WO2020091011A1 - 超音波探触子およびこれを用いた被検配管厚測定方法 - Google Patents

超音波探触子およびこれを用いた被検配管厚測定方法 Download PDF

Info

Publication number
WO2020091011A1
WO2020091011A1 PCT/JP2019/042919 JP2019042919W WO2020091011A1 WO 2020091011 A1 WO2020091011 A1 WO 2020091011A1 JP 2019042919 W JP2019042919 W JP 2019042919W WO 2020091011 A1 WO2020091011 A1 WO 2020091011A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
ultrasonic probe
ultrasonic
inspected
reflected
Prior art date
Application number
PCT/JP2019/042919
Other languages
English (en)
French (fr)
Inventor
崇雄 伊能
Original Assignee
株式会社ハイボット
荏原環境プラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハイボット, 荏原環境プラント株式会社 filed Critical 株式会社ハイボット
Priority to EP19877632.0A priority Critical patent/EP3875896A4/en
Priority to CN201980072067.7A priority patent/CN112997047B/zh
Priority to US17/309,164 priority patent/US20220011099A1/en
Publication of WO2020091011A1 publication Critical patent/WO2020091011A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to an ultrasonic probe and a method for inspecting the thickness of a pipe to be inspected by the ultrasonic probe.
  • ultrasonic flaw detection has been known as one of nondestructive inspections.
  • the ultrasonic flaw detection is to detect a flaw inside the test body, a thickness of a pipe, or the like by injecting an ultrasonic wave into the test body and detecting a reflected wave or a transmitted wave of the ultrasonic wave.
  • an inspection device is inserted into the pipe through the opening attached to the main pipe, and the inserted device inspects the pipe for damage, cracks, cracks, reduction in pipe thickness, etc.
  • a method of inspecting using an ultrasonic probe is disclosed, and an example in which an ultrasonic probe is generally used as a flaw detection device is disclosed.
  • Patent Document 1 discloses a pipe thickness measuring device for a pipe that is used for a pipeline or the like to measure the pipe thickness from inside the pipe using an ultrasonic probe.
  • the pipe thickness In measuring the pipe thickness of a pipe used in a pipeline, according to the conventional technique, it is possible to accurately measure the pipe thickness when the transported product of the pipeline is a liquid, but when the transported product is a gas, the pipe thickness is measured. Since it is difficult to fill the liquid in the line, it was not possible to measure the tube thickness using ultrasonic waves.
  • Patent Document 1 by embedding an ultrasonic probe in an annular seal cup that is pressed against the inner peripheral surface of the tube, the tube thickness can be accurately measured from the inside without filling the tube with liquid.
  • An object is to provide a tube thickness measuring device for a tube.
  • the pipe thickness measuring device has a ring-shaped seal cup formed of an elastic material and having an outer peripheral surface press-contacted with the inner peripheral surface of the pipe on a moving body that moves in the pipe in the axial direction.
  • the ultrasonic waves transmitted from this ultrasonic probe are transmitted on the inner peripheral surface of the pipe.
  • the tube thickness of the tube is obtained from the difference in the time of incidence on the ultrasonic probe between the reflected ultrasonic wave and the ultrasonic wave reflected on the outer peripheral surface of the tube.
  • Patent Document 2 is an apparatus for measuring the wall thickness of a tube that is inserted into a tube to be measured so as to be movable in the axial direction, and between two disc-shaped flanges having an outer diameter smaller than the inner diameter of the tube.
  • a cylindrical rotating body that rotates by water flow is attached to the inside of this rotating body, and an acoustic mirror that refracts ultrasonic waves emitted in the tube axial direction in the tube radial direction is built into this rotating body, and the front side flange faces the acoustic mirror.
  • a tube wall thickness measuring device and the like which is equipped with an ultrasonic probe that emits ultrasonic waves.
  • the tube thickness measuring device While moving the tube thickness measuring device inside the tube as the object to be measured in the axial direction, water is supplied from the rear side flange into the rotating body and the rotating body is rotated by the water flow ejected from the ejection port in the circumferential direction.
  • the ultrasonic wave emitted from the ultrasonic probe in the axial direction of the tube is refracted in the radial direction of the tube through the acoustic mirror, so that the ultrasonic wave is spirally moved in the axial direction on the inner surface of the tube and the total length of the tube is increased.
  • the wall thickness is measured over the entire circumference.
  • Patent Document 3 relates to an ultrasonic probe used for ultrasonic probe flaw detection inspection of a pipe, and in the ultrasonic probe of the prior art, the ultrasonic probe inserted inside the pipe is used.
  • the ultrasonic beam emitted from the oscillator of the child is refracted when entering the inside of the tube, but the emitting surface of the oscillator forms a flat surface, while the ultrasonic beam to be inspected enters the tube. Since the incident surface is curved, the incident angle differs depending on the position of the oscillator, so the beam entering the inside of the tube is diffused, and there is a problem that a clear reflected beam cannot be obtained. ..
  • the tube axis of the pipe is When viewed in the extension direction, by using a vibrator with a concave curved surface facing the inner peripheral surface of the pipe, the ultrasonic beam emitted from the vibrator does not depend on the position of the vibrator and It is designed to be focused on a point on the inside and propagate inside the tube without being diffused after entering the tube, so that the ultrasonic beam can propagate in a converged state inside the tube. It is a thing.
  • the ultrasonic probe is pressed against the inner peripheral surface of the pipe at a plurality of positions on the circumference of the seal cup. It is placed so that it is embedded in the annular seal cup.
  • the ultrasonic wave transmitted from this ultrasonic probe and reflected on the inner peripheral surface of the tube and the ultrasonic wave reflected on the outer peripheral surface of the tube are different from each other in terms of the time required for the ultrasonic probe.
  • the pipe thickness is calculated.
  • the pipe thickness measuring device of Patent Document 1 does not use water as a propagation medium, it is necessary to have a structure in which a plurality of probes are embedded in an annular seal cup that is pressed against the inner peripheral surface of the pipe.
  • Such an ultrasonic probe can be used only for a pipe of a certain specific diameter, and when the diameter of the pipe to be inspected changes, the diameter of the seal cup in which the ultrasonic probe is embedded is changed. It is necessary to match the diameter of the target pipe, and the pipe thickness measuring device is not versatile. Further, in the ultrasonic probe of Patent Document 1 arranged at a plurality of positions on the circumference of the seal cup, although a plurality of probes are arranged, the entire inner peripheral surface of the pipe is continuously inspected without leakage.
  • Patent Document 1 and FIG. 3 Cannot be done (see Patent Document 1 and FIG. 3). Further, since the movement of the ultrasonic probe inside the tube is performed by compressed air (Patent Document 1, page (3), upper left column), the inside of the pipe of the ultrasonic probe (Pig 2 of Patent Document 1) is moved by the water flow. Its control is restricted compared to movement.
  • the wall thickness measuring device of Patent Document 2 measures the wall thickness of the tube from the inside of the tube with an ultrasonic probe while moving inside the tube which is the object to be measured.
  • the wall thickness measuring device is equipped with a cylindrical rotating body which is rotated by a water flow between two disc-shaped flanges having an outer diameter smaller than the inner diameter of the tube, and the ultrasonic wave emitted in the tube axial direction inside the rotating body.
  • a built-in acoustic mirror inclined at 45 degrees and by emitting and receiving ultrasonic waves toward the acoustic mirror from the ultrasonic probe attached to the front side flange, Measure the wall thickness. Then, the movement is performed by being pulled by the pulling cord member.
  • the ultrasonic wave transmitted from the ultrasonic probe is reflected and bent by the acoustic mirror provided inside the rotating body. Since it is moving forward, there is a gap in the inspection site of the tube by ultrasonic waves, and there is a possibility that some parts may be missed depending on the moving speed of the wall thickness measuring device and the rotating speed of the acoustic mirror. In addition, since the rotating body is rotated by the pressure of the ejected water from the (water) ejection hole provided in the rotating body, the generation of bubbles in the water flow is also a concern. This is a structure in which the rotating body is rotated by the water flow supplied from the water supply pipe, and the device becomes complicated.
  • the ultrasonic probe of Patent Document 3 has a concave curved surface facing the inner peripheral surface of the tube when viewed in the tube axis extension direction of the tube in the transducer of the ultrasonic probe inserted inside the tube.
  • the concave curved shape of the transducer with the concave curved surface formed by the tentacle is such that the ultrasonic beam emitted from the transducer converges on a certain point inside the tube regardless of the position of the transducer.
  • it has a concave shape (Figs. 1 and 2). Therefore, the ultrasonic probe of Patent Document 3 does not vertically enter the inner wall of the tube of the ultrasonic test body.
  • an ultrasonic probe is an ultrasonic probe for moving the inside of a pipe by water flow pressure to detect an abnormality of the pipe from the inside of the pipe and measure the pipe thickness.
  • a tentacle which oscillates an ultrasonic wave toward the tube wall and receives an echo signal reflected by the tube wall, along the periphery of the columnar body, a plurality of transducers are arranged,
  • the oscillator is characterized by being curved according to the shape inside the pipe.
  • a plurality of transducers of the ultrasonic probe are arranged, and the transducers are curved according to the shape of the inside of the pipe.
  • the ultrasonic probe of the present invention can arrange a plurality of curved transducers along the periphery of the columnar body, for example, the ultrasonic transducers can be arranged continuously along the periphery of the columnar body.
  • the ultrasonic probe is supported by a levitation and guide device that is buoyant and has resistance to buoyancy and water flow pressure that are placed before and after it as necessary, and Since it has a closed structure that does not enter, it can easily float and move inside the pipe due to the water flow, and easily inspect the pipe to be inspected.
  • the ultrasonic probe of the present application is an ultrasonic probe for measuring the pipe thickness of the test pipe from the inside of the pipe by moving the inside of the pipe, a) A column-shaped airframe, b) a plurality of vibrators arranged around the pillar-shaped body, c) a portion for aligning the center of the test pipe with the center of the airframe, d) a part for realizing the movement of the airframe in the pipe, It is characterized in that the vibrator is curved according to the shape of the pipe.
  • transducers may be arranged around the body in a concentric pattern with respect to the center of the body.
  • the ultrasonic probe of the present application is arranged so that the transducer arranged in the airframe applies ultrasonic waves perpendicularly to the wall in the pipe to be tested and can detect reflected waves reflected vertically. May be.
  • the ultrasonic probe of the present application is such that the airframe has a cylindrical shape, the ultrasonic waves hit the wall in the pipe under test perpendicularly, and so as to detect the reflected wave reflected vertically, a circular ring is formed around the airframe.
  • a curved oscillator may be arranged in a curved manner so as to be along the body at the provided portion.
  • the ultrasonic probe of the present application can be used for a method of measuring the pipe thickness of a test pipe by a columnar ultrasonic probe, and the method is 1) a step of inserting an ultrasonic probe having a plurality of curved transducers arranged around the fuselage into a test pipe, 2) a step of applying an ultrasonic wave perpendicularly to the wall in the test pipe by the ultrasonic probe, and detecting a reflected wave of the ultrasonic wave, 3) The step of determining the pipe thickness of the test pipe can be included.
  • the ultrasonic probe of the present application can be moved in the pipe by the water flow pressure, and the column-shaped airframe is arranged coaxially with the pipe to be inspected by the airframe stable holding body, and around the column-shaped airframe. Since a plurality of transducers arranged along it are curved according to the shape of the inside of the pipe, the ultrasonic waves oscillated from the transducer are incident perpendicularly to the pipe wall to be inspected and Since the reflected echo signal is also reflected back vertically from the incident pipe wall, more clear data can be obtained without scattering and interference of the oscillated ultrasonic wave and reflected wave.
  • the ultrasonic probe of the present application can replace the portion provided with the machine body stable holder according to the diameter of the pipe to be inspected, it is possible to inspect pipes of various different diameters and replace parts of the device. There is a significant effect that can be done by.
  • the ultrasonic probe provided with a vibrator formed in a ring shape around the body of the present invention shows a beam transmission and reflection path when a beam is emitted vertically from the inside of the pipe to the inner surface of the pipe.
  • body by 1st Embodiment of this invention is shown.
  • FIG. 11 is a perspective view showing an example of rear fins provided at the rear of the machine body for smoothly moving the machine body in another embodiment of the present invention.
  • FIG. 11 is a perspective view showing an example of a side surface wing provided on a side surface of a machine body for stably moving the machine body in another embodiment of the present invention.
  • FIG. 11 is a perspective view showing an example of a roller provided on a side surface of a machine body and grounded to an inner surface of a pipe to be tested in another embodiment of the present invention.
  • It is a perspective view showing an example of the levitation connection object of the present invention connected with the machine body with the flexible connection cord.
  • It is a schematic diagram which shows a mode that the floating connection body connected with the machine body provided with the vibrator of this invention by the flexible connection string passes the bending part of the pipe to be tested.
  • FIG. 11 is a perspective view showing an example of a side surface wing provided on a side surface of a machine body for stably moving the machine body in another embodiment of the present invention.
  • FIG. 11 is a perspective view showing an example of a roller provided on a side surface of a machine body and grounded to an
  • an ultrasonic probe having a fuselage stability holder in which movable joints are covered with elastic coils in front of and behind the fuselage.
  • FIG. 1 shows a conventional ultrasonic probe having a columnar body 30 and one or a plurality of flat plate-shaped transducers 20 arranged along the periphery of the columnar body in a pipe to be detected. Shows the inserted state.
  • FIG. 2 shows an ultrasonic probe including a columnar body 3 of the present invention and one or a plurality of curved transducers 2 arranged along the periphery of the columnar body inserted into a pipe to be inspected. The state is shown.
  • the shape and material of the airframe are such that the airframe can be inserted into the pipe to be inspected, the airframe can move along the longitudinal direction of the pipe in a state of being stably levitated by running water, and It is preferable that the material has a length that allows the bending portion to be bent and has a certain degree of flexibility necessary for bending the bending portion.
  • the columnar machine body does not necessarily have to be a columnar shape, but it is preferably a columnar shape considering that the boiler tube to be inspected has a generally circular cross section.
  • a guide portion 5 for inserting the ultrasonic probe is provided at the tip portion in the traveling direction of the machine body (FIG. 3).
  • the guide portion 5 may have any shape as long as it facilitates insertion of the ultrasonic probe into the pipe to be inspected, but the ultrasonic probe moves or advances in the pipe due to running water.
  • a front surface portion that is smaller than the diameter of the target pipe to be inspected, and the cross section of the front surface portion is concentric in a cross section perpendicular to the central axis of the pipe to be inspected. It may be circular.
  • the center portion of the front surface of the machine body may have a rounded conical shape (triangular shape in a side view) with a rounded tip end with respect to the traveling direction of the machine body.
  • a fuselage stabilizer 4 is provided as a buffer portion between the two.
  • the central portion and the peripheral portion of the front surface of the machine body have a shape that smoothly transitions to the machine body stable holding body 4.
  • the fuselage stability holder 4 for holding the fuselage 3 in the central portion of the pipe to be inspected is, in a side view, an umbrella-like, elastic, for example, metallic coarse mesh-like one, and is a fuselage-stabilizing body. Since the holding body 4 allows the central axis of the machine body in the longitudinal direction to be aligned with the center axis of the pipe (test pipe), a vibrator arranged in a ring around the machine body is transmitted from the vibrator. The sound beam can be radiated vertically to the pipe wall, and since the airframe stabilizer has a rough mesh shape, the water flow that has passed through the mesh does not hinder between the airframe and the pipe wall, and it smoothly runs. Water, which is a sound wave propagating substance, is always present between the oscillator that can flow and is annularly arranged around the airframe and the inspection target portion of the pipe to be inspected.
  • the machine body stable holding body 4 can perform the function of stabilizing the machine body 3 in the center of the tube, as described above, from the front part of the machine body in a side view, obliquely rearward, in an umbrella shape, for example, It does not need to be a coarse mesh having metallic elasticity, and the central axis of the machine body 3 in the longitudinal direction can be aligned with the center axis of the pipe (test pipe), so that the water flow can be caused by the machine body and the pipe wall. Any shape, material, etc. may be used as long as it can smoothly flow through the gaps. As one aspect of the present invention, rectangular members made of a flexible material may be arranged at equal intervals on the circumference of the airframe (FIG. 12).
  • the longitudinal central axis of the fuselage 3 is aligned with the central axis of the pipe (test pipe) at the longitudinal rear portion of the fuselage 3 so that the water flow smoothly through the fuselage between the pipe walls. Therefore, a rough mesh-shaped ring body (rear body body stable holding body 4b) having metallic elasticity, which is similar to the fuselage stable holding body in front of the body, can be provided.
  • the longitudinal central axis of the fuselage can be aligned with the central axis of the pipe (test pipe), like the fuselage stabilizer in the front of the fuselage. It enables the water flow to smoothly flow through the airframe between the pipe walls without being obstructed. Similar to the fuselage stabilizer on the front side of the fuselage, the shape and the material thereof are not limited as long as the above effects can be exhibited.
  • the front body stable holding body 4a or the rear body stable holding body 4b continuously provided to the guide portion on the front surface of the body and the rear body stable holding body 4b are both the body body in which the vibrator provided in an annular shape is arranged around the body body.
  • the ultrasonic probe provided with the same machine body and the transducer 2 arranged therein can be used for pipes having various different diameters for inspection.
  • the vibrator 2 is curved in accordance with the shape of the pipe to be inspected, and the transmitted sound wave is radiated substantially perpendicularly to the inner wall of the pipe to be inspected. Therefore, the reflected wave thereof is also reflected vertically. Therefore, clear test results can be obtained.
  • the transmitter, receiver, controller, power supply device, etc. for transmitting and receiving ultrasonic waves by the ultrasonic probe, considering the weight, capacity, and restrictions due to the diameter of the pipe to be tested, etc.
  • it can be housed in a waterproof floating connection body 9 connected to the machine body by a flexible connection cord.
  • the aspect in which the position inside the pipe to be measured is measured by the wire extending from the rear part is also within the scope of the invention.
  • the levitation guide device is installed at equal intervals on the wire so that it can be easily inserted into the pipe to be tested due to the resistance of running water, or the length of the wire remaining outside. From this, the position of the ultrasonic probe in the pipe to be inspected can be determined (FIG. 12).
  • the body 3 of the ultrasonic probe can be inserted into the pipe to be inspected to be inspected, and while being moved by the water flow sent from behind, the thickness of the pipe to be inspected can be ultrasonically inspected by the transducer 2.
  • the shape, the material, etc. are not particularly limited as long as they can be processed.
  • the cross section of the pipe to be inspected is circular, it is preferable that the cross section of the machine body 3 is also a columnar shape having a diameter smaller than the diameter of the cross section of the pipe to be inspected, but a cylindrical shape. It is not limited to.
  • the diameter of the body 3 is not particularly limited as long as the ultrasonic probe can freely move inside the pipe to be inspected by the water flow, but it is moved by the pressure of the water flow 13 from behind.
  • the vibrator 2 when it is predicted that the vibrator 2 is annularly arranged around the machine body, it is desirable that the vibrator 2 has at least a certain diameter or more in correspondence with this.
  • the width (or diameter) of the cross section in the direction perpendicular to the traveling direction of the machine If it can be made close to the inner diameter of the pipe to be inspected, it becomes easy to be influenced by the pressure of flowing water, and the movement of the ultrasonic probe becomes easy.
  • the material and weight of the body of the ultrasonic probe can move in water without being subjected to excessive buoyancy or excessive gravity in water, it is almost the same as water.
  • the material is not limited to this, and any material, volume, and weight that allow the water to move without hindrance may be used.
  • a pulse transmission unit, a reception unit, a power supply unit, a control unit, and the like for the pulse with the transducer 2 of the ultrasonic probe may be provided inside the airframe (not shown), and may be provided separately from the airframe. In some cases, it is arranged on the levitating connector 9 which is connected to the airframe by a flexible connecting cord (FIGS. 9 and 10). In either embodiment, they are waterproof to protect them from water ingress. In this case, the power supply cable 30 and the like are simultaneously provided on the flexible connecting cord that connects with the machine body 3, but naturally the power supply cable 30 and the like are also waterproof.
  • the ultrasonic flaw detector of the present invention can be inserted into the pipe to be inspected with a wire, and the insertion position can be determined from the length of the wire outside the pipe to be inspected.
  • the structure for contacting the pipe wall and aligning the central axis of the machine with the pipe to be inspected is a bundle of flexible resin fibers.
  • the fuselage stability holders at the front and rear of the fuselage can bend themselves, it is advantageous for movement in the pipe to be inspected having a bend.
  • the fuselage 3 When moving by running water, the fuselage 3 stabilizes its position with respect to the pipe to be inspected, which is a measurement target, and has an effect of suppressing rotation of the fuselage about its axis.
  • One or more side wings 12 (FIG. 7) made of an elastic body may be provided along the axial direction of. The height of the side wings 12 is smaller than the distance between the side surface of the airframe and the inner surface of the pipe to be inspected, and does not come into contact with the inner surface of the pipe to be inspected when the airframe is moved. It may be of any shape as long as it has an effect of suppressing the rotation of the airframe around the axis when flowing on the side surface, and may be, for example, a shape such as a vertical tail which is generally found in an aircraft or the like.
  • the body 3 is moved by the pressure of the flowing water from the rear direction, but the shape of the rear part of the body 3 has a side view so that the pressure of the flowing water 13 against the body 3 can be more appropriately given to the body.
  • the central portion of the vertical surface may be concave toward the inside in the axial direction of the machine body (FIG. 6A).
  • the concave shape portion may be further extended beyond the portion intersecting with the rear side surface of the body body 3 (rear cover 6 ), Because of such a shape, the area of the rear part of the body to which the pressure of the flowing water is applied for the forward movement of the body 3 due to the flowing water from the back direction becomes large, so that the stable movement of the body is realized. Can be done (Fig. 6B).
  • the material thereof is preferably elastic.
  • the ultrasonic probe of the present application has a wire connected to the outside of the pipe from the rear portion thereof, and the ultrasonic probe can be pulled out of the pipe by the wire as necessary.
  • the roller 10 on the side surface of the machine body that comes into contact with the inner surface of the pipe to be inspected, the position of the ultrasonic probe after being inserted into the pipe to be inspected can be accurately known.
  • the roller 10 is attached to the side surface of the machine body, and when the machine body is inserted into the pipe to be inspected, the roller wheel is configured to contact the inner surface of the pipe to be inspected by a spring biased by the roller 10. Therefore, by measuring the number of rotations of the vehicle, it is possible to accurately know the position of the ultrasonic probe after being inserted into the pipe to be inspected (FIG. 8).
  • the aspect in which the position inside the pipe to be measured is measured by the wire extending from the rear part is also within the scope of the invention (FIG. 12).
  • the levitation guide device is installed at equal intervals on the wire so that it can be easily inserted into the pipe to be tested due to the resistance of running water, or the length of the wire remaining outside. From this, the position of the ultrasonic probe in the pipe to be inspected can be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【解決課題】 平板状の振動子が配列されている超音波探触子により、配管の内部から配管の内側表面にビームを発射した場合、振動子が平板形状をしているため、管状の管壁から反射された信号は振動子に真っすぐ返ってくるとは限らず、反射波に散乱、干渉が発生する。 【解決手段】 本願発明の超音波振動子は配管内形状に合わせて湾曲されているため、振動子から発振された超音波は、管壁に垂直に照射され、またそれらの反射エコー信号も、照射された管壁から、垂直に反射されて返ってくるため、管壁に対して、斜角の位置に配置された平板状振動子から発振された超音波、及び反射波の場合に比べて散乱、干渉が起きることも少なく、管の厚さに対応した波長の超音波を選択することにより明確なデータを得ることができる。

Description

超音波探触子およびこれを用いた被検配管厚測定方法
  本発明は、超音波探触子および該超音波探触子により被検配管厚を検査する方法に関する。
  従来より、非破壊検査の一つとして、超音波探傷が知られている。超音波探傷とは、試験体内部に超音波を入射し、その超音波の反射波または透過波を検出することにより、試験体内部の疵、配管の厚さなどを検出することをいう。
  各種ボイラーは通常高温・高圧の流体を通す過酷な環境で使用されるため損傷を受けることがあり、ボイラーに使用される管体の傷や、ひび、割れ、管厚減少を定期的に検査することが必要である。ボイラー管を切断して切断箇所から検査器具を挿入して管体の傷や、ひび、割れ、管厚減少などを検査する方法では、ボイラー管を切断し、また検査した後に元の形に修復するために多大の時間及びコストが掛かり好ましくない。また、ボイラー管によっては、配管が輻輳していたり、検査対象となる被検配管が外部から接近が困難な場合もある。
  そのため、主要配管に取り付けられている開口部から管内に検査用装置を挿入して、挿入された装置により管内から管体の傷や、ひび、割れ、管厚減少などを検査する探傷装置及びそれを用いて検査する方法が開示されており、また、探傷装置としては、一般的に超音波探触子を使用する例が開示されている。
特開昭62-83608 特開2002-365033 実開平04-051658
  特許文献1は、パイプラインなどに使用される管の管厚を管内部から超音波探触子を用いて測定する、管の管厚測定装置を開示している。パイプラインに使用される管の管厚の測定において、従来技術では、パイプラインの輸送物が液体の場合は精度良く管厚を測定することが可能であるが、輸送物が気体の場合はパイプライン内に液体を充満させることは困難であるので、超音波を利用して管厚を測定することはできなかった。特許文献1の発明は、管の内周面に圧接される環状のシールカップに超音波探触子を埋設することによって、管内に液体を充満させなくとも、内部から管厚を正確に測定できる管の管厚測定装置を提供することにある。その管厚測定装置は、管の内部を軸方向に移動する移動体に、外周面が管の内周面に圧接されるとともに弾性材で形成された環状のシールカップを搭載し、このシールカップの周上複数位置に、対向する管の内周面に対して超音波送信する複数の超音波探触子を埋設することによって、この超音波探触子から送信されて管の内周面で反射された超音波と管の外周面で反射された超音波との間の超音波探触子への入射時間差から管の管厚を求めるようにしたものである。
  特許文献2は、被測定物であるチューブ内部に軸方向へ移動可能に挿入されるチューブの肉厚測定装置であって、チューブの内径より小さくした外径を有する2枚の円板状フランジ間に水流により回転する筒状回転体を取り付け、この回転体の内部にチューブ軸方向に発した超音波をチューブ径方向に屈折させる音響ミラーを内蔵させるとともに、前方側フランジには該音響ミラーに向け超音波を発射する超音波探触子を取り付けたことを特徴とするチューブの肉厚測定装置などを開示している。このチューブの肉厚測定装置を被測定物であるチューブ内部を軸方向に移動させながら、後方側フランジより回転体内に水を供給して噴出口から周方向に噴出する水流によって回転体を回転させ、一方、超音波探触子からチューブ軸方向に発した超音波を音響ミラーを介してチューブ径方向に屈折させることにより、超音波をチューブ内表面において軸方向に螺旋状に移動させチューブの全長および全周にわたって肉厚の測定を行うようにしたものである。
  特許文献3の考案は、管の超音波探触子探傷検査に用いる超音波探触子に関するものであり、従来技術の超音波探触子においては、管の内側に挿入された超音波探触子の振動子から発信された超音波ビームは、管内部に入射する場合に屈折するが、振動子の発信表面が平面をなしており、一方検査対象である超音波ビームが入射する、管の入射面は湾曲しているため、振動子の位置により、その入射角が異なっており、そのため、管内部に入ったビームが拡散してしまい、明確な反射ビームが得られないという問題があった。特許文献3の超音波探触子によれば、従来の超音波探触子の係る問題を解消するために、管の内側に挿入された超音波探触子の振動子において、管の管軸延長方向に見て、管の内周面に対向する凹湾曲面を形成した振動子とすることにより、振動子から発信された超音波ビームが、その振動子の位置に拠らず、管の内側のある点に収束する様にされ、管に入射後拡散することなく管内部を伝搬するもので、その結果超音波ビームは、管の内部を収束した状態で伝播することができる様にされたものである。
  特許文献1の管厚測定装置では、管による輸送物が気体の場合を想定しており、そのために、このシールカップの周上複数位置に、超音波探触子を管の内周面に圧接される環状のシールカップに埋設させるという配置を取る。そして、この超音波探触子から送信されて管の内周面で反射された超音波と管の外周面で反射された超音波との間の超音波探触子への入用時間差から管の管厚を求めるようにしたものである。
特許文献1の管厚測定装置は、水を伝播媒体としないため、複数の探触子を管の内周面に圧接される環状のシールカップに埋設させるという構造を取る必要がある。この様な超音波探触子ではある特定の口径の管についてのみ使用することが可能であり、検査対象の管の口径が変わると、超音波探触子を埋設しているシールカップの口径を対象となる管の口径に合わせたものとすることが必要となり、管厚測定装置に汎用性がない。
また、特許文献1の、シールカップの周上複数位置に配置された超音波探触子では、探触子が複数配置されてはいるが、管の内周面全域を連続して漏れなく検査することはできない(特許文献1、図3参照)。
  また、超音波探触子の管内の移動を圧縮空気により行う(特許文献1、(3)ページ、左上欄)ため、水流によって、超音波探触子(特許文献1のピグ2)の管内の移動に比べて、その制御が制約される。
  特許文献2の肉厚測定装置は、被測定物であるチューブ内部を移動しながら、超音波探触子によりチューブ内部からチューブの肉厚の測定を行うものである。肉厚測定装置はこのチューブの内径より小さくした外径を有する2枚の円板状フランジ間に水流により回転する筒状回転体を取り付け、この回転体の内部にチューブ軸方向に発した超音波をチューブ径方向に屈折させる、45度傾斜した音響ミラーを内蔵させるとともに、前方側フランジに取り付けられた超音波探触子から該音響ミラーに向け超音波を発射し、受信することで、チューブの肉厚の測定を行う。そして、その移動は牽引用の紐部材により、牽引されることで移動する。
  特許文献2の発明は、肉厚測定装置では、超音波探触子から発信された超音波を、回転体内部に設けられた音響ミラーにより反射、屈曲させるものであり、その間にも回転体は、前方に移動しているため、超音波によるチューブの検査部位に間隔ができ、肉厚測定装置の移動速度、音響ミラーの回転速度によっては検査漏れとなる部分が出てくる恐れがある。また、回転体を、回転体に設けられた(水の)噴出孔からの、噴出水の圧力により回転させるものであるため、水流中の泡の発生も危惧される。回転体を、水の供給管から供給される水流により回転させる構造であり、装置が複雑になる。
  特許文献3の超音波探触子は、管の内側に挿入された超音波探触子の振動子において、管の管軸延長方向に見て、管の内周面に対向する凹湾曲面を形成した振動子とすることにより、振動子から発信された超音波ビームが、その振動子の位置に拠らず、管の内側のある点に収束する様にされているが、その超音波探触子が形成している凹湾曲面の振動子の凹湾形状は、振動子から発信された超音波ビームが、その振動子の位置に拠らず、管の内側のある点に収束する様にされる様に、凹湾形状を形成しているものである(図1、図2)。
したがって、特許文献3の超音波探触子は、超音波の試験体の管内壁に垂直に入射するものでない。
  上述の課題を解決するために、本発明にかかる超音波探触子は、水流圧により管内を移動することにより、管内部から管の異常の発見、管厚などを測定するための超音波探触子であって、管壁に向けて超音波を発振し、前記管壁で反射したエコー信号を受信するものであり、その柱状の機体の周囲に沿って、複数の振動子が配置され、振動子が配管内形状に合わせて湾曲されていることを特徴とする。
  本願発明においては、超音波探触子の振動子が複数配置され、それら振動子が配管内形状に合わせて湾曲されているため、振動子から発振された超音波は、検査対象である管壁に対して垂直に照射され、またそれらの反射エコー信号も、照射された管壁から、垂直に反射されて返ってくるため、検査対象である管壁に対して、斜角の位置に配置された振動子から発振された超音波、及び反射波の場合に比べて散乱、干渉が起きることも少なく、管の厚さに対応した波長の超音波を選択することにより明確なデータを得ることができる。また、本願発明の超音波探触子は、柱状の機体の周囲に沿って、複数の湾曲した振動子を配置することができるため、例えば、柱状の機体の周囲に沿って連続して配置させた場合は、単一または少数の振動子を用いた超音波探触子で必要となる機体を管の周囲方向に回転させて、振動子の配置されていない箇所に対応する管壁に対して、回転させた位置において新たに音波ビームを発信することは不要となる。また、超音波探触子は、浮揚性の機体及び必要に応じてその前後に配置される浮揚性及び水流圧に対して抵抗性を持った、浮揚及び案内装置に支持され、かつ、水が浸入しない密閉構造となっているため、水流により容易に管内を浮揚・移動し、容易に被検配管を検査することができる。
  以下、本願発明の第1の実施の態様による、本願の超音波探触子について説明する。
  本願の超音波探触子は、配管内を移動することにより、配管内部から被験配管の管厚を測定するための、超音波探触子であって、
a) 柱状の機体と、
b) 前記柱状の機体周囲に配置された複数の振動子と、
c) 前記被験配管の中心と前記機体の中心を合わせるための部位と、
d) 前記機体の配管内の移動を実現するための部位と、を備え、
前記振動子が配管内形状に合わせて湾曲されていることを特徴とする。
  本願の超音波探触子は、機体の周囲に機体の中心に対して同心円状に振動子が配置されていてもよい。
  本願の超音波探触子は、前記機体に配置された振動子が被験配管内の壁に対して垂直に超音波を当て、垂直に反射された反射波を検出することができるように配置されていてもよい。
  本願の超音波探触子は、前記機体が円柱状であり、被験配管内の壁に対して超音波が垂直にあたり、垂直に反射された反射波を検出するように、機体の周囲に環状に設けた部位に、湾曲した振動子が機体に沿うように湾曲されて配置されてもよい。
  本願の超音波探触子は、柱状の超音波探触子により、被験配管の管厚を測定する方法に用いることができるものであって、前記方法は、
1) 機体周囲に配置された複数の湾曲した振動子を備える超音波探触子を、被験配管内に挿入する工程と、
2) 前記超音波探触子により、被験配管内の壁に対して垂直に超音波を当て、前記超音波の反射波を検出する工程と、
3) 被験配管の管厚を決定する工程とを含むことができる。
  本願の超音波探触子は、水流圧により配管内を移動することができ、その柱状の機体は、機体安定保持体により被検配管と同軸に配置されており、その柱状の機体の周囲に沿って配置された複数の振動子が、配管内形状に合わせて湾曲されているため、振動子から発振された超音波は、検査対象である配管壁に対して垂直に入射され、またそれらの反射エコー信号も、入射された配管壁から、垂直に反射されて返ってくるため、発振された超音波及び反射波の散乱、干渉が起きることもなく、より明確なデータを得ることができる。また、本願の超音波探触子は、機体安定保持体を備えた部分を、被検配管の口径にあわせて取り換え可能であるため、種々の異なる口径の配管の検査を、装置の部品の交換により行うことができると言う有意な効果を奏する。
従来技術の、平板状の振動子が配列されている超音波探触子により、配管の内部から配管の内側表面にビームを発射した場合の、ビームの予想経路を示す例である。 本願発明の、機体の周囲に環状に形成された振動子を備える超音波探触子により、配管の内部から配管の内側表面に垂直にビームを発射した場合の、ビームの発信、反射経路を示す例である。 本願発明の、第1の実施態様による機体の周囲に環状に形成された振動子を備える超音波探触子の、被検配管内の配置の例を示す。 本願発明の、機体の前方に設けられた、機体安定保持体及び案内部の一例を示す斜視図である。 本願発明の、機体の後方に設けられた、機体安定保持体の一例を示す斜視図である。 本願発明の、他の実施の態様における、機体の後部中央部分が、機体の軸方向内部に向けて、凹状に形成された、機体の状態を示す模式図である。 本願発明の、他の実施の態様における、機体の後方に設けられた、機体を円滑に移動させるため後部フィンの一例を示す斜視図である。 本願発明の、他の実施の態様における、機体の側面に設けられた、機体を安定して移動させるため側面翼の一例を示す斜視図である。 本願発明の、他の実施の態様における、機体の側面に設けられ、被検配管の内部表面に接地された状態のローラの一例を示す斜視図である。 本願発明の、機体にフレキシブルな連結紐で連結された、浮揚連結体の一例を示す斜視図である。 本願発明の、振動子を備える機体とフレキシブルな連結紐で連結された浮揚連結体が、被検配管の屈曲部を通過する様子を示す模式図である。 本願発明の、機体の前方に設けられた、機体に浮力を与えるとともに、超音波探触子の被検配管内への導入を容易にするための浮揚・案内部分の一例を示す模式図である。 本願発明の1つの態様として、機体の前後に可動性のジョイントを弾性コイルで覆った機体安定保持体を有する超音波探触子である。
  以下、図面を参照しつつ、本願発明の第1の実施の態様による、本願の超音波探触子について説明する。
  図1は、従来技術の、柱状の機体30と、前記柱状の機体の周囲に沿って、配置された1または複数の平板状の振動子20を備える超音波探触子が、被検配管内に挿入された状態を示す。
  図2は、本願発明の柱状の機体3と、前記柱状の機体の周囲に沿って、配置された1または複数の湾曲した振動子2を備える超音波探触子が、被検配管内に挿入された状態を示す。機体の形状、材質は、機体が被検配管内に挿入することができ、機体が配管の長手方向に沿って、流水により安定して浮揚した状態で移動することができ、また被検配管の屈曲部を曲がることのできる程度の長さを持ち、屈曲部を曲がる際に必要な、ある程度の柔軟性を備えている材料であるのが好ましい。
  柱状の機体は、必ずしも、円柱状である必要はないが、被検配管の対象となるボイラー管の断面が通常円形状であることを考慮すれば、円柱状であるのが好ましい。機体の進行方向先端部分には、被検配管への超音波探触子の挿入を容易にするために、超音波探触子の挿入のための案内部5を設けてある(図3)。案内部5は、被検配管への超音波探触子の挿入を容易にするためのものであれば、その形状は問わないが、超音波探触子が、流水による配管内の移動、前進を容易にするために、側面視において、例えば、対象となる被検配管の口径よりも小さい前面部であって、この前面部の断面は、被検配管の中心軸に垂直の断面において同心の円形状であってもよい。また、機体の前面部の中心部分は、機体の進行方向に対して、凡そ、先端部が丸みを帯びた円錐状(側面視において、三角形状)をしていてもよい。機体の前面部を先端部が丸い円錐状にすることにより、超音波探触子の移動において、水流への抵抗を少なくすることができる。
  また、その前面部の周辺部から、機体進行方向に対して斜め後方に、機体を取り巻く様に、機体の中心軸を被検配管の中心軸に一致させるように、被検配管の内壁と機体の間の緩衝部分である、機体安定保持体4が設けられている。機体の前面中心部分と周辺部分は流水の抵抗を少なくするため、機体安定保持体4に滑らかに移行する形状を持つのが良い。
  機体3を、被検配管の中央部分に保持するための機体安定保持体4は、側面視において、傘状の、弾性を持つ、例えば、金属性の粗い網目状のものであり、この機体安定保持体4により、機体の長手方向中心軸を、配管(被検配管)の中心軸に一致させることができるため、機体の周りに環状に配置された振動子を、その振動子から発信された音波ビームが垂直に配管壁に照射することができるとともに、機体安定保持体が粗い網目状をしているため、網目を通過した水流が機体と管壁の間を阻害されることなく、円滑に流れることができ、機体の周りに環状に配置された振動子と被検配管の検査対象部分の間に常に音波伝播物質である水が存在する。
  機体安定保持体4は、機体3を管の中央に安定させる機能を奏することができるものであれば、前記の様な、側面視において機体の前面部分から、斜め後方に、傘状の、例えば、金属性の弾性を持つ、粗い網目状のものである必要はなく、機体3の長手方向中心軸を、配管(被検配管)の中心軸に一致させることができ、水流が機体と管壁の間を、阻害されることなく、円滑に流れることができるものであれば、その形状、材質などは問わない。本発明の1つの態様として、可撓性のある材料でできた長方形部材を機体の円周上に等間隔に配置してもよい(図12)。
  機体3の長手方向後方部分に、機体3の長手方向中心軸を、配管(被検配管)の中心軸に一致させ、水流が機体を管壁の間を阻害されることなく、円滑に流れることができるように、前記機体前方の機体安定保持体と同様の、金属性の弾性を持つ粗い網目状のリング体(後部機体安定保持体4b)を設けることができる。この様なリング体を機体の周囲に設けることにより、機体前方の機体安定保持体と同様に、機体の長手方向中心軸を、配管(被検配管)の中心軸に一致させることができ、また、水流が機体を管壁の間を、阻害されることなく円滑に流れることを可能とする。機体前方の機体安定保持体と同様に、前記効果を奏することができるものであれば、その形状、材質などは問わない。
  機体の前面の案内部及びそれに連続して設けられる前部機体安定保持体4a、または後部機体安定保持体4bは何れも、その周囲に環状に設けられた振動子を配置する機体本体とは、例えば、螺合ネジにより篏合、または取り外し自在の構造とすることができる。したがって、検査対象となる被検配管の口径が異なる場合でも、前部機体安定保持体4a、または後部機体安定保持体4bを、被検配管の口径に合わせたサイズを持つ機体安定保持体に取り替えることにより、同一の機体及びそれに配置された振動子2を備える超音波探触子を、種々の異なる口径を持つ配管に使用して検査をすることができる。
前記振動子2は、検査対象となる配管の形状に合わせて湾曲されており、発信された音波は、被検配管の内壁に略垂直に照射されるため、その反射波は、また垂直に反射され、明確な検査結果を得ることができる。
  超音波探触子による、超音波の発信、受信のための発信部、受信部、制御部、電源供給装置等は、その重量、容量、被検配管の口径などによる制限等を考慮すると、機体とは別の、機体にフレキシブルな連結紐により連結された、防水型の浮揚連結体9に収納することができる。
  更に、本願の超音波探触子は、その後部から伸びたワイアにより、被検配管内の位置を測定する態様も本願は発明の範囲内である。この場合には、流水の抵抗を受けて被検配管内への挿入を容易に行えるように設けられた浮揚案内装置をワイアに等間隔で設けることにより、あるいは外部に残っているワイアの長さから、被検配管内での超音波探触子の位置を判断することができる(図12)。
  以下、超音波探触子について、その変形例を含めその構造、機能について図面を参照しつつ詳細を説明する。
  超音波探触子の機体3は、前述の通り、検査される被検配管に挿入でき、背後から送られる水流により移動されつつ、被検配管の肉厚などを振動子2により超音波検査をすることができるものであれば、特にその形状、材質などは問わない。一般に、被検配管の断面が円形であることを考慮すれば、機体3の断面も、被検配管の断面の口径よりも小さい口径を持つ、円柱状のものであるのが好ましいが、円柱形状に限定されるものではない。また、機体3の口径は、超音波探触子が、水流により、被検配管の内部を自由に移動可能なものであれば、特に制約はされないが、背後からの水流13の圧力によって移動されること、また振動子2が、機体周りに環状に配置される場合を予測すると、これに対応して、少なくともある一定以上の口径を持つことが望ましい。被検配管の屈曲部での移動に問題がなければ、また、被検配管の材質及び水流中の音波の伝搬速度を考慮して、機体の進行方向に対して垂直方向断面の幅(又は口径)が、被検配管の内径に近くすることができれば、流水の圧力の影響を受けやすくなり、超音波探触子の移動が容易になる。
  また、超音波探触子の機体の材質及びその重量は、水中において、過度な浮力、または水中で過度な重力を受けることなく移動することができるものであることを考慮すると、水とほぼ同等の比重を有することが望ましいが、これに限定されるものではなく、水流によって支障なく移動することができる程度の材質、容量及び重量を持つものであればよい。
  超音波探触子の振動子2とのパルスの発信部、受信部、電源供給部、制御部などは、機体内部に備えられていてもよい(図に示さず)し、機体とは別の、機体にフレキシブルな連結紐により連結された、浮揚連結体9に配置される場合もある(図9および図10)。いずれの態様においても、これらは水の浸水から保護される様に防水されている。その場合、機体3と結ぶフレキシブルな連結紐には、電源ケーブル30などが同時に配設されているが、当然その電源ケーブル30なども、防水性のものを使用する。また、適当な浮揚力を与える、及び水流による圧力により移動される等を考慮した場合、機体の前方、及び前記電源供給部等を収容する浮揚連結体9の後方に、フレキシブルな連結紐により連結された、PVC等軟質ゴム等の可撓性材料によりなる、例えば、球状の浮揚案内装置8を設けるのが良い。浮揚案内装置は任意の長さのワイアに一定間隔で浮揚具を備えたものでもよい。
  該態様において、ワイアにより本願発明の超音波探傷子を被検配管に挿入し、被検配管外のワイアの長さから挿入位置が判断できる。該態様において、配管壁に接して被検配管と機体の中心軸を合わせるための構成は可撓性のある樹脂線維の束である。本態様では、機体の前後の機体安定性保持体はそれ自体が曲がることができるため、曲部のある被検配管内の移動に有利である。(図12)
  機体3には、流水により移動する場合に、周りの測定対象である被検配管との位置を安定させ、機体が軸周りに回転することを抑制する効果を与えるために、機体の側面に機体の軸方向に沿って一以上の、弾性体でできている側面翼12(図7)を設けてもよい。側面翼12の高さは、機体の側面と被検配管の内部表面の距離より小さく、機体の移動時に被検配管の内面に接触しないものとし、その形状は特に問わないが、流体が機体の側面を流れる場合に、機体が軸周りに回転することを抑制する効果を与えるものであればよく、例えば、航空機等で一般的に見られる垂直尾翼などの形状のものでもよい。
  機体3は、背後方向からの流水によって、その圧力により移動するが、機体3に対する流水13の圧力を、より適切に機体に与えることができるように、機体3の後部の形は、その側面視において、その垂直面の中央部分が機体の軸方向内部に向けて凹状をなしていてもよい(図6A)。また、その機体3の後部の凹状形状が、機体3の側面と交差する部分において、前記凹状形状部分がさらに、機体3の後部側面と交差する部分を超えて延伸させてもよく(後部カバー6)、そのような形状によって、背後方向からの流水による、機体3の前方への移動のための、流水による圧力が負荷される機体の後部の面積が大きくなるため、機体の安定した移動を実現することができる(図6B)。なお、機体の回収時における作業を考慮し、後部安定保持部に延伸部分を設ける場合は、その材質は弾性を持つものが好ましい。なお、本願の超音波探触子は、その後部部分から、配管外に連結されたワイアを備えており、必要に応じて超音波探触子を前記ワイアにより、配管外に引き出すことができる。
  さらに、機体の側面に、被検配管内部表面に接触するローラ10を設けることにより、被検配管に挿入された後の超音波探触子の位置を的確に知ることができる。前記ローラ10は、機体の側面に取り付けられており、被検配管に機体が挿入されると、ローラ10が付勢されたバネにより、ローラ車が被検配管内部表面に接触するように構成されており、車の回転数を計測することにより、被検配管に挿入された後の超音波探触子位置を的確に知ることができる(図8)。
  更に、本願の超音波探触子は、その後部から伸びたワイアにより、被検配管内の位置を測定する態様も本願は発明の範囲内である(図12)。この場合には、流水の抵抗を受けて被検配管内への挿入を容易に行えるように設けられた浮揚案内装置をワイアに等間隔で設けることにより、あるいは外部に残っているワイアの長さから、被検配管内での超音波探触子の位置を判断することができる。
1.超音波探触子
2.振動子
3.機体
4.機体安定保持体
4a.前部機体安定保持体
4b.後部機体安定保持体
4m.篏合用ミゾ
4n.機体側嵌合用ミゾ
5.案内部
6.後部カバー
7.フレキシブル連結紐
8.浮揚案内装置
9.浮揚連結体
10.ローラ
11.配管(被検配管)
12.側面翼
13.水流
14.ワイア
20.平板状の振動子
30.電源ケーブル
40.管壁
K.管内面
K.管外面

 



 

Claims (5)

  1.   配管内を移動することにより、配管内部から被験配管の管厚を測定するための超音波探触子であって、
    a) 柱状の機体と、
    b) 前記柱状の機体周囲に配置された複数の振動子と、
    c) 前記被験配管の中心と前記機体の中心を合わせるための部位と、
    d) 前記機体の配管内の移動を実現するための部位と、を備え、
    前記振動子が配管内形状に合わせて湾曲されていることを特徴とする超音波探触子。
  2.   前記振動子が、機体の周囲に機体の中心から対して同心円状に配置されてなる、請求項1の超音波探触子。
  3.   前記振動子が被験配管内の壁に対して垂直に超音波を当て、垂直に反射される反射波を検出することができるように配置されてなる、請求項1の超音波探触子。
  4.   前記機体が円柱状であり、被験配管内の壁に対して超音波を垂直に当て、垂直に反射される反射波を検出するように、機体の周囲に環状に設けた部位に、湾曲した振動子が機体に沿うように湾曲されて配置されている、請求項1の超音波探触子。
  5.   柱状の超音波探触子により、被験配管の管厚を測定する方法であって、
    1) 機体周囲に配置された複数の振動子を備える超音波探触子を、被験配管内に挿入する工程と、
    2) 前記超音波探触子により、被験配管内の壁に対して垂直に超音波を当て、前記超音波の反射波を検出する工程と、
    3) 被験配管の管厚を決定する工程とを含む、
    被験配管の管厚を測定する方法。

     
     
PCT/JP2019/042919 2018-11-01 2019-10-31 超音波探触子およびこれを用いた被検配管厚測定方法 WO2020091011A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19877632.0A EP3875896A4 (en) 2018-11-01 2019-10-31 ULTRASONIC PROBE AND PIPE THICKNESS MEASUREMENT PROCESS UNDER INSPECTION USING THE SAME PROBE
CN201980072067.7A CN112997047B (zh) 2018-11-01 2019-10-31 超声波探头以及利用其的被检配管厚度测定方法
US17/309,164 US20220011099A1 (en) 2018-11-01 2019-10-31 Ultrasonic probe and method for measuring thickness of pipe being inspected using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206470 2018-11-01
JP2018206470A JP7216366B2 (ja) 2018-11-01 2018-11-01 超音波探触子およびこれを用いた被検配管厚測定方法

Publications (1)

Publication Number Publication Date
WO2020091011A1 true WO2020091011A1 (ja) 2020-05-07

Family

ID=70462395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042919 WO2020091011A1 (ja) 2018-11-01 2019-10-31 超音波探触子およびこれを用いた被検配管厚測定方法

Country Status (5)

Country Link
US (1) US20220011099A1 (ja)
EP (1) EP3875896A4 (ja)
JP (1) JP7216366B2 (ja)
CN (1) CN112997047B (ja)
WO (1) WO2020091011A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155709A (ja) * 1983-02-25 1984-09-04 Babcock Hitachi Kk 超音波測定装置
JPS6131962A (ja) * 1984-07-25 1986-02-14 Nippon Kogyo Kensa Kk 配管の検査装置
JPS61127600A (ja) * 1984-11-27 1986-06-14 株式会社クボタ 荷役車輛
JPS6283608A (ja) 1985-10-09 1987-04-17 Nippon Kokan Kk <Nkk> 管の管厚測定装置
JPH0451658U (ja) 1990-09-06 1992-04-30
JPH04315910A (ja) * 1991-04-15 1992-11-06 Toppan Printing Co Ltd 超音波トランスジューサ及び超音波センサー並びにホール壁の膜厚測定方法及びその装置
JPH07318336A (ja) * 1994-05-25 1995-12-08 Tdw Delaware Inc パイプラインを超音波で検査するための方法及び装置
JPH0953926A (ja) * 1995-08-10 1997-02-25 Ishikawajima Harima Heavy Ind Co Ltd 管肉厚測定装置
JPH11133006A (ja) * 1997-10-31 1999-05-21 Toshiba Corp 超音波探傷装置とその方法
JP2002365033A (ja) 2001-06-04 2002-12-18 Nippon Steel Corp チューブの肉厚測定装置および方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245167Y2 (ja) * 1981-02-20 1987-12-02
JPS59163562A (ja) * 1983-03-09 1984-09-14 Babcock Hitachi Kk 超音波測定装置
JPS6333457U (ja) * 1986-08-21 1988-03-03
US4955235A (en) * 1987-07-30 1990-09-11 Westinghouse Electric Corp. Apparatus and method for providing a combined ultrasonic and eddy current inspection of a metallic body
JPH0333652A (ja) * 1989-06-30 1991-02-13 Hitachi Ltd 超音波検査方法及び超音波検査装置
JP2001027628A (ja) * 1999-07-15 2001-01-30 Nkk Corp 多重配管の検査方法および装置
JP2002090351A (ja) * 2000-09-13 2002-03-27 Osaka Gas Co Ltd 管の超音波測定方法および装置
JP2002090352A (ja) * 2000-09-13 2002-03-27 Mitsubishi Heavy Ind Ltd 軸方向欠陥検出用超音波探傷装置
US6904818B2 (en) * 2002-04-05 2005-06-14 Vetco Gray Inc. Internal riser inspection device
US7293461B1 (en) * 2003-10-22 2007-11-13 Richard Girndt Ultrasonic tubulars inspection device
JP5049095B2 (ja) * 2007-10-30 2012-10-17 株式会社ディスコ 研削ホイール
JP4524764B2 (ja) * 2008-03-31 2010-08-18 住友金属工業株式会社 超音波探傷方法及び装置
JP4768052B2 (ja) * 2009-05-19 2011-09-07 成田空港給油施設株式会社 管厚測定装置
JP5314550B2 (ja) * 2009-09-30 2013-10-16 三菱重工業株式会社 管内挿入式超音波探傷検査装置及び超音波探傷検査システム
US8798940B2 (en) * 2010-04-16 2014-08-05 Olympus Ndt Inc. Rotating array probe system for non-destructive testing
JP6129509B2 (ja) * 2012-10-04 2017-05-17 東芝メディカルシステムズ株式会社 超音波医療装置及び超音波画像診断装置
CN203298748U (zh) * 2013-06-07 2013-11-20 南通友联数码技术开发有限公司 一种超声波管壁测厚装置
CN103278114B (zh) * 2013-06-07 2015-12-23 南通友联数码技术开发有限公司 一种超声波管壁测厚装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155709A (ja) * 1983-02-25 1984-09-04 Babcock Hitachi Kk 超音波測定装置
JPS6131962A (ja) * 1984-07-25 1986-02-14 Nippon Kogyo Kensa Kk 配管の検査装置
JPS61127600A (ja) * 1984-11-27 1986-06-14 株式会社クボタ 荷役車輛
JPS6283608A (ja) 1985-10-09 1987-04-17 Nippon Kokan Kk <Nkk> 管の管厚測定装置
JPH0451658U (ja) 1990-09-06 1992-04-30
JPH04315910A (ja) * 1991-04-15 1992-11-06 Toppan Printing Co Ltd 超音波トランスジューサ及び超音波センサー並びにホール壁の膜厚測定方法及びその装置
JPH07318336A (ja) * 1994-05-25 1995-12-08 Tdw Delaware Inc パイプラインを超音波で検査するための方法及び装置
JPH0953926A (ja) * 1995-08-10 1997-02-25 Ishikawajima Harima Heavy Ind Co Ltd 管肉厚測定装置
JPH11133006A (ja) * 1997-10-31 1999-05-21 Toshiba Corp 超音波探傷装置とその方法
JP2002365033A (ja) 2001-06-04 2002-12-18 Nippon Steel Corp チューブの肉厚測定装置および方法

Also Published As

Publication number Publication date
US20220011099A1 (en) 2022-01-13
EP3875896A4 (en) 2021-12-08
JP2020071167A (ja) 2020-05-07
CN112997047A (zh) 2021-06-18
CN112997047B (zh) 2023-09-05
JP7216366B2 (ja) 2023-02-01
EP3875896A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
US10557831B2 (en) Pipeline crack detection
US6848313B2 (en) Method and device for inspecting pipelines
CN102016564B (zh) 用于超声检测管壁中的缺陷的***
US6474165B1 (en) Monitoring pipes
CN106461618B (zh) 改进的超声检查
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
US20040020298A1 (en) Apparatus for end-to-end ultrasonic inspection of tubular goods and system and method incorporating same
US3924453A (en) Ultrasonic testing of tubing employing a spiral wave generator
US9207213B2 (en) Method and apparatus for inspecting and monitoring pipe
JP6039599B2 (ja) 管の超音波検査装置
EP2416150B1 (en) Ultrasound flaw detection device for pipe ends
US3417609A (en) Ultrasonic inspection transducer
JP5281532B2 (ja) 管内挿入式超音波探傷検査装置
WO2020091011A1 (ja) 超音波探触子およびこれを用いた被検配管厚測定方法
JP2018136271A (ja) 配管検査用センサ、配管検査装置、及び配管検査用センサを用いた配管検査方法
JP2009229451A (ja) 管内挿入式超音波探傷検査装置
US11162919B2 (en) Ultrasonic based internal inspection of tubes
KR20140093046A (ko) 지하매설배관 검사장치
EP4016072B1 (en) Dynamic adjustment of phased array parameters for ultrasonic inspection
US11835485B2 (en) Ultrasonic probe having flexible stabilizing element for probe alignment
US20090120191A1 (en) Methods and apparatus for inspecting furnace tubes
JP2015172495A (ja) 空間伝播超音波を用いた管検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877632

Country of ref document: EP

Effective date: 20210601