WO2020095638A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020095638A1
WO2020095638A1 PCT/JP2019/040581 JP2019040581W WO2020095638A1 WO 2020095638 A1 WO2020095638 A1 WO 2020095638A1 JP 2019040581 W JP2019040581 W JP 2019040581W WO 2020095638 A1 WO2020095638 A1 WO 2020095638A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
compressor
refrigeration cycle
air
Prior art date
Application number
PCT/JP2019/040581
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 輝一
渡部 高志
哲也 武知
義治 遠藤
加藤 光敏
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020095638A1 publication Critical patent/WO2020095638A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present disclosure relates to a refrigeration cycle device including a liquid storage unit.
  • Patent Document 1 discloses a refrigeration cycle apparatus including a refrigerant recovery container for recovering a refrigerant in a cycle.
  • the refrigeration cycle apparatus of Patent Document 1 attempts to minimize the leakage of the refrigerant to the outside of the cycle.
  • the refrigerant recovery container of Patent Document 1 is connected to the receiver on the downstream side of the refrigerant flow.
  • the receiver is a high-pressure-side liquid storage unit that stores the high-pressure-side liquid-phase refrigerant that has flowed out of the condenser as excess refrigerant in the cycle.
  • a refrigeration cycle device is equipped with an accumulator as a liquid storage unit.
  • the accumulator is a low-pressure-side liquid storage unit that stores the low-pressure-side liquid-phase refrigerant that has flowed out of the evaporator as excess refrigerant in the cycle.
  • a refrigeration cycle apparatus including an accumulator generally, when recovering a refrigerant, the liquid-phase refrigerant in the accumulator is vaporized and sucked into a refrigerant recovery device to be recovered.
  • the latent heat of vaporization lowers the temperature and pressure of the refrigerant in the accumulator. Therefore, if the recovery work is continued, the liquid-phase refrigerant in the accumulator is less likely to be vaporized, and the recovery efficiency is reduced.
  • a means to collect the refrigerant while heating the accumulator from the outside can be considered.
  • performing the recovery work while heating the accumulator from the outside leads to deterioration in workability.
  • the recovery work will take a long time.
  • the present disclosure has an object to provide a refrigeration cycle apparatus including a liquid storage unit capable of promptly completing recovery of a refrigerant without deteriorating workability.
  • a refrigeration cycle device includes a liquid storage unit and a compressor.
  • the liquid storage section stores the liquid-phase refrigerant separated by separating the gas-liquid refrigerant.
  • the compressor compresses and discharges the gas-phase refrigerant separated in the liquid storage section.
  • the refrigeration cycle apparatus executes a refrigerant recovery preparation control for raising the temperature of the refrigerant in the liquid storage section in order to recover the refrigerant from the cycle.
  • the refrigerant recovery preparation control can be executed, it is possible to heat and vaporize the liquid phase refrigerant in the liquid reservoir when recovering the refrigerant. Therefore, it is not necessary to heat the liquid storage portion from the outside during the recovery work. That is, it is possible to provide a refrigeration cycle apparatus including a liquid storage unit capable of completing recovery of a refrigerant promptly without deteriorating workability.
  • the refrigeration cycle device 10 is applied to the vehicle air conditioner 1 mounted on a hybrid vehicle.
  • a hybrid vehicle is a vehicle that obtains a driving force for vehicle traveling from an internal combustion engine (that is, an engine) and an electric motor for traveling.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, and the like, as shown in the overall configuration diagram of FIG. 1.
  • the refrigeration cycle device 10 has a function of cooling or heating the air blown into the vehicle interior in order to air-condition the vehicle interior, which is the space to be air-conditioned, in the vehicle air conditioner 1. Therefore, the temperature control target fluid of the refrigeration cycle apparatus 10 is blown air. Further, the refrigeration cycle device 10 is configured to be able to switch between a cooling mode refrigerant circuit, a series dehumidifying heating mode refrigerant circuit, a parallel dehumidifying heating mode refrigerant circuit, and a heating mode refrigerant circuit.
  • the cooling mode is an operation mode in which the air in the vehicle interior is cooled by cooling the blown air and blowing it out into the vehicle interior.
  • the in-series dehumidification heating mode is an operation mode in which dehumidification heating of the vehicle interior is performed by reheating the blown air that has been cooled and dehumidified and blowing it out into the vehicle interior.
  • the parallel dehumidification heating mode is an operation mode in which dehumidified heating of the vehicle interior is performed by reheating the cooled and dehumidified blast air with a heating capacity higher than that of the series dehumidification heating mode and blowing the air into the vehicle interior.
  • the heating mode is an operation mode in which the blast air is heated and blown into the vehicle interior to heat the vehicle interior.
  • the refrigeration cycle device 10 employs an HFO-based refrigerant (specifically, R1234yf) as a refrigerant.
  • the refrigeration cycle apparatus 10 constitutes a vapor compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant in the refrigeration cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in a drive device chamber that houses an internal combustion engine, a traveling electric motor, and the like.
  • the drive device compartment is arranged on the front side of the vehicle compartment.
  • the compressor 11 is configured such that a housing forming an outer shell thereof accommodates two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and an electric motor that rotationally drives both compression mechanisms. It was done. That is, the compressor 11 is a two-stage booster type electric compressor. The number of rotations (that is, refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the air conditioning control device 60 described later.
  • the compressor 11 housing is provided with an intake port 11a, an intermediate pressure port 11b, and a discharge port 11c.
  • the suction port 11a is a suction port for sucking low-pressure refrigerant from the outside of the housing to the low-stage compression mechanism.
  • the discharge port 11c is a discharge port that discharges the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing.
  • the intermediate pressure port 11b is an intermediate pressure suction port for allowing the intermediate pressure refrigerant to flow from the outside to the inside of the housing and join the refrigerant in the compression process from low pressure to high pressure.
  • the intermediate pressure port 11b is connected to the discharge port side of the low-stage compression mechanism and the suction port side of the high-stage compression mechanism inside the housing.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11c of the compressor 11.
  • the indoor condenser 12 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the indoor condenser 12 heat-exchanges the high-pressure refrigerant discharged from the high-stage compression mechanism of the compressor 11 with the blast air that has passed through an indoor evaporator 23, which will be described later, and heats the blast air. It is a vessel.
  • the indoor condenser 12 is a heating unit that heats the blown air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
  • the refrigerant outlet of the indoor condenser 12 is connected to the inlet side of a first three-way joint 13a having three inlets and outlets communicating with each other.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes second to fourth three-way joints 13b to 13d, as will be described later.
  • the second three-way joint 13b to the fourth three-way joint 13d have the same basic configuration as the first three-way joint 13a.
  • the first three-way joint 13a to the fourth three-way joint 13d serve as branch portions that branch the flow of the refrigerant when one of the three inflow and outflow ports is used as the inflow port and two are used as the outflow ports. Further, when two of the three inflow / outflow ports are used as the inflow port and one is used as the outflow port, it becomes a merging portion for merging the flows of the refrigerant.
  • a high-pressure side charging port 27a is provided in the refrigerant pipe connecting the refrigerant outlet of the indoor condenser 12 and the inlet of the first three-way joint 13a.
  • the charging port is a refrigerant inlet / outlet used when performing vacuuming in the cycle, charging the refrigerant into the cycle, recovering the refrigerant from the cycle, and the like.
  • the refrigeration cycle apparatus 10 is provided with a low pressure side charging port 27b as described later.
  • the inlet side of the heating expansion valve 14a is connected to one outlet of the first three-way joint 13a.
  • the first refrigerant passage 18a is connected to the other outlet of the first three-way joint 13a.
  • the first refrigerant passage 18a is a refrigerant passage that connects the other outlet of the first three-way joint 13a and one inlet of the second three-way joint 13b.
  • a first opening / closing valve 15a is arranged in the first refrigerant passage 18a.
  • the first opening / closing valve 15a is an electromagnetic valve that opens / closes the first refrigerant passage 18a.
  • the operation of the first opening / closing valve 15a is controlled by the control voltage output from the air conditioning controller 60.
  • the refrigeration cycle device 10 is provided with the second opening / closing valve 15b to the fourth opening / closing valve 15d as described later.
  • the basic configuration of the second opening / closing valve 15b to the fourth opening / closing valve 15d is the same as that of the first opening / closing valve 15a.
  • the first opening / closing valve 15a to the fourth opening / closing valve 15d can switch the refrigerant circuit in each operation mode by opening / closing the refrigerant passage. Therefore, the first opening / closing valve 15a to the fourth opening / closing valve 15d are refrigerant circuit switching units that switch the refrigerant circuits of the cycle.
  • the heating expansion valve 14a is a decompression unit that decompresses the high-pressure refrigerant that has flowed out of the indoor condenser 12 and adjusts the flow rate of the refrigerant that flows out to the downstream side in the heating mode or the like.
  • the heating expansion valve 14a is an electric variable throttle mechanism including a valve body whose throttle opening can be changed, and an electric actuator which displaces the valve body. The operation of the heating expansion valve 14a is controlled by a control signal (control pulse) output from the air conditioning controller 60.
  • the refrigeration cycle device 10 is equipped with a cooling expansion valve 14b as described later.
  • the basic configuration of the cooling expansion valve 14b is the same as that of the heating expansion valve 14a.
  • the expansion valve 14a for heating and the expansion valve 14b for cooling have a fully open function that functions as a simple refrigerant passage with almost no flow rate adjusting action and refrigerant depressurizing action by fully opening the valve opening amount, and the valve opening amount. It has a fully closed function of closing the refrigerant passage by closing it.
  • the heating expansion valve 14a and the cooling expansion valve 14b can switch the refrigerant circuit in each operation mode. Therefore, the heating expansion valve 14a and the cooling expansion valve 14b also have a function as a refrigerant circuit switching unit.
  • the inlet side of the gas-liquid separator 16 is connected to the outlet of the heating expansion valve 14a.
  • the gas-liquid separator 16 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant flowing out from the heating expansion valve 14a.
  • the gas-liquid separator 16 is a centrifugal separation system (so-called cyclone separator) that separates the gas-liquid of the refrigerant by the action of the centrifugal force generated by swirling the refrigerant that has flowed into the internal space of the cylindrical main body. Method) has been adopted.
  • a gas-liquid separator 16 having a relatively small internal volume is adopted. More specifically, the internal volume of the gas-liquid separator 16 is set to a volume that is substantially incapable of storing excess refrigerant even if the load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates. Is becoming Therefore, the gas-liquid separator 16 does not function as a liquid storage unit that stores the separated liquid-phase refrigerant as excess refrigerant in the cycle.
  • a second refrigerant passage 18b is connected to the gas-phase refrigerant outlet of the gas-liquid separator 16.
  • the second refrigerant passage 18b is a refrigerant passage that guides the gas-phase refrigerant flowing out of the gas-liquid separator 16 to the intermediate pressure port 11b of the compressor 11.
  • a second opening / closing valve 15b that opens and closes the second refrigerant passage 18b is arranged in the second refrigerant passage 18b.
  • the inlet side of the fixed throttle 17 is connected to the liquid-phase refrigerant outlet of the gas-liquid separator 16.
  • the fixed throttle 17 reduces the pressure of the liquid-phase refrigerant flowing out from the gas-liquid separator 16 until it becomes a low-pressure refrigerant.
  • a nozzle, an orifice, a capillary tube or the like having a fixed aperture can be used as the fixed throttle 17, a nozzle, an orifice, a capillary tube or the like having a fixed aperture can be used.
  • the refrigerant inlet side of the outdoor heat exchanger 20 is connected to the outlet side of the fixed throttle 17.
  • a third refrigerant passage 18c is connected to the liquid-phase refrigerant outlet of the gas-liquid separator 16.
  • the third refrigerant passage 18c is a refrigerant passage that guides the liquid-phase refrigerant flowing out of the gas-liquid separator 16 to the refrigerant inlet side of the outdoor heat exchanger 20, bypassing the fixed throttle 17.
  • a third opening / closing valve 15c for opening / closing the third refrigerant passage 18c is arranged in the third refrigerant passage 18c.
  • the pressure loss that occurs when the refrigerant passes through the third opening / closing valve 15c is extremely smaller than the pressure loss that occurs when the refrigerant passes through the fixed throttle 17. Therefore, when the third on-off valve 15c is opened, most of the liquid-phase refrigerant flowing out from the gas-liquid separator 16 does not pass through the fixed throttle 17, but passes through the third refrigerant passage 18c and the outdoor heat exchanger. Flow into 20.
  • the outdoor heat exchanger 20 is a heat exchanger for exchanging heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown from the outside air fan 20a.
  • the outdoor heat exchanger 20 is arranged on the front side inside the drive device chamber. Therefore, traveling wind can be applied to the outdoor heat exchanger 20 when the vehicle is traveling.
  • the outdoor heat exchanger 20 functions as a radiator that dissipates the high pressure refrigerant in the cooling mode or the like. Further, in the heating mode or the like, it functions as an evaporator that evaporates the low-pressure refrigerant whose pressure is reduced by the heating expansion valve 14a.
  • the outside air fan 20a is an electric blower whose rotation speed (that is, blowing capacity) is controlled by a control voltage output from the air conditioning control device 60.
  • the inlet of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 20.
  • the other inflow port side of the second three-way joint 13b is connected to one outflow port of the third three-way joint 13c.
  • the fourth refrigerant passage 18d is connected to the other outlet of the third three-way joint 13c.
  • the fourth refrigerant passage 18d is a refrigerant passage that connects one outlet of the third three-way joint 13c and one inlet of the fourth three-way joint 13d.
  • a fourth opening / closing valve 15d for opening / closing the fourth refrigerant passage 18d is arranged in the fourth refrigerant passage 18d.
  • a check valve 21 is arranged in the refrigerant passage that connects one of the outlets of the third three-way joint 13c and the other inlet of the second three-way joint 13b.
  • the check valve 21 prevents the refrigerant from flowing from the third three-way joint 13c side (that is, the refrigerant outlet side of the outdoor heat exchanger 20) to the second three-way joint 13b side (that is, the inlet side of the cooling expansion valve 14b). Tolerate.
  • the check valve 21 prohibits the refrigerant from flowing from the second three-way joint 13b side to the third three-way joint 13c side.
  • the inlet side of the cooling expansion valve 14b is connected to the outlet of the second three-way joint 13b.
  • the cooling expansion valve 14b depressurizes the refrigerant flowing out of the outdoor heat exchanger 20 and adjusts the flow rate of the refrigerant flowing downstream in the cooling mode or the like.
  • the refrigerant inlet side of the indoor evaporator 23 is connected to the outlet of the cooling expansion valve 14b.
  • the indoor evaporator 23 is arranged in an air conditioning case 31 of an indoor air conditioning unit 30 described later.
  • the indoor evaporator 23 heat-exchanges the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the blast air blown from the indoor blower 32, evaporates the low-pressure refrigerant, and exerts an endothermic action to blow the blast air. It is a cooling heat exchanger for cooling.
  • the inlet of the evaporation pressure adjusting valve 26 is connected to the refrigerant outlet of the indoor evaporator 23.
  • the evaporation pressure adjusting valve 26 has a function of maintaining the refrigerant pressure on the upstream side thereof at a predetermined reference pressure or higher. In other words, the evaporation pressure adjusting valve 26 has a function of maintaining the refrigerant evaporation pressure in the indoor evaporator 23 at the reference pressure or higher.
  • the evaporation pressure adjusting valve 26 is composed of a mechanical variable throttle mechanism that increases the valve opening degree as the pressure of the refrigerant on the outlet side of the indoor evaporator 23 increases. Further, the evaporation pressure adjusting valve 26 of the present embodiment maintains the refrigerant evaporation temperature in the indoor evaporator 23 at or above the frost suppression temperature (1 ° C. in the present embodiment) capable of suppressing frost formation in the indoor evaporator 23. is doing.
  • a low-pressure side charging port 27b is provided in the refrigerant pipe that connects the refrigerant outlet of the indoor evaporator 23 and the inlet of the evaporation pressure adjusting valve 26.
  • the other inlet side of the fourth three-way joint 13d is connected to the outlet of the evaporation pressure adjusting valve 26.
  • the inlet side of the accumulator 24 is connected to the outlet of the fourth three-way joint 13d. Therefore, the above-mentioned fourth refrigerant passage 18d guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24, bypassing the cooling expansion valve 14b, the indoor evaporator 23 and the evaporation pressure adjusting valve 26. It becomes a passage.
  • the accumulator 24 is a liquid storage unit that separates the gas-liquid refrigerant flowing therein and stores the separated liquid-phase refrigerant as excess refrigerant in the cycle.
  • the suction port 11a side of the compressor 11 is connected to the vapor-phase refrigerant outlet of the accumulator 24.
  • the indoor air conditioning unit 30 is for blowing out the blown air adjusted to an appropriate temperature for air conditioning in the vehicle interior to an appropriate location in the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the frontmost part of the vehicle compartment.
  • the indoor air conditioning unit 30 includes an indoor air blower 32, an indoor evaporator 23, an indoor condenser 12 and the like housed in an air conditioning case 31 that forms an air passage for blown air.
  • the air-conditioning case 31 is made of a resin (for example, polypropylene) that has elasticity to some extent and is excellent in strength.
  • An inside / outside air switching device 33 is arranged on the most upstream side of the blast air flow of the air conditioning case 31.
  • the inside / outside air switching device 33 switches and introduces inside air (air inside the vehicle) and outside air (air outside the vehicle) into the air conditioning case 31.
  • the operation of the electric actuator for driving the inside / outside air switching device 33 is controlled by a control signal output from the air conditioning controller 60.
  • An indoor blower 32 is arranged on the downstream side of the blown air flow of the inside / outside air switching device 33.
  • the indoor blower 32 blows the air taken in via the inside / outside air switching device 33 toward the vehicle interior.
  • the indoor blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the number of rotations (that is, the blowing capacity) of the indoor blower 32 is controlled by the control voltage output from the air conditioning controller 60.
  • the indoor evaporator 23 and the indoor condenser 12 are arranged in this order with respect to the blast air flow, on the downstream side of the blast air flow of the indoor blower 32. That is, the indoor evaporator 23 is arranged on the upstream side of the blown air flow with respect to the indoor condenser 12.
  • a cool air bypass passage 35 is provided in the air conditioning case 31 to allow the air blown after passing through the indoor evaporator 23 to bypass the indoor condenser 12. Further, an air mix door 34 is arranged in the air conditioning case 31 on the downstream side of the blown air flow of the indoor evaporator 23 and on the upstream side of the blown air flow of the indoor condenser 12.
  • the air mix door 34 determines the air volume ratio of the air volume of the blast air passing through the air passage on the side of the indoor condenser 12 and the air volume of the blast air passing through the cold air bypass passage 35 in the air blast after passing through the indoor evaporator 23. It is an air volume ratio adjusting unit.
  • the operation of the electric actuator for driving the air mix door 34 is controlled by a control signal output from the air conditioning controller 60.
  • a mixing space 36 is formed in the air conditioning case 31 on the downstream side of the blower air flow of the indoor condenser 12 and the cold air bypass passage 35.
  • the mixing space 36 is a space for mixing the blast air heated in the indoor condenser 12 and the blast air that has not passed through the cold air bypass passage 35 and is not heated. Further, an opening hole for blowing out the blast air mixed and temperature-adjusted in the mixing space 36 into the vehicle interior is provided at the downstream side of the blast air flow of the air conditioning case 31.
  • the face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment.
  • the foot opening hole is an opening hole for blowing out the conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing the conditioned air toward the inner surface of the vehicle front window glass.
  • the temperature of the conditioned air mixed in the mixing space 36 is adjusted by the air mix door 34 adjusting the air flow rate of the air flow passing through the indoor condenser 12 and the air flow passing through the cold air bypass passage 35. It Then, the temperature of the blown air (air-conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
  • a face door, a foot door, and a defroster door are arranged on the upstream side of the blow air flow of the face opening hole, the foot opening hole, and the defroster opening hole.
  • the face door, the foot door, and the defroster door are opening / closing portions that open and close corresponding opening holes according to the operation mode.
  • These doors are connected to a common electric actuator for driving via a link mechanism, etc., so that they can be rotated in conjunction with each other.
  • the operation of the electric actuators for driving these doors is controlled by a control signal output from the air conditioning controller 60.
  • the air-conditioning control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits. Then, various calculations and processing are performed based on the air conditioning control program stored in the ROM, and the operations of the various controlled devices 11, 14a, 14b, 15a to 15d, 20a, 32, etc. connected to the output side are performed. Control.
  • an inside air temperature sensor 61 On the input side of the air conditioning controller 60, as shown in the block diagram of FIG. 2, an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a first refrigerant temperature sensor 64a, a second refrigerant temperature sensor 64b, The evaporator temperature sensor 64f, the refrigerant pressure sensor 65, the conditioned air temperature sensor 69, etc. are connected. Then, the detection signals of these sensor groups for air conditioning control are input to the air conditioning control device 60.
  • the inside air temperature sensor 61 is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 62 is an outside air temperature detecting unit that detects the outside temperature (outside air temperature) Tam of the vehicle compartment.
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount Ts with which the vehicle interior is irradiated.
  • the first refrigerant temperature sensor 64a is a first refrigerant temperature detection unit that detects the temperature T1 of the high-pressure refrigerant that has flowed out of the refrigerant passage of the indoor condenser 12 (hereinafter referred to as the first refrigerant temperature T1). Therefore, the first refrigerant temperature T1 when the air mix door 34 fully closes the ventilation passage on the side of the indoor condenser 12 is the temperature of the high-pressure refrigerant immediately after being discharged from the discharge port 11c of the compressor 11.
  • the second refrigerant temperature sensor 64b is arranged on the refrigerant outlet side of the outdoor heat exchanger 20 and detects a temperature T2 of the refrigerant flowing out of the outdoor heat exchanger 20 (hereinafter, referred to as second refrigerant temperature T2). It is a refrigerant temperature detection unit. Therefore, as in the refrigerant recovery preparation control described later, the second refrigerant temperature T2 when the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the fourth refrigerant passage 18d flows into the accumulator 24. It becomes the temperature of the refrigerant.
  • the evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 23.
  • the evaporator temperature sensor 64f of the present embodiment specifically detects the temperature of the heat exchange fins of the indoor evaporator 23.
  • the refrigerant pressure sensor 65 is a refrigerant pressure detection unit that detects the high pressure Pd of the refrigerant flowing out from the indoor condenser 12.
  • the conditioned air temperature sensor 69 is an conditioned air temperature detection unit that detects a blast air temperature TAV that is blown from the mixing space 36 into the passenger compartment.
  • the operation panel 70 arranged near the instrument panel in the front part of the vehicle compartment is connected to the input side of the air conditioning controller 60, and various operation switches provided on the operation panel 70 are operated. An operation signal is input.
  • the auto switch is an automatic operation setting unit that sets or cancels automatic control operation of the vehicle air conditioner 1.
  • the air conditioner switch is a cooling request unit that requests the indoor evaporator 23 to cool the blown air.
  • the air volume setting switch is an air volume setting unit for manually setting the air volume of the indoor blower 32.
  • the temperature setting switch is a temperature setting unit that sets a target temperature Tset in the vehicle compartment.
  • the blowout mode changeover switch is a blowout mode changeover setting unit for manually setting the blowout mode.
  • the air conditioning control device 60 is provided with a connector 72 for connecting a service tool 71.
  • the service tool 71 is a request unit that requests the refrigeration cycle device 10 to execute the refrigerant recovery preparation control by being connected to the connector 72 by the user.
  • the refrigerant recovery preparation control is a control executed when the refrigerant is recovered from the refrigeration cycle device 10. Therefore, the service tool 71 does not have to be always provided in the vehicle, and may be prepared in a maintenance shop or the like that collects the refrigerant. Further, the connector 72 is provided with a cover or the like so that it is not visible to the driver or passengers when the refrigerant is not collected.
  • the air conditioning control device 60 of the present embodiment is integrally configured with a control unit that controls various control target devices connected to the output side thereof. That is, in the air conditioning control device 60, the configuration (hardware and software) that controls the operation of each control target device constitutes the control unit that controls the operation of each control target device.
  • the configuration that controls the rotation speed of the compressor 11 configures the discharge capacity control unit 60a.
  • the configuration that controls the throttle opening degree of the heating expansion valve 14a that is the pressure reducing section configures the throttle opening degree control unit 60b.
  • the configuration for controlling the operation of the first on-off valve 15a to the fourth on-off valve 15d constitutes the circuit switching control unit 60c.
  • the configuration for controlling the rotation speed of the outside air fan 20a constitutes the outside air blowing capacity control unit 60d.
  • the vehicle air conditioner 1 of this embodiment can perform cooling, dehumidifying and heating, and heating in the vehicle interior.
  • the refrigeration cycle apparatus 10 can execute the operation in the cooling mode, the series dehumidification heating mode, the parallel dehumidification heating mode, and the heating mode in order to perform the air conditioning of the vehicle interior.
  • the switching of each operation mode of the refrigeration cycle apparatus 10 is performed by executing the air conditioning control program.
  • the air conditioning control program is executed when the automatic switch of the operation panel 70 is turned on (ON) and the automatic control operation is set.
  • the detection signals of the above-mentioned air conditioning control sensor group and the operation signals from various air conditioning operation switches are read. Then, based on the read values of the detection signal and the operation signal, the target outlet temperature TAO, which is the target temperature of the outlet air blown into the vehicle interior, is calculated.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C ... (F1)
  • Tr is the inside air temperature detected by the inside air temperature sensor 61
  • Tam is the outside air temperature detected by the outside air temperature sensor 62
  • Ts is Ts. Is the amount of solar radiation detected by the solar radiation sensor 63.
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • the operation mode is switched to the cooling mode.
  • the target outlet temperature TAO is equal to or higher than the cooling reference temperature ⁇
  • the outside air temperature Tam is higher than the predetermined dehumidifying and heating reference temperature ⁇ .
  • the operation mode is switched to the series dehumidification heating mode.
  • the operation mode is switched to the parallel dehumidification heating mode.
  • the operation mode is switched to the heating mode.
  • the cooling mode is mainly executed when the outside temperature is relatively high, such as in summer.
  • the series dehumidification heating mode is mainly executed in spring or autumn.
  • the parallel dehumidification heating mode is mainly executed when it is necessary to heat the blast air with a higher heating capacity than the series dehumidification heating mode, such as in early spring or late autumn.
  • the heating mode is mainly executed during the low outside temperature in winter. The operation in each operation mode will be described below.
  • the air conditioning control device 60 causes the heating expansion valve 14a to be fully opened and the cooling expansion valve 14b to be in a throttled state that exerts a pressure reducing action. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and closes the fourth opening / closing valve 15d.
  • the cooling expansion valve 14b, the indoor evaporator 23, the evaporation pressure adjusting valve 26, the accumulator 24, and the suction port 11a of the compressor 11 constitute a vapor compression refrigeration cycle in which the refrigerant circulates in this order.
  • the compressor 11 functions as a single-stage booster compressor.
  • the air conditioning control device 60 appropriately determines the control signals and the like to be output to the various controlled devices connected to the output side, and outputs the determined control signals and the like to the various controlled devices.
  • the air conditioning control device 60 determines the control signal output to the compressor 11 so that the evaporator temperature Tefin detected by the evaporator temperature sensor 64f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in advance in the air conditioning controller 60.
  • the target evaporator temperature TEO rises as the target outlet temperature TAO rises. Furthermore, the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation on the indoor evaporator 23 can be suppressed.
  • the air conditioning controller 60 determines the control signal output to the cooling expansion valve 14b so that the supercooling degree SC2 of the refrigerant flowing into the cooling expansion valve 14b approaches the target supercooling degree SCO2 for the cooling mode. To do.
  • the supercooling degree SC2 of the refrigerant flowing into the cooling expansion valve 14b is calculated from the high pressure Pd detected by the refrigerant pressure sensor 65 and the second refrigerant temperature T2 detected by the second refrigerant temperature sensor 64b.
  • the target degree of supercooling SCO2 is determined based on the high pressure Pd by referring to a cooling mode control map stored in advance in the air conditioning controller 60.
  • the target degree of supercooling SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the air conditioning controller 60 also determines the control signal output to the electric actuator for the air mix door.
  • the control signal output to the electric actuator for the air mix door is determined so that the temperature of the blown air blown into the vehicle compartment approaches the target blowout temperature TAO.
  • a refrigeration cycle in which the indoor condenser 12 and the outdoor heat exchanger 20 function as a condenser and the indoor evaporator 23 functions as an evaporator is configured.
  • the blown air cooled by the indoor evaporator 23 can be adjusted to an appropriate temperature by the indoor condenser 12. Then, the blown air adjusted to an appropriate temperature is blown into the vehicle interior to cool the vehicle interior.
  • (B) Series dehumidification heating mode In the series dehumidification heating mode, the air conditioning control device 60 sets the heating expansion valve 14a in the throttled state and the cooling expansion valve 14b in the throttled state. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and closes the fourth opening / closing valve 15d.
  • a refrigeration cycle in which the refrigerant circulates in the same order as in the cooling mode is configured.
  • the outdoor heat exchanger 20 and the indoor evaporator 23 constitute a refrigeration cycle in which the refrigerant flow is connected in series.
  • the second on-off valve 15b is closed, so that the compressor 11 functions as a single-stage booster type compressor as in the cooling mode.
  • the air conditioning control device 60 appropriately determines control signals and the like to be output to various control target devices connected to the output side, and outputs the determined control signals and the like to various control target devices.
  • the air conditioning control device 60 controls the control signal output to the heating expansion valve 14a and the cooling expansion valve 14b based on the high pressure Pd detected by the refrigerant pressure sensor 65 so that the COP approaches the maximum value. decide. At this time, the air conditioning control device 60 sends a control signal to increase the opening ratio of the throttle opening of the cooling expansion valve 14b to the throttle opening of the heating expansion valve 14a as the target outlet temperature TAO rises. decide.
  • the refrigeration cycle device 10 in the series dehumidifying and heating mode constitutes a refrigeration cycle in which the indoor condenser 12 functions as a condenser and the indoor evaporator 23 functions as an evaporator. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outside air temperature Tam, a refrigeration cycle that causes the outdoor heat exchanger 20 to function as a condenser is configured. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air temperature Tam, a refrigeration cycle that causes the outdoor heat exchanger 20 to function as an evaporator is configured.
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outside air temperature Tam
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lowered to increase the outdoor heat exchange as the target outlet temperature TAO rises.
  • the heat radiation amount of the refrigerant in the container 20 can be reduced.
  • the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased, and the heating capacity of the blown air in the indoor condenser 12 can be improved.
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air temperature Tam
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is decreased and the outdoor heat exchange is performed as the target outlet temperature TAO rises.
  • the heat absorption amount of the refrigerant in the container 20 can be increased.
  • the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased, and the heating capacity of the blown air in the indoor condenser 12 can be improved.
  • the blown air that has been cooled and dehumidified by the indoor evaporator 23 can be reheated by the indoor condenser 12. Then, the reheated blast air is blown out into the vehicle interior, whereby the dehumidification and heating of the vehicle interior can be performed. Furthermore, the heating capacity of the blower air in the indoor condenser 12 can be adjusted by adjusting the throttle openings of the heating expansion valve 14a and the cooling expansion valve 14b.
  • (C) Parallel dehumidification heating mode In the parallel dehumidification heating mode, the air conditioning control device 60 brings the heating expansion valve 14a into the throttled state and the cooling expansion valve 14b into the throttled state. Further, the air conditioning control device 60 opens the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d.
  • the outdoor heat exchanger 20, the accumulator 24, and the suction port 11a of the compressor 11 circulate in the order of refrigerant.
  • Formula refrigeration cycle is constructed.
  • the outdoor heat exchanger 20 and the indoor evaporator 23 constitute a refrigeration cycle in which the refrigerant flow is connected in parallel.
  • the second on-off valve 15b is closed, so that the compressor 11 functions as a single-stage booster compressor, as in the cooling mode.
  • the air conditioning control device 60 appropriately determines control signals and the like to be output to various control target devices connected to the output side, and outputs the determined control signals and the like to various control target devices.
  • the air conditioning control device 60 determines the control signal output to the compressor 11 so that the high pressure Pd approaches the target condensing pressure PDO.
  • the target condensing pressure PDO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in advance in the air conditioning controller 60. In this control map, the target condensing pressure PDO is determined to increase as the target outlet temperature TAO increases.
  • the air conditioning control device 60 determines the control signal output to the heating expansion valve 14a and the cooling expansion valve 14b so that the COP approaches the maximum value based on the high pressure Pd. At this time, the air conditioning control device 60 sends a control signal to increase the opening ratio of the throttle opening of the cooling expansion valve 14b to the throttle opening of the heating expansion valve 14a as the target outlet temperature TAO rises. decide.
  • a refrigeration cycle in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 20 and the indoor evaporator 23 function as an evaporator is configured.
  • the blast air cooled and dehumidified by the indoor evaporator 23 can be reheated by the indoor condenser 12. Then, the reheated blast air is blown out into the vehicle interior, whereby the dehumidification and heating of the vehicle interior can be performed. Furthermore, the heating capacity of the blower air in the indoor condenser 12 can be adjusted by adjusting the throttle openings of the heating expansion valve 14a and the cooling expansion valve 14b.
  • the evaporation temperature of the refrigerant in the outdoor heat exchanger 20 can be made lower than the evaporation temperature of the refrigerant in the indoor evaporator 23. Therefore, in the parallel dehumidification heating mode, the heat absorption amount of the refrigerant in the outdoor heat exchanger 20 can be increased more than in the series dehumidification heating mode to increase the heating capacity of the blown air.
  • (D) Heating Mode In the heating mode, the air conditioning control device 60 sets the heating expansion valve 14a in the throttled state and the cooling expansion valve 14b in the fully closed state. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, opens the second opening / closing valve 15b, closes the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d.
  • the refrigerant circulates in the order of 11 intermediate pressure ports 11b.
  • a so-called gas injection cycle is formed in which the refrigerant circulates in the order of the liquid-phase refrigerant outlet of the gas-liquid separator 16, the fixed throttle 17, the outdoor heat exchanger 20, the accumulator 24, and the suction port 11a of the compressor 11.
  • the air conditioning control device 60 appropriately determines control signals and the like to be output to various control target devices connected to the output side, and outputs the determined control signals and the like to various control target devices.
  • the air conditioning controller 60 determines the control signal output to the heating expansion valve 14a so that the supercooling degree SC1 of the refrigerant flowing into the heating expansion valve 14a approaches the target supercooling degree SCO1 for the heating mode. To do.
  • the supercooling degree SC1 of the refrigerant flowing into the heating expansion valve 14a is calculated from the high pressure Pd detected by the refrigerant pressure sensor 65 and the first refrigerant temperature T1 detected by the first refrigerant temperature sensor 64a.
  • the target degree of supercooling SCO1 is determined based on the high pressure Pd with reference to a cooling mode control map stored in advance in the air conditioning controller 60.
  • the target degree of supercooling SCO1 is determined so that the cycle coefficient of performance (COP) approaches the maximum value.
  • a gas injection cycle is configured in which the indoor condenser 12 functions as a radiator and the outdoor heat exchanger 20 functions as an evaporator.
  • the air in the vehicle interior can be heated by blowing the blast air heated by the indoor condenser 12 into the vehicle interior.
  • the refrigerant circuits can be switched to perform operation in various operation modes in order to perform air conditioning in the vehicle interior.
  • the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior.
  • the refrigerant recovery preparation control can be executed when recovering the refrigerant in the cycle.
  • the refrigerant recovery preparation control is control for increasing the temperature of the refrigerant in the accumulator 24 in order to quickly recover the refrigerant from the cycle.
  • the air conditioning control device 60 constitutes a recovery preparation control execution unit.
  • the refrigerant recovery method in the refrigeration cycle device 10 of the present embodiment will be described below.
  • the refrigerant recovery device 80 is connected to the high pressure side charging port 27a and the low pressure side charging port 27b of the refrigeration cycle device 10 ( Recovery device connection process).
  • the recovery device connecting step is performed in a state in which a start switch (so-called ignition switch) of the vehicle system is turned off.
  • the refrigerant recovery device 80 has a recovery compression section 81, a recovery condensation section 82, and the like.
  • the recovery compression unit 81 is a compressor that sucks and compresses the gas-phase refrigerant from the inside of the cycle.
  • the suction port of the recovery compression unit 81 is connected to the high pressure side charging port 27a and the low pressure side charging port 27b via a dedicated hose or the like.
  • the recovery condenser 82 is a heat exchanger for condensation that heat-exchanges the refrigerant discharged from the recovery compressor 81 with the outside air to liquefy the recovered refrigerant.
  • a recovery container 83 is connected to the refrigerant outlet side of the recovery condenser 82.
  • the recovery container 83 is a container for storing the refrigerant liquefied in the recovery condensing unit 82.
  • the components of the refrigerant recovery device 80 such as the recovery compression unit 81, are stopped.
  • the service tool 71 is connected to the connector 72 of the air conditioning controller 60.
  • electric power is supplied from the vehicle-mounted battery to the refrigeration cycle device 10.
  • the refrigeration cycle device 10 is required to execute the refrigerant recovery preparation control.
  • the air conditioning control device 60 executes the refrigerant recovery preparation control shown in the flowchart of FIG. 4 (preparation control execution step).
  • step S1 of FIG. 4 the refrigerant circuit of the refrigeration cycle device 10 is switched. Specifically, the air conditioning control device 60 sets the expansion valve 14a for heating to a throttle state and the expansion valve 14b for cooling to a fully closed state. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d.
  • step S2 the detection signal of the sensor group for air conditioning control is read.
  • step S3 the reference temperature KT is determined based on the outside air temperature Tam read in step S2 with reference to the control map stored in advance in the air conditioning controller 60.
  • the reference temperature KT is a reference value of the refrigerant temperature used when determining the end timing of the refrigerant recovery preparation control.
  • the reference temperature KT is determined so as to increase as the outside air temperature Tam increases, as shown in the control characteristic diagram described in step S3 of FIG. Further, the reference temperature KT is determined so that the pressure of the refrigerant in the cycle becomes equal to or higher than the atmospheric pressure when 90% of the refrigerant is recovered from the cycle in the refrigerant recovery step described later.
  • step S4 the control signal output to the compressor 11 is determined so that the first refrigerant temperature T1 becomes higher than the reference temperature KT.
  • step S5 the control signal output to the heating expansion valve 14a is determined.
  • the control signal output to the heating expansion valve 14a is determined so that the throttle opening degree decreases as the outside air temperature Tam decreases, as shown in the control characteristic diagram described in step S5 of FIG. ..
  • step S6 the control signal output to the electric actuator for the air mix door is determined. Specifically, the control signal is determined so that the air mix door 34 fully closes the ventilation passage on the indoor condenser 12 side.
  • step S7 the outside air fan 20a is stopped.
  • step S8 a control signal, a control voltage, etc. are output from the air conditioning control device 60 to various control target devices so that the control state determined in steps S2 to S7 is obtained.
  • step S9 it is determined whether or not the elapsed time Tim in the temperature rising state in which the second refrigerant temperature T2 detected by the second refrigerant temperature sensor 64b is equal to or higher than the reference temperature KT is equal to or greater than a predetermined reference elapsed time KTim. Is determined.
  • the reference elapsed time KTim is set to 30 seconds.
  • the refrigerant flowing out of the outdoor heat exchanger 20 is caused to flow into the accumulator 24 via the fourth refrigerant passage 18d. Therefore, the above-mentioned temperature rising state means a state in which the temperature of the refrigerant flowing into the accumulator 24 is equal to or higher than the reference temperature KT.
  • step S9 determines whether the elapsed time Tim is shorter than the reference elapsed time KTim. If it is determined in step S9 that the elapsed time Tim is shorter than the reference elapsed time KTim, the process returns to step S2. When it is determined in step S9 that the elapsed time Tim is equal to or greater than the reference elapsed time KTim, the process proceeds to step S10.
  • step S10 the ending process of the refrigerant recovery preparation control is performed. Specifically, in step S10, the compressor 11 is stopped, the heating expansion valve 14a is fully opened, and the cooling expansion valve 14b is fully closed. Further, the air conditioning control device 60 opens the first opening / closing valve 15a, the second opening / closing valve 15b, the third opening / closing valve 15c, and the fourth opening / closing valve 15d.
  • step S10 in order to ensure that the heating expansion valve 14a is fully opened and that the first opening / closing valve 15a to the fourth opening / closing valve 15d are opened reliably, wait a waiting time ⁇ from the start of the end processing. Complete.
  • the waiting time ⁇ is set to 90 seconds.
  • the high temperature refrigerant discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 fully closes the ventilation passage on the indoor condenser 12 side. Therefore, the refrigerant that has flowed into the indoor condenser 12 flows out from the indoor condenser 12 with almost no heat dissipation to the blown air.
  • the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the gas-liquid separator 16.
  • the outside air fan 20a is stopped. Therefore, the refrigerant flowing into the outdoor heat exchanger 20 flows out of the outdoor heat exchanger 20 with almost no heat radiation to the outside air.
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the fourth refrigerant passage 18d.
  • the temperature of the refrigerant in the accumulator 24 rises, as shown in FIG. Furthermore, the temperature of the accumulator 24 itself and the pressure of the refrigerant in the accumulator 24 also increase. The refrigerant flowing out from the gas-phase refrigerant outlet of the accumulator 24 is sucked from the suction port 11a of the compressor 11 and compressed again.
  • step S9 When it is determined in step S9 that the elapsed time Tim has become equal to or greater than the reference elapsed time KTim, it is determined that the temperature of the refrigerant in the accumulator 24 has sufficiently risen, and the ending process of the refrigerant recovery preparation control is executed. .. As a result, the internal space of the accumulator 24 communicates with the suction port side of the recovery compression unit 81 via both the high pressure side charging port 27a and the low pressure side charging port 27b.
  • the recovery compression unit 81 of the refrigerant recovery device 80 is operated to recover the refrigerant in the cycle (refrigerant recovery step).
  • the recovery compression unit 81 sucks the vapor phase refrigerant in the cycle through the high pressure side charging port 27a and the low pressure side charging port 27b.
  • the refrigerant discharged from the recovery compression section 81 exchanges heat with the outside air in the recovery condensation section 82 and is condensed.
  • the refrigerant condensed in the recovery condensing unit 82 is stored in the recovery container 83.
  • the refrigeration cycle apparatus 10 of the present embodiment can execute the refrigerant recovery preparation control when recovering the refrigerant in the cycle.
  • the refrigerant in the accumulator 24 can be heated and vaporized before the refrigerant recovery step of recovering the refrigerant in the cycle.
  • the refrigeration cycle apparatus 10 of the present embodiment it is possible to promptly complete the recovery of the refrigerant without deteriorating the workability.
  • the recovery of the refrigerant in the cycle is completed when 90% or more of the refrigerant in the cycle is recovered and the pressure of the refrigerant in the cycle becomes atmospheric pressure.
  • the inventors of the present disclosure perform a comparative test using the refrigeration cycle device 10 to perform refrigerant recovery without executing the refrigerant recovery preparation control and without heating the accumulator 24 from the outside.
  • the time required to recover 90% of the refrigerant in the cycle is reduced to 1/10 or less of the comparison test. It has been confirmed that it can be shortened.
  • the refrigerant circuit switching unit causes the discharge port 11c of the compressor 11, the expansion valve 14a for heating, the accumulator 24, and the suction port 11a of the compressor 11 during execution of the refrigerant recovery preparation control. Switching to the refrigerant circuit in which the refrigerant circulates in the order of. According to this, the temperature of the refrigerant in the accumulator 24 can be raised without adding a new configuration for raising the refrigerant in the accumulator 24.
  • the throttle opening degree of the cooling expansion valve 14b is decreased as the outside air temperature Tam decreases. According to this, the temperature of the high-pressure refrigerant discharged from the compressor 11 can be increased as the outside air temperature Tam decreases.
  • the end process is performed. According to this, the temperature of the refrigerant in the accumulator 24 can be sufficiently raised so that the refrigerant in the cycle can be reliably recovered.
  • the second refrigerant temperature T2 detected by the second refrigerant temperature sensor 64b is adopted.
  • the second refrigerant temperature sensor 64b is a temperature detection unit used for controlling the cooling mode or the like. Therefore, the temperature of the refrigerant flowing into the accumulator 24 can be detected without adding a new temperature detector.
  • the reference temperature KT is determined to increase as the outside air temperature Tam rises. According to this, even when the outside air temperature Tam is relatively high, the temperature of the refrigerant in the accumulator 24 can be sufficiently raised so that the refrigerant in the cycle can be reliably recovered.
  • the second refrigerant temperature sensor 64b is arranged on the refrigerant outlet side of the outdoor heat exchanger 20. Therefore, as shown in FIG. 5, the second refrigerant temperature T2 tends to be higher than the actual temperature of the refrigerant in the accumulator 24. Therefore, when the outside air temperature Tam rises, there is a possibility that the termination process may be performed based on the second refrigerant temperature T2 even if the actual temperature of the refrigerant in the accumulator 24 has not risen sufficiently.
  • the reference temperature KT is determined to increase as the outside air temperature Tam rises. Therefore, even when the outside air temperature Tam is relatively high, the temperature of the refrigerant in the accumulator 24 can be sufficiently raised so that the refrigerant in the cycle can be reliably recovered.
  • the operation of the compressor 11 is controlled so that the temperature of the high pressure refrigerant discharged from the compressor 11 becomes higher than the reference temperature KT. According to this, the temperature of the refrigerant in the accumulator 24 can be raised to be equal to or higher than the reference temperature KT.
  • the first refrigerant temperature T1 detected by the first refrigerant temperature sensor 64a is adopted as the temperature of the high-pressure refrigerant boosted by the compressor 11.
  • the first refrigerant temperature sensor 64a is a temperature detection unit used for controlling the heating mode and the like. Therefore, the temperature of the high-pressure refrigerant boosted by the compressor 11 can be detected without adding a new temperature detector.
  • the refrigeration cycle apparatus 10 of the present embodiment is provided with the service tool 71 as a request unit, it is possible to execute the refrigerant recovery preparation control as needed.
  • the cycle configuration of the refrigeration cycle apparatus is not limited to the one disclosed in the above embodiment. If the refrigeration cycle apparatus includes at least the low-pressure side liquid storage unit and is configured to execute the refrigerant recovery preparation control, the recovery of the refrigerant can be promptly completed without deteriorating the workability. Therefore, it is not essential that the refrigerant circuit can be switched to perform air conditioning.
  • the heating unit is not limited to this.
  • a high temperature side heat medium circulation circuit for circulating the high temperature side heat medium may be adopted in which a high temperature side water pump, a water-refrigerant heat exchanger, a heater core, and the like are arranged.
  • the high temperature side water pump is a pump that pumps the high temperature side heat medium to the water passage of the water-refrigerant heat exchanger.
  • the water-refrigerant heat exchanger is a heat exchanger for exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature side heat medium pumped from the high-temperature side water pump.
  • the heater core is a heating heat exchanger for exchanging heat between the high temperature side heat medium heated by the water-refrigerant heat exchanger and the blown air.
  • the heater core is arranged in the air passage of the indoor air conditioning unit 30 in the same manner as the indoor condenser 12. According to this, in the heating mode or the like, the heater core can indirectly heat the blown air through the high-temperature side heat medium using the high-pressure refrigerant as the heat source. Further, cooling water for the internal combustion engine may be mixed in the high temperature side heat medium circuit. According to this, the blast air can be heated by utilizing the exhaust heat of the internal combustion engine.
  • refrigerant recovery preparation control may be performed in which the heat of the high temperature side heat medium is used as a heat source to raise the temperature of the refrigerant in the accumulator 24.
  • the air conditioning control device 60 fully opens the heating expansion valve 14a and fully closes the cooling expansion valve 14b. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d. Further, the air conditioning control device 60 operates the compressor 11 so as to exert a predetermined discharge capacity.
  • the heating expansion valve 14a since the heating expansion valve 14a is fully opened, the refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger with almost no increase in temperature.
  • the refrigerant flowing into the water-refrigerant heat exchanger is heated by exchanging heat with the high temperature side heat medium heated by the exhaust heat of the internal combustion engine.
  • the refrigerant flowing out of the water-refrigerant heat exchanger flows into the accumulator 24. Thereby, the temperature of the refrigerant in the accumulator 24 can be raised.
  • the refrigeration cycle apparatus 10 described in the above embodiment may be added with a configuration for cooling a cooling target device (for example, a battery) that generates heat during operation.
  • a cooling target device for example, a battery
  • the cooling expansion valve and the chiller are connected in parallel to the cooling expansion valve 14b, the indoor evaporator 23, and the evaporation pressure adjusting valve 26. Further, a low temperature side water pump, a chiller, a cooling heat exchanger, etc. are arranged in a low temperature side heat medium circulation circuit for circulating the low temperature side heat medium.
  • the low temperature side water pump is a pump that pumps the low temperature side heat medium to the water passage of the chiller.
  • the chiller is a heat exchanger for exchanging heat between the refrigerant flowing out from the cooling expansion valve and the low temperature side heat medium pumped from the low temperature side water pump.
  • the basic configuration of the cooling expansion valve is the same as that of the cooling expansion valve 14b.
  • the heat exchanger for cooling is integrated with a device to be cooled or the like to exchange heat between the device to be cooled and the low temperature side heat medium.
  • the cooling target device can be cooled.
  • refrigerant recovery preparation control may be performed in which the temperature of the refrigerant in the accumulator 24 is raised by using the heat of the low temperature side heat medium as a heat source.
  • the air conditioning control device 60 fully opens the heating expansion valve 14a, fully closes the cooling expansion valve 14b, and fully opens the cooling expansion valve. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d. Further, the air conditioning control device 60 operates the compressor 11 so as to exert a predetermined discharge capacity.
  • the refrigerant is circulated through the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the gas-liquid separator 16, the outdoor heat exchanger 20, the cooling expansion valve, the chiller, the accumulator 24, and the compressor 11 in this order.
  • a refrigerant circuit is configured to allow it.
  • Each component of the refrigeration cycle apparatus is not limited to the one disclosed in the above embodiment.
  • the compressor 11 in which two compression mechanisms are housed in one housing is adopted, but various types can be adopted as long as they are two-stage booster type compressors.
  • the intermediate pressure refrigerant that has flowed in from the intermediate pressure port 11b can be combined with the refrigerant in the compression process from low pressure to high pressure
  • one fixed displacement type compression mechanism and an electric motor that rotationally drives the compression mechanism can be installed in the housing. It may be an electric compressor housed inside.
  • one low-stage compressor 11 may be configured by connecting the low-stage compressor and the high-stage compressor in series.
  • the suction port of the low-stage compressor arranged on the low-stage side is the suction port 11a
  • the discharge port of the high-stage compressor arranged on the high-stage side is the discharge port 11c.
  • the intermediate pressure port 11b may be provided in the refrigerant passage that connects the discharge port of the low-stage compressor and the suction port of the high-stage compressor.
  • the example in which the second opening / closing valve 15b, the third opening / closing valve 15c, the gas-liquid separator 16 and the fixed throttle 17 are separately configured has been described, but they are surrounded by broken lines in FIGS. 1 and 3.
  • the integrated components may be integrated as an integrated valve.
  • the second on-off valve 15b a differential pressure valve that opens and closes depending on the pressure difference between the refrigerant pressure in the gas-liquid separator 16 and the inlet side refrigerant pressure of 20 may be adopted.
  • Other cycle constituent devices may be integrated as appropriate.
  • the example in which the accumulator 24 is adopted as the liquid storage unit has been described, but a refrigerant heating unit that heats the refrigerant in the accumulator 24 may be further provided.
  • An electric heater or the like can be used as such a refrigerant heating unit.
  • the temperature of the refrigerant in the accumulator 24 may be raised by energizing the refrigerant heating section.
  • the present invention is not limited to this.
  • An accumulator internal temperature detection unit that actually detects the temperature of the refrigerant in the accumulator 24 may be provided, and the refrigerant recovery preparation control may be performed using the detection value of the accumulator internal temperature detection unit.
  • the present invention is not limited to this.
  • a discharge refrigerant temperature detection unit that detects the temperature of the refrigerant immediately after being actually discharged from the compressor 11 may be provided, and the refrigerant recovery preparation control may be performed using the detection value of the discharge refrigerant temperature detection unit. Further, the temperature of the high pressure refrigerant discharged from the compressor 11 may be estimated from the high pressure Pd and used.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a mixed refrigerant obtained by mixing plural kinds of these refrigerants may be adopted.
  • carbon dioxide may be adopted as the refrigerant to configure a supercritical refrigeration cycle in which the pressure of the high-pressure side refrigerant is equal to or higher than the critical pressure of the refrigerant.
  • the request unit is not limited to this.
  • a dedicated switch for requesting execution of the refrigerant recovery preparation control may be provided on the operation panel 70 as the request unit.
  • the execution of the refrigerant recovery preparation control may be requested by a combination of long pressing of existing switches and simultaneous pressing of a plurality of switches.
  • the example in which the refrigeration cycle device 10 is applied to the vehicle air conditioner of the hybrid vehicle has been described, but the application of the refrigeration cycle device 10 is not limited to this.
  • the invention may be applied to a vehicle air conditioner for an ordinary vehicle that obtains a driving force for vehicle traveling from an engine or an electric vehicle for an electric vehicle that obtains a driving force for vehicle traveling from an electric motor for traveling. Further, it may be applied to a stationary air conditioner, a cold storage cabinet, a water heater, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A refrigeration cycle device (10) that rapidly completes recovery of a refrigerant from the inside of the cycle without leading to a deterioration of the workability includes a liquid storage part (24) and a compressor (11). The liquid storage part (24) stores a liquid-phase refrigerant obtained by separating gas and liquid in a refrigerant. The compressor (11) compresses and discharges a gas-phase refrigerant obtained through the separation in the liquid storage part (24). The refrigeration cycle device (10) performs refrigerant recovery preparation control in which the temperature of the refrigerant inside the liquid storage part (24) is made to rise in order to recover the refrigerant from the inside of the cycle.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年11月8日に出願された日本特許出願2018-210306号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-210306 filed on Nov. 8, 2018, and the content of the description is incorporated herein.
 本開示は、貯液部を備える冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device including a liquid storage unit.
 従来、特許文献1に、サイクル内の冷媒を回収するための冷媒回収容器を備える冷凍サイクル装置が開示されている。これにより、特許文献1の冷凍サイクル装置では、サイクルの外部への冷媒の漏洩を最小限に抑えようとしている。また、特許文献1の冷媒回収容器は、レシーバの冷媒流れ下流側に接続されている。レシーバは、凝縮器から流出した高圧側の液相冷媒をサイクル内の余剰冷媒として貯える高圧側の貯液部である。 Conventionally, Patent Document 1 discloses a refrigeration cycle apparatus including a refrigerant recovery container for recovering a refrigerant in a cycle. As a result, the refrigeration cycle apparatus of Patent Document 1 attempts to minimize the leakage of the refrigerant to the outside of the cycle. Further, the refrigerant recovery container of Patent Document 1 is connected to the receiver on the downstream side of the refrigerant flow. The receiver is a high-pressure-side liquid storage unit that stores the high-pressure-side liquid-phase refrigerant that has flowed out of the condenser as excess refrigerant in the cycle.
特開2006-153294号公報JP, 2006-153294, A
 ところで、冷凍サイクル装置には、貯液部としてアキュムレータを備えるものが知られている。アキュムレータは、蒸発器から流出した低圧側の液相冷媒をサイクル内の余剰冷媒として貯える低圧側の貯液部である。アキュムレータを備える冷凍サイクル装置では、一般的に、冷媒を回収する際に、アキュムレータ内の液相冷媒を気化させて冷媒回収装置に吸入させて回収する。 By the way, it is known that a refrigeration cycle device is equipped with an accumulator as a liquid storage unit. The accumulator is a low-pressure-side liquid storage unit that stores the low-pressure-side liquid-phase refrigerant that has flowed out of the evaporator as excess refrigerant in the cycle. In a refrigeration cycle apparatus including an accumulator, generally, when recovering a refrigerant, the liquid-phase refrigerant in the accumulator is vaporized and sucked into a refrigerant recovery device to be recovered.
 ところが、アキュムレータ内の液相冷媒を気化させると、その気化潜熱によってアキュムレータ内の冷媒の温度および圧力が低下してしまう。このため、回収作業を継続すると、アキュムレータ内の液相冷媒が気化しにくくなり、回収効率が低下してしまう。 However, when the liquid-phase refrigerant in the accumulator is vaporized, the latent heat of vaporization lowers the temperature and pressure of the refrigerant in the accumulator. Therefore, if the recovery work is continued, the liquid-phase refrigerant in the accumulator is less likely to be vaporized, and the recovery efficiency is reduced.
 これに対して、外部からアキュムレータを加熱しながら冷媒を回収する手段が考えられる。しかしながら、外部からアキュムレータを加熱しながら回収作業を行うことは作業性の悪化を招く。また、アキュムレータ内の冷媒の温度が低下した場合は回収作業を中断し、冷媒の温度が常温程度まで上昇するのを待って、回収作業を再開する手段が考えられる。しかしながら、このような手段では回収作業が長時間化してしまう。 On the other hand, a means to collect the refrigerant while heating the accumulator from the outside can be considered. However, performing the recovery work while heating the accumulator from the outside leads to deterioration in workability. Further, it is conceivable to suspend the recovery operation when the temperature of the refrigerant in the accumulator drops, wait for the temperature of the refrigerant to rise to about room temperature, and restart the recovery operation. However, with such means, the recovery work will take a long time.
 本開示は、上記点に鑑み、作業性の悪化を招くことなく速やかに冷媒の回収を完了可能な貯液部を備える冷凍サイクル装置を提供することを目的とする。 In view of the above points, the present disclosure has an object to provide a refrigeration cycle apparatus including a liquid storage unit capable of promptly completing recovery of a refrigerant without deteriorating workability.
 本開示の一態様の冷凍サイクル装置は、貯液部と、圧縮機と、を備える。貯液部は、冷媒の気液を分離して分離された液相冷媒を貯える。圧縮機は、貯液部にて分離された気相冷媒を圧縮して吐出する。さらに、サイクル内から冷媒を回収するために貯液部内の冷媒の温度を上昇させる冷媒回収準備制御を実行する冷凍サイクル装置である。 A refrigeration cycle device according to one aspect of the present disclosure includes a liquid storage unit and a compressor. The liquid storage section stores the liquid-phase refrigerant separated by separating the gas-liquid refrigerant. The compressor compresses and discharges the gas-phase refrigerant separated in the liquid storage section. Further, the refrigeration cycle apparatus executes a refrigerant recovery preparation control for raising the temperature of the refrigerant in the liquid storage section in order to recover the refrigerant from the cycle.
 これによれば、冷媒回収準備制御を実行可能に構成されているので、冷媒を回収する際に貯液部内の液相冷媒を加熱して気化させることができる。従って、回収作業時に外部から貯液部を加熱する必要が無い。すなわち、作業性の悪化を招くことなく速やかに冷媒の回収を完了可能な貯液部を備える冷凍サイクル装置を提供することができる。 According to this, since the refrigerant recovery preparation control can be executed, it is possible to heat and vaporize the liquid phase refrigerant in the liquid reservoir when recovering the refrigerant. Therefore, it is not necessary to heat the liquid storage portion from the outside during the recovery work. That is, it is possible to provide a refrigeration cycle apparatus including a liquid storage unit capable of completing recovery of a refrigerant promptly without deteriorating workability.
一実施形態の車両用空調装置の全体構成図である。It is the whole air-conditioner lineblock diagram for one embodiment. 一実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner of one embodiment. 一実施形態の冷媒回収装置が接続された車両用空調装置の全体構成図である。It is the whole air-conditioner lineblock diagram for vehicles to which the refrigerant recovery device of one embodiment was connected. 一実施形態の冷媒回収準備制御の制御処理を示すフローチャートである。It is a flow chart which shows control processing of refrigerant recovery preparation control of one embodiment. 一実施形態の冷媒回収準備制御時のアキュムレータ内の冷媒の温度変化等を示すグラフである。It is a graph which shows the temperature change etc. of the refrigerant in an accumulator at the time of refrigerant recovery preparation control of one embodiment.
 図1~図5を用いて、本開示に係る冷凍サイクル装置10の一実施形態を説明する。本実施形態では、冷凍サイクル装置10を、ハイブリッド車両に搭載される車両用空調装置1に適用している。ハイブリッド車両は、内燃機関(すなわち、エンジン)および走行用電動モータから車両走行用の駆動力を得る車両である。車両用空調装置1は、図1の全体構成図に示すように、冷凍サイクル装置10、室内空調ユニット30等を備えている。 An embodiment of the refrigeration cycle apparatus 10 according to the present disclosure will be described with reference to FIGS. 1 to 5. In the present embodiment, the refrigeration cycle device 10 is applied to the vehicle air conditioner 1 mounted on a hybrid vehicle. A hybrid vehicle is a vehicle that obtains a driving force for vehicle traveling from an internal combustion engine (that is, an engine) and an electric motor for traveling. The vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, and the like, as shown in the overall configuration diagram of FIG. 1.
 冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内の空調を行うために、車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。従って、冷凍サイクル装置10の温度調整対象流体は、送風空気である。さらに、冷凍サイクル装置10は、冷房モードの冷媒回路、直列除湿暖房モードの冷媒回路、並列除湿暖房モードの冷媒回路、および暖房モードの冷媒回路を切り替え可能に構成されている。 The refrigeration cycle device 10 has a function of cooling or heating the air blown into the vehicle interior in order to air-condition the vehicle interior, which is the space to be air-conditioned, in the vehicle air conditioner 1. Therefore, the temperature control target fluid of the refrigeration cycle apparatus 10 is blown air. Further, the refrigeration cycle device 10 is configured to be able to switch between a cooling mode refrigerant circuit, a series dehumidifying heating mode refrigerant circuit, a parallel dehumidifying heating mode refrigerant circuit, and a heating mode refrigerant circuit.
 車両用空調装置1において、冷房モードは、送風空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。直列除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。並列除湿暖房モードは、冷却されて除湿された送風空気を直列除湿暖房モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。暖房モードは、送風空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 In the vehicle air conditioner 1, the cooling mode is an operation mode in which the air in the vehicle interior is cooled by cooling the blown air and blowing it out into the vehicle interior. The in-series dehumidification heating mode is an operation mode in which dehumidification heating of the vehicle interior is performed by reheating the blown air that has been cooled and dehumidified and blowing it out into the vehicle interior. The parallel dehumidification heating mode is an operation mode in which dehumidified heating of the vehicle interior is performed by reheating the cooled and dehumidified blast air with a heating capacity higher than that of the series dehumidification heating mode and blowing the air into the vehicle interior. The heating mode is an operation mode in which the blast air is heated and blown into the vehicle interior to heat the vehicle interior.
 また、冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクル装置10は、圧縮機11から吐出された高圧冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 In addition, the refrigeration cycle device 10 employs an HFO-based refrigerant (specifically, R1234yf) as a refrigerant. The refrigeration cycle apparatus 10 constitutes a vapor compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、内燃機関や走行用電動モータ等が収容される駆動装置室内に配置されている。駆動装置室は、車室の前方側に配置されている。 Among the components of the refrigeration cycle device 10, the compressor 11 sucks the refrigerant in the refrigeration cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in a drive device chamber that houses an internal combustion engine, a traveling electric motor, and the like. The drive device compartment is arranged on the front side of the vehicle compartment.
 圧縮機11は、その外殻を形成するハウジングの内部に、低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および双方の圧縮機構を回転駆動する電動モータを収容して構成されたものである。つまり、圧縮機11は、二段昇圧式の電動圧縮機である。圧縮機11は、後述する空調制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is configured such that a housing forming an outer shell thereof accommodates two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and an electric motor that rotationally drives both compression mechanisms. It was done. That is, the compressor 11 is a two-stage booster type electric compressor. The number of rotations (that is, refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the air conditioning control device 60 described later.
 圧縮機11のハウジングには、吸入ポート11a、中間圧ポート11b、及び吐出ポート11cが設けられている。吸入ポート11aは、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入口である。吐出ポート11cは、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出口である。 The compressor 11 housing is provided with an intake port 11a, an intermediate pressure port 11b, and a discharge port 11c. The suction port 11a is a suction port for sucking low-pressure refrigerant from the outside of the housing to the low-stage compression mechanism. The discharge port 11c is a discharge port that discharges the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing.
 中間圧ポート11bは、ハウジングの外部から内部へ中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させるための中間圧吸入口である。中間圧ポート11bは、ハウジングの内部で低段側圧縮機構の吐出口側及び高段側圧縮機構の吸入口側に接続されている。 The intermediate pressure port 11b is an intermediate pressure suction port for allowing the intermediate pressure refrigerant to flow from the outside to the inside of the housing and join the refrigerant in the compression process from low pressure to high pressure. The intermediate pressure port 11b is connected to the discharge port side of the low-stage compression mechanism and the suction port side of the high-stage compression mechanism inside the housing.
 圧縮機11の吐出ポート11cには、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、室内空調ユニット30の空調ケース31内に配置されている。室内凝縮器12は、圧縮機11の高段側圧縮機構から吐出された高圧冷媒と、後述する室内蒸発器23を通過した送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。換言すると、室内凝縮器12は、圧縮機11から吐出された高圧冷媒を熱源として送風空気を加熱する加熱部である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11c of the compressor 11. The indoor condenser 12 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30. The indoor condenser 12 heat-exchanges the high-pressure refrigerant discharged from the high-stage compression mechanism of the compressor 11 with the blast air that has passed through an indoor evaporator 23, which will be described later, and heats the blast air. It is a vessel. In other words, the indoor condenser 12 is a heating unit that heats the blown air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
 室内凝縮器12の冷媒出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The refrigerant outlet of the indoor condenser 12 is connected to the inlet side of a first three-way joint 13a having three inlets and outlets communicating with each other. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 さらに、冷凍サイクル装置10は、後述するように、第2三方継手13b~第4三方継手13dを備えている。これらの第2三方継手13b~第4三方継手13dの基本的構成は、第1三方継手13aと同様である。 Further, the refrigeration cycle device 10 includes second to fourth three-way joints 13b to 13d, as will be described later. The second three-way joint 13b to the fourth three-way joint 13d have the same basic configuration as the first three-way joint 13a.
 第1三方継手13a~第4三方継手13dは、3つの流入出口のうち1つが流入口として用いられ、2つが流出口として用いられた際には、冷媒の流れを分岐する分岐部となる。また、3つの流入出口のうち2つが流入口として用いられ、1つが流出口として用いられた際には、冷媒の流れを合流させる合流部となる。 The first three-way joint 13a to the fourth three-way joint 13d serve as branch portions that branch the flow of the refrigerant when one of the three inflow and outflow ports is used as the inflow port and two are used as the outflow ports. Further, when two of the three inflow / outflow ports are used as the inflow port and one is used as the outflow port, it becomes a merging portion for merging the flows of the refrigerant.
 室内凝縮器12の冷媒出口と第1三方継手13aの流入口とを接続する冷媒配管には、高圧側チャージングポート27aが設けられている。チャージングポートは、サイクル内の真空引き、サイクル内への冷媒の充填、サイクル内からの冷媒の回収等を行う際に使用される冷媒出入口である。さらに、冷凍サイクル装置10には、後述するように、低圧側チャージングポート27bが設けられている。 A high-pressure side charging port 27a is provided in the refrigerant pipe connecting the refrigerant outlet of the indoor condenser 12 and the inlet of the first three-way joint 13a. The charging port is a refrigerant inlet / outlet used when performing vacuuming in the cycle, charging the refrigerant into the cycle, recovering the refrigerant from the cycle, and the like. Further, the refrigeration cycle apparatus 10 is provided with a low pressure side charging port 27b as described later.
 第1三方継手13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。第1三方継手13aの他方の流出口には、第1冷媒通路18aが接続されている。第1冷媒通路18aは、第1三方継手13aの他方の流出口と第2三方継手13bの一方の流入口とを接続する冷媒通路である。 The inlet side of the heating expansion valve 14a is connected to one outlet of the first three-way joint 13a. The first refrigerant passage 18a is connected to the other outlet of the first three-way joint 13a. The first refrigerant passage 18a is a refrigerant passage that connects the other outlet of the first three-way joint 13a and one inlet of the second three-way joint 13b.
 第1冷媒通路18aには、第1開閉弁15aが配置されている。第1開閉弁15aは、第1冷媒通路18aを開閉する電磁弁である。第1開閉弁15aは、空調制御装置60から出力される制御電圧によって、その作動が制御される。 A first opening / closing valve 15a is arranged in the first refrigerant passage 18a. The first opening / closing valve 15a is an electromagnetic valve that opens / closes the first refrigerant passage 18a. The operation of the first opening / closing valve 15a is controlled by the control voltage output from the air conditioning controller 60.
 さらに、冷凍サイクル装置10は、後述するように、第2開閉弁15b~第4開閉弁15dを備えている。第2開閉弁15b~第4開閉弁15dの基本的構成は、第1開閉弁15aと同様である。第1開閉弁15a~第4開閉弁15dは、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。従って、第1開閉弁15a~第4開閉弁15dは、サイクルの冷媒回路を切り替える冷媒回路切替部である。 Further, the refrigeration cycle device 10 is provided with the second opening / closing valve 15b to the fourth opening / closing valve 15d as described later. The basic configuration of the second opening / closing valve 15b to the fourth opening / closing valve 15d is the same as that of the first opening / closing valve 15a. The first opening / closing valve 15a to the fourth opening / closing valve 15d can switch the refrigerant circuit in each operation mode by opening / closing the refrigerant passage. Therefore, the first opening / closing valve 15a to the fourth opening / closing valve 15d are refrigerant circuit switching units that switch the refrigerant circuits of the cycle.
 暖房用膨張弁14aは、暖房モード時等に、室内凝縮器12から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する減圧部である。暖房用膨張弁14aは、絞り開度を変更可能に構成された弁体、および弁体を変位させる電動アクチュエータを有して構成される電気式の可変絞り機構である。暖房用膨張弁14aは、空調制御装置60から出力される制御信号(制御パルス)によって、その作動が制御される。 The heating expansion valve 14a is a decompression unit that decompresses the high-pressure refrigerant that has flowed out of the indoor condenser 12 and adjusts the flow rate of the refrigerant that flows out to the downstream side in the heating mode or the like. The heating expansion valve 14a is an electric variable throttle mechanism including a valve body whose throttle opening can be changed, and an electric actuator which displaces the valve body. The operation of the heating expansion valve 14a is controlled by a control signal (control pulse) output from the air conditioning controller 60.
 さらに、冷凍サイクル装置10は、後述するように、冷房用膨張弁14bを備えている。冷房用膨張弁14bの基本的構成は、暖房用膨張弁14aと同様である。暖房用膨張弁14aおよび冷房用膨張弁14bは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 Further, the refrigeration cycle device 10 is equipped with a cooling expansion valve 14b as described later. The basic configuration of the cooling expansion valve 14b is the same as that of the heating expansion valve 14a. The expansion valve 14a for heating and the expansion valve 14b for cooling have a fully open function that functions as a simple refrigerant passage with almost no flow rate adjusting action and refrigerant depressurizing action by fully opening the valve opening amount, and the valve opening amount. It has a fully closed function of closing the refrigerant passage by closing it.
 そして、全開機能および全閉機能によって、暖房用膨張弁14aおよび冷房用膨張弁14bは、各運転モードの冷媒回路を切り替えることができる。従って、暖房用膨張弁14aおよび冷房用膨張弁14bは、冷媒回路切替部としての機能も兼ね備えている。 By the fully open function and the fully closed function, the heating expansion valve 14a and the cooling expansion valve 14b can switch the refrigerant circuit in each operation mode. Therefore, the heating expansion valve 14a and the cooling expansion valve 14b also have a function as a refrigerant circuit switching unit.
 暖房用膨張弁14aの出口には、気液分離器16の入口側が接続されている。気液分離器16は、暖房用膨張弁14aから流出した冷媒の気液を分離する気液分離部である。本実施形態では、気液分離器16として、円筒状の本体部の内部空間へ流入した冷媒を旋回させることで生じる遠心力の作用で冷媒の気液を分離する遠心分離方式(いわゆる、サイクロンセパレータ方式)のものが採用されている。 The inlet side of the gas-liquid separator 16 is connected to the outlet of the heating expansion valve 14a. The gas-liquid separator 16 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant flowing out from the heating expansion valve 14a. In the present embodiment, the gas-liquid separator 16 is a centrifugal separation system (so-called cyclone separator) that separates the gas-liquid of the refrigerant by the action of the centrifugal force generated by swirling the refrigerant that has flowed into the internal space of the cylindrical main body. Method) has been adopted.
 さらに、本実施形態では、気液分離器16として、比較的内容積の小さいものが採用されている。より具体的には、気液分離器16の内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を貯めることのできない程度の容積になっている。従って、気液分離器16は、分離した液相冷媒をサイクル内の余剰冷媒として貯える貯液部としての機能を果たすものではない。 Further, in the present embodiment, a gas-liquid separator 16 having a relatively small internal volume is adopted. More specifically, the internal volume of the gas-liquid separator 16 is set to a volume that is substantially incapable of storing excess refrigerant even if the load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates. Is becoming Therefore, the gas-liquid separator 16 does not function as a liquid storage unit that stores the separated liquid-phase refrigerant as excess refrigerant in the cycle.
 気液分離器16の気相冷媒出口には、第2冷媒通路18bが接続されている。第2冷媒通路18bは、気液分離器16から流出した気相冷媒を圧縮機11の中間圧ポート11bへ導く冷媒通路である。第2冷媒通路18bには、第2冷媒通路18bを開閉する第2開閉弁15bが配置されている。 A second refrigerant passage 18b is connected to the gas-phase refrigerant outlet of the gas-liquid separator 16. The second refrigerant passage 18b is a refrigerant passage that guides the gas-phase refrigerant flowing out of the gas-liquid separator 16 to the intermediate pressure port 11b of the compressor 11. A second opening / closing valve 15b that opens and closes the second refrigerant passage 18b is arranged in the second refrigerant passage 18b.
 気液分離器16の液相冷媒出口には、固定絞り17の入口側が接続されている。固定絞り17は、気液分離器16から流出した液相冷媒を低圧冷媒となるまで減圧させるものである。固定絞り17としては、絞り開度が固定されたノズル、オリフィス、キャピラリチューブ等を採用することができる。固定絞り17の出口側には、室外熱交換器20の冷媒入口側が接続されている。 The inlet side of the fixed throttle 17 is connected to the liquid-phase refrigerant outlet of the gas-liquid separator 16. The fixed throttle 17 reduces the pressure of the liquid-phase refrigerant flowing out from the gas-liquid separator 16 until it becomes a low-pressure refrigerant. As the fixed throttle 17, a nozzle, an orifice, a capillary tube or the like having a fixed aperture can be used. The refrigerant inlet side of the outdoor heat exchanger 20 is connected to the outlet side of the fixed throttle 17.
 さらに、気液分離器16の液相冷媒出口には、第3冷媒通路18cが接続されている。第3冷媒通路18cは、気液分離器16から流出した液相冷媒を、固定絞り17を迂回させて室外熱交換器20の冷媒入口側へ導く冷媒通路である。第3冷媒通路18cには、第3冷媒通路18cを開閉する第3開閉弁15cが配置されている。 Further, a third refrigerant passage 18c is connected to the liquid-phase refrigerant outlet of the gas-liquid separator 16. The third refrigerant passage 18c is a refrigerant passage that guides the liquid-phase refrigerant flowing out of the gas-liquid separator 16 to the refrigerant inlet side of the outdoor heat exchanger 20, bypassing the fixed throttle 17. A third opening / closing valve 15c for opening / closing the third refrigerant passage 18c is arranged in the third refrigerant passage 18c.
 ここで、冷媒が第3開閉弁15cを通過する際に生じる圧力損失は、冷媒が固定絞り17を通過する際に生じる圧力損失に対して極めて小さい。従って、第3開閉弁15cが開いた際には、気液分離器16から流出した殆どの液相冷媒は、固定絞り17を通過することなく、第3冷媒通路18cを介して室外熱交換器20へ流入する。 Here, the pressure loss that occurs when the refrigerant passes through the third opening / closing valve 15c is extremely smaller than the pressure loss that occurs when the refrigerant passes through the fixed throttle 17. Therefore, when the third on-off valve 15c is opened, most of the liquid-phase refrigerant flowing out from the gas-liquid separator 16 does not pass through the fixed throttle 17, but passes through the third refrigerant passage 18c and the outdoor heat exchanger. Flow into 20.
 室外熱交換器20は、暖房用膨張弁14aから流出した冷媒と外気ファン20aから送風された外気とを熱交換させる熱交換器である。室外熱交換器20は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器20に走行風を当てることができる。 The outdoor heat exchanger 20 is a heat exchanger for exchanging heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown from the outside air fan 20a. The outdoor heat exchanger 20 is arranged on the front side inside the drive device chamber. Therefore, traveling wind can be applied to the outdoor heat exchanger 20 when the vehicle is traveling.
 室外熱交換器20は、冷房モード時等に、高圧冷媒を放熱させる放熱器として機能する。また、暖房モード時等には、暖房用膨張弁14aにて減圧された低圧冷媒を蒸発させる蒸発器として機能する。外気ファン20aは、空調制御装置60から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動送風機である。 The outdoor heat exchanger 20 functions as a radiator that dissipates the high pressure refrigerant in the cooling mode or the like. Further, in the heating mode or the like, it functions as an evaporator that evaporates the low-pressure refrigerant whose pressure is reduced by the heating expansion valve 14a. The outside air fan 20a is an electric blower whose rotation speed (that is, blowing capacity) is controlled by a control voltage output from the air conditioning control device 60.
 室外熱交換器20の冷媒出口には、第3三方継手13cの流入口側が接続されている。第3三方継手13cの一方の流出口には、第2三方継手13bの他方の流入口側が接続されている。第3三方継手13cの他方の流出口には、第4冷媒通路18dが接続されている。第4冷媒通路18dは、第3三方継手13cの一方の流出口と第4三方継手13dの一方の流入口とを接続する冷媒通路である。第4冷媒通路18dには、第4冷媒通路18dを開閉する第4開閉弁15dが配置されている。 The inlet of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 20. The other inflow port side of the second three-way joint 13b is connected to one outflow port of the third three-way joint 13c. The fourth refrigerant passage 18d is connected to the other outlet of the third three-way joint 13c. The fourth refrigerant passage 18d is a refrigerant passage that connects one outlet of the third three-way joint 13c and one inlet of the fourth three-way joint 13d. A fourth opening / closing valve 15d for opening / closing the fourth refrigerant passage 18d is arranged in the fourth refrigerant passage 18d.
 また、第3三方継手13cの一方の流出口と第2三方継手13bの他方の流入口とを接続する冷媒通路には、逆止弁21が配置されている。逆止弁21は、第3三方継手13c側(すなわち、室外熱交換器20の冷媒出口側)から第2三方継手13b側(すなわち、冷房用膨張弁14bの入口側)へ冷媒が流れることを許容する。逆止弁21は、第2三方継手13b側から第3三方継手13c側へ冷媒が流れることを禁止する。 A check valve 21 is arranged in the refrigerant passage that connects one of the outlets of the third three-way joint 13c and the other inlet of the second three-way joint 13b. The check valve 21 prevents the refrigerant from flowing from the third three-way joint 13c side (that is, the refrigerant outlet side of the outdoor heat exchanger 20) to the second three-way joint 13b side (that is, the inlet side of the cooling expansion valve 14b). Tolerate. The check valve 21 prohibits the refrigerant from flowing from the second three-way joint 13b side to the third three-way joint 13c side.
 第2三方継手13bの流出口には、冷房用膨張弁14bの入口側が接続されている。冷房用膨張弁14bは、冷房モード時等に、室外熱交換器20から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する。 The inlet side of the cooling expansion valve 14b is connected to the outlet of the second three-way joint 13b. The cooling expansion valve 14b depressurizes the refrigerant flowing out of the outdoor heat exchanger 20 and adjusts the flow rate of the refrigerant flowing downstream in the cooling mode or the like.
 冷房用膨張弁14bの出口には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、後述する室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器23は、冷房用膨張弁14bにて減圧された低圧冷媒と室内送風機32から送風された送風空気とを熱交換させ、低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する冷却用熱交換器である。 The refrigerant inlet side of the indoor evaporator 23 is connected to the outlet of the cooling expansion valve 14b. The indoor evaporator 23 is arranged in an air conditioning case 31 of an indoor air conditioning unit 30 described later. The indoor evaporator 23 heat-exchanges the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the blast air blown from the indoor blower 32, evaporates the low-pressure refrigerant, and exerts an endothermic action to blow the blast air. It is a cooling heat exchanger for cooling.
 室内蒸発器23の冷媒出口には、蒸発圧力調整弁26の入口側が接続されている。蒸発圧力調整弁26は、その上流側の冷媒圧力を予め定めた基準圧力以上に維持する機能を果たす。換言すると、蒸発圧力調整弁26は、室内蒸発器23における冷媒蒸発圧力を、基準圧力以上に維持する機能を果たす。 The inlet of the evaporation pressure adjusting valve 26 is connected to the refrigerant outlet of the indoor evaporator 23. The evaporation pressure adjusting valve 26 has a function of maintaining the refrigerant pressure on the upstream side thereof at a predetermined reference pressure or higher. In other words, the evaporation pressure adjusting valve 26 has a function of maintaining the refrigerant evaporation pressure in the indoor evaporator 23 at the reference pressure or higher.
 蒸発圧力調整弁26は、室内蒸発器23の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。さらに、本実施形態の蒸発圧力調整弁26は、室内蒸発器23における冷媒蒸発温度を、室内蒸発器23の着霜を抑制可能な着霜抑制温度(本実施形態では、1℃)以上に維持している。 The evaporation pressure adjusting valve 26 is composed of a mechanical variable throttle mechanism that increases the valve opening degree as the pressure of the refrigerant on the outlet side of the indoor evaporator 23 increases. Further, the evaporation pressure adjusting valve 26 of the present embodiment maintains the refrigerant evaporation temperature in the indoor evaporator 23 at or above the frost suppression temperature (1 ° C. in the present embodiment) capable of suppressing frost formation in the indoor evaporator 23. is doing.
 室内蒸発器23の冷媒出口と蒸発圧力調整弁26の入口とを接続する冷媒配管には、低圧側チャージングポート27bが設けられている。 A low-pressure side charging port 27b is provided in the refrigerant pipe that connects the refrigerant outlet of the indoor evaporator 23 and the inlet of the evaporation pressure adjusting valve 26.
 蒸発圧力調整弁26の出口には、第4三方継手13dの他方の流入口側が接続されている。第4三方継手13dの流出口には、アキュムレータ24の入口側が接続されている。従って、前述した第4冷媒通路18dは、室外熱交換器20から流出した冷媒を、冷房用膨張弁14b、室内蒸発器23および蒸発圧力調整弁26を迂回させてアキュムレータ24の入口側へ導く冷媒通路となる。 The other inlet side of the fourth three-way joint 13d is connected to the outlet of the evaporation pressure adjusting valve 26. The inlet side of the accumulator 24 is connected to the outlet of the fourth three-way joint 13d. Therefore, the above-mentioned fourth refrigerant passage 18d guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24, bypassing the cooling expansion valve 14b, the indoor evaporator 23 and the evaporation pressure adjusting valve 26. It becomes a passage.
 アキュムレータ24は、内部に流入した冷媒の気液を分離して、分離された液相冷媒をサイクル内の余剰冷媒として貯える貯液部である。アキュムレータ24の気相冷媒出口には、圧縮機11の吸入ポート11a側が接続されている。 The accumulator 24 is a liquid storage unit that separates the gas-liquid refrigerant flowing therein and stores the separated liquid-phase refrigerant as excess refrigerant in the cycle. The suction port 11a side of the compressor 11 is connected to the vapor-phase refrigerant outlet of the accumulator 24.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内の空調のために適切な温度に調整された送風空気を車室内の適切な箇所へ吹き出すためのものである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is for blowing out the blown air adjusted to an appropriate temperature for air conditioning in the vehicle interior to an appropriate location in the vehicle interior. The indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the frontmost part of the vehicle compartment.
 室内空調ユニット30は、図1に示すように、送風空気の空気通路を形成する空調ケース31内に、室内送風機32、室内蒸発器23、室内凝縮器12等を収容したものである。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 As shown in FIG. 1, the indoor air conditioning unit 30 includes an indoor air blower 32, an indoor evaporator 23, an indoor condenser 12 and the like housed in an air conditioning case 31 that forms an air passage for blown air. The air-conditioning case 31 is made of a resin (for example, polypropylene) that has elasticity to some extent and is excellent in strength.
 空調ケース31の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。内外気切替装置33の駆動用の電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。 An inside / outside air switching device 33 is arranged on the most upstream side of the blast air flow of the air conditioning case 31. The inside / outside air switching device 33 switches and introduces inside air (air inside the vehicle) and outside air (air outside the vehicle) into the air conditioning case 31. The operation of the electric actuator for driving the inside / outside air switching device 33 is controlled by a control signal output from the air conditioning controller 60.
 内外気切替装置33の送風空気流れ下流側には、室内送風機32が配置されている。室内送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。室内送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機32は、空調制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 An indoor blower 32 is arranged on the downstream side of the blown air flow of the inside / outside air switching device 33. The indoor blower 32 blows the air taken in via the inside / outside air switching device 33 toward the vehicle interior. The indoor blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The number of rotations (that is, the blowing capacity) of the indoor blower 32 is controlled by the control voltage output from the air conditioning controller 60.
 室内送風機32の送風空気流れ下流側には、室内蒸発器23、室内凝縮器12が、送風空気流れに対して、この順に配置されている。つまり、室内蒸発器23は、室内凝縮器12よりも、送風空気流れ上流側に配置されている。 The indoor evaporator 23 and the indoor condenser 12 are arranged in this order with respect to the blast air flow, on the downstream side of the blast air flow of the indoor blower 32. That is, the indoor evaporator 23 is arranged on the upstream side of the blown air flow with respect to the indoor condenser 12.
 空調ケース31内には、室内蒸発器23通過後の送風空気を、室内凝縮器12を迂回させて流す冷風バイパス通路35が設けられている。さらに、空調ケース31内の室内蒸発器23の送風空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、エアミックスドア34が配置されている。 A cool air bypass passage 35 is provided in the air conditioning case 31 to allow the air blown after passing through the indoor evaporator 23 to bypass the indoor condenser 12. Further, an air mix door 34 is arranged in the air conditioning case 31 on the downstream side of the blown air flow of the indoor evaporator 23 and on the upstream side of the blown air flow of the indoor condenser 12.
 エアミックスドア34は、室内蒸発器23通過後の送風空気のうち、室内凝縮器12側の空気通路を通過させる送風空気の風量と冷風バイパス通路35を通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34の駆動用の電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。 The air mix door 34 determines the air volume ratio of the air volume of the blast air passing through the air passage on the side of the indoor condenser 12 and the air volume of the blast air passing through the cold air bypass passage 35 in the air blast after passing through the indoor evaporator 23. It is an air volume ratio adjusting unit. The operation of the electric actuator for driving the air mix door 34 is controlled by a control signal output from the air conditioning controller 60.
 空調ケース31内の室内凝縮器12および冷風バイパス通路35の送風空気流れ下流側には、混合空間36が形成されている。混合空間36は、室内凝縮器12にて加熱された送風空気と冷風バイパス通路35を通過して加熱されていない送風空気とを混合させる空間である。さらに、空調ケース31の送風空気流れ下流部には、混合空間36にて混合されて温度調整された送風空気を、車室内へ吹き出すための開口穴が配置されている。 A mixing space 36 is formed in the air conditioning case 31 on the downstream side of the blower air flow of the indoor condenser 12 and the cold air bypass passage 35. The mixing space 36 is a space for mixing the blast air heated in the indoor condenser 12 and the blast air that has not passed through the cold air bypass passage 35 and is not heated. Further, an opening hole for blowing out the blast air mixed and temperature-adjusted in the mixing space 36 into the vehicle interior is provided at the downstream side of the blast air flow of the air conditioning case 31.
 開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As opening holes, face opening holes, foot opening holes, and defroster opening holes (none are shown) are provided. The face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment. The foot opening hole is an opening hole for blowing out the conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing the conditioned air toward the inner surface of the vehicle front window glass.
 従って、エアミックスドア34が、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間36にて混合される空調風の温度が調整される。そして、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整される。 Therefore, the temperature of the conditioned air mixed in the mixing space 36 is adjusted by the air mix door 34 adjusting the air flow rate of the air flow passing through the indoor condenser 12 and the air flow passing through the cold air bypass passage 35. It Then, the temperature of the blown air (air-conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、フェイスドア、フットドア、およびデフロスタドア(いずれも図示せず)が配置されている。フェイスドア、フットドア、およびデフロスタドアは、運転モードに応じて対応する開口穴を開閉する開閉部である。 Also, a face door, a foot door, and a defroster door (none of which are shown) are arranged on the upstream side of the blow air flow of the face opening hole, the foot opening hole, and the defroster opening hole. The face door, the foot door, and the defroster door are opening / closing portions that open and close corresponding opening holes according to the operation mode.
 これらのドアは、リンク機構等を介して、共通する駆動用の電動アクチュエータに連結されて連動して回転操作される。これらのドアの駆動用の電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。 These doors are connected to a common electric actuator for driving via a link mechanism, etc., so that they can be rotated in conjunction with each other. The operation of the electric actuators for driving these doors is controlled by a control signal output from the air conditioning controller 60.
 次に、本実施形態の電気制御部の概要について説明する。空調制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、14a、14b、15a~15d、20a、32等の作動を制御する。 Next, an outline of the electric control unit of this embodiment will be described. The air-conditioning control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits. Then, various calculations and processing are performed based on the air conditioning control program stored in the ROM, and the operations of the various controlled devices 11, 14a, 14b, 15a to 15d, 20a, 32, etc. connected to the output side are performed. Control.
 また、空調制御装置60の入力側には、図2のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、第1冷媒温度センサ64a、第2冷媒温度センサ64b、蒸発器温度センサ64f、冷媒圧力センサ65、空調風温度センサ69等が接続されている。そして、空調制御装置60には、これらの空調制御用のセンサ群の検出信号が入力される。 On the input side of the air conditioning controller 60, as shown in the block diagram of FIG. 2, an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a first refrigerant temperature sensor 64a, a second refrigerant temperature sensor 64b, The evaporator temperature sensor 64f, the refrigerant pressure sensor 65, the conditioned air temperature sensor 69, etc. are connected. Then, the detection signals of these sensor groups for air conditioning control are input to the air conditioning control device 60.
 内気温センサ61は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Tsを検出する日射量検出部である。 The inside air temperature sensor 61 is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 62 is an outside air temperature detecting unit that detects the outside temperature (outside air temperature) Tam of the vehicle compartment. The solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount Ts with which the vehicle interior is irradiated.
 第1冷媒温度センサ64aは、室内凝縮器12の冷媒通路から流出した高圧冷媒の温度T1(以下、第1冷媒温度T1という。)を検出する第1冷媒温度検出部である。従って、エアミックスドア34が室内凝縮器12側の通風路を全閉としている際の第1冷媒温度T1は、圧縮機11の吐出ポート11cから吐出された直後の高圧冷媒の温度となる。 The first refrigerant temperature sensor 64a is a first refrigerant temperature detection unit that detects the temperature T1 of the high-pressure refrigerant that has flowed out of the refrigerant passage of the indoor condenser 12 (hereinafter referred to as the first refrigerant temperature T1). Therefore, the first refrigerant temperature T1 when the air mix door 34 fully closes the ventilation passage on the side of the indoor condenser 12 is the temperature of the high-pressure refrigerant immediately after being discharged from the discharge port 11c of the compressor 11.
 第2冷媒温度センサ64bは、室外熱交換器20の冷媒出口側に配置されて、室外熱交換器20から流出した冷媒の温度T2(以下、第2冷媒温度T2という。)を検出する第2冷媒温度検出部である。従って、後述する冷媒回収準備制御のように、室外熱交換器20から流出した冷媒を、第4冷媒通路18dを介してアキュムレータ24へ流入させる際の第2冷媒温度T2は、アキュムレータ24へ流入する冷媒の温度となる。 The second refrigerant temperature sensor 64b is arranged on the refrigerant outlet side of the outdoor heat exchanger 20 and detects a temperature T2 of the refrigerant flowing out of the outdoor heat exchanger 20 (hereinafter, referred to as second refrigerant temperature T2). It is a refrigerant temperature detection unit. Therefore, as in the refrigerant recovery preparation control described later, the second refrigerant temperature T2 when the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the fourth refrigerant passage 18d flows into the accumulator 24. It becomes the temperature of the refrigerant.
 蒸発器温度センサ64fは、室内蒸発器23における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64fは、具体的に、室内蒸発器23の熱交換フィンの温度を検出している。 The evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 23. The evaporator temperature sensor 64f of the present embodiment specifically detects the temperature of the heat exchange fins of the indoor evaporator 23.
 冷媒圧力センサ65は、室内凝縮器12から流出した冷媒の高圧圧力Pdを検出する冷媒圧力検出部である。空調風温度センサ69は、混合空間36から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The refrigerant pressure sensor 65 is a refrigerant pressure detection unit that detects the high pressure Pd of the refrigerant flowing out from the indoor condenser 12. The conditioned air temperature sensor 69 is an conditioned air temperature detection unit that detects a blast air temperature TAV that is blown from the mixing space 36 into the passenger compartment.
 また、空調制御装置60の入力側には、図2に示すように、車室内前部の計器盤付近に配置された操作パネル70が接続され、操作パネル70に設けられた各種操作スイッチからの操作信号が入力される。 As shown in FIG. 2, the operation panel 70 arranged near the instrument panel in the front part of the vehicle compartment is connected to the input side of the air conditioning controller 60, and various operation switches provided on the operation panel 70 are operated. An operation signal is input.
 操作パネル70に設けられた各種操作スイッチとしては、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。オートスイッチは、車両用空調装置1の自動制御運転を設定あるいは解除する自動運転設定部である。エアコンスイッチは、室内蒸発器23で送風空気の冷却を行うことを要求する冷却要求部である。風量設定スイッチは、室内送風機32の風量をマニュアル設定する風量設定部である。温度設定スイッチは、車室内の目標温度Tsetを設定する温度設定部である。吹出モード切替スイッチは、吹出モードをマニュアル設定する吹出モード切替設定部である。 As various operation switches provided on the operation panel 70, there are an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, an outlet mode switching switch, and the like. The auto switch is an automatic operation setting unit that sets or cancels automatic control operation of the vehicle air conditioner 1. The air conditioner switch is a cooling request unit that requests the indoor evaporator 23 to cool the blown air. The air volume setting switch is an air volume setting unit for manually setting the air volume of the indoor blower 32. The temperature setting switch is a temperature setting unit that sets a target temperature Tset in the vehicle compartment. The blowout mode changeover switch is a blowout mode changeover setting unit for manually setting the blowout mode.
 また、空調制御装置60には、サービスツール71を接続するコネクタ72が設けられている。サービスツール71は、ユーザがコネクタ72に接続することによって冷凍サイクル装置10に対して冷媒回収準備制御の実行を要求する要求部である。 Further, the air conditioning control device 60 is provided with a connector 72 for connecting a service tool 71. The service tool 71 is a request unit that requests the refrigeration cycle device 10 to execute the refrigerant recovery preparation control by being connected to the connector 72 by the user.
 冷媒回収準備制御は、冷凍サイクル装置10から冷媒を回収する際に実行される制御である。従って、サービスツール71は、車両に常備されている必要はなく、冷媒の回収作業を行う整備工場等に準備されていればよい。また、コネクタ72には、カバー等が施されており、冷媒回収を行わない時には、運転者や同乗者が視認できないように配置されている。 The refrigerant recovery preparation control is a control executed when the refrigerant is recovered from the refrigeration cycle device 10. Therefore, the service tool 71 does not have to be always provided in the vehicle, and may be prepared in a maintenance shop or the like that collects the refrigerant. Further, the connector 72 is provided with a cover or the like so that it is not visible to the driver or passengers when the refrigerant is not collected.
 なお、本実施形態の空調制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。つまり、空調制御装置60のうち、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 Note that the air conditioning control device 60 of the present embodiment is integrally configured with a control unit that controls various control target devices connected to the output side thereof. That is, in the air conditioning control device 60, the configuration (hardware and software) that controls the operation of each control target device constitutes the control unit that controls the operation of each control target device.
 例えば、空調制御装置60のうち、圧縮機11の回転数を制御する構成は、吐出能力制御部60aを構成している。例えば、減圧部である暖房用膨張弁14aの絞り開度を制御する構成は、絞り開度制御部60bを構成している。例えば、第1開閉弁15a~第4開閉弁15dの作動を制御する構成は、回路切替制御部60cを構成している。例えば、外気ファン20aの回転数を制御する構成は、外気送風能力制御部60dを構成している。 For example, in the air conditioning control device 60, the configuration that controls the rotation speed of the compressor 11 configures the discharge capacity control unit 60a. For example, the configuration that controls the throttle opening degree of the heating expansion valve 14a that is the pressure reducing section configures the throttle opening degree control unit 60b. For example, the configuration for controlling the operation of the first on-off valve 15a to the fourth on-off valve 15d constitutes the circuit switching control unit 60c. For example, the configuration for controlling the rotation speed of the outside air fan 20a constitutes the outside air blowing capacity control unit 60d.
 次に、上記構成における本実施形態の作動について説明する。前述の如く、本実施形態の車両用空調装置1では、車室内の冷房、除湿暖房、および暖房を行うことができる。そして、冷凍サイクル装置10は、車室内の空調を行うために、冷房モード、直列除湿暖房モード、並列除湿暖房モード、および暖房モードでの運転を実行することができる。 Next, the operation of this embodiment with the above configuration will be described. As described above, the vehicle air conditioner 1 of this embodiment can perform cooling, dehumidifying and heating, and heating in the vehicle interior. Then, the refrigeration cycle apparatus 10 can execute the operation in the cooling mode, the series dehumidification heating mode, the parallel dehumidification heating mode, and the heating mode in order to perform the air conditioning of the vehicle interior.
 冷凍サイクル装置10の各運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル70のオートスイッチが投入(ON)されて、自動制御運転が設定された際に実行される。 The switching of each operation mode of the refrigeration cycle apparatus 10 is performed by executing the air conditioning control program. The air conditioning control program is executed when the automatic switch of the operation panel 70 is turned on (ON) and the automatic control operation is set.
 空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを算出する。 In the main routine of the air conditioning control program, the detection signals of the above-mentioned air conditioning control sensor group and the operation signals from various air conditioning operation switches are read. Then, based on the read values of the detection signal and the operation signal, the target outlet temperature TAO, which is the target temperature of the outlet air blown into the vehicle interior, is calculated.
 具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内の目標温度(車室内設定温度)、Trは内気温センサ61によって検出された内気温、Tamは外気温センサ62によって検出された外気温、Tsは日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Specifically, the target outlet temperature TAO is calculated by the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C ... (F1)
It should be noted that Tset is a target temperature in the vehicle compartment set by the temperature setting switch (vehicle interior temperature setting), Tr is the inside air temperature detected by the inside air temperature sensor 61, Tam is the outside air temperature detected by the outside air temperature sensor 62, and Ts is Ts. Is the amount of solar radiation detected by the solar radiation sensor 63. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 そして、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、運転モードが冷房モードに切り替えられる。 Then, when the target outlet temperature TAO is lower than the predetermined cooling reference temperature α with the air conditioner switch of the operation panel 70 turned on, the operation mode is switched to the cooling mode.
 また、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、運転モードが直列除湿暖房モードに切り替えられる。 Further, when the air conditioner switch of the operation panel 70 is turned on, the target outlet temperature TAO is equal to or higher than the cooling reference temperature α, and the outside air temperature Tam is higher than the predetermined dehumidifying and heating reference temperature β. In this case, the operation mode is switched to the series dehumidification heating mode.
 また、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、運転モードが並列除湿暖房モードに切り替えられる。 Further, when the target outlet temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is equal to or lower than the dehumidification / heating reference temperature β with the air conditioner switch of the operation panel 70 turned on, The operation mode is switched to the parallel dehumidification heating mode.
 また、エアコンスイッチの冷房スイッチが投入されていない場合には、運転モードが暖房モードに切り替えられる。 Also, if the cooling switch of the air conditioner switch is not turned on, the operation mode is switched to the heating mode.
 このため、冷房モードは、主に夏季のように比較的外気温が高い場合に実行される。直列除湿暖房モードは、主に春季あるいは秋季に実行される。並列除湿暖房モードは、主に早春季あるいは晩秋季のように直列除湿暖房モードよりも高い加熱能力で送風空気を加熱する必要のある場合に実行される。暖房モードは、主に冬季の低外気温時に実行される。以下に各運転モードにおける作動を説明する。 Therefore, the cooling mode is mainly executed when the outside temperature is relatively high, such as in summer. The series dehumidification heating mode is mainly executed in spring or autumn. The parallel dehumidification heating mode is mainly executed when it is necessary to heat the blast air with a higher heating capacity than the series dehumidification heating mode, such as in early spring or late autumn. The heating mode is mainly executed during the low outside temperature in winter. The operation in each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、空調制御装置60が、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを減圧作用を発揮する絞り状態する。また、空調制御装置60は、第1開閉弁15aを閉じ、第2開閉弁15bを閉じ、第3開閉弁15cを開き、第4開閉弁15dを閉じる。
(A) Cooling Mode In the cooling mode, the air conditioning control device 60 causes the heating expansion valve 14a to be fully opened and the cooling expansion valve 14b to be in a throttled state that exerts a pressure reducing action. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and closes the fourth opening / closing valve 15d.
 これにより、冷房モードでは、図1の白抜き矢印に示すように、圧縮機11の吐出ポート11c、室内凝縮器12、(暖房用膨張弁14a、気液分離器16、)室外熱交換器20、冷房用膨張弁14b、室内蒸発器23、蒸発圧力調整弁26、アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the cooling mode, as shown by the white arrow in FIG. 1, the discharge port 11c of the compressor 11, the indoor condenser 12, (the heating expansion valve 14a, the gas-liquid separator 16,) the outdoor heat exchanger 20. , The cooling expansion valve 14b, the indoor evaporator 23, the evaporation pressure adjusting valve 26, the accumulator 24, and the suction port 11a of the compressor 11 constitute a vapor compression refrigeration cycle in which the refrigerant circulates in this order.
 冷房モードでは、第2開閉弁15bが閉じているので、圧縮機11の中間圧ポート11bから冷媒が吸入されることはない。このため、圧縮機11は単段昇圧式の圧縮機として機能する。サイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 In the cooling mode, since the second opening / closing valve 15b is closed, the refrigerant is not sucked from the intermediate pressure port 11b of the compressor 11. Therefore, the compressor 11 functions as a single-stage booster compressor. In the cycle configuration, the air conditioning control device 60 appropriately determines the control signals and the like to be output to the various controlled devices connected to the output side, and outputs the determined control signals and the like to the various controlled devices.
 例えば、空調制御装置60は、蒸発器温度センサ64fによって検出された蒸発器温度Tefinが目標蒸発器温度TEOに近づくように、圧縮機11へ出力される制御信号を決定する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された冷房モード用の制御マップを参照して決定される。 For example, the air conditioning control device 60 determines the control signal output to the compressor 11 so that the evaporator temperature Tefin detected by the evaporator temperature sensor 64f approaches the target evaporator temperature TEO. The target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in advance in the air conditioning controller 60.
 この制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。さらに、目標蒸発器温度TEOは、室内蒸発器23の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。 In this control map, it is determined that the target evaporator temperature TEO rises as the target outlet temperature TAO rises. Furthermore, the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation on the indoor evaporator 23 can be suppressed.
 また、空調制御装置60は、冷房用膨張弁14bへ流入する冷媒の過冷却度SC2が冷房モード用の目標過冷却度SCO2に近づくように、冷房用膨張弁14bへ出力される制御信号を決定する。 Further, the air conditioning controller 60 determines the control signal output to the cooling expansion valve 14b so that the supercooling degree SC2 of the refrigerant flowing into the cooling expansion valve 14b approaches the target supercooling degree SCO2 for the cooling mode. To do.
 冷房用膨張弁14bへ流入する冷媒の過冷却度SC2は、冷媒圧力センサ65によって検出された高圧圧力Pdおよび第2冷媒温度センサ64bによって検出された第2冷媒温度T2から算定される。目標過冷却度SCO2は、高圧圧力Pdに基づいて、予め空調制御装置60に記憶された冷房モード用の制御マップを参照して決定される。 The supercooling degree SC2 of the refrigerant flowing into the cooling expansion valve 14b is calculated from the high pressure Pd detected by the refrigerant pressure sensor 65 and the second refrigerant temperature T2 detected by the second refrigerant temperature sensor 64b. The target degree of supercooling SCO2 is determined based on the high pressure Pd by referring to a cooling mode control map stored in advance in the air conditioning controller 60.
 この制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO2が決定される。 In this control map, the target degree of supercooling SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 また、空調制御装置60は、エアミックスドア用の電動アクチュエータへ出力される制御信号を決定する。エアミックスドア用の電動アクチュエータへ出力される制御信号は、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくように決定される。 The air conditioning controller 60 also determines the control signal output to the electric actuator for the air mix door. The control signal output to the electric actuator for the air mix door is determined so that the temperature of the blown air blown into the vehicle compartment approaches the target blowout temperature TAO.
 従って、冷房モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器20を凝縮器として機能させ、室内蒸発器23を蒸発器として機能させる冷凍サイクルが構成される。その結果、冷房モードでは、室内蒸発器23にて冷却された送風空気を、室内凝縮器12にて適切な温度に調整することができる。そして、適切な温度に調整された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the refrigeration cycle device 10 in the cooling mode, a refrigeration cycle in which the indoor condenser 12 and the outdoor heat exchanger 20 function as a condenser and the indoor evaporator 23 functions as an evaporator is configured. As a result, in the cooling mode, the blown air cooled by the indoor evaporator 23 can be adjusted to an appropriate temperature by the indoor condenser 12. Then, the blown air adjusted to an appropriate temperature is blown into the vehicle interior to cool the vehicle interior.
 (b)直列除湿暖房モード
 直列除湿暖房モードでは、空調制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態する。また、空調制御装置60は、第1開閉弁15aを閉じ、第2開閉弁15bを閉じ、第3開閉弁15cを開き、第4開閉弁15dを閉じる。
(B) Series dehumidification heating mode In the series dehumidification heating mode, the air conditioning control device 60 sets the heating expansion valve 14a in the throttled state and the cooling expansion valve 14b in the throttled state. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and closes the fourth opening / closing valve 15d.
 これにより、直列除湿暖房モードでは、図1の白抜き矢印に示すように、圧縮機11の吐出ポート11c、室内凝縮器12、暖房用膨張弁14a、(気液分離器16、)室外熱交換器20、冷房用膨張弁14b、室内蒸発器23、蒸発圧力調整弁26、アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the serial dehumidification heating mode, as shown by the white arrow in FIG. 1, the discharge port 11c of the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the (gas-liquid separator 16,) outdoor heat exchange. A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the device 20, the cooling expansion valve 14b, the indoor evaporator 23, the evaporation pressure adjustment valve 26, the accumulator 24, and the suction port 11a of the compressor 11.
 すなわち、直列除湿暖房モードでは、実質的に冷房モードと同じ順に冷媒が循環する冷凍サイクルが構成される。さらに、室外熱交換器20と室内蒸発器23が、冷媒流れに対して直列的に接続される冷凍サイクルが構成される。 That is, in the serial dehumidification heating mode, a refrigeration cycle in which the refrigerant circulates in the same order as in the cooling mode is configured. Further, the outdoor heat exchanger 20 and the indoor evaporator 23 constitute a refrigeration cycle in which the refrigerant flow is connected in series.
 直列除湿暖房モードでは、第2開閉弁15bが閉じているので、冷房モードと同様に、圧縮機11は単段昇圧式の圧縮機として機能する。このサイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 In the serial dehumidification heating mode, the second on-off valve 15b is closed, so that the compressor 11 functions as a single-stage booster type compressor as in the cooling mode. With this cycle configuration, the air conditioning control device 60 appropriately determines control signals and the like to be output to various control target devices connected to the output side, and outputs the determined control signals and the like to various control target devices.
 例えば、空調制御装置60は、冷媒圧力センサ65によって検出された高圧圧力Pdに基づいて、COPが極大値に近づくように、暖房用膨張弁14aおよび冷房用膨張弁14bへ出力される制御信号を決定する。この際、空調制御装置60は、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度に対する冷房用膨張弁14bの絞り開度の開度比を増加させるように制御信号を決定する。 For example, the air conditioning control device 60 controls the control signal output to the heating expansion valve 14a and the cooling expansion valve 14b based on the high pressure Pd detected by the refrigerant pressure sensor 65 so that the COP approaches the maximum value. decide. At this time, the air conditioning control device 60 sends a control signal to increase the opening ratio of the throttle opening of the cooling expansion valve 14b to the throttle opening of the heating expansion valve 14a as the target outlet temperature TAO rises. decide.
 従って、直列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12を凝縮器として機能させ、室内蒸発器23を蒸発器として機能させる冷凍サイクルが構成される。さらに、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器20を凝縮器として機能させる冷凍サイクルが構成される。また、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器20を蒸発器として機能させる冷凍サイクルが構成される。 Therefore, the refrigeration cycle device 10 in the series dehumidifying and heating mode constitutes a refrigeration cycle in which the indoor condenser 12 functions as a condenser and the indoor evaporator 23 functions as an evaporator. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outside air temperature Tam, a refrigeration cycle that causes the outdoor heat exchanger 20 to function as a condenser is configured. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air temperature Tam, a refrigeration cycle that causes the outdoor heat exchanger 20 to function as an evaporator is configured.
 そして、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも高い場合には、目標吹出温度TAOの上昇に伴って、室外熱交換器20の冷媒の飽和温度を低下させて室外熱交換器20における冷媒の放熱量を減少させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて、室内凝縮器12における送風空気の加熱能力を向上させることができる。 Then, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outside air temperature Tam, the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lowered to increase the outdoor heat exchange as the target outlet temperature TAO rises. The heat radiation amount of the refrigerant in the container 20 can be reduced. As a result, the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased, and the heating capacity of the blown air in the indoor condenser 12 can be improved.
 また、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも低い場合には、目標吹出温度TAOの上昇に伴って、室外熱交換器20の冷媒の飽和温度を低下させて室外熱交換器20における冷媒の吸熱量を増加させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて、室内凝縮器12における送風空気の加熱能力を向上させることができる。 Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air temperature Tam, the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is decreased and the outdoor heat exchange is performed as the target outlet temperature TAO rises. The heat absorption amount of the refrigerant in the container 20 can be increased. As a result, the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased, and the heating capacity of the blown air in the indoor condenser 12 can be improved.
 その結果、直列除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を、室内凝縮器12にて再加熱することができる。そして、再加熱された送風空気を車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、暖房用膨張弁14aおよび冷房用膨張弁14bの絞り開度を調整することによって、室内凝縮器12における送風空気の加熱能力を調整することができる。 As a result, in the series dehumidifying and heating mode, the blown air that has been cooled and dehumidified by the indoor evaporator 23 can be reheated by the indoor condenser 12. Then, the reheated blast air is blown out into the vehicle interior, whereby the dehumidification and heating of the vehicle interior can be performed. Furthermore, the heating capacity of the blower air in the indoor condenser 12 can be adjusted by adjusting the throttle openings of the heating expansion valve 14a and the cooling expansion valve 14b.
 (c)並列除湿暖房モード
 並列除湿暖房モードでは、空調制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とする。また、空調制御装置60は、第1開閉弁15aを開き、第2開閉弁15bを閉じ、第3開閉弁15cを開き、第4開閉弁15dを開く。
(C) Parallel dehumidification heating mode In the parallel dehumidification heating mode, the air conditioning control device 60 brings the heating expansion valve 14a into the throttled state and the cooling expansion valve 14b into the throttled state. Further, the air conditioning control device 60 opens the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d.
 これにより、並列除湿暖房モードの冷凍サイクル装置10では、図1の斜線ハッチング付き矢印に示すように、圧縮機11の吐出ポート11c、室内凝縮器12、暖房用膨張弁14a、(気液分離器16、)室外熱交換器20、アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する。さらに、圧縮機11の吐出ポート11c、室内凝縮器12、冷房用膨張弁14b、室内蒸発器23、蒸発圧力調整弁26、アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the refrigeration cycle apparatus 10 in the parallel dehumidification heating mode, as indicated by the hatched arrow in FIG. 1, the discharge port 11c of the compressor 11, the indoor condenser 12, the heating expansion valve 14a, (the gas-liquid separator). 16,) The outdoor heat exchanger 20, the accumulator 24, and the suction port 11a of the compressor 11 circulate in the order of refrigerant. Further, vapor compression in which the refrigerant circulates in the order of the discharge port 11c of the compressor 11, the indoor condenser 12, the cooling expansion valve 14b, the indoor evaporator 23, the evaporation pressure adjusting valve 26, the accumulator 24, and the suction port 11a of the compressor 11. Formula refrigeration cycle is constructed.
 すなわち、室外熱交換器20と室内蒸発器23が、冷媒流れに対して並列的に接続される冷凍サイクルが構成される。並列除湿暖房モードでは、第2開閉弁15bが閉じているので、冷房モードと同様に、圧縮機11は単段昇圧式の圧縮機として機能する。このサイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 That is, the outdoor heat exchanger 20 and the indoor evaporator 23 constitute a refrigeration cycle in which the refrigerant flow is connected in parallel. In the parallel dehumidification heating mode, the second on-off valve 15b is closed, so that the compressor 11 functions as a single-stage booster compressor, as in the cooling mode. With this cycle configuration, the air conditioning control device 60 appropriately determines control signals and the like to be output to various control target devices connected to the output side, and outputs the determined control signals and the like to various control target devices.
 例えば、空調制御装置60は、高圧圧力Pdが目標凝縮圧力PDOに近づくように、圧縮機11へ出力される制御信号を決定する。目標凝縮圧力PDOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された冷房モード用の制御マップを参照して決定される。この制御マップでは、目標吹出温度TAOの上昇に伴って、目標凝縮圧力PDOが上昇するように決定される。 For example, the air conditioning control device 60 determines the control signal output to the compressor 11 so that the high pressure Pd approaches the target condensing pressure PDO. The target condensing pressure PDO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in advance in the air conditioning controller 60. In this control map, the target condensing pressure PDO is determined to increase as the target outlet temperature TAO increases.
 また、空調制御装置60は、高圧圧力Pdに基づいて、COPが極大値に近づくように、暖房用膨張弁14aおよび冷房用膨張弁14bへ出力される制御信号を決定する。この際、空調制御装置60は、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度に対する冷房用膨張弁14bの絞り開度の開度比を増加させるように制御信号を決定する。 Further, the air conditioning control device 60 determines the control signal output to the heating expansion valve 14a and the cooling expansion valve 14b so that the COP approaches the maximum value based on the high pressure Pd. At this time, the air conditioning control device 60 sends a control signal to increase the opening ratio of the throttle opening of the cooling expansion valve 14b to the throttle opening of the heating expansion valve 14a as the target outlet temperature TAO rises. decide.
 従って、並列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12を凝縮器として機能させ、室外熱交換器20および室内蒸発器23を蒸発器として機能させる冷凍サイクルが構成される。 Therefore, in the parallel dehumidification heating mode refrigeration cycle apparatus 10, a refrigeration cycle in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 20 and the indoor evaporator 23 function as an evaporator is configured.
 その結果、並列除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を、室内凝縮器12にて再加熱することができる。そして、再加熱された送風空気を車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、暖房用膨張弁14aおよび冷房用膨張弁14bの絞り開度を調整することによって、室内凝縮器12における送風空気の加熱能力を調整することができる。 As a result, in the parallel dehumidifying and heating mode, the blast air cooled and dehumidified by the indoor evaporator 23 can be reheated by the indoor condenser 12. Then, the reheated blast air is blown out into the vehicle interior, whereby the dehumidification and heating of the vehicle interior can be performed. Furthermore, the heating capacity of the blower air in the indoor condenser 12 can be adjusted by adjusting the throttle openings of the heating expansion valve 14a and the cooling expansion valve 14b.
 また、並列除湿暖房モードでは、室外熱交換器20における冷媒の蒸発温度を、室内蒸発器23における冷媒の蒸発温度よりも低下させることができる。従って、並列除湿暖房モードでは、直列除湿暖房モードよりも室外熱交換器20における冷媒の吸熱量を増加させて、送風空気の加熱能力を増加させることができる。 Also, in the parallel dehumidification heating mode, the evaporation temperature of the refrigerant in the outdoor heat exchanger 20 can be made lower than the evaporation temperature of the refrigerant in the indoor evaporator 23. Therefore, in the parallel dehumidification heating mode, the heat absorption amount of the refrigerant in the outdoor heat exchanger 20 can be increased more than in the series dehumidification heating mode to increase the heating capacity of the blown air.
 (d)暖房モード
 暖房モードでは、空調制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置60は、第1開閉弁15aを閉じ、第2開閉弁15bを開き、第3開閉弁15cを閉じ、第4開閉弁15dを開く。
(D) Heating Mode In the heating mode, the air conditioning control device 60 sets the heating expansion valve 14a in the throttled state and the cooling expansion valve 14b in the fully closed state. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, opens the second opening / closing valve 15b, closes the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d.
 これにより、暖房モードでは、図1の黒塗り矢印に示すように、圧縮機11の吐出ポート11c、室内凝縮器12、暖房用膨張弁14a、気液分離器16の気相冷媒出口、圧縮機11の中間圧ポート11bの順に冷媒が循環する。さらに、気液分離器16の液相冷媒出口、固定絞り17、室外熱交換器20、アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する、いわゆるガスインジェクションサイクルが構成される。 As a result, in the heating mode, as indicated by the black arrow in FIG. 1, the discharge port 11c of the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the gas-phase refrigerant outlet of the gas-liquid separator 16, the compressor. The refrigerant circulates in the order of 11 intermediate pressure ports 11b. Further, a so-called gas injection cycle is formed in which the refrigerant circulates in the order of the liquid-phase refrigerant outlet of the gas-liquid separator 16, the fixed throttle 17, the outdoor heat exchanger 20, the accumulator 24, and the suction port 11a of the compressor 11.
 このサイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 With this cycle configuration, the air conditioning control device 60 appropriately determines control signals and the like to be output to various control target devices connected to the output side, and outputs the determined control signals and the like to various control target devices.
 例えば、空調制御装置60は、暖房用膨張弁14aへ流入する冷媒の過冷却度SC1が暖房モード用の目標過冷却度SCO1に近づくように、暖房用膨張弁14aへ出力される制御信号を決定する。 For example, the air conditioning controller 60 determines the control signal output to the heating expansion valve 14a so that the supercooling degree SC1 of the refrigerant flowing into the heating expansion valve 14a approaches the target supercooling degree SCO1 for the heating mode. To do.
 暖房用膨張弁14aへ流入する冷媒の過冷却度SC1は、冷媒圧力センサ65によって検出された高圧圧力Pdおよび第1冷媒温度センサ64aによって検出された第1冷媒温度T1から算定される。目標過冷却度SCO1は、高圧圧力Pdに基づいて、予め空調制御装置60に記憶された冷房モード用の制御マップを参照して決定される。 The supercooling degree SC1 of the refrigerant flowing into the heating expansion valve 14a is calculated from the high pressure Pd detected by the refrigerant pressure sensor 65 and the first refrigerant temperature T1 detected by the first refrigerant temperature sensor 64a. The target degree of supercooling SCO1 is determined based on the high pressure Pd with reference to a cooling mode control map stored in advance in the air conditioning controller 60.
 この制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1が決定される。 In this control map, the target degree of supercooling SCO1 is determined so that the cycle coefficient of performance (COP) approaches the maximum value.
 従って、暖房モードの冷凍サイクル装置10では、室内凝縮器12を放熱器として機能させ、室外熱交換器20を蒸発器として機能させるガスインジェクションサイクルが構成される。その結果、暖房モードでは、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 Therefore, in the refrigeration cycle device 10 in the heating mode, a gas injection cycle is configured in which the indoor condenser 12 functions as a radiator and the outdoor heat exchanger 20 functions as an evaporator. As a result, in the heating mode, the air in the vehicle interior can be heated by blowing the blast air heated by the indoor condenser 12 into the vehicle interior.
 以上の如く、本実施形態の冷凍サイクル装置10では、車室内の空調を行うために、冷媒回路を切り替えて各種運転モードでの運転を行うことができる。これにより、車両用空調装置1では車室内の快適な空調を実現することができる。 As described above, in the refrigeration cycle device 10 of the present embodiment, the refrigerant circuits can be switched to perform operation in various operation modes in order to perform air conditioning in the vehicle interior. As a result, the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior.
 さらに、本実施形態の冷凍サイクル装置10では、サイクル内の冷媒を回収する際に、冷媒回収準備制御を実行することができる。冷媒回収準備制御は、サイクル内から冷媒を速やかに回収するためにアキュムレータ24内の冷媒の温度を上昇させる制御である。空調制御装置60は、回収準備制御実行部を構成している。 Further, in the refrigeration cycle device 10 of the present embodiment, the refrigerant recovery preparation control can be executed when recovering the refrigerant in the cycle. The refrigerant recovery preparation control is control for increasing the temperature of the refrigerant in the accumulator 24 in order to quickly recover the refrigerant from the cycle. The air conditioning control device 60 constitutes a recovery preparation control execution unit.
 以下に、本実施形態の冷凍サイクル装置10における冷媒回収方法を説明する。本実施形態の冷媒回収方法では、まず、図3の全体構成図に示すように、冷凍サイクル装置10の高圧側チャージングポート27aおよび低圧側チャージングポート27bに、冷媒回収装置80を接続する(回収装置接続工程)。回収装置接続工程は、車両システムの起動スイッチ(いわゆる、イグニッションスイッチ)がOFFされている状態で行われる。 The refrigerant recovery method in the refrigeration cycle device 10 of the present embodiment will be described below. In the refrigerant recovery method of the present embodiment, first, as shown in the overall configuration diagram of FIG. 3, the refrigerant recovery device 80 is connected to the high pressure side charging port 27a and the low pressure side charging port 27b of the refrigeration cycle device 10 ( Recovery device connection process). The recovery device connecting step is performed in a state in which a start switch (so-called ignition switch) of the vehicle system is turned off.
 冷媒回収装置80は、回収用圧縮部81、回収用凝縮部82等を有している。回収用圧縮部81は、サイクル内から気相冷媒を吸入して圧縮する圧縮機である。回収用圧縮部81の吸入口は、専用ホース等を介して、高圧側チャージングポート27aおよび低圧側チャージングポート27bに接続されている。 The refrigerant recovery device 80 has a recovery compression section 81, a recovery condensation section 82, and the like. The recovery compression unit 81 is a compressor that sucks and compresses the gas-phase refrigerant from the inside of the cycle. The suction port of the recovery compression unit 81 is connected to the high pressure side charging port 27a and the low pressure side charging port 27b via a dedicated hose or the like.
 回収用凝縮部82は、回収用圧縮部81から吐出された冷媒と外気とを熱交換させて回収した冷媒を液化させる凝縮用の熱交換器である。回収用凝縮部82の冷媒出口側には、回収容器83が接続されている。回収容器83は、回収用凝縮部82にて液化させた冷媒を貯える容器である。回収装置接続工程では、回収用圧縮部81等の冷媒回収装置80の構成機器は停止している。 The recovery condenser 82 is a heat exchanger for condensation that heat-exchanges the refrigerant discharged from the recovery compressor 81 with the outside air to liquefy the recovered refrigerant. A recovery container 83 is connected to the refrigerant outlet side of the recovery condenser 82. The recovery container 83 is a container for storing the refrigerant liquefied in the recovery condensing unit 82. In the recovery device connection step, the components of the refrigerant recovery device 80, such as the recovery compression unit 81, are stopped.
 次に、空調制御装置60のコネクタ72に、サービスツール71を接続する。これにより、車載バッテリから冷凍サイクル装置10に電力が供給される。さらに、冷凍サイクル装置10に対して、冷媒回収準備制御の実行が要求される。そして、空調制御装置60が、図4のフローチャートに示す冷媒回収準備制御を実行する(準備制御実行工程)。 Next, the service tool 71 is connected to the connector 72 of the air conditioning controller 60. As a result, electric power is supplied from the vehicle-mounted battery to the refrigeration cycle device 10. Further, the refrigeration cycle device 10 is required to execute the refrigerant recovery preparation control. Then, the air conditioning control device 60 executes the refrigerant recovery preparation control shown in the flowchart of FIG. 4 (preparation control execution step).
 図4のステップS1では、冷凍サイクル装置10の冷媒回路を切り替える。具体的には、空調制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置60は、第1開閉弁15aを閉じ、第2開閉弁15bを閉じ、第3開閉弁15cを開き、第4開閉弁15dを開く。 In step S1 of FIG. 4, the refrigerant circuit of the refrigeration cycle device 10 is switched. Specifically, the air conditioning control device 60 sets the expansion valve 14a for heating to a throttle state and the expansion valve 14b for cooling to a fully closed state. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d.
 これにより、図3の網掛けハッチング矢印に示すように、圧縮機11の吐出ポート11c、(室内凝縮器12、)暖房用膨張弁14a、(気液分離器16、室外熱交換器20、)アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する、いわゆるホットガスサイクルが構成される。 As a result, as shown by the hatched arrows in FIG. 3, the discharge port 11c of the compressor 11, the (indoor condenser 12,) heating expansion valve 14a, (the gas-liquid separator 16, the outdoor heat exchanger 20,). A so-called hot gas cycle in which the refrigerant circulates in the order of the accumulator 24 and the suction port 11a of the compressor 11 is configured.
 ステップS2では、空調制御用のセンサ群の検出信号を読み込む。ステップS3では、ステップS2で読み込まれた外気温Tamに基づいて、予め空調制御装置60に記憶された制御マップを参照して、基準温度KTを決定する。基準温度KTは、冷媒回収準備制御の終了タイミングを判定する際に用いられる冷媒温度の基準値である。 In step S2, the detection signal of the sensor group for air conditioning control is read. In step S3, the reference temperature KT is determined based on the outside air temperature Tam read in step S2 with reference to the control map stored in advance in the air conditioning controller 60. The reference temperature KT is a reference value of the refrigerant temperature used when determining the end timing of the refrigerant recovery preparation control.
 より具体的には、基準温度KTは、図4のステップS3に記載された制御特性図に示すように、外気温Tamの上昇に伴って、高くなるように決定される。さらに、基準温度KTは、後述する冷媒回収工程で、サイクル内から冷媒を90%回収した時に、サイクル内の冷媒圧力が大気圧以上となるように決定される。 More specifically, the reference temperature KT is determined so as to increase as the outside air temperature Tam increases, as shown in the control characteristic diagram described in step S3 of FIG. Further, the reference temperature KT is determined so that the pressure of the refrigerant in the cycle becomes equal to or higher than the atmospheric pressure when 90% of the refrigerant is recovered from the cycle in the refrigerant recovery step described later.
 ステップS4では、第1冷媒温度T1が基準温度KTより高くなるように、圧縮機11へ出力される制御信号を決定する。ステップS5では、暖房用膨張弁14aへ出力される制御信号を決定する。暖房用膨張弁14aへ出力される制御信号は、図4のステップS5に記載された制御特性図に示すように、外気温Tamの低下に伴って、絞り開度が減少するように決定される。 In step S4, the control signal output to the compressor 11 is determined so that the first refrigerant temperature T1 becomes higher than the reference temperature KT. In step S5, the control signal output to the heating expansion valve 14a is determined. The control signal output to the heating expansion valve 14a is determined so that the throttle opening degree decreases as the outside air temperature Tam decreases, as shown in the control characteristic diagram described in step S5 of FIG. ..
 ステップS6では、エアミックスドア用の電動アクチュエータへ出力される制御信号を決定する。具体的には、エアミックスドア34が室内凝縮器12側の通風路を全閉とするように制御信号が決定される。ステップS7では、外気ファン20aを停止させる。ステップS8では、ステップS2~S7で決定された制御状態が得られるように、空調制御装置60から各種制御対象機器へ制御信号、制御電圧等が出力される。 In step S6, the control signal output to the electric actuator for the air mix door is determined. Specifically, the control signal is determined so that the air mix door 34 fully closes the ventilation passage on the indoor condenser 12 side. In step S7, the outside air fan 20a is stopped. In step S8, a control signal, a control voltage, etc. are output from the air conditioning control device 60 to various control target devices so that the control state determined in steps S2 to S7 is obtained.
 ステップS9では、第2冷媒温度センサ64bによって検出された第2冷媒温度T2が基準温度KT以上となっている温度上昇状態の経過時間Timが、予め定めた基準経過時間KTim以上となっているか否かが判定される。本実施形態では、基準経過時間KTimを30秒に設定している。 In step S9, it is determined whether or not the elapsed time Tim in the temperature rising state in which the second refrigerant temperature T2 detected by the second refrigerant temperature sensor 64b is equal to or higher than the reference temperature KT is equal to or greater than a predetermined reference elapsed time KTim. Is determined. In this embodiment, the reference elapsed time KTim is set to 30 seconds.
 ここで、冷媒回収準備制御では、室外熱交換器20から流出した冷媒を、第4冷媒通路18dを介してアキュムレータ24へ流入させる。従って、上述した温度上昇状態とは、アキュムレータ24へ流入する冷媒の温度が基準温度KT以上となっている状態を意味している。 Here, in the refrigerant recovery preparation control, the refrigerant flowing out of the outdoor heat exchanger 20 is caused to flow into the accumulator 24 via the fourth refrigerant passage 18d. Therefore, the above-mentioned temperature rising state means a state in which the temperature of the refrigerant flowing into the accumulator 24 is equal to or higher than the reference temperature KT.
 そして、ステップS9にて、経過時間Timが基準経過時間KTimより短いと判定された場合には、ステップS2へ戻る。ステップS9にて、経過時間Timが基準経過時間KTim以上になっていると判定された場合には、ステップS10へ進む。 Then, if it is determined in step S9 that the elapsed time Tim is shorter than the reference elapsed time KTim, the process returns to step S2. When it is determined in step S9 that the elapsed time Tim is equal to or greater than the reference elapsed time KTim, the process proceeds to step S10.
 ステップS10では、冷媒回収準備制御の終了処理を行う。具体的には、ステップS10では、圧縮機11を停止させ、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置60は、第1開閉弁15aを開き、第2開閉弁15bを開き、第3開閉弁15cを開き、第4開閉弁15dを開く。 At step S10, the ending process of the refrigerant recovery preparation control is performed. Specifically, in step S10, the compressor 11 is stopped, the heating expansion valve 14a is fully opened, and the cooling expansion valve 14b is fully closed. Further, the air conditioning control device 60 opens the first opening / closing valve 15a, the second opening / closing valve 15b, the third opening / closing valve 15c, and the fourth opening / closing valve 15d.
 ステップS10の終了処理は、暖房用膨張弁14aを確実に全開状態とし、第1開閉弁15a~第4開閉弁15dを確実に開くために、終了処理の開始から待機時間τの経過を待って完了する。本実施形態では、待機時間τを90秒に設定している。 In the end processing of step S10, in order to ensure that the heating expansion valve 14a is fully opened and that the first opening / closing valve 15a to the fourth opening / closing valve 15d are opened reliably, wait a waiting time τ from the start of the end processing. Complete. In this embodiment, the waiting time τ is set to 90 seconds.
 従って、冷媒回収準備制御のステップS2~S9の制御を実行している冷凍サイクル装置10では、圧縮機11の吐出ポート11cから吐出された高温冷媒が、室内凝縮器12へ流入する。冷媒回収準備制御では、エアミックスドア34が室内凝縮器12側の通風路を全閉としている。従って、室内凝縮器12へ流入した冷媒は、殆ど送風空気へ放熱することなく室内凝縮器12から流出する。 Therefore, in the refrigeration cycle apparatus 10 that is executing the steps S2 to S9 of the refrigerant recovery preparation control, the high temperature refrigerant discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12. In the refrigerant recovery preparation control, the air mix door 34 fully closes the ventilation passage on the indoor condenser 12 side. Therefore, the refrigerant that has flowed into the indoor condenser 12 flows out from the indoor condenser 12 with almost no heat dissipation to the blown air.
 室内凝縮器12から流出した冷媒は、気液分離器16を介して室外熱交換器20へ流入する。冷媒回収準備制御では、外気ファン20aが停止している。従って、室外熱交換器20へ流入した冷媒は、殆ど外気へ放熱することなく室外熱交換器20から流出する。室外熱交換器20から流出した冷媒は、第4冷媒通路18dを介してアキュムレータ24へ流入する。 The refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the gas-liquid separator 16. In the refrigerant recovery preparation control, the outside air fan 20a is stopped. Therefore, the refrigerant flowing into the outdoor heat exchanger 20 flows out of the outdoor heat exchanger 20 with almost no heat radiation to the outside air. The refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the fourth refrigerant passage 18d.
 これにより、図5に示すように、アキュムレータ24内の冷媒の温度が上昇する。さらに、アキュムレータ24自体の温度、およびアキュムレータ24内の冷媒の圧力も上昇する。アキュムレータ24の気相冷媒出口から流出した冷媒は、圧縮機11の吸入ポート11aから吸入されて再び圧縮される。 As a result, the temperature of the refrigerant in the accumulator 24 rises, as shown in FIG. Furthermore, the temperature of the accumulator 24 itself and the pressure of the refrigerant in the accumulator 24 also increase. The refrigerant flowing out from the gas-phase refrigerant outlet of the accumulator 24 is sucked from the suction port 11a of the compressor 11 and compressed again.
 そして、ステップS9にて、経過時間Timが基準経過時間KTim以上になったと判定されると、アキュムレータ24内の冷媒の温度が充分に上昇したものとして、冷媒回収準備制御の終了処理が実行される。これにより、アキュムレータ24の内部空間が、高圧側チャージングポート27aおよび低圧側チャージングポート27bの双方を介して回収用圧縮部81の吸入口側と連通する。 When it is determined in step S9 that the elapsed time Tim has become equal to or greater than the reference elapsed time KTim, it is determined that the temperature of the refrigerant in the accumulator 24 has sufficiently risen, and the ending process of the refrigerant recovery preparation control is executed. .. As a result, the internal space of the accumulator 24 communicates with the suction port side of the recovery compression unit 81 via both the high pressure side charging port 27a and the low pressure side charging port 27b.
 次に、準備制御実行工程の終了後、冷媒回収装置80の回収用圧縮部81等を作動させて、サイクル内の冷媒を回収する(冷媒回収工程)。 Next, after completion of the preparation control execution step, the recovery compression unit 81 of the refrigerant recovery device 80 is operated to recover the refrigerant in the cycle (refrigerant recovery step).
 冷媒回収工程では、回収用圧縮部81が、高圧側チャージングポート27aおよび低圧側チャージングポート27bを介して、サイクル内の気相冷媒を吸入する。回収用圧縮部81から吐出された冷媒は、回収用凝縮部82にて外気と熱交換して凝縮する。回収用凝縮部82にて凝縮した冷媒は、回収容器83に貯えられる。 In the refrigerant recovery process, the recovery compression unit 81 sucks the vapor phase refrigerant in the cycle through the high pressure side charging port 27a and the low pressure side charging port 27b. The refrigerant discharged from the recovery compression section 81 exchanges heat with the outside air in the recovery condensation section 82 and is condensed. The refrigerant condensed in the recovery condensing unit 82 is stored in the recovery container 83.
 以上の如く、本実施形態の冷凍サイクル装置10では、サイクル内の冷媒を回収する際に、冷媒回収準備制御を実行することができる。これによれば、サイクル内の冷媒を回収する冷媒回収工程を行う前に、アキュムレータ24内の冷媒を加熱して気化させておくことができる。 As described above, the refrigeration cycle apparatus 10 of the present embodiment can execute the refrigerant recovery preparation control when recovering the refrigerant in the cycle. According to this, the refrigerant in the accumulator 24 can be heated and vaporized before the refrigerant recovery step of recovering the refrigerant in the cycle.
 従って、回収作業の長時間化を回避するために、回収作業時に外部からアキュムレータ24を加熱する必要がない。すなわち、本実施形態の冷凍サイクル装置10によれば、作業性の悪化を招くことなく速やかに冷媒の回収を完了させることができる。ここで、サイクル内の冷媒の回収は、サイクル内の冷媒を90%以上回収し、かつ、サイクル内の冷媒の圧力が大気圧となった際に完了するものとする。 Therefore, it is not necessary to heat the accumulator 24 from the outside during the collecting work in order to avoid the lengthening of the collecting work. That is, according to the refrigeration cycle apparatus 10 of the present embodiment, it is possible to promptly complete the recovery of the refrigerant without deteriorating the workability. Here, it is assumed that the recovery of the refrigerant in the cycle is completed when 90% or more of the refrigerant in the cycle is recovered and the pressure of the refrigerant in the cycle becomes atmospheric pressure.
 さらに、本開示の発明者らは、冷凍サイクル装置10を用いて、冷媒回収準備制御を実行することなく、かつ、外部からアキュムレータ24を加熱することなく冷媒回収を行う比較試験を行っている。その結果、本実施形態の冷凍サイクル装置10のように冷媒回収準備制御を実行することによって、サイクル内の冷媒を90%回収するために要する時間を、比較試験に対して10分の1以下に短縮可能であることが確認されている。 Further, the inventors of the present disclosure perform a comparative test using the refrigeration cycle device 10 to perform refrigerant recovery without executing the refrigerant recovery preparation control and without heating the accumulator 24 from the outside. As a result, by performing the refrigerant recovery preparation control as in the refrigeration cycle apparatus 10 of the present embodiment, the time required to recover 90% of the refrigerant in the cycle is reduced to 1/10 or less of the comparison test. It has been confirmed that it can be shortened.
 また、本実施形態の冷凍サイクル装置10では、冷媒回収準備制御の実行時に、冷媒回路切替部が、圧縮機11の吐出ポート11c、暖房用膨張弁14a、アキュムレータ24、圧縮機11の吸入ポート11aの順に冷媒が循環する冷媒回路に切り替える。これによれば、アキュムレータ24内の冷媒を上昇させるために新たな構成を追加することなく、アキュムレータ24内の冷媒の温度を上昇させることができる。 In addition, in the refrigeration cycle device 10 of the present embodiment, the refrigerant circuit switching unit causes the discharge port 11c of the compressor 11, the expansion valve 14a for heating, the accumulator 24, and the suction port 11a of the compressor 11 during execution of the refrigerant recovery preparation control. Switching to the refrigerant circuit in which the refrigerant circulates in the order of. According to this, the temperature of the refrigerant in the accumulator 24 can be raised without adding a new configuration for raising the refrigerant in the accumulator 24.
 また、本実施形態の冷凍サイクル装置10では、冷媒回収準備制御の実行時に、外気温Tamの低下に伴って、冷房用膨張弁14bの絞り開度を減少させる。これによれば、外気温Tamの低下に伴って、圧縮機11から吐出された高圧冷媒の温度を上昇させることができる。 Further, in the refrigeration cycle device 10 of the present embodiment, when the refrigerant recovery preparation control is executed, the throttle opening degree of the cooling expansion valve 14b is decreased as the outside air temperature Tam decreases. According to this, the temperature of the high-pressure refrigerant discharged from the compressor 11 can be increased as the outside air temperature Tam decreases.
 従って、外気温Tamの低下に伴って、アキュムレータ24内の冷媒の温度が低下してしまうことを抑制することができる。その結果、外気温Tamの低下によって、冷媒回収に要する時間が長くなってしまうことを抑制することができる。 Therefore, it is possible to prevent the temperature of the refrigerant in the accumulator 24 from decreasing as the outside air temperature Tam decreases. As a result, it is possible to prevent the time required for refrigerant recovery from increasing due to the decrease in the outside air temperature Tam.
 また、本実施形態の冷凍サイクル装置10では、冷媒回収準備制御の実行時に、経過時間Timが基準経過時間KTim以上となった際に終了処理へ移行する。これによれば、サイクル内の冷媒を確実に回収できるように、アキュムレータ24内の冷媒の温度を充分に上昇させることができる。 Further, in the refrigeration cycle device 10 of the present embodiment, when the elapsed time Tim becomes equal to or greater than the reference elapsed time KTim during execution of the refrigerant recovery preparation control, the end process is performed. According to this, the temperature of the refrigerant in the accumulator 24 can be sufficiently raised so that the refrigerant in the cycle can be reliably recovered.
 さらに、アキュムレータ24へ流入する冷媒の温度として、第2冷媒温度センサ64bによって検出された第2冷媒温度T2を採用している。第2冷媒温度センサ64bは、冷房モード等の制御に用いられる温度検出部である。従って、新たな温度検出部を追加することなく、アキュムレータ24へ流入する冷媒の温度を検出することができる。 Further, as the temperature of the refrigerant flowing into the accumulator 24, the second refrigerant temperature T2 detected by the second refrigerant temperature sensor 64b is adopted. The second refrigerant temperature sensor 64b is a temperature detection unit used for controlling the cooling mode or the like. Therefore, the temperature of the refrigerant flowing into the accumulator 24 can be detected without adding a new temperature detector.
 また、本実施形態の冷凍サイクル装置10では、外気温Tamの上昇に伴って、基準温度KTが高くなるように決定する。これによれば、外気温Tamが比較的高い時であっても、サイクル内の冷媒を確実に回収できるように、アキュムレータ24内の冷媒の温度を充分に上昇させることができる。 In addition, in the refrigeration cycle device 10 of the present embodiment, the reference temperature KT is determined to increase as the outside air temperature Tam rises. According to this, even when the outside air temperature Tam is relatively high, the temperature of the refrigerant in the accumulator 24 can be sufficiently raised so that the refrigerant in the cycle can be reliably recovered.
 より詳細には、第2冷媒温度センサ64bは、室外熱交換器20の冷媒出口側に配置されている。このため、図5に示すように、第2冷媒温度T2は、実際のアキュムレータ24内の冷媒の温度よりも高い値となりやすい。このため、外気温Tamが上昇すると、実際のアキュムレータ24内の冷媒の温度が充分に上昇していなくても、第2冷媒温度T2に基づいて終了処理へ以降してしまう可能性がある。 More specifically, the second refrigerant temperature sensor 64b is arranged on the refrigerant outlet side of the outdoor heat exchanger 20. Therefore, as shown in FIG. 5, the second refrigerant temperature T2 tends to be higher than the actual temperature of the refrigerant in the accumulator 24. Therefore, when the outside air temperature Tam rises, there is a possibility that the termination process may be performed based on the second refrigerant temperature T2 even if the actual temperature of the refrigerant in the accumulator 24 has not risen sufficiently.
 これに対して、本実施形態では、外気温Tamの上昇に伴って、基準温度KTが高くなるように決定する。従って、外気温Tamが比較的高い時であっても、サイクル内の冷媒を確実に回収できるように、アキュムレータ24内の冷媒の温度を充分に上昇させることができる。 On the other hand, in the present embodiment, the reference temperature KT is determined to increase as the outside air temperature Tam rises. Therefore, even when the outside air temperature Tam is relatively high, the temperature of the refrigerant in the accumulator 24 can be sufficiently raised so that the refrigerant in the cycle can be reliably recovered.
 また、本実施形態の冷凍サイクル装置10では、冷媒回収準備制御の実行時に、圧縮機11から吐出された高圧冷媒の温度が基準温度KTより高くなるように、圧縮機11の作動を制御する。これによれば、アキュムレータ24内の冷媒の温度を基準温度KT以上となるように上昇させることができる。 Further, in the refrigeration cycle device 10 of the present embodiment, when the refrigerant recovery preparation control is executed, the operation of the compressor 11 is controlled so that the temperature of the high pressure refrigerant discharged from the compressor 11 becomes higher than the reference temperature KT. According to this, the temperature of the refrigerant in the accumulator 24 can be raised to be equal to or higher than the reference temperature KT.
 さらに、圧縮機11にて昇圧された高圧冷媒の温度として、第1冷媒温度センサ64aによって検出された第1冷媒温度T1を採用している。第1冷媒温度センサ64aは、暖房モード等の制御に用いられる温度検出部である。従って、新たな温度検出部を追加することなく、圧縮機11にて昇圧された高圧冷媒の温度を検出することができる。 Further, the first refrigerant temperature T1 detected by the first refrigerant temperature sensor 64a is adopted as the temperature of the high-pressure refrigerant boosted by the compressor 11. The first refrigerant temperature sensor 64a is a temperature detection unit used for controlling the heating mode and the like. Therefore, the temperature of the high-pressure refrigerant boosted by the compressor 11 can be detected without adding a new temperature detector.
 また、本実施形態の冷凍サイクル装置10では、要求部としてのサービスツール71を備えているので、必要に応じて冷媒回収準備制御を実行することができる。 Further, since the refrigeration cycle apparatus 10 of the present embodiment is provided with the service tool 71 as a request unit, it is possible to execute the refrigerant recovery preparation control as needed.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as below without departing from the gist of the present disclosure.
 冷凍サイクル装置のサイクル構成は、上述の実施形態に開示されたものに限定されない。少なくとも低圧側の貯液部を備える冷凍サイクル装置であって、冷媒回収準備制御を実行可能に構成されていれば、作業性の悪化を招くことなく速やかに冷媒の回収を完了させることができる。従って、空調を行うために冷媒回路を切り替え可能に構成されていることは必須ではない。 The cycle configuration of the refrigeration cycle apparatus is not limited to the one disclosed in the above embodiment. If the refrigeration cycle apparatus includes at least the low-pressure side liquid storage unit and is configured to execute the refrigerant recovery preparation control, the recovery of the refrigerant can be promptly completed without deteriorating the workability. Therefore, it is not essential that the refrigerant circuit can be switched to perform air conditioning.
 また、上述の実施形態で説明した冷凍サイクル装置10では、送風空気を加熱する加熱部として、圧縮機11の圧縮熱を利用して送風空気を加熱する室内凝縮器12を採用した例を説明したが、加熱部はこれに限定されない。例えば、加熱部として、高温側熱媒体を循環させる高温側熱媒体循環回路に、高温側水ポンプ、水-冷媒熱交換器、ヒータコア等を配置したものを採用してもよい。 Further, in the refrigeration cycle apparatus 10 described in the above embodiment, the example in which the indoor condenser 12 that heats the blown air by using the compression heat of the compressor 11 is adopted as the heating unit that heats the blown air has been described. However, the heating unit is not limited to this. For example, as the heating unit, a high temperature side heat medium circulation circuit for circulating the high temperature side heat medium may be adopted in which a high temperature side water pump, a water-refrigerant heat exchanger, a heater core, and the like are arranged.
 高温側水ポンプは、高温側熱媒体を水-冷媒熱交換器の水通路へ圧送するポンプである。水-冷媒熱交換器は、圧縮機11から吐出された高圧冷媒と高温側水ポンプから圧送された高温側熱媒体とを熱交換させる熱交換器である。ヒータコアは、水-冷媒熱交換器にて加熱された高温側熱媒体と送風空気とを熱交換させる加熱用熱交換器である。 The high temperature side water pump is a pump that pumps the high temperature side heat medium to the water passage of the water-refrigerant heat exchanger. The water-refrigerant heat exchanger is a heat exchanger for exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature side heat medium pumped from the high-temperature side water pump. The heater core is a heating heat exchanger for exchanging heat between the high temperature side heat medium heated by the water-refrigerant heat exchanger and the blown air.
 そして、ヒータコアを室内空調ユニット30の空気通路内に室内凝縮器12と同様に配置する。これによれば、暖房モード時等に、ヒータコアにて、高圧冷媒を熱源として高温側熱媒体を介して間接的に送風空気を加熱することができる。さらに、高温側熱媒体回路に内燃機関の冷却水を混合させてもよい。これによれば、内燃機関の排熱を利用して、送風空気を加熱することができる。 Then, the heater core is arranged in the air passage of the indoor air conditioning unit 30 in the same manner as the indoor condenser 12. According to this, in the heating mode or the like, the heater core can indirectly heat the blown air through the high-temperature side heat medium using the high-pressure refrigerant as the heat source. Further, cooling water for the internal combustion engine may be mixed in the high temperature side heat medium circuit. According to this, the blast air can be heated by utilizing the exhaust heat of the internal combustion engine.
 このような冷凍サイクル装置では、高温側熱媒体の有する熱を熱源としてアキュムレータ24内の冷媒の温度を上昇させる冷媒回収準備制御を行ってもよい。 In such a refrigeration cycle apparatus, refrigerant recovery preparation control may be performed in which the heat of the high temperature side heat medium is used as a heat source to raise the temperature of the refrigerant in the accumulator 24.
 具体的には、この冷媒回収準備制御では、空調制御装置60が、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置60は、第1開閉弁15aを閉じ、第2開閉弁15bを閉じ、第3開閉弁15cを開き、第4開閉弁15dを開く。また、空調制御装置60は、予め定めた吐出能力を発揮するように圧縮機11を作動させる。 Specifically, in this refrigerant recovery preparation control, the air conditioning control device 60 fully opens the heating expansion valve 14a and fully closes the cooling expansion valve 14b. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d. Further, the air conditioning control device 60 operates the compressor 11 so as to exert a predetermined discharge capacity.
 これにより、圧縮機11、水-冷媒熱交換器、(暖房用膨張弁14a、気液分離器16、室外熱交換器20、)アキュムレータ24、圧縮機11の順に冷媒を循環させる冷媒回路が構成される。 This constitutes a refrigerant circuit that circulates the refrigerant in the order of the compressor 11, the water-refrigerant heat exchanger, the heating expansion valve 14a, the gas-liquid separator 16, the outdoor heat exchanger 20, the accumulator 24, and the compressor 11. To be done.
 この冷媒回収準備制御では、暖房用膨張弁14aが全開状態となっているので、圧縮機11から吐出された冷媒は、殆ど温度上昇することなく、水-冷媒熱交換器へ流入する。水-冷媒熱交換器へ流入した冷媒は、内燃機関の排熱によって加熱された高温側熱媒体と熱交換して加熱される。水-冷媒熱交換器から流出した冷媒は、アキュムレータ24へ流入する。これにより、アキュムレータ24内の冷媒の温度を上昇させることができる。 In this refrigerant recovery preparation control, since the heating expansion valve 14a is fully opened, the refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger with almost no increase in temperature. The refrigerant flowing into the water-refrigerant heat exchanger is heated by exchanging heat with the high temperature side heat medium heated by the exhaust heat of the internal combustion engine. The refrigerant flowing out of the water-refrigerant heat exchanger flows into the accumulator 24. Thereby, the temperature of the refrigerant in the accumulator 24 can be raised.
 また、上述の実施形態で説明した冷凍サイクル装置10に、作動時に発熱を伴う冷却対象機器(例えば、バッテリ)を冷却するための構成を追加してもよい。 Further, the refrigeration cycle apparatus 10 described in the above embodiment may be added with a configuration for cooling a cooling target device (for example, a battery) that generates heat during operation.
 具体的には、冷房用膨張弁14b、室内蒸発器23および蒸発圧力調整弁26に対して、冷却用膨張弁およびチラーを並列的に接続する。さらに、低温側熱媒体を循環させる低温側熱媒体循環回路に、低温側水ポンプ、チラー、冷却用熱交換器等を配置する。 Specifically, the cooling expansion valve and the chiller are connected in parallel to the cooling expansion valve 14b, the indoor evaporator 23, and the evaporation pressure adjusting valve 26. Further, a low temperature side water pump, a chiller, a cooling heat exchanger, etc. are arranged in a low temperature side heat medium circulation circuit for circulating the low temperature side heat medium.
 低温側水ポンプは、低温側熱媒体をチラーの水通路へ圧送するポンプである。チラーは、冷却用膨張弁から流出した冷媒と低温側水ポンプから圧送された低温側熱媒体とを熱交換させる熱交換器である。冷却用膨張弁の基本的構成は、冷房用膨張弁14bと同様である。冷却用熱交換器は、冷却対象機器等に一体化されて冷却対象機器と低温側熱媒体とを熱交換させるものである。 The low temperature side water pump is a pump that pumps the low temperature side heat medium to the water passage of the chiller. The chiller is a heat exchanger for exchanging heat between the refrigerant flowing out from the cooling expansion valve and the low temperature side heat medium pumped from the low temperature side water pump. The basic configuration of the cooling expansion valve is the same as that of the cooling expansion valve 14b. The heat exchanger for cooling is integrated with a device to be cooled or the like to exchange heat between the device to be cooled and the low temperature side heat medium.
 これによれば、冷却用膨張弁にて減圧された冷媒をチラーにて蒸発させて低温側熱媒体を冷却することができる。そして、チラーにて冷却された低温側熱媒体を冷却用熱交換器へ流入させることによって、冷却対象機器を冷却することができる。 According to this, it is possible to cool the low temperature side heat medium by evaporating the refrigerant decompressed by the cooling expansion valve by the chiller. Then, by allowing the low temperature side heat medium cooled by the chiller to flow into the cooling heat exchanger, the cooling target device can be cooled.
 このような冷凍サイクル装置では、低温側熱媒体の有する熱を熱源としてアキュムレータ24内の冷媒の温度を上昇させる冷媒回収準備制御を行ってもよい。 In such a refrigeration cycle apparatus, refrigerant recovery preparation control may be performed in which the temperature of the refrigerant in the accumulator 24 is raised by using the heat of the low temperature side heat medium as a heat source.
 具体的には、この冷媒回収準備制御では、空調制御装置60が、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁を全開状態とする。また、空調制御装置60は、第1開閉弁15aを閉じ、第2開閉弁15bを閉じ、第3開閉弁15cを開き、第4開閉弁15dを開く。また、空調制御装置60は、予め定めた吐出能力を発揮するように圧縮機11を作動させる。 Specifically, in this refrigerant recovery preparation control, the air conditioning control device 60 fully opens the heating expansion valve 14a, fully closes the cooling expansion valve 14b, and fully opens the cooling expansion valve. Further, the air conditioning controller 60 closes the first opening / closing valve 15a, closes the second opening / closing valve 15b, opens the third opening / closing valve 15c, and opens the fourth opening / closing valve 15d. Further, the air conditioning control device 60 operates the compressor 11 so as to exert a predetermined discharge capacity.
 これにより、圧縮機11、(室内凝縮器12、暖房用膨張弁14a、気液分離器16、室外熱交換器20、冷却用膨張弁、)チラー、アキュムレータ24、圧縮機11の順に冷媒を循環させる冷媒回路が構成される。 As a result, the refrigerant is circulated through the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the gas-liquid separator 16, the outdoor heat exchanger 20, the cooling expansion valve, the chiller, the accumulator 24, and the compressor 11 in this order. A refrigerant circuit is configured to allow it.
 この冷媒回収準備制御では、暖房用膨張弁14aおよび冷却用膨張弁が全開状態となっているので、圧縮機11から吐出された冷媒は、殆ど温度上昇することなく、チラーへ流入する。チラーへ流入した冷媒は、冷却対象機器の排熱によって加熱された低温側熱媒体と熱交換して加熱される。チラーから流出した冷媒は、アキュムレータ24へ流入する。これにより、アキュムレータ24内の冷媒の温度を上昇させることができる。 In this refrigerant recovery preparation control, since the heating expansion valve 14a and the cooling expansion valve are fully open, the refrigerant discharged from the compressor 11 flows into the chiller with almost no temperature rise. The refrigerant flowing into the chiller is heated by exchanging heat with the low temperature side heat medium heated by the exhaust heat of the equipment to be cooled. The refrigerant flowing out from the chiller flows into the accumulator 24. Thereby, the temperature of the refrigerant in the accumulator 24 can be raised.
 冷凍サイクル装置の各構成機器は、上述の実施形態に開示されたものに限定されない。 Each component of the refrigeration cycle apparatus is not limited to the one disclosed in the above embodiment.
 例えば、上述の実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機11を採用しているが、二段昇圧式の圧縮機であれば種々の形式を採用することができる。例えば、中間圧ポート11bから流入させた中間圧冷媒を低圧から高圧へ圧縮過程の冷媒に合流させることができれば、1つの固定容量型の圧縮機構および圧縮機構を回転駆動する電動モータを、ハウジングの内部に収容して構成された電動圧縮機であってもよい。 For example, in the above-described embodiment, the compressor 11 in which two compression mechanisms are housed in one housing is adopted, but various types can be adopted as long as they are two-stage booster type compressors. For example, if the intermediate pressure refrigerant that has flowed in from the intermediate pressure port 11b can be combined with the refrigerant in the compression process from low pressure to high pressure, one fixed displacement type compression mechanism and an electric motor that rotationally drives the compression mechanism can be installed in the housing. It may be an electric compressor housed inside.
 さらに、低段側圧縮機及び高段側圧縮機を直列に接続することによって、1つの二段昇圧式の圧縮機11を構成してもよい。この場合は、低段側に配置される低段側圧縮機の吸入口を吸入ポート11aとし、高段側に配置される高段側圧縮機の吐出口を吐出ポート11cとする。そして、低段側圧縮機の吐出ポートと高段側圧縮機との吸入ポートとを接続する冷媒通路に中間圧ポート11bを設ければよい。 Further, one low-stage compressor 11 may be configured by connecting the low-stage compressor and the high-stage compressor in series. In this case, the suction port of the low-stage compressor arranged on the low-stage side is the suction port 11a, and the discharge port of the high-stage compressor arranged on the high-stage side is the discharge port 11c. Then, the intermediate pressure port 11b may be provided in the refrigerant passage that connects the discharge port of the low-stage compressor and the suction port of the high-stage compressor.
 また、上述の実施形態では、第2開閉弁15b、第3開閉弁15c、気液分離器16、固定絞り17を別体で構成した例を説明したが、図1、図3の破線で囲まれた構成機器を統合弁として一体化してもよい。この場合は、第2開閉弁15bとして、気液分離器16内の冷媒圧力と20の入口側冷媒圧力との圧力差によって開閉する差圧弁を採用してもよい。その他のサイクル構成機器についても適宜一体化を行ってもよい。 Further, in the above-described embodiment, the example in which the second opening / closing valve 15b, the third opening / closing valve 15c, the gas-liquid separator 16 and the fixed throttle 17 are separately configured has been described, but they are surrounded by broken lines in FIGS. 1 and 3. The integrated components may be integrated as an integrated valve. In this case, as the second on-off valve 15b, a differential pressure valve that opens and closes depending on the pressure difference between the refrigerant pressure in the gas-liquid separator 16 and the inlet side refrigerant pressure of 20 may be adopted. Other cycle constituent devices may be integrated as appropriate.
 また、上述の実施形態では、貯液部としてアキュムレータ24を採用した例を説明したが、さらに、アキュムレータ24内の冷媒を加熱する冷媒加熱部を備えていてもよい。このような冷媒加熱部としては、電気ヒータ等を採用することができる。そして、冷媒回収準備制御では、冷媒加熱部に通電することによって、アキュムレータ24内の冷媒の温度を上昇させるようにしてもよい。 Further, in the above-described embodiment, the example in which the accumulator 24 is adopted as the liquid storage unit has been described, but a refrigerant heating unit that heats the refrigerant in the accumulator 24 may be further provided. An electric heater or the like can be used as such a refrigerant heating unit. In the refrigerant recovery preparation control, the temperature of the refrigerant in the accumulator 24 may be raised by energizing the refrigerant heating section.
 また、上述の実施形態では、冷媒回収準備制御のステップS9にて、アキュムレータ24内の冷媒の温度に相関を有する物理量として第2冷媒温度T2を用いた例を説明したが、これに限定されない。実際にアキュムレータ24内の冷媒の温度を検出するアキュムレータ内温度検出部を備え、アキュムレータ内温度検出部の検出値を用いて冷媒回収準備制御を行ってもよい。 In the above embodiment, the example in which the second refrigerant temperature T2 is used as the physical quantity having a correlation with the temperature of the refrigerant in the accumulator 24 in step S9 of the refrigerant recovery preparation control has been described, but the present invention is not limited to this. An accumulator internal temperature detection unit that actually detects the temperature of the refrigerant in the accumulator 24 may be provided, and the refrigerant recovery preparation control may be performed using the detection value of the accumulator internal temperature detection unit.
 同様に、上述の実施形態では、冷媒回収準備制御のステップS4にて、圧縮機11から吐出された高圧冷媒の温度として第1冷媒温度T1を用いた例を説明したが、これに限定されない。実際に圧縮機11から吐出された直後の冷媒の温度を検出する吐出冷媒温度検出部を備え、吐出冷媒温度検出部の検出値を用いて冷媒回収準備制御を行ってもよい。さらに、高圧圧力Pdから圧縮機11から吐出された高圧冷媒の温度を推定して用いてもよい。 Similarly, in the above-described embodiment, the example in which the first refrigerant temperature T1 is used as the temperature of the high-pressure refrigerant discharged from the compressor 11 in step S4 of the refrigerant recovery preparation control has been described, but the present invention is not limited to this. A discharge refrigerant temperature detection unit that detects the temperature of the refrigerant immediately after being actually discharged from the compressor 11 may be provided, and the refrigerant recovery preparation control may be performed using the detection value of the discharge refrigerant temperature detection unit. Further, the temperature of the high pressure refrigerant discharged from the compressor 11 may be estimated from the high pressure Pd and used.
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 Further, in the above-described embodiment, an example in which R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Alternatively, a mixed refrigerant obtained by mixing plural kinds of these refrigerants may be adopted. Further, carbon dioxide may be adopted as the refrigerant to configure a supercritical refrigeration cycle in which the pressure of the high-pressure side refrigerant is equal to or higher than the critical pressure of the refrigerant.
 上述の実施形態では、要求部としてサービスツール71を採用した例を説明したが、要求部はこれに限定されない。例えば、要求部として、操作パネル70に冷媒回収準備制御の実行を要求するための専用のスイッチを設けてもよい。さらに、既存のスイッチの長押しや、複数のスイッチの同時押し等の組合せによって、冷媒回収準備制御の実行を要求するようにしてもよい。 In the above-described embodiment, the example in which the service tool 71 is adopted as the request unit has been described, but the request unit is not limited to this. For example, a dedicated switch for requesting execution of the refrigerant recovery preparation control may be provided on the operation panel 70 as the request unit. Furthermore, the execution of the refrigerant recovery preparation control may be requested by a combination of long pressing of existing switches and simultaneous pressing of a plurality of switches.
 上述の実施形態では、冷凍サイクル装置10を、ハイブリッド車両の車両用空調装置に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、エンジンから車両走行用の駆動力を得る通常の車両や走行用電動モータから車両走行用の駆動力を得る電気自動車用の車両用空調装置に適用してもよい。さらに、定置型の空調装置、冷温保存庫、給湯機等に適用してもよい。 In the above-described embodiment, the example in which the refrigeration cycle device 10 is applied to the vehicle air conditioner of the hybrid vehicle has been described, but the application of the refrigeration cycle device 10 is not limited to this. For example, the invention may be applied to a vehicle air conditioner for an ordinary vehicle that obtains a driving force for vehicle traveling from an engine or an electric vehicle for an electric vehicle that obtains a driving force for vehicle traveling from an electric motor for traveling. Further, it may be applied to a stationary air conditioner, a cold storage cabinet, a water heater, etc.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described according to the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than those, also fall within the scope and spirit of the present disclosure.

Claims (7)

  1.  冷媒の気液を分離して分離された液相冷媒を貯える貯液部(24)と、
     前記貯液部にて分離された気相冷媒を圧縮して吐出する圧縮機(11)と、を備える冷凍サイクル装置であって、
     サイクル内から前記冷媒を回収するために前記貯液部内の前記冷媒の温度を上昇させる冷媒回収準備制御を実行する回収準備制御実行部(60)を備える冷凍サイクル装置。
    A liquid storage part (24) for separating the gas-liquid of the refrigerant and storing the separated liquid-phase refrigerant;
    A refrigeration cycle apparatus comprising: a compressor (11) for compressing and discharging the gas-phase refrigerant separated in the liquid storage section,
    A refrigeration cycle apparatus comprising: a recovery preparation control execution unit (60) that executes a refrigerant recovery preparation control for increasing the temperature of the refrigerant in the liquid storage unit in order to recover the refrigerant from the cycle.
  2.  さらに、前記圧縮機にて昇圧された高圧冷媒を減圧させる減圧部(14a)と、
     サイクルの冷媒回路を切り替える冷媒回路切替部(15a~15d)と、を備え、
     前記冷媒回路切替部は、前記冷媒回収準備制御の実行時に、前記圧縮機、前記減圧部、前記貯液部、前記圧縮機の順に前記冷媒を循環させる冷媒回路に切り替える請求項1に記載の冷凍サイクル装置。
    Furthermore, a decompression unit (14a) for decompressing the high-pressure refrigerant that has been pressurized by the compressor,
    A refrigerant circuit switching unit (15a to 15d) for switching the refrigerant circuit of the cycle,
    The refrigeration circuit according to claim 1, wherein the refrigerant circuit switching unit switches to a refrigerant circuit that circulates the refrigerant in the order of the compressor, the pressure reducing unit, the liquid storage unit, and the compressor when the refrigerant recovery preparation control is executed. Cycle equipment.
  3.  さらに、前記減圧部の作動を制御する絞り開度制御部(60b)を備え、
     前記絞り開度制御部は、前記冷媒回収準備制御の実行時に、外気温(Tam)の低下に伴って、前記減圧部の絞り開度を減少させる請求項2に記載の冷凍サイクル装置。
    Furthermore, a throttle opening control section (60b) for controlling the operation of the pressure reducing section is provided,
    The refrigeration cycle apparatus according to claim 2, wherein the throttle opening control unit reduces the throttle opening of the decompression unit with a decrease in outside air temperature (Tam) during execution of the refrigerant recovery preparation control.
  4.  前記冷媒回収準備制御は、前記貯液部へ流入する前記冷媒の温度(T2)が予め定めた基準温度(KT)以上となっている温度上昇状態の経過時間(Tim)が、予め定めた基準経過時間(KTim)以上となるまで実行される請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 In the refrigerant recovery preparation control, the elapsed time (Tim) in a temperature rising state in which the temperature (T2) of the refrigerant flowing into the liquid storage section is equal to or higher than a predetermined reference temperature (KT) is a predetermined reference. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is executed until an elapsed time (KTim) or more is reached.
  5.  前記基準温度(KT)は、外気温(Tam)の上昇に伴って、高くなるように決定されている請求項4に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 4, wherein the reference temperature (KT) is determined so as to increase as the outside air temperature (Tam) rises.
  6.  さらに、前記圧縮機の作動を制御する吐出能力制御部(60a)を備え、
     前記吐出能力制御部は、前記冷媒回収準備制御では、前記圧縮機にて昇圧された高圧冷媒の温度が前記基準温度(KT)よりも高くなるように前記圧縮機の作動を制御する請求項4または5に記載の冷凍サイクル装置。
    Further, a discharge capacity control unit (60a) for controlling the operation of the compressor is provided,
    5. The discharge capacity control unit controls the operation of the compressor in the refrigerant recovery preparation control so that the temperature of the high-pressure refrigerant boosted by the compressor becomes higher than the reference temperature (KT). Alternatively, the refrigeration cycle apparatus according to item 5.
  7.  さらに、ユーザの操作によって前記冷媒回収準備制御の実行を要求する要求部(71)を備える請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, further comprising a request unit (71) that requests execution of the refrigerant recovery preparation control by a user operation.
PCT/JP2019/040581 2018-11-08 2019-10-16 Refrigeration cycle device WO2020095638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210306 2018-11-08
JP2018210306A JP7151394B2 (en) 2018-11-08 2018-11-08 refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2020095638A1 true WO2020095638A1 (en) 2020-05-14

Family

ID=70611263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040581 WO2020095638A1 (en) 2018-11-08 2019-10-16 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7151394B2 (en)
WO (1) WO2020095638A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472714B2 (en) * 2020-08-17 2024-04-23 株式会社デンソー Refrigeration Cycle Equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208465A (en) * 1989-02-03 1990-08-20 Daikin Ind Ltd Refrigerant recovering device
JPH076710B2 (en) * 1989-01-30 1995-01-30 ダイキン工業株式会社 Refrigerant recovery device
JPH0835749A (en) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd Refrigerant circuit
JP2000199660A (en) * 1998-12-28 2000-07-18 Daikin Ind Ltd Refrigerant recovering method and refrigerant recovering device
JP2005127542A (en) * 2003-10-21 2005-05-19 Mk Seiko Co Ltd Refrigerant treatment device
US20140182684A1 (en) * 2012-12-31 2014-07-03 Service Solutions U.S. Llc Refrigerant Removal Device and Method
JP2017026272A (en) * 2015-07-27 2017-02-02 三菱電機株式会社 Refrigerant recovery device
US20170321938A1 (en) * 2016-04-07 2017-11-09 Brain Bee S.P.A. Method and system for recovering coolant gas in an air conditioning system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076710B2 (en) * 1989-01-30 1995-01-30 ダイキン工業株式会社 Refrigerant recovery device
JPH02208465A (en) * 1989-02-03 1990-08-20 Daikin Ind Ltd Refrigerant recovering device
JPH0835749A (en) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd Refrigerant circuit
JP2000199660A (en) * 1998-12-28 2000-07-18 Daikin Ind Ltd Refrigerant recovering method and refrigerant recovering device
JP2005127542A (en) * 2003-10-21 2005-05-19 Mk Seiko Co Ltd Refrigerant treatment device
US20140182684A1 (en) * 2012-12-31 2014-07-03 Service Solutions U.S. Llc Refrigerant Removal Device and Method
JP2017026272A (en) * 2015-07-27 2017-02-02 三菱電機株式会社 Refrigerant recovery device
US20170321938A1 (en) * 2016-04-07 2017-11-09 Brain Bee S.P.A. Method and system for recovering coolant gas in an air conditioning system

Also Published As

Publication number Publication date
JP2020076546A (en) 2020-05-21
JP7151394B2 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP5949648B2 (en) Refrigeration cycle equipment
JP6277888B2 (en) Refrigeration cycle equipment
WO2014188674A1 (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
JP7516761B2 (en) Refrigeration Cycle Equipment
WO2020213537A1 (en) Refrigeration cycle device
JP7163799B2 (en) refrigeration cycle equipment
JP2018091536A (en) Refrigeration cycle device
WO2018088034A1 (en) Refrigeration cycle device
JP7159712B2 (en) refrigeration cycle equipment
JP2018118540A (en) Refrigeration cycle device
JP6225709B2 (en) Air conditioner
WO2020095637A1 (en) Vehicle air-conditioning device
WO2021095338A1 (en) Refrigeration cycle device
WO2020095638A1 (en) Refrigeration cycle device
WO2022181110A1 (en) Air conditioning device
JP6973539B2 (en) Refrigeration cycle device
JP2021124235A (en) Refrigeration cycle device
WO2018088033A1 (en) Refrigeration cycle device
WO2023074322A1 (en) Heat pump cycle device
WO2023248868A1 (en) Heat pump cycle apparatus
WO2024101062A1 (en) Vehicular heat pump cycle device
WO2023047981A1 (en) Heat pump cycle device
WO2023106020A1 (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881135

Country of ref document: EP

Kind code of ref document: A1