WO2020098372A1 - 驱动电路 - Google Patents

驱动电路 Download PDF

Info

Publication number
WO2020098372A1
WO2020098372A1 PCT/CN2019/106572 CN2019106572W WO2020098372A1 WO 2020098372 A1 WO2020098372 A1 WO 2020098372A1 CN 2019106572 W CN2019106572 W CN 2019106572W WO 2020098372 A1 WO2020098372 A1 WO 2020098372A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
module
resistor
control module
driving circuit
Prior art date
Application number
PCT/CN2019/106572
Other languages
English (en)
French (fr)
Inventor
毛竹
秦蜀懿
张博
汪范彬
方敏
周张吉
Original Assignee
卡任特照明解决方案有限公司
毛竹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡任特照明解决方案有限公司, 毛竹 filed Critical 卡任特照明解决方案有限公司
Priority to US17/287,812 priority Critical patent/US11528791B2/en
Publication of WO2020098372A1 publication Critical patent/WO2020098372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps

Definitions

  • the invention relates to a driving circuit, in particular to a driving circuit which can quickly start an LED lamp.
  • LED As a new generation light source, LED has the advantages of energy saving, environmental protection, long life, diverse colors, stable beam concentration, and high electro-optic conversion rate. Therefore, in recent years, the use of LEDs as a lighting source has been a trend.
  • the traditional starting method is to charge the power storage capacitor through the starting resistor to start the integrated circuit.
  • the input voltage is usually 277V / 480V.
  • the value of the start-up resistance cannot be too large. This means that at high voltages, such as 480V, since the starting resistor cannot be turned off after starting, there will still be a large energy loss after starting. Conversely, if the value of the starting resistance is large, although the energy loss at high voltage is reduced, it greatly slows down the starting speed at low voltage.
  • the current solution is to use a flyback or reverse topology drive circuit to speed up the start-up time, but this design not only costs too much, but also has a large weight and volume. In the case of limited internal LED space, use the limitation.
  • the present application is to provide a driving circuit, including: a voltage input module, a quick start module and a control module.
  • the voltage input module includes a first input terminal and a second input terminal for receiving AC voltage and converting the AC voltage into a DC voltage.
  • the quick start module is coupled to the voltage input module and is used to receive a DC voltage and convert the DC voltage into a start voltage.
  • the control module is coupled to the quick start module and is used to receive the start voltage and control the load to work.
  • the quick start module includes a first resistor and a second resistor, the first resistor and the second resistor connected in series are coupled to the first input terminal and the control module, and the voltage regulating switch is connected in parallel with one of the first resistor and the second resistor, When the AC voltage is within the threshold range, the voltage regulating switch is turned on to short-circuit the first resistor or the second resistor connected in parallel therewith, thereby increasing the starting voltage and accelerating the starting speed of the control module.
  • the purpose of this application is to design a low-cost, small-volume drive circuit that achieves the goals of fast start-up speed and low power consumption in the case of high input voltage.
  • FIG. 1 is a circuit diagram of an embodiment of the driving circuit of the present application.
  • FIG. 2 is a circuit diagram of another embodiment of the driving circuit of the present application.
  • the present application is based on a low-cost, small-volume lamp driving circuit, which achieves the purposes of fast start-up speed and low power consumption under the condition of high input voltage.
  • the lamps of the present application include, but are not limited to, light emitting diode (LED) lamps, organic light emitting diode (OLED) lamps, fluorescent lamps, and high intensity discharge (HID) lamps.
  • LED light emitting diode
  • OLED organic light emitting diode
  • fluorescent lamps fluorescent lamps
  • high intensity discharge (HID) lamps The LED lamp will be used as an example for detailed description below.
  • FIG. 1 is a circuit diagram of an embodiment of the driving circuit of the present application.
  • the driving circuit 10 includes a voltage input module 110, a quick start module 120, a control module 130, and a high-frequency power supply module 140.
  • the voltage input module 110 is coupled to both ends of a power supply device (not shown), and is configured to receive the AC voltage of the power supply device and convert the AC voltage into a DC voltage.
  • the voltage input module 110 includes a rectification module and a filter module.
  • the rectifier module includes a rectifier bridge D1 coupled to both ends of the power supply device, and the filter module includes a capacitor C1. The rectifier bridge D1 and the capacitor C1 work together to limit and stabilize the AC power received and convert the AC power to Direct current.
  • the rectifier module and the filter module may also select other circuit connection methods known to those skilled in the art.
  • the voltage input module 110 further includes a first input terminal 112 and a second input terminal 114.
  • the quick start module 120 is coupled to the voltage input module 110 and is used to receive a DC voltage and convert the DC voltage into a start voltage.
  • the control module 130 coupled to the quick start module 120, receives the start voltage and controls the load (not shown) to work.
  • one end 144 of the high-frequency power supply module 140 is coupled to the second input 114, and the other end 142 is coupled to the control module 130, which is used to provide high-frequency power supply to the control module 130 after the control module 130 is started. That is, the high-frequency power supply module 140 and the quick start module 120 work together to output Vcc to the control module 130.
  • the quick start module 120 includes a voltage regulating switch Q1, a first resistor R2, a second resistor R3, a voltage dividing resistor R1, a first Zener diode D2, and a second Zener diode D3.
  • the voltage dividing resistor R1 and the first Zener diode D2 are coupled in series to the two ends of the voltage input module 110, the first end of the voltage dividing resistor R1 is coupled to the first input end 112, and the second end of the voltage dividing resistor R1
  • the terminal is electrically connected to the cathode of the first Zener diode D2 and then coupled to the base of the voltage regulator switch Q1.
  • the anode of the first Zener diode D2 is coupled to the second input terminal 114.
  • the collector and the emitter of the voltage regulating switch Q1 are respectively coupled to both ends of the first resistor R2 or the second resistor R3 and connected in parallel therewith.
  • the collector and the emitter of the voltage regulating switch Q1 are respectively coupled to both ends of the second resistor R3, and the emitter of the voltage regulating switch Q1 is coupled to the control module 130.
  • the cathode of the second Zener diode D3 is coupled to the emitter of the voltage regulator switch Q1, and the anode is coupled to the second input 114.
  • the voltage regulating switch Q1 may be a triode. In some other embodiments, the voltage regulating switch Q1 may also be a metal-oxide semiconductor field effect transistor (MOSFET).
  • the control module 130 includes a driving integrated circuit (IC) 134 and a driving switch 132.
  • the driving integrated circuit 134 is used to receive the Vcc output by the high-frequency power supply module 140 and the quick start module 120 and output a control signal.
  • the driving switch 132 is coupled to the driving integrated circuit 134 for receiving a control signal output from the driving integrated circuit 134, and based on the control signal to turn on and off according to a certain rule to control the work of the load, that is, to control the LED lighting unit (not shown )jobs.
  • the driving switch 132 may be a metal-oxide semiconductor field effect transistor (MOSFET).
  • the high-frequency power supply module 140 includes a capacitor C2, a diode D4, and a transformer T1.
  • One electrode of the capacitor C2 and the negative electrode of the diode D4 are electrically connected to the connection node of the voltage regulating switch Q1 and the control module 130, and the other electrode of the capacitor C2 is grounded.
  • the voltage regulation value of the second Zener diode D3 is greater than the voltage regulation value of the first Zener diode D2.
  • the second The voltage across the Zener diode D3 is lower than the voltage across the first Zener diode D2, and the voltage regulating switch Q1 is turned on to short-circuit the second resistor R3 connected in parallel with it, so the first resistor R2 and the second resistor R3 are connected The resistance is only the resistance value of the first resistance R2.
  • the first resistor R2 charges the capacitor C2, which can increase the startup voltage and speed up the startup speed of the control module 130.
  • the threshold of the input AC voltage of the power supply device ranges from about 250 volts to 500 volts. In some specific embodiments, the threshold of the input AC voltage of the power supply device ranges from about 277 volts to 480 volts.
  • the high-frequency power supply module 140 starts to supply high-frequency power to the control module 130.
  • the second Zener diode D3 and the capacitor C2 of the high-frequency power supply module are connected in parallel, so the capacitor C2 can charge the second Zener diode D3. Since the voltage regulation value of the second Zener diode D3 is greater than that of the first Zener diode D2, when the voltage across the second Zener diode D3 is charged to be greater than the voltage across the first Zener diode D2, the voltage regulation The switch Q1 is turned off so that the second resistor R3 connected in parallel with it is reconnected into the quick start module 120.
  • the total resistance of the first resistor R2 and the second resistor R3 connected to the circuit is the sum of the resistance values of the first resistor R2 and the second resistor R3, so the current value passing through the first resistor R2 and the second resistor R3 can be reduced To reduce power loss in the circuit.
  • FIG. 2 is a circuit diagram of another embodiment of the driving circuit of the present application.
  • the driving circuit 20 includes a voltage input module 210, a quick start module 220, a control module 230, a high-frequency power supply module 240, and a voltage control module 250.
  • the voltage input module 210, the control module 230, and the high-frequency power supply module 240 have the same structure and function as the voltage input module 110, the control module 130, and the high-frequency power supply module 140 in the drive circuit 10 shown in FIG. The description will not be repeated here, and the components in these modules also use the same reference numerals as in FIG. 1.
  • the voltage input module 210, the control module 230, and the high-frequency power supply module 240 may also use other circuit connections with the same or similar functions known to those skilled in the art.
  • the voltage control module 250 is used to control the turn-on and turn-off of the voltage regulating switch Q21 according to the voltage value of the output AC voltage of the power supply device.
  • the voltage control module 250 includes a control switch Q22 and voltage dividing resistors R21, R24, and R25.
  • the voltage dividing resistors R24 and R25 are coupled in series to both ends of the voltage input module 210, and a connecting node 252 is included between the voltage dividing resistors R24 and R25.
  • the first end of the voltage dividing resistor R21 is coupled to the first input end 112, and the second end is connected to the node 254 with the collector of the control switch Q22.
  • the emitter of the control switch Q22 is coupled to the second input 114, and the base is coupled to the node 252.
  • the control switch Q22 may be a triode.
  • the control switch Q22 may also be a metal-oxide semiconductor field effect transistor (MOSFET).
  • the quick start module 220 includes a voltage regulator switch Q21, a first resistor R22, a second resistor R23, a first Zener diode D22, and a second Zener diode D3.
  • the anode of the first Zener diode D2 is coupled to the second input terminal 114, and the cathode of the first Zener diode D2 is coupled to the node 254 and then connected to the base of the voltage regulating switch Q21.
  • the first resistor R22 and the second resistor R23 are connected in series, and one end is coupled to the first input terminal 112 and the other end is coupled to the control module 230.
  • the collector and the emitter of the voltage regulating switch Q21 are respectively coupled to both ends of the first resistor R22 or the second resistor R23 in parallel with them. In this embodiment, the collector and the emitter of the voltage regulating switch Q21 are respectively coupled to both ends of the second resistor R23, and the emitter of the voltage regulating switch Q21 is coupled to the control module 230.
  • the cathode of the second Zener diode D23 is coupled to the emitter of the voltage regulating switch Q21, and the anode is coupled to the second input 114.
  • the voltage regulating switch Q21 may be a triode. In some other embodiments, the voltage regulating switch Q21 may also be a metal-oxide semiconductor field effect transistor (MOSFET).
  • the voltage control module 250 controls the on and off of the control switch Q22 according to the voltage value of the output voltage of the power supply device through the setting of the resistance values of the voltage dividing resistors R21, R24, and R25, thereby controlling the voltage regulation Switch Q21 off and on.
  • the AC voltage received by the power supply device when the power is turned on, the AC voltage received by the power supply device is within a threshold range, for example, 250 volts to 300 volts, that is, a lower voltage value, the control switch Q22 is turned off.
  • the threshold of the AC voltage received by the power supply device is in the range of 260 volts to 290 volts. In some more specific embodiments, the threshold of the AC voltage received by the power supply device is in the range of 270 volts to 280 volts.
  • the voltage regulation value of the second Zener diode D23 is greater than the voltage regulation value of the first Zener diode D22, so the voltage across the second Zener diode D23 is lower than the voltage across the first Zener diode D22 at this time.
  • Turning on Q21 short-circuits the second resistor R23 connected in parallel therewith.
  • the first resistor R22 charges the capacitor C2, which can increase the startup voltage and speed up the startup speed of the control module 230.
  • the high-frequency power supply module 240 starts to supply high-frequency power to the control module 230.
  • the second Zener diode D23 is connected in parallel with the capacitor C2 of the high-frequency power supply module, so the capacitor C2 can charge the second Zener diode D23. Since the voltage regulation value of the second Zener diode D23 is greater than the voltage regulation value of the first Zener diode D22, when the voltage across the second Zener diode D23 is charged to be greater than the voltage across the first Zener diode D22, the voltage regulation Switch Q21 is turned off to reconnect the second resistor R23 connected in parallel with the quick start module 220, which can reduce the current value passing through the first resistor R22 and the second resistor R23 and reduce the power loss in the circuit.
  • the AC voltage received by the power supply device is greater than the maximum value of the threshold range, for example, 400 volts to 500 volts, that is, a higher voltage value, the control switch Q22 is turned on.
  • the threshold range of the AC voltage received by the power supply device is 470 volts to 490 volts.
  • the first Zener diode D22 is short-circuited, the voltage regulating switch Q21 is turned off, and the first resistor R22 and the second resistor R23 work together to charge the capacitor C2.
  • the current through the first resistor R22 and the second resistor R23 can also quickly charge the capacitor C2 and increase the starting voltage for a short time without affecting the starting speed of the control module 230 , The starting speed can still be controlled within 1 second.
  • the voltage regulating switch Q21 since the voltage regulating switch Q21 is turned off, the first resistor R22 and the second resistor R23 are connected to the circuit at the same time, so no large power loss will be caused.
  • the driving circuit of the present application uses a low-cost and small-volume fast startup module with a switching element (transistor or MOSFET) under the condition of high input voltage. Turn on and off, control the series resistance with voltage division effect, to achieve the purpose of fast startup speed and low power consumption.
  • a switching element transistor or MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种驱动电路,包括:电压输入模块(210)、快速启动模块(220)和控制模块(230)。电压输入模块(210)包括第一输入端(112)和第二输入端(114),用于接收交流电压并将交流电压转换为直流电。快速启动模块(220)耦接至电压输入模块(210),用于接收直流电压并将所述直流电压转换为启动电压。控制模块(230)耦接至快速启动模块(220),用于接收启动电压并控制负载工作。其中,快速启动模块(220)包括第一电阻R22和第二电阻R23,串联的第一电阻R22和第二电阻R23耦接到第一输入端(112)和控制模块(230),调压开关Q21和第一电阻R22和第二电阻R23中的一个并联,当交流电压在阈值范围内,调压开关Q21导通使与其并联的第一电阻R22或第二电阻R23短路,从而提高启动电压,加快控制模块(230)启动速度。

Description

驱动电路 技术领域
本发明涉及一种驱动电路,特别是涉及一种可以使LED灯快速启动的驱动电路。
背景技术
LED作为新一代光源,具有节能、环保、寿命长、色彩多样、光束集中稳定、电光转化率高等优点。故近些年来,使用LED作为照明光源已经是一种趋势。
在设计由LED取代传统照明光源的过程中,与需要保证LED驱动的启动时间小于1秒。传统的启动方式是通过启动电阻对供电储能电容进行充电从而启动集成电路。然而,对于高输入电压的LED驱动电路,通常输入电压为277V/480V,为了达到在低电压时,例如277V,较快的启动速度,启动电阻的取值就不能取得过大。这就意味着,在高电压,例如480V时,由于启动电阻在启动完成后不能够关闭,故在启动后仍然会有较大的能量损耗。反之,如果启动电阻的取值较大,虽然降低了在高电压时的能量损耗,但却大大减慢了其在低电压时的启动速度。
现阶段的解决方式是使用反激式或反向式拓扑驱动电路来加快启动时间,但这种设计不但成本过高,而且重量和体积都较大,在LED内部空间有限的情况下,使用具有局限性。
因此,迫切的需要一种新的驱动电路来解决上述技术问题。
发明内容
本申请在于提供一种驱动电路,包括:电压输入模块、快速启动模块和控制模块。电压输入模块包括第一输入端和第二输入端,用于接收交流电压并将交流电压转换为直流电压。快速启动模块耦接至电压输入模块,用于接收直流电压并将所述直流电压转换为启动电压。控制模块耦接至快速启动模块,用于接收启动电压并控制负载工作。其中,快速启动模块包括第一电阻 和第二电阻,串联的第一电阻和第二电阻耦接到第一输入端和控制模块,调压开关和第一电阻和第二电阻中的一个并联,当交流电压在阈值范围内,调压开关导通使与其并联的第一电阻或第二电阻短路,从而提高启动电压,加快控制模块启动速度。
本申请的目的就是设计一种低成本小体积的驱动电路,在高输入电压的情况下,达到启动速度快且功耗低的目的。
附图说明
通过结合附图对于本发明的实施方式进行描述,可以更好地理解本发明,在附图中:
图1所示为本申请驱动电路的一种实施方式的电路图。
图2所示为本申请驱动电路的另一种实施方式的电路图。
具体实施方式
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
本申请基于一种低成本小体积的灯的驱动电路,在高输入电压的情况下,达到启动速度快且功耗低的目的。
本申请的灯包括但不限于发光二极管(LED)灯、有机发光二极管(OLED)灯、荧光灯和高强度放电(HID)灯。下面将以LED灯为例来进行详细的描述。
图1所示为本申请驱动电路的一种实施方式的电路图。驱动电路10包括电压输入模块110、快速启动模块120、控制模块130和高频供电模块140。电压输入模块110耦接到供电设备(未示出)的两端,用于接收供电设备的 交流电压并将该交流电压转换为直流电压。电压输入模块110包括整流模块和滤波模块。在一些实施方式中,整流模块包括耦接到供电设备两端的整流桥D1,滤波模块包括电容C1,整流桥D1和电容C1共同作用,用于限制和稳定接收到的交流电,并将交流电转换为直流电。在其他实施方式中,整流模块和滤波模块也可以选择本领域一般技术人员习知的其他电路连接方式。电压输入模块110还包括第一输入端112和第二输入端114。快速启动模块120,耦接至电压输入模块110,用于接收直流电压并将直流电压转换为启动电压。控制模块130,耦接至快速启动模块120,接收启动电压并控制负载(未示出)工作。在一些实施方式中,高频供电模块140的一端144耦接至第二输入端114,另一端142耦接至控制模块130,用于在控制模块130启动后对控制模块130进行高频供电,即高频供电模块140和快速启动模块120共同作用输出Vcc至控制模块130。
继续参考图1,在一些实施方式中,快速启动模块120包括调压开关Q1、第一电阻R2、第二电阻R3、分压电阻R1、第一齐纳二极管D2和第二齐纳二极管D3。其中,分压电阻R1和第一齐纳二极管D2串联后耦接到电压输入模块110的两端,分压电阻R1的第一端耦接至第一输入端112,分压电阻R1的第二端和第一齐纳二极管D2的负极电连接后耦接至调压开关Q1的基极,第一齐纳二极管D2的正极耦接至第二输入端114。第一电阻R2和第二电阻R3串联后一端耦接到第一输入端112,另一端耦接到控制模块130。调压开关Q1的集电极和发射极分别耦接至第一电阻R2或第二电阻R3的两端与其并联。在本实施方式中,调压开关Q1的集电极和发射极分别耦接第二电阻R3的两端,且调压开关Q1的发射极耦接至控制模块130。第二齐纳二极管D3的负极耦接至调压开关Q1的发射极,正极耦接至第二输入端114。在该实施方式中,调压开关Q1可以为三极管,在其他一些实施方方式中,调压开关Q1也可以为金属-氧化物半导体场效应晶体管(MOSFET)。
在一些实施方式中,控制模块130包括驱动集成电路(IC)134和驱动开关132。驱动集成电路134用于接收高频供电模块140和快速启动模块120共同作用输出的Vcc并输出控制信号。驱动开关132耦接至驱动集成电路134,用于接收驱动集成电路134输出的控制信号,并基于该控制信号按照一定的规律开通和关断来控制负载工作,即控制LED照明单元(未示出)工作。在一些实施方方式中,驱动开关132可以为金属-氧化物半导体场效应晶体管 (MOSFET)。
在一些实施方式中,高频供电模块140包括电容C2、二极管D4和变压器T1。电容C2的一个电极和二极管D4的负极电连接后连接到调压开关Q1和控制模块130的连接结点,电容C2的另一个电极接地。
在一些实施方式中,第二齐纳二极管D3的稳压值大于第一齐纳二极管D2的稳压值,当接通电源,接收到的供电设备输入的交流电压在阈值范围内时,第二齐纳二极管D3两端的电压低于第一齐纳二极管D2两端的电压,调压开关Q1导通使与其并联的第二电阻R3短路,故第一电阻R2和第二电阻R3连入电路的总电阻仅为第一电阻R2的电阻值。此时,第一电阻R2对电容C2进行充电,可以提高启动电压,加快控制模块130的启动速度。在该实施方式中,供电设备输入交流电压的阈值范围约为250伏至500伏。在一些具体的实施方式中,供电设备输入交流电压的阈值范围约为277伏至480伏。
在一些实施方式中,在控制模块130被启动后,高频供电模块140开始对控制模块130进行高频供电。此时,第二齐纳二极管D3和高频供电模块的电容C2并联,故电容C2可对第二齐纳二极管D3充电。由于第二齐纳二极管D3的稳压值大于第一齐纳二极管D2的稳压值,所以当第二齐纳二极管D3两端的电压充至大于第一齐纳二极管D2两端的电压时,调压开关Q1关断使与其并联的第二电阻R3重新接入快速启动模块120中。此时,第一电阻R2和第二电阻R3连入电路的总电阻为第一电阻R2和第二电阻R3的电阻值之和,故可以降低通过第一电阻R2和第二电阻R3的电流值,减少电路中的电能损耗。
图2所示为本申请驱动电路的另一种实施方式的电路图。驱动电路20包括电压输入模块210、快速启动模块220、控制模块230、高频供电模块240和电压控制模块250。在一些实施方式中,电压输入模块210、控制模块230和高频供电模块240具有和图1所示的驱动电路10中电压输入模块110、控制模块130和高频供电模块140相同的结构和功能,在此不再重复介绍,这些模块中的元件也采用和图1中相同的标号。在其他一些实施方式中,电压输入模块210、控制模块230和高频供电模块240也可以采用本领域一般技术人员所习知的其他具有相同或相似功能的电路连接。
如图2所示,在一些实施方式中,电压控制模块250用于根据供电设备输出交流电压的电压值,控制调压开关Q21的导通和关断。电压控制模块250 包括控制开关Q22和分压电阻R21、R24和R25。分压电阻R24和R25串联耦接到电压输入模块210的两端,且分压电阻R24和R25之间包括连接结点252。分压电阻R21的第一端耦接至第一输入端112,第二端与控制开关Q22的集电极连接于结点254。控制开关Q22的发射极耦接至第二输入端114,基极耦接至结点252。在该实施方式中,控制开关Q22可以为三极管,在其他一些实施方方式中,控制开关Q22也可以为金属-氧化物半导体场效应晶体管(MOSFET)。
在一些实施方式中,快速启动模块220包括调压开关Q21、第一电阻R22、第二电阻R23、第一齐纳二极管D22和第二齐纳二极管D3。其中,第一齐纳二极管D2的正极耦接至第二输入端114,第一齐纳二极管D2的负极耦接至结点254后连接至调压开关Q21的基极。第一电阻R22和第二电阻R23串联后一端耦接到第一输入端112,另一端耦接到控制模块230。调压开关Q21的集电极和发射极分别耦接至第一电阻R22或第二电阻R23的两端与其并联。在本实施方式中,调压开关Q21的集电极和发射极分别耦接第二电阻R23的两端,且调压开关Q21的发射极耦接至控制模块230。第二齐纳二极管D23的负极耦接至调压开关Q21的发射极,正极耦接至第二输入端114。在该实施方式中,调压开关Q21可以为三极管,在其他一些实施方方式中,调压开关Q21也可以为金属-氧化物半导体场效应晶体管(MOSFET)。
在一些实施方式中,电压控制模块250通过分压电阻R21、R24和R25电阻值的设定,根据供电设备输出交流电压的电压值,控制控制开关Q22的导通和关断,进而控制调压开关Q21的关断和导通。
具体来说,在一种实施方式中,当接通电源,接收到的供电设备输入的交流电压在阈值范围内,例如250伏至300伏,即较低电压值时,控制开关Q22关断。在一些具体的实施方式中,接收到的供电设备输入的交流电压的阈值范围为260伏-290伏。在一些更具体的实施方式中,接收到的供电设备输入的交流电压的阈值范围为270伏-280伏。已知第二齐纳二极管D23的稳压值大于第一齐纳二极管D22的稳压值,故此时第二齐纳二极管D23两端的电压低于第一齐纳二极管D22两端的电压,调压开关Q21导通使与其并联的第二电阻R23短路。此时,第一电阻R22对电容C2进行充电,可以提高启动电压,加快控制模块230的启动速度。在控制模块230被启动后,高频供电模块240开始对控制模块230进行高频供电。此时,第二齐纳二极管D23 和高频供电模块的电容C2并联,故电容C2可对第二齐纳二极管D23充电。由于第二齐纳二极管D23的稳压值大于第一齐纳二极管D22的稳压值,所以当第二齐纳二极管D23两端的电压充至大于第一齐纳二极管D22两端的电压时,调压开关Q21关断使与其并联的第二电阻R23重新接入快速启动模块220中,可以降低通过第一电阻R22和第二电阻R23的电流值,减少电路中的电能损耗。
在另一种实施方式中,当接通电源,接收到的供电设备输入的交流电压大于阈值范围的最大值,例如400伏至500伏,即较高电压值时,控制开关Q22导通。在一些具体的实施方式中,接收到的供电设备输入的交流电压的阈值范围为470伏-490伏。此时第一齐纳二极管D22短路,调压开关Q21断开,第一电阻R22和第二电阻R23共同作用对电容C2进行充电。由于此时输入的交流电压较大,故通过第一电阻R22和第二电阻R23的电流也可以很快对电容C2充电,并短时提高启动电压,不会对控制模块230的启动速度造成影响,启动速度仍然可以控制在1秒以内。同时,由于调压开关Q21断开,第一电阻R22和第二电阻R23同时连入电路中,故也不会造成较大的电能损耗。
综上所述的实施方式中可以看出,本申请的驱动电路,在高输入电压的情况下,使用低成本小体积的带有开关元件(三极管或MOSFET)的快速启动模块,通过开关元件的导通和关断,对具有分压作用的串联电阻进行控制,达到启动速度快同时功耗低的目的。
本申请的专利保护范围由权利要求限定,该保护范围也可包括本领域技术人员可能想到的其它例子。如果这些其它例子包括的结构元件没有不同于权利要求的文字语言,或者它们包括的等价结构元件只与权利要求的文字语言有非本质的差别,这些例子落入本申请权利要求的范围。
各种替换和具体实施例预期落入随附权利要求的范围,这些权利要求特别地指出并清楚地声明本申请的主题。

Claims (10)

  1. 一种驱动电路,包括:
    电压输入模块,包括第一输入端和第二输入端,用于接收交流电压并将所述交流电压转换为直流电压;
    快速启动模块,耦接至所述电压输入模块,用于接收所述直流电压并将所述直流电压转换为启动电压;以及
    控制模块,耦接至所述快速启动模块,用于接收所述启动电压并控制负载工作,
    其中,所述快速启动模块包括第一电阻和第二电阻,串联的第一电阻和第二电阻耦接到所述第一输入端和所述控制模块,调压开关和所述第一电阻和所述第二电阻中的一个并联,当所述交流电压在阈值范围内,所述调压开关导通使与其并联的所述第一电阻或第二电阻短路,从而提高所述启动电压,加快所述控制模块启动速度。
  2. 如权利要求1所述的驱动电路,其特征在于:所述电压输入模块包括整流模块和滤波模块。
  3. 如权利要求1所述的驱动电路,其特征在于:所述调压开关包括三极管或金属-氧化物半导体场效应晶体管。
  4. 如权利要求1所述的驱动电路,还包括高频供电模块,一端耦接至所述第二输入端,另一端耦接至所述控制模块,用于在所述控制模块启动后对所述控制模块进行高频供电。
  5. 如权利要求4所述的驱动电路,其中,当所述高频供电模块开始对所述控制模块进行高频供电,所述调压开关断开使与其并联的所述第一电阻或第二电阻重新接入所述快速启动模块中。
  6. 如权利要求1所述的驱动电路,其中,所述阈值范围为277伏至480伏。
  7. 如权利要求1所述的驱动电路,还包括电压控制模块,耦接至所述电压输入模块,所述电压控制模块用于根据所述交流电压的电压值,控制所述调压开关的导通和关断。
  8. 如权利要求7所述的驱动电路,其中,所述阈值范围为250伏至300伏。
  9. 如权利要求8所述的驱动电路,其中,所述电压控制模块包括控制开关,当所述交流电压在所述阈值范围内时,所述控制开关关断,进而控制所述调压开关导通。
  10. 如权利要求8所述的驱动电路,其中,所述电压控制模块包括控制开关,当所述交流电压大于所述阈值的最大值时,所述控制开关导通,进而控制所述调压开关关断。
PCT/CN2019/106572 2018-11-13 2019-09-19 驱动电路 WO2020098372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/287,812 US11528791B2 (en) 2018-11-13 2019-09-19 Driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811346166.3A CN111212497B (zh) 2018-11-13 2018-11-13 驱动电路
CN201811346166.3 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098372A1 true WO2020098372A1 (zh) 2020-05-22

Family

ID=70731082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106572 WO2020098372A1 (zh) 2018-11-13 2019-09-19 驱动电路

Country Status (3)

Country Link
US (1) US11528791B2 (zh)
CN (1) CN111212497B (zh)
WO (1) WO2020098372A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543409A (zh) * 2021-08-05 2021-10-22 深圳深川智能有限公司 一种led灯具的驱动电源
US20220170437A1 (en) * 2019-04-26 2022-06-02 Autonetworks Technologies, Ltd. Control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261757B (zh) * 2020-09-29 2022-04-15 佛山市华全电气照明有限公司 无源调光信号的led控制电路及led控制方法
CN113473672B (zh) * 2021-05-31 2023-11-14 厦门普为光电科技有限公司 具有防触电保护及兼容多样电流稳定供电模式的灯管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136335A1 (en) * 2006-12-08 2008-06-12 Hon Hai Precision Industry Co., Ltd. Led control circuit capable of automatically controlling brightness of leds according to ambient light conditions
CN101346022A (zh) * 2007-07-09 2009-01-14 黄怡仁 一种led灯的驱动电路
CN101868094A (zh) * 2010-06-22 2010-10-20 海洋王照明科技股份有限公司 一种led驱动电路及led灯具
CN102647823A (zh) * 2011-02-22 2012-08-22 英飞特电子(杭州)有限公司 一种led灯恒流驱动电路
CN105873310A (zh) * 2015-01-23 2016-08-17 赛尔富电子有限公司 一种led电源启动电路
US20170367162A1 (en) * 2014-11-17 2017-12-21 General Electric Company Led driving circuit and protection circuit for dc/dc convertor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2522173A1 (en) * 2003-05-02 2004-11-11 George Alan Limpkin Apparatus for supplying energy to a load and a related system
WO2007092003A1 (en) * 2006-02-07 2007-08-16 Denovo Lighting, L.L.C. Power controls for tube mounted leds with ballast
US7636246B2 (en) * 2007-08-10 2009-12-22 Active-Semi, Inc. Start-up time reduction in switching regulators
US8629631B1 (en) 2011-07-21 2014-01-14 Cooper Technologies Company Method and system for improving start-up time of a light emitting diode (LED) driver at reduced input voltage
US8680776B1 (en) 2011-12-20 2014-03-25 Universal Lighting Technologies, Inc. Lighting device including a fast start circuit for regulating power supply to a PFC controller
CN102802318B (zh) * 2012-08-28 2014-09-17 绍兴光大芯业微电子有限公司 反激式快速启动led驱动电路结构
US9425682B2 (en) 2012-08-29 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Start-up circuit and method for AC-DC converters using a depletion mode transistor
US9450484B2 (en) 2013-02-20 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Startup circuit and method for AC-DC converters
US9225189B2 (en) 2013-12-06 2015-12-29 Shenzhen China Star Optoelectronics Technology Co., Ltd. Flyback quick start driving circuit and driving method
CN204652710U (zh) 2014-09-15 2015-09-16 深圳市聚作照明股份有限公司 一种led驱动电源快速启动电路
US10299333B2 (en) * 2014-09-28 2019-05-21 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9531931B2 (en) * 2014-09-30 2016-12-27 Apple Inc. Asymmetric multiphase boost for display backlights
CN105101556B (zh) * 2015-08-21 2017-12-12 京东方光科技有限公司 Led 调光驱动电路
DE102018203599B4 (de) * 2018-03-09 2024-02-22 Inventronics Gmbh Schaltungsanordnung zum betreiben einer vorzugsweise leuchtmittel aufweisenden last

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136335A1 (en) * 2006-12-08 2008-06-12 Hon Hai Precision Industry Co., Ltd. Led control circuit capable of automatically controlling brightness of leds according to ambient light conditions
CN101346022A (zh) * 2007-07-09 2009-01-14 黄怡仁 一种led灯的驱动电路
CN101868094A (zh) * 2010-06-22 2010-10-20 海洋王照明科技股份有限公司 一种led驱动电路及led灯具
CN102647823A (zh) * 2011-02-22 2012-08-22 英飞特电子(杭州)有限公司 一种led灯恒流驱动电路
US20170367162A1 (en) * 2014-11-17 2017-12-21 General Electric Company Led driving circuit and protection circuit for dc/dc convertor
CN105873310A (zh) * 2015-01-23 2016-08-17 赛尔富电子有限公司 一种led电源启动电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220170437A1 (en) * 2019-04-26 2022-06-02 Autonetworks Technologies, Ltd. Control device
US11705806B2 (en) * 2019-04-26 2023-07-18 Autonetworks Technologies, Ltd. Control device
CN113543409A (zh) * 2021-08-05 2021-10-22 深圳深川智能有限公司 一种led灯具的驱动电源
CN113543409B (zh) * 2021-08-05 2024-01-12 深圳深川智能有限公司 一种led灯具的驱动电源

Also Published As

Publication number Publication date
CN111212497A (zh) 2020-05-29
US20210385923A1 (en) 2021-12-09
US11528791B2 (en) 2022-12-13
CN111212497B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2020098372A1 (zh) 驱动电路
US9924569B2 (en) LED driving circuit
US7830094B2 (en) Driver arrangement for LED lamps
US11452188B2 (en) Current drive circuit and method, and light emitting diode lighting device thereof
EP3595413B1 (en) Constant current led power supply circuit with maximum output power limiting circuit
US20100295478A1 (en) Led driving circuit
CN1620747A (zh) 直流-交流变换装置及其控制器ic
US20180234019A1 (en) Power supply circuits
WO2021129784A1 (zh) 用于驱动led装置的驱动电路及led电路
CN108430139B (zh) 具有可控硅调光器的led驱动电路及其控制方法
TW201336344A (zh) 控制對發光二極體光源供電的控制器及方法、及可攜式照明裝置
CN108901098B (zh) 一种可更换工作模式的线性led驱动电路
KR101932366B1 (ko) 액정 디스플레이 장비를 위한 led 백라이트 소스 및 액정 디스플레이 장비
US11602021B2 (en) Linear drive circuit and led light having the same
EP2914064A1 (en) Drive circuit and illumination device comprising the drive circuit
US8773046B2 (en) Driving circuit having voltage dividing circuits and coupling circuit for controlling duty cycle of transistor and related circuit driving method thereof
CN111642041B (zh) 线性led驱动电路、***及其驱动方法
TWI683595B (zh) Led背光驅動雙控制器級聯的系統和方法
CN107249235B (zh) 一种兼容带指示灯开关的led驱动电路
US10440785B2 (en) Current holding circuit for bidirectional triode thyristor dimmer and linear dimming driving circuit using the same
TWI657715B (zh) 低頻閃之發光二極體驅動電路及其驅動方法
US20190029099A1 (en) Led lamp
TWI572252B (zh) 可調光式即時啓動安定器調光控制裝置
CN215379281U (zh) 一种空载功耗低且可调的调光电源
CN216820145U (zh) 一种能够调节led电源供电功率的led电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883488

Country of ref document: EP

Kind code of ref document: A1