WO2020095918A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2020095918A1
WO2020095918A1 PCT/JP2019/043374 JP2019043374W WO2020095918A1 WO 2020095918 A1 WO2020095918 A1 WO 2020095918A1 JP 2019043374 W JP2019043374 W JP 2019043374W WO 2020095918 A1 WO2020095918 A1 WO 2020095918A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
main
control
port
Prior art date
Application number
PCT/JP2019/043374
Other languages
English (en)
French (fr)
Inventor
康平 福留
真弘 葉山
啓吾 白藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to CN201980069468.7A priority Critical patent/CN112955684B/zh
Priority to EP19883193.5A priority patent/EP3879150B1/en
Priority to JP2020556098A priority patent/JP7286672B2/ja
Priority to US17/287,086 priority patent/US11378194B2/en
Publication of WO2020095918A1 publication Critical patent/WO2020095918A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/22Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/24Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber

Definitions

  • the present invention relates to a capacity control valve that variably controls the capacity of a working fluid, and for example, relates to a capacity control valve that controls the discharge amount of a capacity-variable compressor used in an air conditioning system of an automobile according to pressure.
  • Variable capacity compressors used in air conditioning systems for automobiles include a rotary shaft driven by an engine, a swash plate with a variable inclination angle connected to the rotary shaft, and a compression piston connected to the swash plate. Etc., the stroke amount of the piston is changed by changing the inclination angle of the swash plate to control the discharge amount of the fluid.
  • the inclination angle of the swash plate is determined by using a capacity control valve that is driven to open and close by an electromagnetic force, the suction pressure Ps of a suction chamber for sucking fluid, the discharge pressure Pd of a discharge chamber for discharging fluid pressurized by a piston,
  • the control pressure Pc of the control chamber accommodating the swash plate is utilized, and the pressure in the control chamber is appropriately controlled so that the pressure can be continuously changed.
  • variable displacement compressor When the variable displacement compressor is continuously driven (hereinafter also simply referred to as “continuously driven"), the capacity control valve is energized by the control computer, and the valve body is driven by the electromagnetic force generated by the solenoid. Direction, the main valve is opened / closed to supply the pressure of the discharge chamber to the control chamber to adjust the control pressure Pc.
  • the pressure in the control chamber of the variable displacement compressor is appropriately controlled, and the stroke amount of the piston is changed by continuously changing the inclination angle of the swash plate with respect to the rotating shaft. Then, the discharge amount of the fluid to the discharge chamber is controlled, and the air conditioning system is adjusted so as to have a desired cooling capacity.
  • the main valve of the capacity control valve is closed to reduce the pressure in the control chamber, thereby maximizing the tilt angle of the swash plate. There is.
  • an auxiliary communication passage that connects the control port of the capacity control valve and the suction port is formed, and at the time of startup, the refrigerant in the control chamber of the variable capacity compressor is of a variable capacity type through the control port, the auxiliary communication passage, and the suction port.
  • Patent Document 1 Although the fluid discharge function at the time of startup is excellent, the auxiliary communication passage is in communication and the refrigerant flows from the control port to the suction port during continuous driving of the variable displacement compressor. However, the compression efficiency may be deteriorated.
  • the present invention has been made in view of such problems, and an object thereof is to provide a capacity control valve having an excellent fluid discharge function at the time of startup and high compression efficiency.
  • the capacity control valve of the present invention is A valve housing having a discharge port through which a discharge fluid at a discharge pressure passes, an intake port through which a suction fluid at a suction pressure passes and a control port through which a control fluid at a control pressure passes, a rod driven by a solenoid, and the rod.
  • a displacement control valve comprising a main valve configured by a main valve seat and a main valve body that opens and closes communication between the discharge port and the control port by moving A CS valve formed by a CS valve seat and a CS valve body for opening and closing the communication between the control port and the suction port,
  • the CS valve body is arranged so as to be movable relative to the main valve body, The main valve body and the CS valve body move together by the movement of the rod while maintaining the closed state of the main valve.
  • the main valve body is arranged so as to be movable relative to the CS valve body, it is possible to control the opening and closing of the main valve while the CS valve is closed during normal control, and the maximum In the energized state, the main valve body moves together with the CS valve body by moving the rod while maintaining the closed state of the main valve to open the CS valve and connect the control port and the suction port, so that the control pressure and the suction pressure are equalized. Since the pressure can be maintained, it is possible to provide a capacity control valve having an excellent fluid discharge function at the time of startup and high compression efficiency.
  • the CS valve body may be externally fitted to the main valve body, and the main valve seat may be formed on the inner peripheral surface of the CS valve body. According to this, by inserting the main valve body into the CS valve body, the capacity control valve having the CS valve can be configured compactly, and the main valve body can be reliably maintained in the closed state of the main valve body. Can be moved with.
  • the CS valve body may be biased in a valve closing direction of the CS valve by a biasing means. According to this, the CS valve body can be surely moved to the valve closing position, so that the normal control can be immediately returned from the maximum energization state.
  • a sliding portion that can slide on the outer peripheral surface of the main valve body may be formed on the inner peripheral surface of the CS valve body. According to this, the sliding portion between the inner peripheral surface of the CS valve body and the outer peripheral surface of the main valve body can seal between the discharge port and the suction port.
  • a communication passage may be formed in the CS valve body so as to penetrate therethrough in the axial direction. According to this, since the communication passage for connecting the control port and the suction port is formed in the CS valve body by opening and closing the CS valve, the capacity control valve having the CS valve can be simply configured.
  • the CS valve body may be formed with a discharge communication hole and a suction communication hole that communicate with the discharge port and the suction port, respectively. According to this, the capacity control valve having the CS valve can be simply configured.
  • FIG. 6 is a cross-sectional view showing a state in which the main valve is opened and the CS valve is closed in the non-energized state of the capacity control valve of the embodiment.
  • FIG. 3 is an enlarged cross-sectional view of FIG. 2 showing a state in which the main valve is opened and the CS valve is closed in the non-energized state of the capacity control valve of the embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a state in which the main valve and the CS valve are closed in the energized state (during normal control) of the capacity control valve of the embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a state where the main valve is closed and the CS valve is opened in the maximum energized state of the capacity control valve of the embodiment.
  • a capacity control valve will be described with reference to FIGS. 1 to 5.
  • the left and right sides as viewed from the front side of FIG. 2 will be described as the left and right sides of the displacement control valve.
  • the capacity control valve V of the present invention is incorporated in a capacity variable compressor M used in an air conditioning system of an automobile or the like, and variably controls the pressure of a working fluid (hereinafter simply referred to as “fluid”) that is a refrigerant.
  • a working fluid hereinafter simply referred to as “fluid”
  • the discharge amount of the variable displacement compressor M is controlled to adjust the air conditioning system to a desired cooling capacity.
  • variable capacity compressor M As shown in FIG. 1, the variable displacement compressor M has a casing 1 including a discharge chamber 2, a suction chamber 3, a control chamber 4, and a plurality of cylinders 4a.
  • the variable capacity compressor M is provided with a communication passage (not shown) that directly connects the control chamber 4 and the suction chamber 3, and the pressure in the suction chamber 3 and the control chamber 4 is balanced in this communication passage.
  • a fixed orifice is provided for adjustment.
  • the variable displacement compressor M is eccentrically connected to the rotary shaft 5 driven by an engine (not shown) installed outside the casing 1 and the rotary shaft 5 in the control chamber 4 by a hinge mechanism 8.
  • a swash plate 6 and a plurality of pistons 7 connected to the swash plate 6 and reciprocally fitted in each cylinder 4a. While using the suction pressure Ps of the suction chamber 3 for sucking the fluid, the discharge pressure Pd of the discharge chamber 2 for discharging the fluid pressurized by the piston 7, and the control pressure Pc of the control chamber 4 accommodating the swash plate 6, By appropriately changing the pressure in the control chamber 4 to continuously change the inclination angle of the swash plate 6, the stroke amount of the piston 7 is changed to control the fluid discharge amount. Note that, for convenience of explanation, in FIG. 1, the illustration of the capacity control valve V incorporated in the variable capacity compressor M is omitted.
  • the inclination angle of the swash plate 6 with respect to the rotating shaft 5 is smaller and the stroke amount of the piston 7 is reduced.
  • the swash plate 6 is substantially perpendicular to the shaft 5, that is, slightly inclined from the vertical.
  • the stroke amount of the piston 7 becomes the minimum, and the pressurization of the fluid in the cylinder 4a by the piston 7 becomes the minimum, so that the discharge amount of the fluid to the discharge chamber 2 decreases and the cooling capacity of the air conditioning system becomes the minimum.
  • the displacement control valve V incorporated in the variable displacement compressor M adjusts the current supplied to the coil 86 forming the solenoid 80, and the main valve 50 and the auxiliary valve 55 in the displacement control valve V are adjusted.
  • CS valve 56 that is, the valve that opens and closes between the control port and the suction port is controlled, and the pressure sensing valve 54 is controlled by the suction pressure Ps in the intermediate communication passage 57 to flow into the control chamber 4.
  • the control pressure Pc in the control chamber 4 is variably controlled by controlling the fluid flowing out from the control chamber 4.
  • the intermediate communication passage 57 extends in the axial direction by connecting the hollow holes formed inside the main and sub valve bodies 51 as the main valve body and the pressure sensitive valve member 52.
  • the intermediate communication passage 57 communicates with a sub valve chamber 30, which will be described later, through a plurality of radial through holes 51c at the axial right end of the main and sub valve body 51.
  • the main valve 50 is composed of a main / sub valve body 51 and a main valve seat 53a formed on the inner peripheral surface of the CS valve body 53, and the axial left end 51a of the main / sub valve body 51 is formed. It is adapted to come into contact with and separate from the main valve seat 53a.
  • the pressure-sensitive valve 54 is composed of an adapter 70 that constitutes the pressure-sensitive body 61 and a pressure-sensitive valve seat 52a that is formed at the axial left end of the pressure-sensitive valve member 52, and the axial right end 70a of the adapter 70 is the pressure-sensitive valve seat 52a. It is designed to move in and out of.
  • the sub-valve 55 is composed of a main sub-valve 51 and a sub-valve seat 82a formed on an inner diameter portion of an axial left end face which is an opening end face of the fixed iron core 82, and the main sub-valve 51 axially right side.
  • the stepped portion 51b of the sub-portion is brought into contact with and separated from the sub valve seat 82a.
  • the CS valve 56 is composed of a CS valve body 53 and a CS valve seat 82b formed on the outer diameter portion of the open end surface of the fixed iron core 82, and the axial right end 53b of the CS valve body 53 becomes the CS valve seat 82b. It is designed to approach and separate.
  • the displacement control valve V includes a valve housing 10 made of a metal material or a resin material, a main / sub valve body 51 arranged in the valve housing 10 so as to be reciprocally movable in the axial direction.
  • the solenoid 80 includes a casing 81 having an opening 81a that opens leftward in the axial direction and an opening 81a of the casing 81 that is inserted from the left side in the axial direction toward the inner diameter side of the casing 81.
  • the casing 81 is formed with a recess 81b in which the inner diameter side of the left end in the axial direction is recessed rightward in the axial direction, and the right end in the axial direction of the valve housing 10 is fitted and fixed in a substantially sealed manner in the recess 81b. There is.
  • the fixed iron core 82 is formed of a rigid body that is a magnetic material such as iron or silicon steel, and has a cylindrical portion 82c formed with an insertion hole 82d that extends in the axial direction and into which the drive rod 83 is inserted, and the axial left end of the cylindrical portion 82c.
  • An annular flange portion 82e extending from the outer peripheral surface of the portion to the outer diameter direction, and an auxiliary valve seat 82a recessed rightward in the axial direction on the inner diameter portion of the opening end surface of the fixed iron core 82, that is, the axial left end surface of the cylindrical portion 82c.
  • the CS valve seat 82b is formed on the outer diameter portion of the opening end surface of the fixed iron core 82, that is, on the left end surface in the axial direction of the flange portion 82e.
  • the valve housing 10 has a Pd port 12 as a discharge port communicating with the discharge chamber 2 of the variable displacement compressor M, and a suction port communicating with the suction chamber 3 of the variable displacement compressor M.
  • a Ps port 13 as a port and a Pc port 15 communicating with the control chamber 4 of the variable displacement compressor M are formed.
  • the valve housing 10 has a substantially cylindrical shape with a bottom by a partition adjusting member 11 being press-fitted into the left end portion in the axial direction thereof in a substantially sealed manner. The partition adjusting member 11 can adjust the urging force of the pressure sensitive body 61 by adjusting the installation position of the valve housing 10 in the axial direction.
  • a main / sub valve body 51, a pressure-sensitive valve member 52, and a CS valve body 53 are arranged in the valve housing 10 so as to be reciprocally movable in the axial direction.
  • the annular protrusion 10a is formed so that the axial left end 53c of the CS valve body 53 that projects in the direction can abut.
  • the substantially cylindrical CS valve body 53 is arranged axially to the right of the annular convex portion 10a, and the CS valve body 53 is externally inserted from the axial left side to the main / sub valve body 51, so that the Pd port 12
  • a chamber 30 and a pressure-sensitive chamber 60 that communicates with the Pc port 15 and in which the pressure-sensitive body 61 is disposed are formed.
  • the main valve chamber 20 and the Pd port 12 are connected to each other via a Pd communication hole 53d as a discharge communication hole formed at the axial left end of the CS valve body 53 and an annular groove 53k (see FIGS. 3 to 5). It is in communication. Further, the auxiliary valve chamber 30 and the Ps port 13 communicate with each other through a Ps communication hole 53e as an intake communication hole formed in the axial right end portion of the CS valve body 53 and an annular groove portion 53m (see FIGS. 3 to 5). Has been done.
  • the pressure sensitive body 61 is mainly composed of a bellows core 62 in which a coil spring 63 is built in, and an adapter 70 provided at the axially right end of the bellows core 62. The left end in the axial direction of is fixed to the partition adjusting member 11.
  • the pressure sensitive body 61 is disposed in the pressure sensitive chamber 60, and the coil spring 63 and the bellows core 62 sense the axial right end 70a of the adapter 70 by the urging force that moves the adapter 70 axially rightward.
  • the pressure sensitive valve seat 52a of the pressure valve member 52 is seated.
  • the main / sub valve body 51 is configured in a substantially cylindrical shape, and the axially left end portion is a separate pressure-sensitive valve member configured in a substantially cylindrical shape and a side view substantially turret shape.
  • 52 is inserted and fixed in a substantially sealed manner, and a drive rod 83 is inserted and fixed in a substantially sealed manner at the right end portion in the axial direction, both of which move in the axial direction.
  • the CS valve body 53 is configured in a substantially cylindrical shape, and a first annular convex portion 53f protruding in the inner diameter direction from the inner peripheral surface of the axial left end is formed, A main valve seat 53a is formed on the axial right side surface of the first annular convex portion 53f. Further, the CS valve body 53 is formed with a second annular convex portion 53g projecting in the inner diameter direction from the inner peripheral surface between the Pd communication hole 53d and the Ps communication hole 53e, and the inner circumference of the second annular convex portion 53g. The surface is formed with a sliding portion 53h that can slide on the outer peripheral surface of the main / sub valve body 51 in a substantially sealed state.
  • a small gap is formed between the inner peripheral surface of the second annular convex portion 53g, that is, the sliding portion 53h and the outer peripheral surface of the main / sub valve body 51 by slightly separating in the radial direction.
  • the main / sub valve body 51 can smoothly move relative to the CS valve body 53 in the axial direction.
  • the inner diameter of the first annular protrusion 53f is smaller than that of the second annular protrusion 53g, and the CS valve element 53 is fitted onto the main / sub valve element 51 from the axial left side.
  • the CS valve body 53 has an annular groove portion 53k formed on the outer peripheral surface at the left end in the axial direction, a Pd communication hole 53d penetrating the annular groove portion 53k in the inner diameter direction, and an outer peripheral surface at the right end portion in the axial direction.
  • An annular groove 53m is formed, and a Ps communication hole 53e penetrating the annular groove 53m in the inner diameter direction is formed.
  • the annular groove portions 53k and 53m are formed so as to correspond to the axial positions of the Pd port 12 and the Ps port 13 of the valve housing 10.
  • the CS valve body 53 is arranged with the Pd port 12 and the Ps port 13 of the valve housing 10 aligned in the circumferential direction so that the Pd communication hole 53d and the Ps communication hole 53e are aligned in the radial direction. Since the annular groove portions 53k and 53m are provided, the phases need not necessarily match.
  • the CS valve body 53 has a position shifted to the outer diameter side at a position different from a through hole extending in the axial direction through which the main and sub valve bodies 51 are inserted, and a circumference where the Pd communication hole 53d and the Ps communication hole 53e are not formed.
  • a CS communication passage 58 is formed as a communication passage that penetrates in the axial direction.
  • the CS communication passage 58 is open to the pressure sensitive chamber 60 at the axial left end 53c of the CS valve body 53, and can communicate with the sub valve chamber 30 at the axial right end 53b of the CS valve body 53 when the CS valve 56 is opened. Is becoming
  • the axial right end 53b of the CS valve body 53 abuts the CS valve seat 82b formed on the fixed iron core 82 at the end face thereof, and At the time of opening (see FIG. 5), the axial left end 53c of the CS valve body 53 abuts on the axial right end surface of the annular convex portion 10a of the valve housing 10 so that the CS valve 56 can be opened and closed.
  • the axial position of the valve body 53 is determined.
  • the CS valve body 53 is biased rightward in the axial direction, which is the closing direction of the CS valve 56, by a coil spring 91 as a biasing means.
  • the coil spring 91 is a compression spring, and the axial left end of the coil spring 91 abuts on the axial right end surface of the annular fixing member 90 that is internally fitted to the axial left side of the annular convex portion 10a of the valve housing 10, and The right end of the spring 91 in the axial direction is in contact with the outer diameter portion of the left end 53c of the CS valve body 53 in the axial direction, and the outer periphery thereof is slightly separated from the inner peripheral surface of the valve housing 10 in the radial direction.
  • the displacement control valve V has the movable iron core 84 axially driven by the urging force of the coil spring 85 that constitutes the solenoid 80 and the urging force of the coil spring 63 and the bellows core 62.
  • the drive rod 83, the main / sub valve body 51, and the pressure-sensitive valve member 52 move axially to the right, and the step portion 51b on the right side in the axial direction of the main / sub valve body 51 has the fixed core.
  • the auxiliary valve 55 is closed by sitting on the auxiliary valve seat 82a of the main valve 82, and the axial left end 51a of the main auxiliary valve element 51 is separated from the main valve seat 53a formed on the inner peripheral surface of the CS valve element 53.
  • the valve 50 is open.
  • the urging force ( Fbel ) of the body 61 that is, the force obtained by subtracting the force based on the suction pressure Ps from the urging force of the bellows core 62 and the coil spring 63) is acting (that is, the rightward direction is positive, and the main / sub valve is positive).
  • the force F rod F sp1 + F bell acts on the body 51).
  • the capacity control valve V in the non-energized state, has the main valve seat formed on the axial left end 51a of the main / sub valve body 51 and the inner peripheral surface of the CS valve body 53.
  • 53a is axially separated from each other, and the urging force (F sp2 ) of the coil spring 91 acts on the CS valve body 53 to push it to the right in the axial direction, which is the closing direction of the CS valve 56.
  • the axial right end 53b of the CS valve body 53 is seated on the CS valve seat 82b of the fixed iron core 82, and the CS valve 56 is closed.
  • the energized state of the capacity control valve V will be described.
  • the electromagnetic force (F sol 1) generated by applying a current to the solenoid 80 is a force in the energized state (that is, during normal control, so-called duty control).
  • F sol 1> F rod the movable iron core 84 is pulled toward the fixed iron core 82 side, that is, the axial left side, and is fixed to the movable iron core 84, the drive rod 83, the main / sub valve body 51, and the pressure sensitive valve.
  • the member 52 moves axially leftward and the pressure sensitive body 61 is pressed axially leftward and contracts, so that the step portion 51b on the axial right side of the main / auxiliary valve element 51 causes the auxiliary valve of the fixed iron core 82 to move.
  • the auxiliary valve 55 is opened apart from the seat 82a, the axial left end 51a of the main auxiliary valve body 51 is seated on the main valve seat 53a of the CS valve body 53, and the main valve 50 is closed.
  • the main and sub valve bodies 51 are biased by the coil spring 91 via the CS valve body 53 ( F sp2 ) is acting (that is, the force F rod + F sp2 ⁇ F sol 1 is acting on the main / sub valve body 51, with the rightward direction as positive).
  • the capacity control valve V is set to the maximum energized state (that is, the energized state of the maximum duty during normal control), and the maximum current is applied to the solenoid 80.
  • the electromagnetic force (F sol 2) thus generated exceeds the force F rod + F sp2 (F sol 2> F rod + F sp2 ), so that the main / sub valve body 51 fixed to the drive rod 83 causes the CS valve body 53 to move.
  • the CS valve 56 is opened. According to this, while maintaining the closed state of the main valve 50, the main / sub valve body 51 moves together with the CS valve body 53 by the movement of the drive rod 83 to open the CS valve 56, so that the CS valve body 53 is formed.
  • the Pc port 14 and the Ps port 13 are communicated with each other via the CS communication passage 58, that is, the control chamber 4 and the suction chamber 3 are communicated with each other, so that the control pressure Pc is quickly lowered and the control pressure Pc and the suction pressure Ps are equalized. Therefore, the capacity control valve V having high compression efficiency can be provided.
  • the capacity control valve V is set to the maximum energized state to open the CS valve 56, and the Pc through the CS communication passage 58 formed in the CS valve body 53. Since the port 14 and the Ps port 13 can be communicated with each other, it is possible to provide the capacity control valve V having an excellent fluid discharge function at the time of starting.
  • the CS valve body 53 is biased by the coil spring 91 to the right in the axial direction which is the closing direction of the CS valve 56, the CS valve body 53 is reliably moved to the closed position due to the decrease in the current value. It is possible to immediately return from the maximum energized state with the maximum duty to the energized state below that (duty control).
  • the CS valve body 53 is formed with a Pd communication hole 53d and a Ps communication hole 53e which communicate with the Pd port 12 and the Ps port 13, and an inner peripheral surface between the Pd communication hole 53d and the Ps communication hole 53e. Since the second annular convex portion 53g is formed on the inner peripheral surface of the second annular convex portion 53g and the sliding portion 53h formed on the inner peripheral surface of the second annular convex portion 53g is slidable with the outer peripheral surface of the main / sub valve body 51, Since the Pd port 12 and the Ps port 13 can be sealed by the sliding portion 53h of the second annular convex portion 53g of the valve body 53, the displacement control valve V having the CS valve 56 can be simply configured.
  • the CS valve body 53 is externally fitted to the main / sub valve body 51, the main valve seat 53a is formed on the inner peripheral surface of the CS valve body 53, and the Pc port 14 and the Ps port 13 are opened and closed by opening and closing the CS valve 56. Since the CS communication passage 58 for communicating with and is formed in the CS valve body 53, the capacity control valve V having the CS valve 56 can be configured more simply and compactly, and the closed state of the main valve 50 can be reliably maintained. The main / sub valve body 51 can be moved together with the CS valve body 53 as it is.
  • the present invention is not limited to this.
  • the main and sub valve bodies may be moved together by pushing a portion of the CS valve body other than the main valve seat while maintaining the closed state of 50.
  • the CS valve 56 is opened by the electromagnetic force (F sol 2) generated by applying the maximum current to the solenoid 80 when the capacity control valve V is energized at the maximum duty.
  • the maximum energization state of the capacity control valve V that opens the CS valve 56 is not limited to the maximum current value, but a current value larger than the duty control current value for closing the main valve 50 during normal control. It may be due to.
  • the CS communication passage 58 has been described as penetrating the CS valve body 53 in the axial direction, but the present invention is not limited to this, and as long as it is opened and closed by the operation of the CS valve body 53, It may pass through the CS valve body 53 in the radial direction, or may be formed in the main / sub valve body 51, the valve housing 10, or the like.
  • the CS valve body 53 may not be provided with the annular groove portions 53k and 53m, and may be directly communicated with the Pd port 12 and the Ps port 13 of the valve housing 10 through the Pd communication hole 53d and the Ps communication hole 53e. Good.
  • both may be integrally formed.
  • the auxiliary valve may not be provided, and the step portion on the right side in the axial direction of the main and auxiliary valve bodies may function as a support member that receives a load in the axial direction, and the sealing function is not necessarily required.
  • the auxiliary valve chamber 30 may be provided on the axially opposite side to the solenoid 80, and the pressure sensing chamber 60 may be provided on the solenoid 80 side.
  • the coil spring 91 is not limited to the compression spring, but may be a tension spring or may have a shape other than the coil shape.
  • the pressure sensitive body 61 may be one in which the bellows core 62 has an urging force without using a coil spring inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Magnetically Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

通常制御時における応答性が良い容量制御弁を提供する。 吐出圧力Pdの吐出流体が通過する吐出ポート12、吸入圧力Psの吸入流体が通過する吸入ポート13および制御圧力Pcの制御流体が通過する制御ポート14が形成されたバルブハウジング10と、ソレノイド80により駆動されるロッド83と、ロッド83の移動により吐出ポート12と制御ポート14との連通を開閉する主弁座53aと主弁体51とにより構成される主弁50とを備える容量制御弁Vであって、制御ポート14と吸入ポート13との連通を開閉するCS弁座82bとCS弁体53とにより構成されるCS弁56を備え、CS弁体53は、主弁体51に対して相対移動可能に配置され、主弁50の閉塞状態を維持したままロッド83の移動により主弁体51とCS弁体53とが共に移動する。

Description

容量制御弁
 本発明は、作動流体の容量を可変制御する容量制御弁に関し、例えば、自動車の空調システムに用いられる容量可変型圧縮機の吐出量を圧力に応じて制御する容量制御弁に関する。
 自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
 容量可変型圧縮機の連続駆動時(以下、単に「連続駆動時」と表記することもある)において、容量制御弁は、制御コンピュータにより通電制御され、ソレノイドで発生する電磁力により弁体を軸方向に移動させ、主弁を開閉して制御室に吐出室の圧力を供給して制御圧力Pcを調整する通常制御を行っている。
 容量制御弁の通常制御時においては、容量可変型圧縮機における制御室の圧力が適宜制御されており、回転軸に対する斜板の傾斜角度を連続的に変化させることにより、ピストンのストローク量を変化させて吐出室に対する流体の吐出量を制御し、空調システムが所望の冷却能力となるように調整している。また、容量可変型圧縮機を最大容量で駆動する場合には、容量制御弁の主弁を閉塞して制御室の圧力を低くすることで、斜板の傾斜角度を最大とするようになっている。
 また、容量制御弁の制御ポートと吸入ポートとの間を連通させる補助連通路を形成し、起動時に容量可変型圧縮機の制御室の冷媒を制御ポート、補助連通路、吸入ポートを通して容量可変型圧縮機の吸入室へ排出するようにして、起動時に制御室の圧力を迅速に低下させることで、容量可変型圧縮機の応答性を向上させるものも知られている(特許文献1参照)。
特許第5167121号公報(第7頁、第2図)
 しかしながら、特許文献1にあっては、起動時の流体排出機能に優れるものの、容量可変型圧縮機の連続駆動時において、補助連通路が連通しており制御ポートから吸入ポートに冷媒が流れ込むことにより、圧縮効率を悪化させる虞があった。
 本発明は、このような問題点に着目してなされたもので、起動時の流体排出機能に優れ、かつ高圧縮効率となる容量制御弁を提供することを目的とする。
 前記課題を解決するために、本発明の容量制御弁は、
 吐出圧力の吐出流体が通過する吐出ポート、吸入圧力の吸入流体が通過する吸入ポートおよび制御圧力の制御流体が通過する制御ポートが形成されたバルブハウジングと、ソレノイドにより駆動されるロッドと、前記ロッドの移動により前記吐出ポートと前記制御ポートとの連通を開閉する主弁座と主弁体とにより構成される主弁とを備える容量制御弁であって、
 前記制御ポートと前記吸入ポートとの連通を開閉するCS弁座とCS弁体とにより構成されるCS弁を備え、
 前記CS弁体は、前記主弁体に対して相対移動可能に配置され、
 前記主弁の閉塞状態を維持したまま前記ロッドの移動により前記主弁体と前記CS弁体とが共に移動する。
 これによれば、主弁体はCS弁体に対して相対移動可能に配置されていることにより、通常制御時においてCS弁が閉塞された状態で主弁を開閉制御することができるとともに、最大通電状態では主弁の閉塞状態を維持したままロッドの移動により主弁体がCS弁体と共に移動してCS弁を開放し制御ポートと吸入ポートを連通させることにより、制御圧力と吸入圧力を均圧に維持することができるため、起動時の流体排出機能に優れ、かつ高圧縮効率となる容量制御弁を提供できる。
 前記CS弁体は前記主弁体に外嵌されているとともに、前記CS弁体の内周面には前記主弁座が形成されていてもよい。
 これによれば、CS弁体に主弁体を挿通させることにより、CS弁を有する容量制御弁をコンパクトに構成できるとともに、主弁の閉塞状態を確実に維持したまま主弁体をCS弁体と共に移動させることができる。
 前記CS弁体は、付勢手段により前記CS弁の閉弁方向に付勢されていてもよい。
 これによれば、CS弁体を確実に閉弁位置に移動させることができるため、最大通電状態から通常制御にすぐに復帰させることができる。
 前記CS弁体の内周面には、前記主弁体の外周面に摺動可能な摺動部が形成されていてもよい。
 これによれば、CS弁体の内周面と主弁体の外周面との摺動部により吐出ポートと吸入ポートとの間をシールすることができる。
 前記CS弁体には、軸方向に貫通する連通路が形成されていてもよい。
 これによれば、CS弁の開閉により制御ポートと吸入ポートとを連通させる連通路がCS弁体に形成されるため、CS弁を有する容量制御弁を簡素に構成できる。
 前記CS弁体には、前記吐出ポートおよび前記吸入ポートとそれぞれ連通する吐出連通孔および吸入連通孔が形成されていてもよい。
 これによれば、CS弁を有する容量制御弁を簡素に構成できる。
本発明に係る実施例の容量制御弁が組み込まれる斜板式容量可変型圧縮機を示す概略構成図である。 実施例の容量制御弁の非通電状態において主弁が開放され、CS弁が閉塞された様子を示す断面図である。 実施例の容量制御弁の非通電状態において主弁が開放され、CS弁が閉塞された様子を示す図2の拡大断面図である。 実施例の容量制御弁の通電状態(通常制御時)において主弁およびCS弁が閉塞された様子を示す拡大断面図である。 実施例の容量制御弁の最大通電状態において主弁が閉塞され、CS弁が開放された様子を示す拡大断面図である。
 本発明に係る容量制御弁を実施するための形態を実施例に基づいて以下に説明する。
 実施例に係る容量制御弁につき、図1から図5を参照して説明する。以下、図2の正面側から見て左右側を容量制御弁の左右側として説明する。
 本発明の容量制御弁Vは、自動車等の空調システムに用いられる容量可変型圧縮機Mに組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する)の圧力を可変制御することにより、容量可変型圧縮機Mの吐出量を制御し空調システムを所望の冷却能力となるように調整している。
 先ず、容量可変型圧縮機Mについて説明する。図1に示されるように、容量可変型圧縮機Mは、吐出室2と、吸入室3と、制御室4と、複数のシリンダ4aと、を備えるケーシング1を有している。尚、容量可変型圧縮機Mには、制御室4と吸入室3とを直接連通する図示しない連通路が設けられており、この連通路には吸入室3と制御室4との圧力を平衡調整させるための固定オリフィスが設けられている。
 また、容量可変型圧縮機Mは、ケーシング1の外部に設置される図示しないエンジンにより回転駆動される回転軸5と、制御室4内において回転軸5に対してヒンジ機構8により偏心状態で連結される斜板6と、斜板6に連結され各々のシリンダ4a内において往復動自在に嵌合された複数のピストン7と、を備え、電磁力により開閉駆動される容量制御弁Vを用いて、流体を吸入する吸入室3の吸入圧力Ps、ピストン7により加圧された流体を吐出する吐出室2の吐出圧力Pd、斜板6を収容した制御室4の制御圧力Pcを利用しつつ、制御室4内の圧力を適宜制御することで斜板6の傾斜角度を連続的に変化させることにより、ピストン7のストローク量を変化させて流体の吐出量を制御している。尚、説明の便宜上、図1においては、容量可変型圧縮機Mに組み込まれる容量制御弁Vの図示を省略している。
 具体的には、制御室4内の制御圧力Pcが高圧であるほど、回転軸5に対する斜板6の傾斜角度は小さくなりピストン7のストローク量が減少するが、一定以上の圧力となると、回転軸5に対して斜板6が略垂直状態、すなわち垂直よりわずかに傾斜した状態となる。このとき、ピストン7のストローク量は最小となり、ピストン7によるシリンダ4a内の流体に対する加圧が最小となることで、吐出室2への流体の吐出量が減少し、空調システムの冷却能力は最小となる。一方で、制御室4内の制御圧力Pcが低圧であるほど、回転軸5に対する斜板6の傾斜角度は大きくなりピストン7のストローク量が増加するが、一定以下の圧力となると、回転軸5に対して斜板6が最大傾斜角度となる。このとき、ピストン7のストローク量は最大となり、ピストン7によるシリンダ4a内の流体に対する加圧が最大となることで、吐出室2への流体の吐出量が増加し、空調システムの冷却能力は最大となる。
 図2に示されるように、容量可変型圧縮機Mに組み込まれる容量制御弁Vは、ソレノイド80を構成するコイル86に通電する電流を調整し、容量制御弁Vにおける主弁50、副弁55、CS弁56、すなわち制御ポートと吸入ポートとの間を開閉する弁の開閉制御を行うとともに、中間連通路57における吸入圧力Psにより感圧弁54の開閉制御を行い、制御室4内に流入する、または制御室4から流出する流体を制御することで制御室4内の制御圧力Pcを可変制御している。尚、中間連通路57は、主弁体としての主副弁体51および感圧弁部材52の内部に形成される中空孔が接続されることにより軸方向に延びている。尚、中間連通路57は、主副弁体51の軸方向右端部において径方向に貫通する複数の貫通孔51cを介して後述する副弁室30と連通している。
 本実施例において、主弁50は、主副弁体51とCS弁体53の内周面に形成された主弁座53aとにより構成されており、主副弁体51の軸方向左端51aが主弁座53aに接離するようになっている。感圧弁54は、感圧体61を構成するアダプタ70と感圧弁部材52の軸方向左端に形成される感圧弁座52aとにより構成されており、アダプタ70の軸方向右端70aが感圧弁座52aに接離するようになっている。副弁55は、主副弁体51と固定鉄心82の開口端面である軸方向左端面の内径部に形成される副弁座82aとにより構成されており、主副弁体51の軸方向右側の段部51bが副弁座82aに接離するようになっている。CS弁56は、CS弁体53と固定鉄心82の開口端面の外径部に形成されるCS弁座82bとにより構成されており、CS弁体53の軸方向右端53bがCS弁座82bに接離するようになっている。
 次いで、容量制御弁Vの構造について説明する。図2に示されるように、容量制御弁Vは、金属材料または樹脂材料により形成されたバルブハウジング10と、バルブハウジング10内に軸方向に往復動自在に配置された主副弁体51、感圧弁部材52、CS弁体53と、中間連通路57における吸入圧力Psに応じて主副弁体51、感圧弁部材52に軸方向右方への付勢力を付与する感圧体61と、バルブハウジング10に接続され主副弁体51、感圧弁部材52、CS弁体53に駆動力を及ぼすソレノイド80と、から主に構成されている。
 図2に示されるように、ソレノイド80は、軸方向左方に開放する開口部81aを有するケーシング81と、ケーシング81の開口部81aに対して軸方向左方から挿入されケーシング81の内径側に固定される略円筒形状の固定鉄心82と、固定鉄心82に挿通され軸方向に往復動自在、かつその軸方向左端部が主副弁体51に挿嵌・固定されるロッドとしての駆動ロッド83と、駆動ロッド83の軸方向右端部に固着される可動鉄心84と、固定鉄心82と可動鉄心84との間に設けられ可動鉄心84を軸方向右方に付勢するコイルスプリング85と、固定鉄心82の外側にボビンを介して巻き付けられた励磁用のコイル86と、から主に構成されている。
 ケーシング81には、軸方向左端の内径側が軸方向右方に凹む凹部81bが形成されており、この凹部81bに対してバルブハウジング10の軸方向右端部が略密封状に挿嵌・固定されている。
 固定鉄心82は、鉄やケイ素鋼等の磁性材料である剛体から形成され、軸方向に延び駆動ロッド83が挿通される挿通孔82dが形成される円筒部82cと、円筒部82cの軸方向左端部の外周面から外径方向に延びる環状のフランジ部82eとを備え、固定鉄心82の開口端面の内径部、すなわち円筒部82cの軸方向左端面には軸方向右方に凹む副弁座82aが形成され、固定鉄心82の開口端面の外径部、すなわちフランジ部82eの軸方向左端面にはCS弁座82bが形成されている。
 図2に示されるように、バルブハウジング10には、容量可変型圧縮機Mの吐出室2と連通する吐出ポートとしてのPdポート12と、容量可変型圧縮機Mの吸入室3と連通する吸入ポートとしてのPsポート13と、容量可変型圧縮機Mの制御室4と連通するPcポート15と、が形成されている。また、バルブハウジング10は、その軸方向左端部に仕切調整部材11が略密封状に圧入されることにより有底略円筒形状を成している。尚、仕切調整部材11は、バルブハウジング10の軸方向における設置位置を調整することで、感圧体61の付勢力を調整できるようになっている。
 また、バルブハウジング10の内部には、主副弁体51、感圧弁部材52、CS弁体53が軸方向に往復動自在に配置され、バルブハウジング10の内周面の一部には、内径方向に張り出しCS弁体53の軸方向左端53cが当接可能な環状凸部10aが形成されている。また、環状凸部10aよりも軸方向右側に略円筒形状のCS弁体53が配置され、さらにCS弁体53が軸方向左方から主副弁体51に外挿されることにより、Pdポート12と連通され主副弁体51の軸方向左端51aが配置される主弁室20と、Psポート13と連通され主副弁体51およびCS弁体53の軸方向右端部が配置される副弁室30と、Pcポート15と連通され感圧体61が配置される感圧室60と、が形成されている。
 詳しくは、CS弁体53の軸方向左端部に形成される吐出連通孔としてのPd連通孔53dおよび環状溝部53k(図3~図5参照)を介して主弁室20とPdポート12とが連通されている。また、CS弁体53の軸方向右端部に形成される吸入連通孔としてのPs連通孔53eおよび環状溝部53m(図3~図5参照)を介して副弁室30とPsポート13とが連通されている。
 図2に示されるように、感圧体61は、コイルスプリング63が内蔵されるベローズコア62と、ベローズコア62の軸方向右端部に設けられるアダプタ70と、から主に構成され、ベローズコア62の軸方向左端は、仕切調整部材11に固定されている。
 また、感圧体61は、感圧室60内に配置されており、コイルスプリング63とベローズコア62により、アダプタ70を軸方向右方に移動させる付勢力によりアダプタ70の軸方向右端70aを感圧弁部材52の感圧弁座52aに着座させるようになっている。尚、説明の便宜上、図示を省略するが、例えば、容量可変型圧縮機Mを使用せずに長時間放置した後のように中間連通路57内における吸入圧力Psが高い場合には感圧体61が収縮し、アダプタ70の軸方向右端70aを感圧弁部材52の感圧弁座52aから離間させるように作動することにより、感圧弁54を開放させ、制御圧力Pcを中間連通路57および主副弁体51の貫通孔51cを通して副弁室30に迅速にリリースすることができる。
 図2に示されるように、主副弁体51は、略円筒形状に構成されており、軸方向左端部には、略円筒形状かつ側面視略砲台形状に構成される別体の感圧弁部材52が略密封状に挿嵌・固定され、軸方向右端部には、駆動ロッド83が略密封状に挿嵌・固定されており、これらは共に軸方向に移動するようになっている。
 図2および図3に示されるように、CS弁体53は、略円筒形状に構成されており、軸方向左端部の内周面から内径方向に突出する第1環状凸部53fが形成され、第1環状凸部53fの軸方向右側面に主弁座53aが形成されている。また、CS弁体53には、Pd連通孔53dとPs連通孔53eとの間の内周面から内径方向に突出する第2環状凸部53gが形成され、第2環状凸部53gの内周面には主副弁体51の外周面と略密封状態で摺動可能な摺動部53hが形成されている。尚、第2環状凸部53gの内周面、すなわち摺動部53hと主副弁体51の外周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、主副弁体51は、CS弁体53に対して軸方向に円滑に相対移動可能となっている。さらに尚、第1環状凸部53fは、第2環状凸部53gよりも内径が小さく構成されており、CS弁体53は主副弁体51に軸方向左方から外嵌されている。
 また、CS弁体53は、軸方向左端部の外周面に環状溝部53kが形成され、環状溝部53kから内径方向に貫通するPd連通孔53dが形成されるとともに、軸方向右端部の外周面に環状溝部53mが形成され、環状溝部53mから内径方向に貫通するPs連通孔53eが形成されている。尚、環状溝部53k,53mは、バルブハウジング10のPdポート12およびPsポート13の軸方向位置に対応して形成されている。また、CS弁体53は、バルブハウジング10のPdポート12およびPsポート13に対してPd連通孔53dおよびPs連通孔53eが径方向に揃うように周方向の位相を合わせて配置されている。尚、環状溝部53k,53mを設けているため当該位相は必ずしも合わせなくともよい。
 また、CS弁体53は、主副弁体51が挿通される軸方向に延びる貫通孔とは異なる位置で外径側にずれた位置、かつPd連通孔53dおよびPs連通孔53eが形成されない周方向位置に、軸方向に貫通する連通路としてのCS連通路58が形成されている。CS連通路58は、CS弁体53の軸方向左端53cにおいて感圧室60に開放しており、CS弁体53の軸方向右端53bにおいてCS弁56の開放時に副弁室30と連通可能となっている。
 尚、CS弁56の閉塞時(図2~図4参照)において、CS弁体53の軸方向右端53bは、固定鉄心82に形成されるCS弁座82bに端面で当接し、CS弁56の開放時(図5参照)において、CS弁体53の軸方向左端53cは、バルブハウジング10の環状凸部10aの軸方向右端面に当接することにより、CS弁56の開放時および閉塞時におけるCS弁体53の軸方向位置が決められている。
 また、CS弁体53は、付勢手段としてのコイルスプリング91によりCS弁56の閉弁方向である軸方向右方に付勢されている。コイルスプリング91は圧縮バネであり、コイルスプリング91の軸方向左端は、バルブハウジング10の環状凸部10aの軸方向左側に内嵌される環状の固定部材90の軸方向右端面に当接し、コイルスプリング91の軸方向右端は、CS弁体53の軸方向左端53cの外径部に当接しており、その外周はバルブハウジング10の内周面とは径方向に僅かに離間している。
 次いで、容量制御弁Vの動作、主に主弁50およびCS弁56の開閉動作について説明する。
 先ず、容量制御弁Vの非通電状態について説明する。図2および図3に示されるように、容量制御弁Vは、非通電状態において、可動鉄心84がソレノイド80を構成するコイルスプリング85の付勢力やコイルスプリング63とベローズコア62の付勢力により軸方向右方へと押圧されることで、駆動ロッド83、主副弁体51、感圧弁部材52が軸方向右方へ移動し、主副弁体51の軸方向右側の段部51bが固定鉄心82の副弁座82aに着座し副弁55が閉塞されるとともに、主副弁体51の軸方向左端51aがCS弁体53の内周面に形成された主弁座53aから離間し、主弁50が開放されている。
 このとき、主副弁体51には、軸方向右方に向けてソレノイド80を構成する駆動ロッド83を介してコイルスプリング85の付勢力(Fsp1)と、感圧弁部材52を介して感圧体61の付勢力(Fbel)(すなわち、ベローズコア62およびコイルスプリング63の付勢力から吸入圧力Psに基づく力を減じた力)が作用している(すなわち、右向きを正として、主副弁体51には、力Frod=Fsp1+Fbelが作用している)。
 また、図2および図3に示されるように、容量制御弁Vは、非通電状態において、主副弁体51の軸方向左端51aとCS弁体53の内周面に形成された主弁座53aとが軸方向に離間しており、CS弁体53にはコイルスプリング91の付勢力(Fsp2)が作用してCS弁56の閉弁方向である軸方向右方へと押圧されることで、CS弁体53の軸方向右端53bが固定鉄心82のCS弁座82bに着座し、CS弁56が閉塞されている。
 次に、容量制御弁Vの通電状態について説明する。図4に示されるように、容量制御弁Vは、通電状態(すなわち通常制御時、いわゆるデューティ制御時)において、ソレノイド80に電流が印加されることにより発生する電磁力(Fsol1)が力Frodを上回る(Fsol1>Frod)と、可動鉄心84が固定鉄心82側、すなわち軸方向左側に引き寄せられ、可動鉄心84に固着された駆動ロッド83、主副弁体51、感圧弁部材52が軸方向左方へ共に移動し、感圧体61が軸方向左方に押圧されて収縮することにより、主副弁体51の軸方向右側の段部51bが固定鉄心82の副弁座82aから離間し副弁55が開放されるとともに、主副弁体51の軸方向左端51aがCS弁体53の主弁座53aに着座し、主弁50が閉塞されている。
 このとき、主副弁体51には、軸方向左方に電磁力(Fsol1)、軸方向右方に力Frodに加えて、CS弁体53を介してコイルスプリング91の付勢力(Fsp2)が作用している(すなわち、右向きを正として、主副弁体51には、力Frod+Fsp2-Fsol1が作用している)。
 容量制御弁Vの通常制御において、主弁50の開度や開放時間を調整してPdポート12からPcポート14への流体の流量を制御している場合には、ソレノイド80に電流が印加されることにより発生する電磁力(Fsol1)が力Frodを上回り(Fsol1>Frod)、かつ力Frod+Fsp2を下回る(Fsol1<Frod+Fsp2)ように電流値が制御されることにより、CS弁56の閉塞が維持された状態で主弁50を開閉制御することができる。
 また、容量可変型圧縮機Mを最大容量で駆動する場合には、容量制御弁Vを最大通電状態(すなわち通常制御時における最大デューティの通電状態)とし、ソレノイド80に最大の電流が印加されることにより発生する電磁力(Fsol2)が力Frod+Fsp2を上回る(Fsol2>Frod+Fsp2)ことにより、駆動ロッド83に固着された主副弁体51がCS弁体53を軸方向左方へ押し、主副弁体51がCS弁体53と軸方向左方へ共に移動することにより、CS弁体53の軸方向右端53bが固定鉄心82のCS弁座82bから離間しCS弁56が開放される。これによれば、主弁50の閉塞状態を維持したまま、駆動ロッド83の移動により主副弁体51がCS弁体53と共に移動してCS弁56を開放し、CS弁体53に形成されるCS連通路58を介してPcポート14とPsポート13を連通させる、すなわち制御室4と吸入室3を連通させることにより、制御圧力Pcを素早く低下させ制御圧力Pcと吸入圧力Psを均圧に維持することができるため、高圧縮効率となる容量制御弁Vを提供できる。また、容量可変型圧縮機Mの起動時においても、容量制御弁Vを最大通電状態とすることにより、CS弁56を開放し、CS弁体53に形成されるCS連通路58を介してPcポート14とPsポート13を連通させることができるため、起動時の流体排出機能に優れる容量制御弁Vを提供できる。
 また、CS弁体53は、コイルスプリング91によりCS弁56の閉弁方向である軸方向右方に付勢されているため、電流値の低下によりCS弁体53を確実に閉弁位置に移動させることができ、最大デューティの最大通電状態からそれ未満通電状態(デューティ制御)にすぐに復帰させることができる。
 また、CS弁体53には、Pdポート12およびPsポート13と連通するPd連通孔53dおよびPs連通孔53eが形成されるとともに、Pd連通孔53dとPs連通孔53eとの間の内周面に第2環状凸部53gが形成され、第2環状凸部53gの内周面に形成される摺動部53hが主副弁体51の外周面と摺動可能に構成されることから、CS弁体53の第2環状凸部53gの摺動部53hにより、Pdポート12とPsポート13との間をシールすることができるため、CS弁56を有する容量制御弁Vを簡素に構成できる。
 さらに、CS弁体53は主副弁体51に外嵌され、CS弁体53の内周面には主弁座53aが形成されるとともに、CS弁56の開閉によりPcポート14とPsポート13とを連通させるCS連通路58がCS弁体53に形成されるため、CS弁56を有する容量制御弁Vをより簡素に、かつコンパクトに構成できるとともに、主弁50の閉塞状態を確実に維持したまま主副弁体51をCS弁体53と共に移動させることができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、CS弁体53の内周面に形成される主弁座53aに主副弁体51の軸方向左端51aが当接することにより、容量制御弁Vの最大通電状態において、主弁50の閉塞状態を維持したまま主副弁体51がCS弁体53を軸方向左方へ押して共に移動し、CS弁56を開かせるものとして説明したが、これに限らず、主弁50の閉塞状態を維持したまま主副弁体がCS弁体の主弁座以外の部分を押すことにより共に移動させるようにしてもよい。
 また、前記実施例では、容量制御弁Vの最大デューティの通電状態においてソレノイド80に最大電流が印加されることにより発生する電磁力(Fsol2)によって、CS弁56が開放させる態様として説明したが、CS弁56を開放させる容量制御弁Vの最大通電状態は、最大電流の電流値によるものに限らず、通常制御時に主弁50を閉塞させるためのデューティ制御の電流値よりも大きい電流値によるものであってもよい。
 また、前記実施例では、CS連通路58は、CS弁体53を軸方向に貫通するものとして説明したが、これに限らず、CS弁体53の動作により開閉されるものであれば、例えばCS弁体53を径方向に貫通していてもよく、主副弁体51やバルブハウジング10等に形成されていてもよい。
 また、CS弁体53には、環状溝部53k,53mが形成されなくてもよく、Pd連通孔53dおよびPs連通孔53eによりバルブハウジング10のPdポート12およびPsポート13と直接連通されていてもよい。
 また、主副弁体51と感圧弁部材52とを別体で構成する例について説明したが、両者は一体に形成されていてもよい。
 また、容量可変型圧縮機Mの制御室4と吸入室3とを直接連通する連通路および固定オリフィスは設けなくてもよい。
 また、前記実施例では、副弁は設けなくともよく、主副弁体の軸方向右側の段部は、軸方向の荷重を受ける支持部材として機能すればよく、必ずしも密閉機能は必要ではない。
 また、副弁室30はソレノイド80と軸方向反対側に設けられるとともに感圧室60はソレノイド80側に設けられていてもよい。
 また、コイルスプリング91は、圧縮バネに限らず、引張バネでもよく、コイル形状以外であってもよい。
 また、感圧体61は、内部にコイルスプリングを使用せず、ベローズコア62が付勢力を有するものであってもよい。
1        ケーシング
2        吐出室
3        吸入室
4        制御室
10       バルブハウジング
10a      環状凸部
11       仕切調整部材
12       Pdポート(吐出ポート)
13       Psポート(吸入ポート)
14       Pcポート(制御ポート)
20       主弁室
30       副弁室
50       主弁
51       主副弁体(主弁体)
52       感圧弁部材
52a      感圧弁座
53       CS弁体
53a      主弁座
53d      Pd連通孔(吐出連通孔)
53e      Ps連通孔(吸入連通孔)
53h      摺動部
54       感圧弁
55       副弁
56       CS弁
57       中間連通路
58       CS連通路(連通路)
60       感圧室
61       感圧体
62       ベローズコア
63       コイルスプリング
70       アダプタ
80       ソレノイド
82       固定鉄心
82a      副弁座
82b      CS弁座
83       駆動ロッド(ロッド)
90       固定部材
91       コイルスプリング(付勢部材)
Pc       制御圧力
Pd       吐出圧力
Ps       吸入圧力
V        容量制御弁

Claims (6)

  1.  吐出圧力の吐出流体が通過する吐出ポート、吸入圧力の吸入流体が通過する吸入ポートおよび制御圧力の制御流体が通過する制御ポートが形成されたバルブハウジングと、ソレノイドにより駆動されるロッドと、前記ロッドの移動により前記吐出ポートと前記制御ポートとの連通を開閉する主弁座と主弁体とにより構成される主弁とを備える容量制御弁であって、
     前記制御ポートと前記吸入ポートとの連通を開閉するCS弁座とCS弁体とにより構成されるCS弁を備え、
     前記CS弁体は、前記主弁体に対して相対移動可能に配置され、
     前記主弁の閉塞状態を維持したまま前記ロッドの移動により前記主弁体と前記CS弁体とが共に移動する容量制御弁。
  2.  前記CS弁体は前記主弁体に外嵌されているとともに、前記CS弁体の内周面には前記主弁座が形成されている請求項1に記載の容量制御弁。
  3.  前記CS弁体は、付勢手段により前記CS弁の閉弁方向に付勢されている請求項1または2に記載の容量制御弁。
  4.  前記CS弁体の内周面には、前記主弁体の外周面に摺動可能な摺動部が形成されている請求項1ないし3のいずれかに記載の容量制御弁。
  5.  前記CS弁体には、軸方向に貫通する連通路が形成されている請求項1ないし4のいずれかに記載の容量制御弁。
  6.  前記CS弁体には、前記吐出ポートおよび前記吸入ポートとそれぞれ連通する吐出連通孔および吸入連通孔が形成されている請求項1ないし5のいずれかに記載の容量制御弁。
PCT/JP2019/043374 2018-11-07 2019-11-06 容量制御弁 WO2020095918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980069468.7A CN112955684B (zh) 2018-11-07 2019-11-06 容量控制阀
EP19883193.5A EP3879150B1 (en) 2018-11-07 2019-11-06 Capacity control valve
JP2020556098A JP7286672B2 (ja) 2018-11-07 2019-11-06 容量制御弁
US17/287,086 US11378194B2 (en) 2018-11-07 2019-11-06 Capacity control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-209951 2018-11-07
JP2018209951 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020095918A1 true WO2020095918A1 (ja) 2020-05-14

Family

ID=70610713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043374 WO2020095918A1 (ja) 2018-11-07 2019-11-06 容量制御弁

Country Status (5)

Country Link
US (1) US11378194B2 (ja)
EP (1) EP3879150B1 (ja)
JP (1) JP7286672B2 (ja)
CN (1) CN112955684B (ja)
WO (1) WO2020095918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101275A1 (ja) * 2022-11-07 2024-05-16 イーグル工業株式会社

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032916A (ja) * 2009-07-31 2011-02-17 Tgk Co Ltd 制御弁
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4748Y1 (ja) 1966-02-04 1972-01-05
JPS5862775A (ja) 1981-10-08 1983-04-14 Sankyo Seiki Mfg Co Ltd 磁気ストライプ付カ−ドの処理装置
JP3089816B2 (ja) 1992-04-28 2000-09-18 株式会社豊田自動織機製作所 斜板式可変容量圧縮機
JPH06200875A (ja) 1993-01-08 1994-07-19 Toyota Autom Loom Works Ltd 揺動斜板式可変容量圧縮機
JP3242496B2 (ja) 1993-07-06 2001-12-25 株式会社豊田自動織機 可変容量圧縮機の外部切換式容量制御弁
JPH09144929A (ja) 1995-11-16 1997-06-03 Tosok Corp 電磁弁
JP3583951B2 (ja) 1999-06-07 2004-11-04 株式会社豊田自動織機 容量制御弁
JP2001073939A (ja) 1999-08-31 2001-03-21 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁及び容量可変型圧縮機
JP2001132632A (ja) 1999-11-10 2001-05-18 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁
JP3942851B2 (ja) 2001-07-31 2007-07-11 株式会社テージーケー 容量制御弁
JP4242624B2 (ja) 2002-09-26 2009-03-25 イーグル工業株式会社 容量制御弁及びその制御方法
JP4316955B2 (ja) 2003-08-11 2009-08-19 イーグル工業株式会社 容量制御弁
JP4431462B2 (ja) 2004-08-10 2010-03-17 株式会社鷺宮製作所 斜板式容量可変型圧縮機および電磁制御弁
US8021124B2 (en) * 2005-02-24 2011-09-20 Eagle Industry Co., Ltd. Capacity control valve
JP2006307828A (ja) 2005-03-31 2006-11-09 Tgk Co Ltd 可変容量圧縮機用制御弁
JP2007247512A (ja) 2006-03-15 2007-09-27 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP2008014269A (ja) 2006-07-07 2008-01-24 Toyota Industries Corp 可変容量型圧縮機の容量制御弁
JP2008202572A (ja) 2007-02-22 2008-09-04 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
KR101099121B1 (ko) 2009-08-19 2011-12-27 주식회사 두원전자 진공 벨로우즈 조립체 제조방법
JP5557901B2 (ja) 2010-03-16 2014-07-23 イーグル工業株式会社 容量制御弁
US8757988B2 (en) 2010-04-29 2014-06-24 Eagle Industry Co., Ltd. Capacity control valve
KR101322404B1 (ko) 2012-01-19 2013-10-28 (주)대정고분자산업 가변용량 압축기의 전자제어밸브
WO2013176012A1 (ja) 2012-05-24 2013-11-28 イーグル工業株式会社 容量制御弁
JP6064132B2 (ja) * 2012-10-09 2017-01-25 株式会社テージーケー 複合弁
KR101689241B1 (ko) 2012-12-12 2016-12-23 이구루코교 가부시기가이샤 용량 제어 밸브
JP6020130B2 (ja) 2012-12-19 2016-11-02 株式会社豊田自動織機 可変容量型斜板式圧縮機
EP2952741B1 (en) 2013-01-31 2019-03-13 Eagle Industry Co., Ltd. Variable capacity compressor
JP6064182B2 (ja) 2013-02-18 2017-01-25 株式会社テージーケー 可変容量圧縮機用制御弁
JP6103586B2 (ja) 2013-03-27 2017-03-29 株式会社テージーケー 可変容量圧縮機用制御弁
JP6149239B2 (ja) 2013-06-28 2017-06-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP6206274B2 (ja) 2014-03-19 2017-10-04 株式会社豊田自動織機 容量制御弁
JP6756622B2 (ja) 2014-12-25 2020-09-16 イーグル工業株式会社 容量制御弁
JP6500183B2 (ja) * 2015-04-02 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
US20170028462A1 (en) 2015-07-28 2017-02-02 Primetals Technologies USA LLC Simple copper tube design for continuous casting process with enhanced rigidity
JPWO2017057160A1 (ja) 2015-09-29 2018-07-12 株式会社ヴァレオジャパン 可変容量型圧縮機の制御弁
JP6395696B2 (ja) * 2015-12-16 2018-09-26 株式会社不二工機 可変容量型圧縮機用制御弁
JP6663227B2 (ja) 2016-01-19 2020-03-11 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機の容量制御弁
KR20170093349A (ko) * 2016-02-05 2017-08-16 주식회사 뉴로스 가변용량 압축기의 전자제어밸브
JP6500186B2 (ja) 2016-02-25 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
CN108779768B (zh) 2016-03-17 2020-05-12 伊格尔工业股份有限公司 容量控制阀
CN107489791B (zh) 2016-06-13 2020-12-04 株式会社Tgk 可变容量压缩机用控制阀
JP6714274B2 (ja) 2016-06-13 2020-06-24 株式会社テージーケー 可変容量圧縮機用制御弁
JP2018021646A (ja) 2016-08-05 2018-02-08 株式会社鷺宮製作所 感圧制御弁
JP2018040385A (ja) 2016-09-05 2018-03-15 株式会社テージーケー 電磁弁
CN110114573B (zh) * 2016-12-28 2021-06-29 伊格尔工业股份有限公司 容量控制阀
JP2018145877A (ja) * 2017-03-06 2018-09-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP6924476B2 (ja) * 2017-04-07 2021-08-25 株式会社テージーケー 可変容量圧縮機用制御弁
JP6997536B2 (ja) 2017-05-09 2022-01-17 サンデン・オートモーティブコンポーネント株式会社 ソレノイド制御弁及びこれを備えた可変容量圧縮機
JP2019002384A (ja) 2017-06-19 2019-01-10 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機
JP7139084B2 (ja) 2018-02-27 2022-09-20 イーグル工業株式会社 容量制御弁
US11053933B2 (en) * 2018-12-13 2021-07-06 Eagle Industry Co., Ltd. Displacement control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
JP2011032916A (ja) * 2009-07-31 2011-02-17 Tgk Co Ltd 制御弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879150A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101275A1 (ja) * 2022-11-07 2024-05-16 イーグル工業株式会社

Also Published As

Publication number Publication date
EP3879150A4 (en) 2022-06-22
US20210381610A1 (en) 2021-12-09
EP3879150A1 (en) 2021-09-15
CN112955684B (zh) 2023-05-16
JP7286672B2 (ja) 2023-06-05
CN112955684A (zh) 2021-06-11
US11378194B2 (en) 2022-07-05
EP3879150B1 (en) 2024-03-27
JPWO2020095918A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7139084B2 (ja) 容量制御弁
JP7167067B2 (ja) 容量制御弁
JP7242663B2 (ja) 容量制御弁
WO2020032087A1 (ja) 容量制御弁
JP7162995B2 (ja) 容量制御弁
KR102596905B1 (ko) 용량 제어 밸브
JP7341621B2 (ja) 容量制御弁
WO2020095918A1 (ja) 容量制御弁
WO2019159999A1 (ja) 容量制御弁
JP7438643B2 (ja) 容量制御弁
JP7383362B2 (ja) 容量制御弁
JP7289603B2 (ja) 容量制御弁
WO2020116436A1 (ja) 容量制御弁
JP7358022B2 (ja) 容量制御弁
JP7289604B2 (ja) 容量制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883193

Country of ref document: EP

Effective date: 20210607