは、リン酸エステル又はその塩、亜リン酸エステル又はその塩、アルコキシシラン、アルキルチオール、又はジアルキルジスルフィドであることが好ましい。これらの好ましい化合物Aの使用により、金属部に錆をより一層生じ難くすることができる。錆をより一層生じ難くする観点からは、上記化合物Aは、上記リン酸エステルもしくはその塩、亜リン酸エステルもしくはその塩、又は、アルキルチオールであることが好ましく、上記リン酸エステルもしくはその塩、又は、亜リン酸エステルもしくはその塩であることがより好ましい。上記化合物Aは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The compound A is not particularly limited as long as it has an alkyl group having 6 to 22 carbon atoms. The compound A is a phosphoric acid ester or salt thereof having an alkyl group having 6 to 22 carbon atoms, a phosphorous acid ester or salt thereof having an alkyl group of 6 to 22 carbon atoms, or an alkyl group having 6 to 22 carbon atoms. It is preferable that the alkoxysilane has. The compound A is preferably an alkylthiol having an alkyl group having 6 to 22 carbon atoms or a dialkyldisulfide having an alkyl group having 6 to 22 carbon atoms. That is, the compound A having an alkyl group having 6 to 22 carbon atoms is preferably a phosphoric acid ester or a salt thereof, a phosphorous acid ester or a salt thereof, an alkoxysilane, an alkylthiol, or a dialkyldisulfide. By using these preferred compounds A, it is possible to further prevent rust from forming on the metal part. From the viewpoint of making rust less likely to occur, the compound A is preferably the phosphoric acid ester or a salt thereof, a phosphorous acid ester or a salt thereof, or an alkylthiol, and the phosphoric acid ester or a salt thereof, Alternatively, a phosphite ester or a salt thereof is more preferable. As for the said compound A, only 1 type may be used and 2 or more types may be used together.
 上記化合物Aは、上記金属部の外表面と反応可能な反応性官能基を有することが好ましい。上記化合物Aは、後述する絶縁性物質と反応可能な反応性官能基を有することが好ましい。上記防錆膜は、上記金属部と化学結合していることが好ましい。上記防錆膜は、上記絶縁性物質と化学結合していることが好ましい。上記防錆膜は、上記金属部及び上記絶性縁物質の双方と化学結合していることがより好ましい。上記反応性官能基の存在により、及び上記化学結合により、上記防錆膜の剥離が生じ難くなり、この結果、上記金属部に錆がより一層生じ難くなり、かつ金属被覆粒子及び粒子連結体の表面から絶縁性物質が意図せずにより一層脱離し難くなる。 The compound A preferably has a reactive functional group capable of reacting with the outer surface of the metal part. The compound A preferably has a reactive functional group capable of reacting with an insulating substance described later. The rust preventive film is preferably chemically bonded to the metal part. The rust preventive film is preferably chemically bonded to the insulating substance. It is more preferable that the rust preventive film is chemically bonded to both the metal part and the insulating material. Due to the presence of the reactive functional group, and due to the chemical bond, peeling of the rust-preventive film is less likely to occur, and as a result, rust is less likely to occur in the metal part, and the metal-coated particles and the particle linked body are It becomes more difficult to unintentionally detach the insulating material from the surface.
 上記炭素数6~22のアルキル基を有するリン酸エステル又はその塩としては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル、リン酸モノヘキシルエステルモノナトリウム塩、リン酸モノヘプチルエステルモノナトリウム塩、リン酸モノオクチルエステルモノナトリウム塩、リン酸モノノニルエステルモノナトリウム塩、リン酸モノデシルエステルモノナトリウム塩、リン酸モノウンデシルエステルモノナトリウム塩、リン酸モノドデシルエステルモノナトリウム塩、リン酸モノトリデシルエステルモノナトリウム塩、リン酸モノテトラデシルエステルモノナトリウム塩及びリン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記リン酸エステルのカリウム塩を用いてもよい。 Examples of the phosphoric acid ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include hexyl phosphoric acid ester, heptyl phosphoric acid ester, monooctyl phosphoric acid ester, monononyl phosphoric acid ester, monodecyl phosphoric acid ester, Phosphoric acid monoundecyl ester, phosphoric acid monododecyl ester, phosphoric acid monotridecyl ester, phosphoric acid monotetradecyl ester, phosphoric acid monopentadecyl ester, phosphoric acid monohexyl ester monosodium salt, phosphoric acid monoheptyl ester monosodium salt Salt, monooctyl phosphate monosodium salt, monononyl phosphate monosodium salt, monodecyl ester monosodium salt, monoundecyl ester monosodium phosphate, monododecyl ester monosodium salt, phosphoric acid Examples thereof include monotridecyl ester monosodium salt, phosphoric acid monotetradecyl ester monosodium salt, and phosphoric acid monopentadecyl ester monosodium salt. You may use the potassium salt of the said phosphoric acid ester.
 上記炭素数6~22のアルキル基を有する亜リン酸エステル又はその塩としては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル、亜リン酸モノヘキシルエステルモノナトリウム塩、亜リン酸モノヘプチルエステルモノナトリウム塩、亜リン酸モノオクチルエステルモノナトリウム塩、亜リン酸モノノニルエステルモノナトリウム塩、亜リン酸モノデシルエステルモノナトリウム塩、亜リン酸モノウンデシルエステルモノナトリウム塩、亜リン酸モノドデシルエステルモノナトリウム塩、亜リン酸モノトリデシルエステルモノナトリウム塩、亜リン酸モノテトラデシルエステルモノナトリウム塩及び亜リン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記亜リン酸エステルのカリウム塩を用いてもよい。 Examples of the phosphite having an alkyl group having 6 to 22 carbon atoms or salts thereof include hexyl phosphite, heptyl phosphite, monooctyl phosphite, monononyl phosphite, and phosphite. Phosphoric acid monodecyl ester, phosphorous acid monoundecyl ester, phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotetradecyl ester, phosphorous acid monopentadecyl ester, phosphorous acid monohexyl ester Ester monosodium salt, phosphorous acid monoheptyl ester monosodium salt, phosphorous acid monooctyl ester monosodium salt, phosphorous acid monononyl ester monosodium salt, phosphorous acid monodecyl ester monosodium salt, phosphorous monounsulfate Decyl ester monosodium salt, phosphorous acid monododecyl ester monosodium salt, phosphorous acid monotridecyl ester monosodium salt, phosphorous acid monotetradecyl ester monosodium salt, and phosphorous acid monopentadecyl ester monosodium salt, etc. Can be mentioned. You may use the potassium salt of the said phosphorous acid ester.
 上記炭素数6~22のアルキル基を有するアルコキシシランとしては、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ノニルトリメトキシシラン、ノニルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ウンデシルトリメトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、トリデシルトリメトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリメトキシシラン及びペンタデシルトリエトキシシラン等が挙げられる。 Examples of the alkoxysilane having an alkyl group having 6 to 22 carbon atoms include hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, and nonyltriethoxysilane. Methoxysilane, nonyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, undecyltrimethoxysilane, undecyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tridecyltrimethoxysilane, tridecyltriethoxy Examples thereof include silane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, pentadecyltrimethoxysilane and pentadecyltriethoxysilane.
 上記炭素数6~22のアルキル基を有するアルキルチオールとしては、例えば、ヘキシルチオール、ヘプチルチオール、オクチルチオール、ノニルチオール、デシルチオール、ウンデシルチオール、ドデシルチオール、トリデシルチオール、テトラデシルチオール、ペンタデシルチオール及びヘキサデシルチオール等が挙げられる。上記アルキルチオールは、アルキル鎖の末端にチオール基を有することが好ましい。 Examples of the alkylthiol having an alkyl group having 6 to 22 carbon atoms include hexylthiol, heptylthiol, octylthiol, nonylthiol, decylthiol, undecylthiol, dodecylthiol, tridecylthiol, tetradecylthiol, pentadecyl. Examples thereof include thiol and hexadecyl thiol. The alkylthiol preferably has a thiol group at the end of the alkyl chain.
 上記炭素数6~22のアルキル基を有するジアルキルジスルフィドとしては、例えば、ジヘキシルジスルフィド、ジヘプチルジスルフィド、ジオクチルジスルフィド、ジノニルジスルフィド、ジデシルジスルフィド、ジウンデシルジスルフィド、ジドデシルジスルフィド、ジトリデシルジスルフィド、ジテトラデシルジスルフィド、ジペンタデシルジスルフィド及びジヘキサデシルジスルフィド等が挙げられる。 Examples of the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms include dihexyl disulfide, diheptyl disulfide, dioctyl disulfide, dinonyl disulfide, didecyl disulfide, diundecyl disulfide, didodecyl disulfide, ditridecyl disulfide, ditetradecyl disulfide. Examples thereof include decyl disulfide, dipentadecyl disulfide and dihexadecyl disulfide.
 導通信頼性をより一層高める観点からは、上記金属部の外表面は、スルフィド化合物若しくはチオール化合物を主成分とする硫黄含有化合物、ベンゾトリアゾール化合物又はポリオキシエチレンエーテル界面活性剤を用いて形成された層により、耐硫化処理されていることが好ましい。上記耐硫化処理により、上記金属部の外表面に、防錆膜を形成できる。 From the viewpoint of further enhancing the conduction reliability, the outer surface of the metal part is formed by using a sulfur-containing compound containing a sulfide compound or a thiol compound as a main component, a benzotriazole compound, or a polyoxyethylene ether surfactant. It is preferable that the layer is subjected to sulfurating resistance treatment. By the sulfidation-resistant treatment, a rustproof film can be formed on the outer surface of the metal part.
 上記スルフィド化合物としては、ジヘキシルスルフィド、ジヘプチルスルフィド、ジオクチルスルフィド、ジデシルスルフィド、ジドデシルスルフィド、ジテトラデシルスルフィド、ジヘキサデシルスルフィド、ジオクタデシルスルフィド等の炭素数6~40程度(好ましくは炭素数10~40程度)の直鎖状又は分岐鎖状のジアルキルスルフィド(アルキルスルフィド);ジフェニルスルフィド、フェニル-p-トリルスルフィド、4,4-チオビスベンゼンチオール等の炭素数12~30程度の芳香族スルフィド;3,3’-チオジプロピオン酸、及び4,4’-チオジブタン酸等のチオジカルボン酸等が挙げられる。ジアルキルスルフィドが特に好ましい。 Examples of the sulfide compound include dihexyl sulfide, diheptyl sulfide, dioctyl sulfide, didecyl sulfide, didodecyl sulfide, ditetradecyl sulfide, dihexadecyl sulfide, dioctadecyl sulfide, and the like having about 6 to 40 carbon atoms (preferably having a carbon number of about 6 to 40). About 10 to 40) linear or branched dialkyl sulfide (alkyl sulfide); aromatic having about 12 to 30 carbon atoms such as diphenyl sulfide, phenyl-p-tolyl sulfide, and 4,4-thiobisbenzenethiol Sulfides; thiodicarboxylic acids such as 3,3′-thiodipropionic acid and 4,4′-thiodibutanoic acid. Dialkyl sulfides are especially preferred.
 チオール化合物としては、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2-メチル-2-プロパンチオール及びオクタデシルチオール等の炭素数4~40程度(より好ましくは6~20程度)の直鎖状又は分岐鎖状のアルキルチオール等が挙げられる。また、これらの化合物の炭素基に結合している水素原子がフッ素に置換された化合物等が挙げられる。 Examples of the thiol compound include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-methyl-2-propanethiol and octadecylthiol having about 4 to 40 carbon atoms (more preferably about 6 to 20 carbon atoms). A) straight-chain or branched-chain alkylthiol and the like. Moreover, the compound etc. which the hydrogen atom couple | bonded with the carbon group of these compounds replaced by fluorine are mentioned.
 上記ベンゾトリアゾール化合物としては、ベンゾトリアゾール、ベンゾトリアゾール塩、メチルベンゾトリアゾール、カルボキシベンゾトリアゾール及びベンゾトリアゾール誘導体等が挙げられる。 Examples of the benzotriazole compound include benzotriazole, benzotriazole salts, methylbenzotriazole, carboxybenzotriazole, benzotriazole derivatives and the like.
 また、上記変色防止処理には変色防止剤が用いられる。上記変色防止剤としては、銀変色防止剤が挙げられる。上記銀変色防止剤としては、北池産業社製の商品名「AC-20」、「AC-70」、「AC-80」、メルテックス社製の商品名「エンテックCU-56」、大和化成社製の商品名「ニューダインシルバー」、「ニューダインシルバー S-1」、及び千代田ケミカル社製の商品名「B-1057」、「B-1009NS」等が挙げられる。 Also, a discoloration preventive agent is used for the discoloration prevention treatment. Examples of the discoloration preventing agent include silver discoloration preventing agents. As the silver discoloration preventive agent, trade names "AC-20", "AC-70", "AC-80" manufactured by Kitaike Sangyo Co., Ltd., trade names "Entec CU-56" manufactured by Meltex Co., Ltd., Daiwa Kasei Co., Ltd. Product names “Newdyne Silver” and “Newdine Silver S-1” manufactured by Chiyoda Chemical Co., and product names “B-1057” and “B-1009NS” manufactured by Chiyoda Chemical Co. are listed.
 上記金属被覆粒子は、バインダー中で上記金属被覆粒子の分散性を向上させるために、分散剤により処理されていてもよい。上記分散剤は、特に限定されない。上記分散剤としては、例えば、脂肪酸、脂肪酸塩、界面活性剤、有機金属、保護コロイド、及びキレート形成剤等が挙げられる。バインダー中での上記金属被覆粒子の分散性をより一層効果的に向上させる観点からは、上記分散剤は、脂肪酸であることが好ましい。上記脂肪酸としては、特に限定されないが、リノール酸、リノシール酸、オレイン酸、ステアリン酸、プロピオン酸、ラウリン酸、パルミチン酸、アラキドン酸、カプリル酸、ミリスチン酸、ベヘン酸、アクリル酸、及びこれらの混合物等が挙げられる。 The metal-coated particles may be treated with a dispersant in order to improve the dispersibility of the metal-coated particles in the binder. The dispersant is not particularly limited. Examples of the dispersant include fatty acids, fatty acid salts, surfactants, organic metals, protective colloids, and chelate-forming agents. From the viewpoint of more effectively improving the dispersibility of the metal-coated particles in the binder, the dispersant is preferably a fatty acid. The fatty acid is not particularly limited, linoleic acid, linosyl acid, oleic acid, stearic acid, propionic acid, lauric acid, palmitic acid, arachidonic acid, caprylic acid, myristic acid, behenic acid, acrylic acid, and mixtures thereof. Etc.
 分散剤により処理される前の上記金属被覆粒子100重量部に対して、上記分散剤の添加量は、好ましくは0.1重量部以上、好ましくは6重量部以下である。 The amount of the dispersant added is preferably 0.1 part by weight or more, and more preferably 6 parts by weight or less, based on 100 parts by weight of the metal-coated particles before being treated with the dispersant.
 上記分散剤による処理方法としては、特に限定されず、乾式で上記金属被覆粒子と上記分散剤とを混合してもよく、溶媒とともに上記金属被覆粒子と分散剤とを混合してもよい。 The treatment method with the dispersant is not particularly limited, and the metal-coated particles and the dispersant may be mixed dry, or the metal-coated particles and the dispersant may be mixed with a solvent.
 (芯物質)
 上記金属被覆粒子は、上記金属部の表面を***させている複数の芯物質を備えることが好ましく、上記金属部内において、複数の上記突起を形成するように、上記金属部の表面を***させている複数の芯物質を備えることがより好ましい。上記金属被覆粒子は、上記金属部の外表面に突起を有することが好ましい。上記芯物質が上記金属部中に埋め込まれていることによって、上記金属部が外表面に複数の突起を有するようにすることが容易である。但し、金属被覆粒子及び金属部の外表面に突起を形成するために、芯物質を必ずしも用いなくてもよい。例えば、無電解めっきにより芯物質を用いずに突起を形成する方法として、無電解めっきにより金属核を発生させ、基材粒子又は金属部の表面に金属核を付着させ、さらに無電解めっきにより金属部を形成する方法等が挙げられる。
(Core substance)
The metal-coated particles preferably include a plurality of core substances that raise the surface of the metal portion, and in the metal portion, the surface of the metal portion is raised so as to form the plurality of protrusions. More preferably, it comprises a plurality of core substances present. The metal-coated particles preferably have protrusions on the outer surface of the metal part. By embedding the core substance in the metal part, it is easy to make the metal part have a plurality of protrusions on the outer surface. However, the core substance does not necessarily have to be used in order to form the protrusions on the outer surfaces of the metal-coated particles and the metal portion. For example, as a method of forming protrusions by using electroless plating without using a core substance, metal nuclei are generated by electroless plating, metal nuclei are attached to the surfaces of base particles or metal parts, and metal is further formed by electroless plating. The method of forming a part is mentioned.
 上記金属被覆粒子では、上記金属部の外表面の全表面積100%中、上記突起がある部分の面積は、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上である。上記金属被覆粒子では、上記金属部の外表面の全表面積100%中、上記突起がある部分の面積の上限は特に限定されない。上記金属部の外表面の全表面積100%中、上記突起がある部分の面積は、99%以下であってもよく、95%以下であってもよい。上記金属被覆粒子が、上記の好ましい態様を満足することで、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性の信頼性をより一層効果的に高めることができる。 In the metal-coated particles, the area of the portion having the protrusion is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, in 100% of the total surface area of the outer surface of the metal portion. In the metal-coated particles, the upper limit of the area where the protrusion is present is not particularly limited in 100% of the total surface area of the outer surface of the metal portion. Of the total surface area of 100% of the outer surface of the metal portion, the area of the portion having the protrusion may be 99% or less, or 95% or less. When the metal-coated particles satisfy the above-described preferred aspects, the conduction reliability between the electrodes can be further effectively enhanced, and the reliability of the insulation reliability between the electrodes can be further effectively enhanced. You can
 上記突起がある部分の面積は、金属被覆粒子を電子顕微鏡又は光学顕微鏡にて観察し、突起がある部分の面積の金属被覆粒子の投影面積に対する百分率を算出することにより求められる。複数の金属被覆粒子の場合には、上記突起がある部分の面積は、任意の金属被覆粒子10個を電子顕微鏡又は電界放射型走査型電子顕微鏡(FE-SEM)にて観察し、突起がある部分の面積の金属被覆粒子の投影面積に対する百分率の平均値を算出することが好ましい。 The area of the portion with the above-mentioned projection is obtained by observing the metal-coated particles with an electron microscope or an optical microscope and calculating the percentage of the area of the portion with the projection to the projected area of the metal-coated particles. In the case of a plurality of metal-coated particles, the area of the portion having the protrusions has protrusions when 10 arbitrary metal-coated particles are observed with an electron microscope or a field emission scanning electron microscope (FE-SEM). It is preferable to calculate the average value of the percentage of the area of the part to the projected area of the metal-coated particles.
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより金属部を形成する方法、並びに基材粒子の表面に無電解めっきにより金属部を形成した後、芯物質を付着させ、さらに無電解めっきにより金属部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の金属部を形成した後、該第1の金属部上に芯物質を配置し、次に第2の金属部を形成する方法、並びに基材粒子の表面上に金属部(第1の金属部又は第2の金属部等)を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、基材粒子に無電解めっきにより金属部を形成した後、金属部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより金属部を形成する方法等を用いてもよい。 As a method for forming the protrusions, a method of forming a metal part by electroless plating after depositing a core substance on the surface of the base material particle, and a method of forming a metal part by electroless plating on the surface of the base material particle After that, a method of attaching a core substance and then forming a metal part by electroless plating may be mentioned. As another method of forming the protrusions, after forming the first metal portion on the surface of the base material particle, the core substance is disposed on the first metal portion, and then the second metal portion is formed. And a method of adding a core substance in the middle of forming the metal part (the first metal part, the second metal part or the like) on the surface of the base material particles. Further, in order to form protrusions, after forming the metal portion on the base material particles by electroless plating without using the core substance, plating is deposited in a protrusion shape on the surface of the metal portion, and further electroless plating is performed. You may use the method of forming a metal part by.
 上記基材粒子の表面上に芯物質を配置する方法としては、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。 As a method of disposing the core substance on the surface of the base material particles, a core substance is added to a dispersion liquid of the base material particles, and the core substance is accumulated on the surface of the base material particles, for example, by Van der Waals force. And a method of adhering the core substance to the surface of the base material particles by a mechanical action such as rotation of the container. Since it is easy to control the amount of the core substance to be adhered, a method of accumulating and adhering the core substance on the surface of the base particles in the dispersion liquid is preferable.
 上記芯物質が上記金属部中に埋め込まれていることによって、上記金属部が外表面に複数の突起を有するようにすることが容易である。但し、金属被覆粒子の導電性の表面及び金属部の表面に突起を形成するために、芯物質を必ずしも用いなくてもよい。 By embedding the core substance in the metal part, it is easy to make the metal part have a plurality of protrusions on the outer surface. However, the core substance does not necessarily have to be used in order to form protrusions on the conductive surface of the metal-coated particles and the surface of the metal portion.
 上記芯物質の材料は特に限定されない。上記芯物質の材料としては、例えば、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、酸化チタン、チタン酸バリウム及びジルコニア等が挙げられる。導電性をより一層高める観点、及び接続抵抗をより一層効果的に低くする観点からは、上記芯物質の材料は、金属であることが好ましい。上記芯物質は金属粒子であることが好ましい。上記芯物質の材料である金属としては、上記金属粒子の材料として挙げた金属を適宜使用可能である。 The material of the core substance is not particularly limited. Examples of the material of the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the non-conductive substance include silica, alumina, titanium oxide, barium titanate and zirconia. From the viewpoint of further increasing the conductivity and further effectively lowering the connection resistance, the material of the core substance is preferably a metal. The core substance is preferably metal particles. As the metal which is the material of the core substance, the metals mentioned as the material of the metal particles can be appropriately used.
 上記芯物質の材料のモース硬度は高いことが好ましい。モース硬度が高い材料としては、チタン酸バリウム(モース硬度4.5)、ニッケル(モース硬度5)、シリカ(二酸化珪素、モース硬度6~7)、酸化チタン(モース硬度7)、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)等が挙げられる。上記芯物質は、ニッケル、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが好ましい。上記芯物質は、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることがより好ましく、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることがさらに好ましく、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが特に好ましい。上記芯物質の材料のモース硬度は、好ましくは4以上、より好ましくは5以上、より一層好ましくは6以上、さらに好ましくは7以上、特に好ましくは7.5以上である。 It is preferable that the core material has a high Mohs hardness. Materials with high Mohs hardness include barium titanate (Mohs hardness 4.5), nickel (Mohs hardness 5), silica (silicon dioxide, Mohs hardness 6-7), titanium oxide (Mohs hardness 7), zirconia (Mohs hardness). 8 to 9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10) and the like. The core substance is preferably nickel, silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond. The core substance is preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, more preferably titanium oxide, zirconia, alumina, tungsten carbide or diamond, zirconia, alumina, tungsten carbide or Especially preferred is diamond. The Mohs hardness of the core material is preferably 4 or more, more preferably 5 or more, even more preferably 6 or more, still more preferably 7 or more, and particularly preferably 7.5 or more.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably massive. Examples of the core substance include a particulate mass, an agglomerate of a plurality of fine particles, and an amorphous mass.
 上記芯物質の粒子径は、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の粒子径が、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 The particle size of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the particle diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be more effectively enhanced. You can
 上記芯物質の粒子径は、数平均粒子径を示す。芯物質の粒子径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。 The particle size of the above core substance indicates the number average particle size. The particle size of the core substance is preferably obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope and calculating an average value.
 上記金属被覆粒子1個当たりの上記突起の数は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。上記突起の数の上限は金属被覆粒子の粒子径及び金属被覆粒子の用途等を考慮して適宜選択できる。 The number of protrusions per metal-coated particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the metal-coated particles and the use of the metal-coated particles.
 上記金属被覆粒子1個当たりの上記突起の数は、任意の金属被覆粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。 The number of the protrusions per one metal-coated particle is preferably obtained by observing 50 arbitrary metal-coated particles with an electron microscope or an optical microscope and calculating an average value.
 複数の上記突起の平均高さは、好ましくは1nm以上、より好ましくは50nm以上、さらに好ましくは200nm以上、特に好ましくは350nm以上であり、好ましくは2000nm以下、より好ましくは1500nm以下、さらに好ましくは1000nm以下、特に好ましくは650nm以下である。上記突起の平均高さが、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層効果的に高めることができ、電極間の絶縁信頼性をより一層効果的に高めることができる。 The average height of the plurality of protrusions is preferably 1 nm or more, more preferably 50 nm or more, further preferably 200 nm or more, particularly preferably 350 nm or more, preferably 2000 nm or less, more preferably 1500 nm or less, further preferably 1000 nm. The following is particularly preferable, and it is 650 nm or less. When the average height of the protrusions is equal to or higher than the lower limit and equal to or lower than the upper limit, the conduction reliability between the electrodes can be more effectively enhanced, and the insulation reliability between the electrodes can be more effectively enhanced. You can
 複数の上記突起の平均高さは、以下のようにして測定することができる。 The average height of the above protrusions can be measured as follows.
 金属被覆粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した金属被覆粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を50000倍に設定し、50個の金属被覆粒子を無作為に選択し、各金属被覆粒子における突起を観察する。各金属被覆粒子における突起の高さを計測し、それらを算術平均して突起の平均高さとする。 Add metal-coated particles to "Technobit 4000" manufactured by Kulzer so that the content of the metal-coated particles is 30% by weight, and disperse them to prepare an inspection embedded resin. A cross section of the metal-coated particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-coated particles dispersed in the inspection embedded resin. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 50 metal-coated particles are randomly selected, and the protrusions on each metal-coated particle are observed. The height of the protrusions in each metal-coated particle is measured, and they are arithmetically averaged to obtain the average height of the protrusions.
 複数の上記突起の基部の平均径は、好ましくは3nm以上、より好ましくは5nm以上、さらに好ましくは50nm以上、特に好ましくは350nm以上、最も好ましくは550nm以上であり、好ましくは2000nm以下、より好ましくは1500nm以下、さらに好ましくは1150nm以下である。上記突起の基部の平均径が、上記下限以上であると、突起が過度に折れにくくなる。上記突起の基部の平均径が、上記上限以下であると、電極間の導通信頼性及び絶縁信頼をより一層効果的に高めることができる。 The average diameter of the bases of the plurality of protrusions is preferably 3 nm or more, more preferably 5 nm or more, further preferably 50 nm or more, particularly preferably 350 nm or more, most preferably 550 nm or more, preferably 2000 nm or less, more preferably It is 1500 nm or less, more preferably 1150 nm or less. When the average diameter of the base of the protrusion is equal to or more than the above lower limit, the protrusion is less likely to break. When the average diameter of the base portion of the protrusion is equal to or less than the upper limit, the conduction reliability and insulation reliability between the electrodes can be more effectively enhanced.
 複数の上記突起の基部の平均径は、以下のようにして測定することができる。 The average diameter of the bases of the plurality of protrusions can be measured as follows.
 金属被覆粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した金属被覆粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を50000倍に設定し、50個の金属被覆粒子を無作為に選択し、各金属被覆粒子における突起を観察する。各金属被覆粒子における突起の基部径を計測し、それらを算術平均して突起の基部の平均径とする。 Add metal-coated particles to "Technobit 4000" manufactured by Kulzer so that the content of the metal-coated particles is 30% by weight, and disperse them to prepare an inspection embedded resin. A cross section of the metal-coated particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the metal-coated particles dispersed in the inspection embedded resin. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 50 metal-coated particles are randomly selected, and the protrusions on each metal-coated particle are observed. The base diameter of the protrusions in each metal-coated particle is measured, and they are arithmetically averaged to obtain the average diameter of the base portions of the protrusions.
 (絶縁性物質)
 上記金属被覆粒子は、上記金属部の外表面上に配置された絶縁性物質を備えていてもよい。この場合には、絶縁性物質を有する金属被覆粒子を得ることができる。絶縁性物質を有する金属被覆粒子を電極間の接続に用いると、隣接する電極間の短絡を防止することができる。具体的には、複数の金属被覆粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で金属被覆粒子を加圧することにより、金属被覆粒子の金属部と電極との間の絶縁性物質を容易に排除できる。金属部が外表面に複数の突起を有していると、金属被覆粒子の金属部と電極との間の絶縁性物質を容易に排除できる。
(Insulating material)
The metal-coated particles may include an insulating substance disposed on the outer surface of the metal portion. In this case, metal-coated particles having an insulating substance can be obtained. When metal-coated particles having an insulating substance are used for connecting the electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when the plurality of metal-coated particles come into contact with each other, the insulating substance exists between the plurality of electrodes, so that a short circuit between adjacent electrodes in the lateral direction can be prevented, not between the upper and lower electrodes. In addition, when connecting the electrodes, the metal-coated particles are pressed by the two electrodes, whereby the insulating substance between the metal portion of the metal-coated particles and the electrodes can be easily removed. When the metal portion has a plurality of protrusions on the outer surface, the insulating substance between the metal portion of the metal-coated particles and the electrode can be easily removed.
 電極間の圧着時に上記絶縁性物質をより一層容易に排除する観点からは、上記絶縁性物質は、絶縁性粒子であることが好ましい。 The insulating material is preferably insulating particles from the viewpoint of more easily removing the insulating material during pressure bonding between electrodes.
 上記絶縁性物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating substance include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, and A curable resin, a water-soluble resin, etc. are mentioned.
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。 Examples of the above polyolefins include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, a styrene-acrylic acid ester copolymer, an SB type styrene-butadiene block copolymer, an SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin and melamine resin. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide and methyl cellulose.
 上記金属部の表面上に絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。絶縁性物質の脱離を防止する観点からは、上記金属部の表面上に絶縁性物質を配置する方法は、上記金属部の表面に、化学結合を介して上記絶縁性物質を配置する方法であることが好ましい。 As a method of disposing the insulating substance on the surface of the metal part, there are a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping method, and vacuum deposition method. From the viewpoint of preventing the detachment of the insulating material, the method of disposing the insulating material on the surface of the metal portion is a method of disposing the insulating material on the surface of the metal portion through a chemical bond. Preferably.
 上記金属部の外表面、及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。金属部の外表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。金属部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していても構わない。 The outer surface of the metal part and the surface of the insulating particles may be coated with a compound having a reactive functional group. The outer surface of the metal part and the surface of the insulating particles may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group to the outer surface of the metal part, the carboxyl group may be chemically bonded to the functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
 上記絶縁性物質の粒子径は、金属被覆粒子の粒子径及び金属被覆粒子の用途等によって適宜選択できる。上記絶縁性物質の粒子径は、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは5μm以下、より好ましくは1μm以下である。絶縁性物質の粒子径が、上記下限以上であると、金属被覆粒子がバインダー中に分散されたときに、複数の金属被覆粒子における金属部同士が接触し難くなる。絶縁性粒子の粒子径が、上記上限以下であると、電極間の接続の際に、電極と金属被覆粒子との間の絶縁性物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 The particle size of the above-mentioned insulating material can be appropriately selected depending on the particle size of the metal-coated particles and the use of the metal-coated particles. The particle diameter of the insulating substance is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 5 μm or less, more preferably 1 μm or less. When the particle diameter of the insulating substance is at least the above lower limit, it becomes difficult for the metal parts of the plurality of metal-coated particles to come into contact with each other when the metal-coated particles are dispersed in the binder. If the particle size of the insulating particles is less than or equal to the above upper limit, at the time of connection between the electrodes, in order to eliminate the insulating material between the electrodes and the metal-coated particles, it is not necessary to raise the pressure too high, There is no need to heat to a high temperature.
 上記絶縁性物質の粒子径は、数平均粒子径を示す。絶縁性物質の粒子径は、粒度分布測定装置等を用いて求めたり、任意の絶縁性物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めたりすることができる。 The particle size of the above insulating material indicates the number average particle size. The particle size of the insulating substance can be obtained by using a particle size distribution measuring device or the like, or can be obtained by observing 50 arbitrary insulating substances with an electron microscope or an optical microscope and calculating an average value. ..
 (粒子連結体)
 上記金属被覆粒子は、粒子連結体を得るために用いることができる。上記粒子連結体は、上述した金属被覆粒子と、複数の上記金属被覆粒子を連結する柱状連結部とを備える。上記粒子連結体の製造方法は、上述した金属被覆粒子を、0MPa以上200MPa以下の圧力条件、並びに100℃以上400℃以下の加熱温度及び0.5分間以上300分間以下の加熱時間の加熱条件で処理して、粒子連結体を得る処理工程を備える。上記粒子連結体の製造方法では、上記処理工程において、複数の上記金属被覆粒子を連結する柱状連結部が形成されることが好ましい。
(Particle combination)
The metal-coated particles can be used to obtain a particle-connected body. The particle-connected body includes the metal-coated particles described above and a columnar connecting portion that connects a plurality of the metal-coated particles. The above-mentioned method for producing a particle-coupled body is carried out by heating the above-mentioned metal-coated particles under a pressure condition of 0 MPa or more and 200 MPa or less, and a heating temperature of 100 ° C. or more and 400 ° C. or less and a heating time of 0.5 minutes or more and 300 minutes or less. And a treatment step of obtaining a particle linked body. In the method for producing a particle linked body, it is preferable that a columnar connecting portion that connects a plurality of the metal-coated particles is formed in the treatment step.
 上記粒子連結体の製造方法においては、上記処理工程における上記圧力条件は、好ましくは0.01MPa以上、より好ましくは0.1MPa以上であり、好ましくは100MPa以下、より好ましくは50MPa以下である。上記処理工程における上記圧力条件は、0MPaであってもよく、無加圧条件であってもよい。上記処理工程における上記圧力条件が、上記の好ましい態様を満足すると、金属被覆粒子同士がより一層接触し易くなり、上記柱状連結部をより一層形成し易くなり、上記粒子連結体をより一層容易に得ることができる。 In the method for producing a particle linked body, the pressure condition in the treatment step is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, preferably 100 MPa or less, more preferably 50 MPa or less. The pressure condition in the treatment step may be 0 MPa or may be a non-pressurized condition. When the pressure condition in the treatment step satisfies the above preferred embodiment, the metal-coated particles are more easily contacted with each other, the columnar connecting portion is more easily formed, and the particle connected body is further easily formed. Obtainable.
 上記粒子連結体の製造方法においては、上記処理工程における上記加熱条件の加熱温度は、好ましくは100℃以上、より好ましくは150℃以上であり、好ましくは350℃以下、より好ましくは300℃以下である。上記処理工程における上記加熱条件の加熱時間は、好ましくは5分間以上、より好ましくは10分間以上であり、好ましくは120分間以下、より好ましくは90分間以下である。上記処理工程における上記加熱条件が、上記の好ましい態様を満足すると、金属拡散又は焼結により上記柱状連結部をより一層形成し易くなり、上記粒子連結体をより一層容易に得ることができる。 In the method for producing a particle linked body, the heating temperature of the heating conditions in the treatment step is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. is there. The heating time under the heating conditions in the treatment step is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 120 minutes or less, more preferably 90 minutes or less. When the heating conditions in the treatment step satisfy the above-mentioned preferred embodiments, it becomes easier to form the columnar connecting portion by metal diffusion or sintering, and the particle connecting body can be obtained more easily.
 図4は、本発明の第1の実施形態に係る金属被覆粒子を用いた粒子連結体を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing a particle linked body using the metal-coated particles according to the first embodiment of the present invention.
 図4に示す粒子連結体21は、金属被覆粒子1と、2個の金属被覆粒子1を連結する柱状連結部22とを備える。粒子連結体21は、柱状連結部22を介して、2個の金属被覆粒子1が連結されている。柱状連結部22は、一方の金属被覆粒子1と他方の金属被覆粒子1とを連結している。柱状連結部22は、2個の金属被覆粒子1の間に配置されている。 The particle connected body 21 shown in FIG. 4 includes a metal-coated particle 1 and a columnar connecting portion 22 that connects two metal-coated particles 1. In the particle connected body 21, two metal-coated particles 1 are connected via a columnar connecting portion 22. The columnar connecting portion 22 connects the one metal-coated particle 1 and the other metal-coated particle 1. The columnar connecting portion 22 is arranged between the two metal-coated particles 1.
 金属被覆粒子1は、上述した金属被覆粒子である。金属被覆粒子1は、上述した金属被覆粒子1A又は金属被覆粒子1Bであってもよい。上記金属被覆粒子は上記金属部の表面に突起を有していてもよく、芯物質を有していてもよい。上記金属被覆粒子では、上記金属部が上記基材粒子の表面の全体を覆っていてもよく、上記金属部が上記基材粒子の表面の一部を覆っていてもよい。上記粒子連結体では、上記柱状連結部は、一方の上記金属被覆粒子の上記金属部と、他方の上記金属被覆粒子の上記金属部とを連結していることが好ましい。上記金属被覆粒子が上記突起を有する場合には、上記突起により上記柱状連結部が形成されていることが好ましい。上記突起により上記柱状連結部を形成することで、上記粒子連結体を作製する際に、圧力を過剰に負荷する必要がなく、上記粒子連結体をより一層容易に得ることができる。 The metal-coated particles 1 are the above-mentioned metal-coated particles. The metal-coated particles 1 may be the metal-coated particles 1A or the metal-coated particles 1B described above. The metal-coated particles may have protrusions on the surface of the metal portion or may have a core substance. In the metal-coated particles, the metal part may cover the entire surface of the base particle, or the metal part may cover a part of the surface of the base particle. In the particle connected body, it is preferable that the columnar connected portion connects the metal portion of the one metal-coated particle and the metal portion of the other metal-coated particle. When the metal-coated particles have the protrusions, it is preferable that the columnar connecting portions are formed by the protrusions. By forming the columnar connected portion with the protrusions, it is not necessary to apply excessive pressure when the particle connected body is produced, and the particle connected body can be obtained more easily.
 図5は、本発明の第1の実施形態に係る金属被覆粒子を用いた粒子連結体の変形例を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing a modified example of the particle connected body using the metal-coated particles according to the first embodiment of the present invention.
 図5に示す粒子連結体21Aは、図4に示す粒子連結体21と比べて、金属被覆粒子1の個数及び柱状連結部22の個数のみが異なる。粒子連結体21Aは、柱状連結部22を介して、4個の金属被覆粒子が連結されている。粒子連結体21Aは、金属被覆粒子1が直列的に連結されている。 The particle linked body 21A shown in FIG. 5 differs from the particle linked body 21 shown in FIG. 4 only in the number of metal-coated particles 1 and the number of columnar linked portions 22. In the particle connecting body 21A, four metal-coated particles are connected via the columnar connecting portion 22. The particle-coupled body 21A has the metal-coated particles 1 connected in series.
 上記粒子連結体は、2個の上記金属被覆粒子が上記柱状連結部により連結されていてもよく、3個以上の上記金属被覆粒子が上記柱状連結部により連結されていてもよい。上記粒子連結体では、上記金属被覆粒子が直列的に連結されていてもよく、上記金属被覆粒子が並列的に連結されていてもよい。上記粒子連結体は、枝分かれ構造を有していてもよい。 In the particle connected body, two metal-coated particles may be connected by the columnar connecting portion, or three or more metal-coated particles may be connected by the columnar connecting portion. In the particle linked body, the metal-coated particles may be connected in series, or the metal-coated particles may be connected in parallel. The particle connected body may have a branched structure.
 上記柱状連結部の形状は、柱状であれば特に限定されない。上記柱状連結部は、円柱状連結部であってもよく、多角柱状連結部であってもよく、不定形の柱状連結部であってもよい。上記柱状連結部の断面形状は、円形であってもよく、多角形であってもよく、不定形であってもよい。1つ当たりの上記柱状連結部の幅は、均一であってもよく、均一でなくてもよい。上記柱状連結部は、柱状連結部の中央が太くなっていてもよく、柱状連結部の中央が細くなっていてもよい。複数の上記柱状連結部の幅は、均一であってもよく、均一でなくてもよい。 The shape of the columnar connecting portion is not particularly limited as long as it is columnar. The columnar connecting portion may be a columnar connecting portion, a polygonal columnar connecting portion, or an amorphous columnar connecting portion. The cross-sectional shape of the columnar connecting portion may be circular, polygonal, or irregular. The width of each columnar connecting portion may be uniform or may not be uniform. In the columnar connecting portion, the center of the columnar connecting portion may be thick or the center of the columnar connecting portion may be thin. The widths of the plurality of columnar connecting portions may or may not be uniform.
 上記粒子連結体において、上記金属被覆粒子1個当たりの上記柱状連結部の個数は、好ましくは1個以上、より好ましくは2個以上であり、好ましくは10個以下、より好ましくは9個以下である。上記金属被覆粒子1個当たりの上記柱状連結部の個数が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができる。 In the particle connected body, the number of the columnar connecting portions per one metal-coated particle is preferably 1 or more, more preferably 2 or more, preferably 10 or less, more preferably 9 or less. is there. When the number of the columnar connecting portions per one piece of the metal-coated particles is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability can be more effectively enhanced when the electrodes are electrically connected. it can.
 1個の金属被覆粒子当たりに連結している上記柱状連結部の個数は、金属被覆粒子50個の柱状連結部の個数を算術平均して算出することが好ましい。上記柱状連結部の個数は、任意の粒子連結体を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)により観察し、任意の金属被覆粒子50個の柱状連結部の個数を算術平均して算出することが好ましい。 It is preferable that the number of columnar connecting portions connected to one metal-coated particle is calculated by arithmetically averaging the number of columnar connecting portions of 50 metal-coated particles. The number of columnar connecting parts is determined by observing an arbitrary particle connecting body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and arithmetically averaging the number of columnar connecting parts of 50 arbitrary metal-coated particles. It is preferable to calculate by
 上記粒子連結体では、上記柱状連結部の長さは、好ましくは10nm以上、より好ましくは50nm以上であり、好ましくは30000nm以下、より好ましくは20000nm以下である。上記柱状連結部の長さが、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができる。 In the particle linked body, the length of the columnar linked portion is preferably 10 nm or more, more preferably 50 nm or more, preferably 30,000 nm or less, more preferably 20,000 nm or less. When the length of the columnar connecting portion is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability can be more effectively enhanced when the electrodes are electrically connected.
 上記柱状連結部の長さは、任意の粒子連結体を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)により観察することにより算出することができる。上記柱状連結部の長さは、柱状連結部が接触している一方の金属被覆粒子の表面と、柱状連結部が接触している他方の金属被覆粒子の表面とを直線で結んだ距離が最小となる寸法である。 The length of the columnar connecting portion can be calculated by observing an arbitrary particle connected body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The length of the columnar connecting portion is the minimum distance between the surface of one metal-coated particle in contact with the columnar connecting portion and the surface of the other metal-coated particle in contact with the columnar connecting portion with a straight line. The dimensions are
 上記柱状連結部の長さは、任意の粒子連結体を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)により観察し、任意の柱状連結部50個の柱状連結部の長さを算術平均して算出することが好ましい。 The length of the columnar connecting portion is calculated by observing the arbitrary particle connecting body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and calculating the length of the 50 columnar connecting portions. It is preferable to calculate on average.
 上記粒子連結体では、上記柱状連結部の幅は、好ましくは10nm以上、より好ましくは50nm以上であり、好ましくは30000nm以下、より好ましくは20000nm以下である。上記柱状連結部の幅が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができる。 In the above-mentioned particle linked body, the width of the columnar linked portion is preferably 10 nm or more, more preferably 50 nm or more, preferably 30,000 nm or less, more preferably 20,000 nm or less. When the width of the columnar connecting portion is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability can be more effectively enhanced when the electrodes are electrically connected.
 上記柱状連結部の幅は、柱状連結部全体での幅の平均値であることが好ましい。上記柱状連結部の幅は、任意の柱状連結部において、柱状連結部の幅を3ヶ所で測定し、平均値を算出することにより求めることが好ましい。上記柱状連結部の幅は、任意の粒子連結体を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)により観察し、任意の柱状連結部50個の柱状連結部の幅を算術平均して算出することが好ましい。 The width of the columnar connecting portion is preferably an average value of the widths of the entire columnar connecting portion. The width of the columnar connecting portion is preferably obtained by measuring the width of the columnar connecting portion at three positions in any columnar connecting portion and calculating an average value. The width of the columnar connecting portion is determined by observing an arbitrary particle connecting body with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and arithmetically averaging the widths of the 50 columnar connecting portions. It is preferable to calculate it.
 上記粒子連結体では、上記柱状連結部は、上記金属被覆粒子の上記金属部が金属拡散又は焼結することにより形成されていることが好ましい。上記柱状連結部の材料としては、上述した上記金属部の材料等が挙げられる。2層以上の金属部を有する金属被覆粒子を用いて上記粒子連結体を作製する際には、複数の金属被覆粒子の最外表面に配置された金属部が金属拡散又は焼結することにより、上記柱状連結部が形成されることが好ましい。 In the particle connected body, it is preferable that the columnar connected portion is formed by metal diffusion or sintering of the metal portion of the metal-coated particle. Examples of the material of the columnar connecting portion include the above-mentioned material of the metal portion. When the particle-coupled body is prepared by using the metal-coated particles having two or more metal parts, the metal parts arranged on the outermost surface of the plurality of metal-coated particles are metal-diffused or sintered, It is preferable that the columnar connecting portion is formed.
 金属被覆粒子と柱状連結部との性質を類似させることで、導通信頼性をより一層高める観点からは、上記柱状連結部の材料は、上記金属被覆粒子における上記金属部の材料を含むことが好ましい。上記柱状連結部は、上記金属部の材料により形成されていることが好ましい。上記柱状連結部の材料は、上記金属部の材料とは異なる材料であってもよい。上記金属被覆粒子における上記金属部と上記柱状連結部とは、一体化していてもよい。電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高める観点からは、上記金属被覆粒子と上記柱状連結部との接触部分において、界面がないことが好ましい。上記金属被覆粒子と上記柱状連結部との接触部分において、界面があってもよい。 By making the properties of the metal-coated particles and the columnar connecting portion similar to each other, from the viewpoint of further improving the conduction reliability, the material of the columnar connecting portion preferably contains the material of the metal portion in the metal-coated particles. .. The columnar connecting portion is preferably formed of the material of the metal portion. The material of the columnar connecting portion may be different from the material of the metal portion. The metal part and the columnar connecting part in the metal-coated particles may be integrated. From the viewpoint of more effectively improving the conduction reliability when the electrodes are electrically connected, it is preferable that there is no interface at the contact portion between the metal-coated particles and the columnar connecting portion. There may be an interface at the contact portion between the metal-coated particles and the columnar connecting portion.
 複数の上記金属被覆粒子が連結するように、複数の上記金属被覆粒子の間に上記柱状連結部を配置して、上記粒子連結体を作製する方法は特に限定されない。上記粒子連結体を作製する方法としては、以下の方法等が挙げられる。加圧下でリフロー熱処理により焼結する方法。無加圧下でリフロー熱処理により焼結する方法。オーブンで熱処理する方法。上記粒子連結体を作製する方法は、加圧下でリフロー熱処理により焼結する方法であることが好ましい。上記の方法により上記粒子連結体を作製することで、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができる。 There is no particular limitation on the method for arranging the columnar connecting portion between the plurality of metal-coated particles so as to connect the plurality of metal-coated particles to produce the particle-connected body. Examples of the method for producing the above-mentioned particle linked body include the following methods. A method of sintering by reflow heat treatment under pressure. A method of sintering by reflow heat treatment under no pressure. A method of heat treatment in an oven. It is preferable that the method for producing the above-mentioned particle linked body is a method of sintering by reflow heat treatment under pressure. By producing the particle linked body by the above method, it is possible to more effectively enhance the conduction reliability when the electrodes are electrically connected.
 上記粒子連結体を作製する方法では、焼結時の焼結温度は特に限定されない。上記焼結温度は、100℃以上400℃以下であることが好ましい。加圧下でリフロー熱処理により焼結する場合には、上記焼結温度は、150℃以上350℃以下であることが好ましい。無加圧下でリフロー熱処理及びオーブンにより焼結する場合には、上記焼結温度は、200℃以上400℃以下であることが好ましい。 In the method for producing the above-mentioned particle linked body, the sintering temperature during sintering is not particularly limited. The sintering temperature is preferably 100 ° C. or higher and 400 ° C. or lower. When sintering is performed by reflow heat treatment under pressure, the sintering temperature is preferably 150 ° C or higher and 350 ° C or lower. In the case of performing reflow heat treatment without pressure and sintering in an oven, the sintering temperature is preferably 200 ° C. or higher and 400 ° C. or lower.
 上記粒子連結体を作製する方法では、焼結時の焼結時間は特に限定されない。上記焼結時間は、0.5分以上300分以下であることが好ましい。加圧下でリフロー熱処理により焼結する場合には、上記焼結時間は、1分以上30分以下であることが好ましい。無加圧下でリフロー熱処理及びオーブンにより焼結する場合には、上記焼結時間は、30分以上250分以下であることが好ましい。なお、焼結時間は焼結温度に応じて調整すればよく、例えば、焼結温度をより高温にすると焼結時間をより短くすることができ、粒子連結体の製造効率を高めることができる。 In the method of producing the above-mentioned particle linked body, the sintering time at the time of sintering is not particularly limited. The sintering time is preferably 0.5 minutes or more and 300 minutes or less. When sintering is performed by reflow heat treatment under pressure, the sintering time is preferably 1 minute or more and 30 minutes or less. In the case of performing reflow heat treatment and pressureless oven sintering under no pressure, the sintering time is preferably 30 minutes or more and 250 minutes or less. The sintering time may be adjusted according to the sintering temperature. For example, if the sintering temperature is set to a higher temperature, the sintering time can be further shortened and the production efficiency of the particle linked body can be increased.
 上記粒子連結体を作製する方法では、加圧下で焼結を行ってもよく、無加圧下で焼結を行ってもよい。上記加圧時の圧力は、0.1MPa以上200MPa以下であることが好ましい。また、上記粒子連結体を作製する方法では、空気雰囲気下で焼結を行ってもよく、還元ガス雰囲気下で焼結を行ってもよく、不活性ガス雰囲気下で焼結を行ってもよい。上記還元ガスとしては、ギ酸ガス、水素ガス、一酸化炭素ガス、及び炭化水素ガス等が挙げられる。上記不活性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス、及びフォーミングガス等が挙げられる。 In the method for producing the above-mentioned particle linked body, sintering may be performed under pressure or may be performed without pressure. The pressure at the time of pressurization is preferably 0.1 MPa or more and 200 MPa or less. In addition, in the method for producing the particle linked body, sintering may be performed in an air atmosphere, may be performed in a reducing gas atmosphere, or may be performed in an inert gas atmosphere. .. Examples of the reducing gas include formic acid gas, hydrogen gas, carbon monoxide gas, and hydrocarbon gas. Examples of the inert gas include nitrogen gas, helium gas, argon gas, and forming gas.
 上記粒子連結体を作製する方法は、金属板上に金属被覆粒子を混合した混合物を塗布した状態で、焼結する方法であることが好ましい。上記金属板は特に限定されない。上記金属板としては、銅基板等が挙げられる。上記混合物は特に限定されない。上記混合物としては、金属被覆粒子とバインダーとを含む組成物等が挙げられる。上記バインダーとしては、後述する接続材料に用いられるバインダー等が挙げられる。上記混合物を塗布する方法は特に限定されない。上記混合物を塗布する方法としては、スクリーン印刷法により塗布する方法、及びインクジェット法により塗布する方法等が挙げられる。また、焼結する際には、塗布した混合物の表面に他の金属板を配置して、混合物を金属板で挟み込んだ状態で焼結を行ってもよい。 The method for producing the above-mentioned particle linked body is preferably a method in which a mixture obtained by mixing metal-coated particles on a metal plate is applied and then sintered. The metal plate is not particularly limited. Examples of the metal plate include a copper substrate. The mixture is not particularly limited. Examples of the mixture include a composition containing metal-coated particles and a binder. Examples of the binder include binders used in connection materials described later. The method of applying the mixture is not particularly limited. Examples of the method of applying the above mixture include a method of applying by a screen printing method and a method of applying by an inkjet method. In addition, when sintering, another metal plate may be arranged on the surface of the applied mixture, and the mixture may be sandwiched between the metal plates for sintering.
 (接続材料)
 上記接続材料は、2つの接続対象部材を接続する接続部を形成するために用いられる。上記接続材料は、上述した金属被覆粒子と、バインダーとを含む。上記接続材料は、上述した粒子連結体を含んでいてもよい。上記接続材料は、上記金属被覆粒子と、上記粒子連結体と、バインダーとを含んでいてもよい。上記接続材料は、上記粒子連結体と、バインダーとを含んでいてもよい。
(Connecting material)
The connection material is used to form a connection part that connects two connection target members. The connecting material includes the metal-coated particles described above and a binder. The connecting material may include the above-mentioned particle linked body. The connection material may include the metal-coated particles, the particle linked body, and a binder. The connection material may include the particle linked body and a binder.
 上記バインダーは特に限定されない。上記バインダーとして、公知の絶縁性の樹脂が用いられる。上記バインダーは、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダーとしては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダーは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above binder is not particularly limited. A known insulating resin is used as the binder. The binder preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. The binders may be used alone or in combination of two or more.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer, and styrene-isoprene. -Hydrogenated styrene block copolymers and the like. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 また、上記バインダーは、溶媒であってもよい。上記溶媒としては、水及び有機溶剤等が挙げられる。溶媒の除去性をより一層高める観点からは、上記溶媒は、有機溶剤であることが好ましい。上記有機溶剤としては、エタノール等のアルコール化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン化合物;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素化合物;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル化合物;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル化合物;オクタン、デカン等の脂肪族炭化水素化合物;並びに石油エーテル、ナフサ等の石油系溶剤等が挙げられる。 Also, the binder may be a solvent. Examples of the solvent include water and organic solvents. From the viewpoint of further enhancing the removability of the solvent, the solvent is preferably an organic solvent. Examples of the organic solvent include alcohol compounds such as ethanol; ketone compounds such as acetone, methyl ethyl ketone and cyclohexanone; aromatic hydrocarbon compounds such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol and methyl carbitol. , Butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether, and other glycol ether compounds; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol Acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ester compounds such as propylene carbonate; aliphatic hydrocarbon compounds such as octane and decane; and petroleum solvents such as petroleum ether and naphtha. Can be mentioned.
 接続強度をより一層効果的に高める観点からは、上記接続材料は、エポキシ樹脂を含むことが好ましい。 From the viewpoint of further effectively increasing the connection strength, it is preferable that the connection material contains an epoxy resin.
 上記接続材料は、上記金属被覆粒子及び上記バインダーの他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 The connecting material is, for example, a filler, a filler, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, in addition to the metal-coated particles and the binder. , Various additives such as an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記接続材料は、導電接続に用いられることが好ましく、導電接続材料であることが好ましい。上記接続材料は、異方導電接続に用いられることが好ましく、異方導電接続材料であることが好ましい。上記接続材料は、ダイアタッチ接続材料として用いられることがさらに好ましい。上記ダイアタッチ接続材料は、半導体素子を基板上に接着する際に用いられる。上記接続材料は、ペースト及びフィルム等として使用され得る。上記接続材料がフィルムである場合には、金属被覆粒子を含むフィルムに、金属被覆粒子を含まないフィルムが積層されていてもよい。上記ペーストは、導電ペーストであることが好ましく、異方性導電ペーストであることがより好ましく、ダイアタッチペーストであることがさらに好ましい。上記フィルムは、導電フィルムであることが好ましく、異方性導電フィルムであることがより好ましく、ダイアタッチフィルムであることがさらに好ましい。 The above connecting material is preferably used for conductive connection, and is preferably a conductive connecting material. The connection material is preferably used for anisotropic conductive connection, and is preferably an anisotropic conductive connection material. It is further preferable that the connecting material is used as a die attach connecting material. The die attach connection material is used when bonding a semiconductor element onto a substrate. The connecting material can be used as a paste, a film, or the like. When the connecting material is a film, a film containing no metal-coated particles may be laminated on a film containing metal-coated particles. The paste is preferably a conductive paste, more preferably an anisotropic conductive paste, and even more preferably a die attach paste. The film is preferably a conductive film, more preferably an anisotropic conductive film, and even more preferably a die attach film.
 上記接続材料100重量%中、上記バインダーの含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、より一層好ましくは10重量%以上、さらに好ましくは30重量%以上、さらに一層好ましくは50重量%以上、特に好ましくは70重量%以上である。上記接続材料100重量%中、上記バインダーの含有量は、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダーの含有量が、上記下限以上及び上記上限以下であると、接続強度をより一層効果的に高めることができ、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。 In 100% by weight of the connecting material, the content of the binder is preferably 1% by weight or more, more preferably 5% by weight or more, even more preferably 10% by weight or more, further preferably 30% by weight or more, even more preferably Is 50% by weight or more, particularly preferably 70% by weight or more. The content of the binder is preferably 99.99% by weight or less and more preferably 99.9% by weight or less based on 100% by weight of the connecting material. When the content of the binder is not less than the above lower limit and not more than the above upper limit, the connection strength can be more effectively increased, and the conduction reliability and insulation reliability between the electrodes can be more effectively enhanced. it can.
 上記接続材料100重量%中、上記金属被覆粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上である。上記接続材料100重量%中、上記金属被覆粒子の含有量は、好ましくは99重量%以下、より好ましくは95重量%以下、より一層好ましくは80重量%以下、さらに好ましくは60重量%以下、さらに一層好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記金属被覆粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。また、上記金属被覆粒子の含有量が、上記下限以上及び上記上限以下であると、2つの接続対象部材間に、金属被覆粒子を十分に配置させることができ、金属被覆粒子によって、2つの接続対象部材間の間隔が部分的に狭くなるのをより一層抑制することができる。このため、接続部の放熱性が部分的に低くなるのを抑制することもできる。 The content of the metal-coated particles in 100% by weight of the connecting material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. In 100% by weight of the connecting material, the content of the metal-coated particles is preferably 99% by weight or less, more preferably 95% by weight or less, even more preferably 80% by weight or less, further preferably 60% by weight or less, It is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the metal-coated particles is not less than the lower limit and not more than the upper limit, the conduction reliability and the insulation reliability between the electrodes can be more effectively enhanced. Moreover, when the content of the metal-coated particles is not less than the lower limit and not more than the upper limit, the metal-coated particles can be sufficiently arranged between the two members to be connected, and the metal-coated particles make two connections. It is possible to further suppress the interval between the target members from becoming narrower. Therefore, it is possible to prevent the heat dissipation of the connection portion from being partially lowered.
 上記接続材料は、金属被覆粒子とは別に、基材粒子を有さない金属原子含有粒子を含んでいてもよい。 The connection material may include metal atom-containing particles having no base material particles, in addition to the metal-coated particles.
 上記金属原子含有粒子としては、金属粒子及び金属化合物粒子等が挙げられる。上記金属化合物粒子は、金属原子と、該金属原子以外の原子とを含む。上記金属化合物粒子の具体例としては、金属酸化物粒子、金属の炭酸塩粒子、金属のカルボン酸塩粒子及び金属の錯体粒子等が挙げられる。上記金属化合物粒子は、金属酸化物粒子であることが好ましい。例えば、上記金属酸化物粒子は、還元剤の存在下で接続時の加熱で金属粒子となった後に焼結する。上記金属酸化物粒子は、金属粒子の前駆体である。上記金属のカルボン酸塩粒子としては、金属の酢酸塩粒子等が挙げられる。 Examples of the metal atom-containing particles include metal particles and metal compound particles. The metal compound particles include metal atoms and atoms other than the metal atoms. Specific examples of the metal compound particles include metal oxide particles, metal carbonate particles, metal carboxylate particles, and metal complex particles. The metal compound particles are preferably metal oxide particles. For example, the metal oxide particles are sintered in the presence of a reducing agent by being heated at the time of connection to become metal particles. The metal oxide particles are precursors of metal particles. Examples of the metal carboxylate particles include metal acetate particles.
 上記金属粒子及び上記金属酸化物粒子を構成する金属としては、銀、銅、ニッケル及び金等が挙げられる。銀又は銅が好ましく、銀が特に好ましい。従って、上記金属粒子は、好ましくは銀粒子又は銅粒子であり、より好ましくは銀粒子である。上記金属酸化物粒子は、好ましくは酸化銀粒子又は酸化銅粒子であり、より好ましくは酸化銀粒子である。銀粒子及び酸化銀粒子を用いた場合には、接続後に残渣が少なく、体積減少率も非常に小さい。該酸化銀粒子における酸化銀としては、AgO及びAgOが挙げられる。 Examples of the metal forming the metal particles and the metal oxide particles include silver, copper, nickel and gold. Silver or copper is preferred and silver is particularly preferred. Therefore, the metal particles are preferably silver particles or copper particles, and more preferably silver particles. The metal oxide particles are preferably silver oxide particles or copper oxide particles, and more preferably silver oxide particles. When silver particles and silver oxide particles are used, there is little residue after connection and the volume reduction rate is very small. Examples of silver oxide in the silver oxide particles include Ag 2 O and AgO.
 上記金属原子含有粒子は、400℃未満の加熱で焼結することが好ましい。上記金属原子含有粒子が焼結する温度(焼結温度)は、より好ましくは350℃以下、好ましくは300℃以上である。上記金属原子含有粒子が焼結する温度が、上記上限以下又は上記上限未満であると、焼結を効率的に行うことができ、さらに焼結に必要なエネルギーを低減し、かつ環境負荷を小さくすることができる。 The metal atom-containing particles are preferably sintered by heating at a temperature lower than 400 ° C. The temperature at which the metal atom-containing particles are sintered (sintering temperature) is more preferably 350 ° C or lower, preferably 300 ° C or higher. When the temperature at which the metal atom-containing particles are sintered is not more than the above upper limit or less than the above upper limit, it is possible to efficiently perform the sintering, further reduce the energy required for the sintering, and reduce the environmental load. can do.
 上記金属原子含有粒子を含む接続材料は、平均粒子径が1nm以上100nm以下である金属粒子を含む接続材料であるか、又は平均粒子径が1nm以上50μm以下である金属酸化物粒子と還元剤とを含む接続材料であることが好ましい。このような接続材料を用いると、接続時の加熱で、上記金属原子含有粒子同士を良好に焼結させることができる。上記金属酸化物粒子の平均粒子径は、好ましくは5μm以下である。上記金属原子含有粒子の粒子径は、金属原子含有粒子が真球状である場合には、直径を示し、金属原子含有粒子が真球状ではない場合には、最大径を示す。 The connecting material containing the metal atom-containing particles is a connecting material containing metal particles having an average particle diameter of 1 nm or more and 100 nm or less, or metal oxide particles having an average particle diameter of 1 nm or more and 50 μm or less and a reducing agent. It is preferable that the connecting material contains When such a connecting material is used, it is possible to satisfactorily sinter the metal atom-containing particles by heating at the time of connection. The average particle diameter of the metal oxide particles is preferably 5 μm or less. The particle diameter of the metal atom-containing particles indicates the diameter when the metal atom-containing particles are spherical, and indicates the maximum diameter when the metal atom-containing particles are not spherical.
 上記金属原子含有粒子が金属酸化物粒子である場合に、還元剤が用いられることが好ましい。上記還元剤としては、アルコール化合物(アルコール性水酸基を有する化合物)、カルボン酸化合物(カルボキシ基を有する化合物)及びアミン化合物(アミノ基を有する化合物)等が挙げられる。上記還元剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 A reducing agent is preferably used when the metal atom-containing particles are metal oxide particles. Examples of the reducing agent include alcohol compounds (compounds having an alcoholic hydroxyl group), carboxylic acid compounds (compounds having a carboxy group), amine compounds (compounds having an amino group), and the like. As for the said reducing agent, only 1 type may be used and 2 or more types may be used together.
 上記アルコール化合物としては、アルキルアルコールが挙げられる。上記アルコール化合物の具体例としては、例えば、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、ノナデシルアルコール及びイコシルアルコール等が挙げられる。また、上記アルコール化合物としては、1級アルコール型化合物に限られず、2級アルコール型化合物、3級アルコール型化合物、アルカンジオール及び環状構造を有するアルコール化合物も使用可能である。さらに、上記アルコール化合物として、エチレングリコール及びトリエチレングリコール等の多数のアルコール基を有する化合物を用いてもよい。また、上記アルコール化合物として、クエン酸、アスコルビン酸及びグルコース等の化合物を用いてもよい。 Examples of the alcohol compound include alkyl alcohol. Specific examples of the alcohol compound include, for example, ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol. , Pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol and icosyl alcohol. Further, the alcohol compound is not limited to the primary alcohol type compound, and a secondary alcohol type compound, a tertiary alcohol type compound, an alkanediol and an alcohol compound having a cyclic structure can also be used. Further, as the alcohol compound, compounds having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used. In addition, compounds such as citric acid, ascorbic acid and glucose may be used as the alcohol compound.
 上記カルボン酸化合物としては、アルキルカルボン酸等が挙げられる。上記カルボン酸化合物の具体例としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸及びイコサン酸等が挙げられる。また、上記カルボン酸化合物は、1級カルボン酸型化合物に限られず、2級カルボン酸型化合物、3級カルボン酸型化合物、ジカルボン酸及び環状構造を有するカルボキシル化合物も使用可能である。 Examples of the carboxylic acid compound include alkylcarboxylic acids. Specific examples of the carboxylic acid compound include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecane. Examples thereof include acids, octadecanoic acid, nonadecanoic acid, and icosanoic acid. Further, the carboxylic acid compound is not limited to the primary carboxylic acid type compound, and a secondary carboxylic acid type compound, a tertiary carboxylic acid type compound, a dicarboxylic acid and a carboxyl compound having a cyclic structure can also be used.
 上記アミン化合物としては、アルキルアミン等が挙げられる。上記アミン化合物の具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン及びイコデシルアミン等が挙げられる。また、上記アミン化合物は分岐構造を有していてもよい。分岐構造を有するアミン化合物としては、2-エチルヘキシルアミン及び1,5-ジメチルヘキシルアミン等が挙げられる。上記アミン化合物は、1級アミン型化合物に限られず、2級アミン型化合物、3級アミン型化合物及び環状構造を有するアミン化合物も使用可能である。 Examples of the above amine compounds include alkylamines. Specific examples of the amine compound include butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, Examples include heptadecylamine, octadecylamine, nonadecylamine, and icodecylamine. Further, the amine compound may have a branched structure. Examples of the amine compound having a branched structure include 2-ethylhexylamine and 1,5-dimethylhexylamine. The amine compound is not limited to the primary amine type compound, and a secondary amine type compound, a tertiary amine type compound and an amine compound having a cyclic structure can also be used.
 さらに、上記還元剤は、アルデヒド基、エステル基、スルホニル基又はケトン基等を有する有機物であってもよく、カルボン酸金属塩等の有機物であってもよい。カルボン酸金属塩は金属粒子の前駆体としても用いられる一方で、有機物を含有しているために、金属酸化物粒子の還元剤としても用いられる。 Further, the reducing agent may be an organic substance having an aldehyde group, an ester group, a sulfonyl group, a ketone group or the like, or may be an organic substance such as a carboxylic acid metal salt. The carboxylic acid metal salt is used not only as a precursor for metal particles, but also as a reducing agent for metal oxide particles because it contains an organic substance.
 上記金属原子含有粒子の焼結温度(接合温度)よりも低い融点を有する還元剤を用いると、接合時に凝集し、接合部にボイドが生じやすくなる傾向がある。カルボン酸金属塩の使用により、該カルボン酸金属塩は接合時の加熱により融解しないため、ボイドが生じるのを抑制できる。なお、カルボン酸金属塩以外にも有機物を含有する金属化合物を還元剤として用いてもよい。 When a reducing agent having a melting point lower than the sintering temperature (bonding temperature) of the above-mentioned metal atom-containing particles is used, it tends to aggregate at the time of bonding and cause voids in the bonded portion. By using the carboxylic acid metal salt, since the carboxylic acid metal salt is not melted by heating at the time of bonding, it is possible to suppress the occurrence of voids. In addition to the carboxylic acid metal salt, a metal compound containing an organic substance may be used as the reducing agent.
 上記還元剤が用いられる場合には、上記接続材料100重量%中、上記還元剤の含有量は、好ましくは1重量%以上、より好ましくは10重量%以上であり、好ましくは90重量%以下、より好ましくは70重量%以下、さらに好ましくは50重量%以下である。上記還元剤の含有量が、上記下限以上及び上記上限以下であると、上記金属原子含有粒子をより一層緻密に焼結させることができる。この結果、接合部における放熱性及び耐熱性も高くなる。 When the reducing agent is used, the content of the reducing agent in 100% by weight of the connecting material is preferably 1% by weight or more, more preferably 10% by weight or more, preferably 90% by weight or less, It is more preferably 70% by weight or less, still more preferably 50% by weight or less. When the content of the reducing agent is not less than the lower limit and not more than the upper limit, the metal atom-containing particles can be sintered more densely. As a result, the heat dissipation and heat resistance of the joint are also improved.
 上記接続材料が上記金属原子含有粒子を含む場合には、上記接続材料100重量%中、上記金属原子含有粒子の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは60重量%以上である。上記接続材料100重量%中、上記金属原子含有粒子の含有量は、好ましくは99.99重量%以下、より好ましくは99.9重量%以下、より一層好ましくは99.5重量%以下、更に好ましくは99重量%以下、特に好ましくは90重量%以下、最も好ましくは80重量%以下である。上記金属原子含有粒子の含有量が、上記下限以上及び上記上限以下であると、接合部における接続抵抗をより一層効果的に低くすることができ、接合部における放熱性をより一層効果的に高めることができる。 When the connecting material contains the metal atom-containing particles, the content of the metal atom-containing particles in 100% by weight of the connecting material is preferably 10% by weight or more, more preferably 30% by weight or more, and further preferably Is 60% by weight or more. The content of the metal atom-containing particles in 100% by weight of the connecting material is preferably 99.99% by weight or less, more preferably 99.9% by weight or less, still more preferably 99.5% by weight or less, further preferably Is 99% by weight or less, particularly preferably 90% by weight or less, and most preferably 80% by weight or less. When the content of the metal atom-containing particles is not less than the lower limit and not more than the upper limit, it is possible to further effectively lower the connection resistance at the joint portion, and more effectively enhance the heat dissipation at the joint portion. be able to.
 (接続構造体)
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した金属被覆粒子であるか、又は、上記金属被覆粒子とバインダーとを含む接続材料である。上記接続部は、上記金属被覆粒子又は上記接続材料により形成されていることが好ましい。上記接続部の材料は、上記粒子連結体を含んでいてもよい。上記接続部は、上記粒子連結体により形成されていてもよい。
(Connection structure)
A connection structure according to the present invention includes a first connection target member, a second connection target member, a connection portion connecting the first connection target member, and the second connection target member. Equipped with. In the connection structure according to the present invention, the material of the connection part is the metal-coated particles described above, or a connection material containing the metal-coated particles and a binder. The connecting portion is preferably formed of the metal-coated particles or the connecting material. The material of the connecting portion may include the particle connected body. The connecting portion may be formed of the particle linked body.
 図6は、本発明の第1の実施形態に係る金属被覆粒子を用いた接続構造体を模式的に示す断面図である。 FIG. 6 is a sectional view schematically showing a connection structure using the metal-coated particles according to the first embodiment of the present invention.
 図6に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52と第2の接続対象部材53とを接続している接続部54とを備える。接続部54は、金属被覆粒子1とバインダーとを含む接続材料により形成されている。接続部54の材料は、上記接続材料である。接続部54は、接続材料を硬化させることにより形成されていることが好ましい。接続構造体51では、金属被覆粒子1と第1の接続対象部材52とが接合しており、金属被覆粒子1と第2の接続対象部材53とが接合している。 The connection structure 51 shown in FIG. 6 is a connection that connects the first connection target member 52, the second connection target member 53, and the first connection target member 52 and the second connection target member 53. And a section 54. The connecting portion 54 is formed of a connecting material containing the metal-coated particles 1 and a binder. The material of the connecting portion 54 is the above connecting material. The connecting portion 54 is preferably formed by curing a connecting material. In the connection structure 51, the metal-coated particles 1 and the first connection target member 52 are bonded, and the metal-coated particles 1 and the second connection target member 53 are bonded.
 金属被覆粒子1の代わりに、金属被覆粒子1A,1B等の金属被覆粒子を用いることができる。また、金属被覆粒子1、1A,1Bの代わりに、粒子連結体21,21A等の粒子連結体を用いてもよい。粒子連結体21,21Aを用いる場合において、柱状連結部22により連結されている金属被覆粒子1の代わりに、金属被覆粒子1A,1B等の金属被覆粒子を用いてもよい。 Instead of the metal-coated particles 1, metal-coated particles such as metal-coated particles 1A and 1B can be used. Further, instead of the metal-coated particles 1, 1A and 1B, particle connected bodies such as particle connected bodies 21 and 21A may be used. When using the particle-coupled bodies 21 and 21A, metal-coated particles such as metal-coated particles 1A and 1B may be used instead of the metal-coated particles 1 connected by the columnar connecting portions 22.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の金属被覆粒子1により電気的に接続されている。従って、第1の接続対象部材52と第2の接続対象部材53とが金属被覆粒子1により電気的に接続されている。接続構造体51では、金属被覆粒子1と第1の電極52aとが接合しており、金属被覆粒子1と第2の電極53aとが接合している。 The first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on the front surface (lower surface). The first electrode 52a and the second electrode 53a are electrically connected by one or more metal-coated particles 1. Therefore, the first connection target member 52 and the second connection target member 53 are electrically connected by the metal-coated particles 1. In the connection structure 51, the metal-coated particles 1 and the first electrode 52a are joined together, and the metal-coated particles 1 and the second electrode 53a are joined together.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記接続材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10Pa~4.9×10Pa程度である。上記加熱の温度は、120℃~500℃程度である。 The method for manufacturing the connection structure is not particularly limited. As an example of a method for manufacturing the connection structure, the connection material is arranged between the first connection target member and the second connection target member to obtain a laminated body, and then the laminated body is heated and pressed. Methods and the like. The pressure applied is about 9.8 × 10 4 Pa to 4.9 × 10 6 Pa. The heating temperature is about 120 ° C to 500 ° C.
 上記接続対象部材としては、具体的には、半導体チップ、LEDチップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ストレッチャブル基板、ガラスエポキシ基板及びガラス基板等の回路基板である電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記金属被覆粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。 The connection target member is specifically an electronic component such as a semiconductor chip, an LED chip, a capacitor and a diode, and a circuit board such as a printed board, a flexible printed board, a stretchable board, a glass epoxy board and a glass board. Examples include electronic parts. The connection target member is preferably an electronic component. The metal-coated particles are preferably used for electrical connection of electrodes in electronic parts.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、SUS電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, silver electrodes, SUS electrodes, molybdenum electrodes, and tungsten electrodes. When the member to be connected is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode or a tungsten electrode. When the above-mentioned electrode is an aluminum electrode, it may be an electrode formed of only aluminum or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
 図7は、本発明の第1の実施形態に係る金属被覆粒子を用いた接続構造体の第1の変形例を模式的に示す断面図である。 FIG. 7 is a cross-sectional view schematically showing a first modified example of the connection structure using the metal-coated particles according to the first embodiment of the present invention.
 図7に示す接続構造体61は、第1の接続対象部材62と、第2の接続対象部材63,64と、第1の接続対象部材62と第2の接続対象部材63,64とを接続している接続部65,66とを備える。接続部65,66は、金属被覆粒子1と金属原子含有粒子とを含む接続材料を用いて形成されている。接続部65,66の材料は、上記接続材料である。 The connection structure 61 shown in FIG. 7 connects the first connection target member 62, the second connection target members 63 and 64, and the first connection target member 62 and the second connection target members 63 and 64. And connecting parts 65 and 66. The connecting portions 65 and 66 are formed using a connecting material containing the metal-coated particles 1 and the metal atom-containing particles. The material of the connecting portions 65 and 66 is the above connecting material.
 第1の接続対象部材62の第1の表面(一方の表面)側に接続部65及び第2の接続対象部材63が配置されている。接続部65は、第1の接続対象部材62と第2の接続対象部材63とを接続している。 The connection portion 65 and the second connection target member 63 are arranged on the first surface (one surface) side of the first connection target member 62. The connection portion 65 connects the first connection target member 62 and the second connection target member 63.
 第1の接続対象部材62の第1の表面とは反対の第2の表面(他方の表面)側に接続部66及び第2の接続対象部材64が配置されている。接続部66は、第1の接続対象部材62と第2の接続対象部材64とを接続している。 The connection portion 66 and the second connection target member 64 are arranged on the second surface (other surface) side opposite to the first surface of the first connection target member 62. The connection portion 66 connects the first connection target member 62 and the second connection target member 64.
 第1の接続対象部材62と第2の接続対象部材63,64との間にそれぞれ、金属被覆粒子1と金属原子含有粒子とを含む接続材料が配置されている。本実施形態では、接続部65,66において、金属原子含有粒子は焼結した焼結物の状態であり、該焼結物中に金属被覆粒子1が配置されている。金属被覆粒子1は、焼結した焼結物の状態であってもよい。第1の接続対象部材62と第2の接続対象部材63,64間に、金属被覆粒子1が配置されている。金属被覆粒子1によって、第1の接続対象部材62と第2の接続対象部材63,64とが接続されている。 A connection material containing the metal-coated particles 1 and the metal atom-containing particles is arranged between the first connection target member 62 and the second connection target members 63 and 64, respectively. In the present embodiment, the metal atom-containing particles are in a state of a sintered product in the connecting portions 65 and 66, and the metal-coated particles 1 are arranged in the sintered product. The metal-coated particles 1 may be in the state of a sintered product. The metal-coated particles 1 are arranged between the first connection target member 62 and the second connection target members 63 and 64. The metal-coated particles 1 connect the first connection target member 62 and the second connection target members 63 and 64.
 第2の接続対象部材63の接続部65側とは反対の表面に、ヒートシンク67が配置されている。第2の接続対象部材64の接続部66側とは反対側の表面に、ヒートシンク68が配置されている。従って、接続構造体61は、ヒートシンク67、第2の接続対象部材63、接続部65、第1の接続対象部材62、接続部66、第2の接続対象部材64及びヒートシンク68がこの順で積層された部分を有する。 A heat sink 67 is arranged on the surface of the second connection target member 63 opposite to the connection portion 65 side. A heat sink 68 is arranged on the surface of the second connection target member 64 opposite to the connection portion 66 side. Therefore, in the connection structure 61, the heat sink 67, the second connection target member 63, the connection portion 65, the first connection target member 62, the connection portion 66, the second connection target member 64, and the heat sink 68 are laminated in this order. Has a part
 第1の接続対象部材62としては、整流ダイオード、パワートランジスタ(パワーMOSFET、絶縁ゲートバイポーラトランジスタ)、サイリスタ、ゲートターンオフサイリスタ及びトライアック等に用いられるSi,SiC,GaN等が材料であるパワー半導体素子等が挙げられる。このような第1の接続対象部材62を備える接続構造体61では、接続構造体61の使用時に、第1の接続対象部材62において大きな熱量が発生しやすい。従って、第1の接続対象部材62から発生した熱量を、ヒートシンク67,68等に効率的に放散させる必要がある。このため、第1の接続対象部材62とヒートシンク67,68との間に配置されている接続部65,66には、高い放熱性と高い信頼性が求められる。 The first connection target member 62 includes a rectifier diode, a power transistor (power MOSFET, insulated gate bipolar transistor), a thyristor, a gate turn-off thyristor, and a power semiconductor element made of Si, SiC, GaN or the like used for a triac or the like. Is mentioned. In the connection structure 61 including the first connection target member 62, a large amount of heat is likely to be generated in the first connection target member 62 when the connection structure 61 is used. Therefore, it is necessary to efficiently dissipate the amount of heat generated from the first connection target member 62 to the heat sinks 67, 68 and the like. Therefore, the connection portions 65 and 66 arranged between the first connection target member 62 and the heat sinks 67 and 68 are required to have high heat dissipation and high reliability.
 第2の接続対象部材63,64としては、セラミック、プラスチック等が材料である基板等が挙げられる。 Examples of the second connection target members 63, 64 include substrates made of ceramics, plastics, or the like.
 接続部65,66は、上記接続材料を加熱して、上記金属原子含有粒子を焼結させることにより形成されている。 The connection parts 65 and 66 are formed by heating the connection material and sintering the metal atom-containing particles.
 図8は、本発明の第1の実施形態に係る金属被覆粒子を用いた接続構造体の第2の変形例を模式的に示す断面図である。 FIG. 8 is a sectional view schematically showing a second modified example of the connection structure using the metal-coated particles according to the first embodiment of the present invention.
 図8に示す接続構造体61Aは、第1の接続対象部材62と、第2の接続対象部材63,64と、第1の接続対象部材62と第2の接続対象部材63,64とを接続している接続部65,66とを備える。接続部65,66は、金属被覆粒子1と、他の金属被覆粒子69と、金属原子含有粒子とを含む接続材料を用いて形成されている。金属被覆粒子1と他の金属被覆粒子69とでは、金属被覆粒子の大きさのみが異なる。接続部65,66の材料は、上記接続材料である。 The connection structure 61A shown in FIG. 8 connects the first connection target member 62, the second connection target members 63 and 64, and the first connection target member 62 and the second connection target members 63 and 64. And connecting parts 65 and 66. The connection parts 65 and 66 are formed using a connection material containing the metal-coated particles 1, the other metal-coated particles 69, and the metal atom-containing particles. The metal-coated particles 1 and the other metal-coated particles 69 differ only in the size of the metal-coated particles. The material of the connecting portions 65 and 66 is the above connecting material.
 図7に示す接続構造体61と図8に示す接続構造体61Aとでは、接続部65,66中に、他の金属被覆粒子69が含まれていることのみが異なる。上記接続部中に含まれる金属被覆粒子は、同一の大きさの金属被覆粒子のみであってもよく、異なる大きさの金属被覆粒子であってもよい。 The connection structure 61 shown in FIG. 7 and the connection structure 61A shown in FIG. 8 differ only in that the connection parts 65 and 66 include other metal-coated particles 69. The metal-coated particles contained in the connection portion may be metal-coated particles having the same size or may be metal-coated particles having different sizes.
 (導通検査用部材及び導通検査装置)
 本発明に係る金属被覆粒子は、導通検査用部材及び導通検査装置を得るために好適に用いられる。上記導通検査用部材は、貫通孔を有する基体と、導電部とを備える。上記導通検査用部材では、上記貫通孔が、上記基体に複数配置されている。上記導通検査用部材では、上記導電部が、上記貫通孔内に配置されている。上記導通検査用部材では、上記導電部の材料が、上述した金属被覆粒子を含む。上記導電部は、上述した接続材料により形成されていてもよい。上記導電部が、上述した接続材料の硬化物を含んでいてもよい。
(Continuity inspection member and continuity inspection device)
The metal-coated particles according to the present invention are preferably used to obtain a continuity inspection member and a continuity inspection device. The above-mentioned continuity inspection member includes a base having a through hole and a conductive portion. In the above-mentioned member for continuity inspection, the plurality of through holes are arranged in the base. In the above-mentioned member for continuity inspection, the above-mentioned conductive part is arranged in the above-mentioned penetration hole. In the above-mentioned member for continuity inspection, the material of the conductive portion contains the above-mentioned metal-coated particles. The conductive portion may be formed of the connecting material described above. The conductive portion may include a cured product of the above-mentioned connecting material.
 上記導通検査装置は、電流計と、上記導通検査用部材とを備える。 The continuity inspection device includes an ammeter and the continuity inspection member.
 図10(a),(b)は、導通検査用部材の一例を示す平面図及び断面図である。図10(b)は、図10(a)中のA-A線に沿う断面図である。 10A and 10B are a plan view and a cross-sectional view showing an example of a continuity inspection member. FIG. 10B is a sectional view taken along the line AA in FIG.
 図10(a),(b)に示す導通検査用部材31は、貫通孔32aを有する基体32と、基体32の貫通孔32a内に配置された導電部33とを備える。導電部33の材料が、上記金属被覆粒子を含む。導電部33の材料は、上記接続材料であってもよい。導通検査用部材31は、導通用部材であってもよい。 The continuity inspection member 31 shown in FIGS. 10A and 10B includes a base 32 having a through hole 32 a, and a conductive portion 33 arranged in the through hole 32 a of the base 32. The material of the conductive portion 33 contains the metal-coated particles. The material of the conductive portion 33 may be the above connection material. The continuity inspection member 31 may be a continuity member.
 導通検査用部材31には、電流計(例えば、図11(c)で示される電流計43)を電気的に接続することで、導通検査を実施することができる。導通検査においては、上記電流計は、導通検査用部材31における任意の2個の導電部33に接続させる。そして、上記電流計が接続された2個の導電部33に接触するように電子回路デバイスを接続(例えば、図11(c)で示されるBGA基板42のはんだボール41を導電部120に接続)することで、該電子回路デバイスの導通検査を実施することができる。 The continuity inspection can be performed by electrically connecting an ammeter (for example, the ammeter 43 shown in FIG. 11C) to the continuity inspection member 31. In the continuity test, the ammeter is connected to any two conductive parts 33 in the continuity test member 31. Then, the electronic circuit device is connected so as to come into contact with the two conductive parts 33 to which the ammeter is connected (for example, the solder ball 41 of the BGA substrate 42 shown in FIG. 11C is connected to the conductive part 120). By doing so, the continuity test of the electronic circuit device can be performed.
 上記基体は、上記導通検査用部材の基板となる部材である。上記基体は、絶縁性を有することが好ましく、上記基体は絶縁性の材料によって形成されていることが好ましい。絶縁性の材料としては、例えば、絶縁性樹脂が挙げられる。 The base body is a member that serves as a substrate for the continuity inspection member. The base body preferably has an insulating property, and the base body is preferably made of an insulating material. Examples of the insulating material include insulating resin.
 上記基体を構成する絶縁性樹脂としては、例えば、熱可塑性樹脂及び熱硬化性樹脂のいずれであってもよい。熱可塑性樹脂としては、ポリエステル樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ABS樹脂、及びポリカーボネート樹脂等が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド系樹脂、シリコーン樹脂、及びフェノール樹脂等が挙げられる。シリコーン樹脂としては、シリコーンゴム等が挙げられる。 The insulating resin that constitutes the base may be, for example, either a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include polyester resin, polystyrene resin, polyethylene resin, polyamide resin, ABS resin, and polycarbonate resin. Examples of the thermosetting resin include epoxy resin, urethane resin, polyimide resin, polyetheretherketone resin, polyamideimide resin, polyetherimide resin, silicone resin, and phenol resin. Examples of the silicone resin include silicone rubber and the like.
 上記基体が絶縁性樹脂で形成される場合は、上記基体を構成する絶縁性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 When the base is made of an insulating resin, the insulating resin that constitutes the base may be used alone or in combination of two or more.
 上記基体は、例えば、板状、シート状等である。シート状には、フィルム状が含まれる。上記基体の厚みは、導通検査用部材の種類に応じて適宜設定することができ、例えば、0.005mm以上50mm以下の厚みであってもよい。上記基体の平面視における大きさも目的の検査用部材又は検査装置に応じて適宜設定することができる。 The above-mentioned base has, for example, a plate shape or a sheet shape. The sheet shape includes a film shape. The thickness of the substrate can be appropriately set according to the type of the continuity inspection member, and may be, for example, 0.005 mm or more and 50 mm or less. The size of the base body in plan view can be appropriately set according to the intended inspection member or inspection device.
 上記基体は、例えば、上記の絶縁性樹脂等の絶縁性材料を原料として、所望の形状に成形することで得ることができる。 The above-mentioned substrate can be obtained, for example, by molding an insulating material such as the above-mentioned insulating resin into a desired shape.
 上記基体の上記貫通孔は、上記基体に複数配置される。上記貫通孔は、上記基体の厚み方向に貫通していることが好ましい。 A plurality of the through holes of the base are arranged in the base. The through hole preferably penetrates in the thickness direction of the substrate.
 上記基体の上記貫通孔は、円柱状に形成され得るが、円柱状に限らず、その他の形状、例えば、多角柱状に形成されていてもよい。また、上記貫通孔は、一方の方向に先細りしているテーパー状に形成されていてもよいし、その他、歪んだ形状に形成されていてもよい。 The through hole of the base body may be formed in a cylindrical shape, but is not limited to a cylindrical shape, and may be formed in other shapes, for example, a polygonal cylindrical shape. Further, the through hole may be formed in a taper shape that is tapered in one direction, or may be formed in a distorted shape.
 上記貫通孔の大きさ、例えば、平面視における上記貫通孔の見かけ面積も適宜の大きさに形成することができ、導電部を収容でき、かつ、保持できる程度の大きさに形成されていればよい。上記貫通孔が、例えば円柱状であれば、上記貫通孔の直径は好ましくは0.01mm以上、好ましくは10mm以下である。 The size of the through-hole, for example, the apparent area of the through-hole in a plan view can also be formed in an appropriate size, and the conductive portion can be accommodated and formed in such a size that it can be held. Good. If the through-hole has, for example, a cylindrical shape, the diameter of the through-hole is preferably 0.01 mm or more, and preferably 10 mm or less.
 なお、上記基体の上記貫通孔の全てが同じ形状、同じ大きさであってもよいし、上記基体の上記貫通孔の一部の形状又は大きさが、他の貫通孔と異なっていてもよい。 It should be noted that all of the through holes of the base may have the same shape and the same size, or a part of the through holes of the base may have a different shape or size from other through holes. .
 上記基体の上記貫通孔の個数も適宜の範囲で設定することができ、導通検査が可能な程度の個数を有していればよく、目的の検査用部材又は検査装置に応じて適宜設定することができる。また、上記基体の上記貫通孔の配置場所も目的の検査用部材又は検査装置に応じて適宜設定することができる。 The number of the through holes of the base body can be set in an appropriate range, and it is sufficient that the number of through holes be such that a continuity test can be performed, and the number can be set appropriately according to a target inspection member or inspection device. You can Further, the location of the through hole of the base body can be appropriately set according to the intended inspection member or inspection device.
 上記基体の上記貫通孔を形成する方法は特に限定されず、公知の方法(例えば、レーザー加工)で貫通孔を形成することが可能である。 The method of forming the through hole of the substrate is not particularly limited, and the through hole can be formed by a known method (for example, laser processing).
 上記基体の上記貫通孔内の導電部は導電性を有する。上記金属被覆粒子は、上記貫通孔内で密に充填されていることが好ましく、この場合、上記導通検査用部材によって、より確実な導通検査を行うことができる。上記導電部は、導通検査用部材又は導通用部材の表裏にわたって導通可能であるように上記貫通孔内に収容されていることが好ましい。 The conductive portion in the through hole of the base has conductivity. It is preferable that the metal-coated particles are densely filled in the through holes, and in this case, the conduction inspection member can perform a more reliable conduction inspection. It is preferable that the conductive portion is housed in the through hole so as to be conductive across the front and back of the continuity inspection member or the conductive member.
 上記導電部において、上記金属被覆粒子は、導電部の表面から裏面にわたって連続して上記金属被覆粒子が互いに接触しながら存在していることが好ましい。この場合に、上記導電部の導通性が向上する。 In the conductive part, it is preferable that the metal-coated particles are present continuously from the front surface to the back surface of the conductive part while the metal-coated particles are in contact with each other. In this case, the conductivity of the conductive portion is improved.
 上記導電部の材料は、上記金属被覆粒子以外の材料を含んでいてもよい。例えば、上記導電部の材料は、上記金属被覆粒子以外にバインダーを含むことができる。上記導電部の材料がバインダーを含むことで、上記金属被覆粒子がより強固に集合し、これにより上記金属被覆粒子が上記貫通孔内に保持されやすくなる。 The material of the conductive part may include a material other than the metal-coated particles. For example, the material of the conductive part may include a binder in addition to the metal-coated particles. When the material of the conductive portion contains the binder, the metal-coated particles are more firmly aggregated, and thus the metal-coated particles are easily retained in the through holes.
 上記バインダーは特に限定されない。上記バインダーとしては、上述した接続材料の材料であるバインダー等が挙げられる。 The above binder is not particularly limited. Examples of the binder include the binder that is a material of the above-mentioned connecting material.
 上記導電部を、上記貫通孔内に収容する方法は特に限定されない。例えば、上記金属被覆粒子とバインダーとを含む接続材料を上記基体に塗工する方法で、上記金属被覆粒子を上記貫通孔内に充填し、適宜の条件で接続材料を硬化させることで、上記導電部を上記貫通孔内に形成することができる。これにより、上記導電部が上記貫通孔内に収容される。上記接続材料には、必要に応じて、溶剤が含まれていてもよい。 The method for accommodating the conductive part in the through hole is not particularly limited. For example, by a method of applying a connection material containing the metal-coated particles and a binder to the substrate, the metal-coated particles are filled in the through-hole, and the connection material is cured under appropriate conditions to obtain the conductivity. The portion can be formed in the through hole. Thereby, the conductive portion is housed in the through hole. The connection material may contain a solvent, if necessary.
 上記金属被覆粒子とバインダーとを含む接続材料では、上記金属被覆粒子100重量部に対して、バインダーの含有量は、固形分換算で、好ましくは5重量部以上、より好ましくは10重量部以上であり、好ましくは99重量部以下、より好ましくは50重量部以下である。 In the connecting material containing the metal-coated particles and the binder, the content of the binder is preferably 5 parts by weight or more, and more preferably 10 parts by weight or more in terms of solid content with respect to 100 parts by weight of the metal-coated particles. It is preferably 99 parts by weight or less, more preferably 50 parts by weight or less.
 上記導通検査用部材は、プローブカードとして用いることができる。なお、上記導通検査用部材は、本発明の効果が阻害されない程度であれば、その他の構成要素を備えていてもよい。 The above-mentioned continuity inspection member can be used as a probe card. The continuity inspection member may include other components as long as the effects of the present invention are not impaired.
 図11(a)~(c)は、電子回路デバイスの電気特性を導通検査装置を用いて検査している様子を模式的に示す図である。 FIGS. 11A to 11C are diagrams schematically showing how the electrical characteristics of the electronic circuit device are inspected by using the continuity inspection device.
 図11(a)~(c)では、電子回路デバイスは、BGA基板42(ボールグリッドアレイ基板)である。BGA基板42は、接続パッドが格子状に多層基板40に配列され、各パッドにはんだボール41(導通対象部材)が配設された構造を有する基板である。また、図11(a)~(c)では、導通検査用部材100は、プローブカードである。導通検査用部材100は、基体110に複数の貫通孔110aが形成されており、貫通孔110a内には導電部120が収容されている。図11(a)に示すように、BGA基板42と、導通検査用部材100とを準備し、図11(b)に示すように、BGA基板42を導通検査用部材100に接触させて圧縮させる。このとき、はんだボール41は、貫通孔110a内の導電部120と接触する。この状態において図11(c)に示すように、電流計43を接続して導通検査を実施し、BGA基板42の合否を判定することができる。 In FIGS. 11A to 11C, the electronic circuit device is a BGA substrate 42 (ball grid array substrate). The BGA board 42 is a board having a structure in which connection pads are arranged in a grid pattern on the multilayer board 40 and solder balls 41 (members to be conducted) are arranged on each pad. Further, in FIGS. 11A to 11C, the continuity test member 100 is a probe card. The continuity inspection member 100 has a plurality of through holes 110a formed in a base 110, and a conductive portion 120 is housed in the through hole 110a. As shown in FIG. 11A, a BGA substrate 42 and a continuity inspection member 100 are prepared, and as shown in FIG. 11B, the BGA substrate 42 is brought into contact with the continuity inspection member 100 and compressed. .. At this time, the solder ball 41 comes into contact with the conductive portion 120 in the through hole 110a. In this state, as shown in FIG. 11C, it is possible to connect the ammeter 43 and perform a continuity test to determine whether the BGA board 42 is acceptable or not.
 (電池電極材料)
 上述した金属被覆粒子は、電池電極材料を得るために好適に用いられる。上記電池電極材料は、燃料電池用電極を得るために好適に用いられる。上記電池電極材料は、燃料電池用電極の材料であることが好ましい。
(Battery electrode material)
The metal-coated particles described above are preferably used to obtain a battery electrode material. The above-mentioned cell electrode material is suitably used for obtaining a fuel cell electrode. The cell electrode material is preferably a material for a fuel cell electrode.
 上記電池電極材料は、燃料電池用電極以外の電極を得るために用いられてもよい。燃料電池用電極以外の電極としては、リチウムイオン電池用電極、全固体電池用電極等が挙げられる。 The above-mentioned cell electrode material may be used to obtain electrodes other than fuel cell electrodes. Examples of electrodes other than the fuel cell electrode include a lithium-ion battery electrode and an all-solid-state battery electrode.
 上記燃料電池は、例えば、第1の電極及び第2の電極(燃料極及び空気極)と、電解質とを備える。上記第1の電極及び上記第2の電極の内の少なくとも一方の電極が、上記電池電極材料を用いた上記燃料電池用電極であることが好ましい。上記第1の電極及び上記第2の電極の内の一方の電極のみが、上記電池電極材料を用いた上記燃料電池用電極である場合に、他方の電極は特に限定されない。上記他方の電極としては、従来公知の電極が使用可能である。 The fuel cell includes, for example, a first electrode and a second electrode (fuel electrode and air electrode), and an electrolyte. At least one of the first electrode and the second electrode is preferably the fuel cell electrode using the battery electrode material. When only one of the first electrode and the second electrode is the fuel cell electrode using the battery electrode material, the other electrode is not particularly limited. A conventionally known electrode can be used as the other electrode.
 上記燃料電池としては、固体高分子形燃料電池(PEFC)、リン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化物形燃料電池(SOFC)、アルカリ電解質形燃料電池(AFC)、及び直接形燃料電池(DFC)等が挙げられる。 Examples of the fuel cell include a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (SOFC), and an alkaline electrolyte fuel cell. (AFC), direct fuel cell (DFC), and the like.
 (触覚フィードバック機能付きタッチパネル)
 上述した金属被覆粒子は、触覚フィードバック機能付きタッチパネルを得るために好適に用いられる。上記触覚フィードバック機能付きタッチパネルは、タッチセンサーと、上記タッチセンサーの第1の表面側に配置された導電層と、触覚フィードバックセンサーとを備える。上記触覚フィードバック機能付きタッチパネルでは、上記導電層が、上述した金属被覆粒子を含むことが好ましい。
(Touch panel with tactile feedback function)
The metal-coated particles described above are suitably used to obtain a touch panel with a tactile feedback function. The touch panel with a tactile feedback function includes a touch sensor, a conductive layer arranged on the first surface side of the touch sensor, and a tactile feedback sensor. In the touch panel with a tactile feedback function, it is preferable that the conductive layer include the metal-coated particles described above.
 上記触覚フィードバック機能付きタッチパネルの好ましい例では、触覚フィードバック機能付きタッチパネルは、タッチセンサーと、上記タッチセンサーの第1の表面側に配置された導電層と、触覚フィードバックセンサーとを備える。上記触覚フィードバック機能付きタッチパネルの好ましい例では、上記導電層が、複数の金属被覆粒子を含む。上記触覚フィードバック機能付きタッチパネルの好ましい例では、上記金属被覆粒子が、基材粒子と、上記基材粒子の表面上に配置された金属部とを備え、上記金属部が、銀、パラジウム、又は銅を含む。 In a preferred example of the touch panel with tactile feedback function, the touch panel with tactile feedback function includes a touch sensor, a conductive layer arranged on the first surface side of the touch sensor, and a tactile feedback sensor. In a preferable example of the touch panel with a tactile feedback function, the conductive layer includes a plurality of metal-coated particles. In a preferred example of the touch panel with the tactile feedback function, the metal-coated particles include base particles, and a metal portion arranged on the surface of the base particles, the metal portion is silver, palladium, or copper. including.
 図12は、本発明の第1の実施形態に係る金属被覆粒子を用いた触覚フィードバック機能付きタッチパネルを模式的に示す断面図である。 FIG. 12 is a cross-sectional view schematically showing a touch panel with a tactile feedback function using the metal-coated particles according to the first embodiment of the present invention.
 図12に示す触覚フィードバック機能付きタッチパネル71は、タッチセンサー72と、導電層73と、触覚フィードバックセンサー74とを備える。触覚フィードバックセンサー74は、適宜の位置に配置することができる。導電層73は、複数の金属被覆粒子(図示は省略)を含む。導電層73は、タッチセンサー72の第1の表面側に配置されている。触覚フィードバック機能付きタッチパネル71は、導電層73のタッチセンサー72側とは反対側に、絶縁層75を備える。触覚フィードバック機能付きタッチパネル71は、タッチセンサー72の上記第1の表面と反対の第2の表面側に、液晶パネル76を備える。 The touch panel 71 with a tactile feedback function shown in FIG. 12 includes a touch sensor 72, a conductive layer 73, and a tactile feedback sensor 74. The tactile feedback sensor 74 can be arranged at an appropriate position. The conductive layer 73 includes a plurality of metal-coated particles (not shown). The conductive layer 73 is arranged on the first surface side of the touch sensor 72. The touch panel 71 with a tactile feedback function includes an insulating layer 75 on the side of the conductive layer 73 opposite to the touch sensor 72 side. The touch panel 71 with a tactile feedback function includes a liquid crystal panel 76 on the second surface side of the touch sensor 72, which is opposite to the first surface.
 触覚フィードバック機能付きタッチパネル71は、液晶パネル76を備えるので、液晶表示装置である。 The touch panel 71 with a tactile feedback function is a liquid crystal display device because it has a liquid crystal panel 76.
 図12に示す触覚フィードバック機能付きタッチパネルは一例であり、触覚フィードバック機能付きタッチパネルの具体的な構成は適宜変更され得る。 The touch panel with a tactile feedback function shown in FIG. 12 is an example, and the specific configuration of the touch panel with a tactile feedback function may be changed as appropriate.
 (電子部品装置)
 上述した金属被覆粒子は、第1のセラミック部材と第2のセラミック部材との外周部において、第1のセラミック部材と第2のセラミック部材との間に配置され、ギャップ制御材及び導電接続材として用いることもできる。
(Electronic component device)
The above-mentioned metal-coated particles are arranged between the first ceramic member and the second ceramic member in the outer peripheral portions of the first ceramic member and the second ceramic member, and serve as a gap control material and a conductive connecting material. It can also be used.
 図13は、本発明の第1の実施形態に係る金属被覆粒子を用いた電子部品装置を模式的に示す断面図である。図14は、図13に示す電子部品装置における接合部部分を拡大して示す断面図である。 FIG. 13 is a sectional view schematically showing an electronic component device using the metal-coated particles according to the first embodiment of the present invention. FIG. 14 is an enlarged sectional view showing a joint portion in the electronic component device shown in FIG.
 図13,14に示す電子部品装置81は、第1のセラミック部材82と、第2のセラミック部材83と、接合部84と、電子部品85と、リードフレーム86とを備える。 The electronic component device 81 shown in FIGS. 13 and 14 includes a first ceramic member 82, a second ceramic member 83, a joint portion 84, an electronic component 85, and a lead frame 86.
 第1,第2のセラミック部材82,83はそれぞれ、セラミック材料により形成されている。第1,第2のセラミック部材82,83はそれぞれ、例えば、筐体である。第1のセラミック部材82は、例えば、基板である。第2のセラミック部材83は、例えば蓋である。第1のセラミック部材82は、外周部に、第2のセラミック部材83側(上側)に突出した凸部を有する。第1のセラミック部材82は、第2のセラミック部材83側(上側)に、電子部品85を収納するための内部空間Rを形成する凹部を有する。なお、第1のセラミック部材82は、凸部を有していなくてもよい。第2のセラミック部材83は、外周部に、第1のセラミック部材82側(下側)に突出した凸部を有する。第2のセラミック部材83は、第1のセラミック部材82側(下側)に、電子部品85を収納するための内部空間Rを形成する凹部を有する。なお、第2のセラミック部材83は、凸部を有していなくてもよい。 The first and second ceramic members 82 and 83 are each made of a ceramic material. Each of the first and second ceramic members 82 and 83 is, for example, a housing. The first ceramic member 82 is, for example, a substrate. The second ceramic member 83 is, for example, a lid. The 1st ceramic member 82 has a convex part which protruded to the 2nd ceramic member 83 side (upper side) in the outer peripheral part. The first ceramic member 82 has, on the second ceramic member 83 side (upper side), a recess that forms an internal space R for housing the electronic component 85. The first ceramic member 82 does not have to have a convex portion. The second ceramic member 83 has, on its outer peripheral portion, a convex portion that protrudes toward the first ceramic member 82 side (lower side). The second ceramic member 83 has, on the first ceramic member 82 side (lower side), a recess that forms an internal space R for housing the electronic component 85. The second ceramic member 83 does not have to have a convex portion.
 接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを接合している。具体的には、接合部84は、第1のセラミック部材82の外周部の凸部と、第2のセラミック部材83の外周部の凸部とを接合している。 The joint portion 84 joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. Specifically, the joint portion 84 joins the convex portion on the outer peripheral portion of the first ceramic member 82 and the convex portion on the outer peripheral portion of the second ceramic member 83.
 接合部84により接合された第1,第2のセラミック部材82,83によってパッケージが形成されている。パッケージによって、内部空間Rが形成されている。接合部84は、内部空間Rを液密的及び気密的に封止している。接合部84は、封止部である。 A package is formed by the first and second ceramic members 82 and 83 joined by the joining portion 84. The package forms an internal space R. The joint portion 84 liquid-tightly and airtightly seals the internal space R. The joint portion 84 is a sealing portion.
 電子部品85は、上記パッケージの内部空間R内に配置されている。具体的には、第1のセラミック部材82上に、電子部品85が配置されている。本実施形態では、2つの電子部品85が用いられている。 The electronic component 85 is arranged in the internal space R of the package. Specifically, the electronic component 85 is arranged on the first ceramic member 82. In this embodiment, two electronic components 85 are used.
 接合部84は、複数の金属被覆粒子1とガラス84Bとを含む。接合部84は、ガラス粒子とは異なる複数の金属被覆粒子1とガラス84Bとを含む接合材料を用いて形成されている。この接合材料は、セラミックパッケージ用接合材料である。 The joint portion 84 includes a plurality of metal-coated particles 1 and glass 84B. The joining portion 84 is formed by using a joining material containing a plurality of metal-coated particles 1 different from the glass particles and the glass 84B. This bonding material is a bonding material for ceramic packages.
 接合材料は、溶剤を含んでいてもよく、樹脂を含んでいてもよい。接合部84では、ガラス粒子等のガラス84Bが溶融及び結合した後に固化している。 The bonding material may include a solvent or a resin. At the joining portion 84, the glass 84B such as glass particles is solidified after melting and bonding.
 電子部品としては、センサ素子、MEMS及びベアチップ等が挙げられる。上記センサ素子としては、圧力センサ素子、加速度センサ素子、CMOSセンサ素子、CCDセンサ素子及び上記各種センサ素子の筐体等が挙げられる。 Electronic parts include sensor elements, MEMS and bare chips. Examples of the sensor element include a pressure sensor element, an acceleration sensor element, a CMOS sensor element, a CCD sensor element, and a housing for the various sensor elements.
 リードフレーム86は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間に配置されている。リードフレーム86は、パッケージの内部空間R側と外部空間側とに延びている。電子部品85の端子とリードフレーム86とがワイヤーを介して、電気的に接続されている。 The lead frame 86 is arranged between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. The lead frame 86 extends to the inner space R side and the outer space side of the package. The terminal of the electronic component 85 and the lead frame 86 are electrically connected via a wire.
 接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを部分的に直接に接合しており、部分的に間接に接合している。具体的には、接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とをリードフレーム86を介して間接に接合している。第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82がリードフレーム86と接しており、リードフレーム86が第1のセラミック部材82と接合部84とに接している。さらに、接合部84がリードフレーム86と第2のセラミック部材83とに接しており、第2のセラミック部材83が接合部84と接している。接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がない部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを直接に接合している。第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がない部分において、接合部84が、第1のセラミック部材82と第2のセラミック部材83とに接している。 The joining portion 84 partially and directly joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. Specifically, the joint portion 84 has an outer peripheral portion of the first ceramic member 82 in a portion where the lead frame 86 is provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. And the outer peripheral portion of the second ceramic member 83 are indirectly joined via the lead frame 86. The first ceramic member 82 is in contact with the lead frame 86 at the portion where the lead frame 86 is between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, and the lead frame 86 is It contacts the first ceramic member 82 and the joint portion 84. Further, the joint portion 84 is in contact with the lead frame 86 and the second ceramic member 83, and the second ceramic member 83 is in contact with the joint portion 84. The joint portion 84 is provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 without the lead frame 86, and the outer peripheral portion of the first ceramic member 82 and the second ceramic member 82. The outer peripheral portion of the member 83 is directly joined. In a portion where the lead frame 86 is not provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the joint portion 84 forms the first ceramic member 82 and the second ceramic member 83. Touches.
 第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との隙間の距離は、接合部84に含まれる複数の金属被覆粒子1により制御されている。 In a portion where the lead frame 86 is provided between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. The distance of the gap between and is controlled by the plurality of metal-coated particles 1 included in the joint portion 84.
 接合部は、第1のセラミック部材の外周部と第2のセラミック部材の外周部とを直接又は間接に接合していればよい。なお、リードフレーム以外の電気的接続方法を採用してもよい。 The joining portion may be formed by directly or indirectly joining the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member. Note that an electrical connection method other than the lead frame may be adopted.
 電子部品装置81のように、電子部品装置は、例えば、セラミック材料により形成されている第1のセラミック部材と、セラミック材料により形成されている第2のセラミック部材と、接合部と、電子部品とを備えていてもよい。上記電子部品装置では、上記接合部が、上記第1のセラミック部材の外周部と上記第2のセラミック部材の外周部とを直接又は間接に接合していてもよい。上記電子部品装置では、上記接合部により接合された上記第1,第2のセラミック部材によってパッケージが形成されていてもよい。上記電子部品装置では、上記電子部品が、上記パッケージの内部空間内に配置されており、上記接合部が、複数の金属被覆粒子とガラスとを含んでいてもよい。 Like the electronic component device 81, the electronic component device includes, for example, a first ceramic member formed of a ceramic material, a second ceramic member formed of a ceramic material, a joint portion, and an electronic component. May be provided. In the electronic component device, the joint may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member. In the electronic component device, the package may be formed by the first and second ceramic members joined by the joining portion. In the electronic component device, the electronic component may be arranged in the internal space of the package, and the bonding portion may include a plurality of metal-coated particles and glass.
 また、電子部品装置81で用いた接合材料のように、上記セラミックパッケージ用接合材料は、上記電子部品装置において、上記接合部を形成するために用いられ、金属被覆粒子と、ガラスとを含む。なお、金属被覆粒子のみを含み、ガラスを含まない電気的接続方法を採用してもよい。 Further, like the bonding material used in the electronic component device 81, the bonding material for ceramic package is used to form the bonding portion in the electronic component device, and includes metal-coated particles and glass. An electrical connection method that includes only metal-coated particles and does not include glass may be adopted.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 The present invention will be specifically described below with reference to examples and comparative examples. The present invention is not limited to the following examples.
 (実施例1)
 (1)金属被覆粒子1の作製
 基材粒子(S1)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203、粒子径3μm」)を用意した。
(Example 1)
(1) Preparation of Metal Coated Particles 1 As base particles (S1), divinylbenzene copolymer resin particles (“Micropearl SP-203, particle size 3 μm” manufactured by Sekisui Chemical Co., Ltd.) were prepared.
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子(S1)10重量部を超音波分散器により分散させた後、溶液をろ過することにより、基材粒子(S1)を取り出した。次いで、基材粒子(S1)をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子(S1)の表面を活性化させた。表面が活性化された基材粒子(S1)を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A1)を得た。 The base particles (S1) were taken out by dispersing 10 parts by weight of the base particles (S1) with an ultrasonic disperser in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution, and then filtering the solution. It was Next, the base particles (S1) were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles (S1). After thoroughly washing the surface-activated base material particles (S1) with water, the suspension (A1) was obtained by adding and dispersing 500 parts by weight of distilled water.
 懸濁液(A1)を、硫酸銅20g/L、及びエチレンジアミン四酢酸30g/Lを含む溶液中に入れ、粒子混合液(B1)を得た。 The suspension (A1) was put into a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixed solution (B1).
 また、無電解銅めっき液として、硫酸銅100g/L、エチレンジアミン四酢酸75g/L、グルコン酸ナトリウム50g/L、及びホルムアルデヒド50g/Lを含む混合液を、アンモニアにてpH10.5に調整した銅めっき液(C1)を用意した。 As an electroless copper plating solution, a mixed solution containing 100 g / L of copper sulfate, 75 g / L of ethylenediaminetetraacetic acid, 50 g / L of sodium gluconate, and 50 g / L of formaldehyde was adjusted to pH 10.5 with ammonia. A plating solution (C1) was prepared.
 また、無電解銀めっき液として、硝酸銀15g/L、コハク酸イミド50g/L、及びホルムアルデヒド20g/Lを含む混合液を、アンモニア水にてpH8.0に調整した銀めっき液(D1)を用意した。 Also, as the electroless silver plating solution, a silver plating solution (D1) prepared by adjusting a mixed solution containing 15 g / L of silver nitrate, 50 g / L of succinimide, and 20 g / L of formaldehyde with ammonia water to pH 8.0 is prepared. did.
 55℃の粒子混合液(B1)に銅めっき液(C1)を徐々に滴下し、無電解銅めっきを行った。銅めっき液(C1)の滴下速度は30mL/分、滴下時間は30分間で、無電解銅めっきを行った。このようにして、樹脂粒子の表面に第1の金属部(1層目)として銅を備える粒子を含む粒子混合液(E1)を得た。 The copper plating solution (C1) was gradually added dropwise to the particle mixture solution (B1) at 55 ° C to perform electroless copper plating. Electroless copper plating was performed at a dropping rate of the copper plating solution (C1) of 30 mL / min and a dropping time of 30 minutes. In this way, a particle mixed solution (E1) containing particles having copper as the first metal portion (first layer) on the surface of the resin particles was obtained.
 その後、粒子混合液(E1)をろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上に銅が配置されている粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(F1)を得た。 After that, the particles were taken out by filtering the particle mixture solution (E1) and washed with water to obtain particles in which copper was arranged on the surface of the base material particles (S1). After thoroughly washing the particles with water, the mixture was added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (F1).
 次に、60℃の粒子混合液(F1)に銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上に銅及び銀(金属部全体の厚み:0.2μm)を備える金属被覆粒子1を得た。 Next, the silver plating solution (D1) was gradually added dropwise to the particle mixture solution (F1) at 60 ° C to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain metal-coated particles 1 having copper and silver (total metal part thickness: 0.2 μm) on the surface of the base material particles (S1). It was
 (実施例2)
 (1)金属被覆粒子2の作製
 金属ニッケル粒子(三井金属社製「2020SUS」、平均粒子径200nm)を純水に50重量%となるように分散させたスラリーを用意した。このスラリー1重量部を3分間かけて、金属被覆粒子1の作製時に用いた懸濁液(A1)に添加し、芯物質が付着された基材粒子(S1)を含む懸濁液(A2)を得た。
(Example 2)
(1) Preparation of Metal-Coated Particles 2 Metal nickel particles (“2020SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle size 200 nm) were dispersed in pure water to prepare a slurry having a concentration of 50% by weight. 1 part by weight of this slurry was added over 3 minutes to the suspension (A1) used in the production of the metal-coated particles 1, and the suspension (A2) containing the base material particles (S1) to which the core substance was attached. Got
 懸濁液(A2)を、硫酸銅20g/L、及びエチレンジアミン四酢酸30g/Lを含む溶液中に入れ、粒子混合液(B2)を得た。 The suspension (A2) was put into a solution containing 20 g / L of copper sulfate and 30 g / L of ethylenediaminetetraacetic acid to obtain a particle mixed solution (B2).
 55℃の粒子混合液(B2)に、金属被覆粒子1の作製時に用いた銅めっき液(C1)を徐々に滴下し、無電解銅めっきを行った。銅めっき液(C1)の滴下速度は30mL/分、滴下時間は30分間で、無電解銅めっきを行った。このようにして、樹脂粒子の表面に第1の金属部(1層目)として銅が配置されており、表面に突起を有する金属部を備える粒子を含む粒子混合液(D2)を得た。 The copper plating solution (C1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (B2) at 55 ° C. to perform electroless copper plating. Electroless copper plating was performed at a dropping rate of the copper plating solution (C1) of 30 mL / min and a dropping time of 30 minutes. In this way, a particle mixed solution (D2) containing particles in which copper was arranged as the first metal portion (first layer) on the surface of the resin particles and the metal portion having protrusions on the surface was obtained.
 その後、粒子混合液(D2)をろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上に銅が配置されており、表面に突起を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(E2)を得た。 Thereafter, the particle mixed solution (D2) is filtered to take out the particles, and the particles are washed with water, whereby copper is arranged on the surface of the base material particles (S1) and particles having a metal portion having protrusions on the surface are provided. Got The particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E2).
 次に、60℃の粒子混合液(E2)に、金属被覆粒子1の作製時に用いた銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上に銅及び銀(突起が無い部分における金属部全体の厚み:0.2μm)が配置されており、表面に複数の突起を有する金属部を備える金属被覆粒子2を得た。 Next, the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E2) at 60 ° C. to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes. Then, the particles are taken out by filtration, washed with water, and dried to deposit copper and silver (total metal portion thickness in a portion having no protrusion: 0.2 μm) on the surface of the base material particle (S1). Thus, a metal-coated particle 2 having a metal portion having a plurality of protrusions on its surface was obtained.
 (実施例3)
 (1)金属被覆粒子3の作製
 金属被覆粒子1の作製時に用いた懸濁液(A1)を、硫酸ニッケル50g/L、硝酸タリウム30ppm、及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(B3)を得た。
(Example 3)
(1) Preparation of metal-coated particles 3 The suspension (A1) used in the preparation of metal-coated particles 1 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to prepare a particle mixture solution. (B3) was obtained.
 また、無電解ニッケルめっき液として、硫酸ニッケル200g/L、次亜リン酸ナトリウム85g/L、クエン酸ナトリウム30g/L、硝酸タリウム50ppm、及び硝酸ビスマス20ppmを含む混合液を、pH6.5に調整したニッケルめっき液(C3)を用意した。 Further, as an electroless nickel plating solution, a mixed solution containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was adjusted to pH 6.5. The prepared nickel plating solution (C3) was prepared.
 50℃の粒子混合液(B3)にニッケルめっき液(C3)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C3)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った。その後、ろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上にニッケル-リン合金を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(E3)を得た。 The nickel plating solution (C3) was gradually added dropwise to the particle mixture solution (B3) at 50 ° C to perform electroless nickel plating. The dropping rate of the nickel plating solution (C3) was 25 mL / min, and the dropping time was 60 minutes to carry out electroless nickel plating. Then, the particles were taken out by filtration and washed with water to obtain particles having a nickel-phosphorus alloy on the surface of the base material particles (S1). The particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E3).
 次に、60℃の粒子混合液(E3)に、金属被覆粒子1の作製時に用いた銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上にニッケル及び銀(金属部全体の厚み:0.2μm)を備える金属被覆粒子3を得た。 Next, the silver plating solution (D1) used when the metal-coated particles 1 were prepared was gradually added dropwise to the particle mixture solution (E3) at 60 ° C. to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain metal-coated particles 3 having nickel and silver (total metal part thickness: 0.2 μm) on the surface of the base material particles (S1). It was
 (実施例4)
 金属被覆粒子2の作製時に用いた懸濁液(A2)を、硫酸ニッケル50g/L、硝酸タリウム30ppm、及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(B4)を得た。
(Example 4)
The suspension (A2) used when producing the metal-coated particles 2 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B4).
 50℃の粒子混合液(B4)に、金属被覆粒子3の作製時に用いたニッケルめっき液(C3)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C3)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った。その後、ろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上にニッケル-リンが配置されており、表面に突起を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(E4)を得た。 The nickel plating solution (C3) used when the metal-coated particles 3 were prepared was gradually added dropwise to the particle mixture solution (B4) at 50 ° C. to perform electroless nickel plating. The dropping rate of the nickel plating solution (C3) was 25 mL / min, and the dropping time was 60 minutes to carry out electroless nickel plating. Then, the particles are taken out by filtration and washed with water to obtain particles in which nickel-phosphorus is arranged on the surface of the base material particles (S1) and which has a metal portion having protrusions on the surface. The particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E4).
 次に、60℃の粒子混合液(E4)に、金属被覆粒子1の作製時に用いた銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上にニッケル及び銀(突起が無い部分における金属部全体の厚み:0.2μm)が配置されており、表面に複数の突起を有する金属部を備える金属被覆粒子4を得た。 Next, the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E4) at 60 ° C. to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes. After that, the particles are taken out by filtering, washed with water, and dried to dispose nickel and silver (the total thickness of the metal portion in the portion having no protrusion: 0.2 μm) on the surface of the base material particle (S1). Thus, metal-coated particles 4 having a metal portion having a plurality of protrusions on the surface were obtained.
 (実施例5)
 金属被覆粒子2の作製時に用いた懸濁液(A2)を、硫酸ニッケル50g/L、硝酸タリウム30ppm、及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(B5)を得た。
(Example 5)
The suspension (A2) used in the production of the metal-coated particles 2 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B5).
 また、無電解ニッケルめっき液として、硫酸ニッケル100g/L、タングステン酸ナトリウム5g/L、ジメチルアミンボラン30g/L、硝酸ビスマス10ppm、及びクエン酸3ナトリウム30g/Lを含む混合液を、水酸化ナトリウムにてpH6に調整した無電解ニッケル-タングステン-ボロン合金めっき液(C5)を用意した。 Further, as an electroless nickel plating solution, a mixed solution containing 100 g / L of nickel sulfate, 5 g / L of sodium tungstate, 30 g / L of dimethylamine borane, 10 ppm of bismuth nitrate, and 30 g / L of trisodium citrate was used as sodium hydroxide. An electroless nickel-tungsten-boron alloy plating solution (C5) adjusted to pH 6 with was prepared.
 50℃の粒子混合液(B5)にニッケルめっき液(C5)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C5)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った。その後、ろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上にニッケル-タングステン-ボロンが配置されており、表面に突起を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(E5)を得た。 The nickel plating solution (C5) was gradually added dropwise to the particle mixture solution (B5) at 50 ° C to perform electroless nickel plating. Electroless nickel plating was performed at a dropping rate of the nickel plating solution (C5) of 25 mL / min and a dropping time of 60 minutes. Then, the particles are taken out by filtration and washed with water to obtain particles in which nickel-tungsten-boron is arranged on the surface of the base material particles (S1) and which has a metal portion having protrusions on the surface. . After thoroughly washing the particles with water, the mixture was added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (E5).
 次に、60℃の粒子混合液(E5)に、金属被覆粒子1の作製時に用いた銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上にニッケル及び銀(突起が無い部分における金属部全体の厚み:0.2μm)が配置されており、表面に複数の突起を有する金属部を備える金属被覆粒子5を得た。 Next, the silver plating solution (D1) used when the metal-coated particles 1 were prepared was gradually added dropwise to the particle mixture solution (E5) at 60 ° C. to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes. After that, the particles are taken out by filtering, washed with water, and dried to dispose nickel and silver (the total thickness of the metal portion in the portion having no protrusion: 0.2 μm) on the surface of the base material particle (S1). Thus, metal-coated particles 5 having a metal portion having a plurality of protrusions on the surface were obtained.
 (実施例6)
 無電解金めっき液として、シアン化金カリウム2g/L、クエン酸ナトリウム20g/L、エチレンジアミン四酢酸3.0g/L、及び水酸化ナトリウム20g/Lを含む無電解置換金めっき液(G6)(pH6.5)を用意した。
(Example 6)
As the electroless gold plating solution, an electroless displacement gold plating solution (G6) containing 2 g / L of potassium cyanide, 20 g / L of sodium citrate, 3.0 g / L of ethylenediaminetetraacetic acid, and 20 g / L of sodium hydroxide ( pH 6.5) was prepared.
 金属被覆粒子2の作製時に用いた粒子混合液(E2)を用意した。60℃の粒子混合液(E2)に、金属被覆粒子1の作製時に用いた銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。その後、ろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上に銅及び銀が配置されており、表面に突起を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H6)を得た。 A particle mixed solution (E2) used when preparing the metal-coated particles 2 was prepared. The silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E2) at 60 ° C. to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes. Then, the particles were taken out by filtering and washed with water to obtain particles in which copper and silver were arranged on the surface of the base material particles (S1) and which had a metal portion having protrusions on the surface. The particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (H6).
 次に、60℃の粒子混合液(H6)に無電解置換金めっき液(G6)を徐々に滴下し、無電解置換金めっきを行った。無電解置換金めっき液(G6)の滴下速度は2mL/分、滴下時間は45分間で、無電解置換金めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上に銅、銀及び金(突起が無い部分における金属部全体の厚み:0.21μm)が配置されており、表面に複数の突起を有する金属部を備える金属被覆粒子6を得た。 Next, the electroless displacement gold plating solution (G6) was gradually dropped into the particle mixture solution (H6) at 60 ° C to perform electroless displacement gold plating. The electroless displacement gold plating solution (G6) was dropped at a rate of 2 mL / min and for a dropping time of 45 minutes to perform electroless displacement gold plating. Then, the particles are taken out by filtration, washed with water, and dried to obtain copper, silver, and gold (total metal part thickness in a portion having no protrusions: 0.21 μm) on the surface of the base material particles (S1). Metal-coated particles 6 that were arranged and provided with a metal portion having a plurality of protrusions on the surface were obtained.
 (実施例7)
 金属被覆粒子2の作製時に用いた懸濁液(A2)を、硫酸ニッケル50g/L、硝酸タリウム30ppm、及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(B7)を得た。
(Example 7)
The suspension (A2) used in the preparation of the metal-coated particles 2 was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B7).
 50℃の粒子混合液(B7)に、金属被覆粒子3の作製時に用いたニッケルめっき液(C3)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C3)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った。その後、ろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上にニッケル-リンが配置されており、表面に突起を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(E7)を得た。 The nickel plating solution (C3) used in the production of the metal-coated particles 3 was gradually dropped into the particle mixture solution (B7) at 50 ° C. to perform electroless nickel plating. The dropping rate of the nickel plating solution (C3) was 25 mL / min, and the dropping time was 60 minutes to carry out electroless nickel plating. Then, the particles are taken out by filtration and washed with water to obtain particles in which nickel-phosphorus is arranged on the surface of the base material particles (S1) and which has a metal portion having protrusions on the surface. The particles were thoroughly washed with water, added to 500 parts by weight of distilled water, and dispersed to obtain a particle mixed solution (E7).
 次に、60℃の粒子混合液(E7)に、金属被覆粒子1の作製時に用いた銀めっき液(D1)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(D1)の滴下速度は10mL/分、滴下時間は30分間で、無電解銀めっきを行った。 Next, the silver plating solution (D1) used in the production of the metal-coated particles 1 was gradually dropped into the particle mixture solution (E7) at 60 ° C. to perform electroless silver plating. The electroless silver plating was performed at a dropping rate of the silver plating solution (D1) of 10 mL / min and a dropping time of 30 minutes.
 その後、ろ過することにより、粒子を取り出し、水洗することにより、基材粒子(S1)の表面上にニッケル及び銀が配置されており、表面に突起を有する金属部を備える粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(H7)を得た。 After that, the particles were taken out by filtration and washed with water to obtain particles in which nickel and silver were arranged on the surface of the base material particles (S1) and which had a metal part having protrusions on the surface. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (H7).
 次に、粒子が分散している60℃の粒子混合液(H7)に、金属被覆粒子6の作製時に用いた無電解置換金めっき液(G6)を徐々に滴下し、無電解置換金めっきを行った。無電解置換金めっき液(G6)の滴下速度は2mL/分、滴下時間は45分間で、無電解置換金めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上にニッケル、銀及び金(突起が無い部分における金属部全体の厚み:0.21μm)が配置されており、表面に複数の突起を有する金属部を備える金属被覆粒子7を得た。 Next, the electroless displacement gold plating solution (G6) used in the production of the metal-coated particles 6 was gradually dropped into the particle mixture solution (H7) at 60 ° C. in which the particles are dispersed, to perform electroless displacement gold plating. went. The electroless displacement gold plating solution (G6) was dropped at a rate of 2 mL / min and for a dropping time of 45 minutes to perform electroless displacement gold plating. Then, the particles are taken out by filtration, washed with water, and dried to remove nickel, silver, and gold (the total thickness of the metal part in the part without protrusions: 0.21 μm) on the surface of the base material particles (S1). Metal-coated particles 7 that were arranged and provided with a metal portion having a plurality of protrusions on the surface were obtained.
 (実施例8)
 金属ニッケル粒子の代わりに、アルミナ粒子(粒子径150nm)を用いたこと以外は、実施例2と同様にして、金属被覆粒子8を得た。
(Example 8)
Metal-coated particles 8 were obtained in the same manner as in Example 2 except that alumina particles (particle diameter 150 nm) were used instead of the metal nickel particles.
 (実施例9)
 金属ニッケル粒子の代わりに、アルミナ粒子(粒子径150nm)を用いたこと以外は、実施例4と同様にして、金属被覆粒子9を得た。
(Example 9)
Metal-coated particles 9 were obtained in the same manner as in Example 4 except that alumina particles (particle diameter 150 nm) were used instead of the metal nickel particles.
 (実施例10)
 金属ニッケル粒子の代わりに、酸化チタン粒子(粒子径150nm)を用いたこと以外は、実施例2と同様にして、金属被覆粒子10を得た。
(Example 10)
Metal-coated particles 10 were obtained in the same manner as in Example 2 except that titanium oxide particles (particle size 150 nm) were used instead of the metal nickel particles.
 (実施例11)
 金属ニッケル粒子の代わりに、酸化チタン粒子(粒子径150nm)を用いたこと以外は、実施例4と同様にして、金属被覆粒子11を得た。
(Example 11)
Metal-coated particles 11 were obtained in the same manner as in Example 4 except that titanium oxide particles (particle diameter 150 nm) were used instead of the metal nickel particles.
 (実施例12)
 基材粒子(S2)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-202」、粒子径2μm)を用意した。
(Example 12)
As the base particles (S2), divinylbenzene copolymer resin particles (“Micropearl SP-202” manufactured by Sekisui Chemical Co., Ltd., particle diameter 2 μm) were prepared.
 基材粒子を(S1)の代わりに、基材粒子(S2)を用いたこと以外は、実施例2と同様にして、金属被覆粒子12を得た。 Metal-coated particles 12 were obtained in the same manner as in Example 2 except that the base particles (S2) were used instead of the base particles (S1).
 (実施例13)
 基材粒子(S2)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-202」、粒子径2μm)を用意した。
(Example 13)
As the base particles (S2), divinylbenzene copolymer resin particles (“Micropearl SP-202” manufactured by Sekisui Chemical Co., Ltd., particle diameter 2 μm) were prepared.
 基材粒子を(S1)の代わりに、基材粒子(S2)を用いたこと以外は、実施例4と同様にして、金属被覆粒子13を得た。 Metal-coated particles 13 were obtained in the same manner as in Example 4, except that the base particles (S2) were used instead of the base particles (S1).
 (実施例14)
 基材粒子(S3)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-215」、粒子径15μm)を用意した。
(Example 14)
As the base particles (S3), divinylbenzene copolymer resin particles (“Micropearl SP-215” manufactured by Sekisui Chemical Co., Ltd., particle diameter 15 μm) were prepared.
 基材粒子を(S1)の代わりに、基材粒子(S3)を用いたこと以外は、実施例2と同様にして、金属被覆粒子14を得た。 Metal-coated particles 14 were obtained in the same manner as in Example 2 except that the base particles (S3) were used instead of the base particles (S1).
 (実施例15)
 基材粒子(S3)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-215」、粒子径15μm)を用意した。
(Example 15)
As the base particles (S3), divinylbenzene copolymer resin particles (“Micropearl SP-215” manufactured by Sekisui Chemical Co., Ltd., particle diameter 15 μm) were prepared.
 基材粒子を(S1)の代わりに、基材粒子(S3)を用いたこと以外は、実施例4と同様にして、金属被覆粒子15を得た。 Metal-coated particles 15 were obtained in the same manner as in Example 4, except that the base particles (S3) were used instead of the base particles (S1).
 (実施例16)
 基材粒子(S4)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-230」、粒子径30μm)を用意した。
(Example 16)
As the base particles (S4), divinylbenzene copolymer resin particles (“Micropearl SP-230” manufactured by Sekisui Chemical Co., Ltd., particle diameter 30 μm) were prepared.
 基材粒子を(S1)の代わりに、基材粒子(S4)を用いたこと以外は、実施例2と同様にして、金属被覆粒子16を得た。 Metal-coated particles 16 were obtained in the same manner as in Example 2 except that the base particles (S4) were used instead of the base particles (S1).
 (実施例17)
 基材粒子(S4)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-230」、粒子径30μm)を用意した。
(Example 17)
As the base particles (S4), divinylbenzene copolymer resin particles (“Micropearl SP-230” manufactured by Sekisui Chemical Co., Ltd., particle diameter 30 μm) were prepared.
 基材粒子を(S1)の代わりに、基材粒子(S4)を用いたこと以外は、実施例4と同様にして、金属被覆粒子17を得た。 Metal-coated particles 17 were obtained in the same manner as in Example 4, except that the base particles (S4) were used instead of the base particles (S1).
 (実施例18)
 (1)シリコーンオリゴマーの作製
 温浴槽内に設置した100mlのセパラブルフラスコに、1,3-ジビニルテトラメチルジシロキサン1重量部と、0.5重量%p-トルエンスルホン酸水溶液20重量部とを入れた。40℃で1時間撹拌した後、炭酸水素ナトリウム0.05重量部を添加した。その後、ジメトキシメチルフェニルシラン10重量部、ジメチルジメトキシシラン49重量部、トリメチルメトキシシラン0.6重量部、及びメチルトリメトキシシラン3.6重量部を添加し、1時間撹拌を行った。その後、10重量%水酸化カリウム水溶液1.9重量部を添加して、85℃まで昇温してアスピレーターで減圧しながら、10時間撹拌、反応を行った。反応終了後、常圧に戻し40℃まで冷却して、酢酸0.2重量部を添加し、12時間以上分液漏斗内で静置した。二層分離後の下層を取り出して、エバポレーターにて精製することでシリコーンオリゴマーを得た。
(Example 18)
(1) Preparation of Silicone Oligomer 1 part by weight of 1,3-divinyltetramethyldisiloxane and 20 parts by weight of 0.5% by weight p-toluenesulfonic acid aqueous solution were placed in a 100 ml separable flask installed in a warm bath. I put it in. After stirring at 40 ° C. for 1 hour, 0.05 part by weight of sodium hydrogen carbonate was added. Then, 10 parts by weight of dimethoxymethylphenylsilane, 49 parts by weight of dimethyldimethoxysilane, 0.6 parts by weight of trimethylmethoxysilane, and 3.6 parts by weight of methyltrimethoxysilane were added and stirred for 1 hour. Then, 1.9 parts by weight of a 10 wt% potassium hydroxide aqueous solution was added, and the mixture was heated to 85 ° C. and stirred for 10 hours while depressurizing with an aspirator to carry out a reaction. After the reaction was completed, the pressure was returned to normal pressure, the temperature was cooled to 40 ° C., 0.2 part by weight of acetic acid was added, and the mixture was allowed to stand in a separatory funnel for 12 hours or more. The lower layer after separating the two layers was taken out and purified by an evaporator to obtain a silicone oligomer.
 (2)シリコーン粒子材料(有機ポリマーを含む)の作製
 得られたシリコーンオリゴマー30重量部に、tert-ブチル-2-エチルペルオキシヘキサノアート(重合開始剤、日油社製「パーブチルO」)0.5重量部を溶解させた溶解液Aを用意した。また、イオン交換水150重量部に、ラウリル硫酸トリエタノールアミン塩40重量%水溶液(乳化剤)0.8重量部とポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)の5重量%水溶液80重量部とを混合して、水溶液Bを用意した。温浴槽中に設置したセパラブルフラスコに、上記溶解液Aを入れた後、上記水溶液Bを添加した。その後、Shirasu Porous Glass(SPG)膜(細孔平均径約1μm)を用いることで、乳化を行った。その後、85℃に昇温して、9時間重合を行った。重合後の粒子の全量を遠心分離により水洗浄し、凍結乾燥を行った。乾燥後、粒子の凝集体が目的の比(平均2次粒子径/平均1次粒子径)になるまでボールミルにて粉砕して、粒子径が3.0μmのシリコーン粒子(基材粒子(S5))を得た。
(2) Preparation of Silicone Particle Material (Including Organic Polymer) 30 parts by weight of the obtained silicone oligomer was added to tert-butyl-2-ethylperoxyhexanoate (polymerization initiator, “Perbutyl O” manufactured by NOF CORPORATION) 0 A solution A having 0.5 parts by weight dissolved therein was prepared. Further, in 150 parts by weight of ion-exchanged water, 0.8 parts by weight of a 40% by weight lauryl sulfate triethanolamine salt aqueous solution (emulsifier) and polyvinyl alcohol (polymerization degree: about 2000, saponification degree: 86.5 to 89 mol%, Japan An aqueous solution B was prepared by mixing with 80 parts by weight of a 5% by weight aqueous solution of "Gohsenol GH-20" manufactured by Synthetic Chemical Industry. The solution A was put in a separable flask installed in a warm bath, and then the solution B was added. After that, emulsification was carried out by using a Shirasu Porous Glass (SPG) membrane (pore average diameter of about 1 μm). Then, it heated up at 85 degreeC and superposed | polymerized for 9 hours. The total amount of the particles after polymerization was washed with water by centrifugation and freeze-dried. After drying, the particles are pulverized with a ball mill until the agglomerates of particles have a desired ratio (average secondary particle size / average primary particle size), and silicone particles having a particle size of 3.0 μm (base particles (S5) ) Got.
 基材粒子(S1)の代わりに、基材粒子(S5)を用いたこと以外は、実施例4と同様にして、金属被覆粒子18を得た。 Metal-coated particles 18 were obtained in the same manner as in Example 4 except that the base particles (S5) were used instead of the base particles (S1).
 (実施例19)
 種粒子として平均粒子径0.85μmのポリスチレン粒子を用意した。該ポリスチレン粒子3.0gと、イオン交換水500gと、5重量%ポリビニルアルコール水溶液120gとを混合し、超音波により分散させた後、セパラブルフラスコに添加し、均一に撹拌した。また、内部形成材料(有機化合物A)として、シクロヘキシルメタクリレート49gと、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)1.5gと、ラウリル硫酸トリエタノールアミン3.0gと、エタノール40gとをイオン交換水400gに添加し、乳化液Aを調製した。種粒子としての上記ポリスチレン粒子が添加されたセパラブルフラスコに、上記乳化液Aをさらに添加し、4時間撹拌し、種粒子に上記有機化合物Aを吸収させて、内部形成材料が膨潤した種粒子を含む懸濁液を得た。次に、表面部形成材料(有機化合物B)として、ジビニルベンゼン(純度96重量%)49gと、過酸化ベンゾイル(日油社製「ナイパーBW」)1.5gと、ラウリル硫酸トリエタノールアミン3.0gと、エタノール40gとをイオン交換水400gに添加し、乳化液Bを調製した。上記懸濁液が入ったセパラブルフラスコに、上記乳化液Bをさらに添加し、4時間撹拌し、内部形成材料が膨潤した種粒子に上記有機化合物Bを吸収させた。その後、ポリビニルアルコールの5重量%水溶液360gを添加し、加熱を開始して75℃で5時間、その後85℃で6時間反応させ、粒子径3μmの基材粒子(基材粒子(S6))を得た。
(Example 19)
Polystyrene particles having an average particle diameter of 0.85 μm were prepared as seed particles. The polystyrene particles (3.0 g), ion-exchanged water (500 g) and a 5 wt% polyvinyl alcohol aqueous solution (120 g) were mixed and ultrasonically dispersed, and then added to a separable flask and uniformly stirred. Further, as an internal forming material (organic compound A), 49 g of cyclohexyl methacrylate, 1.5 g of 2,2′-azobis (methyl isobutyrate) (“V-601” manufactured by Wako Pure Chemical Industries, Ltd.), and triethanol lauryl sulfate. Emulsion A was prepared by adding 3.0 g of amine and 40 g of ethanol to 400 g of ion-exchanged water. In a separable flask to which the polystyrene particles as seed particles were added, the emulsion A was further added, and the mixture was stirred for 4 hours to allow the seed particles to absorb the organic compound A and the internal forming material swelled seed particles. A suspension containing was obtained. Next, as a surface part forming material (organic compound B), 49 g of divinylbenzene (purity 96% by weight), 1.5 g of benzoyl peroxide (“Nyper BW” manufactured by NOF CORPORATION), and triethanolamine lauryl sulfate 3. Emulsion B was prepared by adding 0 g and 40 g of ethanol to 400 g of ion-exchanged water. The emulsified liquid B was further added to the separable flask containing the suspension, and the mixture was stirred for 4 hours to allow the organic compound B to be absorbed by the seed particles in which the internal forming material was swollen. Then, 360 g of a 5% by weight aqueous solution of polyvinyl alcohol was added, and heating was started to react at 75 ° C. for 5 hours and then at 85 ° C. for 6 hours to obtain base particles (base particles (S6)) having a particle diameter of 3 μm. Obtained.
 基材粒子(S1)の代わりに、基材粒子(S6)を用いたこと以外は、実施例4と同様にして、金属被覆粒子19を得た。 Metal-coated particles 19 were obtained in the same manner as in Example 4 except that the base particles (S6) were used instead of the base particles (S1).
 (実施例20)
 基材粒子(S7)として、金属ニッケル粒子(粒子径3μm)を用意した。
(Example 20)
Metallic nickel particles (particle diameter 3 μm) were prepared as the base material particles (S7).
 基材粒子を(S1)の代わりに、基材粒子(S7)を用いたこと以外は、実施例3と同様にして、金属含被覆子20を得た。 A metal-containing cover 20 was obtained in the same manner as in Example 3 except that the base particles (S7) were used instead of the base particles (S1).
 (実施例21)
 基材粒子(S8)として、金属銅粒子(粒子径3μm)を用意した。
(Example 21)
Metallic copper particles (particle diameter 3 μm) were prepared as the base material particles (S8).
 基材粒子を(S1)の代わりに、基材粒子(S8)を用いたこと以外は、実施例3と同様にして、金属被覆粒子21を得た。 Metal-coated particles 21 were obtained in the same manner as in Example 3 except that the base particles (S8) were used instead of the base particles (S1).
 (実施例22)
 基材粒子(S9)として、シリカ粒子(粒子径3μm)を用意した。
(Example 22)
Silica particles (particle diameter 3 μm) were prepared as the base material particles (S9).
 基材粒子を(S1)の代わりに、基材粒子(S9)を用いたこと以外は、実施例3と同様にして、金属被覆粒子22を得た。 Metal-coated particles 22 were obtained in the same manner as in Example 3 except that the base particles (S9) were used instead of the base particles (S1).
 (実施例23)
 基材粒子(S10)として、アルミナ粒子(粒子径3μm)を用意した。
(Example 23)
Alumina particles (particle diameter 3 μm) were prepared as the base material particles (S10).
 基材粒子を(S1)の代わりに、基材粒子(S10)を用いたこと以外は、実施例3と同様にして、金属被覆粒子23を得た。 Metal-coated particles 23 were obtained in the same manner as in Example 3 except that the base particles (S10) were used instead of the base particles (S1).
 (実施例24)
 基材粒子(S11)として、窒化ホウ素粒子(粒子径3μm)を用意した。
(Example 24)
Boron nitride particles (particle diameter 3 μm) were prepared as the base material particles (S11).
 基材粒子を(S1)の代わりに、基材粒子(S11)を用いたこと以外は、実施例3と同様にして、金属被覆粒子24を得た。 Metal-coated particles 24 were obtained in the same manner as in Example 3 except that the base particles (S11) were used instead of the base particles (S1).
 (実施例25)
 無電解銀めっき液として、硝酸銀150g/L、コハク酸イミド300g/L、及びホルムアルデヒド120g/Lを含む混合液を、アンモニア水にてpH8.0に調整した銀めっき液(D25)を用意した。
(Example 25)
As an electroless silver plating solution, a silver plating solution (D25) was prepared in which a mixed solution containing 150 g / L of silver nitrate, 300 g / L of succinimide, and 120 g / L of formaldehyde was adjusted to pH 8.0 with aqueous ammonia.
 無電解銀めっき液(D1)の代わりに、無電解銀めっき液(D25)を用いたこと以外は、実施例2と同様にして、金属被覆粒子25を得た。金属被覆粒子25は、基材粒子(S1)の表面上に銅及び銀(突起が無い部分における金属部全体の厚み:0.3μm)が配置されており、表面に複数の突起を有する金属部を備える。 Metal-coated particles 25 were obtained in the same manner as in Example 2 except that the electroless silver plating solution (D25) was used instead of the electroless silver plating solution (D1). In the metal-coated particles 25, copper and silver (thickness of the entire metal portion in a portion having no protrusion: 0.3 μm) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
 (実施例26)
 無電解銀めっき液(D1)の代わりに、無電解銀めっき液(D25)を用いたこと以外は、実施例4と同様にして、金属被覆粒子26を得た。金属被覆粒子23は、基材粒子(S1)の表面上にニッケル及び銀(突起が無い部分における金属部全体の厚み:0.3μm)が配置されており、表面に複数の突起を有する金属部を備える。
(Example 26)
Metal-coated particles 26 were obtained in the same manner as in Example 4 except that the electroless silver plating solution (D25) was used instead of the electroless silver plating solution (D1). In the metal-coated particles 23, nickel and silver (total metal portion thickness in a portion having no protrusion: 0.3 μm) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
 (実施例27)
 無電解銀めっき液として、硝酸銀300g/L、コハク酸イミド900g/L、及びホルムアルデヒド360g/Lを含む混合液を、アンモニア水にてpH8.0に調整した銀めっき液(D27)を用意した。
(Example 27)
As the electroless silver plating solution, a silver plating solution (D27) was prepared in which a mixed solution containing silver nitrate 300 g / L, succinimide 900 g / L, and formaldehyde 360 g / L was adjusted to pH 8.0 with ammonia water.
 無電解銀めっき液(D1)の代わりに、無電解銀めっき液(D27)を用いたこと以外は、実施例4と同様にして、金属被覆粒子27を得た。金属被覆粒子27は、基材粒子(S1)の表面上にニッケル及び銀(突起が無い部分における金属部全体の厚み:0.5μm)が配置されており、表面に複数の突起を有する金属部を備える。 Metal-coated particles 27 were obtained in the same manner as in Example 4, except that the electroless silver plating solution (D27) was used instead of the electroless silver plating solution (D1). In the metal-coated particles 27, nickel and silver (thickness of the entire metal portion in a portion having no protrusion: 0.5 μm) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
 (実施例28)
 無電解銀めっき液として、硝酸銀75g/L、ピロリン酸ナトリウム150g/L、及びホルムアルデヒド60g/Lを含む混合液を、アンモニア水にてpH7.0に調整した銀めっき液(D28)を用意した。
(Example 28)
As an electroless silver plating solution, a silver plating solution (D28) was prepared in which a mixed solution containing 75 g / L of silver nitrate, 150 g / L of sodium pyrophosphate, and 60 g / L of formaldehyde was adjusted to pH 7.0 with aqueous ammonia.
 無電解銀めっき液(D1)の代わりに、無電解銀めっき液(D28)を用いたこと以外は、実施例2と同様にして、金属被覆粒子28を得た。金属被覆粒子28は、基材粒子(S1)の表面上に銅及び銀(突起が無い部分における金属部全体の厚み:0.2μm)が配置されており、表面に複数の突起を有する金属部を備える。 Metal-coated particles 28 were obtained in the same manner as in Example 2 except that the electroless silver plating solution (D28) was used instead of the electroless silver plating solution (D1). In the metal-coated particles 28, copper and silver (total metal portion thickness in a portion having no protrusion: 0.2 μm) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
 (実施例29)
 無電解銀めっき液(D1)の代わりに、無電解銀めっき液(D28)を用いたこと以外は、実施例4と同様にして、金属被覆粒子29を得た。金属被覆粒子29は、基材粒子(S1)の表面上にニッケル及び銀(突起が無い部分における金属部全体の厚み:0.2μm)が配置されており、表面に複数の突起を有する金属部を備える。
(Example 29)
Metal-coated particles 29 were obtained in the same manner as in Example 4 except that the electroless silver plating solution (D28) was used instead of the electroless silver plating solution (D1). In the metal-coated particles 29, nickel and silver (total metal portion thickness in a portion having no protrusion: 0.2 μm) are arranged on the surface of the base material particle (S1), and the metal portion having a plurality of protrusions on the surface. Equipped with.
 (実施例30)
 実施例4で得られた金属被覆粒子10gに銀変色防止剤として、大和化成社製「ニューダインシルバー」を用いて耐硫化処理(表面処理)を行った。具体的には、ニューダインシルバー10重量%を含むイソプロピルアルコール溶液100重量部に、実施例4で得られた金属被覆粒子10gを、超音波分散器を用いて分散させた後、溶液をろ過することにより、耐硫化処理された金属被覆粒子30を得た。
(Example 30)
10 g of the metal-coated particles obtained in Example 4 were subjected to sulfurization resistance treatment (surface treatment) using "Newdyne Silver" manufactured by Daiwa Kasei Co., Ltd. as a silver discoloration inhibitor. Specifically, 10 g of the metal-coated particles obtained in Example 4 are dispersed in 100 parts by weight of an isopropyl alcohol solution containing 10% by weight of New Dine Silver using an ultrasonic disperser, and then the solution is filtered. As a result, metal-coated particles 30 that were subjected to sulfurization resistance treatment were obtained.
 (実施例31)
 実施例4で得られた金属被覆粒子10gに硫化防止剤として、2-メルカプトベンゾチアゾール溶液を用いて耐硫化処理(表面処理)を行った。具体的には、2-メルカプトベンゾチアゾール0.5重量%を含むイソプロピルアルコール溶液100重量部に、実施例4で得られた金属被覆粒子10gを、超音波分散器を用いて分散させた後、溶液をろ過することにより、耐硫化処理された金属被覆粒子31を得た。
(Example 31)
10 g of the metal-coated particles obtained in Example 4 was subjected to sulfurization resistance treatment (surface treatment) using a 2-mercaptobenzothiazole solution as a sulfuration inhibitor. Specifically, after 10 g of the metal-coated particles obtained in Example 4 were dispersed in 100 parts by weight of an isopropyl alcohol solution containing 0.5% by weight of 2-mercaptobenzothiazole using an ultrasonic disperser, The solution was filtered to obtain sulfur-resistant metal-coated particles 31.
 (比較例1)
 (1)金属被覆粒子Aの作製
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子(S1)10重量部を超音波分散器により分散させた後、溶液をろ過することにより、基材粒子(S1)を取り出した。次いで、基材粒子(S1)をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子(S1)の表面を活性化させた。表面が活性化された基材粒子(S1)を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A1)を得た。
(Comparative Example 1)
(1) Preparation of metal-coated particles A 10 parts by weight of the base particles (S1) were dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution with an ultrasonic disperser, and then the solution was filtered. The base material particles (S1) were taken out. Next, the base particles (S1) were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles (S1). After thoroughly washing the surface-activated base material particles (S1) with water, the suspension (A1) was obtained by adding and dispersing 500 parts by weight of distilled water.
 懸濁液(A1)を、硫酸ニッケル50g/L、硝酸タリウム30ppm、及び硝酸ビスマス20ppmを含む溶液中に入れ、粒子混合液(B4)を得た。 The suspension (A1) was put into a solution containing 50 g / L of nickel sulfate, 30 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to obtain a particle mixture solution (B4).
 また、無電解ニッケルめっき液として、硫酸ニッケル200g/L、次亜リン酸ナトリウム85g/L、クエン酸ナトリウム30g/L、硝酸タリウム50ppm、及び硝酸ビスマス20ppmを含む混合液を、pH6.5に調整したニッケルめっき液(C4)を用意した。 Further, as an electroless nickel plating solution, a mixed solution containing 200 g / L of nickel sulfate, 85 g / L of sodium hypophosphite, 30 g / L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate was adjusted to pH 6.5. The prepared nickel plating solution (C4) was prepared.
 50℃の粒子混合液(B4)にニッケルめっき液(C4)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C4)の滴下速度は25mL/分、滴下時間は60分間で、無電解ニッケルめっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子(S1)の表面上にニッケル-リン(金属部全体の厚み:0.2μm)を備える金属被覆粒子Aを得た。 The nickel plating solution (C4) was gradually added dropwise to the particle mixture solution (B4) at 50 ° C to perform electroless nickel plating. Electroless nickel plating was performed at a dropping rate of the nickel plating solution (C4) of 25 mL / min and a dropping time of 60 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain metal-coated particles A having nickel-phosphorus (total metal part thickness: 0.2 μm) on the surface of the base material particles (S1). It was
 (評価)
 (1)示差走査熱量測定
 得られた金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行った。示差走査熱量測定には、日立ハイテクサイエンス社製「TA7000」を用いた。得られた測定結果から、吸熱ピークが観察されるか否か、及び、発熱ピークが観察されるか否かを確認した。また、発熱ピークが観察された場合には、発熱ピークの個数を算出した。
(Evaluation)
(1) Differential Scanning Calorimetry 20 mg of the obtained metal-coated particles were heated in an air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry. "TA7000" manufactured by Hitachi High-Tech Science Co., Ltd. was used for the differential scanning calorimetry. From the obtained measurement results, it was confirmed whether an endothermic peak was observed and whether an exothermic peak was observed. When an exothermic peak was observed, the number of exothermic peaks was calculated.
 (2)金属被覆粒子の金属部の厚み
 得られた金属被覆粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した金属被覆粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出した。
(2) Thickness of metal part of metal-coated particles The obtained metal-coated particles were added to "Technobit 4000" manufactured by Kulzer Co., Ltd. so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for inspection. It was made. A cross section of the metal-coated particles was cut out by using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corp.) so that the metal-coated particles dispersed in the embedded resin for inspection pass near the center.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、20個の金属被覆粒子を無作為に選択し、それぞれの金属被覆粒子の金属部を観察した。各金属被覆粒子における金属部の厚みを計測し、それを算術平均して金属部の厚みとした。 Then, using a field emission transmission electron microscope (FE-TEM) ("JEM-ARM200F" manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 20 metal-coated particles were randomly selected. The metal part of each metal-coated particle was observed. The thickness of the metal portion in each metal-coated particle was measured, and the arithmetic mean thereof was used as the thickness of the metal portion.
 (3)金属被覆粒子の粒子径
 得られた金属被覆粒子の粒子径を、任意の金属被覆粒子50個を電子顕微鏡(SEM)にて観察し、各金属被覆粒子の粒子径の平均値を算出することにより求めた。
(3) Particle Diameter of Metal-Coated Particles Regarding the particle diameter of the obtained metal-coated particles, 50 arbitrary metal-coated particles are observed with an electron microscope (SEM), and the average value of the particle diameters of the respective metal-coated particles is calculated. Was obtained by doing.
 (4)突起の平均高さ
 得られた金属被覆粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製した。検査用埋め込み樹脂中に分散した金属被覆粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出した。
(4) Average Height of Protrusions The resulting metal-coated particles were added to "Technobit 4000" manufactured by Kulzer Co., Ltd. so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for inspection. A cross section of the metal-coated particles was cut out by using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so that the metal-coated particles dispersed in the inspection-use embedded resin pass through the vicinity of the center.
 そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を50000倍に設定し、50個の金属被覆粒子を無作為に選択し、各金属被覆粒子における突起を観察した。各金属被覆粒子における突起の高さを計測し、それらを算術平均して突起の平均高さとした。 Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 metal-coated particles were randomly selected, and the protrusions on each metal-coated particle were observed. The height of the protrusions on each metal-coated particle was measured, and they were arithmetically averaged to obtain the average height of the protrusions.
 (5)突起の基部の平均径
 得られた金属被覆粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製した。検査用埋め込み樹脂中に分散した金属被覆粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出した。
(5) Average diameter of base portion of protrusions Added to "Technobit 4000" manufactured by Kulzer Co., Ltd. so that the content of the obtained metal-coated particles was 30% by weight, and dispersed to prepare an embedded resin for inspection. .. A cross section of the metal-coated particles was cut out by using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corp.) so that the metal-coated particles dispersed in the inspection-use embedding resin may pass near the center.
 そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を50000倍に設定し、50個の金属被覆粒子を無作為に選択し、各金属被覆粒子における突起を観察した。各金属被覆粒子における突起の基部径を計測し、それらを算術平均して突起の基部の平均径とした。 Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 metal-coated particles were randomly selected, and the protrusions on each metal-coated particle were observed. The diameter of the base portion of the protrusion of each metal-coated particle was measured, and they were arithmetically averaged to obtain the average diameter of the base portion of the protrusion.
 (6)金属部の外表面の全表面積100%中の突起がある部分の面積
 得られた金属被覆粒子における金属部の外表面の全表面積100%中の突起がある部分の面積を算出した。具体的には、任意の金属被覆粒子10個を電界放射型走査型電子顕微鏡(FE-SEM)にて観察し、突起がある部分の面積の金属被覆粒子の投影面積に対する百分率の平均値を求めることにより算出した。
(6) Area of protrusions in 100% of total surface area of outer surface of metal part The area of protrusions in 100% of total surface area of outer surface of metal part in the obtained metal-coated particles was calculated. Specifically, 10 arbitrary metal-coated particles are observed with a field emission scanning electron microscope (FE-SEM), and the average value of the percentage of the area of the portion having the protrusions with respect to the projected area of the metal-coated particles is obtained. It was calculated by
 (7)10%圧縮したときの圧縮弾性率(10%K値)
 得られた金属被覆粒子の上記圧縮弾性率(10%K値)を微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて、以下のようにして測定した。
(7) Compressive elastic modulus at 10% compression (10% K value)
The above-mentioned compression elastic modulus (10% K value) of the obtained metal-coated particles was measured as follows using a micro compression tester (“Fisherscope H-100” manufactured by Fisher Co.).
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で金属被覆粒子を圧縮した。このときの荷重値(N)及び圧縮変位(mm)を測定した。得られた測定値から、上記圧縮弾性率を下記式により算出した。 Using a micro compression tester, the metal-coated particles were compressed on a smooth indenter end face of a cylinder (diameter 100 μm, made of diamond) under the conditions of 25 ° C., compression speed of 0.3 mN / sec, and maximum test load of 20 mN. The load value (N) and compression displacement (mm) at this time were measured. From the obtained measured value, the compression elastic modulus was calculated by the following formula.
 10%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:金属被覆粒子が10%圧縮変形したときの荷重値(N)
 S:金属被覆粒子が10%圧縮変形したときの圧縮変位(mm)
 R:金属被覆粒子の半径(mm)
10% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the metal-coated particles are compressed and deformed by 10%
S: Compressive displacement (mm) when the metal-coated particles undergo 10% compressive deformation
R: radius of metal-coated particles (mm)
 (8)金属部の面格子
 得られた金属被覆粒子における金属部の面格子を、X線回折装置(BRUKER AXS社製「D8 DISCOVER」)を用いて、回折角に依存する装置固有の回折線のピーク強度比を算出した。検出された(1,1,1)面、(2,0,0)面、(2,2,0)面、(3,1,1)面のピーク強度値の合計から、(1,1,1)面の強度比の割合、(2,0,0)面の強度比の割合、(2,2,0)面の強度比の割合、及び(3,1,1)面の強度比の割合を算出した。
(8) Planar lattice of metal part The plane lattice of the metallic part in the obtained metal-coated particles was determined by using an X-ray diffractometer (“D8 DISCOVER” manufactured by BRUKER AXS), which is a diffraction line unique to the device. The peak intensity ratio was calculated. From the total peak intensity values of the detected (1,1,1) plane, (2,0,0) plane, (2,2,0) plane, and (3,1,1) plane, (1,1 , 1) ratio of intensity ratio of plane, ratio of intensity ratio of (2, 0, 0) face, ratio of intensity ratio of (2, 2, 0) face, and intensity ratio of (3, 1, 1) face Was calculated.
 (9)熱分解開始温度
 得られた金属被覆粒子20mgを、10℃/minの昇温速度で25℃から600℃まで大気雰囲気下で加熱して熱重量測定を行った。得られた測定結果から、金属被覆粒子の熱分解開始温度を算出した。熱重量測定結果において、金属被覆粒子の重量が10%減少したとき(金属被覆粒子の重量が18mgになったとき)の温度を、熱分解開始温度とした。また、熱重量測定結果において、金属被覆粒子の重量が10%減少しない(金属被覆粒子の重量が18mgにならない)ときは熱分解しないと判断した。上記熱重量測定は、熱重量示差熱分析装置(リガク社製「Thermo Puls EVO02」)を用いて測定した。
(9) Pyrolysis initiation temperature 20 mg of the obtained metal-coated particles were heated at a heating rate of 10 ° C./min from 25 ° C. to 600 ° C. in an air atmosphere and subjected to thermogravimetric measurement. The thermal decomposition start temperature of the metal-coated particles was calculated from the obtained measurement result. In the thermogravimetric measurement results, the temperature at which the weight of the metal-coated particles decreased by 10% (when the weight of the metal-coated particles reached 18 mg) was defined as the thermal decomposition start temperature. Further, in the thermogravimetric measurement result, when the weight of the metal-coated particles did not decrease by 10% (the weight of the metal-coated particles did not reach 18 mg), it was determined that thermal decomposition did not occur. The thermogravimetric measurement was carried out using a thermogravimetric differential thermal analyzer (“Thermo Pulse EVO02” manufactured by Rigaku Corporation).
 (10)金属被覆粒子の金属部の焼結状態
 得られた金属被覆粒子を約0.2g秤量した。その後、ガラス基板を2枚用意し、上記金属被覆粒子を一方のガラス基板上に配置し、上記金属被覆粒子を挟み込むように、他方のガラス基板を上方から重ねた。次に、上方から重ねたガラス基板の上面に重量100gの分銅を載置した。5分後、分銅と上方から重ねたガラス基板を取り外した。ガラス基板上に圧密された金属被覆粒子を、200℃及び60分間の条件、250℃及び60分間の条件、並びに300℃及び60分間の条件で電気炉を用いて加熱処理し、圧密された金属被覆粒子を焼結させて、粒子連結体を得た。得られた粒子連結体を、走査型電子顕微鏡(FE-SEM)を用いて観察することで、金属被覆粒子の金属部が焼結し、柱状連結部を形成しているか否かを確認した。金属被覆粒子の金属部の焼結状態を下記の基準で判定した。なお、図9に、実施例4の金属被覆粒子を用いて作製された粒子連結体の画像を示した。
(10) Sintered state of metal part of metal-coated particles The obtained metal-coated particles were weighed in an amount of about 0.2 g. After that, two glass substrates were prepared, the above-mentioned metal-coated particles were arranged on one glass substrate, and the other glass substrate was stacked from above so as to sandwich the above-mentioned metal-coated particles. Next, a weight having a weight of 100 g was placed on the upper surface of the glass substrates stacked from above. After 5 minutes, the weight and the glass substrate stacked from above were removed. The metal-coated particles compacted on the glass substrate are heat-treated in an electric furnace under the conditions of 200 ° C. and 60 minutes, 250 ° C. and 60 minutes, and 300 ° C. and 60 minutes to consolidate the metal. The coated particles were sintered to obtain a particle linked body. By observing the obtained particle connected body using a scanning electron microscope (FE-SEM), it was confirmed whether or not the metal part of the metal-coated particles was sintered to form a columnar connected part. The sintered state of the metal part of the metal-coated particles was judged according to the following criteria. It is to be noted that FIG. 9 shows an image of a linked particle body produced by using the metal-coated particles of Example 4.
 [金属被覆粒子の金属部の焼結状態の判定基準]
 A:金属部が焼結した後に柱状連結部を形成している
 B:金属部が焼結した後に柱状連結部を形成していない
[Criteria for Sintering State of Metal Part of Metal Coated Particles]
A: The columnar connecting portion is formed after the metal portion is sintered B: The columnar connecting portion is not formed after the metal portion is sintered
 (11)接続構造体における導通信頼性
 得られた金属被覆粒子又は粒子連結体を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させて、異方性導電ペーストを作製した。
(11) Continuity Reliability in Connection Structure The obtained metal-coated particles or particle-connected body was added to "Structbond XN-5A" manufactured by Mitsui Chemicals Co., Inc. so that the content was 10% by weight, and dispersed. An anisotropic conductive paste was prepared.
 L/Sが30μm/30μmである銅電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが30μm/30μmである金電極パターンを下面に有する半導体チップを用意した。 A transparent glass substrate having a copper electrode pattern having an L / S of 30 μm / 30 μm on its upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern having L / S of 30 μm / 30 μm on the lower surface was prepared.
 上記透明ガラス基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が250℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、0.5MPaの圧力をかけて異方性導電ペースト層を250℃及び10分間の条件で硬化させて、接続構造体を得た。接続構造体を得るために、電極間を0.5MPaの低圧で接続した。 On the above transparent glass substrate, an anisotropic conductive paste immediately after preparation was applied so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was laminated on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer is 250 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 0.5 MPa is applied to the anisotropic conductive paste. The layer was cured at 250 ° C. for 10 minutes to obtain a connection structure. In order to obtain the connection structure, the electrodes were connected at a low pressure of 0.5 MPa.
 得られた接続構造体15個の上下の電極間の接続抵抗を、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。 The connection resistance between the 15 upper and lower electrodes of the obtained connection structure was measured by the 4-terminal method. The average value of the connection resistance was calculated. From the relationship of voltage = current × resistance, the connection resistance can be obtained by measuring the voltage when a constant current is applied. The continuity reliability was judged according to the following criteria.
 [導通信頼性の判定基準]
 ○○○:接続抵抗の平均値が1.0Ω以下
 ○○:接続抵抗の平均値が1.0Ωを超え2.0Ω以下
 ○:接続抵抗の平均値が2.0Ωを超え3.0Ω以下
 △:接続抵抗の平均値が3.0Ωを超え5Ω以下
 ×:接続抵抗の平均値が5Ωを超える
[Criteria for continuity reliability]
○ ○ ○: Average value of connection resistance is 1.0Ω or less ○ ○: Average value of connection resistance is more than 1.0Ω and 2.0Ω or less ○: Average value of connection resistance is more than 2.0Ω and 3.0Ω or less △ : Average value of connection resistance exceeds 3.0Ω and 5Ω or less ×: Average value of connection resistance exceeds 5Ω
 (12)接続構造体における絶縁信頼性
 上記の(11)接続構造体における導通信頼性の評価で得られた接続構造体15個において、85℃及び湿度85%の雰囲気中に100時間放置後、隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。接続抵抗の平均値を算出した。絶縁信頼性を以下の基準で判定した。
(12) Insulation reliability in connection structure In 15 connection structures obtained in the above (11) Evaluation of conduction reliability in connection structure, after leaving in an atmosphere of 85 ° C. and humidity of 85% for 100 hours, 5V was applied between the adjacent electrodes, and the resistance value was measured at 25 points. The average value of the connection resistance was calculated. The insulation reliability was judged according to the following criteria.
 [絶縁信頼性の判定基準]
 ○○:接続抵抗の平均値が10Ω以上
 ○:接続抵抗の平均値が10Ω以上10Ω未満
 △:接続抵抗の平均値が10Ω以上10Ω未満
 ×:接続抵抗の平均値が10Ω未満
[Criteria for insulation reliability]
◯: Average value of connection resistance is 10 7 Ω or more ○: Average value of connection resistance is 10 6 Ω or more and less than 10 7 Ω Δ: Average value of connection resistance is 10 5 Ω or more and less than 10 6 Ω ×: Of connection resistance Average value is less than 10 5 Ω
 (13)金属部の接合状態
 上記の(11)接続構造体における導通信頼性の評価で得られた接続構造体を、Kulzer社製「テクノビット4000」を用いて、接続構造体検査用埋め込み樹脂を作製した。その検査用樹脂中の接続構造体の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、金属被覆粒子の断面を切り出した。
(13) Bonding state of metal part The connection structure obtained by the evaluation of the conduction reliability in the connection structure (11) above is used as an embedded resin for connection structure inspection using "Technobit 4000" manufactured by Kulzer. Was produced. A cross section of the metal-coated particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the resin for inspection.
 そして、走査型電子顕微鏡(FE-SEM)を用いて、得られた接続構造体の断面を観察することで、金属被覆粒子の金属部の接合状態を確認した。金属部の接合状態を下記の基準で判定した。 Then, the bonding state of the metal part of the metal-coated particles was confirmed by observing the cross section of the obtained connection structure using a scanning electron microscope (FE-SEM). The joining state of the metal part was judged according to the following criteria.
 [金属部の接合状態の判定基準]
 A:接続部中で、金属被覆粒子における金属部が焼結し、電極及び他の金属被覆粒子と接合している
 B:接続部中で、金属被覆粒子における金属部が、電極及び他の金属被覆粒子と接合していない
[Criteria for joining the metal parts]
A: In the connection part, the metal part of the metal-coated particles is sintered and bonded to the electrode and other metal-coated particles B: In the connection part, the metal part of the metal-coated particles is the electrode and other metal Not bonded to coated particles
 (14)導通検査用部材における接触抵抗値
 シリコーン系共重合体10重量部、得られた金属被覆粒子90重量部、エポキシシランカップリング剤(信越化学工業社製、「KBE-303」)1重量部及びイソプロピルアルコール36重量部を配合し、ホモディスパーを用いて1000rpmで20分撹拌した。その後、シンキー社製「練太郎ARE250」を用いて脱泡することで、金属被覆粒子とバインダーとを含む導電材料を調製した。
(14) Contact resistance value in continuity test member 10 parts by weight of silicone-based copolymer, 90 parts by weight of the obtained metal-coated particles, 1 part by weight of epoxysilane coupling agent (“KBE-303” manufactured by Shin-Etsu Chemical Co., Ltd.) And 36 parts by weight of isopropyl alcohol were mixed and stirred at 1000 rpm for 20 minutes using a homodisper. After that, the conductive material containing the metal-coated particles and the binder was prepared by defoaming using “Kentaro ARE250” manufactured by Shinky Co., Ltd.
 上記のシリコーン系共重合体は、次の方法で重合した。内容量2Lの金属混練機内に4,4’-ジシクロヘキシルメタンジイソシアネート(デグサ社製)162g(628mmol)、片末端アミノ基変性ポリジメチルシロキサン(モメンティブ社製「TSF4709」)(分子量10000)900g(90mmol)を入れ、70~90℃で溶解後、撹拌を2時間行った。その後、ネオペンチルグリコール(三菱ガス化学社製)65g(625mmol)をゆっくり加え、30分混練し、続けて未反応のネオペンチルグリコールを減圧除去した。得られたシリコーン系共重合体は20重量%になるようにイソプロピルアルコールに溶解させて使用した。なお、イソシアネート基の消失はIRスペクトルにて確認した。得られたシリコーン系共重合体において、シリコーン含有量は80重量%、重量平均分子量は25000であり、SP値は7.8、極性基を有する構造(ポリウレタン)の繰り返し単位のSP値は10であった。 The above silicone-based copolymer was polymerized by the following method. 162 g (628 mmol) of 4,4′-dicyclohexylmethane diisocyanate (manufactured by Degussa), polydimethylsiloxane modified with an amino group at one end (“TSF4709” manufactured by Momentive Co., Ltd.) (molecular weight 10,000), 900 g (90 mmol) in a metal kneader having an internal capacity of 2 L. Was added, the mixture was dissolved at 70 to 90 ° C., and then stirred for 2 hours. Thereafter, 65 g (625 mmol) of neopentyl glycol (manufactured by Mitsubishi Gas Chemical Co., Inc.) was slowly added and kneaded for 30 minutes, and then unreacted neopentyl glycol was removed under reduced pressure. The obtained silicone-based copolymer was dissolved in isopropyl alcohol so as to be 20% by weight and used. The disappearance of the isocyanate group was confirmed by IR spectrum. In the obtained silicone-based copolymer, the silicone content was 80% by weight, the weight average molecular weight was 25,000, the SP value was 7.8, and the SP value of the repeating unit of the structure having a polar group (polyurethane) was 10. there were.
 次に、導通検査用部材の基材(絶縁材料により形成されたシート状の基材)として、シリコーンゴムを準備した。シリコーンゴムのサイズは、横幅25mm、縦幅25mm及び厚み1mmである。シリコーンゴムには、レーザー加工で形成した直径0.5mmの円柱状の貫通孔が縦20個及び横20個で総数400個形成されている。 Next, silicone rubber was prepared as a base material (sheet-shaped base material formed of an insulating material) for the continuity inspection member. The size of the silicone rubber is 25 mm in width, 25 mm in width and 1 mm in thickness. The silicone rubber is formed with a total of 400 cylindrical through-holes having a diameter of 0.5 mm and having a diameter of 0.5 and 20 in length and 20 in width.
 上記導電材料を、貫通孔を有するシリコーンゴム上にナイフコーターを用いて塗工し、貫通孔に導電材料を充填した。次に、導電材料が貫通孔に充填されたシリコーンゴムをオーブンにて50℃で10分間乾燥した後、更に続けて200℃で60分間乾燥し、厚さ1mmの導通検査用部材を得た。 The above conductive material was coated on a silicone rubber having a through hole using a knife coater, and the through hole was filled with the conductive material. Next, the silicone rubber in which the through holes were filled with the conductive material was dried in an oven at 50 ° C. for 10 minutes, and then further dried at 200 ° C. for 60 minutes to obtain a member for continuity inspection having a thickness of 1 mm.
 得られた導通検査用部材の接触抵抗値は、接触抵抗測定システム(ファクトケイ社製「MS7500」)を用いて測定した。接触抵抗測定は、直径0.5mmの白金プローブにて荷重15gfで、得られた導通検査用部材の導電部に垂直方向から加圧した。その際に、低抵抗計(鶴賀電機社製「MODEL3566」)で5Vを印加し、接触抵抗値を測定した。5か所の導電部を測定した接触接続抵抗値の平均値を算出した。接触抵抗値を下記の基準で判定した。 The contact resistance value of the obtained continuity inspection member was measured using a contact resistance measuring system (“MS7500” manufactured by FactKay). The contact resistance was measured by applying a load of 15 gf with a platinum probe having a diameter of 0.5 mm and applying pressure to the conductive portion of the obtained member for continuity inspection from the vertical direction. At that time, 5 V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.) to measure the contact resistance value. The average value of the contact connection resistance values obtained by measuring the conductive portions at five locations was calculated. The contact resistance value was judged according to the following criteria.
 [接触抵抗値の判定基準]
 ○○:接続抵抗の平均値が50.0mΩ以下
 ○:接続抵抗の平均値が50.0mΩを超え100.0mΩ以下
 △:接続抵抗の平均値が100.0mΩを超え500.0mΩ以下
 ×:接続抵抗の平均値が500.0mΩを超える
[Contact resistance judgment criteria]
○ ○: Average value of connection resistance is 50.0 mΩ or less ○: Average value of connection resistance is more than 50.0 mΩ and 100.0 mΩ or less △: Average value of connection resistance is more than 100.0 mΩ and 500.0 mΩ or less ×: Connection Average resistance exceeds 500.0 mΩ
 (15)導通検査用部材における繰り返し信頼性試験
 上記の(14)導通検査用部材の接触抵抗値の評価の導通検査用部材を用意した。
(15) Repeatability reliability test on continuity inspection member A continuity inspection member for evaluation of the contact resistance value of the above (14) continuity inspection member was prepared.
 得られた導通検査用部材の繰り返し信頼性試験及び接触抵抗値は、接触抵抗測定システム(ファクトケイ社製「MS7500」)を用いて測定した。繰り返し信頼性試験は、直径0.5mmの白金プローブにて荷重15gfで、得られたプローブシートの導電部に垂直方向から1000回繰り返し加圧した。1000回繰り返し加圧した後に、低抵抗計(鶴賀電機社製「MODEL3566」)で5Vを印加し、接触抵抗値を測定した。5か所の導電部を同様に測定した接触抵抗値の平均値を算出した。接触抵抗値を下記の基準で判定した。 The repeated reliability test and the contact resistance value of the obtained continuity inspection member were measured using a contact resistance measurement system (“MS7500” manufactured by FactKay). In the repeated reliability test, a platinum probe having a diameter of 0.5 mm was used and a load of 15 gf was applied to the conductive portion of the obtained probe sheet repeatedly 1000 times from the vertical direction. After repeatedly applying pressure 1000 times, 5 V was applied with a low resistance meter (“MODEL3566” manufactured by Tsuruga Electric Co., Ltd.) to measure the contact resistance value. The average value of the contact resistance values obtained by measuring the conductive portions at five locations in the same manner was calculated. The contact resistance value was judged according to the following criteria.
 [繰り返し信頼性試験の判定基準]
 ○○○:接続抵抗の平均値が100.0mΩ以下
 ○○:接続抵抗の平均値が100.0mΩを超え500.0mΩ以下
 ○:接続抵抗の平均値が500.0mΩを超え1000.0mΩ以下
 ×:接続抵抗の平均値が1000.0mΩを超える
[Criteria for repeated reliability test]
○ ○ ○: Average value of connection resistance is 100.0 mΩ or less ○ ○: Average value of connection resistance is more than 100.0 mΩ and 500.0 mΩ or less ○: Average value of connection resistance is more than 500.0 mΩ and 1000.0 mΩ or less × : Average connection resistance exceeds 1000.0 mΩ
 結果を下記の表1~6に示す。 The results are shown in Tables 1 to 6 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1,1A,1B…金属被覆粒子
 1Aa,1Ba…突起
 3…柱状連結部
 11…基材粒子
 12,12A,12B…金属部
 12Aa,12Ba…突起
 12BA…第1の金属部
 12BB…第2の金属部
 12BAa,12BBa…突起
 13…芯物質
 21,21A…粒子連結体
 22…柱状連結部
 31…導通検査用部材
 32…基体
 32a…貫通孔
 33…導電部
 40…多層基板
 41…はんだボール(導通対象部材)
 42…BGA基板
 43…電流計
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
 61,61A…接続構造体
 62…第1の接続対象部材
 63,64…第2の接続対象部材
 65,66…接続部
 67,68…ヒートシンク
 69…他の金属被覆粒子
 71…触覚フィードバック機能付きタッチパネル
 72…タッチセンサー
 73…導電層
 74…触覚フィードバックセンサー
 75…絶縁層
 76…液晶パネル
 81…電子部品装置
 82…第1のセラミック部材
 83…第2のセラミック部材
 84…接合部
 84B…ガラス
 85…電子部品
 86…リードフレーム
 100…導通検査用部材
 110…基体
 110a…貫通孔
 120…導電部
 R…内部空間
1, 1A, 1B ... Metal-coated particles 1Aa, 1Ba ... Protrusions 3 ... Columnar connecting portion 11 ... Base material particles 12, 12A, 12B ... Metal portions 12Aa, 12Ba ... Protrusions 12BA ... First metal portion 12BB ... Second metal Part 12BAa, 12BBa ... Protrusion 13 ... Core substance 21,21A ... Particle connection 22 ... Columnar connection 31 ... Continuity inspection member 32 ... Base 32a ... Through hole 33 ... Conductive part 40 ... Multilayer substrate 41 ... Solder ball (conduction target) Element)
42 ... BGA substrate 43 ... Ammeter 51 ... Connection structure 52 ... First connection target member 52a ... First electrode 53 ... Second connection target member 53a ... Second electrode 54 ... Connection part 61, 61A ... Connection Structure 62 ... First connection target member 63, 64 ... Second connection target member 65, 66 ... Connection portion 67, 68 ... Heat sink 69 ... Other metal-coated particles 71 ... Touch panel with tactile feedback function 72 ... Touch sensor 73 Conductive layer 74 ... Tactile feedback sensor 75 ... Insulating layer 76 ... Liquid crystal panel 81 ... Electronic component device 82 ... First ceramic member 83 ... Second ceramic member 84 ... Joined portion 84B ... Glass 85 ... Electronic component 86 ... Lead frame 100 ... Continuity inspection member 110 ... Base 110a ... Through hole 120 ... Conductive part R ... Internal space

Claims (16)

  1.  基材粒子と、前記基材粒子の表面上に配置された金属部とを備える金属被覆粒子であり、
     前記金属被覆粒子を、大気雰囲気下、かつ、温度100℃以上の加熱条件で加熱することで、前記金属部が金属結合を形成する性質を有し、
     前記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、1個以上の発熱ピークが観察される、金属被覆粒子。
    Base metal particles, a metal-coated particles comprising a metal portion arranged on the surface of the base material particles,
    By heating the metal-coated particles under an atmosphere of air and under heating conditions of a temperature of 100 ° C. or higher, the metal part has a property of forming a metal bond,
    One or more exothermic peaks are observed when performing differential scanning calorimetry by heating 20 mg of the metal-coated particles at a heating rate of 1 ° C./min from 25 ° C. to 250 ° C. in an air atmosphere. Metal coated particles.
  2.  前記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、吸熱ピークが観察されない、請求項1に記載の金属被覆粒子。 The endothermic peak is not observed when differential scanning calorimetry is performed by heating 20 mg of the metal-coated particles at a heating rate of 1 ° C./min from 25 ° C. to 250 ° C. in an air atmosphere. Metal-coated particles.
  3.  前記金属被覆粒子20mgを、1℃/minの昇温速度で25℃から250℃まで大気雰囲気下で加熱して示差走査熱量測定を行ったときに、4個以下の発熱ピークが観察される、請求項1又は2に記載の金属被覆粒子。 When 20 mg of the metal-coated particles are heated in an air atmosphere from 25 ° C. to 250 ° C. at a temperature rising rate of 1 ° C./min to perform differential scanning calorimetry, four or less exothermic peaks are observed. The metal-coated particle according to claim 1 or 2.
  4.  前記金属部の外表面に突起を有する、請求項1~3のいずれか1項に記載の金属被覆粒子。 The metal-coated particle according to any one of claims 1 to 3, which has a protrusion on an outer surface of the metal portion.
  5.  前記突起の平均高さが、3nm以上2000nm以下である、請求項4に記載の金属被覆粒子。 The metal-coated particles according to claim 4, wherein the average height of the protrusions is 3 nm or more and 2000 nm or less.
  6.  前記突起の基部の平均径が、3nm以上2000nm以下である、請求項4又は5に記載の金属被覆粒子。 The metal-coated particles according to claim 4 or 5, wherein the average diameter of the base of the protrusion is 3 nm or more and 2000 nm or less.
  7.  前記金属部の外表面の全表面積100%中、前記突起がある部分の面積が、10%以上である、請求項4~6のいずれか1項に記載の金属被覆粒子。 The metal-coated particle according to any one of claims 4 to 6, wherein an area of a portion having the protrusion is 10% or more in a total surface area of 100% of an outer surface of the metal portion.
  8.  前記金属部の材料が、金、銀、銅、ニッケル、錫、インジウム、亜鉛、コバルト、鉄、タングステン、モリブデン、ルテニウム、白金、ロジウム、イリジウム、ビスマス、リン、ホウ素又はこれらの合金を含む、請求項1~7のいずれか1項に記載の金属被覆粒子。 The material of the metal part includes gold, silver, copper, nickel, tin, indium, zinc, cobalt, iron, tungsten, molybdenum, ruthenium, platinum, rhodium, iridium, bismuth, phosphorus, boron or alloys thereof. Item 7. The metal-coated particles according to any one of items 1 to 7.
  9.  10%圧縮したときの圧縮弾性率が、100N/mm以上60000N/mm以下である、請求項1~8のいずれか1項に記載の金属被覆粒子。 Compressive modulus upon compression 10%, is 100 N / mm 2 or more 60000N / mm 2 or less, the metal-coated particles according to any one of claims 1-8.
  10.  前記金属被覆粒子をX線回折装置で測定し、(1,1,1)面、(2,0,0)面、(2,2,0)面、及び(3,1,1)面のピーク強度値の合計から強度比の割合を算出したときに、前記(1,1,1)面の強度比の割合が40%以上であり、前記(2,0,0)面の強度比の割合が30%以下であり、前記(2,2,0)面の強度比の割合が20%以下であり、前記(3,1,1)面の強度比の割合が20%以下である、請求項1~9のいずれか1項に記載の金属被覆粒子。 The metal-coated particles were measured by an X-ray diffractometer, and the (1,1,1) plane, (2,0,0) plane, (2,2,0) plane, and (3,1,1) plane When the ratio of the intensity ratio is calculated from the sum of the peak intensity values, the ratio of the intensity ratio of the (1,1,1) plane is 40% or more, and the ratio of the intensity ratio of the (2,0,0) plane is The ratio is 30% or less, the ratio of the strength ratio of the (2,2,0) plane is 20% or less, and the ratio of the strength ratio of the (3,1,1) plane is 20% or less. The metal-coated particles according to any one of claims 1 to 9.
  11.  前記金属被覆粒子20mgを、10℃/minの昇温速度で25℃から600℃まで大気雰囲気下で加熱して熱重量測定を行ったときに、前記金属被覆粒子の熱分解開始温度が180℃以上であるか、又は、前記金属被覆粒子が熱分解しない、請求項1~10のいずれか1項に記載の金属被覆粒子。 When 20 mg of the metal-coated particles were heated at a temperature rising rate of 10 ° C./min from 25 ° C. to 600 ° C. in an air atmosphere for thermogravimetric measurement, the thermal decomposition start temperature of the metal-coated particles was 180 ° C. The metal-coated particles according to any one of claims 1 to 10, which is the above or is not thermally decomposed.
  12.  前記金属部の外表面が、表面処理されている、請求項1~11のいずれか1項に記載の金属被覆粒子。 The metal-coated particles according to any one of claims 1 to 11, wherein the outer surface of the metal part is surface-treated.
  13.  請求項1~12のいずれか1項に記載の金属被覆粒子と、
     複数の前記金属被覆粒子を連結する柱状連結部とを備える、粒子連結体。
    A metal-coated particle according to any one of claims 1 to 12,
    A particle connected body, comprising: a columnar connecting portion connecting a plurality of the metal-coated particles.
  14.  請求項1~12のいずれか1項に記載の金属被覆粒子を、0MPa以上200MPa以下の圧力条件、並びに100℃以上400℃以下の加熱温度及び0.5分間以上300分間以下の加熱時間の加熱条件で処理して、粒子連結体を得る処理工程を備え、
     前記処理工程において、複数の前記金属被覆粒子を連結する柱状連結部が形成される、粒子連結体の製造方法。
    Heating the metal-coated particles according to any one of claims 1 to 12 under a pressure condition of 0 MPa or more and 200 MPa or less, a heating temperature of 100 ° C or more and 400 ° C or less, and a heating time of 0.5 minutes or more and 300 minutes or less. A treatment step for obtaining a particle linked body by treating under the conditions,
    The method for producing a particle connected body, wherein a columnar connecting portion that connects a plurality of the metal-coated particles is formed in the treatment step.
  15.  請求項1~12のいずれか1項に記載の金属被覆粒子と、バインダーとを含む、接続材料。 A connecting material containing the metal-coated particles according to any one of claims 1 to 12 and a binder.
  16.  第1の接続対象部材と、
     第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~12のいずれか1項に記載の金属被覆粒子であるか、又は、前記金属被覆粒子とバインダーとを含む接続材料である、接続構造体。
    A first connection target member;
    A second member to be connected,
    A first connection target member, and a connection portion connecting the second connection target member,
    A connection structure, wherein the material of the connection portion is the metal-coated particle according to any one of claims 1 to 12, or a connection material containing the metal-coated particle and a binder.
PCT/JP2019/044741 2018-11-15 2019-11-14 Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure WO2020100992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556174A JPWO2020100992A1 (en) 2018-11-15 2019-11-14 Metal-coated particles, particle linkages, manufacturing methods for particle linkages, connecting materials and connecting structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214604 2018-11-15
JP2018-214604 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100992A1 true WO2020100992A1 (en) 2020-05-22

Family

ID=70731621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044741 WO2020100992A1 (en) 2018-11-15 2019-11-14 Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure

Country Status (2)

Country Link
JP (1) JPWO2020100992A1 (en)
WO (1) WO2020100992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702667A (en) * 2020-06-29 2020-09-25 秦皇岛市雅豪新材料科技有限公司 Elastic diamond grinding block with 320-mesh fine metal binding agent and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015256A (en) * 2014-07-02 2016-01-28 積水化学工業株式会社 Conductive particle, composition for joining, joined structure and method for producing the joined structure
WO2017159694A1 (en) * 2016-03-15 2017-09-21 積水化学工業株式会社 Metal-containing particle, connecting material, connected structure, and method for producing connected structure
JP2017179555A (en) * 2016-03-31 2017-10-05 三井金属鉱業株式会社 Silver coat copper powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015256A (en) * 2014-07-02 2016-01-28 積水化学工業株式会社 Conductive particle, composition for joining, joined structure and method for producing the joined structure
WO2017159694A1 (en) * 2016-03-15 2017-09-21 積水化学工業株式会社 Metal-containing particle, connecting material, connected structure, and method for producing connected structure
JP2017179555A (en) * 2016-03-31 2017-10-05 三井金属鉱業株式会社 Silver coat copper powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702667A (en) * 2020-06-29 2020-09-25 秦皇岛市雅豪新材料科技有限公司 Elastic diamond grinding block with 320-mesh fine metal binding agent and preparation method thereof
CN111702667B (en) * 2020-06-29 2022-04-08 秦皇岛市雅豪新材料科技有限公司 Elastic diamond grinding block with 320-mesh fine metal binding agent and preparation method thereof

Also Published As

Publication number Publication date
TW202035788A (en) 2020-10-01
JPWO2020100992A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7128115B2 (en) METAL-CONTAINING PARTICLES, CONNECTING MATERIAL, CONNECTED STRUCTURE, CONNECTED STRUCTURE MANUFACTURING METHOD, CONDUCTIVITY TESTING MEMBER, AND CONTINUITY TESTING DEVICE
JP7007138B2 (en) Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures
JP7131908B2 (en) Metal-containing particles, connecting material, connected structure, and method for producing connected structure
JP5054232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP6009933B2 (en) Conductive particles, conductive materials, and connection structures
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
WO2020100992A1 (en) Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure
WO2020100991A1 (en) Particle-connected body, connecting material, connecting structure, continuity inspection member and continuity inspection device
TWI837220B (en) Metal-coated particles, particle connected bodies, manufacturing methods of particle connected bodies, connecting materials and connected structures
JP7235611B2 (en) Conductive materials and connecting structures
TWI807064B (en) Conductive particles with insulating particles, conductive material and connection structure
JP6491446B2 (en) Conductive particles, conductive materials, and connection structures
JP7277331B2 (en) Conductive particles, conductive materials and connecting structures
JP7132112B2 (en) Conductive film and connection structure
JP6364220B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP2015092475A (en) Conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884275

Country of ref document: EP

Kind code of ref document: A1