WO2020095619A1 - 熱式湿度測定装置 - Google Patents

熱式湿度測定装置 Download PDF

Info

Publication number
WO2020095619A1
WO2020095619A1 PCT/JP2019/040166 JP2019040166W WO2020095619A1 WO 2020095619 A1 WO2020095619 A1 WO 2020095619A1 JP 2019040166 W JP2019040166 W JP 2019040166W WO 2020095619 A1 WO2020095619 A1 WO 2020095619A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
thermal
mixing ratio
humidity measuring
humidity
Prior art date
Application number
PCT/JP2019/040166
Other languages
English (en)
French (fr)
Inventor
安藤 亮
丈夫 細川
文夫 結城
貴成 秋元
洋 小貫
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020556709A priority Critical patent/JPWO2020095619A1/ja
Publication of WO2020095619A1 publication Critical patent/WO2020095619A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers
    • G01N25/64Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers using electric temperature-responsive elements

Definitions

  • the present invention relates to a thermal humidity measuring device for measuring humidity.
  • Heat-type humidity measuring devices are used in various technical fields, and in internal combustion engines for automobiles, it is required to measure the humidity of intake air with high accuracy in order to reduce fuel consumption.
  • the thermal humidity measuring device measures humidity by using a change in heat conduction of air.
  • the change in heat conduction of air is measured by the amount of heat released by the heating element exposed to the air.
  • Patent Document 1 discloses a structure of a heat-conduction type gas sensor device that measures a physical or chemical change in gas by obtaining a change in heat radiation of the thin film from temperature change information of the thin film.
  • the thermal humidity measuring device outputs the water mixing ratio (g / kg) of the water contained in the air and the dry air.
  • the thermal humidity measuring device is shipped after the output characteristics are adjusted at the time of manufacture and the output error is adjusted to fall within a certain range. In the adjustment of the output characteristics, it is possible to obtain higher accuracy when the interval between the adjustment points of the water mixing ratio (adjustment point range) is adjusted in a wider range than in a narrow range.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a thermal humidity measuring device in which variations in output error are small.
  • the thermal humidity measuring device of the present invention for solving the above-mentioned problems is a thermal humidity measuring device including a humidity detecting unit having a heating resistor and a signal processing unit processing a signal from the humidity detecting unit.
  • the signal processing unit is characterized in that the output characteristic is adjusted by using a gas having a water mixing ratio larger than the water mixing ratio at a relative humidity of 100% at room temperature.
  • FIG. 1 is a diagram showing an example in which the thermal humidity measuring device of the present embodiment is used in an internal combustion engine for automobiles.
  • the thermal humidity measuring device 11 of the present embodiment is used in an internal combustion engine system 1 for an automobile.
  • the internal combustion engine system 1 has an engine 2 with a supercharger 15, and an intake passage 3 has an air cleaner 4, an air flow sensor 5, an intercooler 6, a throttle valve 7, an intake pipe in order from the upstream side. 8 is provided, and an exhaust catalyst 10 is provided in the exhaust passage 9.
  • a thermal humidity measuring device 11, a pressure sensor 12, and a temperature sensor 13 are attached to the intake pipe 8 to measure the humidity, pressure, and temperature of intake air taken into the engine 2.
  • FIG. 2 is a conceptual diagram showing a state in which the thermal humidity measuring device of this embodiment is attached to the intake passage of an internal combustion engine for automobiles.
  • the thermal humidity measuring device 11 has a casing 21 mounted on the attachment portion of the intake pipe 8, and a ceramic substrate 22 and a circuit substrate 23 housed in the casing 21.
  • a humidity sensor 24 is mounted on the ceramic board 22, and a thermistor 26 is connected to the circuit board 23 via a pre-mold guide 25.
  • circuit components such as LSI and memory are mounted on the ceramic substrate 22 and the circuit substrate 23.
  • the housing 21 is connected to an insertion portion 211 that is inserted from a mounting hole that is opened in the mounting portion of the intake pipe 8 and is disposed in the passage 8 a in the intake pipe 8 and a base end of the insertion portion 211. It has a main body portion 212 arranged outside the intake pipe 8. A housing chamber 213 for housing the ceramic substrate 22 and the circuit board 23 is provided in the main body portion 212.
  • the insertion portion 211 is provided with a communication passage 214 that communicates between the passage 8a in the intake pipe 8 and the accommodation chamber 213, and takes in intake air passing through the passage 8a in the intake pipe 8 into the accommodation chamber 213. Is able to.
  • the thermal humidity measuring device 11 includes a humidity detecting unit having a heating resistor and a signal processing unit that processes a signal from the humidity detecting unit.
  • the signal processing unit processes the signal from the humidity detecting unit to output the water mixing ratio (g / kg) of the water contained in the air and the dry air.
  • the thermal humidity measuring device 11 outputs a voltage (V) according to the water mixture ratio as a sensor output.
  • the humidity detector is composed of the humidity sensor 24.
  • the signal processing unit is composed of an LSI and a memory mounted on the ceramic substrate 22 and the circuit substrate 23.
  • the output characteristics are adjusted before shipping in order to eliminate individual differences and ensure uniform detection accuracy.
  • two points having different water mixing ratios are set as adjustment points, the thermal humidity measuring device 11 is arranged in a gas environment that realizes each adjustment point, and the humidity sensor 24 is set under such an environment.
  • the signal processing unit is adjusted so that the sensor output (V) of (1) falls within the range of the adjustment tolerance, and the adjustment value is stored in the memory.
  • FIG. 3 is a graph showing a variation range of the output error according to the adjustment point range
  • FIG. 3A shows a variation range of the output error when the output is adjusted by the adjustment method of the present embodiment
  • FIG. 3B is a diagram showing a variation range of the output error when the output is adjusted by the conventional adjustment method.
  • the output was adjusted by using only the gas within the range W0 of the water mixing ratio achievable at room temperature.
  • the thermal humidity measuring device 11 is arranged in an environment having a gas having a water mixing ratio of the adjustment point A21 to adjust the output 31, and after adjustment, is placed in an environment having a gas having a water mixing ratio of the adjustment point A22. Adjust the output 32.
  • the adjustment points A21 and A22 are both values within the water mixing ratio range W0 that can be achieved at room temperature.
  • Outputs other than the adjustment point range W1 are determined by extrapolation and interpolation. Since there are adjustment errors at the adjustment points A21 and A22, the larger the extrapolation from the adjustment points A21 and A22, the wider the interval between the upper limit value UL and the lower limit value DL of the output error and the greater the variation in the output error. ..
  • the output is adjusted under the environment of the water mixing ratio A12 that cannot be achieved at room temperature.
  • the thermal humidity measuring device 11 is arranged in an environment having a gas whose water mixing ratio is the adjustment point A11 to adjust the output 31.
  • the thermal humidity measuring device 11 is arranged in an environment having a gas whose water mixing ratio is the adjustment point A12, and the output 32 is adjusted.
  • the adjustment point A12 is a water mixing ratio higher than the water mixing ratio A0 that can be achieved at room temperature.
  • An environment having a gas having a water mixing ratio higher than the water mixing ratio A0 achievable at room temperature can be realized at an environmental temperature higher than room temperature.
  • the environmental temperature is raised until the high water content mixing ratio can be stably achieved, and the output is adjusted under such an environment.
  • the output is adjusted under the environment of the water mixing ratio that cannot be achieved at room temperature, and the adjustment point range W1 between the adjustment points A11 and A12 is smaller than that between the conventional adjustment points A21 and A22.
  • the output is adjusted within this wide adjustment point range W1. Therefore, the extrapolation from the adjustment points A11 and A12 can be reduced, and the variation of the output error in the extrapolation range can be reduced.
  • FIG. 4 is a graph showing an adjusting method when the sensor output has a bend
  • FIG. 4A shows an example of the sensor output adjusted by the adjusting method of the present embodiment
  • FIG. FIG. 5 is a diagram showing an example of a sensor output adjusted by a conventional adjusting method.
  • the characteristic variation of the sensor output includes the bending as shown in Fig. 6 in addition to the error due to the inclination and the intercept.
  • the output error may increase at a water mixing ratio higher than the water mixing ratio A0 achievable at room temperature.
  • the output of the sensor is adjusted within the adjustment point range W1 within the water mixing ratio range W0 that can be achieved at room temperature, so that the inclination of the sensor output Vo becomes large, and The output error of the sensor output Vo is increased in a range higher than the water mixing ratio A0 that can be achieved by.
  • the thermal humidity measuring device 11 in which the output has a bending error is adjusted in a narrow adjustment point range W1 within the water mixing ratio range W0 that can be achieved at room temperature as shown in FIG.
  • the error in the adjusted output characteristic becomes worse due to the error in the inclination adjustment target value.
  • the output is adjusted with a water mixing ratio that cannot be achieved at room temperature.
  • the thermal humidity measuring device 11 is arranged in an environment having a gas at the adjustment point A11 within the water mixing ratio range W0 that can be achieved at room temperature, and the output 31 is adjusted.
  • the thermal humidity measuring device 11 is arranged in an environment having a gas at the adjustment point A12 that is higher than the water mixing ratio range W0 that can be achieved at room temperature, and the output 32 is adjusted. Therefore, as shown in FIG. 4 (a), the inclination of the sensor output Vo is small, and no error of bending or more occurs between the lower limit value A13 and the upper limit value A14 of the water mixing ratio which is the measurement range W2. .. Therefore, it is possible to reduce variations in the output error in the extrapolation range.
  • FIG. 5 is a graph showing the relationship between environmental temperature and water mixture ratio.
  • the upper limit of the water mixing ratio is 20 g / kg at room temperature (25 ° C.) even when the relative humidity is 100% (100% RH). Therefore, in the conventional adjustment of the output within the water mixing ratio range W0 achievable at room temperature, the interval between the adjustment points is from 0 g / kg to 20 g / kg, which is extremely narrow, and the output is increased as the temperature rises. The variation of the error becomes large.
  • an environment with a high water content mixing ratio and an environment with a low water content mixing ratio are realized at a temperature at which a high water content mixing ratio can be stably generated, and the sensor output is adjusted.
  • the environmental temperature is 80 ° C.
  • the water mixing ratio can be up to 557 g / kg. Therefore, the interval between the adjustment points can be made wider than before, and the variation in output error can be reduced. Therefore, when the thermal humidity measuring device 11 is used in the internal combustion engine system for automobiles, the humidity of the intake air at a temperature higher than room temperature can be measured with high accuracy, and fuel consumption can be reduced.
  • FIG. 7 is a graph showing the setting range of the humidity output adjustment point
  • FIG. 8 is a graph showing the relationship between the water mixture ratio and the output voltage
  • FIG. 9 is a graph showing the relationship between the target output voltage and the output voltage. ..
  • the output characteristics are adjusted by using a gas having a water mixing ratio of 25% or more of the maximum water mixing ratio in the measurement range.
  • the output is adjusted by the voltage signal.
  • the water content ratio corresponds to 25% or more.
  • the maximum characteristic variation due to the adjustment becomes three times the adjustment point variation.
  • the maximum characteristic variation becomes small, and when the adjustment range and the output range are the same, the maximum characteristic variation becomes the same as the adjustment point variation.
  • the output of the thermal humidity measuring device 11 is adjusted within an adjustment range of 80% or more of the humidity measuring range W2. That is, the adjustment point range W1 is 80% or more of the humidity measurement range W2 (see FIG. 4).
  • the thermal humidity measuring device 11 when the adjustment point of the water mixing ratio is adjusted in a wide range, the variation of the output error is less likely to occur, and the point where the water mixing ratio is high (high humidity) is lower. Since the tolerance is narrower and stricter than (low humidity), it is easier to adjust when the water content is higher.
  • a gas having a water content mixing ratio larger than the water content mixing ratio at 100% relative humidity at room temperature and a gas having a water content mixing ratio smaller than the water content mixing ratio at 100% relative humidity at room temperature are used.
  • the output characteristics are adjusted accordingly. Thereby, the temperature characteristics can be confirmed by adjusting the water mixing ratios existing at both room temperature and a temperature higher than room temperature and by adjusting the same water mixing ratio.
  • FIG. 10 is a graph showing the relationship between the environmental temperature and the water mixture ratio, and illustrates the method of setting the adjustment point of the water mixture ratio in the present embodiment.
  • the output characteristics of the thermal humidity measuring device 11 are adjusted using a gas whose temperature is higher than room temperature and which can generate a water mixing ratio of 90% or less.
  • a gas whose temperature is higher than room temperature and which can generate a water mixing ratio of 90% or less.
  • the humidity control body falls below the dew point temperature (the temperature at which the relative humidity is 100%)
  • dew condensation occurs and the water mixing ratio decreases.
  • the outdoor temperature is 71 ° C., so that when the temperature falls below 71 ° C., dew condensation occurs and the water mixing ratio decreases. Therefore, it is difficult for the adjusting device that adjusts the output characteristics of the thermal humidity measuring device 11 to maintain the relative humidity of the environment in which the adjustment is performed at 100%.
  • the adjustment device that adjusts the output characteristics of the thermal humidity measuring device 11 has a tolerance even if it is subjected to constant temperature control because the temperature of the adjustment environment is affected by the external environment. For example, if the temperature tolerance is ⁇ 2%, 300 g / kg can be achieved at a relative humidity of 90% when the environmental temperature is 73.4 ° C. By controlling the temperature of the adjusting device to 73.4 ° C. ⁇ 2%, dew condensation in the adjusting environment can be prevented and the mixing ratio can be kept constant.
  • Adjustment of the output characteristics of the thermal humidity measuring device 11 is performed by the adjusting device.
  • the adjustment device has a storage chamber that stores the thermal humidity measurement device 11, and a temperature / humidity adjustment unit that adjusts the temperature and humidity environment in the storage chamber.
  • a temperature / humidity adjustment unit that adjusts the temperature and humidity environment in the storage chamber.
  • the thermal humidity measuring device 11 when the thermal humidity measuring device 11 is carried in and out of the storage chamber, or outside air may enter the storage chamber from a leak portion between the storage chamber and the outside of the storage chamber, and the water mixing ratio in the storage chamber may change. is there. Also in this case, if the conditioned air is made to flow into the storage chamber, the water mixing ratio changed by a slight gas exchange with the outside air can be returned to a predetermined value. Condensation does not easily dry even when air having a relative humidity of around 100% is flowed, but by using environmentally conditioned air whose relative humidity is lower than 100%, it becomes easy to dry the dew inside the adjusting device.
  • the temperature of the thermal humidity measuring device 11 is heated to a temperature higher than the dew point temperature of the environmentally conditioned air of the adjusting device, and the thermal humidity measuring device 11 is maintained at the temperature while maintaining the temperature. It is carried into the storage room and the humidity output characteristics are adjusted. As a result, it is possible to prevent the occurrence of dew condensation and prevent the change of the water mixing ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

出力誤差のばらつきが小さい熱式湿度測定装置を得ること。 本発明の熱式湿度測定装置11は、発熱抵抗体を有する湿度検出部と、該湿度検出部からの信号を処理する信号処理部と、を備える熱式湿度測定装置であって、前記信号処理部は、室温での相対湿度100%における水分混合比よりも大きい水分混合比の気体を用いて出力特性の調整が行われたものであることを特徴とする。

Description

熱式湿度測定装置
 本発明は、湿度を測定する熱式湿度測定装置に関する。
 熱式湿度測定装置は、種々の技術分野で使用されており、自動車用内燃機関においては、低燃費化を図るために吸入空気の湿度を高精度に計測することが求められている。熱式湿度測定装置は、空気の熱伝導の変化を用いて湿度計測を行う。空気の熱伝導の変化は、空気中に晒された発熱体の放熱量により測定される。特許文献1には、薄膜の放熱量変化を、薄膜の温度変化情報から得るようにして、気体の物理的又は化学的変化を計測する熱伝導型の気体センサ装置の構造が示されている。
特開2005-308676号公報
 熱式湿度測定装置は、空気中に含まれる水分と乾燥空気の水分混合比(g/kg)を出力する。熱式湿度測定装置は、製造時に出力特性の調整が行われ、出力誤差が一定の範囲に収まるように調整された後に出荷される。出力特性の調整では、水分混合比の調整点の間隔(調整点範囲)が狭い範囲で調整するよりも広い範囲で調整する方が高い精度を得られる。
 しかしながら、水分混合比の場合、室温では相対湿度を100%に調整しても、高混合比を達成することができず、水分混合比の調整点範囲を広くすることができない。したがって、出力特性の調整時に高混合比での調整ができず、出力誤差のばらつきを小さくすることが難しいという問題を有している。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、出力誤差のばらつきが小さい熱式湿度測定装置を提供することである。
 上記課題を解決する本発明の熱式湿度測定装置は、発熱抵抗体を有する湿度検出部と、該湿度検出部からの信号を処理する信号処理部と、を備える熱式湿度測定装置であって、前記信号処理部は、室温での相対湿度100%における水分混合比よりも大きい水分混合比の気体を用いて出力特性の調整が行われたものであることを特徴とする。
 本発明によれば、出力誤差のばらつきが小さい熱式湿度測定装置を提供することができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本実施形態の熱式湿度測定装置を自動車用内燃機関に適用した例を示す図。 本実施形態の熱式湿度測定装置を自動車用内燃機関の吸気通路に取り付けた状態を示す概念図。 調整点の範囲を示すグラフ。 水分混合比の測定範囲と調整点範囲と調整目標値を示すグラフ。 環境温度と水分混合比の関係を示すグラフ。 水分混合比の測定範囲を示すグラフ。 湿度出力調整点の設定範囲を示すグラフ。 水分混合比と出力電圧との関係を示すグラフ。 電圧と特性ばらつきとの関係を示すグラフ。 各温度における水分混合比の範囲を示すグラフ。
 次に、本発明の一実施形態について図面を用いて説明する。
 図1は、本実施形態の熱式湿度測定装置を自動車用内燃機関に用いた例を示す図である。
 本実施形態の熱式湿度測定装置11は、自動車用の内燃機関システム1に用いられる。
内燃機関システム1は、過給器15付きのエンジン2を有しており、その吸気通路3には、上流側から順番に、エアクリーナ4、エアフローセンサ5、インタークーラ6、スロットルバルブ7、吸気管8が設けられ、排気通路9には排気触媒10が設けられている。そして、吸気管8には、熱式湿度測定装置11と、圧力センサ12と、温度センサ13が取り付けられており、エンジン2に吸入される吸入空気の湿度、圧力、温度を測定する。
 過給器15を通過した吸入空気は、インタークーラ6によって冷却はされるが、エンジン2に吸入されるときの温度は室温よりも高温となる。熱式湿度測定装置11は、このような高温の吸入空気の湿度を検出するのに好適である。
 図2は、本実施形態の熱式湿度測定装置を自動車用内燃機関の吸気通路に取り付けた状態を示す概念図である。
 熱式湿度測定装置11は、吸気管8の取付部に装着される筐体21と、筐体21に収容されるセラミック基板22及び回路基板23を有している。そして、セラミック基板22には、湿度センサ24が実装されており、回路基板23にはプリモールガイド25を介してサーミスタ26が接続されている。また、セラミック基板22及び回路基板23には、やLSIやメモリ等の回路部品(図示せず)が搭載されている。
 筐体21は、吸気管8の取付部に開口して形成された取付孔から挿入されて吸気管8内の通路8aに配置される挿入部211と、挿入部211の基端に連続して吸気管8の外側に配置される本体部212を有している。本体部212には、セラミック基板22及び回路基板23を収容する収容室213が設けられている。挿入部211には、吸気管8内の通路8aと収容室213との間を連通する連通路214が設けられており、吸気管8内の通路8aを通過する吸入空気を収容室213に取り込むことができるようになっている。
 熱式湿度測定装置11は、発熱抵抗体を有する湿度検出部と、湿度検出部からの信号を処理する信号処理部を備えている。信号処理部は、湿度検出部からの信号を処理することによって、空気中に含まれる水分と乾燥空気の水分混合比(g/kg)を出力する。熱式湿度測定装置11は、水分混合比に応じた電圧(V)をセンサ出力として出力する。湿度検出部は、湿度センサ24によって構成される。信号処理部は、セラミック基板22及び回路基板23に搭載されているLSIやメモリによって構成される。
 次に、熱式湿度測定装置11の出力特性の調整方法について説明する。
 熱式湿度測定装置11は、個体差をなくして均一な検出精度を確保するために、出荷前に出力特性の調整が行われる。出力特性の調整作業では、水分混合比の異なる2点を調整点として設定し、それぞれの調整点を実現する気体の環境下に熱式湿度測定装置11を配置し、かかる環境下で湿度センサ24のセンサ出力(V)が調整公差の範囲に入るように信号処理部を調整し、その調整値をメモリに記憶させる作業が行われる。
 図3は、調整点範囲に応じた出力誤差のばらつき範囲を示すグラフであり、図3(a)は、本実施形態の調整方法により出力を調整した場合の出力誤差のばらつき範囲を示し、図3(b)は、従来の調整方法により出力を調整した場合の出力誤差のばらつき範囲を示す図である。
 従来は、図3(b)に示すように、室温で達成可能な水分混合比の範囲W0内の気体のみを用いて出力の調整を行っていた。例えば、水分混合比が調整点A21の気体を有する環境下に熱式湿度測定装置11を配置して出力31を調整し、調整後に水分混合比が調整点A22の気体を有する環境下に配置して出力32を調整する。調整点A21とA22は、いずれも室温で達成可能な水分混合比範囲W0内の値である。
 調整点範囲W1以外の出力は、外挿と補間により決定される。調整点A21とA22においてそれぞれ調整誤差があるので、調整点A21とA22からの外挿が多いほど、出力誤差の上限値ULと下限値DLとの間隔は広くなり、出力誤差のばらつきが大きくなる。
 これに対して、本実施形態では、図3(a)に示すように、室温で達成できない水分混合比A12の環境下で出力の調整を行う。例えば、水分混合比が調整点A11の気体を有する環境下に熱式湿度測定装置11を配置して出力31を調整する。次いで、水分混合比が調整点A12の気体を有する環境下に熱式湿度測定装置11を配置して出力32を調整する。調整点A12は、室温で達成可能な水分混合比A0よりも高い水分混合比である。
室温で達成可能な水分混合比A0よりも高い水分混合比の気体を有する環境は、環境温度を室温よりも高い温度で実現できる。本実施形態では、高水分混合比を安定して達成できるまで環境温度を高温化し、かかる環境下で出力の調整を行っている。
 本実施形態によれば、室温では達成できない水分混合比の環境下で出力の調整を行っており、調整点A11とA12の間の調整点範囲W1は、従来の調整点A21とA22の間よりも広く、この広い調整点範囲W1内で出力調整を行っている。したがって、調整点A11とA12からの外挿を少なくすることができ、外挿範囲での出力誤差のばらつきを小さくすることができる。
 図4は、センサ出力が曲がりを有する場合の調整方法を示すグラフであり、図4(a)は、本実施形態の調整方法により調整されたセンサ出力の例を示し、図4(b)は、従来の調整方法により調整されたセンサ出力の例を示す図である。
 センサ出力の特性ばらつきには、傾きと切片による誤差の他に、図6に示すような曲がりも含まれる。水分混合比と出力との関係が線形(直線状)に変化せず、非線形(カーブ状)に変化する場合、図4(b)に示すように、水分混合比の調整点範囲が狭いと、室温で達成可能な水分混合比A0よりも高い水分混合比において出力誤差が大きくなるおそれがある。
 例えば、図4(b)に示す例では、室温で達成可能な水分混合比範囲W0内の調整点範囲W1内で出力調整を行ったことにより、センサ出力Voの傾きが大きくなっており、室温で達成可能な水分混合比A0よりも高い範囲でセンサ出力Voの出力誤差が増大している。このように出力に曲がり誤差が生じている熱式湿度測定装置11を、図4(b)に示すような室温で達成可能な水分混合比範囲W0内の狭い調整点範囲W1で調整すると、曲がりによって傾きの調整目標値が誤差を持つことに起因して、調整された出力特性の誤差が悪化する。
 一方、本実施形態によれば、室温で達成できない水分混合比で出力の調整を行っている。例えば、室温で達成可能な水分混合比範囲W0内の調整点A11の気体を有する環境下に熱式湿度測定装置11を配置して出力31を調整する。次いで、室温で達成可能な水分混合比範囲W0よりも高い調整点A12の気体を有する環境下に熱式湿度測定装置11を配置して出力32を調整する。したがって、図4(a)に示すように、センサ出力Voの傾きが小さくなっており、測定範囲W2である水分混合比の下限値A13から上限値A14までの間において曲がり以上の誤差は生じない。したがって、外挿範囲での出力誤差のばらつきを小さくすることができる。
 図5は、環境温度と水分混合比の関係を示すグラフである。
 水分混合比は、図5に示すように、相対湿度を100%とした場合(100%RH)でも、室内温度(25℃)では20g/kgが上限である。したがって、従来の室温で達成可能な水分混合比範囲W0内における出力の調整では、調整点の間隔が0g/kgから20g/kgまでの間であり、極めて狭く、温度が高くなるに応じて出力誤差のばらつきが大きくなる。
 一方、本実施形態によれば、高水分混合比を安定して発生できる温度で高水分混合比の環境と低水分混合比の環境をそれぞれ実現し、センサ出力の調整が行われる。例えば環境温度を80℃とした場合、水分混合比を最大で557g/kgとすることができる。したがって、調整点の間隔を従来よりも広くすることができ、出力誤差のばらつきを小さくすることができる。したがって、自動車用の内燃機関システムに熱式湿度測定装置11を用いた場合に、室温よりも高い温度の吸入空気の湿度を高精度に測定することができ、低燃費化を図ることができる。
 図7は、湿度出力調整点の設定範囲を示すグラフ、図8は、水分混合比と出力電圧との関係を示すグラフ、図9は、目標出力電圧と出力電圧との関係を示すグラフである。
 熱式湿度測定装置11では、測定範囲の最大水分混合比の25%以上の水分混合比の気体を用いて出力特性の調整が行われている。本実施形態では、出力の調整は、電圧信号で行う。図8に示すように、水分混合比と出力電圧との関係は非線形であるため、電圧信号の50%以上を調整点とする場合、水分混合比では25%以上に相当する。
 電圧50%の範囲で調整すると、調整による最大特性ばらつきは調整点ばらつきの3倍になる。調整範囲を広げると最大特性ばらつきは小さくなり、調整範囲と出力範囲を同じにすると最大特性ばらつきは調整点ばらつきと同じになる。電圧信号の50%以上で調整することによって、出力特性のばらつきを調整ばらつきの3倍以内とすることができる。
したがって、生産された熱式湿度測定装置11の高水分混合比における出力特性の精度を向上できる。
 熱式湿度測定装置11は、湿度測定範囲W2の8割以上の調整幅で出力調整が行われている。つまり、調整点範囲W1は、湿度測定範囲W2の8割以上の大きさとなっている(図4参照)。熱式湿度測定装置11は、水分混合比の調整点を広い範囲で調整する方が出力誤差のばらつきが生じにくくなっており、また、水分混合比が高い点(高湿度)の方が低い点(低湿度)よりも公差が狭く厳しいので、水分混合比が高い点で調整する方が調整しやすい。
 また、本実施形態では、室温での相対湿度100%における水分混合比よりも大きい水分混合比の気体と、室温での相対湿度100%における水分混合比よりも小さい水分混合比の気体とを用いて、出力特性の調整を行っている。これにより、室温と室温よりも高い温度の両方に存在する水分混合比で調整し、同じ水分混合比で温度特性を確認することができる。
 図10は、環境温度と水分混合比との関係を示すグラフであり、本実施形態における水分混合比の調整点の設定方法を説明するものである。
 熱式湿度測定装置11は、室温よりも高温でかつ水分混合比を90%以下で発生できる温度の気体を用いて出力特性の調整が行われている。例えば、調湿気体が露点温度(相対湿度100%となる温度)を下回ると結露が発生し、水分混合比が低下してしまう。例えば、100kPaの圧力環境下で、300g/kgの水分混合比を達成する場合、露天温度は71℃なので、71℃以下になると結露が発生し、水分混合比が低下してしまう。したがって、熱式湿度測定装置11の出力特性を調整する調整装置において、調整を行う環境の相対湿度を100%に保つことは困難である。
 熱式湿度測定装置11の出力特性を調整する調整装置は、調整環境の温度が外部環境の影響を受けるため、定温度制御をしても公差が生じる。例えば温度公差が±2%とすると、環境温度を73.4℃とすれば相対湿度90%で300g/kgを達成できる。調整装置の温度を73.4℃±2%に制御すれば、調整環境における結露を防ぎ、混合比を一定に保つことができる。
 熱式湿度測定装置11の出力特性の調整は、調整装置により行われる。調整装置は、熱式湿度測定装置11を収容する収容室と、収容室内の温度及び湿度の環境を調整する温湿度調整部とを有している。調整装置は、調整する際の環境調湿空気の温度に比べて、収容室の温度や、収容室の内壁の温度が低い場合に、調整装置内で結露が発生し、収容室内の水分混合比が変化する可能性がある。そこで、調整装置では、環境調湿空気を流体として収容室内を流し、収容室内を環境調湿空気と同じ温度に調整している。収容室内において環境調湿空気を流体とすることにより、温湿調整部では、環境調湿空気の温度管理のみを精密に行えばよいので、管理が容易である。
 また、熱式湿度測定装置11の収容室内への搬入搬出時や、収容室内と収容室外との間のリーク部分から収容室内に外気が侵入し、収容室内の水分混合比が変化する可能性がある。この場合も、収容室内に調湿空気を流すようにすれば、外気との僅かな気体交換により変化した水分混合比も所定の値に戻すことができる。相対湿度が100%付近の空気を流しても結露は乾きにくいが、相対湿度が100%よりも低い環境調湿空気を用いることで、調整装置内の結露を乾かしやすくなる。
 湿度出力を調整する際の環境調湿空気の温度に比べて、調整される熱式湿度測定装置11の温度が露点温度未満の場合、調整される熱式湿度測定装置11の表面に結露が発生し、水分混合比が変化する可能性がある。したがって、本実施形態では、熱式湿度測定装置11の温度を、調整装置の環境調湿空気の露点温度より高い温度まで加熱し、その温度を保ったまま熱式湿度測定装置11を調整装置の収容室内に搬入して湿度の出力特性の調整を行っている。これにより、結露の発生を防ぎ、水分混合比が変化するのを防ぐことができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
11 熱式湿度測定装置

Claims (7)

  1.  発熱抵抗体を有する湿度検出部と、該湿度検出部からの信号を処理する信号処理部と、を備える熱式湿度測定装置であって、
     前記信号処理部は、室温での相対湿度100%における水分混合比よりも大きい水分混合比の気体を用いて出力特性の調整が行われたものであることを特徴とする熱式湿度測定装置。
  2.  前記信号処理部は、測定範囲の最大水分混合比の25%以上の水分混合比の気体を用いて出力特性の調整が行われたものであることを特徴とする請求項1に記載の熱式湿度測定装置。
  3.  前記信号処理部は、測定範囲の8割以上の調整幅で出力特性の調整が行われたものであることを特徴とする請求項1に記載の熱式湿度測定装置。
  4.  前記信号処理部は、室温での相対湿度100%における水分混合比よりも小さい水分混合比の気体を用いて出力特性の調整が行われたものであることを特徴とする請求項1に記載の熱式湿度測定装置。
  5.  前記信号処理部は、出力特性の調整を行う水分混合比を相対湿度90%以下で発生できる温度の気体を用いて出力特性の調整が行われたものであることを特徴とする請求項2に記載の熱式湿度測定装置。
  6.  前記信号処理部は、出力特性の調整を行う水分混合比に調整された流体を用いて出力特性の調整が行われたものであることを特徴とする請求項2に記載の熱式湿度測定装置。
  7.  調整装置内の環境調湿空気の露点温度よりも高い温度まで熱式湿度測定装置を加熱する工程と、
     調整装置内に前記熱式湿度測定装置を装着して湿度の出力特性の調整を行う工程と、
     を含む熱式湿度計測装置の調整方法。
PCT/JP2019/040166 2018-11-08 2019-10-11 熱式湿度測定装置 WO2020095619A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556709A JPWO2020095619A1 (ja) 2018-11-08 2019-10-11 熱式湿度測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018210550 2018-11-08
JP2018-210550 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020095619A1 true WO2020095619A1 (ja) 2020-05-14

Family

ID=70612086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040166 WO2020095619A1 (ja) 2018-11-08 2019-10-11 熱式湿度測定装置

Country Status (2)

Country Link
JP (1) JPWO2020095619A1 (ja)
WO (1) WO2020095619A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124551U (ja) * 1986-01-31 1987-08-07
JPH0232113U (ja) * 1988-08-19 1990-02-28
JP2002156348A (ja) * 2000-11-17 2002-05-31 Tabai Espec Corp 湿度センサの校正方法およびそれを用いた湿度センサ
JP2004286492A (ja) * 2003-03-19 2004-10-14 Japan Science & Technology Agency 気体センシングシステムとこれに用いる温度センサ
JP2008541118A (ja) * 2005-05-18 2008-11-20 ヴァイサラ オーワイジェー 相対湿度センサを較正するための方法及び装置
JP2015045515A (ja) * 2013-08-27 2015-03-12 日立オートモティブシステムズ株式会社 ガスセンサ装置
WO2015087644A1 (ja) * 2013-12-10 2015-06-18 日立オートモティブシステムズ株式会社 湿度計測装置
JP2016003965A (ja) * 2014-06-17 2016-01-12 新日本無線株式会社 湿度センサ検査装置
JP2018003621A (ja) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 内燃機関の制御装置
WO2018088019A1 (ja) * 2016-11-09 2018-05-17 日立オートモティブシステムズ株式会社 湿度センサおよびその製造方法
WO2018110140A1 (ja) * 2016-12-14 2018-06-21 日立オートモティブシステムズ株式会社 気体センサ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124551U (ja) * 1986-01-31 1987-08-07
JPH0232113U (ja) * 1988-08-19 1990-02-28
JP2002156348A (ja) * 2000-11-17 2002-05-31 Tabai Espec Corp 湿度センサの校正方法およびそれを用いた湿度センサ
JP2004286492A (ja) * 2003-03-19 2004-10-14 Japan Science & Technology Agency 気体センシングシステムとこれに用いる温度センサ
JP2008541118A (ja) * 2005-05-18 2008-11-20 ヴァイサラ オーワイジェー 相対湿度センサを較正するための方法及び装置
JP2015045515A (ja) * 2013-08-27 2015-03-12 日立オートモティブシステムズ株式会社 ガスセンサ装置
WO2015087644A1 (ja) * 2013-12-10 2015-06-18 日立オートモティブシステムズ株式会社 湿度計測装置
JP2016003965A (ja) * 2014-06-17 2016-01-12 新日本無線株式会社 湿度センサ検査装置
JP2018003621A (ja) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 内燃機関の制御装置
WO2018088019A1 (ja) * 2016-11-09 2018-05-17 日立オートモティブシステムズ株式会社 湿度センサおよびその製造方法
WO2018110140A1 (ja) * 2016-12-14 2018-06-21 日立オートモティブシステムズ株式会社 気体センサ装置

Also Published As

Publication number Publication date
JPWO2020095619A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP5094212B2 (ja) 熱式流量計と制御方法
US7458718B2 (en) Temperature sensor that achieves a fast response in an exhaust gas environment
US9995593B2 (en) Method for operating a sensor array
US7201048B2 (en) Measuring device for a flow sensor, in particular an air mass sensor for internal combustion engines and method for measuring air flows
US20080295575A1 (en) Gas flowmeter and engine control system
US11604100B2 (en) Temperature sensor module
WO2015151947A1 (ja) 湿度検出装置
US20060096305A1 (en) Fluid flowmeter and engine control system using the same
JPS60252139A (ja) エンジンの制御装置
US6230559B1 (en) Thermal type flow measuring instrument and temperature-error correcting apparatus thereof
WO2020095619A1 (ja) 熱式湿度測定装置
US7385161B2 (en) Method of estimating the temperature of an oxygen sensor heating element
JP2015087196A (ja) 温湿度センサ用ヒータの温度制御装置
JPS611847A (ja) 内燃機関の制御装置
JP2017528719A (ja) 高感度素子を備える計測プローブ
US10222248B2 (en) Platinum temperature sensor element
US20200158546A1 (en) Sensor for detecting at least one property of a fluid medium
WO2018147004A1 (ja) 絶対湿度センサ
US11467015B2 (en) Physical quantity measurement device
JP3394426B2 (ja) 発熱抵抗式流量測定装置、温度誤差補正システムおよび補正装置
JPH0236921Y2 (ja)
JP3095322B2 (ja) 熱式空気流量検出装置
US20200340839A1 (en) Air flow rate measurement device
JP4914226B2 (ja) 気体流量計
KR820002255B1 (ko) 공기유량 측정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881913

Country of ref document: EP

Kind code of ref document: A1