WO2020100213A1 - Electrode plate, lattice body, and lead storage cell - Google Patents

Electrode plate, lattice body, and lead storage cell Download PDF

Info

Publication number
WO2020100213A1
WO2020100213A1 PCT/JP2018/041968 JP2018041968W WO2020100213A1 WO 2020100213 A1 WO2020100213 A1 WO 2020100213A1 JP 2018041968 W JP2018041968 W JP 2018041968W WO 2020100213 A1 WO2020100213 A1 WO 2020100213A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
active material
lattice
lead storage
height
Prior art date
Application number
PCT/JP2018/041968
Other languages
French (fr)
Japanese (ja)
Inventor
平野 貴之
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/041968 priority Critical patent/WO2020100213A1/en
Priority to JP2020556497A priority patent/JP7220371B2/en
Publication of WO2020100213A1 publication Critical patent/WO2020100213A1/en
Priority to JP2023005693A priority patent/JP2023033539A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode plate, a grid and a lead storage battery.
  • Lead-acid batteries are widely used for industrial purposes, such as automobile batteries, backup power sources, and main power sources for electric vehicles.
  • an idling stop system vehicle hereinafter referred to as "ISS vehicle" equipped with a system that stops the engine during power generation control, signal waiting, etc. has been actively studied for the purpose of carbon dioxide emission regulation measures, fuel consumption reduction, etc.
  • lead-acid batteries are required to have characteristics suitable for ISS vehicle applications.
  • PSOC Partial State Of Charge
  • Patent Document 1 a lead-acid battery provided with a positive electrode plate having an active material specific surface area of 6 m 2 / g or more and a negative electrode plate to which a predetermined material is added is used under PSOC. It is disclosed to improve the life (cycle performance).
  • Another object of the present invention is to provide a grid body and an electrode plate that can provide a lead acid battery having excellent cycle performance.
  • the present inventors have found that when the length of the electrode plate in the vertical direction (the height direction of the lead storage battery) when the lead storage battery is installed horizontally is below a specific value, the cycle performance is The inventors have found that it is remarkably improved and have completed the present invention.
  • One aspect of the present invention is an electrode plate for a lead storage battery, which includes a lattice body having a lattice portion and an ear portion provided on one end side of the lattice portion, and an electrode active material held by the lattice body. And an active material filling portion, wherein the length of the active material filling portion in the height direction of the lead storage battery is 100 mm or less.
  • the width of the active material filled portion may be 136 mm or more. In this case, cycle performance tends to be further improved.
  • the grid may be formed of an alloy containing lead, tin and calcium.
  • a lattice body using this alloy (Pb-Sn-Ca-based alloy) is useful for further improving cycle performance. Further, since it is possible to improve strength, reduce self-discharge, and improve storage characteristics, it is particularly preferably used as a maintenance-free type grid (collector) for a lead storage battery.
  • the ears of the lattice may be located closer to the center of the lattice.
  • cycle performance tends to be further improved. Since the ears are located closer to the center of the lattice, the distance from the ears to the furthest active material is shortened, and the utilization rate of the electrode active material is more likely to be uniformized within the electrode plate surface. It is estimated that the cycle performance will be further improved.
  • the ratio of the height of the active material filled portion to the width of the active material filled portion may be 0.64 to 0.74. In this case, cycle performance tends to be further improved.
  • the electrode plate on the side surface may be a positive electrode plate (electrode plate for positive electrode). If the electrode plate on the side surface is used for the positive electrode plate, the effect of improving the cycle performance due to the suppression of the formation of mud can be remarkably obtained because the active material is likely to be mud-like in the positive electrode.
  • the grid body may be an expanded grid body.
  • the active material is likely to fall off. Therefore, when the lattice is the expanded lattice, the effect of the present invention tends to be more remarkable.
  • One aspect of the present invention is a grid body used for an electrode plate of a lead storage battery, comprising a grid portion and an ear portion projecting from one end side of the grid portion, and the grid portion in a height direction of the lead storage battery. Relates to a lattice body having a length of 100 mm or less.
  • the lattice part in the lattice body on the above side is a portion filled with the electrode active material. Therefore, when the grid body of the present invention is used for an electrode plate of a lead storage battery, the length of the active material filled portion in the height direction of the lead storage battery can be easily set to 100 mm or less. Therefore, according to the grid body of the present invention, it is possible to easily obtain a lead storage battery having excellent cycle performance and an electrode plate used for the lead storage battery.
  • the width of the lattice portion may be 136 mm or more. In this case, a sufficient amount of the electrode active material can be filled, and as a result, cycle performance can be further improved.
  • the grid on the above side may be formed of an alloy containing lead, tin and calcium.
  • the cycle performance tends to be further improved, and strength can be improved, self-discharge can be reduced, and storage characteristics can be improved.
  • the ears of the lattice on the side surface may be located closer to the center of the lattice. In this case, cycle performance tends to be further improved.
  • the ratio of the height of the lattice portion to the width of the lattice portion may be 0.64 to 0.74. In this case, cycle performance tends to be further improved.
  • the grid on the side surface may be a grid used for the positive electrode plate of the lead storage battery. Since the active material is likely to be mud-like in the positive electrode, when the lattice on the side surface is used in the positive electrode plate, the effect of suppressing the mud-like improvement in cycle performance is remarkably obtained.
  • the lattice on the above-mentioned side may be an expanded lattice.
  • the active material is likely to fall off. Therefore, when the lattice is the expanded lattice, the effect of the present invention tends to be more remarkable.
  • One aspect of the present invention relates to a lead storage battery including an electrode plate including the above-described electrode plate or the above-described grid, and an active material filling portion made of an electrode active material held by the grid.
  • the present invention it is possible to provide a lead storage battery having excellent cycle performance. Further, according to the present invention, it is possible to provide a grid body and an electrode plate that can provide a lead storage battery having excellent cycle performance.
  • FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead storage battery according to an embodiment.
  • FIG. 2 is a perspective view showing an electrode group included in the lead storage battery of FIG.
  • FIG. 3 is a front view showing an electrode plate included in the electrode group of FIG.
  • FIG. 4 is a front view showing a grid body (current collector) included in the electrode plate of FIG.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 1, showing an electrode group and its internal structure.
  • FIG. 6 is a photograph showing the electrode plates after the cycle test of Examples and Comparative Examples and their schematic diagrams.
  • the vertical direction when the lead storage battery is installed horizontally is defined as the height direction of the lead storage battery.
  • the vertical direction when housed in a horizontally installed lead storage battery is defined as the height direction of the electrode plate (the height direction of the grid body).
  • the numerical range indicated by using "to” indicates the range including the numerical values before and after "to” as the minimum value and the maximum value, respectively.
  • FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead storage battery according to an embodiment.
  • the lead storage battery 1 includes a battery case 2 having an open top surface and a lid 3 that closes the opening of the battery case 2.
  • the battery case 2 and the lid 3 are made of polypropylene, for example.
  • the lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.
  • the inside of the battery case 2 is divided by five partition walls, and six cell chambers are formed inside the battery case 2, and the electrode group 7 and A negative pole 8 for connecting the electrode group 7 to the negative terminal 4, a positive pole (not shown) for connecting the electrode group 7 to the positive terminal 5, and an electrolytic solution such as dilute sulfuric acid are stored.
  • the electrolytic solution may further contain aluminum ions in addition to dilute sulfuric acid.
  • concentration of aluminum ions in the electrolytic solution may be, for example, 0.005 mol / L or more and 0.4 mol / L or less.
  • FIG. 2 is a perspective view showing the electrode group 7.
  • the electrode group 7 is arranged between the negative electrode plate (plate-shaped negative electrode) 9 and the positive electrode plate (plate-shaped positive electrode) 10, which are electrode plates, and between the negative electrode plate 9 and the positive electrode plate 10.
  • the negative electrode plate 9 includes a negative electrode current collector (lattice body) 12 and a negative electrode active material filling portion (active material filling portion) 13 made of a negative electrode active material (electrode active material) held by the negative electrode current collector 12. I have it.
  • the positive electrode plate 10 includes a positive electrode current collector (lattice body) 14 and a positive electrode active material filling portion (active material filling portion) 15 made of a positive electrode active material (electrode active material) held by the positive electrode current collector 14. I have it.
  • the negative electrode after formation and the negative electrode current collector are defined as “negative electrode active material”
  • the positive electrode after formation and the positive electrode current collector are defined as “positive electrode active material”.
  • the electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated with separators 11 in a direction substantially parallel to the opening surface of the battery case 2. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged such that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2.
  • each negative electrode current collector 12 of the plurality of negative electrode plates 9 and each positive electrode current collector 14 of the plurality of positive electrode plates 10 have a negative electrode ear portion 12a and a positive electrode ear portion 14a protruding toward the opening side, respectively. is doing.
  • the ears are typically provided so as to project in the vertical direction in a state where the electrode group 7 is housed in a horizontally installed lead storage battery. Therefore, typically, the direction in which the ears protrude and the height direction of the lead storage battery coincide with each other.
  • the negative electrode ears 12 a of the negative electrode current collectors 12 of the plurality of negative electrode plates 9 are collectively welded by the negative electrode strap 16.
  • the positive electrode ear portions 14 a of the positive electrode current collectors 14 of the plurality of positive electrode plates 10 are collectively welded by the positive electrode strap 17.
  • the negative electrode strap 16 is connected to the negative electrode terminal 4 via the negative electrode column 8.
  • the positive electrode strap 17 is connected to the positive electrode terminal 5 via the positive electrode column.
  • the separator 11 is formed in a bag shape and houses the negative electrode plate 9.
  • the separator 11 is made of, for example, polyethylene (PE), polypropylene (PP) or the like.
  • the separator 11 may be a woven fabric, a non-woven fabric, a porous film, or the like formed of these materials, to which inorganic particles such as SiO 2 or Al 2 O 3 are attached.
  • FIG. 3 is a front view showing the electrode plate 20 (negative electrode plate 9, positive electrode plate 10).
  • the active material filling portion 21 (the negative electrode active material filling portion 13 and the positive electrode active material filling portion 15) is formed so as to spread in the height direction and the width direction of the electrode plate 20.
  • the active material filling portion 21 is exposed on both main surfaces of the electrode plate 20, and has a substantially rectangular outer shape when the electrode plate 20 is viewed from the front.
  • the height direction of the electrode plate 20 is the direction that is the vertical direction when the electrode plate 20 is housed in a horizontally installed lead storage battery. Therefore, typically, the direction in which the ears project is the height direction of the electrode plate 20. Further, the width direction of the electrode plate 20 is a direction orthogonal to the height direction of the electrode plate 20 among the directions along the main surface of the electrode plate 20.
  • the height H1 of the active material filling portion 21 is 100 mm or less.
  • the height H1 of the active material filling portion 21 is the length of the active material filling portion 21 in the height direction of the lead storage battery 1, and is typically the length in the direction in which the ears project. Since the height H1 of the active material filling portion 21 is 100 mm or less, the lead storage battery 1 exhibits excellent cycle performance.
  • the height H1 may be 99 mm or less, 98 mm or less, or 97 mm or less from the viewpoint of obtaining more excellent cycle performance.
  • the height H1 may be 94 mm or more or 95 mm or more from the viewpoint of obtaining more excellent cycle performance.
  • the upper limit value and the lower limit value described above may be arbitrarily combined. That is, the height H1 may be 94-100 mm, 95-100 mm, 94-99 mm, 95-99 mm, 94-98 mm, 95-98 mm, 94-97 mm or 95-97 mm.
  • the upper limit value and the lower limit value described individually can be arbitrarily combined.
  • the height H1 is obtained, for example, by measuring the length from the upper end (end on the ear side) to the lower end (end on the side opposite to the ear) of the active material filling portion 21.
  • the maximum value of the height H1 may be 100 mm or less. In the present embodiment, it is preferable that the height H1 be within the above range at all measurement points.
  • the width W1 of the active material filled portion 21 (the length of the active material filled portion 21 in the width direction of the electrode plate 20) W1 is preferably 136 mm or more from the viewpoint of obtaining better cycle performance. From the same viewpoint, the width W1 may be 140 mm or more or 142 mm or more. The upper limit of the width W1 is not particularly limited, but may be, for example, 145 mm or less, 144 mm or less, or 143 mm or less.
  • the width W1 is obtained, for example, by measuring the length of the active material filling portion 21 from one end to the other end in the width direction.
  • the minimum value of the width W1 is preferably 136 mm or more. In the present embodiment, it is preferable that the width W1 be within the above range at all measurement points.
  • both the active material filling portion of the positive electrode plate and the active material filling portion of the negative electrode plate satisfy the above range.
  • the width of the active material filled portion of the positive electrode plate and the width of the active material filled portion of the negative electrode plate may be different from each other.
  • the width of the active material filled portion of the electrode plate accommodated in the bag-shaped separator may be smaller than the width of the active material filled portion of the electrode plate not accommodated in the bag-shaped separator.
  • the ratio of the height H1 of the active material filled portion 21 to the width W1 of the active material filled portion 21 is preferably 0.74 or less from the viewpoint of obtaining more excellent cycle performance. , 0.71 or less, or 0.70 or less.
  • the aspect ratio (H1 / W1) is preferably 0.64 or more, and may be 0.65 or more or 0.66 or more, from the viewpoint of obtaining more excellent cycle performance.
  • the height H1 and the width W1 on both main surfaces are within the above ranges.
  • the thickness (length in the stacking direction) D1 of the active material filled portion 21 may be, for example, 1.0 to 1.9 mm.
  • the range of the thickness D1 of the active material filled portion 21 may be different between the positive electrode plate and the negative electrode plate.
  • the thickness D1 of the active material filled portion 21 of the positive electrode plate may be 1.4 mm or more or 1.5 mm or more, and may be 1.9 mm or less or 1.8 mm or less.
  • the thickness D1 of the active material filled portion 21 of the negative electrode plate may be 1.0 mm or more, 1.1 mm or more, or 1.2 mm or more, 1.8 mm or less, 1.7 mm or less, 1.6 mm or less, or It may be 1.4 mm or less.
  • the electrode active material forming the active material filling portion is a negative electrode active material or a positive electrode active material.
  • the negative electrode active material contains Pb as a Pb component, and may further contain a Pb component other than Pb (for example, PbSO 4 ) and an additive (negative electrode additive), if necessary.
  • the positive electrode active material contains PbO 2 as a Pb component, and may further contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive (positive electrode additive), if necessary.
  • Examples of the negative electrode additive include a resin having a sulfo group and / or a sulfonate group, barium sulfate, a carbon material (excluding carbon fiber), and reinforcing short fibers (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, Carbon fiber).
  • the resin having a sulfo group and / or a sulfonate group is a lignin sulfonic acid, a lignin sulfonate, and a condensate of a phenol, an aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates).
  • the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
  • positive electrode additives include carbon materials and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, etc.).
  • the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
  • FIG. 4 is a front view showing the grid 30 (negative electrode current collector 12, positive electrode current collector 14).
  • the lattice body 30 is an expanded lattice body manufactured by the expanding method.
  • the effect of the present invention tends to be more remarkably obtained.
  • the height of the lattice body can be easily adjusted, and the manufacturing cost can be reduced.
  • the lattice body 30 includes a lattice portion 31 and an ear portion 32 provided so as to project from one end side of the lattice portion 31.
  • An upper frame portion 33 is provided above the lattice portion 31, and a lower frame portion 34 is provided below the lattice portion 31.
  • the ear portion 32 projects upward from a part of the upper frame portion 33 (on the side opposite to the lattice portion 31 and the lower frame portion 34) substantially perpendicular to the longitudinal direction of the upper frame portion 33.
  • the ear portion 32 is located closer to the center of the lattice portion 31 when viewed from the front of the lattice body 30. “Toward the center” means that the shortest distance from the center in the width direction of the lattice portion 31 is less than 1 ⁇ 4 of the width W of the lattice portion 31.
  • the lattice portion 31 is a portion filled with the active material, and has lattice bones 31a arranged in a lattice shape and openings 31b defined by the lattice bones 31a.
  • the lattice portion 31 has a substantially rectangular (eg, rectangular or square) outer shape when viewed from the front.
  • the height H of the lattice 30 may be, for example, 104 mm or less, 103 mm or less, 102 mm or less, or 101 mm or less, and may be 98 mm or more or 99 mm or more.
  • the height of the lattice 30 is measured from the lower end of the lower frame portion 34 (the end portion on the side opposite to the ear portion) to the upper end portion of the upper frame portion 33 (the end portion on the ear portion side). Required by that.
  • the height direction of the grid body 30 matches the height direction of the electrode plate 20. Therefore, the height of the grid body 30 may be called the length of the grid body 30 in the height direction of the lead storage battery 1, and is typically the length in the direction in which the ears 32 project. Further, the height of the grid body 30 and the height of the electrode plate 20 are the same. That is, the height of the electrode plate 20 may be in the same range as the height H of the grid body 30 described above.
  • the maximum value of the height H is 104 mm or less. In the present embodiment, it is preferable that the height H be within the above range at all measurement points.
  • the height H2 of the lattice portion 31 may be 100 mm or less, 99 mm or less, 98 mm or less, or 97 mm or less, from the viewpoint of easily obtaining the active material filling portion 21 having the height H1 as described above, 94 mm or more, or It may be 95 mm or more. That is, the height H2 may be 94-100 mm, 95-100 mm, 94-99 mm, 95-99 mm, 94-98 mm, 95-98 mm, 94-97 mm or 95-97 mm.
  • the height H2 is the height of an area defined by an imaginary line connecting the ends of the lattice bones 31a (for example, from the upper end (end on the ear side) to the lower end (end on the side opposite to the ear). ) Up to)) is measured.
  • the maximum value of the height H2 is 100 mm or less. In the present embodiment, it is preferable that the height H2 be within the above range at all measurement points.
  • the width W2 of the lattice portion 31 may be 136 mm or more, 140 mm or more or 142 mm or more, from the viewpoint of easily obtaining the active material-filled portion having the width W1 as described above, and may be 145 mm or less, 144 mm or less or 143 mm or less. You can The width W2 of the lattice portion 31 is the length of the lattice portion in the width direction of the lattice body 30 (the direction along the main surface of the lattice body 30 which is orthogonal to the height direction of the lattice body 30). ..
  • the width W2 is obtained by measuring the width of a region defined by an imaginary line connecting the ends of the lattice bones 31a (for example, the length from one end to the other end of the lattice portion 31 in the width direction).
  • the minimum value of the width W2 is preferably 136 mm or more. In the present embodiment, it is preferable that the width W2 be within the above range at all measurement points.
  • the ratio of the height H2 of the lattice portion 31 to the width W2 of the lattice portion 31 is preferably 0.74 or less and 0.71 from the viewpoint of obtaining more excellent cycle performance. It may be less than or equal to 0.70.
  • the aspect ratio (H2 / W2) is preferably 0.64 or more, and may be 0.65 or more or 0.66 or more, from the viewpoint of obtaining more excellent cycle performance.
  • the height H2 and the width W2 on the both main surfaces are within the above ranges.
  • the thickness (length in the stacking direction) D2 of the lattice portion 31 is, for example, 0.7 to 1.6 mm from the viewpoint of easily obtaining the active material filled portion 21 having the thickness D1 as described above. Good.
  • the range of the thickness D2 of the grid portion 31 may be different between the positive electrode grid body (positive electrode current collector) and the negative electrode grid body (negative electrode current collector).
  • the thickness D2 of the grid portion 31 of the positive electrode current collector may be 1.1 mm or more or 1.2 mm or more, and may be 1.6 mm or less or 1.4 mm or less.
  • the thickness D2 of the grid portion 31 of the negative electrode current collector may be 0.7 mm or more, 0.8 mm or more, or 0.9 mm or more, and 1.3 mm or less, 1.2 mm or less, or 1.1 mm or less. You can The thickness is, for example, the thickness of the intersection of the lattice portions.
  • the grid body 30 (the negative electrode current collector 12 and the positive electrode current collector 14) is made of, for example, a lead alloy.
  • the lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead, and specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy).
  • the lattice body 30 described above includes the size (height, width and thickness) of the sheet (base material) for forming the lattice body 30, the force applied when the sheet is stretched by the expanding method, the production of the expanded lattice body. It can be manufactured by adjusting the number of slits and the like.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 1, showing an electrode group and its internal structure.
  • the electrode in each cell chamber of the battery case 2, the electrode is set so that the height H3 from the bottom wall 2a of the cell chamber to the upper end (end portion on the ear side) of the active material filling portion 21 is 101 mm or less.
  • the plate 20 (electrode group 7) is preferably housed in the cell chamber.
  • the height H3 may be 100 mm or less, 99 mm or less, or 98 mm or less.
  • the height H3 may be 95 mm or more or 96 mm or more from the viewpoint of obtaining more excellent cycle performance.
  • the lead storage battery 1 described above is preferably used as a lead storage battery for idling stop system vehicles or micro hybrid vehicles. That is, one embodiment of the present invention is an application of the above-described lead storage battery 1 to an idling stop system vehicle or a micro hybrid vehicle.
  • the lead storage battery 1 is manufactured, for example, by a manufacturing method including an electrode plate manufacturing process for obtaining an electrode plate (a negative electrode plate and a positive electrode plate) and an assembly process for assembling the constituent members including the electrode plate to obtain the lead storage battery 1.
  • the electrode plate manufacturing process for example, after the grid material 30 (the negative electrode current collector 12 and the positive electrode current collector 14) holds the active material paste (negative electrode active material paste, positive electrode active material paste), aging and drying Thus, an electrode plate (negative electrode plate, positive electrode plate) including an unformed electrode active material (negative electrode active material, positive electrode active material) is obtained.
  • the electrode plate 20 the negative electrode plate 9 and the positive electrode plate 10) of the embodiment can be easily obtained.
  • the active material paste (negative electrode active material paste, positive electrode active material paste) contains, for example, lead powder, an additive, a solvent (eg water or an organic solvent) and sulfuric acid (eg dilute sulfuric acid).
  • the active material paste is obtained, for example, by mixing lead powder and an additive to obtain a mixture, and then kneading the mixture with a solvent and sulfuric acid.
  • the lead powder for example, a lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of a powder of the main component PbO and scale-like metallic lead). ) Is mentioned.
  • the grid material 30 holds the active material paste, it is desirable to fill the entire grid portion 31 of the grid material 30 with the active material paste, but there is a portion of the grid portion 31 where the active material paste is not filled. May exist. In this case, only the portion filled with the active material paste forms the active material filling portion 21.
  • Aging may be carried out in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH% for 15 to 60 hours.
  • the drying may be performed at a temperature of 45 to 80 ° C. for 15 to 30 hours.
  • the obtained unformed electrode plates (unformed negative electrode plate and unformed positive electrode plate) are laminated via the separator 11, and the ears of the electrode plates of the same polarity are welded with straps.
  • an electrode group This electrode group is arranged in a battery case to produce an unformed lead storage battery.
  • dilute sulfuric acid is put into an unformed lead storage battery, and a direct current is passed to form a battery case.
  • the lead acid battery 1 is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion to an appropriate specific gravity of the electrolytic solution.
  • the specific gravity (20 ° C.) of sulfuric acid used for chemical conversion may be 1.15 to 1.25.
  • the specific gravity (20 ° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30.
  • the chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode plate.
  • the chemical conversion treatment may be performed in the assembly process or the electrode plate manufacturing process (tank formation).
  • the lead storage battery 1 is a liquid lead storage battery, and is configured such that at least the entire electrode active material filled portion is immersed in the electrolyte solution (for example, the liquid surface of the electrolyte solution is the upper portion of the strap).
  • the lead acid battery may be a valve regulated lead acid battery, a sealed lead acid battery, or the like.
  • At least a part of the positive electrode plate included in the lead storage battery is the electrode plate 20, and it is more preferable that at least a part of the positive electrode plate and at least a part of the negative electrode plate are the electrode plate 20.
  • a part of the electrode plate included in the storage battery may be different from the electrode plate 20.
  • all the electrode plates (the negative electrode plate 9 and the positive electrode plate 10) may be the electrode plates 20 described above.
  • the negative electrode plate 9 is housed in the bag-shaped separator 11, but the positive electrode plate 10 may be housed in the bag-shaped separator 11.
  • the shape of the separator 11 may be a shape other than the bag shape (for example, a sheet shape).
  • the lattice body is an expanded lattice body, but the lattice body may be a lattice body manufactured by another manufacturing method.
  • the lattice body may be, for example, a punching lattice body manufactured by a punching method.
  • a rolled sheet made of a lead alloy was subjected to an expanding process to prepare positive electrode current collectors A and B and negative electrode current collectors A and B as a grid.
  • the height of the positive electrode current collector A was 116 mm, the height H2 of the lattice portion was 112 mm, the width W2 was 143 mm, and the thickness D2 was 1.5 mm. Further, the height of the negative electrode current collector A was 116 mm, the height H2 of the lattice portion was 112 mm, the width W2 was 142 mm, and the thickness D2 was 1.0 mm.
  • the height H of the positive electrode current collector B was 99.5 mm, the height H2 of the lattice portion was 95.5 mm, the width W2 was 143 mm, and the thickness D2 was 1.4 mm.
  • the height H of the negative electrode current collector B was 99.5 mm, the height H2 of the lattice portion was 95.5 mm, the width W2 was 142 mm, and the thickness D2 was 1.0 mm.
  • a battery case was prepared, which consisted of a box whose upper surface was open and whose interior was divided into six cell chambers by partition walls.
  • Electrode plate Lead powder was used as a raw material of the negative electrode active material.
  • After adding to the lead powder dry mixing was performed. Next, after adding water, the mixture was kneaded.
  • a negative electrode active material paste was prepared by kneading while adding dilute sulfuric acid having a specific gravity of 1.280 little by little.
  • the negative electrode current collector A obtained above was filled with the negative electrode active material paste, it was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the negative electrode plate which has a non-formed negative electrode active material.
  • the positive electrode current collector A obtained above was filled with the positive electrode active material paste, it was aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at temperature 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-formed positive electrode active material.
  • the height H1 of the active material-filled portion (positive electrode active material-filled portion) of the positive electrode plate was 112 mm
  • the width W1 was 143 mm
  • the thickness D1 was 1.6 mm
  • the height H3 from the bottom wall to the upper end of the active material filled portion was 115 mm.
  • the height H1 of the active material filled portion of the negative electrode plate (negative electrode active material filled portion) is 112 mm
  • the width W1 is 142 mm
  • the thickness D1 is 1.2 mm
  • the active material from the bottom wall of the cell chamber is The height H3 to the upper end of the filling portion was 115 mm.
  • Example 1 Comparative Example except that the type of grid was changed, and that the number of electrode plates was changed so that the opposing area of the electrode plates was equivalent to that of Comparative Example 1 when compared in electrode plate group units.
  • a lead storage battery was prepared in the same manner as in 1. Specifically, instead of the positive electrode current collector A and the negative electrode current collector A, a positive electrode current collector B and a negative electrode current collector B are used, the number of positive electrode plates is 7, and the number of negative electrode plates is 8. did.
  • the height H1 of the active material filled portion (positive electrode active material filled portion) of the positive electrode plate was 95.5 mm
  • the width W1 was 143 mm
  • the thickness D1 was 1.5 mm.
  • the height H3 from the bottom wall of the cell chamber to the upper end of the active material filled portion was 96.3 mm.
  • the height H1 of the active material filled portion (negative electrode active material filled portion) of the negative electrode plate is 95.5 mm
  • the width W1 is 142 mm
  • the thickness D1 is 1.2 mm
  • the height H3 to the upper end of the active material filled portion was 96.3 mm.
  • a lead storage battery (charging capacity: 60 Ah, 20-hour rate current: 3 A) that had been charged was placed in a gas tank in which the bath temperature was set to 25 ° C ⁇ 2 ° C.
  • the following cycle units (a) to (c) were set as one cycle, and (a) to (c) were repeated in this order.
  • (A) Discharged at 15 A (corresponding to 5 times the 20-hour rate current) for 1 hour.
  • the discharge lower limit voltage was set to be higher than 10.0V.
  • B The battery was charged with a constant voltage of 14.8 V (a limiting current of 30 A (equivalent to 10 times the 20-hour rate current)) for 175 minutes.
  • C The battery was charged at 7.5 A (corresponding to 2.5 times the 20-hour rate current) for 5 minutes.
  • This test is a cycle test according to the EN standard. In this test, when the voltage of the lead storage battery fell below 10.5 V, it was determined that the life had reached the end, and the cycle characteristics were evaluated by comparing the number of cycles until the end of the life.
  • the number of cycles of the lead storage battery of Comparative Example 1 was 160, and the number of cycles of the lead storage battery of Example 1 was 220.
  • the electrode plate (positive electrode plate) was taken out from the lead storage battery after the cycle test, and the active material filling part was observed.
  • the electrode plate after the cycle test is shown in FIG. (A1) of FIG. 6 is a photograph showing the electrode plate of Comparative Example 1, and (b1) is a photograph showing the electrode plate of Example 1 (both photographs have the same scale).
  • (A2) and (b2) of FIG. 6 are schematic views of the photographs shown in (a1) and (b2), in which the electrode active material falling portion A, the mudified portion B, and the non-mud in the active material filled portion are shown. It is a figure which shows the shaped part (non-deteriorated part) C.

Abstract

An electrode plate 20 for a lead storage cell, provided with: a lattice body 30 equipped with a lattice part 31 and an ear part 32 provided so as to project on one end side of the lattice part 31; and an active material filled part 21 comprising an electrode active material held by the lattice body 30. The length H1 of the active material filled part 21 in the height direction of the lead storage cell is 100 mm or below.

Description

電極板、格子体及び鉛蓄電池Electrode plate, grid and lead acid battery
 本発明は、電極板、格子体及び鉛蓄電池に関するものである。 The present invention relates to an electrode plate, a grid and a lead storage battery.
 鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するシステムを搭載したアイドリングストップシステム車(以下「ISS車」という)の検討が盛んに行われており、鉛蓄電池にもISS車用途に適した特性が求められている。 Lead-acid batteries are widely used for industrial purposes, such as automobile batteries, backup power sources, and main power sources for electric vehicles. In recent years, an idling stop system vehicle (hereinafter referred to as "ISS vehicle") equipped with a system that stops the engine during power generation control, signal waiting, etc. has been actively studied for the purpose of carbon dioxide emission regulation measures, fuel consumption reduction, etc. And lead-acid batteries are required to have characteristics suitable for ISS vehicle applications.
 例えば、ISS車においては、鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用される。鉛蓄電池がPSOC下で使用される場合、完全充電状態で使用される場合よりも、鉛蓄電池の寿命が短くなる傾向にある。したがって、ISS車用の鉛蓄電池には、PSOC下で繰り返し使用された場合でも、寿命等の特性の低下を抑制できることが求められる。 For example, in ISS vehicles, lead-acid batteries are used in a partially charged state called PSOC (Partial State Of Charge). When a lead storage battery is used under PSOC, the life of the lead storage battery tends to be shorter than when it is used in a fully charged state. Therefore, lead acid batteries for ISS vehicles are required to be able to suppress deterioration of characteristics such as life even when repeatedly used under PSOC.
 これに対して、例えば特許文献1には、活物質比表面積が6m/g以上である正極板と、所定の材料が添加された負極板とを備える鉛蓄電池によって、PSOC下での使用における寿命(サイクル性能)を向上させることが開示されている。 On the other hand, for example, in Patent Document 1, a lead-acid battery provided with a positive electrode plate having an active material specific surface area of 6 m 2 / g or more and a negative electrode plate to which a predetermined material is added is used under PSOC. It is disclosed to improve the life (cycle performance).
国際公開第2011/108056号International Publication No. 2011/108056
 しかし、鉛蓄電池のサイクル性能には、未だ改善の余地がある。そこで、本発明は、サイクル性能に優れる鉛蓄電池を提供することを目的とする。また、本発明は、サイクル性能に優れる鉛蓄電池の提供を可能とする、格子体及び電極板を提供することを目的とする。 However, there is still room for improvement in the cycle performance of lead acid batteries. Then, this invention aims at providing the lead acid battery excellent in cycle performance. Another object of the present invention is to provide a grid body and an electrode plate that can provide a lead acid battery having excellent cycle performance.
 本発明者らは、鋭意検討の結果、鉛蓄電池を水平に設置した際の鉛直方向(鉛蓄電池の高さ方向)における電極板の長さが特定の値以下となった場合に、サイクル性能が顕著に向上することを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors have found that when the length of the electrode plate in the vertical direction (the height direction of the lead storage battery) when the lead storage battery is installed horizontally is below a specific value, the cycle performance is The inventors have found that it is remarkably improved and have completed the present invention.
 本発明の一側面は、鉛蓄電池用電極板であって、格子部及び当該格子部の一端側に突出して設けられた耳部を備える格子体と、格子体に保持された電極活物質からなる活物質充填部と、を備え、鉛蓄電池の高さ方向における活物質充填部の長さが、100mm以下である、電極板に関する。 One aspect of the present invention is an electrode plate for a lead storage battery, which includes a lattice body having a lattice portion and an ear portion provided on one end side of the lattice portion, and an electrode active material held by the lattice body. And an active material filling portion, wherein the length of the active material filling portion in the height direction of the lead storage battery is 100 mm or less.
 上記側面の電極板によれば、鉛蓄電池のサイクル性能を向上させることができる。このような効果が得られる理由は、明らかではないが、本発明者らは次のように推察している。 According to the above-mentioned side electrode plate, it is possible to improve the cycle performance of the lead storage battery. The reason why such an effect is obtained is not clear, but the present inventors presume as follows.
 従来の鉛蓄電池では、PSOC下で使用される場合に、電池内の電極板における上部と下部との間で、電解液である希硫酸の濃淡差が生じる成層化現象が起こる。その結果、電極上部のみが集中的に反応するようになり、電極上部の活物質の泥状化が進行して早期に寿命に至る場合がある。一方、本発明では、鉛蓄電池の高さ方向における活物質充填部の長さが上記範囲であることにより、電解液の成層化が抑制され、さらには、電極活物質の利用率が電極板面内で均一化されるため、優れたサイクル性能が得られると推察される。 In conventional lead-acid batteries, when used under PSOC, a stratification phenomenon occurs that causes a difference in the density of dilute sulfuric acid, which is the electrolytic solution, between the upper and lower parts of the electrode plate in the battery. As a result, only the upper part of the electrode reacts intensively, and the active material on the upper part of the electrode may become muddy and reach the end of its life early. On the other hand, in the present invention, since the length of the active material filled portion in the height direction of the lead storage battery is within the above range, stratification of the electrolytic solution is suppressed, and further, the utilization factor of the electrode active material is the electrode plate surface. It is presumed that excellent cycle performance can be obtained because it is homogenized in the interior.
 上記側面の電極板において、活物質充填部の幅は、136mm以上であってよい。この場合、サイクル性能がより向上する傾向がある。 In the electrode plate on the above side surface, the width of the active material filled portion may be 136 mm or more. In this case, cycle performance tends to be further improved.
 上記側面の電極板において、格子体は、鉛、スズ及びカルシウムを含有する合金で形成されていてよい。この合金(Pb-Sn-Ca系合金)を用いた格子体は、サイクル性能の更なる向上に有用である。また、強度の向上、自己放電の低減、保存特性の向上等を図ることができることから、特に、メンテナンスフリータイプの鉛蓄電池用格子体(集電体)として好ましく用いられる。 In the above-mentioned electrode plate on the side surface, the grid may be formed of an alloy containing lead, tin and calcium. A lattice body using this alloy (Pb-Sn-Ca-based alloy) is useful for further improving cycle performance. Further, since it is possible to improve strength, reduce self-discharge, and improve storage characteristics, it is particularly preferably used as a maintenance-free type grid (collector) for a lead storage battery.
 上記側面の電極板において、格子体の耳部は、格子部の中央寄りに位置していてよい。この場合、サイクル性能がより向上する傾向がある。耳部が格子物の中央寄りに位置することで、耳部から最も遠くに位置する活物質までの距離が短くなり、電極活物質の利用率が電極板面内でより均一化され易くなるため、サイクル性能がより向上すると推察される。 In the above-mentioned side electrode plate, the ears of the lattice may be located closer to the center of the lattice. In this case, cycle performance tends to be further improved. Since the ears are located closer to the center of the lattice, the distance from the ears to the furthest active material is shortened, and the utilization rate of the electrode active material is more likely to be uniformized within the electrode plate surface. It is estimated that the cycle performance will be further improved.
 上記側面の電極板において、活物質充填部の幅に対する活物質充填部の高さの比(アスペクト比)は、0.64~0.74であってよい。この場合、サイクル性能がより向上する傾向がある。 In the electrode plate on the above side surface, the ratio of the height of the active material filled portion to the width of the active material filled portion (aspect ratio) may be 0.64 to 0.74. In this case, cycle performance tends to be further improved.
 上記側面の電極板は正極板(正極用の電極板)であってよい。活物質の泥状化は正極で起こりやすいため、上記側面の電極板が正極板に用いられた場合、泥状化抑制によるサイクル性能の向上効果が顕著に得られる。 The electrode plate on the side surface may be a positive electrode plate (electrode plate for positive electrode). If the electrode plate on the side surface is used for the positive electrode plate, the effect of improving the cycle performance due to the suppression of the formation of mud can be remarkably obtained because the active material is likely to be mud-like in the positive electrode.
 上記側面の電極板において、格子体は、エキスパンド格子体であってよい。エキスパンド格子体では活物質の脱落が生じやすいため、格子体がエキスパンド格子体であると、本発明の効果がより顕著に得られる傾向がある。 In the above-mentioned electrode plate on the side surface, the grid body may be an expanded grid body. In the expanded lattice, the active material is likely to fall off. Therefore, when the lattice is the expanded lattice, the effect of the present invention tends to be more remarkable.
 本発明の一側面は、鉛蓄電池の電極板に用いられる格子体であって、格子部及び当該格子部の一端側に突出して設けられた耳部を備え、鉛蓄電池の高さ方向における格子部の長さが、100mm以下である、格子体に関する。 One aspect of the present invention is a grid body used for an electrode plate of a lead storage battery, comprising a grid portion and an ear portion projecting from one end side of the grid portion, and the grid portion in a height direction of the lead storage battery. Relates to a lattice body having a length of 100 mm or less.
 上記側面の格子体における格子部は、電極活物質が充填される部分である。そのため、本発明の格子体を鉛蓄電池の電極板に用いる場合、鉛蓄電池の高さ方向における活物質充填部の長さを容易に100mm以下とすることができる。したがって、本発明の格子体によれば、サイクル性能に優れる鉛蓄電池及び当該鉛蓄電池に用いられる電極板を容易に得ることができる。 The lattice part in the lattice body on the above side is a portion filled with the electrode active material. Therefore, when the grid body of the present invention is used for an electrode plate of a lead storage battery, the length of the active material filled portion in the height direction of the lead storage battery can be easily set to 100 mm or less. Therefore, according to the grid body of the present invention, it is possible to easily obtain a lead storage battery having excellent cycle performance and an electrode plate used for the lead storage battery.
 上記側面の格子体において、格子部の幅は、136mm以上であってよい。この場合、充分な量の電極活物質を充填することが可能となるため、結果として、サイクル性能をより向上させることができる。 In the lattice body on the side surface, the width of the lattice portion may be 136 mm or more. In this case, a sufficient amount of the electrode active material can be filled, and as a result, cycle performance can be further improved.
 上記側面の格子体は、鉛、スズ及びカルシウムを含有する合金で形成されていてよい。この場合、サイクル性能がより向上する傾向があり、また、強度の向上、自己放電の低減、保存特性の向上等を図ることができる。 The grid on the above side may be formed of an alloy containing lead, tin and calcium. In this case, the cycle performance tends to be further improved, and strength can be improved, self-discharge can be reduced, and storage characteristics can be improved.
 上記側面の格子体の耳部は、格子部の中央寄りに位置していてよい。この場合、サイクル性能がより向上する傾向がある。 The ears of the lattice on the side surface may be located closer to the center of the lattice. In this case, cycle performance tends to be further improved.
 上記側面の格子体において、格子部の幅に対する格子部の高さの比(アスペクト比)は、0.64~0.74であってよい。この場合、サイクル性能がより向上する傾向がある。 In the lattice body on the above side surface, the ratio of the height of the lattice portion to the width of the lattice portion (aspect ratio) may be 0.64 to 0.74. In this case, cycle performance tends to be further improved.
 上記側面の格子体は、鉛蓄電池の正極板に用いられる格子体であってよい。活物質の泥状化は正極で起こりやすいため、上記側面の格子体が正極板に用いられた場合、泥状化抑制によるサイクル性能の向上効果が顕著に得られる。 The grid on the side surface may be a grid used for the positive electrode plate of the lead storage battery. Since the active material is likely to be mud-like in the positive electrode, when the lattice on the side surface is used in the positive electrode plate, the effect of suppressing the mud-like improvement in cycle performance is remarkably obtained.
 上記側面の格子体は、エキスパンド格子体であってよい。エキスパンド格子体では活物質の脱落が生じやすいため、格子体がエキスパンド格子体であると、本発明の効果がより顕著に得られる傾向がある。 The lattice on the above-mentioned side may be an expanded lattice. In the expanded lattice, the active material is likely to fall off. Therefore, when the lattice is the expanded lattice, the effect of the present invention tends to be more remarkable.
 本発明の一側面は、上述した電極板、又は、上述した格子体と、当該格子体に保持された電極活物質からなる活物質充填部とを備える電極板を備える、鉛蓄電池に関する。 One aspect of the present invention relates to a lead storage battery including an electrode plate including the above-described electrode plate or the above-described grid, and an active material filling portion made of an electrode active material held by the grid.
 本発明によれば、サイクル性能に優れる鉛蓄電池を提供することができる。また、本発明によれば、サイクル性能に優れる鉛蓄電池の提供を可能とする、格子体及び電極板を提供することができる。 According to the present invention, it is possible to provide a lead storage battery having excellent cycle performance. Further, according to the present invention, it is possible to provide a grid body and an electrode plate that can provide a lead storage battery having excellent cycle performance.
図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead storage battery according to an embodiment. 図2は、図1の鉛蓄電池が備える電極群を示す斜視図である。FIG. 2 is a perspective view showing an electrode group included in the lead storage battery of FIG. 図3は、図2の電極群が備える電極板を示す正面図である。FIG. 3 is a front view showing an electrode plate included in the electrode group of FIG. 図4は、図3の電極板が備える格子体(集電体)を示す正面図である。FIG. 4 is a front view showing a grid body (current collector) included in the electrode plate of FIG. 図5は、図1のV-V線における断面図であって、電極群及びその内部構造を示す図である。FIG. 5 is a cross-sectional view taken along line VV of FIG. 1, showing an electrode group and its internal structure. 図6は、実施例及び比較例のサイクル試験後の電極板を示す写真及びその模式図である。FIG. 6 is a photograph showing the electrode plates after the cycle test of Examples and Comparative Examples and their schematic diagrams.
 以下、図面を適宜参照しながら、本発明の一実施形態について詳細に説明する。なお、本明細書では、鉛蓄電池を水平に設置したときの鉛直方向を鉛蓄電池の高さ方向と定義する。また、水平に設置された鉛蓄電池に収容したときの鉛直方向を、電極板の高さ方向(格子体の高さ方向)と定義する。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In this specification, the vertical direction when the lead storage battery is installed horizontally is defined as the height direction of the lead storage battery. Further, the vertical direction when housed in a horizontally installed lead storage battery is defined as the height direction of the electrode plate (the height direction of the grid body). Further, the numerical range indicated by using "to" indicates the range including the numerical values before and after "to" as the minimum value and the maximum value, respectively.
 図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead storage battery according to an embodiment. As shown in FIG. 1, the lead storage battery 1 includes a battery case 2 having an open top surface and a lid 3 that closes the opening of the battery case 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.
 図1には図示していないが、電槽2の内部は5枚の隔壁によって区切られており、電槽2の内部には、6個のセル室が形成されており、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Although not shown in FIG. 1, the inside of the battery case 2 is divided by five partition walls, and six cell chambers are formed inside the battery case 2, and the electrode group 7 and A negative pole 8 for connecting the electrode group 7 to the negative terminal 4, a positive pole (not shown) for connecting the electrode group 7 to the positive terminal 5, and an electrolytic solution such as dilute sulfuric acid are stored.
 電解液は、希硫酸に加えて、アルミニウムイオンを更に含有するものであってもよい。電解液におけるアルミニウムイオンの濃度は、例えば、0.005mol/L以上であってよく、0.4mol/L以下であってよい。 The electrolytic solution may further contain aluminum ions in addition to dilute sulfuric acid. The concentration of aluminum ions in the electrolytic solution may be, for example, 0.005 mol / L or more and 0.4 mol / L or less.
 図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、電極板である負極板(板状の負極)9及び正極板(板状の正極)10と、負極板9と正極板10との間に配置されたセパレータ11と、を備えている。負極板9は、負極集電体(格子体)12と、負極集電体12に保持された負極活物質(電極活物質)からなる負極活物質充填部(活物質充填部)13と、を備えている。正極板10は、正極集電体(格子体)14と、正極集電体14に保持された正極活物質(電極活物質)からなる正極活物質充填部(活物質充填部)15と、を備えている。本明細書では、化成後の負極から負極集電体を除いたものを「負極活物質」、化成後の正極から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 is arranged between the negative electrode plate (plate-shaped negative electrode) 9 and the positive electrode plate (plate-shaped positive electrode) 10, which are electrode plates, and between the negative electrode plate 9 and the positive electrode plate 10. And a separator 11. The negative electrode plate 9 includes a negative electrode current collector (lattice body) 12 and a negative electrode active material filling portion (active material filling portion) 13 made of a negative electrode active material (electrode active material) held by the negative electrode current collector 12. I have it. The positive electrode plate 10 includes a positive electrode current collector (lattice body) 14 and a positive electrode active material filling portion (active material filling portion) 15 made of a positive electrode active material (electrode active material) held by the positive electrode current collector 14. I have it. In the present specification, the negative electrode after formation and the negative electrode current collector are defined as “negative electrode active material”, and the positive electrode after formation and the positive electrode current collector are defined as “positive electrode active material”.
 電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の負極板9における各負極集電体12及び複数の正極板10における各正極集電体14は、開口面側に突出する負極耳部12a及び正極耳部14aをそれぞれ有している。耳部(負極耳部12a及び正極耳部14a)は、典型的には、水平に設置された鉛蓄電池に電極群7が収容されている状態で、鉛直方向に突出するように設けられる。したがって、典型的には、耳部が突出する方向と鉛蓄電池の高さ方向とは一致する。 The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated with separators 11 in a direction substantially parallel to the opening surface of the battery case 2. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged such that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2. In the electrode group 7, each negative electrode current collector 12 of the plurality of negative electrode plates 9 and each positive electrode current collector 14 of the plurality of positive electrode plates 10 have a negative electrode ear portion 12a and a positive electrode ear portion 14a protruding toward the opening side, respectively. is doing. The ears (the negative electrode ears 12a and the positive electrode ears 14a) are typically provided so as to project in the vertical direction in a state where the electrode group 7 is housed in a horizontally installed lead storage battery. Therefore, typically, the direction in which the ears protrude and the height direction of the lead storage battery coincide with each other.
 複数の負極板9における各負極集電体12が有する負極耳部12a同士は、負極ストラップ16で集合溶接されている。同様に、複数の正極板10における各正極集電体14が有する正極耳部14a同士は、正極ストラップ17で集合溶接されている。図1に示すように、一端のセル室に配置された電極群7において、負極ストラップ16は負極柱8を介して負極端子4に接続されている。同様に、他端のセル室に配置された電極群7において、正極ストラップ17は正極柱を介して正極端子5に接続されている。 The negative electrode ears 12 a of the negative electrode current collectors 12 of the plurality of negative electrode plates 9 are collectively welded by the negative electrode strap 16. Similarly, the positive electrode ear portions 14 a of the positive electrode current collectors 14 of the plurality of positive electrode plates 10 are collectively welded by the positive electrode strap 17. As shown in FIG. 1, in the electrode group 7 arranged in the cell chamber at one end, the negative electrode strap 16 is connected to the negative electrode terminal 4 via the negative electrode column 8. Similarly, in the electrode group 7 arranged in the cell chamber at the other end, the positive electrode strap 17 is connected to the positive electrode terminal 5 via the positive electrode column.
 セパレータ11は、袋状に形成されており、負極板9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed in a bag shape and houses the negative electrode plate 9. The separator 11 is made of, for example, polyethylene (PE), polypropylene (PP) or the like. The separator 11 may be a woven fabric, a non-woven fabric, a porous film, or the like formed of these materials, to which inorganic particles such as SiO 2 or Al 2 O 3 are attached.
 図3は、電極板20(負極板9、正極板10)を示す正面図である。活物質充填部21(負極活物質充填部13、正極活物質充填部15)は、電極板20の高さ方向及び幅方向に広がるように形成されている。活物質充填部21は、電極板20の両主面において露出しており、電極板20を正面から視たときに、略矩形状の外形を有している。 FIG. 3 is a front view showing the electrode plate 20 (negative electrode plate 9, positive electrode plate 10). The active material filling portion 21 (the negative electrode active material filling portion 13 and the positive electrode active material filling portion 15) is formed so as to spread in the height direction and the width direction of the electrode plate 20. The active material filling portion 21 is exposed on both main surfaces of the electrode plate 20, and has a substantially rectangular outer shape when the electrode plate 20 is viewed from the front.
 ここで、電極板20の高さ方向は、水平に設置された鉛蓄電池に電極板20を収容したときに鉛直方向となる方向である。したがって、典型的には、耳部が突出する方向が、電極板20の高さ方向となる。また、電極板20の幅方向は、電極板20の主面に沿う方向のうち、電極板20の高さ方向に直交する方向である。 Here, the height direction of the electrode plate 20 is the direction that is the vertical direction when the electrode plate 20 is housed in a horizontally installed lead storage battery. Therefore, typically, the direction in which the ears project is the height direction of the electrode plate 20. Further, the width direction of the electrode plate 20 is a direction orthogonal to the height direction of the electrode plate 20 among the directions along the main surface of the electrode plate 20.
 活物質充填部21の高さH1は、100mm以下である。活物質充填部21の高さH1は、鉛蓄電池1の高さ方向における活物質充填部21の長さであり、典型的には耳部が突出する方向における長さである。活物質充填部21の高さH1が100mm以下であるため、鉛蓄電池1は優れたサイクル性能を示す。 The height H1 of the active material filling portion 21 is 100 mm or less. The height H1 of the active material filling portion 21 is the length of the active material filling portion 21 in the height direction of the lead storage battery 1, and is typically the length in the direction in which the ears project. Since the height H1 of the active material filling portion 21 is 100 mm or less, the lead storage battery 1 exhibits excellent cycle performance.
 高さH1は、より優れたサイクル性能が得られる観点から、99mm以下、98mm以下又は97mm以下であってもよい。高さH1は、より優れたサイクル性能が得られる観点から、94mm以上又は95mm以上であってよい。上述の上限値及び下限値は任意に組み合わせてよい。すなわち、高さH1は、94~100mm、95~100mm、94~99mm、95~99mm、94~98mm、95~98mm、94~97mm又は95~97mmであってよい。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 The height H1 may be 99 mm or less, 98 mm or less, or 97 mm or less from the viewpoint of obtaining more excellent cycle performance. The height H1 may be 94 mm or more or 95 mm or more from the viewpoint of obtaining more excellent cycle performance. The upper limit value and the lower limit value described above may be arbitrarily combined. That is, the height H1 may be 94-100 mm, 95-100 mm, 94-99 mm, 95-99 mm, 94-98 mm, 95-98 mm, 94-97 mm or 95-97 mm. In addition, in the following similar description, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 高さH1は、例えば、活物質充填部21の上端(耳部側の端部)から下端(耳部とは反対側の端部)までの長さを測定することで求められる。測定箇所によって高さH1が異なる場合、高さH1の最大値が100mm以下であればよい。本実施形態では、全ての測定箇所において、高さH1が上述の範囲内となることが好ましい。 The height H1 is obtained, for example, by measuring the length from the upper end (end on the ear side) to the lower end (end on the side opposite to the ear) of the active material filling portion 21. When the height H1 differs depending on the measurement location, the maximum value of the height H1 may be 100 mm or less. In the present embodiment, it is preferable that the height H1 be within the above range at all measurement points.
 活物質充填部21の幅(電極板20の幅方向における活物質充填部21の長さ)W1は、より優れたサイクル性能が得られる観点から、好ましくは136mm以上である。同様の観点から、幅W1は、140mm以上又は142mm以上であってよい。幅W1の上限は、特に限定されないが、例えば、145mm以下、144mm以下又は143mm以下であってよい。 The width W1 of the active material filled portion 21 (the length of the active material filled portion 21 in the width direction of the electrode plate 20) W1 is preferably 136 mm or more from the viewpoint of obtaining better cycle performance. From the same viewpoint, the width W1 may be 140 mm or more or 142 mm or more. The upper limit of the width W1 is not particularly limited, but may be, for example, 145 mm or less, 144 mm or less, or 143 mm or less.
 幅W1は、例えば、活物質充填部21の幅方向の一端から他端までの長さを測定することで求められる。測定箇所によって幅W1が異なる場合、幅W1の最小値が136mm以上であることが好ましい。本実施形態では、全ての測定箇所において、幅W1が上述の範囲内となることが好ましい。 The width W1 is obtained, for example, by measuring the length of the active material filling portion 21 from one end to the other end in the width direction. When the width W1 differs depending on the measurement location, the minimum value of the width W1 is preferably 136 mm or more. In the present embodiment, it is preferable that the width W1 be within the above range at all measurement points.
 本実施形態では、正極板の活物質充填部及び負極板の活物質充填部の両方が上記範囲を満たすことが好ましい。正極板の活物質充填部の幅と負極板の活物質充填部の幅とは互いに異なっていてもよい。セパレータとして袋状のセパレータを用いる場合、袋状のセパレータに収容する電極板の活物質充填部の幅を袋状のセパレータに収容しない電極板の活物質充填部の幅よりも小さくしてよい。 In the present embodiment, it is preferable that both the active material filling portion of the positive electrode plate and the active material filling portion of the negative electrode plate satisfy the above range. The width of the active material filled portion of the positive electrode plate and the width of the active material filled portion of the negative electrode plate may be different from each other. When a bag-shaped separator is used as the separator, the width of the active material filled portion of the electrode plate accommodated in the bag-shaped separator may be smaller than the width of the active material filled portion of the electrode plate not accommodated in the bag-shaped separator.
 活物質充填部21の幅W1に対する活物質充填部21の高さH1の比(アスペクト比、H1/W1)は、より優れたサイクル性能が得られる観点から、好ましくは、0.74以下であり、0.71以下又は0.70以下であってもよい。上記アスペクト比(H1/W1)は、より優れたサイクル性能が得られる観点から、好ましくは、0.64以上であり、0.65以上又は0.66以上であってもよい。 The ratio of the height H1 of the active material filled portion 21 to the width W1 of the active material filled portion 21 (aspect ratio, H1 / W1) is preferably 0.74 or less from the viewpoint of obtaining more excellent cycle performance. , 0.71 or less, or 0.70 or less. The aspect ratio (H1 / W1) is preferably 0.64 or more, and may be 0.65 or more or 0.66 or more, from the viewpoint of obtaining more excellent cycle performance.
 電極板20の両主面において、活物質充填部21の外形が異なる場合、両主面における、高さH1及び幅W1が上記範囲であることが好ましい。 When the outer shapes of the active material filled portions 21 are different on both main surfaces of the electrode plate 20, it is preferable that the height H1 and the width W1 on both main surfaces are within the above ranges.
 活物質充填部21の厚さ(積層方向の長さ)D1は、例えば、1.0~1.9mmであってよい。活物質充填部21の厚さD1の範囲は正極板と負極板とで異なっていてよい。例えば、正極板の活物質充填部21の厚さD1は、1.4mm以上又は1.5mm以上であってよく、1.9mm以下又は1.8mm以下であってよい。例えば、負極板の活物質充填部21の厚さD1は、1.0mm以上、1.1mm以上又は1.2mm以上であってよく、1.8mm以下、1.7mm以下、1.6mm以下又は1.4mm以下であってよい。 The thickness (length in the stacking direction) D1 of the active material filled portion 21 may be, for example, 1.0 to 1.9 mm. The range of the thickness D1 of the active material filled portion 21 may be different between the positive electrode plate and the negative electrode plate. For example, the thickness D1 of the active material filled portion 21 of the positive electrode plate may be 1.4 mm or more or 1.5 mm or more, and may be 1.9 mm or less or 1.8 mm or less. For example, the thickness D1 of the active material filled portion 21 of the negative electrode plate may be 1.0 mm or more, 1.1 mm or more, or 1.2 mm or more, 1.8 mm or less, 1.7 mm or less, 1.6 mm or less, or It may be 1.4 mm or less.
 活物質充填部を構成する電極活物質は、負極活物質又は正極活物質である。負極活物質は、Pb成分としてPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤(負極添加剤)を更に含んでいてよい。正極活物質は、Pb成分としてPbOを含み、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤(正極添加剤)を更に含んでいてよい。 The electrode active material forming the active material filling portion is a negative electrode active material or a positive electrode active material. The negative electrode active material contains Pb as a Pb component, and may further contain a Pb component other than Pb (for example, PbSO 4 ) and an additive (negative electrode additive), if necessary. The positive electrode active material contains PbO 2 as a Pb component, and may further contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive (positive electrode additive), if necessary.
 負極添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。 Examples of the negative electrode additive include a resin having a sulfo group and / or a sulfonate group, barium sulfate, a carbon material (excluding carbon fiber), and reinforcing short fibers (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, Carbon fiber).
 スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 The resin having a sulfo group and / or a sulfonate group is a lignin sulfonic acid, a lignin sulfonate, and a condensate of a phenol, an aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
 正極添加剤としては、例えば、炭素材料及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of positive electrode additives include carbon materials and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, etc.). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
 図4は、格子体30(負極集電体12、正極集電体14)を示す正面図である。格子体30は、エキスパンド方式によって製造されるエキスパンド格子体である。格子体30がエキスパンド格子体であることで、本発明の効果がより顕著に得られる傾向がある。また、エキスパンド方式によれば、格子体の高さの調整が容易となり、製造コストを低減できる。 FIG. 4 is a front view showing the grid 30 (negative electrode current collector 12, positive electrode current collector 14). The lattice body 30 is an expanded lattice body manufactured by the expanding method. When the lattice body 30 is an expanded lattice body, the effect of the present invention tends to be more remarkably obtained. Further, according to the expanding method, the height of the lattice body can be easily adjusted, and the manufacturing cost can be reduced.
 格子体30は、格子部31と、当該格子部31の一端側に突出して設けられた耳部32とを備えている。格子部31の上部には、上枠部33が設けられており、格子部31の下部には、下枠部34が設けられている。耳部32は、上枠部33の一部から上方(格子部31及び下枠部34と反対側)に、上枠部33の長手方向と略垂直に突出している。耳部32は、格子体30の正面から視て格子部31の中央寄りに位置する。「中央寄り」とは、格子部31の幅方向の中央からの最短距離が格子部31の幅Wの1/4未満であることを意味する。 The lattice body 30 includes a lattice portion 31 and an ear portion 32 provided so as to project from one end side of the lattice portion 31. An upper frame portion 33 is provided above the lattice portion 31, and a lower frame portion 34 is provided below the lattice portion 31. The ear portion 32 projects upward from a part of the upper frame portion 33 (on the side opposite to the lattice portion 31 and the lower frame portion 34) substantially perpendicular to the longitudinal direction of the upper frame portion 33. The ear portion 32 is located closer to the center of the lattice portion 31 when viewed from the front of the lattice body 30. “Toward the center” means that the shortest distance from the center in the width direction of the lattice portion 31 is less than ¼ of the width W of the lattice portion 31.
 格子部31は、活物質が充填される部分であり、格子状に配置された格子骨31aと、格子骨31aによって画成される開口31bとを有している。格子部31は、正面から見て、略矩形状(例えば、長方形状又は正方形状)の外形を有している。 The lattice portion 31 is a portion filled with the active material, and has lattice bones 31a arranged in a lattice shape and openings 31b defined by the lattice bones 31a. The lattice portion 31 has a substantially rectangular (eg, rectangular or square) outer shape when viewed from the front.
 格子体30の高さHは、例えば、104mm以下、103mm以下、102mm以下又は101mm以下であってよく、98mm以上又は99mm以上であってよい。ここで、格子体30の高さとは、下枠部34の下端(耳部とは反対側の端部)から上枠部33の上端(耳部側の端部)までの長さを測定することで求められる。なお、格子体30の高さ方向は電極板20の高さ方向に一致する。したがって、格子体30の高さは、鉛蓄電池1の高さ方向における格子体30の長さといいかえてよく、典型的には、耳部32が突出する方向における長さである。また、格子体30の高さと電極板20の高さは一致する。すなわち、電極板20の高さは上述した格子体30の高さHと同じ範囲であってよい。 The height H of the lattice 30 may be, for example, 104 mm or less, 103 mm or less, 102 mm or less, or 101 mm or less, and may be 98 mm or more or 99 mm or more. Here, the height of the lattice 30 is measured from the lower end of the lower frame portion 34 (the end portion on the side opposite to the ear portion) to the upper end portion of the upper frame portion 33 (the end portion on the ear portion side). Required by that. The height direction of the grid body 30 matches the height direction of the electrode plate 20. Therefore, the height of the grid body 30 may be called the length of the grid body 30 in the height direction of the lead storage battery 1, and is typically the length in the direction in which the ears 32 project. Further, the height of the grid body 30 and the height of the electrode plate 20 are the same. That is, the height of the electrode plate 20 may be in the same range as the height H of the grid body 30 described above.
 測定箇所によって高さHが異なる場合、高さHの最大値が104mm以下であることが好ましい。本実施形態では、全ての測定箇所において、高さHが上述の範囲内となることが好ましい。 When the height H differs depending on the measurement location, it is preferable that the maximum value of the height H is 104 mm or less. In the present embodiment, it is preferable that the height H be within the above range at all measurement points.
 格子部31の高さH2は、上記のような高さH1を有する活物質充填部21が容易に得られる観点から、100mm以下、99mm以下、98mm以下又は97mm以下であってよく、94mm以上又は95mm以上であってよい。すなわち、高さH2は、94~100mm、95~100mm、94~99mm、95~99mm、94~98mm、95~98mm、94~97mm又は95~97mmであってよい。 The height H2 of the lattice portion 31 may be 100 mm or less, 99 mm or less, 98 mm or less, or 97 mm or less, from the viewpoint of easily obtaining the active material filling portion 21 having the height H1 as described above, 94 mm or more, or It may be 95 mm or more. That is, the height H2 may be 94-100 mm, 95-100 mm, 94-99 mm, 95-99 mm, 94-98 mm, 95-98 mm, 94-97 mm or 95-97 mm.
 高さH2は、格子骨31aの末端を結ぶ仮想線によって画定される領域の高さ(例えば、格子部31の上端(耳部側の端部)から下端(耳部とは反対側の端部)までの長さ)を測定することで求められる。 The height H2 is the height of an area defined by an imaginary line connecting the ends of the lattice bones 31a (for example, from the upper end (end on the ear side) to the lower end (end on the side opposite to the ear). ) Up to)) is measured.
 測定箇所によって高さH2が異なる場合、高さH2の最大値が100mm以下であることが好ましい。本実施形態では、全ての測定箇所において、高さH2が上述の範囲内となることが好ましい。 If the height H2 differs depending on the measurement location, it is preferable that the maximum value of the height H2 is 100 mm or less. In the present embodiment, it is preferable that the height H2 be within the above range at all measurement points.
 格子部31の幅W2は、上記のような幅W1を有する活物質充填部が容易に得られる観点から、136mm以上、140mm以上又は142mm以上であってよく、145mm以下、144mm以下又は143mm以下であってよい。なお、格子部31の幅W2とは、格子体30の幅方向(格子体30の主面に沿う方向のうち、格子体30の高さ方向に直交する方向)における格子部の長さである。 The width W2 of the lattice portion 31 may be 136 mm or more, 140 mm or more or 142 mm or more, from the viewpoint of easily obtaining the active material-filled portion having the width W1 as described above, and may be 145 mm or less, 144 mm or less or 143 mm or less. You can The width W2 of the lattice portion 31 is the length of the lattice portion in the width direction of the lattice body 30 (the direction along the main surface of the lattice body 30 which is orthogonal to the height direction of the lattice body 30). ..
 幅W2は、格子骨31aの末端を結ぶ仮想線によって画定される領域の幅(例えば、格子部31の幅方向の一端から他端までの長さ)を測定することで求められる。測定箇所によって幅W2が異なる場合、幅W2の最小値が136mm以上であることが好ましい。本実施形態では、全ての測定箇所において、幅W2が上述の範囲内となることが好ましい。 The width W2 is obtained by measuring the width of a region defined by an imaginary line connecting the ends of the lattice bones 31a (for example, the length from one end to the other end of the lattice portion 31 in the width direction). When the width W2 differs depending on the measurement location, the minimum value of the width W2 is preferably 136 mm or more. In the present embodiment, it is preferable that the width W2 be within the above range at all measurement points.
 格子部31の幅W2に対する格子部31の高さH2の比(アスペクト比、H2/W2)は、より優れたサイクル性能が得られる観点から、好ましくは、0.74以下であり、0.71以下又は0.70以下であってもよい。上記アスペクト比(H2/W2)は、より優れたサイクル性能が得られる観点から、好ましくは、0.64以上であり、0.65以上又は0.66以上であってもよい。 The ratio of the height H2 of the lattice portion 31 to the width W2 of the lattice portion 31 (aspect ratio, H2 / W2) is preferably 0.74 or less and 0.71 from the viewpoint of obtaining more excellent cycle performance. It may be less than or equal to 0.70. The aspect ratio (H2 / W2) is preferably 0.64 or more, and may be 0.65 or more or 0.66 or more, from the viewpoint of obtaining more excellent cycle performance.
 格子体30の両主面において、格子部31の外形が異なる場合、両主面における、高さH2及び幅W2が上記範囲であることが好ましい。 When the outer shapes of the lattice portions 31 are different on both main surfaces of the lattice body 30, it is preferable that the height H2 and the width W2 on the both main surfaces are within the above ranges.
 格子部31の厚さ(積層方向の長さ)D2は、上記のような厚さD1を有する活物質充填部21が容易に得られる観点から、例えば、0.7~1.6mmであってよい。格子部31の厚さD2の範囲は正極の格子体(正極集電体)と負極の格子体(負極集電体)とで異なっていてよい。例えば、正極集電体の格子部31の厚さD2は、1.1mm以上又は1.2mm以上であってよく、1.6mm以下又は1.4mm以下であってよい。例えば、負極集電体の格子部31の厚さD2は、0.7mm以上、0.8mm以上又は0.9mm以上であってよく、1.3mm以下、1.2mm以下又は1.1mm以下であってよい。上記厚さは、例えば、格子部の交点の厚さである。 The thickness (length in the stacking direction) D2 of the lattice portion 31 is, for example, 0.7 to 1.6 mm from the viewpoint of easily obtaining the active material filled portion 21 having the thickness D1 as described above. Good. The range of the thickness D2 of the grid portion 31 may be different between the positive electrode grid body (positive electrode current collector) and the negative electrode grid body (negative electrode current collector). For example, the thickness D2 of the grid portion 31 of the positive electrode current collector may be 1.1 mm or more or 1.2 mm or more, and may be 1.6 mm or less or 1.4 mm or less. For example, the thickness D2 of the grid portion 31 of the negative electrode current collector may be 0.7 mm or more, 0.8 mm or more, or 0.9 mm or more, and 1.3 mm or less, 1.2 mm or less, or 1.1 mm or less. You can The thickness is, for example, the thickness of the intersection of the lattice portions.
 格子体30(負極集電体12、正極集電体14)は、例えば、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb-Sn-Ca系合金)であってよい。 The grid body 30 (the negative electrode current collector 12 and the positive electrode current collector 14) is made of, for example, a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead, and specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy).
 以上説明した格子体30は、格子体30を形成するためのシート(基材)の大きさ(高さ、幅及び厚さ)、エキスパンド方式によって上記シートを引き伸ばす際に加える力、エキスパンド格子体作製時のスリットの数等を調整することで製造可能である。 The lattice body 30 described above includes the size (height, width and thickness) of the sheet (base material) for forming the lattice body 30, the force applied when the sheet is stretched by the expanding method, the production of the expanded lattice body. It can be manufactured by adjusting the number of slits and the like.
 図5は、図1のV-V線における断面図であって、電極群及びその内部構造を示す図である。本実施形態では、電槽2の各セル室において、セル室の底壁2aから活物質充填部21の上端(耳部側の端部)までの高さH3が101mm以下となるように、電極板20(電極群7)がセル室に収容されていることが好ましい。高さH3が101mm以下である場合、より優れたサイクル性能が得られる傾向がある。同様の観点から、高さH3は、100mm以下、99mm以下又は98mm以下であってもよい。高さH3は、より優れたサイクル性能が得られる観点から、95mm以上又は96mm以上であってよい。 FIG. 5 is a cross-sectional view taken along the line VV of FIG. 1, showing an electrode group and its internal structure. In the present embodiment, in each cell chamber of the battery case 2, the electrode is set so that the height H3 from the bottom wall 2a of the cell chamber to the upper end (end portion on the ear side) of the active material filling portion 21 is 101 mm or less. The plate 20 (electrode group 7) is preferably housed in the cell chamber. When the height H3 is 101 mm or less, more excellent cycle performance tends to be obtained. From the same viewpoint, the height H3 may be 100 mm or less, 99 mm or less, or 98 mm or less. The height H3 may be 95 mm or more or 96 mm or more from the viewpoint of obtaining more excellent cycle performance.
 以上説明した鉛蓄電池1は、アイドリングストップシステム車用、又は、マイクロハイブリッド車用の鉛蓄電池として好適に用いられる。すなわち、本発明の一実施形態は、上述した鉛蓄電池1のアイドリングストップシステム車への応用、又は、マイクロハイブリッド車への応用である。 The lead storage battery 1 described above is preferably used as a lead storage battery for idling stop system vehicles or micro hybrid vehicles. That is, one embodiment of the present invention is an application of the above-described lead storage battery 1 to an idling stop system vehicle or a micro hybrid vehicle.
 鉛蓄電池1は、例えば、電極板(負極板及び正極板)を得る電極板製造工程と、電極板を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備える製造方法により製造される。 The lead storage battery 1 is manufactured, for example, by a manufacturing method including an electrode plate manufacturing process for obtaining an electrode plate (a negative electrode plate and a positive electrode plate) and an assembly process for assembling the constituent members including the electrode plate to obtain the lead storage battery 1.
 電極板製造工程では、例えば、格子体30(負極集電体12、正極集電体14)に活物質ペースト(負極活物質ペースト、正極活物質ペースト)を保持させた後に、熟成及び乾燥することにより、未化成の電極活物質(負極活物質、正極活物質)を備える電極板(負極板、正極板)を得る。この際、負極集電体12及び正極集電体14として、上述した格子体30を用いることで、容易に実施形態の電極板20(負極板9及び正極板10)を得ることができる。 In the electrode plate manufacturing process, for example, after the grid material 30 (the negative electrode current collector 12 and the positive electrode current collector 14) holds the active material paste (negative electrode active material paste, positive electrode active material paste), aging and drying Thus, an electrode plate (negative electrode plate, positive electrode plate) including an unformed electrode active material (negative electrode active material, positive electrode active material) is obtained. At this time, by using the above-mentioned grid 30 as the negative electrode current collector 12 and the positive electrode current collector 14, the electrode plate 20 (the negative electrode plate 9 and the positive electrode plate 10) of the embodiment can be easily obtained.
 活物質ペースト(負極活物質ペースト、正極活物質ペースト)は、例えば、鉛粉、添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。 The active material paste (negative electrode active material paste, positive electrode active material paste) contains, for example, lead powder, an additive, a solvent (eg water or an organic solvent) and sulfuric acid (eg dilute sulfuric acid). The active material paste is obtained, for example, by mixing lead powder and an additive to obtain a mixture, and then kneading the mixture with a solvent and sulfuric acid.
 鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。 As the lead powder, for example, a lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of a powder of the main component PbO and scale-like metallic lead). ) Is mentioned.
 格子体30に活物質ペーストを保持させる際には、格子体30の格子部31の全体に活物質ペーストを充填することが望ましいが、格子部31の一部に活物質ペーストが充填されない部分が存在してもよい。この場合、活物質ペーストが充填された部分のみが活物質充填部21を形成する。 When the grid material 30 holds the active material paste, it is desirable to fill the entire grid portion 31 of the grid material 30 with the active material paste, but there is a portion of the grid portion 31 where the active material paste is not filled. May exist. In this case, only the portion filled with the active material paste forms the active material filling portion 21.
 熟成は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間行われてよい。乾燥は、温度45~80℃で15~30時間行われてよい。 Aging may be carried out in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH% for 15 to 60 hours. The drying may be performed at a temperature of 45 to 80 ° C. for 15 to 30 hours.
 組立工程では、例えば、得られた未化成の電極板(未化成の負極板及び未化成の正極板)を、セパレータ11を介して積層し、同極性の電極板の耳部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。化成に用いる硫酸の比重(20℃)は、1.15~1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25~1.33、より好ましくは1.26~1.30である。化成条件及び硫酸の比重は、電極板のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、電極板製造工程において実施されてもよい(タンク化成)。 In the assembly step, for example, the obtained unformed electrode plates (unformed negative electrode plate and unformed positive electrode plate) are laminated via the separator 11, and the ears of the electrode plates of the same polarity are welded with straps. To obtain an electrode group. This electrode group is arranged in a battery case to produce an unformed lead storage battery. Next, dilute sulfuric acid is put into an unformed lead storage battery, and a direct current is passed to form a battery case. Subsequently, the lead acid battery 1 is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion to an appropriate specific gravity of the electrolytic solution. The specific gravity (20 ° C.) of sulfuric acid used for chemical conversion may be 1.15 to 1.25. The specific gravity (20 ° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode plate. The chemical conversion treatment may be performed in the assembly process or the electrode plate manufacturing process (tank formation).
 以上、本発明の鉛蓄電池、電極板、格子体及びそれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。 The above has described one embodiment of the lead storage battery, the electrode plate, the grid body, and the manufacturing method thereof according to the present invention, but the present invention is not limited to the above embodiment.
 上記実施形態では、鉛蓄電池1は液式鉛蓄電池であり、少なくとも電極活物質充填部全体が電解液に浸かる(例えば、電解液の液面がストラップ上部となる)ように構成されているが、他の一実施形態では、鉛蓄電池は、制御弁式鉛蓄電池、密閉式鉛蓄電池等であってもよい。 In the above embodiment, the lead storage battery 1 is a liquid lead storage battery, and is configured such that at least the entire electrode active material filled portion is immersed in the electrolyte solution (for example, the liquid surface of the electrolyte solution is the upper portion of the strap). In another embodiment, the lead acid battery may be a valve regulated lead acid battery, a sealed lead acid battery, or the like.
 また、上記実施形態では、鉛蓄電池1は例えば自動車用鉛蓄電池であり、直流電圧12Vを昇圧又は降圧して駆動するため、6個の極板群を直列に接続している。すなわち、セル室の数が6個であり、2V×6=12Vとしている。鉛蓄電池1を他の用途で用いる場合は、セル室の数は6個でなくてもよい。 Further, in the above embodiment, the lead storage battery 1 is, for example, a lead storage battery for automobiles, and is driven by stepping up or stepping down the DC voltage 12V, and therefore six electrode plate groups are connected in series. That is, the number of cell chambers is 6, and 2V × 6 = 12V. When the lead storage battery 1 is used for other purposes, the number of cell chambers need not be six.
 また、鉛蓄電池が備える正極板の少なくとも一部が上記電極板20であることが好ましく、正極板の少なくとも一部及び負極板の少なくとも一部が上記電極板20であることがより好ましいが、鉛蓄電池が備える電極板の一部が電極板20とは異なる構成であってもよい。また、全ての電極板(負極板9、正極板10)が上述した電極板20であってもよい。 Further, it is preferable that at least a part of the positive electrode plate included in the lead storage battery is the electrode plate 20, and it is more preferable that at least a part of the positive electrode plate and at least a part of the negative electrode plate are the electrode plate 20. A part of the electrode plate included in the storage battery may be different from the electrode plate 20. Further, all the electrode plates (the negative electrode plate 9 and the positive electrode plate 10) may be the electrode plates 20 described above.
 また、上記実施形態では、負極板9が袋状のセパレータ11に収容されているが、正極板10が袋状のセパレータ11に収容されていてもよい。また、セパレータ11の形状は袋状以外の形状(例えばシート状)であってもよい。 Further, in the above embodiment, the negative electrode plate 9 is housed in the bag-shaped separator 11, but the positive electrode plate 10 may be housed in the bag-shaped separator 11. The shape of the separator 11 may be a shape other than the bag shape (for example, a sheet shape).
 また、上記実施形態では、格子体がエキスパンド格子体であるが、格子体は他の製法により製造される格子体であってもよい。格子体は、例えば、パンチング方式により製造されるパンチング格子体であってもよい。 In addition, in the above-described embodiment, the lattice body is an expanded lattice body, but the lattice body may be a lattice body manufactured by another manufacturing method. The lattice body may be, for example, a punching lattice body manufactured by a punching method.
 以下、実施例により本発明を具体的に説明するが、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
(格子体の作製)
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより格子体として、正極集電体A及びB、並びに、負極集電体A及びBを作製した。
(Production of lattice)
A rolled sheet made of a lead alloy was subjected to an expanding process to prepare positive electrode current collectors A and B and negative electrode current collectors A and B as a grid.
 正極集電体Aの高さは116mmであり、格子部の高さH2は112mmであり、幅W2は143mmであり、厚さD2は1.5mmであった。また、負極集電体Aの高さは116mmであり、格子部の高さH2は112mmであり、幅W2は142mmであり、厚さD2は1.0mmであった。 The height of the positive electrode current collector A was 116 mm, the height H2 of the lattice portion was 112 mm, the width W2 was 143 mm, and the thickness D2 was 1.5 mm. Further, the height of the negative electrode current collector A was 116 mm, the height H2 of the lattice portion was 112 mm, the width W2 was 142 mm, and the thickness D2 was 1.0 mm.
 正極集電体Bの高さHは99.5mmであり、格子部の高さH2は95.5mmであり、幅W2は143mmであり、厚さD2は1.4mmであった。また、負極集電体Bの高さHは99.5mmであり、格子部の高さH2は95.5mmであり、幅W2は142mmであり、厚さD2は1.0mmであった。 The height H of the positive electrode current collector B was 99.5 mm, the height H2 of the lattice portion was 95.5 mm, the width W2 was 143 mm, and the thickness D2 was 1.4 mm. The height H of the negative electrode current collector B was 99.5 mm, the height H2 of the lattice portion was 95.5 mm, the width W2 was 142 mm, and the thickness D2 was 1.0 mm.
<比較例1>
(電槽の準備)
 上面が開放された箱体からなり、内部が隔壁によって6つのセル室に区切られた電槽を準備した。
<Comparative Example 1>
(Preparation of battery case)
A battery case was prepared, which consisted of a box whose upper surface was open and whose interior was divided into six cell chambers by partition walls.
(負極板の作製)
 負極活物質の原料として鉛粉を用いた。リグニンスルホン酸ナトリウム(日本製紙株式会社製、商品名:バニレックスN)、炭素材料(比表面積0.9m2/gの黒鉛)、ポリエチレンテレフタレート繊維(カットファイバー、繊維長:3mm)及び硫酸バリウムの混合物を鉛粉に添加した後に乾式混合した。次に、水を加えた後に混練した。続いて、比重1.280の希硫酸を少量ずつ添加しながら混練して、負極活物質ペーストを作製した。
(Preparation of negative electrode plate)
Lead powder was used as a raw material of the negative electrode active material. A mixture of sodium lignin sulfonate (manufactured by Nippon Paper Industries Co., Ltd., trade name: Vanillex N), carbon material (graphite having a specific surface area of 0.9 m2 / g), polyethylene terephthalate fiber (cut fiber, fiber length: 3 mm) and barium sulfate. After adding to the lead powder, dry mixing was performed. Next, after adding water, the mixture was kneaded. Subsequently, a negative electrode active material paste was prepared by kneading while adding dilute sulfuric acid having a specific gravity of 1.280 little by little.
 上記で得られた負極集電体Aの格子部に、負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の負極活物質を有する負極板を作製した。 After the negative electrode current collector A obtained above was filled with the negative electrode active material paste, it was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the negative electrode plate which has a non-formed negative electrode active material.
(正極板の作製)
 鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、得られた鉛粉を含む混合物に対して、水3質量%及び希硫酸(比重1.55)30質量%を加えて1時間混練して正極活物質ペーストを作製した。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸(比重1.55)の添加は段階的に行った。なお、水及び希硫酸の配合量は、鉛粉及び補強用短繊維の全質量を基準とした配合量である。
(Preparation of positive electrode plate)
Acrylic fiber 0.25 mass% (based on the total mass of the lead powder) was added to the lead powder as a reinforcing short fiber and dry-mixed. Next, 3 mass% of water and 30 mass% of dilute sulfuric acid (specific gravity 1.55) were added to the obtained mixture containing lead powder, and the mixture was kneaded for 1 hour to prepare a positive electrode active material paste. In preparing the positive electrode active material paste, dilute sulfuric acid (specific gravity 1.55) was added stepwise in order to avoid a rapid temperature rise. The blending amounts of water and dilute sulfuric acid are based on the total mass of the lead powder and the reinforcing short fibers.
 上記で得られた正極集電体Aの格子部に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極活物質を有する正極板を作製した。 After the positive electrode current collector A obtained above was filled with the positive electrode active material paste, it was aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried at temperature 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-formed positive electrode active material.
(電池の組み立て)
 袋状に加工したポリエチレン製のセパレータに未化成の負極板を挿入した。次に、未化成の正極板6枚と、袋状セパレータに挿入された未化成の負極板7枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して極板群(電極群)を作製した。この極板群を6つ用意し、電槽に挿入してEN規格の12Vセル電池を組み立てた。その後、上記で調製した電解液をストラップが浸かる高さまで注入し、10.4Aにて20時間の定電流で化成を行った。化成後の電解液の比重は、1.28になるように調整した。これにより比較例1の鉛蓄電池を得た。
(Battery assembly)
An unformed negative electrode plate was inserted into a bag-shaped polyethylene separator. Next, six unformed positive electrode plates and seven unformed negative electrode plates inserted in the bag-shaped separator were alternately laminated. Then, a cast-on-strap (COS) method was used to weld the ears of the electrode plates of the same polarity to each other to prepare a plate group (electrode group). Six of the electrode plate groups were prepared and inserted into a battery case to assemble an EN-standard 12V cell battery. Then, the electrolytic solution prepared above was injected to a height at which the strap was immersed, and chemical formation was performed at 10.4 A at a constant current for 20 hours. The specific gravity of the electrolytic solution after chemical conversion was adjusted to 1.28. Thereby, a lead storage battery of Comparative Example 1 was obtained.
 比較例1の鉛蓄電池における、正極板の活物質充填部(正極活物質充填部)の高さH1は112mmであり、幅W1は143mmであり、厚さD1は1.6mmであり、セル室の底壁から活物質充填部上端までの高さH3は115mmであった。また、負極板の活物質充填部(負極活物質充填部)の高さH1は112mmであり、幅W1は142mmであり、厚さD1は1.2mmであり、セル室の底壁から活物質充填部上端までの高さH3は115mmであった。 In the lead acid battery of Comparative Example 1, the height H1 of the active material-filled portion (positive electrode active material-filled portion) of the positive electrode plate was 112 mm, the width W1 was 143 mm, and the thickness D1 was 1.6 mm. The height H3 from the bottom wall to the upper end of the active material filled portion was 115 mm. Further, the height H1 of the active material filled portion of the negative electrode plate (negative electrode active material filled portion) is 112 mm, the width W1 is 142 mm, the thickness D1 is 1.2 mm, and the active material from the bottom wall of the cell chamber is The height H3 to the upper end of the filling portion was 115 mm.
<実施例1>
 格子体の種類を変更したこと、及び、極板群単位で比較したときに、電極板の対抗面積が比較例1と同等となるように、電極板の枚数を変更したこと以外は、比較例1と同様にして鉛蓄電池を作製した。具体的には、正極集電体A及び負極集電体Aに代えて正極集電体B及び負極集電体Bを用い、正極板の枚数を7枚とし、負極板の枚数を8枚とした。
<Example 1>
Comparative Example except that the type of grid was changed, and that the number of electrode plates was changed so that the opposing area of the electrode plates was equivalent to that of Comparative Example 1 when compared in electrode plate group units. A lead storage battery was prepared in the same manner as in 1. Specifically, instead of the positive electrode current collector A and the negative electrode current collector A, a positive electrode current collector B and a negative electrode current collector B are used, the number of positive electrode plates is 7, and the number of negative electrode plates is 8. did.
 実施例1の鉛蓄電池における、正極板の活物質充填部(正極活物質充填部)の高さH1は95.5mmであり、幅W1は143mmであり、厚さD1は1.5mmであり、セル室の底壁から活物質充填部上端までの高さH3は96.3mmであった。また、負極板の活物質充填部(負極活物質充填部)の高さH1は95.5mmであり、幅W1は142mmであり、厚さD1は1.2mmであり、セル室の底壁から活物質充填部上端までの高さH3は96.3mmであった。 In the lead acid battery of Example 1, the height H1 of the active material filled portion (positive electrode active material filled portion) of the positive electrode plate was 95.5 mm, the width W1 was 143 mm, and the thickness D1 was 1.5 mm. The height H3 from the bottom wall of the cell chamber to the upper end of the active material filled portion was 96.3 mm. Further, the height H1 of the active material filled portion (negative electrode active material filled portion) of the negative electrode plate is 95.5 mm, the width W1 is 142 mm, the thickness D1 is 1.2 mm, and from the bottom wall of the cell chamber. The height H3 to the upper end of the active material filled portion was 96.3 mm.
<サイクル試験>
 以下の手順でサイクル試験を行い、サイクル性能(DOD25%寿命性能)及び試験後の成層化度合いを評価した。
<Cycle test>
A cycle test was performed in the following procedure to evaluate the cycle performance (DOD 25% life performance) and the degree of stratification after the test.
 まず、充電が完了した鉛蓄電池(放電容量:60Ah、20時間率電流:3A)を、湯浴温度が25℃±2℃に設定された気槽中に配置した。次いで、以下のサイクルユニット(a)~(c)を1サイクルとして、(a)~(c)をこの順で繰り返し実施した。
(a)15A(20時間率電流の5倍に相当)で1時間放電した。放電下限電圧は10.0Vよりも大きいものとした。
(b)14.8Vの定電圧定電流(制限電流30A(20時間率電流の10倍に相当))で175分間充電した。
(c)7.5A(20時間率電流の2.5倍に相当)で5分間充電した。
First, a lead storage battery (charging capacity: 60 Ah, 20-hour rate current: 3 A) that had been charged was placed in a gas tank in which the bath temperature was set to 25 ° C ± 2 ° C. Next, the following cycle units (a) to (c) were set as one cycle, and (a) to (c) were repeated in this order.
(A) Discharged at 15 A (corresponding to 5 times the 20-hour rate current) for 1 hour. The discharge lower limit voltage was set to be higher than 10.0V.
(B) The battery was charged with a constant voltage of 14.8 V (a limiting current of 30 A (equivalent to 10 times the 20-hour rate current)) for 175 minutes.
(C) The battery was charged at 7.5 A (corresponding to 2.5 times the 20-hour rate current) for 5 minutes.
 この試験は、EN規格に従ったサイクル試験である。この試験では、鉛蓄電池の電圧が10.5Vを下回った時点で寿命に達したと判断し、寿命に達するまでのサイクル数を比較することによりサイクル特性を評価した。比較例1の鉛蓄電池のサイクル数は、160回であり、実施例1の鉛蓄電池のサイクル数は220回であった。 This test is a cycle test according to the EN standard. In this test, when the voltage of the lead storage battery fell below 10.5 V, it was determined that the life had reached the end, and the cycle characteristics were evaluated by comparing the number of cycles until the end of the life. The number of cycles of the lead storage battery of Comparative Example 1 was 160, and the number of cycles of the lead storage battery of Example 1 was 220.
 サイクル試験後の鉛蓄電池について、電池上部(電解液の液面付近)の電解液の比重及び電池下部(セル室の底壁から高さ20mmの位置)の電解液の比重を測定し、これらの差(下部の比重-上部の比重)を比較することにより成層化度合いを評価した。比較例1では、上記の差が0.036g/cmであったのに対し、実施例1では、上記の差が0.015g/cmであり、実施例1において成層化が抑制されていることが確認された。 Regarding the lead-acid battery after the cycle test, the specific gravity of the electrolytic solution at the upper part of the battery (near the liquid surface of the electrolytic solution) and the specific gravity of the electrolytic solution at the lower part of the battery (at a height of 20 mm from the bottom wall of the cell chamber) were measured. The degree of stratification was evaluated by comparing the difference (lower specific gravity-upper specific gravity). In Comparative Example 1, the above difference was 0.036 g / cm 3 , whereas in Example 1, the above difference was 0.015 g / cm 3 , and thus stratification was suppressed in Example 1. It was confirmed that
 サイクル試験後の鉛蓄電池から電極板(正極板)を取り出し、活物質充填部を観察した。サイクル試験後の電極板を図6に示す。図6の(a1)は、比較例1の電極板を示す写真であり、(b1)は、実施例1の電極板を示す写真である(両写真の縮尺は同一である)。図6の(a2)及び(b2)は、(a1)及び(b2)に示す写真の模式図であり、活物質充填部における、電極活物質の脱落部分A、泥状化部分B及び非泥状化部分(未劣化部分)Cを示す図である。 The electrode plate (positive electrode plate) was taken out from the lead storage battery after the cycle test, and the active material filling part was observed. The electrode plate after the cycle test is shown in FIG. (A1) of FIG. 6 is a photograph showing the electrode plate of Comparative Example 1, and (b1) is a photograph showing the electrode plate of Example 1 (both photographs have the same scale). (A2) and (b2) of FIG. 6 are schematic views of the photographs shown in (a1) and (b2), in which the electrode active material falling portion A, the mudified portion B, and the non-mud in the active material filled portion are shown. It is a figure which shows the shaped part (non-deteriorated part) C.
 図6に示すように、実施例1の鉛蓄電池では、活物質充填部全体が泥状化部分となっているのに対し(図6の(b1)及び(b2)参照)、比較例1の鉛蓄電池では、活物質充填部上部で電極活物質が脱落しており、また、活物質充填部下部側ほど電極活物質が泥状化せずに残っていることが確認された(図6の(a1)及び(a2)参照)。これらの結果より、実施例1の鉛蓄電池は、比較例1の鉛蓄電池よりも電極活物質の利用効率に顕著に優れており、活物質充填部下部での電池反応が進行しやすいことが確認された。本発明者らは、これらに起因して優れたサイクル性能が得られたと推察している。 As shown in FIG. 6, in the lead storage battery of Example 1, the entire active material filling portion was a mud-like portion (see (b1) and (b2) in FIG. 6), whereas in Comparative Example 1 In the lead-acid battery, it was confirmed that the electrode active material dropped off in the upper part of the active material filling portion, and the electrode active material remained in the lower part of the active material filling portion without becoming muddy (Fig. 6). (See (a1) and (a2)). From these results, it was confirmed that the lead storage battery of Example 1 was significantly superior to the lead storage battery of Comparative Example 1 in the utilization efficiency of the electrode active material, and that the battery reaction in the lower portion of the active material filled portion was likely to proceed. Was done. The present inventors presume that excellent cycle performance was obtained due to these factors.
 1…鉛蓄電池、9…負極板(電極板)、10…正極板(電極板)、11…セパレータ、12…負極集電体(格子体)、12a…負極耳部(耳部)、13…負極活物質充填部(活物質充填部)、14…正極集電体(格子体)、14a…正極耳部、15…正極活物質充填部(活物質充填部)、20…電極板、21…活物質充填部、30…格子体、31…格子部、32…耳部、33…上枠部、34…下枠部。 DESCRIPTION OF SYMBOLS 1 ... Lead acid battery, 9 ... Negative electrode plate (electrode plate), 10 ... Positive electrode plate (electrode plate), 11 ... Separator, 12 ... Negative electrode collector (lattice body), 12a ... Negative electrode ear part (ear part), 13 ... Negative electrode active material filled portion (active material filled portion), 14 ... Positive electrode current collector (lattice body), 14a ... Positive electrode ear portion, 15 ... Positive electrode active material filled portion (active material filled portion), 20 ... Electrode plate, 21 ... Active material filling part, 30 ... Lattice body, 31 ... Lattice part, 32 ... Ear part, 33 ... Upper frame part, 34 ... Lower frame part.

Claims (15)

  1.  鉛蓄電池用電極板であって、
     格子部及び当該格子部の一端側に突出して設けられた耳部を備える格子体と、
     前記格子体に保持された電極活物質からなる活物質充填部と、を備え、
     前記鉛蓄電池の高さ方向における前記活物質充填部の長さが、100mm以下である、電極板。
    An electrode plate for a lead storage battery,
    A lattice body including a lattice portion and an ear portion provided on one end side of the lattice portion so as to project,
    An active material filling portion made of an electrode active material held on the grid,
    An electrode plate in which the length of the active material filling portion in the height direction of the lead storage battery is 100 mm or less.
  2.  前記活物質充填部の幅が、136mm以上である、請求項1に記載の電極板。 The electrode plate according to claim 1, wherein the width of the active material filling portion is 136 mm or more.
  3.  前記格子体が、鉛、スズ及びカルシウムを含有する合金で形成されている、請求項1又は2に記載の電極板。 The electrode plate according to claim 1 or 2, wherein the grid is made of an alloy containing lead, tin and calcium.
  4.  前記耳部が前記格子部の中央寄りに位置する、請求項1~3のいずれか一項に記載の電極板。 The electrode plate according to any one of claims 1 to 3, wherein the ear portion is located closer to the center of the lattice portion.
  5.  前記活物質充填部の幅に対する前記活物質充填部の高さの比が、0.64~0.74である、請求項1~4のいずれか一項に記載の電極板。 The electrode plate according to any one of claims 1 to 4, wherein a ratio of a height of the active material filled portion to a width of the active material filled portion is 0.64 to 0.74.
  6.  正極板である、請求項1~5のいずれか一項に記載の電極板。 The electrode plate according to any one of claims 1 to 5, which is a positive electrode plate.
  7.  前記格子体がエキスパンド格子体である、請求項1~6のいずれか一項に記載の電極板。 The electrode plate according to any one of claims 1 to 6, wherein the grid body is an expanded grid body.
  8.  鉛蓄電池の電極板に用いられる格子体であって、
     格子部及び当該格子部の一端側に突出して設けられた耳部を備え、
     前記鉛蓄電池の高さ方向における前記格子部の長さが、100mm以下である、格子体。
    A grid used for an electrode plate of a lead storage battery,
    A lattice part and an ear part provided so as to project from one end side of the lattice part,
    A lattice body in which the length of the lattice portion in the height direction of the lead storage battery is 100 mm or less.
  9.  前記格子部の幅が、136mm以上である、請求項8に記載の格子体。 The grid body according to claim 8, wherein the width of the grid portion is 136 mm or more.
  10.  前記格子体が、鉛、スズ及びカルシウムを含有する合金で形成されている、請求項8又は9に記載の格子体。 The lattice body according to claim 8 or 9, wherein the lattice body is formed of an alloy containing lead, tin and calcium.
  11.  前記耳部が前記格子部の中央寄りに位置する、請求項8~10のいずれか一項に記載の格子体。 The lattice body according to any one of claims 8 to 10, wherein the ear portion is located closer to the center of the lattice portion.
  12.  前記格子部の幅に対する前記格子部の高さの比が、0.64~0.74である、請求項8~11のいずれか一項に記載の格子体。 The lattice body according to any one of claims 8 to 11, wherein a ratio of the height of the lattice portion to the width of the lattice portion is 0.64 to 0.74.
  13.  鉛蓄電池の正極板に用いられる、請求項8~12のいずれか一項に記載の格子体。 The lattice body according to any one of claims 8 to 12, which is used for a positive electrode plate of a lead storage battery.
  14.  エキスパンド格子体である、請求項8~13のいずれか一項に記載の格子体。 The lattice body according to any one of claims 8 to 13, which is an expanded lattice body.
  15.  請求項1~7のいずれか一項に記載の電極板、又は、
     請求項8~14のいずれか一項に記載の格子体と、当該格子体に保持された電極活物質からなる活物質充填部とを備える電極板、
    を備える、鉛蓄電池。
    The electrode plate according to any one of claims 1 to 7, or
    An electrode plate comprising: the grid body according to any one of claims 8 to 14; and an active material filling portion made of an electrode active material held by the grid body,
    Lead-acid battery equipped with.
PCT/JP2018/041968 2018-11-13 2018-11-13 Electrode plate, lattice body, and lead storage cell WO2020100213A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/041968 WO2020100213A1 (en) 2018-11-13 2018-11-13 Electrode plate, lattice body, and lead storage cell
JP2020556497A JP7220371B2 (en) 2018-11-13 2018-11-13 Electrode plates, grids and lead-acid batteries
JP2023005693A JP2023033539A (en) 2018-11-13 2023-01-18 Grid body and lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041968 WO2020100213A1 (en) 2018-11-13 2018-11-13 Electrode plate, lattice body, and lead storage cell

Publications (1)

Publication Number Publication Date
WO2020100213A1 true WO2020100213A1 (en) 2020-05-22

Family

ID=70730427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041968 WO2020100213A1 (en) 2018-11-13 2018-11-13 Electrode plate, lattice body, and lead storage cell

Country Status (2)

Country Link
JP (2) JP7220371B2 (en)
WO (1) WO2020100213A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159065A (en) * 1980-05-13 1981-12-08 Yuasa Battery Co Ltd Grid for lead acid battery
JPS59219854A (en) * 1983-05-27 1984-12-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
JPH10162834A (en) * 1996-11-28 1998-06-19 Japan Storage Battery Co Ltd Lead-acid battery
JPH11339787A (en) * 1998-05-27 1999-12-10 Matsushita Electric Ind Co Ltd Lead-acid battery and its manufacture
JP2002042857A (en) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2002358955A (en) * 2001-06-01 2002-12-13 Japan Storage Battery Co Ltd Cylindrical lead acid storage battery
JP2003163008A (en) * 2001-11-26 2003-06-06 Japan Storage Battery Co Ltd Lead storage battery
JP2004273400A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Grid body for storage battery and lead storage battery using it
JP2007305370A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Lead storage cell
WO2017159299A1 (en) * 2016-03-15 2017-09-21 株式会社Gsユアサ Lead storage battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159065A (en) * 1980-05-13 1981-12-08 Yuasa Battery Co Ltd Grid for lead acid battery
JPS59219854A (en) * 1983-05-27 1984-12-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
JPH10162834A (en) * 1996-11-28 1998-06-19 Japan Storage Battery Co Ltd Lead-acid battery
JPH11339787A (en) * 1998-05-27 1999-12-10 Matsushita Electric Ind Co Ltd Lead-acid battery and its manufacture
JP2002042857A (en) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2002358955A (en) * 2001-06-01 2002-12-13 Japan Storage Battery Co Ltd Cylindrical lead acid storage battery
JP2003163008A (en) * 2001-11-26 2003-06-06 Japan Storage Battery Co Ltd Lead storage battery
JP2004273400A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Grid body for storage battery and lead storage battery using it
JP2007305370A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Lead storage cell
WO2017159299A1 (en) * 2016-03-15 2017-09-21 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
JP2023033539A (en) 2023-03-10
JPWO2020100213A1 (en) 2021-10-07
JP7220371B2 (en) 2023-02-10

Similar Documents

Publication Publication Date Title
US20110027653A1 (en) Negative plate for lead acid battery
WO2013073091A1 (en) Lead storage cell
JP5016306B2 (en) Lead acid battery
JP6977770B2 (en) Liquid lead-acid battery
US20110250500A1 (en) Positive active material for a lead-acid battery
WO2020008500A1 (en) Lattice body, electrode plate, lead storage battery, and methods for manufacturing same
JP6388094B1 (en) Lead acid battery
WO2020100213A1 (en) Electrode plate, lattice body, and lead storage cell
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP2019091598A (en) Positive electrode plate and lead storage battery
JP6996274B2 (en) Lead-acid battery
JP6398111B2 (en) Lead acid battery
WO2020066763A1 (en) Lead battery
JP7372914B2 (en) lead acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP7128484B2 (en) liquid lead acid battery
JP7223870B2 (en) Positive electrode plate, lead-acid battery and manufacturing method thereof
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
WO2019234860A1 (en) Lead storage battery
JP6999430B2 (en) Lead-acid battery
JP2024044863A (en) Lead-acid battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JP7196497B2 (en) Negative electrode for lead-acid battery and lead-acid battery
WO2019234862A1 (en) Lead storage battery
JP2024044865A (en) Lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939966

Country of ref document: EP

Kind code of ref document: A1