WO2020098104A1 - 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用 - Google Patents

一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用 Download PDF

Info

Publication number
WO2020098104A1
WO2020098104A1 PCT/CN2018/124494 CN2018124494W WO2020098104A1 WO 2020098104 A1 WO2020098104 A1 WO 2020098104A1 CN 2018124494 W CN2018124494 W CN 2018124494W WO 2020098104 A1 WO2020098104 A1 WO 2020098104A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
ssz
mesoporous
sio
source
Prior art date
Application number
PCT/CN2018/124494
Other languages
English (en)
French (fr)
Inventor
岳源源
刘奔
吕南癸
鲍晓军
刘杰
王廷海
袁珮
朱海波
白正帅
崔勍焱
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to DE112018006780.7T priority Critical patent/DE112018006780T5/de
Priority to US16/967,449 priority patent/US11498061B2/en
Publication of WO2020098104A1 publication Critical patent/WO2020098104A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Definitions

  • the invention belongs to the field of environmental protection catalysts, and particularly relates to a preparation method of mesoporous Fe-Cu-SSZ-13 molecular sieve and its application in selective catalytic reduction of nitrogen oxides.
  • nitrogen oxide has become an important air pollutant after respirable particulate matter and sulfur dioxide, mainly from catalytic cracking (FCC) flue gas, automobile exhaust gas and thermal power plant exhaust emissions.
  • FCC catalytic cracking
  • NH 3 -SCR ammonia selective catalytic reduction
  • the molecular sieve has the characteristics of regular order structure, adjustable framework composition, high specific surface area, adsorption capacity and cation exchangeability, good channel shape selection, excellent thermal stability and chemical stability, etc. It is widely used in petrochemical industry, fine chemical industry and green chemical industry.
  • the SSZ-13 molecular sieve modified with heteroatoms has become one of the research hotspots in the field of environmental protection, especially the SSZ-13 molecular sieve modified with Fe or Cu has broad application prospects in the field of denitration.
  • the most commonly used method for synthesizing SSZ-13 molecular sieve is a hydrothermal synthesis method using N, N, N-trimethyl-1-adamantyl ammonium hydroxide (TMADAOH) as a template agent.
  • TMADAOH N, N, N-trimethyl-1-adamantyl ammonium hydroxide
  • the molecular sieve synthesized by this method has an ordered pore structure and high hydrothermal stability, the disadvantage of this method is that the synthesis step of the template agent is complicated and expensive, which limits the application of the SSZ-13 molecular sieve in the industrialization process. .
  • US8007764B2 discloses a method for synthesizing SSZ-13 molecular sieve using benzyltrimethyl quaternary ammonium ion (BzTMA + ) as a partial structure instead of TMADA + cation.
  • BzTMA + ions Although the price of BzTMA + ions is relatively low, it is irritating to the human body and will cause some harm to the human body. Therefore, BzTMA + ions cannot be the most suitable substitute for the structural directing agent TMADA + .
  • This method uses cheap copper amine complex as a template agent, which greatly reduces the cost of synthesis of Cu-SSZ-13 molecular sieve, but the silicon source used is silica sol, aluminum source is sodium meta aluminate, the raw material is not only The price is relatively high, and the silica sol has a low Si content (generally 30 to 40%) and is liquid, which is not easy to preserve and transport, resulting in its industrial production cost still being high.
  • Diatomaceous earth is a kind of biological sedimentary rock that is preserved in the form of diatom remains by diatoms through biological absorption of soluble silica in water under certain physical and chemical conditions such as light, temperature and nutrients. It is mainly used in industry to help Filter agent, filler and catalyst carrier. Diatomaceous earth's general theoretical structural formula is Mg 8 [Si 12 O 30 ] (OH) 4 (OH 2 ) 4 ⁇ 8H 2 O, which is a 2: 1 type chain layered structure, its chemical composition is mainly amorphous SiO2, After purification, activation and other pretreatments, it can be used as the main silicon source, part of aluminum source and iron source for synthetic molecular sieve.
  • Rectorite is a 1: 1 regular interlayer clay mineral of octahedral mica and octahedral montmorillonite, and its crystal chemical formula is: K x (H 2 O) ⁇ Al 2 [Al x Si 4 -xO 10 ] ( OH) 2 ⁇ , has the properties of high temperature resistance (refractory degree up to 1660 ° C), viscosity, plasticity, dispersibility, swelling, adsorption, hydration, cation exchange, colloidal double layer and electrokinetic potential. After purification, activation and other pretreatments, it can be used as the main aluminum source, part of silicon source and iron source for synthetic molecular sieve.
  • China's copper mine resources are 19.15 million tons, resources are 31.77 million tons, basic reserves are 30.42 million tons, and the total amount is up to 62.18 million tons, ranking seventh in the world.
  • This invention reduces the water-to-silicon ratio by introducing diatomaceous earth, and thus increases the yield of single synthesis by increasing the input amount of raw materials for single synthesis, but its aluminum
  • CN201510648172.4 discloses a method for synthesizing Cr-Al-ZSM-22 molecular sieve using modified diatomite as the main raw material, using no organic template agent and no seed crystal.
  • the specific steps are as follows: the soluble aluminum salt and the soluble chromium salt are stirred and dissolved in deionized water to form a chromium-aluminum solution, the alkali is added under stirring, and then the modified diatomaceous earth is added, and stirring is continued, and finally it is placed in a reaction kettle to crystal After the product is filtered, washed and dried, the raw powder of Cr-Al-ZSM-22 molecular sieve can be obtained.
  • the invention uses modified diatomaceous earth as the main raw material and rapidly synthesizes high-crystallinity Cr-Al-ZSM-22 molecular sieve without organic template agent and seed crystal. Not only does it not use organic template agent and seed crystal, but also shortens To reduce the crystallization time, reduce energy consumption and reduce synthesis costs, the introduction of chromium will help improve its catalytic activity and selectivity.
  • CN201710270575.9 discloses a kaolin or rectorite activated with sub-molten salts as the entire aluminum source and part of the silicon source, without adding any organic template agent, the activated mineral, alkali source, supplementary silicon source , Seed crystals and deionized water are mixed evenly in a certain proportion, and a one-step hydrothermal crystallization is used to synthesize Beta molecular sieve with stepped pores.
  • the advantage of the method provided by the present invention is that the natural minerals activated by sub-molten salts are used as all aluminum sources and some silicon sources, and no organic template is used in the synthesis process, which not only greatly reduces the synthesis cost of Beta molecular sieve, but also significantly Improves the greenness of the molecular sieve material production process.
  • the present invention provides a novel synthesis method of mesoporous Fe-Cu-SSZ-13 molecular sieve, which is characterized in that: without the use of mesoporous (large) pore template agent and post-treatment, the One-pot synthesis of mesoporous Fe-Cu-SSZ-13 molecular sieve by in-situ synthesis of Fe-Cu-SSZ-13 type molecular sieve with minerals as the source of silicon, aluminum, iron and copper, without adjusting the microporous template
  • the agent can be directly ion-exchanged, and has a wide temperature window and adjustable Fe and Cu content, and the Fe content in the molecular sieve framework is much higher than that of the pores and surface, and copper exists mainly in divalent form, without agglomeration
  • the copper oxide, that is, the iron and copper in the molecular sieve are mostly in the form of denitration active sites.
  • a mesoporous Fe-Cu-SSZ-13 molecular sieve including the following raw materials, deionized water, aluminum source, silicon source, iron source, copper source, acid source and template agent.
  • the aluminum source is a mixture of one or more of mica, alumite, bauxite, diatomaceous earth, rectorite, and natural zeolite;
  • the silicon source is bauxite, diatomaceous earth, and rectorite , One or more of natural zeolite or opal;
  • the iron source is one or more of bauxite, diatomaceous earth, rectorite, pyrite, mica hematite, red mud Mixture;
  • the copper source is one or a mixture of copper ore, Bornite, magnetite, malachite, copper blue, chalcopyrite;
  • the acid source is 2-hydroxy-homopropylene Tricarboxylic acid, sulfurous acid, and a mixture of one or more of nitrous acid, sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, and acetic acid;
  • the template agent is diaminomethylpyridine, diaminopropane, p-
  • a preparation method of mesoporous Fe-Cu-SSZ-13 molecular sieve includes the following steps:
  • step (3) Place the powder obtained in step (3) in a muffle furnace to obtain Fe-Cu-SSZ-13 molecular sieve.
  • step (2) The aging mentioned in step (2) is carried out under the condition of 10 ⁇ 80 o C, and the aging time is 2 ⁇ 12 h.
  • the addition amount of the seed crystal in step (2) is 1-15% of the total mass of SiO 2 in the synthesis system.
  • step (3) the crystallization temperature is 100-190 ° C, and the crystallization time is 12-120 h.
  • step (3) The specific method of the ion exchange in step (3) is as follows: the dried solid and the 0.1 ⁇ 2 M HNO 3 solution are subjected to ion exchange at a mass ratio of 1: 10 ⁇ 1: 100, at 10 ⁇ 80 o C heating and stirring for 3 ⁇ 8 h,
  • the roasting time in step (3) is 4-10 h, and the roasting temperature is 500-600 o C.
  • the prepared Fe-Cu-SSZ-13 catalyst was used in the selective catalytic reduction of nitrogen oxides.
  • the present invention provides a Fe-Cu-SSZ-13 molecular sieve and its synthesis method.
  • the Fe-Cu-SSZ-13 molecular sieve of the present invention has the following advantages:
  • the mesoporous Fe-Cu-SSZ-13 molecular sieve is synthesized in situ using the one-pot method of adjusting the pH of the synthesis system in stages without removing
  • the microporous template agent can be used for ion exchange, economically, environmentally friendly and efficient synthesis of mesoporous Fe-Cu-SSZ-13 molecular sieve with excellent SCR denitration performance, its NO conversion rate is higher in a wider temperature window (150-700 o C) 90%, with high N 2 selectivity (> 99%).
  • the prepared Fe-Cu-SSZ-13 is a cascade pore catalytic material, which has the advantages of high specific surface area, large adsorption capacity, and rich acid sites. This will facilitate the full contact of the reaction substances and the active sites, and it also solves Problems such as internal mass transfer and diffusion plague traditional microporous molecular sieves.
  • the mesoporous Fe-Cu-SSZ-13 molecular sieve is synthesized in situ using the one-pot method of adjusting the pH value of the synthesis system in stages without the use of meso (large) pore template agent and post-treatment. And the ion exchange can be carried out without removing the microporous template agent; the mesopore distribution of the products prepared in short period is concentrated at 5-50 nm, the specific surface area is 380-700 m 2 / g, and the external specific surface area is 120-500 m 2 / g.
  • the content of Fe 2 O 3 in the molecular sieve is 0.1 ⁇ 10% of the total weight of the molecular sieve, in which the content of the framework Fe accounts for more than 95% of the total iron content and is evenly distributed within the framework;
  • the content of CuO in the molecular sieve is 0.1 of the total weight of the molecular sieve ⁇ 10%, of which Cu 2+ content accounts for more than 90% of the total copper content, and its distribution on the inner surface of the molecular sieve is relatively uniform.
  • the synthesis process route provided by the invention can not only greatly reduce the production cost of molecular sieve synthesis, but also greatly improve the greenness of the synthesis process.
  • the obtained molecular sieve has the characteristics of low cost and better physical and chemical properties.
  • FIG. 1 is an X-ray diffraction (XRD) spectrum of the Fe-Cu-SSZ-13 molecular sieve prepared in Example 1 of the present invention.
  • FIG. 2 is a pore size distribution diagram of the Fe-Cu-SSZ-13 molecular sieve prepared in Example 1 of the present invention.
  • the used rectorite, diatomaceous earth, porphyrite and copperite are commercially available products.
  • the main components of diatomaceous earth are: SiO2 content is 93.2 wt%, Al2O3 content is 3.3 wt%, Fe 2 O 3 content is 1.5 wt%.
  • Bornite Cu content is 63.33 wt%, Fe content is 11.12 wt%.
  • Activation of minerals Dry and pulverize commercially available diatomaceous earth into powder, weigh 50.00 g of diatomaceous earth powder and roast at 800 o C for 4 hours, and set aside; dry and pulverize commercially available porphyrite to powder, Weigh 50.00 g of the chalcopyrite powder at 790 o C for 4 h and reserve it; dry and crush the commercially available black copper ore into powder, and weigh 50.00 g of the chalcopyrite powder at 850 o C for 4 h and reserve it; Weigh 60.00 g of rectorite, 72 g of sodium hydroxide, 300 g of water, mechanically stir at room temperature for 1 h, then activate in a 255 o C oven for 12 h, then crush and reserve.
  • the sodium-type Fe-Cu-SSZ-13 molecular sieve uses 0.2 M HNO 3 Exchange at 80 o C for 6 h, filter to remove the mother liquor, filter cake with deionized water to neutrality, and dry to obtain hydrogen-type Fe-Cu-SSZ-13 molecular sieve.
  • the mesoporous pore diameter of the obtained sample is mainly concentrated at 40 nm, the specific surface area is 550 m 2 / g, the external specific surface area is 500 m 2 / g, and the Fe 2 O 3 content is 1.5% of the total weight of the molecular sieve, of which the framework iron content accounts for 95% of the total iron content.
  • the CuO content is 4.5% of the total weight of the molecular sieve, and the divalent copper ion accounts for 93% of the total copper content.
  • This example provides a Fe-Cu-SSZ-13 catalyst.
  • the preparation steps are the same as in Example 1. Only some parameters are adjusted, as follows:
  • the mesoporous pore diameter of the obtained sample was mainly concentrated at 35 nm, the specific surface area was 560 m 2 / g, the external specific surface area was 420 m 2 / g, and the Fe 2 O 3 content was 1% of the total weight of the molecular sieve. 97% of the total iron content.
  • the CuO content is 2% of the total weight of the molecular sieve, and the divalent copper ion accounts for 90% of the total copper content.
  • This example provides a Fe-Cu-SSZ-13 catalyst.
  • the preparation steps are the same as in Example 1. Only some parameters are adjusted, as follows:
  • the mesoporous pore diameter of the obtained sample is mainly concentrated at 35 nm, the specific surface area is 660 m 2 / g, the external specific surface area is 520 m 2 / g, and the Fe 2 O 3 content is 6% of the total weight of the molecular sieve, of which the framework iron content accounts for 97% of the total iron content.
  • the CuO content is 3% of the total weight of the molecular sieve, and the divalent copper ion accounts for 90% of the total copper content.
  • Example 1 the catalyst prepared in Example 1 was used to test the activity of a fixed-bed reaction, including the following steps:
  • the catalyst activity evaluation device is an atmospheric pressure micro-fixed bed reaction device, which consists of a gas mixing preheating furnace and a reaction furnace, and the reactor is a quartz tube with an inner diameter of 7 mm.
  • the reaction was carried out by means of programmed temperature rise, and the temperature of the heating furnace was controlled by a temperature controller. When arriving at the data collection point, stay for 30 minutes for data processing and record the data.
  • the reaction conditions are: 500 ppm NO, 500 ppm NH 3 , 5 v% O 2 , and N 2 are the balance gas, the total gas flow is 600 mL / min, the catalyst dosage is 200 mg, and the reaction volume space velocity is 180,000 h -1 .
  • the concentrations of NO, NH 3 and NO 2 are all qualitatively and quantitatively analyzed by a flue gas analyzer (Testo 340 of German Testo instrument), and the concentration of N 2 O is determined by Fourier transform infrared with a 2 m optical path gas cell Measured by spectrometer (Nicolet iS50).
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 4.
  • the difference was that the catalyst was replaced with the catalyst prepared in Example 2.
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 4.
  • the difference was that the catalyst was replaced with the catalyst prepared in Example 3.
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 4.
  • the difference was that the catalyst was replaced with the catalyst prepared in Example 2 and subjected to hydrothermal treatment at 700 o C for 4 h.
  • the present invention also provides a comparative example, the most commonly used method for synthesizing SSZ-13 molecular sieve used in this comparative example is N, N, N-trimethyl- 1-Adamantyl ammonium hydroxide (TMADAOH) is used as a template for hydrothermal synthesis.
  • TMADAOH N, N, N-trimethyl- 1-Adamantyl ammonium hydroxide
  • the feeding ratio is the same as that in the third embodiment. Only the modified part: no iron and copper sources are added during the synthesis process, and silica sol is used. Replace diatomite.
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the procedure was the same as that in Example 4.
  • the difference was that the catalyst was the catalyst obtained in Comparative Example 1.
  • the present embodiment the fixed bed reactor used for testing the activity of the catalyst, the same procedure as Example 4, except that the parameters: the catalyst replacement catalyst is prepared in Comparative Case 1 through 700 o C hydrothermally treated 4 h.
  • the temperature window is the corresponding temperature range when the conversion rate of NO> 90%
  • the mesoporous Fe-Cu-SSZ-13 provided by the present invention has an ultra-wide temperature window (especially medium and high temperature activity), excellent N 2 selectivity, and good hydrothermal stability.
  • the method of the present invention not only has low cost, simple process and easy operation, but also has good economic and environmental benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

提供一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用,特别涉及一种以廉价天然矿物为原料一锅法合成介孔Fe-Cu-SSZ-13分子筛的方法及其在选择性催化还原(SCR)脱硝反应中的应用,属于环保催化剂的绿色制备技术领域。所述方法首次提出将脱模与离子交换后的两次焙烧合二为一,即将合成的原粉进行一次交换和焙烧即可直接制备具有温窗宽、成本低、水热稳定性好及SCR脱硝活性高等特点的Fe-Cu-SSZ-13分子筛,克服了传统浸渍或离子交换法步骤繁琐、成本高、污染排放大的缺点。所述方法合成过程不使用介(大)孔模板剂,也不采用后处理的方法来构造介孔。所述方法不仅工艺简单,而且具有良好的经济和环境效益。

Description

一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用 技术领域
本发明属于环保催化剂领域,具体涉及一种介孔Fe-Cu-SSZ-13分子筛的制备方法及其在氮氧化物选择性催化还原反应中的应用。
背景技术
目前氮氧化物已成为仅次于可吸入颗粒物和二氧化硫的重要大气污染物,主要来自于催化裂化(FCC)烟气、汽车尾气和火电厂废气排放。近些年来氨选择催化还原(NH 3-SCR)脱硝技术逐渐成为研究的焦点,并被大量专家学者认为是最具有潜力的脱硝技术。分子筛由于具有规则有序的结构、可调变的骨架组成、较高的比表面积、吸附容量和阳离子可交换性、良好的孔道择形性、优异的热稳定性和化学稳定性等特点,已被广泛应用于石油化工、精细化工和绿色化工等领域。近些年来,杂原子修饰的SSZ-13分子筛成为环保领域研究的热点之一,尤其以Fe或Cu修饰的SSZ-13分子筛在脱硝领域具有广阔的应用前景。
目前合成SSZ-13分子筛最常用的方法是以N,N,N-三甲基-1-金刚烷基氢氧化铵(TMADAOH)为模板剂的水热合成法。虽然该方法合成的分子筛具有有序的孔道结构和较高的水热稳定性,但是该方法的缺点在于模板剂自身的合成步骤复杂、价格昂贵,限制了SSZ-13分子筛在工业化过程中的应用。
US8007764B2公开了一种采用苄基三甲基季铵离子(BzTMA +)部分代替TMADA +阳离子作为结构导向剂的SSZ-13分子筛的合成方法。虽然BzTMA +离子的价格相对较低,但它对人体有刺激性,并会对人体造成一定的伤害,因此,BzTMA +离子并不能成为最合适的结构导向剂TMADA +的替代者。
2011年,浙江大学肖丰收课题组(Chem. Commun. 2011, 47, 9789)报道了使用铜胺络合物一步法合成Cu-SSZ-13分子筛的新方法,所合成的分子筛材料在柴油车的脱硝反应中显示了优异的催化性能。该方法使用廉价的铜胺络合物作为模板剂,极大程度上降低了合成Cu-SSZ-13分子筛的成本,但所使用的硅源是硅溶胶、铝源为偏铝酸钠,原料不仅价格偏高,而且硅溶胶其Si含量较低(一般为30~40%)且是液体,不易保存和运输,导致其工业生产的成本仍然偏高。
硅藻土是硅藻在一定的光、温度和营养物质等物理化学条件下通过生物吸收水中的可溶性氧化硅,而以硅藻遗骸形式保存下来的一种生物沉积岩,在工业上主要用于助滤剂、填料和催化剂载体。硅藻土通用的理论结构式为Mg 8[Si 12O 30](OH) 4(OH 2) 4·8H 2O,是2:1型的链层状结构,其化学成分主要是无定形SiO2,经提纯、活化等预处理后可作为合成分子筛的主要硅源、部分铝源和铁源。
累托土是二八面体云母和二八面体蒙脱石1:1规则间层粘土矿物,晶体化学通式为:K x(H 2O){Al 2[Al xSi 4-xO 10](OH) 2},具有耐高温(耐火度达1660 °C)以及粘性、塑性、分散性、膨胀性、吸附性、水化性、阳离子交换性、胶体双层与电动电位等性质。经提纯、活化等预处理后可作为合成分子筛的主要铝源、部分硅源和铁源。
当前我国铜矿资源的保有量1915万吨,资源量3177万吨,基础储量3042万吨,总量高达6218万吨,位列世界第7。铜矿物种类有280多种,主要有黑铜矿、斑铜矿、磁铁矿、孔雀石、铜蓝、黄铜矿等。由此可见,我国铜矿储量丰富且种类繁多,部分铜矿经过粉碎成粉末和焙烧等处理有望成为合成分子筛的铜源。
CN201510651013.X公开了一种由改性硅藻土在无有机模板条件下制备Beta分子筛的方法,将氢氧化钠溶于水,搅拌下加入改性硅藻土和Beta分子筛晶种,再加入铝源,继续搅拌1~5 h,水热晶化后得到Beta分子筛;其中,以氧化物计各成份摩尔用量为SiO 2:Al 2O 3:Na 2O:H 2O=1:0.05~0.2:0.2~0.35:3~8;Beta分子筛晶种的SiO 2/Al 2O 3摩尔比为20~30:1,Beta分子筛晶种的加入质量为改性硅藻土的1~2%。此发明通过引入硅藻土从而降低水硅比,从而通过增加单次合成的原料投入量,提高单次合成的产率,但其铝源仍然为化学试剂。
CN201510648172.4公开了一种以改性硅藻土为主要原料,采用无有机模板剂、无晶种合成Cr-Al-ZSM-22分子筛的方法。具体步骤如下:将可溶性铝盐和可溶性铬盐搅拌溶于去离子水形成铬铝溶液,在搅拌下加入碱,再加入改性硅藻土,继续搅拌均匀,最后将其置于反应釜中晶化,产物经过滤、洗涤、干燥,即可得到Cr-Al-ZSM-22分子筛原粉。本发明以改性硅藻土为主要原料,在无有机模板剂、无晶种条件下快速合成高结晶度的Cr-Al-ZSM-22分子筛,不但未使用有机模板剂与晶种,而且缩短了晶化时间,减少了能耗,降低了合成成本,铬的引入将有利于提高其催化活性与选择性。
CN201710270575.9公开了一种以亚熔盐活化的高岭土或累托土为全部铝源和部分硅源,在不添加任何有机模板剂的条件下,将活化后的矿物、碱源、补充硅源、晶种和去离子水按一定的比例混合均匀,通过一步水热晶化合成具有梯级孔Beta分子筛。本发明提供的方法优点在于,采用亚熔盐活化的天然矿物作为全部铝源和部分硅源,且在合成过程中完全没有使用有机模板剂,不仅极大地降低了Beta分子筛的合成成本,显著地提高了分子筛材料生产过程的绿色性。
技术问题
尽管以硅藻土或累托土为原料合成了FAU型等分子筛材料,但是目前尚未见以矿物为主要的硅铝铁铜源制备Fe-Cu-SSZ-13分子筛的相关报道,因此,在使用廉价的模板剂基础上,研究开发以矿物为硅铝铁铜源合成Fe-Cu-SSZ-13型分子筛的低成本合成新技术,有望进一步降低分子筛的生产成本,具有重要的科学研究价值和广阔的工业应用前景。
技术解决方案
为解决上述问题,本发明提供了一种介孔Fe-Cu-SSZ-13分子筛的新型合成方法,其特征在于:在不使用介(大)孔模板剂、不采用后处理的条件下,采用分段调控合成体系pH值、以矿物为硅铝铁铜源合成Fe-Cu-SSZ-13型分子筛的一锅法原位合成介孔Fe-Cu-SSZ-13分子筛,无需脱除微孔模板剂即可直接进行离子交换,且具有较宽的温窗和可调的Fe和Cu含量,并且分子筛骨架内Fe含量远高于孔道及表面的,且铜主要以二价形式存在,不存在团聚的氧化铜,即分子筛中的铁与铜绝大部分均以脱硝活性位的形式存在。
 一种介孔Fe-Cu-SSZ-13分子筛,包括以下原料,去离子水、铝源、硅源、铁源、铜源、酸源和模板剂。
所述铝源为云母、明矾石、铝土矿、硅藻土、累托土、天然沸石中的一种或者多种的混合物;所述硅源为铝土矿、硅藻土、累托土、天然沸石或蛋白石中的一种或几种混合物;所述铁源为铝土矿、硅藻土、累托土、黄铁矿、云母赤铁矿、赤泥中的一种或几种的混合物;所述铜源为黑铜矿、斑铜矿、磁铁矿、孔雀石、铜蓝、黄铜矿中的一种或者几种的混合物;所述酸源为为2-羟基-均丙三羧酸、亚硫酸和亚硝酸、硫酸、盐酸、硝酸、草酸、醋酸中的一种或几种的混合物;所述模板剂为二胺基甲基吡啶、二胺基丙烷、对丁基环已烷甲酸、甲二胺、四乙烯五胺中的一种或多种。
一种介孔Fe-Cu-SSZ-13分子筛的制备方法,包含如下步骤:
(1)矿物的活化:
(2)在25~90 oC下,将活化后的矿物与氢氧化钠、水和晶种混合,控制各种原料的投料量使得合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~100,SiO 2/Fe 2O 3=30~3000,SiO 2/CuO=1~100,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5,混合后加入酸源,调节体系pH为5~13,进行第一次老化,再加入酸源,调节体系pH为5~13,进行第二次老化,即获得老化后的凝胶;
(3)将老化后的混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内进行晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到固体,之后将固体进行离子交换,并过滤、洗涤、干燥,得到粉末;所述干燥条件为80-150℃,干燥过夜;
(4)将步骤(3)中获得粉末置于马弗炉中焙烧得到Fe-Cu-SSZ-13分子筛。
步骤(2)所述老化是在10~80 oC条件下进行,老化时间为2~12 h。
步骤(2)所述根据合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~100,SiO 2/Fe 2O 3=30~2550,SiO 2/CuO=20~100,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5。
步骤(2)所述晶种的添加量为合成体系中SiO 2总质量的1-15%。
步骤(3)中所述晶化温度为100~190 oC,晶化时间为12~120 h。
步骤(3)所述离子交换具体的具体方法为:将所述干燥得到的固体与0.1~2 M的HNO 3溶液按照质量比1:10~1:100的比例进行离子交换,于10~80 oC加热搅拌3~8 h,
步骤(3)所述焙烧时间为4~10 h,焙烧温度为500~600 oC。
将制备得到的Fe-Cu-SSZ-13催化剂应用于氮氧化物选择性催化还原反应中。
综上所述,本发明提供了一种Fe-Cu-SSZ-13分子筛及其合成方法。
有益效果
本发明的Fe-Cu-SSZ-13分子筛具有如下优点:
(1)克服了传统浸渍或离子交换制备方法步骤繁琐和成本高的缺点,采用分段调控合成体系pH值的一锅法原位合成介孔Fe-Cu-SSZ-13分子筛,且无需脱除微孔模板剂即可进行离子交换,经济环保高效地合成SCR脱硝性能优良的介孔Fe-Cu-SSZ-13分子筛,其在较宽的温度窗口(150-700 oC) NO转化率高于90%,具备较高的N 2选择性(>99%)。
(2)首次采用以矿物为硅铝铁铜源一锅法原位合成Fe-Cu-SSZ-13,在不使用介(大)孔模板剂、不采用后处理的条件下,采用分段调控合成体系pH值的一锅法原位合成介孔Fe-Cu-SSZ-13分子筛,且无需脱除微孔模板剂即可直接进行离子交换,且具有较宽的温窗和可调的Fe和Cu含量,同时以矿物为原料合成分子筛,不仅原料来源丰富且低成本,同时解决了传统化学试剂在制备过程中大量废液排放等高成本、非绿色、重污染问题。
(3)通过短周期经济环保高效地合成SCR脱硝性能优良的介孔Fe-Cu-SSZ-13分子筛。成功解决了传统浸渍法所面临的工艺复杂、流程长、Fe或Cu容易团聚合成周期长等难题,同时避免了介(大)孔模板剂的使用,并能有效解决脱模过程产生的大量氨氮等污染气体以及脱除模板剂过程引起的分子筛自身孔道坍塌等问题。
(4)制备的Fe-Cu-SSZ-13属于梯级孔催化材料,具有高比表面积、吸附容量大、酸性位丰富的优势,这将有利于反应物质与活性位的充分接触,同时也解决了内部传质扩散等困扰传统微孔分子筛的问题。
(5)本发明在不使用介(大)孔模板剂、不采用后处理的条件下,采用分段调控合成体系pH值的一锅法原位合成介孔Fe-Cu-SSZ-13分子筛,且无需脱除微孔模板剂即可进行离子交换;短周期制备所得产品介孔分布集中在5~50 nm,比表面积为380~700 m 2/g,外比表面积为120~500 m 2/g,分子筛中Fe 2O 3含量为分子筛总重量的0.1~10%,其中骨架Fe的含量占总铁含量的95%以上,且在骨架内分布均匀;分子筛中CuO含量为分子筛总重量的0.1~10%,其中Cu 2+的含量占总铜含量的90%以上,且其在分子筛内表面分布较为均匀。
本发明所提供的合成工艺路线不仅可大幅降低分子筛合成的生产成本,而且可极大地提高合成过程的绿色性,所得到的分子筛具有成本低廉且物化性能更优的特点。
附图说明
图1是本发明实施例1制备得到的Fe-Cu-SSZ-13分子筛的X射线衍射(XRD)谱图。
图2是本发明实施例1制备得到的Fe-Cu-SSZ-13分子筛的孔径分布图。
本发明的实施方式
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在有助于更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
实施例 1
试剂的准备:
矿物的选择:所用的累托土、硅藻土、斑铜矿和黑铜矿为市售产品,累托土的主要成分:SiO2的含量为43.2 wt%,Al2O3的含量为37.2 wt%,Fe 2O 3的含量为0.5 wt%。硅藻土的主要成分为:SiO2的含量为93.2 wt%,Al2O3的含量为3.3 wt%,Fe 2O 3的含量为1.5 wt%。斑铜矿:Cu的含量为63.33 wt%,Fe的含量11.12 wt%。黑铜矿:Cu的含量为79.89 wt %。
矿物的活化:将市售的硅藻土烘干、粉碎成粉末,称取50.00 g硅藻土粉末在800 oC焙烧4 h,备用;将市售的斑铜矿烘干、粉碎成粉末,称取50.00 g斑铜矿粉末在790 oC焙烧4 h,备用;将市售的黑铜矿烘干、粉碎成粉末,称取50.00 g黑铜矿粉末在850 oC焙烧4 h,备用;称取60.00 g累托土,72 g氢氧化钠,300 g水,常温下机械搅拌1 h,之后在255 oC烘箱中活化12 h,之后粉碎,备用。
分子筛制备:称取2.79 g活化后累托土和4.04 g NaOH溶于50 g去离子水中,滴加6.5 g TEPA,搅拌5 min后加入6.7 g活化后黑铜矿,搅拌1 h后加入8.08 g硅藻土,加入1.2 g硫酸调pH至11,之后在70 oC水浴4 h,然后冷却至室温,加入1.3 g硫酸调pH至10,在35 oC下混合搅拌4 h。将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内,升温至140 oC静止晶化72 h。晶化结束后,冷却、过滤除去母液,洗涤至中性,于120 oC下干燥,得到钠型Fe-Cu-SSZ-13分子筛产物,钠型Fe-Cu-SSZ-13分子筛采用0.2 M HNO 3在80 oC下交换6 h,过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到氢型Fe-Cu-SSZ-13分子筛。所得样品介孔孔径主要集中在40 nm处,比表面积为550 m 2/g,外比表面积为500 m 2/g,Fe 2O 3含量为分子筛总重量的1.5%,其中骨架铁的含量占总铁含量的95%。CuO含量为分子筛总重量的4.5%,其中二价铜离子占总铜含量的93%。
实施例 2
本实施例提供一种Fe-Cu-SSZ-13催化剂,制备步骤同实施例1,仅调变部分参数,具体如下:
分子筛制备:称取0.418 g活化后累托土和1.11 g NaOH溶于50 g去离子水中,滴加5.255 g TEPA,搅拌5 min后加入0.34 g Cu(NO 3) 2和0.7 g活化后黑铜矿,搅拌1 h后加入4.3 g硅藻土,加入1 g盐酸调节pH至13,之后在60 oC水浴4 h,然后冷却至室温,加入2 g盐酸调节pH至10,在35 oC下混合搅拌4 h。将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内,升温至140 oC静止晶化72 h。晶化结束后,冷却、过滤除去母液,洗涤至中性,于120 oC下干燥,得到钠型Fe-Cu-SSZ-13分子筛产物,钠型Fe-Cu-SSZ-13分子筛采用0.15 M HNO 3在70 oC下交换9 h,过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到氢型Fe-Cu-SSZ-13分子筛。所得样品介孔孔径主要集中在35 nm处,比表面积为560 m 2/g,外比表面积为420 m 2/g,Fe 2O 3含量为分子筛总重量的1%,其中骨架铁的含量占总铁含量的97%。CuO含量为分子筛总重量的2%,其中二价铜离子占总铜含量的90%。
实施例 3
本实施例提供一种Fe-Cu-SSZ-13催化剂,制备步骤同实施例1,仅调变部分参数,具体如下:
分子筛制备:称取2.28 g活化后累托土和1 g NaOH溶于50 g去离子水中,加入3 g醋酸,调节pH至10,滴加5.3 g TEPA,搅拌5 min后加入0.234 g斑铜矿,搅拌1 h后加入2.73 g硅藻土,加入1.1 g九水硝酸铁,之后在70 oC水浴4 h,然后冷却至室温,加入1 g醋酸调节pH至11,在35 oC下混合搅拌4 h。将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内,升温至140 oC静止晶化72 h。晶化结束后,冷却、过滤除去母液,洗涤至中性,于120 oC下干燥,得到钠型Fe-Cu-SSZ-13分子筛产物,钠型Fe-Cu-SSZ-13分子筛采用0.15 M HNO 3在70 oC下交换9 h,过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到氢型Fe-Cu-SSZ-13分子筛。所得样品介孔孔径主要集中在35 nm处,比表面积为660 m 2/g,外比表面积为520 m 2/g,Fe 2O 3含量为分子筛总重量的6%,其中骨架铁的含量占总铁含量的97%。CuO含量为分子筛总重量的3%,其中二价铜离子占总铜含量的90%。
实施例 4
本实施例,将实施案例1制备的催化剂用于固定床反应测试活性,包括以下步骤:
上述实施案例1得到的催化剂A经压片、过筛后,取20~40目的催化剂颗粒进行活性评价。催化剂的活性评价装置为常压式微型固定床反应装置,由气体混合预热炉和反应炉组成反应***,反应器为内径7 mm的石英管。在实验过程中采用程序升温的方式进行反应,用温度控制仪控制加热炉的温度。到达数据采集点时停留30 min进行数据处理并记录数据。反应条件为:500 ppm NO、500 ppm NH 3、5 v% O 2、N 2为平衡气、气体总流量为600 mL/min、催化剂用量为200 mg,反应体积空速为180000 h -1。NO、NH 3和NO 2的浓度均由烟气分析仪(德国德图仪器testo340)进行在线定性,定量分析,N 2O的浓度则由配有2 m光程气体池的傅里叶变换红外光谱仪(Nicolet iS50)测得。
实施例 5
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例4,参数不同之处在于:催化剂更替为实施案例2制备的催化剂。
实施例 6
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例4,参数不同之处在于:催化剂更替为实施案例3制备的催化剂。
实施例 7
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例4,参数不同之处在于:催化剂更替为实施案例2制备的催化剂经过700 oC下水热处理4 h。
对比例 1
(1)为了证明本发明所述技术方案的技术效果,本发明还设置了对比例,本对比例中采用的合成SSZ-13分子筛最常用的方法是以N,N,N-三甲基-1-金刚烷基氢氧化铵(TMADAOH)为模板剂的水热合成法,投料比例与同实施案例三,仅调变部分:在合成过程中不加入任何铁源和铜源,并且以硅溶胶代替硅藻土。
(2)称取0.62 g Cu(NO 3) 2·3H 2O和3.22 g Fe(NO 3) 3·9H 2O、5 g去离子水,将其混合均匀后,缓慢滴加到10 g步骤(1)中所合成的分子筛,超声2 h,室温晾干,再将其放置于烘箱中120 oC下干燥8 h,最后于马弗炉中520 oC下焙烧5 h,冷却至室温。
对比例 2
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例4,参数不同之处在于:催化剂为对比例1获得的催化剂。
对比例 3
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例4,参数不同之处在于:催化剂更替为对比案例1制备的催化剂经过700 oC下水热处理4 h。
表1 各实施例和固定床反应测试活性的测定结果
Figure 556362dest_path_image001
注:温窗为NO的转化率>90%时对应的温度区间
由表1可以看出,本发明提供的介孔Fe-Cu-SSZ-13具有超宽的温度窗口(特别是中高温活性)、优异的N 2选择性和较好的水热稳定性等特点,本发明方法不仅具有成本低、工艺简单、操作简便,而且具有良好的经济效益和环境效益。
尽管以上结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (10)

  1. 一种介孔Fe-Cu-SSZ-13分子筛,其特征在于,分子筛中Fe 2O 3含量为分子筛总重量的0.1~10%,其中骨架Fe的含量占总铁含量的95%以上,且在骨架内分布均匀;分子筛中CuO含量为分子筛总重量的0.1~10%,其中Cu 2+的含量占总铜含量的90%以上,且其在分子筛内表面分布均匀。
  2. 根据权利要求1所述一种介孔Fe-Cu-SSZ-13分子筛,其特征在于,包括以下原料:去离子水、铝源、硅源、铁源、铜源、酸源和模板剂;所述铝源为云母、明矾石、铝土矿、硅藻土、累托土、天然沸石中的一种或者多种的混合物;所述硅源为铝土矿、硅藻土、累托土、天然沸石或蛋白石中的一种或几种混合物;所述铁源为铝土矿、硅藻土、累托土、黄铁矿、云母赤铁矿、赤泥中的一种或几种的混合物;所述铜源为黑铜矿、斑铜矿、磁铁矿、孔雀石、铜蓝、黄铜矿中的一种或者几种的混合物;所述酸源为为2-羟基-均丙三羧酸、亚硫酸和亚硝酸、硫酸、盐酸、硝酸、草酸、醋酸中的一种或几种的混合物;所述模板剂为二胺基甲基吡啶、二胺基丙烷、对丁基环已烷甲酸、甲二胺、四乙烯五胺中的一种或多种。
  3. 如权利要求1所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,包含如下步骤:
    (1)矿物的活化:将铝源、硅源、铁源、铜源分别进行活化;
    (2)在25~90 oC下,将活化后的矿物与氢氧化钠、水和晶种混合,控制各种原料的投料量使得合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~100,SiO 2/Fe 2O 3=30~3000,SiO 2/CuO=1~100,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5,混合后加入酸源,调节体系pH为5~13,进行第一次老化,再加入酸源,调节体系pH为5~13,进行第二次老化,即获得老化后的凝胶;
    (3)将老化后的混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内进行晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到固体,之后将固体进行离子交换,并过滤、洗涤、干燥,得到粉末;所述干燥条件为80-150℃,干燥过夜;
    (4)将步骤(3)中获得粉末置于马弗炉中焙烧得到Fe-Cu-SSZ-13分子筛。
  4. 根据权利要求3所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,其特征在于步骤(2)所述老化是在10~80 oC条件下进行,老化时间为2~12 h。
  5. 根据权利要求3所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,其特征在于步骤(2)所述根据合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~100,SiO 2/Fe 2O 3=30~2550,SiO 2/CuO=20~100,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5。
  6. 根据权利要求3所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,其特征在于步骤(2)所述晶种的添加量为合成体系中SiO 2总质量的1-15%。
  7. 根据权利要求3所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,其特征在于步骤(3)中所述晶化温度为100~190 oC,晶化时间为12~120 h。
  8. 根据权利要求3所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,其特征在于步骤(3)所述离子交换具体的具体方法为:将所述干燥得到的固体与0.1~2 M的HNO 3溶液按照质量比1:10~1:100的比例进行离子交换,于10~80 oC加热搅拌3~8 h,
  9. 根据权利要求3所述的一种介孔Fe-Cu-SSZ-13分子筛的制备方法,其特征在于步骤(3)所述焙烧时间为4~10 h,焙烧温度为500~600 oC。
  10. 如权利要求1-9所述的Fe-Cu-SSZ-13催化剂在氮氧化物选择性催化还原反应中的应用。
PCT/CN2018/124494 2018-11-14 2018-12-27 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用 WO2020098104A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018006780.7T DE112018006780T5 (de) 2018-11-14 2018-12-27 Herstellungsverfahren und Anwendung eines mesoporösen Fe-Cu-SSZ-13-Molekularsiebs
US16/967,449 US11498061B2 (en) 2018-11-14 2018-12-27 Preparation method of mesoporous Fe—Cu-SSZ-13 molecular sieve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811354909.1 2018-11-14
CN201811354909.1A CN109382137B (zh) 2018-11-14 2018-11-14 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2020098104A1 true WO2020098104A1 (zh) 2020-05-22

Family

ID=65428763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124494 WO2020098104A1 (zh) 2018-11-14 2018-12-27 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用

Country Status (4)

Country Link
US (1) US11498061B2 (zh)
CN (1) CN109382137B (zh)
DE (1) DE112018006780T5 (zh)
WO (1) WO2020098104A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958148A (zh) * 2021-02-05 2021-06-15 中化学科学技术研究有限公司 具有核壳结构的Cu-SSZ-39@Cu-SSZ-13复合分子筛及其合成方法
CN113117738A (zh) * 2021-04-20 2021-07-16 北京工业大学 一种用于非氨scr脱硝反应的催化剂的制备方法及其用途
CN113233472A (zh) * 2021-06-11 2021-08-10 福州大学 一种纳米小晶粒zsm-22分子筛的合成方法
CN113413910A (zh) * 2021-06-14 2021-09-21 山东迅达化工集团有限公司 一种nh3-sco催化剂及其在含氨气流净化处理中的应用
CN113797967A (zh) * 2020-06-12 2021-12-17 中国石油化工股份有限公司 一种甲烷直接转化制甲醇催化剂及其合成方法和应用
CN114272952A (zh) * 2022-01-24 2022-04-05 沈阳师范大学 一种原位合成Cu-SSZ-13分子筛的方法
CN114772610A (zh) * 2022-05-07 2022-07-22 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN115814847A (zh) * 2022-12-10 2023-03-21 南京工程学院 一种ssz-39分子筛形貌可控封装金属催化材料的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560146A (zh) * 2019-09-18 2019-12-13 广东工业大学 一种双金属mel分子筛及其制备方法和应用
CN112642473A (zh) * 2019-10-12 2021-04-13 中国石油天然气股份有限公司 一种sba-15/zsm-5复合分子筛的制备方法、催化剂及在双支链异构化中的应用
CN111039302B (zh) * 2019-12-16 2021-12-28 大连理工大学 一种含铁ssz-13分子筛的直接水热合成制备方法
CN111530463B (zh) * 2020-05-01 2021-06-22 西安交通大学 蜂窝陶瓷负载双氧化物稻壳灰载体的脱硝催化剂、制备方法及应用
CN114433188B (zh) * 2020-10-19 2024-01-26 中国石油化工股份有限公司 一种乙酸甲酯催化剂及其制备方法和乙酸甲酯的合成方法
CN113213505B (zh) * 2021-06-23 2022-07-19 吉林大学 一种SSZ-13分子筛及其制备方法、一种Cu-SSZ-13分子筛
CN113275035A (zh) * 2021-07-23 2021-08-20 山东国瓷功能材料股份有限公司 体相掺杂Fe的Cu-SSZ-13分子筛及其制备方法与应用
CN113499775B (zh) * 2021-07-29 2024-02-02 深圳万知达技术转移中心有限公司 一种纳米零价铜铁复合多孔材料及其制备方法和应用
CN114162832B (zh) * 2021-12-13 2023-03-24 大连理工大学 一种超低模板体系下ssz-13分子筛的合成方法及应用
CN114225692B (zh) * 2021-12-22 2024-01-02 北京泷涛环境科技有限公司 一种兼具抗菌消毒及净化VOCs功能的滤材及其制备方法
CN114377512A (zh) * 2021-12-24 2022-04-22 松山湖材料实验室 一种用于地下空间氮氧化物的净化方法及装置
CN115057453B (zh) * 2022-06-07 2023-10-20 福州大学 一种利用fcc废催化剂制备ssz-13分子筛的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
CN102614908A (zh) * 2012-03-16 2012-08-01 北京工业大学 用于氨选择性催化消除NOx的SSZ-13负载Cu-Fe催化剂的制备方法
CN105523566A (zh) * 2015-12-13 2016-04-27 定州市荣鼎水环境生化技术有限公司 以氨为还原剂的选择性催化还原氮氧化物的沸石分子筛及其制备方法和应用
CN105731492A (zh) * 2016-01-28 2016-07-06 中国石油大学(华东) 一种低成本绿色合成Fe-ZSM-5分子筛的方法
CN106824260A (zh) * 2015-12-03 2017-06-13 中国石油化工股份有限公司 Co-SSZ-13催化剂、制备方法及其用途
CN108557841A (zh) * 2018-07-05 2018-09-21 天津大学 以四乙烯五胺为模板剂合成cha分子筛的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2521615A1 (en) * 2009-10-14 2012-11-14 Basf Se Copper containing levyne molecular sieve for selective reduction of nox
US10173903B2 (en) * 2014-06-16 2019-01-08 University Of Houston System Zeolite compositions and methods for tailoring zeolite crystal habits with growth modifiers
CN108452841A (zh) * 2018-02-07 2018-08-28 浙江大学 一种Cu和Fe共改性的SSZ-13分子筛催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
CN102614908A (zh) * 2012-03-16 2012-08-01 北京工业大学 用于氨选择性催化消除NOx的SSZ-13负载Cu-Fe催化剂的制备方法
CN106824260A (zh) * 2015-12-03 2017-06-13 中国石油化工股份有限公司 Co-SSZ-13催化剂、制备方法及其用途
CN105523566A (zh) * 2015-12-13 2016-04-27 定州市荣鼎水环境生化技术有限公司 以氨为还原剂的选择性催化还原氮氧化物的沸石分子筛及其制备方法和应用
CN105731492A (zh) * 2016-01-28 2016-07-06 中国石油大学(华东) 一种低成本绿色合成Fe-ZSM-5分子筛的方法
CN108557841A (zh) * 2018-07-05 2018-09-21 天津大学 以四乙烯五胺为模板剂合成cha分子筛的制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797967A (zh) * 2020-06-12 2021-12-17 中国石油化工股份有限公司 一种甲烷直接转化制甲醇催化剂及其合成方法和应用
CN112958148A (zh) * 2021-02-05 2021-06-15 中化学科学技术研究有限公司 具有核壳结构的Cu-SSZ-39@Cu-SSZ-13复合分子筛及其合成方法
CN113117738B (zh) * 2021-04-20 2023-07-25 北京工业大学 一种用于非氨scr脱硝反应的催化剂的制备方法及其用途
CN113117738A (zh) * 2021-04-20 2021-07-16 北京工业大学 一种用于非氨scr脱硝反应的催化剂的制备方法及其用途
CN113233472A (zh) * 2021-06-11 2021-08-10 福州大学 一种纳米小晶粒zsm-22分子筛的合成方法
CN113233472B (zh) * 2021-06-11 2022-06-07 福州大学 一种纳米小晶粒zsm-22分子筛的合成方法
CN113413910A (zh) * 2021-06-14 2021-09-21 山东迅达化工集团有限公司 一种nh3-sco催化剂及其在含氨气流净化处理中的应用
CN113413910B (zh) * 2021-06-14 2022-04-05 山东迅达化工集团有限公司 一种nh3-sco催化剂及其在含氨气流净化处理中的应用
CN114272952A (zh) * 2022-01-24 2022-04-05 沈阳师范大学 一种原位合成Cu-SSZ-13分子筛的方法
CN114772610A (zh) * 2022-05-07 2022-07-22 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN114772610B (zh) * 2022-05-07 2024-03-12 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN115814847A (zh) * 2022-12-10 2023-03-21 南京工程学院 一种ssz-39分子筛形貌可控封装金属催化材料的制备方法
CN115814847B (zh) * 2022-12-10 2023-09-08 南京工程学院 一种ssz-39分子筛形貌可控封装金属催化材料的制备方法

Also Published As

Publication number Publication date
DE112018006780T5 (de) 2020-09-17
CN109382137A (zh) 2019-02-26
US20210370279A1 (en) 2021-12-02
US11498061B2 (en) 2022-11-15
CN109382137B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2020098104A1 (zh) 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用
WO2020098103A1 (zh) 一种介孔FeCu-ZSM-5分子筛的制备方法及应用
RU2641771C1 (ru) СПОСОБ СИНТЕЗА НОВОГО СОДЕРЖАЩЕГО ЖЕЛЕЗО ЦЕОЛИТА БЕТА ДЛЯ ВОССТАНОВЛЕНИЯ NOx
CN101239327B (zh) 一种含高岭土原位晶化zsm-5和y型分子筛的固定床催化剂及其制备方法
CN107777700B (zh) 一种梯级孔hzsm-5分子筛及其制备方法
AU2020101871A4 (en) A Method for Preparing ZSM-5 Zeolite by Using Solid wastes
CN107029781B (zh) 铁和铈改性β分子筛选择性还原催化剂及制备方法与应用
CN107640775B (zh) 一种利用固体废弃物制备zsm-5分子筛的方法
CN104321280A (zh) β型沸石及其制造方法
CN106925342B (zh) 改良型柴油加氢裂化催化剂及其制备方法
CN103508463B (zh) 一种无粘结剂球形八面沸石颗粒的制备方法
CN111115651B (zh) 纳米分子筛、合成方法及其用途
EP3318533A1 (en) Copper-supported zeolite and exhaust-gas purification treatment catalyst containing said zeolite
CN112758954A (zh) 一种具有核壳结构的复合分子筛及其合成方法
Król Hydrothermal synthesis of zeolite aggregate with potential use as a sorbent of heavy metal cations
CN116265108A (zh) 一种多产汽油催化裂化催化剂的制备方法
CN104190464A (zh) 一种Sn基微孔分子筛NOx-SCR催化剂制备方法
CN111302358B (zh) 一种无粘结剂fau型分子筛颗粒以及制备方法以及应用
US20180178205A1 (en) Method for producing transition-metal-containing zeolite, transition metal zeolite produced by the method, and exhaust gas purification catalyst including the zeolite
CN110589849A (zh) 一种中硅zsm-5型分子筛制备方法及作为高选择性酸性气体吸附剂的应用
CN110203945A (zh) 一种高结晶度和高硅铝比的改性y型分子筛的制备方法
CN116265107A (zh) 一种多产柴油催化裂化催化剂的制备方法
CN116265109A (zh) 一种重油高效转化催化剂的制备方法
CN112808296B (zh) 一种含y型分子筛的催化剂及其制备方法
CN103818919A (zh) 一种制备Beta沸石的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940168

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18940168

Country of ref document: EP

Kind code of ref document: A1