WO2020090879A1 - Drone, drone control method, and drone control program - Google Patents

Drone, drone control method, and drone control program Download PDF

Info

Publication number
WO2020090879A1
WO2020090879A1 PCT/JP2019/042548 JP2019042548W WO2020090879A1 WO 2020090879 A1 WO2020090879 A1 WO 2020090879A1 JP 2019042548 W JP2019042548 W JP 2019042548W WO 2020090879 A1 WO2020090879 A1 WO 2020090879A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction gas
drone
propulsion device
fuel cell
concentration
Prior art date
Application number
PCT/JP2019/042548
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2019570164A priority Critical patent/JP6751932B1/en
Publication of WO2020090879A1 publication Critical patent/WO2020090879A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/32Supply or distribution of electrical power generated by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a drone, a drone control method, and a drone control program.
  • drones multicopters
  • spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1).
  • field for example, Patent Document 1
  • drones are more suitable than manned planes and helicopters.
  • a fuel cell is known as a power generation mechanism that is known to have good power generation efficiency and be environmentally friendly. In order for the drone to fly safely and stably, it is essential to control the fuel cell and provide a stable power supply. Further, since hydrogen gas released to the outside of the fuel cell is flammable, if it is released into the atmosphere at a concentration higher than a predetermined level, it may cause ignition. Therefore, there is a need for a technique that ensures safety even when hydrogen gas is released from the fuel cell. Up to now, a technique relating to a multicopter having a fuel cell has been disclosed (for example, Patent Document 3), but a technique for controlling the fuel cell in order to ensure high safety has not existed.
  • Patent publication gazette JP 2017-163265 Japanese Patent Laid-Open Publication No. 2017-114186
  • a drone provides a flight control unit that generates thrust by operating a propulsion device that generates an air flow, and power to the flight control unit using reaction gas as fuel.
  • a supplyable fuel cell power supply device an openable / closable reaction gas discharge port for discharging the reaction gas to the outside of the fuel cell power supply device, and opening / closing of the reaction gas discharge port according to the operating state of the propulsion device.
  • a reaction gas exhaust port control unit for controlling.
  • the reaction gas outlet control unit prohibits the opening operation of the reaction gas outlet when the thrust generated by the propulsion device is less than a predetermined value or is stopped, and the thrust generated by the propulsion device has a predetermined value. In the above case, the opening operation of the reaction gas outlet may be permitted.
  • the propulsion device is composed of rotary blades that perform a rotary operation
  • the reaction gas outlet control unit prohibits the opening operation of the reaction gas outlet when the rotation speed of the rotary blade is less than or equal to a predetermined value or is stopped, and the thrust generated by the propulsion device is equal to or greater than a predetermined value. In this case, the opening operation of the reaction gas outlet may be permitted.
  • the reaction gas discharge control unit may include a reaction gas concentration adjustment unit that adjusts the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device. ..
  • the reaction gas concentration adjusting unit may predict that the reaction gas will be discharged after a predetermined time, and adjust the concentration of the reaction gas based on the prediction.
  • the reaction gas concentration adjusting unit predicts a flow rate of the reaction gas discharged after a predetermined time, and the concentration of the reaction gas predicted to be discharged by the flow rate can be diluted by the airflow generated by the propulsion device.
  • a request command to increase the operating amount of the propulsion device may be output to the flight control unit.
  • the drone has a plurality of propulsion units, and when the reaction gas concentration adjusting unit requests an increase in the operating amount of one of the propulsion units, the flight control unit determines all of the operating units based on the operating amount.
  • the operating amount of the propulsion device may be controlled.
  • the reaction gas flow rate adjusting unit may adjust the discharge flow rate based on the operating amount of the propulsion device so that the operating amount of the propulsion device can be diluted to a predetermined concentration or less.
  • a reaction gas discharge pipe for guiding the reaction gas discharged from the fuel cell power supply device into a flow path of an air flow generated by the propulsion device may be further provided.
  • the discharge port of the reaction gas discharge pipe may be arranged in a flow path of a descending air flow that advances in a direction away from the drone among the air flows generated by the propulsion device.
  • the suction port of the second reaction gas suction pipe may be disposed in a flow path of a descending air flow that advances in a direction away from the drone among the air flows generated by the propulsion device.
  • the drone has a plurality of propulsion devices, and the suction port of the second reaction gas suction pipe is arranged in a flow path of an air flow generated by a propulsion device different from the propulsion device in which the reaction gas discharge pipe is arranged.
  • the fuel cell power supply device includes a suction port for sucking the reaction gas and the reaction gas discharge port on one side partitioned by a membrane electrode structure, and a suction port of the second reaction gas suction pipe and air on the other side. May be provided with a second discharge port for discharging to the outside of the fuel cell power supply device.
  • the second reaction gas may be oxygen.
  • the reaction gas may be hydrogen gas.
  • a drone control method is a flight control unit that generates thrust by operating a propulsion device that generates an air flow, and the flight control unit that uses reaction gas as fuel.
  • a method of controlling a drone comprising: a fuel cell power supply device capable of supplying electric power to the fuel cell; and an openable / closable reaction gas discharge port for discharging the reaction gas to the outside of the fuel cell power supply device.
  • the opening operation of the reaction gas discharge port is prohibited, and the thrust generated by the propulsion device is equal to or larger than a predetermined value.
  • the opening operation of the reaction gas discharge port may be permitted.
  • the propulsion device is composed of rotating blades that perform a rotating operation, and the discharge control step prohibits an opening operation of the reaction gas discharge port when the rotation speed of the rotating blades is less than a predetermined value or is stopped.
  • the opening operation of the reaction gas discharge port may be permitted when the thrust generated by the propulsion device is a predetermined value or more.
  • the discharge control step may include a reaction gas concentration adjusting step of adjusting the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device.
  • a drone control program is a flight control unit that generates thrust by operating a propulsion device that generates an air flow, and the flight control using reaction gas as fuel.
  • a control program for a drone comprising: a fuel cell power supply device capable of supplying electric power to a unit; and an openable / closable reaction gas discharge port for discharging the reaction gas to the outside of the fuel cell power supply device.
  • An operation command for generating an air flow by operating the engine, a supply command for supplying electric power to the flight control unit, and an emission control command for controlling opening and closing of the reaction gas discharge port according to an operation state of the propulsion device. causess the computer to execute.
  • the emission control command prohibits the opening operation of the reaction gas discharge port when the thrust force generated by the propulsion device is less than or equal to a predetermined value or is stopped, and the thrust force generated by the propulsion device is greater than or equal to a predetermined value.
  • the opening operation of the reaction gas discharge port may be permitted.
  • the propulsion device is configured by a propeller that performs a rotating operation, and the discharge control command prohibits an opening operation of the reaction gas discharge port when the rotation speed of the propeller is less than a predetermined value or is stopped,
  • the opening operation of the reaction gas outlet may be permitted when the thrust generated by the propulsion device is equal to or greater than a predetermined value.
  • the discharge control command may include a reaction gas concentration adjustment command for adjusting the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by the air flow generated by the propulsion device.
  • FIG. 3 is a functional block diagram of a control unit and a fuel cell power supply device included in the drone.
  • FIG. 3 is a schematic diagram of a fuel cell and a reaction gas supply unit included in the fuel cell power supply device. It is a schematic diagram which shows the said fuel cell, the said reaction gas supply part, and the state of a fuel cell measurement part.
  • FIG. 6 is a schematic diagram showing a state of a descending air flow.
  • FIG. 3 is a schematic diagram showing IV characteristics of a membrane electrode structure included in the fuel cell. 6 is a flowchart in which the hydrogen concentration adjusting unit included in the drone adjusts the emission concentration of hydrogen gas.
  • the drone regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors.
  • power means electric power, prime mover, etc.
  • control system whether wireless or wired, and whether it is an autonomous flight type or a manual control type
  • It refers to all aircraft with multiple rotors.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
  • Each rotor 101 is arranged on four sides of the main body 110 by arms extending from the main body 110 of the drone 100.
  • the rotating blades 101-1a, 101-1b to the left in the traveling direction, the rotating blades 101-2a and 101-2b to the left front, the rotating blades 101-3a and 101-3b to the right rear, and the rotating blades 101-to the front right. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction downward in the plane of FIG.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been.
  • the motor 102 is an example of a propulsion device.
  • the upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc.
  • the axes are collinear and rotate in opposite directions. As shown in FIGS.
  • the radial member for supporting the propeller guard which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines.
  • the term "chemicals” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention.
  • the pilot 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies.
  • an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc. is provided so that the emergency operating device can respond quickly in an emergency). It may be a dedicated device with).
  • the pilot 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
  • the field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100.
  • the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent.
  • the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like.
  • the base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices).
  • the farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the controller 401 by a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
  • the drone 100 will take off from a landing point 406 outside the field 403 and return to the landing point 406 after spraying the drug on the field 403 or when it becomes necessary to replenish or charge the drug.
  • the flight route (intrusion route) from the departure point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 based on the input information received from the controller 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through storage media or the like for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB.
  • encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the controller 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
  • the flight controller 501 interacts with the controller 401 via the Wi-Fi cordless handset function 503 and further via the base station 404, receives necessary commands from the controller 401, and transmits necessary information to the controller. Can be sent to 401.
  • the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment.
  • the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi.
  • the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is highly important, it may be duplicated / multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring accelerations of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating accelerations).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves.
  • These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
  • the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404 outside the drone 100, the controller 401, or at another place, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection.
  • the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the status of the drone. Instead of or in addition to the LED, a display means such as a liquid crystal display may be used.
  • the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
  • the Wi-Fi slave device function 503 is an optional component for communicating with an external computer or the like for the transfer of software, for example, separately from the controller 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
  • the drone 100 roughly includes a control unit 20 and a fuel cell power supply device 502 as a configuration for operating with a fuel cell, and the control unit 20 and the fuel cell power supply device 502 cooperate with each other.
  • the control unit 20 has a flight control unit 21 for controlling the flight of the drone 100 and a functional unit for stably controlling the power generation amount of the fuel cell power supply device 502.
  • Each functional unit of the control unit 20 is included in the flight controller 501 shown in FIG. 7.
  • the fuel cell power supply device 502 is a means for supplying power to the drone 100.
  • the fuel cell power supply device 502 is connected to the control unit 20 and is controlled to secure the amount of power generation required by the control unit 20 by transmitting and receiving information to and from the control unit 20.
  • the fuel cell power supply device 502 has a function of transmitting its internal state to the flight controller 501, in addition to a power supply function.
  • the fuel cell power supply device 502 includes a fuel cell 50, a fuel cell measurement unit 52, and a reaction gas supply unit 54.
  • the fuel cell 50 has a device 700 connected to the fuel cell 50 by reacting hydrogen gas and oxygen gas supplied to the anode side and the cathode side, respectively, in the vicinity of the membrane electrode structure.
  • Supply power Hydrogen gas is an example of the reaction gas
  • oxygen gas is an example of the second reaction gas.
  • the device 700 is, for example, a flight controller 501, a component mounted on the drone 100, and various components that consume electric power such as an air supply device 622 included in the fuel cell power supply device 502. .
  • the fuel cell 50 includes, for example, a membrane electrode structure (MEA: Membrane Electrode Assembly) 60 in which one side of a solid polymer electrolyte membrane 600 is sandwiched between a hydrogen electrode 601 (anode side) and the other side is sandwiched by an oxygen electrode 602 (cathode side). Has been done. Catalysts 603 that promote the reaction of hydrogen and oxygen are arranged on both surfaces of the membrane electrode structure 60, and diffusion layers 604 are arranged on the outer surfaces of the catalyst 603.
  • a plurality of the membrane electrode structures 60 are laminated with a separator interposed therebetween, and the membrane electrode structures 60 are electrically connected in series to form a fuel cell laminate (FC-stack) 60s shown in FIG. Is forming.
  • FC-stack fuel cell laminate
  • the fuel cell 50 is provided with a hydrogen gas supply pipe 611 for drawing in hydrogen gas and an anode side exhaust port 616 for discharging hydrogen gas on one side partitioned by the membrane electrode structure 60. .. Further, the fuel cell 50 is provided with an air supply pipe 621 for sucking air and a cathode side outlet 626 for discharging air to the outside of the fuel cell power supply device 502 on the other side.
  • the hydrogen gas supply pipe 61 is an example of a suction port
  • the anode side discharge port 616 is an example of a reaction gas discharge port.
  • connection part between the air supply pipe 621 and the hydrogen electrode side of the fuel cell 50, that is, the anode flow channel 610 is an example of the suction port of the second reaction gas suction pipe.
  • the cathode side discharge port 626 is an example of the second discharge port.
  • a hydrogen tank 612 is connected to the hydrogen electrode side of the fuel cell 50, that is, the anode flow path 610 via a hydrogen gas supply pipe 611. Hydrogen gas having a higher pressure than the hydrogen partial pressure in the anode flow channel 610 is stored in the hydrogen tank 612, and the hydrogen gas flows into the anode flow channel 610 through the hydrogen gas supply pipe 611.
  • a hydrogen supply valve 613, a flow meter 614, and a pressure gauge 615 are arranged, for example, in this order from the upstream side, and are respectively connected to a fuel cell control unit 24 (see FIG. 8) described later.
  • the order of the hydrogen supply valve 613, the flow meter 614, and the pressure gauge 615 may be different from that described above.
  • the fuel cell control unit 24 is configured to be able to control the amount of hydrogen gas staying in the anode flow channel 610 by feeding back the flow rate and pressure.
  • the pressure gauge 615 may be provided only on the downstream side of the hydrogen supply valve 613, or the pressure gauges 615a and 615 may be provided on the upstream side and the downstream side of the hydrogen supply valve 613, respectively.
  • the hydrogen gas is configured to flow into the anode channel 610 due to the difference between the pressure in the hydrogen tank 612 and the hydrogen partial pressure in the anode channel 610.
  • a pump for sending hydrogen gas to the flow channel 610 may be further provided.
  • the configuration without a pump is suitable for the drone 100 because the device can be downsized.
  • An air supply device 622 is connected to the oxygen electrode side of the fuel cell 50, that is, the cathode flow path 620 via an air supply pipe 621.
  • the air supply device 622 is, for example, a fan or an air pump, and takes in outside air around the drone 100 and causes it to flow into the cathode channel 620.
  • the output amount of the air supply device 622 is controlled by the fuel cell control unit 24 (see FIG. 8). As the air supply device 622 is operated with a larger current, the amount of oxygen gas retained in the cathode channel 620 increases.
  • a flow meter 624 and a pressure gauge 625 are arranged in the air supply pipe 621, and are connected to the fuel cell control unit 24 (see FIG. 8).
  • the fuel cell control unit 24 is configured to be able to control the amount of air staying in the cathode channel 620 by feeding back the flow rate and the pressure.
  • the air supply device 622 has an outside air intake pipe 71 for taking in outside air around the drone 100.
  • the outside air sucked from the outside air suction pipe 71 flows into the cathode channel 620 via the air supply device 622 and the air supply pipe 621.
  • the intake port of the outside air intake pipe 71 is arranged in the vicinity of the rotary blade 101 and in the flow path of the air flow generated by the rotary blade 101.
  • the intake port of the outside air intake pipe 71 is arranged in the flow path of the descending air flow that advances in the direction away from the drone 100 among the air flows generated by the rotor blades 101.
  • the outside air suction pipe 71 is an example of a second reaction gas suction pipe.
  • the hydrogen supply valve 613, the flow meter 614, and the pressure gauges 615, 615a, and the air supply device 622, the flow meter 624, and the pressure gauge 625 respectively include a small battery 630 for starting and stopping. It is connected to the.
  • An anode side discharge port 616 and a hydrogen discharge valve 617 are provided downstream of the anode flow channel 610 for discharging water and gas accumulated in the anode flow channel 610 to the atmosphere.
  • the gas staying in the anode flow channel 610 is, for example, air, hydrogen gas, or water vapor.
  • the hydrogen discharge valve 617 is, for example, a butterfly valve. Opening and closing of the hydrogen discharge valve 617 are controlled by the reaction gas supply unit 54, and the flow rate of the hydrogen discharge valve 617 can be controlled.
  • the hydrogen discharge valve 617 is opened at the time of starting and stopping the fuel cell 50, that is, at the time of power generation start and power generation stop, and at the recovery action described later, and mainly releases hydrogen gas to the outside.
  • a hydrogen gas discharge pipe 72 is connected to the outlet of the anode side discharge port 616, and the discharge port of the hydrogen gas discharge pipe 72 is located at the rear side in the traveling direction of the drone 100 from the rotor blade 101. It is arranged in the flow path of the air flow generated toward. Hydrogen is flammable and may be applied if it is released into the atmosphere at a concentration above a predetermined level. According to this configuration, the concentration of hydrogen discharged from the anode side discharge port 616 can be diluted by the descending airflow and released to the atmosphere.
  • the hydrogen gas discharge pipe 72 is an example of a reaction gas discharge pipe, and the discharge port of the hydrogen gas discharge pipe 72 is another example of a reaction gas discharge port.
  • the discharge port of the hydrogen gas discharge pipe 72 and the discharge port 616 on the anode side are configured to be opened and closed by a hydrogen discharge valve 617.
  • FIG. 11 (a) is a schematic view of FIG. 11 (a).
  • the rotor diameter is 70 cm
  • the rotor rotation speed is 2000 rpm
  • the airframe weight is 20 kg
  • the wind speed in this cylindrical region 702 is 10 meters or more per second.
  • the discharge port of the hydrogen gas discharge pipe 72 is arranged in this high-speed airflow region 702.
  • the discharge port of the hydrogen gas discharge pipe 72 may be arranged in the high-speed airflow region 702 while the drone 100 is flying at a constant speed in the field.
  • the discharge port of the hydrogen gas discharge pipe 72 is arranged in the flow path of the descending air flow that advances in the direction away from the drone 100 among the air flows generated by the rotor blades 101.
  • the discharge port of the hydrogen gas discharge pipe 72 is installed on the upstream side of the rotor blade 101, that is, in the flow path of the air flow sucked into the rotor blade 101, the discharged hydrogen is drawn into the rotor blade 101 and the motor 102. .. This is because the motor 102 can serve as an ignition source due to friction or the like and may be applied to hydrogen gas.
  • the discharge port of the hydrogen gas discharge pipe 72 is preferably arranged in the flow path of the descending air current generated by the rotary blades 101-1 and 101-3 at the rear of the traveling direction.
  • Rotational speeds of the rotary blades 101-1 and 101-3 at the rear in the traveling direction are equal to those of the front rotary blades 101-2 and 101-4 during hovering, and the rotary blades 101-1 and 101- during the forward flight. Greater than 3 rpm. That is, the descending airflow generated by the rotating blades 101-1 and 101-3 behind the advancing direction is often equal to or more than the descending airflow of the rotating blades 101-2 and 101-4. Therefore, according to this configuration, the discharged hydrogen gas can be diluted more reliably.
  • the hydrogen diluting unit 33 controls the flow velocity of the descending air flow by changing the number of rotations of the rotary blade 101 in order to dilute the concentration of the discharged hydrogen.
  • the rotating speed of the rotating blades 101-2, 101-4 becomes higher than the rotating speed of the rotating blades 101-1, 101-3
  • the moving direction of the drone 100 becomes It will be reversed. Therefore, the probability of deviation from the predetermined flight plan increases, the flight plan is delayed, and safety cannot be ensured. Therefore, also in this respect, it is preferable to pipe the end portion of the hydrogen gas discharge pipe 72 in the flow path of the descending airflow of the rotating blades 101-1 and 101-3 behind in the traveling direction.
  • a cathode side discharge port 626 and an air discharge valve 627 are provided downstream of the cathode flow channel 620 for discharging water and gas accumulated in the cathode flow channel 620 to the atmosphere.
  • the air exhaust valve 627 is, for example, a butterfly valve.
  • the air exhaust valve 627 is configured to be controlled to be opened and closed by the reaction gas supply unit 54, and to control the flow rate of outflow.
  • a large amount of air may flow into the cathode flow channel 620.
  • the flow rate of air can be reduced by closing the air exhaust valve 627 even when the amount of inflowing air is too large.
  • the suction port of the outside air suction pipe 71 is arranged in the vicinity of the rotary blade different from the discharge port of the hydrogen gas discharge pipe 72.
  • the outside air suction pipe 71 is arranged near the rotary blade 101-3b, and the hydrogen gas discharge pipe 72 is arranged near the rotary blade 101-1b.
  • the outside air suction pipe 71 and the hydrogen gas discharge pipe 72 are pipes bent at one location, but the technical scope of the present invention is not limited to this.
  • the reaction gas supply unit 54 shown in FIG. 8 is a functional unit that adjusts the flow rate of the reaction gas supplied to the fuel cell 50 and discharged from the fuel cell 50.
  • the reaction gas is a reducing gas such as hydrogen, and an oxidizing gas for reacting with the reducing gas to extract electric power.
  • the oxidizing gas is, for example, air, and more specifically, oxygen gas contained in air.
  • the reaction gas supply unit 54 has a hydrogen flow rate adjusting unit 541 and an oxygen flow rate adjusting unit 542.
  • the hydrogen flow rate adjusting unit 541 is mainly configured by the hydrogen gas supply pipe 611, the hydrogen tank 612, the anode side discharge port 616, and the hydrogen discharge valve 617 (see FIG. 9) described above.
  • the oxygen flow rate adjusting unit 542 mainly includes an air supply pipe 621, an air supply device 622, a cathode side discharge port 626, and an air discharge valve 627.
  • the hydrogen flow rate adjusting unit 541 is an example of a reaction gas flow rate adjusting unit.
  • the plurality of stacked membrane electrode structures 60 each have curved I-V characteristics.
  • the normal IV curve 70 shows when the membrane electrode structure 60 is operating properly.
  • the IV curve is slightly lower than the normal IV curve 70, Move to the inside of areas A to C.
  • the power generation environment of the membrane electrode structure 60 is not in an ideal state, that is, when the IV curve is located in the regions A to C, when the same amount of current value is subtracted, the generated voltage value is the normal IV curve. Low compared to being at 70. However, the voltage value to be exerted can be increased by decreasing the desired current value.
  • a desired current value in order to obtain a necessary voltage value according to the position of the I-V curve. For example, it is possible to divide the area below the normal I-V curve 70 into a plurality of areas A to C and determine the desired current value based on the area to which the I-V curve belongs.
  • FIG. 12 shows IV characteristics of one membrane electrode structure 60, and each membrane electrode structure 60 has a position in the drone 100, a position in the fuel cell stack 60s, and respective structures. It behaves on an IV curve that varies depending on the variations that it has. Therefore, in addition to the power generation amount of the entire fuel cell stack 60s, the power generation amount of the membrane electrode structure 60 alone may be measured and monitored for proper operation. In particular, it is preferable to monitor the power generation amount of the membrane electrode structure 60 arranged at positions where the power generation environment is likely to be deteriorated, such as both ends of the fuel cell stack 60s or substantially the center.
  • control unit 20 includes a flight control unit 21, a fuel cell control unit 24, and an anode side exhaust port control unit 300.
  • the flight control unit 21 is a functional unit that controls the flight of the drone 100 by controlling the propulsion device of the drone 100, for example, the motor 102 and the rotary wing 101 that rotates with the motor 102.
  • the flight control unit 21 can individually control the rotation speed of each rotor 101 by each motor 102, and can control the wind force of the descending airflow generated by each rotor 101.
  • the fuel cell control unit 24 compares the target value of the power generation amount with the outputtable value of the fuel cell 50 to control the reaction gas supply amount and perform hydrogen purging.
  • the fuel cell 50 is executed.
  • Hydrogen purging is one mode of operation for increasing the power generation amount of the fuel cell 50.
  • the hydrogen supply valve 613 is further opened to allow hydrogen gas to flow into the anode flow channel 610 at a high flow rate.
  • the hydrogen gas is blown onto the anode side of the fuel cell stack 60s, and in particular blows off and removes water attached to the catalyst 603 on the anode side.
  • the water blown off is discharged from the anode side discharge port 616. This process may be intermittently performed multiple times in a short time with one hydrogen purge. Water attached to the anode side of the fuel cell stack 60s reduces the responsiveness of hydrogen and oxygen in the membrane electrode structure 60.
  • the outputtable value of the fuel cell 50 can be increased.
  • the hydrogen purging may be performed based on the outputtable value of the fuel cell 50 becoming equal to or lower than a predetermined value, or may be periodically performed regardless of the outputtable value.
  • the anode-side outlet control unit 300 is a functional unit that controls opening / closing of the anode-side outlet 616.
  • the outlet control unit 300 controls opening / closing of the anode-side outlet 616, for example, according to the operating state of the rotary blade 101.
  • the anode-side outlet control unit 300 prohibits the opening operation of the anode-side outlet 616 when the thrust generated by the rotor blades 101 is less than a predetermined value or is stopped. Further, the anode-side outlet control unit 300 permits the opening operation of the anode-side outlet 616 when the thrust generated by the rotary blade 101 is equal to or greater than a predetermined value.
  • the thrust generated by the rotor blade 101 may be estimated based on the rotation speed or the rotation speed of the rotor blade 101. That is, the anode-side outlet control unit 300 prohibits the opening operation of the anode-side outlet 616 when the rotation speed of the rotating blade 101 is lower than a predetermined value or is stopped, and the rotation speed of the rotating blade 101 is equal to or higher than a predetermined value. In this case, the opening operation of the anode side discharge port 616 may be permitted.
  • the rotation speed of the rotor blade 101 that permits the opening operation of the anode side discharge port 616 is a rotation speed that generates a flow velocity that allows the concentration of discharged hydrogen gas to be less than 8%, which is the concentration at which hydrogen gas ignites. Is desirable.
  • the anode-side outlet control unit 300 may permit the opening operation of the outlet on the condition that at least the rotary blade 101 is rotating.
  • the anode-side outlet control unit 300 includes a hydrogen concentration adjusting unit 30.
  • the hydrogen concentration adjusting unit 30 is a functional unit that ensures the concentration of hydrogen gas discharged mainly from the anode side discharge port 616 of the fuel cell 50 to be below a predetermined concentration.
  • the hydrogen concentration adjusting unit 30 predicts the discharge amount of hydrogen gas discharged after a predetermined time, and performs a predetermined operation when it is predicted that the hydrogen gas discharge concentration will be equal to or higher than a predetermined value.
  • the anode-side outlet control unit 300 and the hydrogen concentration adjustment unit 30 may be included in the fuel cell power supply device 502.
  • the hydrogen concentration adjusting unit 30 is an example of a reaction gas concentration adjusting unit.
  • the hydrogen concentration adjustment unit 30 includes a hydrogen discharge prediction unit 31, a concentration adjustment necessity determination unit 32, a concentration adjustment unit 33, and a hydrogen concentration detection unit 34.
  • the hydrogen discharge prediction unit 31 is a functional unit that predicts the presence / absence of discharge of hydrogen gas mainly discharged from the anode side discharge port 616, and the discharge amount of hydrogen gas, particularly the discharge flow rate per unit time.
  • the hydrogen discharge prediction unit 31 predicts the presence / absence of discharge of hydrogen gas and the discharge flow rate, for example, by receiving from the fuel cell power supply device 502 information that the hydrogen flow rate adjustment unit 541 requires discharge of hydrogen gas. To do. Further, the hydrogen discharge predicting unit 31 may predict that the hydrogen gas will be released by receiving information from the fuel cell power supply device 502 that the fuel cell 50 will be started, stopped, and purged with hydrogen. Good. At that time, the hydrogen discharge prediction unit 31 stores the discharge flow rate of the hydrogen gas in advance in association with each of start, stop, and hydrogen purge, and stores the discharge flow rate of the hydrogen gas according to the action to be executed. You may predict.
  • the concentration adjustment necessity determination unit 32 is a functional unit that determines the necessity of the hydrogen gas concentration adjustment operation based on the predicted hydrogen gas discharge flow rate and the operating amount of the propulsion device of the drone 100. ..
  • the operating amount is, for example, the number of rotations of the motor 102 and the rotary blade 101.
  • the propulsion device of the drone 100 can be applied with various configurations in which the air flow is generated backward in the traveling direction to fly the drone 100, and the operation amount is a value corresponding to the flow rate of this air flow, and is generated in the drone 100. Corresponds to the exerted thrust.
  • the concentration adjustment necessity determination unit 32 refers to a dilutable flow rate-exhaust flow rate table in which the dilutable flow rate of hydrogen gas according to the operating amount of the thruster and the discharge flow rate of hydrogen gas are stored in association with each other. It is possible. The concentration adjustment necessity determination unit 32 determines that adjustment of the hydrogen concentration is necessary when the predicted discharge flow rate is larger than the dilutable flow rate of the propulsion device at the time of discharge.
  • the concentration adjusting unit 33 is a functional unit that adjusts the concentration of the discharged hydrogen gas.
  • a means for increasing the operating amount of the thruster to dilute the hydrogen gas and a means for limiting the hydrogen discharge flow rate according to the operating amount of the thruster can be used. Therefore, the concentration adjusting unit 33 includes a hydrogen diluting unit 331 and an allowable flow rate transmitting unit 332.
  • the hydrogen diluting unit 331 is a functional unit that dilutes the discharged hydrogen gas to a predetermined concentration or less.
  • the hydrogen diluting unit 331 uses the propeller of the drone 100, that is, the motor 102 and the rotary blade 101 rotated by the motor 102, as a component for diluting hydrogen gas. According to this configuration, it is not necessary to separately have a configuration for diluting the hydrogen gas, and the configuration of the drone 100 can be simplified.
  • the hydrogen diluting unit 331 issues a request command to increase the operating amount of the propulsion device to the operating amount necessary for diluting the hydrogen gas concentration to a predetermined concentration or less based on the dilutable flow rate-exhaust flow rate table. Output to.
  • the hydrogen discharge valve 617 is opened after the hydrogen diluting unit 331 increases the operating amount of the propulsion device.
  • the hydrogen gas concentration after dilution is, for example, 4% or less.
  • the drone 100 may operate unintentionally. Resulting in. Therefore, the flight control unit 21 re-controls the operating amounts of all the rotor blades 101 based on the operating amount requested of the hydrogen diluting unit 331. At this time, the drone 100 may perform forward or acceleration, ascent, or yaw rotation, for example.
  • the allowable flow rate transmission unit 332 is a functional unit that calculates the flow rate of hydrogen gas that is allowed to be discharged according to the operating amount of the propulsion device and sends it to the hydrogen flow rate adjustment unit 541.
  • the hydrogen flow rate adjusting unit 541 adjusts the flow rate of hydrogen gas so that the hydrogen gas is discharged within an allowable range. Specifically, the hydrogen flow rate adjusting unit 541 reduces the flow rate of hydrogen gas by reducing the duty ratio of opening and closing the hydrogen discharge valve 617.
  • the propulsion device operation amount has an upper limit. That is, there is an upper limit to the hydrogen concentration that can be diluted by the hydrogen diluting unit 331. Therefore, when the discharge flow rate of the hydrogen gas exceeds the dilutable value, it is possible to take measures to reduce the allowable flow rate in addition to increasing the operating amount of the propulsion device.
  • the hydrogen concentration that can be diluted by the hydrogen diluting unit 331 varies depending on the state of the drone 100. For example, when the drone 100 is flying, the upper limit of the operating amount is larger than when the drone 100 is landing.
  • the hydrogen concentration detection unit 34 is a functional unit that detects the hydrogen gas concentration around the drone 100, and has, for example, a hydrogen concentration sensor. The detected hydrogen gas concentration may be fed back to the concentration adjustment necessity determination unit 32 to redetermine whether or not the discharged hydrogen gas concentration is below a predetermined level. Further, the hydrogen concentration detection unit 34 may detect the hydrogen concentration regularly regardless of whether or not the hydrogen concentration has been adjusted. When the hydrogen concentration detector 34 detects a hydrogen concentration equal to or higher than a predetermined value, the concentration adjuster 33 adjusts the hydrogen concentration.
  • the hydrogen discharge prediction unit 31 predicts that hydrogen gas is scheduled to be discharged from the anode side discharge port 616 (S31). When hydrogen discharge is not predicted, the process returns to step S31. Step S31 may be periodically repeated, or step S31 may be configured to be executed by receiving a signal indicating the discharge of hydrogen.
  • the concentration adjustment necessity determination unit 32 determines whether the dilutable flow rate calculated based on the operating amount of the propulsion device is equal to or higher than the predicted hydrogen discharge flow rate (S32). .. When the dilutable flow rate is equal to or higher than the discharge flow rate, even if the predicted hydrogen is discharged, the hydrogen is diluted to a predetermined concentration or less and discharged to the atmosphere, so the hydrogen discharge valve 617 is opened without adjusting the hydrogen concentration. Then, the discharge of hydrogen is started (S33), and the process returns to step S31. If the dilutable flow rate is smaller than the discharge flow rate, the process proceeds to step S34.
  • the concentration adjusting unit 33 determines whether the operating amount of the propulsion device is the maximum operating amount that can be adjusted by the hydrogen diluting unit 331 (S34). When it is less than the maximum operating amount, the hydrogen diluting unit 331 increases the operating amount of the propulsion device (S35). Next, returning to step S32, it is re-determined whether the dilutable flow rate by the propeller after increasing the operation amount is equal to or higher than the discharge flow rate.
  • the allowable flow rate transmitting unit 332 transmits the allowable flow rate according to the operating amount of the propulsion device to the hydrogen flow rate adjusting unit 541 to adjust the hydrogen flow rate.
  • the part 541 adjusts the hydrogen flow rate by opening and closing the hydrogen discharge valve 617 and discharges it (S36). That is, the discharge flow rate is reduced and the discharge is performed.
  • the concentration adjusting unit 33 determines again whether the dilutable flow rate by the propellant is equal to or higher than the discharge flow rate (S37). When the dilutable flow rate is equal to or higher than the discharge flow rate, the process returns to step S31. If the dilutable flow rate is less than the discharge flow rate, the drone 100 may notify the user to that effect, and may take evacuation action together during flight (S38).
  • Evacuation behavior includes normal landing operation, air stop as an example of hovering, and "emergency return" to immediately move to a predetermined return point by the shortest route.
  • the predetermined return point is a point stored in advance in the flight controller 501, for example, a point at which the flight controller 501 has taken off.
  • the predetermined return point is, for example, a land point where the user 402 can approach the drone 100, and the user 402 can inspect the drone 100 reaching the return point or manually carry it to another place. can do.
  • the evacuation behavior may be a "normal return” in which the route is optimized to move to a predetermined return point.
  • the optimized route is, for example, a route calculated by referring to the route in which the drug is sprayed before receiving the normal return command.
  • the drone 100 moves to a predetermined return point while spraying the drug via a route that has not yet sprayed the drug.
  • the evacuation action also includes an “emergency stop” in which all the rotor blades are stopped and the drone 100 is dropped downward from the spot.
  • the power source for the flight of the drone 100 was only the fuel cell 50, but a battery may be mounted together.
  • the agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and a drone for other applications or a machine that can operate using a fuel cell as a power source. It is generally applicable. In particular, it is applicable to a machine that operates autonomously.
  • the drone according to the present invention can maintain high safety even during autonomous flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)

Abstract

[Problem] To provide a drone that operates using a fuel cell as a power source and can remain highly safe even during autonomous flight. [Solution] The present invention comprises: a flight control unit 21 that generates thrust by operating a propulsion device 101 that generates airflow; a fuel cell power supply 502 capable of supplying power to the flight control unit; an openable/closable reaction gas outlet 616 for discharging reaction gas to the outside of the fuel cell power supply; and a reaction gas outlet control unit 300 that controls the opening and closing of the reaction gas outlet according to the operating state of the propulsion unit.

Description

ドローン、ドローンの制御方法、および、ドローン制御プログラムDrone, drone control method, and drone control program
本願発明は、ドローン、ドローンの制御方法、および、ドローン制御プログラムに関する。 The present invention relates to a drone, a drone control method, and a drone control program.
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is progressing. One of the important fields of application thereof is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In relatively small farmlands, it is often the case that drones are more suitable than manned planes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 Technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System) have made it possible for the drone to accurately know its absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation, and to efficiently and accurately apply a drug.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases in which it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs several tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a fool-proof mechanism is necessary, but the consideration for this was insufficient. Until now, there has been a drone safety technology that is premised on human control (for example, Patent Document 2), but in particular, it addresses the safety issues peculiar to an autonomous flight drone for drug spraying for agriculture. There was no technology to do this.
また、発電効率が良く、環境にも優しいことが知られている発電機構として、燃料電池が知られている。ドローンが安全に安定して飛行するためには、燃料電池を制御して安定した電力供給を行うことが不可欠である。さらに、燃料電池の外部に放出される水素ガスは可燃性であるため、所定以上の濃度で大気に放出されると、発火等の恐れがある。そこで、燃料電池から水素ガスが放出される場合であっても安全性を担保する技術が必要とされている。今までに、燃料電池を有するマルチコプタに関する技術は開示されていたが(例えば、特許文献3)、高い安全性を担保するために燃料電池を制御する技術は存在していなかった。 Further, a fuel cell is known as a power generation mechanism that is known to have good power generation efficiency and be environmentally friendly. In order for the drone to fly safely and stably, it is essential to control the fuel cell and provide a stable power supply. Further, since hydrogen gas released to the outside of the fuel cell is flammable, if it is released into the atmosphere at a concentration higher than a predetermined level, it may cause ignition. Therefore, there is a need for a technique that ensures safety even when hydrogen gas is released from the fuel cell. Up to now, a technique relating to a multicopter having a fuel cell has been disclosed (for example, Patent Document 3), but a technique for controlling the fuel cell in order to ensure high safety has not existed.
特許公開公報 特開2001-120151Patent publication gazette JP 2001-120151 特許公開公報 特開2017-163265Patent publication gazette JP 2017-163265 特許公開公報 特開2017-114186Japanese Patent Laid-Open Publication No. 2017-114186
 燃料電池を動力として動作し、飛行中に反応ガスを放出する構成であっても、高い安全性を維持できるドローンを提供する。 -Providing a drone that can maintain high safety even if it is configured to operate with a fuel cell as a power source and release reaction gas during flight.
 上記目的を達成するため、本発明の一の観点に係るドローンは、気流を発生する推進器を稼働させることにより推力を発生させる飛行制御部と、反応ガスを燃料として前記飛行制御部に電力を供給可能な燃料電池電源装置と、前記反応ガスを前記燃料電池電源装置の外部に排出する、開閉可能な反応ガス排出口と、前記推進器の稼働状態に応じて、前記反応ガス排出口の開閉を制御する反応ガス排出口制御部と、を備える。 In order to achieve the above object, a drone according to one aspect of the present invention provides a flight control unit that generates thrust by operating a propulsion device that generates an air flow, and power to the flight control unit using reaction gas as fuel. A supplyable fuel cell power supply device, an openable / closable reaction gas discharge port for discharging the reaction gas to the outside of the fuel cell power supply device, and opening / closing of the reaction gas discharge port according to the operating state of the propulsion device. And a reaction gas exhaust port control unit for controlling.
 前記反応ガス排出口制御部は、前記推進器の発生する推力が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可するものとしてもよい。 The reaction gas outlet control unit prohibits the opening operation of the reaction gas outlet when the thrust generated by the propulsion device is less than a predetermined value or is stopped, and the thrust generated by the propulsion device has a predetermined value. In the above case, the opening operation of the reaction gas outlet may be permitted.
 前記推進器は、回転動作を行う回転翼で構成され、
 前記反応ガス排出口制御部は、前記回転翼の回転速度が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可するものとしてもよい。
The propulsion device is composed of rotary blades that perform a rotary operation,
The reaction gas outlet control unit prohibits the opening operation of the reaction gas outlet when the rotation speed of the rotary blade is less than or equal to a predetermined value or is stopped, and the thrust generated by the propulsion device is equal to or greater than a predetermined value. In this case, the opening operation of the reaction gas outlet may be permitted.
 前記反応ガス排出口制御部は、前記推進器が発生させる気流により、前記反応ガス排出口から排出される反応ガスの濃度を所定の濃度以下に調整する反応ガス濃度調整部を備えるものとしてもよい。 The reaction gas discharge control unit may include a reaction gas concentration adjustment unit that adjusts the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device. ..
 前記反応ガス濃度調整部は、所定時間後に反応ガスが排出されることを予測し、前記予測に基づいて反応ガスの濃度を調整するものとしてもよい。 The reaction gas concentration adjusting unit may predict that the reaction gas will be discharged after a predetermined time, and adjust the concentration of the reaction gas based on the prediction.
 前記反応ガス濃度調整部は、所定時間後に排出される反応ガスの流量を予測し、前記流量により排出が予測される反応ガスの濃度が、前記推進器が発生させている前記気流により希釈可能な濃度を上回るとき、前記推進器の稼働量を上昇させる要請指令を前記飛行制御部に出力するものとしてもよい。 The reaction gas concentration adjusting unit predicts a flow rate of the reaction gas discharged after a predetermined time, and the concentration of the reaction gas predicted to be discharged by the flow rate can be diluted by the airflow generated by the propulsion device. When the concentration is exceeded, a request command to increase the operating amount of the propulsion device may be output to the flight control unit.
 前記ドローンは複数の推進器を有し、前記反応ガス濃度調整部により1個の前記推進器の稼働量の上昇が要請されるとき、前記飛行制御部は、当該稼働量に基づいてすべての前記推進器の稼働量を制御するものとしてもよい。 The drone has a plurality of propulsion units, and when the reaction gas concentration adjusting unit requests an increase in the operating amount of one of the propulsion units, the flight control unit determines all of the operating units based on the operating amount. The operating amount of the propulsion device may be controlled.
 反応ガスの排出流量を調整する反応ガス流量調整部をさらに備え、
 前記反応ガス流量調整部は、前記推進器の稼働量に基づいて、当該稼働量の前記推進器により所定濃度以下に希釈可能な流量になるように、前記排出流量を調整するものとしてもよい。
Further comprising a reaction gas flow rate adjusting unit for adjusting the discharge flow rate of the reaction gas,
The reaction gas flow rate adjusting unit may adjust the discharge flow rate based on the operating amount of the propulsion device so that the operating amount of the propulsion device can be diluted to a predetermined concentration or less.
前記燃料電池電源装置から排出される前記反応ガスを、前記推進器によって生じる気流の流路中に導く反応ガス排出管をさらに備えるものとしてもよい。 A reaction gas discharge pipe for guiding the reaction gas discharged from the fuel cell power supply device into a flow path of an air flow generated by the propulsion device may be further provided.
前記反応ガス排出管の排出口は、前記推進器によって生じる気流のうち前記ドローンから離れる方向に進行する下降気流の流路中に配置されているものとしてもよい。 The discharge port of the reaction gas discharge pipe may be arranged in a flow path of a descending air flow that advances in a direction away from the drone among the air flows generated by the propulsion device.
前記燃料電池電源装置に流入する、前記反応ガスとは異なる第2反応ガスを、前記推進器によって生じる気流の流路中から前記燃料電池電源装置に流入させる第2反応ガス吸入管をさらに備えるものとしてもよい。 A second reaction gas suction pipe for allowing a second reaction gas, which is different from the reaction gas, flowing into the fuel cell power supply device to flow into the fuel cell power supply device from a flow path of an air flow generated by the propulsion device. May be
前記第2反応ガス吸入管の吸入口は、前記推進器によって生じる気流のうち前記ドローンから離れる方向に進行する下降気流の流路中に配置されているものとしてもよい。 The suction port of the second reaction gas suction pipe may be disposed in a flow path of a descending air flow that advances in a direction away from the drone among the air flows generated by the propulsion device.
前記ドローンは複数の推進器を有し、前記第2反応ガス吸入管の吸入口は、前記反応ガス排出管が配置される前記推進器とは異なる推進器が生じる気流の流路中に配置されているものとしてもよい。 The drone has a plurality of propulsion devices, and the suction port of the second reaction gas suction pipe is arranged in a flow path of an air flow generated by a propulsion device different from the propulsion device in which the reaction gas discharge pipe is arranged. May be
前記燃料電池電源装置は、膜電極構造体で仕切られた一方側に前記反応ガスを吸入する吸入口と前記反応ガス排出口を備え、他方側に前記第2反応ガス吸入管の吸入口と空気を燃料電池電源装置の外部に排出する第2排出口を備えるものとしてもよい。 The fuel cell power supply device includes a suction port for sucking the reaction gas and the reaction gas discharge port on one side partitioned by a membrane electrode structure, and a suction port of the second reaction gas suction pipe and air on the other side. May be provided with a second discharge port for discharging to the outside of the fuel cell power supply device.
 前記第2反応ガスは、酸素であってもよい。 The second reaction gas may be oxygen.
 前記反応ガスは、水素ガスであってもよい。 The reaction gas may be hydrogen gas.
 上記目的を達成するため、本発明の別の観点に係るドローンの制御方法は、気流を発生する推進器を稼働させることにより推力を発生させる飛行制御部と、反応ガスを燃料として前記飛行制御部に電力を供給可能な燃料電池電源装置と、前記反応ガスを前記燃料電池電源装置の外部に排出する、開閉可能な反応ガス排出口と、を有するドローンの制御方法であって、前記推進器を稼働させることにより気流を発生させる稼働ステップと、前記飛行制御部に電力を供給する供給ステップと、前記推進器の稼働状態に応じて、前記反応ガス排出口の開閉を制御する排出制御ステップと、を含む。 In order to achieve the above object, a drone control method according to another aspect of the present invention is a flight control unit that generates thrust by operating a propulsion device that generates an air flow, and the flight control unit that uses reaction gas as fuel. A method of controlling a drone, comprising: a fuel cell power supply device capable of supplying electric power to the fuel cell; and an openable / closable reaction gas discharge port for discharging the reaction gas to the outside of the fuel cell power supply device. An operating step of generating an air flow by operating, a supply step of supplying electric power to the flight control unit, an emission control step of controlling opening and closing of the reaction gas exhaust port according to an operating state of the propulsion device, including.
 前記排出制御ステップは、前記推進器の発生する推力が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可するものとしてもよい。 In the discharge control step, when the thrust generated by the propulsion device is less than a predetermined value or is stopped, the opening operation of the reaction gas discharge port is prohibited, and the thrust generated by the propulsion device is equal to or larger than a predetermined value. Alternatively, the opening operation of the reaction gas discharge port may be permitted.
 前記推進器は、回転動作を行う回転翼で構成され、前記排出制御ステップは、前記回転翼の回転速度が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可するものとしてもよい。 The propulsion device is composed of rotating blades that perform a rotating operation, and the discharge control step prohibits an opening operation of the reaction gas discharge port when the rotation speed of the rotating blades is less than a predetermined value or is stopped. The opening operation of the reaction gas discharge port may be permitted when the thrust generated by the propulsion device is a predetermined value or more.
 前記排出制御ステップは、前記推進器が発生させる気流により、前記反応ガス排出口から排出される反応ガスの濃度を所定の濃度以下に調整する反応ガス濃度調整ステップを含むものとしてもよい。 The discharge control step may include a reaction gas concentration adjusting step of adjusting the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンの制御プログラムは、気流を発生する推進器を稼働させることにより推力を発生させる飛行制御部と、反応ガスを燃料として前記飛行制御部に電力を供給可能な燃料電池電源装置と、前記反応ガスを前記燃料電池電源装置の外部に排出する、開閉可能な反応ガス排出口と、を有するドローンの制御プログラムであって、前記推進器を稼働させることにより気流を発生させる稼働命令と、前記飛行制御部に電力を供給する供給命令と、前記推進器の稼働状態に応じて、前記反応ガス排出口の開閉を制御する排出制御命令と、をコンピュータに実行させる。 In order to achieve the above object, a drone control program according to another aspect of the present invention is a flight control unit that generates thrust by operating a propulsion device that generates an air flow, and the flight control using reaction gas as fuel. A control program for a drone, comprising: a fuel cell power supply device capable of supplying electric power to a unit; and an openable / closable reaction gas discharge port for discharging the reaction gas to the outside of the fuel cell power supply device. An operation command for generating an air flow by operating the engine, a supply command for supplying electric power to the flight control unit, and an emission control command for controlling opening and closing of the reaction gas discharge port according to an operation state of the propulsion device. , Causes the computer to execute.
 前記排出制御命令は、前記推進器の発生する推力が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可するものとしてもよい。 The emission control command prohibits the opening operation of the reaction gas discharge port when the thrust force generated by the propulsion device is less than or equal to a predetermined value or is stopped, and the thrust force generated by the propulsion device is greater than or equal to a predetermined value. Alternatively, the opening operation of the reaction gas discharge port may be permitted.
 前記推進器は、回転動作を行うプロペラで構成され、前記排出制御命令は、前記プロペラの回転速度が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可するものとしてもよい。 The propulsion device is configured by a propeller that performs a rotating operation, and the discharge control command prohibits an opening operation of the reaction gas discharge port when the rotation speed of the propeller is less than a predetermined value or is stopped, The opening operation of the reaction gas outlet may be permitted when the thrust generated by the propulsion device is equal to or greater than a predetermined value.
 前記排出制御命令は、前記推進器が発生させる気流により、前記反応ガス排出口から排出される反応ガスの濃度を所定の濃度以下に調整する反応ガス濃度調整命令を含むものとしてもよい。 The discharge control command may include a reaction gas concentration adjustment command for adjusting the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by the air flow generated by the propulsion device.
 燃料電池を動力として動作し、飛行中に反応ガスを放出する構成であっても、高い安全性を維持できるドローンを提供することができる。 -It is possible to provide a drone that can maintain high safety even if it is configured to operate with fuel cells as power and release reaction gas during flight.
本願発明に係るドローンの第1実施形態を示す平面図である。It is a top view which shows 1st Embodiment of the drone which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right view of the said drone. 上記ドローンの背面図である。It is a rear view of the drone. 上記ドローンの斜視図である。It is a perspective view of the drone. 上記ドローンが有する薬剤散布システムの全体概念図である。It is the whole conceptual diagram of the medicine spraying system which the drone has. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the said drone. 上記ドローンが有する制御部および燃料電池電源装置の機能ブロック図である。FIG. 3 is a functional block diagram of a control unit and a fuel cell power supply device included in the drone. 上記燃料電池電源装置が有する燃料電池および反応ガス供給部の模式図である。FIG. 3 is a schematic diagram of a fuel cell and a reaction gas supply unit included in the fuel cell power supply device. 上記燃料電池および上記反応ガス供給部と、燃料電池計測部の様子を示す模式図である。It is a schematic diagram which shows the said fuel cell, the said reaction gas supply part, and the state of a fuel cell measurement part. 上記ドローンの回転翼が発生させる下降気流の様子を示す図であって、(a)実験図、(b)上記実験図を模式的に示す図、および(c)上記ドローンが移動しているときの下降気流の様子を示す模式図である。It is a figure which shows the mode of the downdraft which the rotary blade of the said drone produces, (a) Experimental drawing, (b) The figure which shows the said experimental drawing typically, and (c) When the said drone is moving. FIG. 6 is a schematic diagram showing a state of a descending air flow. 上記燃料電池が有する膜電極構造体のI―V特性を示す概略図である。FIG. 3 is a schematic diagram showing IV characteristics of a membrane electrode structure included in the fuel cell. 上記ドローンが有する水素濃度調整部が、水素ガスの排出濃度を調整するフローチャートである。6 is a flowchart in which the hydrogen concentration adjusting unit included in the drone adjusts the emission concentration of hydrogen gas.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawing.
 まず、本発明にかかるドローンが有する、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone possessed by the drone according to the present invention will be described. In the present specification, the drone, regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided. Each rotor 101 is arranged on four sides of the main body 110 by arms extending from the main body 110 of the drone 100. That is, the rotating blades 101-1a, 101-1b to the left in the traveling direction, the rotating blades 101-2a and 101-2b to the left front, the rotating blades 101-3a and 101-3b to the right rear, and the rotating blades 101-to the front right. 4a and 101-4b are arranged respectively. Note that the drone 100 has the traveling direction downward in the plane of FIG.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been. The motor 102 is an example of a propulsion device. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines. In the specification of the present application, the term "chemicals" generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい)。操縦器401とドローン100はWi-Fi等による無線通信を行う。 FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. The pilot 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies. In addition to the portable information device, you may use an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc. is provided so that the emergency operating device can respond quickly in an emergency). It may be a dedicated device with). The pilot 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. In addition, there may be obstacles such as buildings and electric wires in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). The farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the controller 401 by a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
 通常、ドローン100は圃場403の外部にある発着点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着点406に帰還する。発着点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 will take off from a landing point 406 outside the field 403 and return to the landing point 406 after spraying the drug on the field 403 or when it becomes necessary to replenish or charge the drug. The flight route (intrusion route) from the departure point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
 図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501, based on the input information received from the controller 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through storage media or the like for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software. Further, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the controller 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
 フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 interacts with the controller 401 via the Wi-Fi cordless handset function 503 and further via the base station 404, receives necessary commands from the controller 401, and transmits necessary information to the controller. Can be sent to 401. In this case, the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is highly important, it may be duplicated / multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring accelerations of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating accelerations). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404 outside the drone 100, the controller 401, or at another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能503は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the status of the drone. Instead of or in addition to the LED, a display means such as a liquid crystal display may be used. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 503 is an optional component for communicating with an external computer or the like for the transfer of software, for example, separately from the controller 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
 図8に示すように、ドローン100は、燃料電池によって動作するための構成として、大別して制御部20と、燃料電池電源装置502とを備え、制御部20と燃料電池電源装置502が協調して動作する。制御部20は、ドローン100の飛行を制御する飛行制御部21の他、燃料電池電源装置502の発電量を安定して制御するための機能部を有している。制御部20が有する各機能部は、図7に示すフライトコントローラー501に備えられている。 As shown in FIG. 8, the drone 100 roughly includes a control unit 20 and a fuel cell power supply device 502 as a configuration for operating with a fuel cell, and the control unit 20 and the fuel cell power supply device 502 cooperate with each other. Operate. The control unit 20 has a flight control unit 21 for controlling the flight of the drone 100 and a functional unit for stably controlling the power generation amount of the fuel cell power supply device 502. Each functional unit of the control unit 20 is included in the flight controller 501 shown in FIG. 7.
 燃料電池電源装置502は、ドローン100に電力を供給する手段である。燃料電池電源装置502は制御部20に接続され、制御部20と情報の送受信を行うことにより、制御部20に要求される発電量を担保するよう制御されている。 The fuel cell power supply device 502 is a means for supplying power to the drone 100. The fuel cell power supply device 502 is connected to the control unit 20 and is controlled to secure the amount of power generation required by the control unit 20 by transmitting and receiving information to and from the control unit 20.
 燃料電池電源装置502は電力供給機能に加えて、その内部状態をフライトコントローラー501に伝達する機能を有する。燃料電池電源装置502は、燃料電池50と、燃料電池計測部52と反応ガス供給部54と、を備える。 The fuel cell power supply device 502 has a function of transmitting its internal state to the flight controller 501, in addition to a power supply function. The fuel cell power supply device 502 includes a fuel cell 50, a fuel cell measurement unit 52, and a reaction gas supply unit 54.
 図9を用いて、燃料電池電源装置502が有する燃料電池50、および水素ガスおよび空気を燃料電池50に供給するための反応ガス供給部54の構成について説明する。
 図9に示すように、燃料電池50は、アノード側およびカソード側にそれぞれ供給される水素ガスおよび酸素ガスを膜電極構造体上付近において反応させることにより、燃料電池50に接続される装置700に電力を供給する。水素ガスは反応ガスの例であり、酸素ガスは、第2反応ガスの例である。装置700は、本実施の形態においては、例えばフライトコントローラー501や、ドローン100に搭載される構成要素、および燃料電池電源装置502に含まれる空気供給装置622等の電力を消費する各種構成要素である。
The configuration of the fuel cell 50 included in the fuel cell power supply device 502 and the reaction gas supply unit 54 for supplying hydrogen gas and air to the fuel cell 50 will be described with reference to FIG.
As shown in FIG. 9, the fuel cell 50 has a device 700 connected to the fuel cell 50 by reacting hydrogen gas and oxygen gas supplied to the anode side and the cathode side, respectively, in the vicinity of the membrane electrode structure. Supply power. Hydrogen gas is an example of the reaction gas, and oxygen gas is an example of the second reaction gas. In the present embodiment, the device 700 is, for example, a flight controller 501, a component mounted on the drone 100, and various components that consume electric power such as an air supply device 622 included in the fuel cell power supply device 502. .
 燃料電池50は、例えば固体高分子電解膜600の片面を水素極601(アノード側)、もう片面を酸素極602(カソード側)で挟んだ膜電極構造体(MEA;Membrane Electrode Assembly)60により構成されている。膜電極構造体60の両面には、それぞれ水素と酸素の反応を促す触媒603が配置され、さらに触媒603の外側面にはそれぞれ拡散層604が配置されている。燃料電池50は、この膜電極構造体60がセパレータを介して複数積層され、各膜電極構造体60が電気的に直列接続されて、図10に示す燃料電池積層体(FC-stack)60sを形成している。なお、燃料電池の形態はこれに限られない。 The fuel cell 50 includes, for example, a membrane electrode structure (MEA: Membrane Electrode Assembly) 60 in which one side of a solid polymer electrolyte membrane 600 is sandwiched between a hydrogen electrode 601 (anode side) and the other side is sandwiched by an oxygen electrode 602 (cathode side). Has been done. Catalysts 603 that promote the reaction of hydrogen and oxygen are arranged on both surfaces of the membrane electrode structure 60, and diffusion layers 604 are arranged on the outer surfaces of the catalyst 603. In the fuel cell 50, a plurality of the membrane electrode structures 60 are laminated with a separator interposed therebetween, and the membrane electrode structures 60 are electrically connected in series to form a fuel cell laminate (FC-stack) 60s shown in FIG. Is forming. The form of the fuel cell is not limited to this.
 図9及び10に示すように、燃料電池50は、膜電極構造体60で仕切られた一方側に、水素ガスを吸入する水素ガス供給管611および水素ガスを排出するアノード側排出口616を備える。また、燃料電池50は、他方側に、空気を吸入する空気供給管621および空気を燃料電池電源装置502の外部に排出するカソード側排出口626を備える。水素ガス供給管61は、吸入口の例であり、アノード側排出口616は、反応ガス排出口の例である。空気供給管621と燃料電池50の水素極側、すなわちアノード流路610との接続部分は第2反応ガス吸入管の吸入口の例である。カソード側排出口626は、第2排出口の例である。以下に、燃料電池50および燃料電池50に接続されている各構成について説明する。 As shown in FIGS. 9 and 10, the fuel cell 50 is provided with a hydrogen gas supply pipe 611 for drawing in hydrogen gas and an anode side exhaust port 616 for discharging hydrogen gas on one side partitioned by the membrane electrode structure 60. .. Further, the fuel cell 50 is provided with an air supply pipe 621 for sucking air and a cathode side outlet 626 for discharging air to the outside of the fuel cell power supply device 502 on the other side. The hydrogen gas supply pipe 61 is an example of a suction port, and the anode side discharge port 616 is an example of a reaction gas discharge port. The connection part between the air supply pipe 621 and the hydrogen electrode side of the fuel cell 50, that is, the anode flow channel 610 is an example of the suction port of the second reaction gas suction pipe. The cathode side discharge port 626 is an example of the second discharge port. The fuel cell 50 and each component connected to the fuel cell 50 will be described below.
 燃料電池50の水素極側、すなわちアノード流路610には、水素ガス供給管611を介して水素タンク612が接続されている。水素タンク612にはアノード流路610での水素分圧に比べて高圧な水素ガスが貯留されていて、水素ガス供給管611を通じてアノード流路610に水素ガスが流入する。水素ガス供給管611には水素供給バルブ613、流量計614、および圧力計615が例えば上流からこの順に配置されていて、それぞれ後述する燃料電池制御部24(図8参照)に接続されている。なお、水素供給バルブ613、流量計614、および圧力計615の順序は上述と異なっていてもよい。燃料電池制御部24は、流量および圧力がフィードバックされることにより、アノード流路610に滞留する水素ガスの量を制御可能に構成されている。なお、圧力計615は、水素供給バルブ613の下流側のみに設けられていてもよいし、圧力計615a、615が水素供給バルブ613の上流側および下流側にそれぞれ設けられていてもよい。 A hydrogen tank 612 is connected to the hydrogen electrode side of the fuel cell 50, that is, the anode flow path 610 via a hydrogen gas supply pipe 611. Hydrogen gas having a higher pressure than the hydrogen partial pressure in the anode flow channel 610 is stored in the hydrogen tank 612, and the hydrogen gas flows into the anode flow channel 610 through the hydrogen gas supply pipe 611. In the hydrogen gas supply pipe 611, a hydrogen supply valve 613, a flow meter 614, and a pressure gauge 615 are arranged, for example, in this order from the upstream side, and are respectively connected to a fuel cell control unit 24 (see FIG. 8) described later. The order of the hydrogen supply valve 613, the flow meter 614, and the pressure gauge 615 may be different from that described above. The fuel cell control unit 24 is configured to be able to control the amount of hydrogen gas staying in the anode flow channel 610 by feeding back the flow rate and pressure. The pressure gauge 615 may be provided only on the downstream side of the hydrogen supply valve 613, or the pressure gauges 615a and 615 may be provided on the upstream side and the downstream side of the hydrogen supply valve 613, respectively.
 なお、本実施形態においては、水素タンク612内の圧力とアノード流路610における水素分圧の差によって水素ガスがアノード流路610に流入されるように構成されているが、水素タンク612からアノード流路610に水素ガスを送り出すポンプをさらに備えていてもよい。なお、ポンプがない構成は、装置の小型化が可能なため、ドローン100に適している。 In the present embodiment, the hydrogen gas is configured to flow into the anode channel 610 due to the difference between the pressure in the hydrogen tank 612 and the hydrogen partial pressure in the anode channel 610. A pump for sending hydrogen gas to the flow channel 610 may be further provided. The configuration without a pump is suitable for the drone 100 because the device can be downsized.
 燃料電池50の酸素極側、すなわちカソード流路620には、空気供給管621を介して空気供給装置622が接続されている。空気供給装置622は、例えばファン又はエアポンプであり、ドローン100周辺の外気を取り込んでカソード流路620に流入させる。空気供給装置622による出力量は、燃料電池制御部24(図8参照)により制御されている。空気供給装置622をより大きい電流で可動させるほど、カソード流路620における酸素ガスの滞留量が増加する。空気供給管621には、流量計624および圧力計625が配置されていて、それぞれ燃料電池制御部24(図8参照)に接続されている。燃料電池制御部24は、流量および圧力がフィードバックされることにより、カソード流路620に滞留する空気の量を制御可能に構成されている。 An air supply device 622 is connected to the oxygen electrode side of the fuel cell 50, that is, the cathode flow path 620 via an air supply pipe 621. The air supply device 622 is, for example, a fan or an air pump, and takes in outside air around the drone 100 and causes it to flow into the cathode channel 620. The output amount of the air supply device 622 is controlled by the fuel cell control unit 24 (see FIG. 8). As the air supply device 622 is operated with a larger current, the amount of oxygen gas retained in the cathode channel 620 increases. A flow meter 624 and a pressure gauge 625 are arranged in the air supply pipe 621, and are connected to the fuel cell control unit 24 (see FIG. 8). The fuel cell control unit 24 is configured to be able to control the amount of air staying in the cathode channel 620 by feeding back the flow rate and the pressure.
 図1乃至図5に示すように、空気供給装置622は、ドローン100周辺の外気を取り込むための外気吸入管71を有する。外気吸入管71から吸入される外気は、空気供給装置622および空気供給管621を介してカソード流路620に流入する。外気吸入管71の吸入口は、回転翼101の近傍であって、回転翼101が生じる気流の流路中に配置されている。回転翼101の気流の風力を外気の取り込みに利用することで、空気供給装置622は少ない電力で所定流量の空気をカソード流路620に流入させることができる。特に、外気吸入管71の吸入口は、回転翼101によって生じる気流のうちドローン100から離れる方向に進行する下降気流の流路中に配置されている。外気吸入管71は、第2反応ガス吸入管の例である。 As shown in FIGS. 1 to 5, the air supply device 622 has an outside air intake pipe 71 for taking in outside air around the drone 100. The outside air sucked from the outside air suction pipe 71 flows into the cathode channel 620 via the air supply device 622 and the air supply pipe 621. The intake port of the outside air intake pipe 71 is arranged in the vicinity of the rotary blade 101 and in the flow path of the air flow generated by the rotary blade 101. By utilizing the wind force of the airflow of the rotor blades 101 to take in the outside air, the air supply device 622 can cause a predetermined flow rate of air to flow into the cathode channel 620 with a small amount of electric power. In particular, the intake port of the outside air intake pipe 71 is arranged in the flow path of the descending air flow that advances in the direction away from the drone 100 among the air flows generated by the rotor blades 101. The outside air suction pipe 71 is an example of a second reaction gas suction pipe.
 図9および図10に示すように、水素供給バルブ613、流量計614、および圧力計615、615a、ならびに空気供給装置622、流量計624および圧力計625は、それぞれ起動および停止用の小型バッテリー630に接続されている。 As shown in FIGS. 9 and 10, the hydrogen supply valve 613, the flow meter 614, and the pressure gauges 615, 615a, and the air supply device 622, the flow meter 624, and the pressure gauge 625 respectively include a small battery 630 for starting and stopping. It is connected to the.
 アノード流路610の下流には、アノード流路610に滞留する水や気体を大気中に放出するためのアノード側排出口616および水素排出弁617が設けられている。アノード流路610に滞留する気体は、例えば空気や水素ガス、水蒸気である。水素排出弁617は、例えばバタフライ弁である。水素排出弁617は、反応ガス供給部54により開放および閉鎖が制御され、また、流出する流量を制御可能に構成されている。水素排出弁617は、燃料電池50の起動時および停止時、すなわち発電開始時および発電停止時、ならびに後述する回復アクションの際に開放され、主に水素ガスを外へ放出する。 An anode side discharge port 616 and a hydrogen discharge valve 617 are provided downstream of the anode flow channel 610 for discharging water and gas accumulated in the anode flow channel 610 to the atmosphere. The gas staying in the anode flow channel 610 is, for example, air, hydrogen gas, or water vapor. The hydrogen discharge valve 617 is, for example, a butterfly valve. Opening and closing of the hydrogen discharge valve 617 are controlled by the reaction gas supply unit 54, and the flow rate of the hydrogen discharge valve 617 can be controlled. The hydrogen discharge valve 617 is opened at the time of starting and stopping the fuel cell 50, that is, at the time of power generation start and power generation stop, and at the recovery action described later, and mainly releases hydrogen gas to the outside.
 図1乃至図5に示すように、アノード側排出口616の出口には水素ガス排出管72が連結されていて、水素ガス排出管72の排出口は、回転翼101からドローン100の進行方向後方に向かって発生する気流の流路中に配置されている。水素は可燃性であり、所定以上の濃度で大気に放出されると印加するおそれがある。この構成によれば、アノード側排出口616から排出される水素の濃度を、下降気流により希釈して大気に放出することができる。水素ガス排出管72は、反応ガス排出管の例であり、水素ガス排出管72の排出口は、反応ガス排出口の別の例である。水素ガス排出管72の排出口およびアノード側排出口616は、水素排出弁617により開閉可能に構成されている。 As shown in FIGS. 1 to 5, a hydrogen gas discharge pipe 72 is connected to the outlet of the anode side discharge port 616, and the discharge port of the hydrogen gas discharge pipe 72 is located at the rear side in the traveling direction of the drone 100 from the rotor blade 101. It is arranged in the flow path of the air flow generated toward. Hydrogen is flammable and may be applied if it is released into the atmosphere at a concentration above a predetermined level. According to this configuration, the concentration of hydrogen discharged from the anode side discharge port 616 can be diluted by the descending airflow and released to the atmosphere. The hydrogen gas discharge pipe 72 is an example of a reaction gas discharge pipe, and the discharge port of the hydrogen gas discharge pipe 72 is another example of a reaction gas discharge port. The discharge port of the hydrogen gas discharge pipe 72 and the discharge port 616 on the anode side are configured to be opened and closed by a hydrogen discharge valve 617.
 図11(a)に示すように、発明者の実験によれば、二段ローター構成の回転翼下では、上から見て回転翼の中心から半径のおよそ50%の距離にある位置からおよそ90%の位置に至るまでの間に特に気流の速度が速い円筒状の高速気流領域702が存在することが明らかになっている。図11(b)は図11(a)を模式化した図である。典型的な設計数値として、ローターの直径が70センチメートル、ローター回転速度が毎分2000回転、機体重量が20キログラムの場合に、この円筒状の領域702での風速は毎秒10メートル以上である。水素ガス排出管72の排出口は、この高速気流領域702内に配置される。 As shown in FIG. 11 (a), according to the experiment by the inventor, under the rotor of the two-stage rotor configuration, about 90% from the position at a distance of about 50% of the radius from the center of the rotor as viewed from above. It has been clarified that there is a cylindrical high-speed airflow region 702 in which the speed of the airflow is particularly high before reaching the position. FIG. 11 (b) is a schematic view of FIG. 11 (a). As a typical design value, if the rotor diameter is 70 cm, the rotor rotation speed is 2000 rpm, and the airframe weight is 20 kg, the wind speed in this cylindrical region 702 is 10 meters or more per second. The discharge port of the hydrogen gas discharge pipe 72 is arranged in this high-speed airflow region 702.
 また、図11(c)に示すように、ドローン100が移動するとき、高速気流領域702は進行方向後方に向けて傾く。そこで、ドローン100が圃場内を等速飛行している際に、水素ガス排出管72の排出口が高速気流領域702に配置されるように構成されていてもよい。 Also, as shown in FIG. 11 (c), when the drone 100 moves, the high-speed airflow area 702 tilts rearward in the traveling direction. Therefore, the discharge port of the hydrogen gas discharge pipe 72 may be arranged in the high-speed airflow region 702 while the drone 100 is flying at a constant speed in the field.
 水素ガス排出管72の排出口は、回転翼101によって生じる気流のうち、ドローン100から離れる方向に進行する下降気流の流路中に配置されている。回転翼101の上流側、すなわち回転翼101に吸入される気流の流路中に水素ガス排出管72の排出口を配管すると、排出される水素が回転翼101の内部、およびモーター102に引き込まれる。モーター102は摩擦等により着火源となりうるため、水素ガスに印加する恐れがあるためである。 The discharge port of the hydrogen gas discharge pipe 72 is arranged in the flow path of the descending air flow that advances in the direction away from the drone 100 among the air flows generated by the rotor blades 101. When the discharge port of the hydrogen gas discharge pipe 72 is installed on the upstream side of the rotor blade 101, that is, in the flow path of the air flow sucked into the rotor blade 101, the discharged hydrogen is drawn into the rotor blade 101 and the motor 102. .. This is because the motor 102 can serve as an ignition source due to friction or the like and may be applied to hydrogen gas.
 また、水素ガス排出管72の排出口は、進行方向後方の回転翼101-1,101-3により生じる下降気流の流路中に配置されているとよい。進行方向後方の回転翼101-1、101-3の回転数は、ホバリング中においては前方の回転翼101-2,101-4の回転数と同等であり、前進飛行中には回転翼101-1,101-3の回転数より大きい。すなわち、進行方向後方の回転翼101-1、101-3により生じる下降気流は回転翼101-2,101-4の下降気流と同等以上である場合が多い。したがって、本構成によれば、排出される水素ガスの希釈をより確実に行うことができる。また、後述する水素希釈部331は、排出される水素の濃度を希釈するため、回転翼101の回転数を変更することにより下降気流の流速を制御する。進行方向前方の回転翼101-2,101-4の回転数を変更する場合、回転翼101-2,101-4の回転数が回転翼101-1,101-3の回転数より大きくなると、ドローン100の進行方向が逆になってしまう。したがって、所定の飛行計画から逸脱する蓋然性が高くなり、飛行計画が遅れたり、安全性が担保できない状態になる。そこで、この点においても、水素ガス排出管72端部を進行方向後方の回転翼101-1,101-3の下降気流の流路中に配管するとよい。 Also, the discharge port of the hydrogen gas discharge pipe 72 is preferably arranged in the flow path of the descending air current generated by the rotary blades 101-1 and 101-3 at the rear of the traveling direction. Rotational speeds of the rotary blades 101-1 and 101-3 at the rear in the traveling direction are equal to those of the front rotary blades 101-2 and 101-4 during hovering, and the rotary blades 101-1 and 101- during the forward flight. Greater than 3 rpm. That is, the descending airflow generated by the rotating blades 101-1 and 101-3 behind the advancing direction is often equal to or more than the descending airflow of the rotating blades 101-2 and 101-4. Therefore, according to this configuration, the discharged hydrogen gas can be diluted more reliably. Further, the hydrogen diluting unit 331, which will be described later, controls the flow velocity of the descending air flow by changing the number of rotations of the rotary blade 101 in order to dilute the concentration of the discharged hydrogen. When changing the rotation speed of the rotating blades 101-2, 101-4 in the forward direction, when the rotating speed of the rotating blades 101-2, 101-4 becomes higher than the rotating speed of the rotating blades 101-1, 101-3, the moving direction of the drone 100 becomes It will be reversed. Therefore, the probability of deviation from the predetermined flight plan increases, the flight plan is delayed, and safety cannot be ensured. Therefore, also in this respect, it is preferable to pipe the end portion of the hydrogen gas discharge pipe 72 in the flow path of the descending airflow of the rotating blades 101-1 and 101-3 behind in the traveling direction.
 カソード流路620の下流には、カソード流路620に滞留する水や気体を大気中に放出するためのカソード側排出口626および空気排出弁627が設けられている。空気排出弁627は、例えばバタフライ弁である。空気排出弁627は、反応ガス供給部54により開放および閉鎖が制御され、また、流出する流量を制御可能に構成されている。本実施形態のように、空気供給装置622に回転翼101の下降気流が流入する構成の場合、カソード流路620により多くの空気が流入する可能性がある。空気排出弁627の構成によれば、流入する空気が多すぎる場合にも、空気排出弁627を閉じることにより空気の流量を減少させることができる。 A cathode side discharge port 626 and an air discharge valve 627 are provided downstream of the cathode flow channel 620 for discharging water and gas accumulated in the cathode flow channel 620 to the atmosphere. The air exhaust valve 627 is, for example, a butterfly valve. The air exhaust valve 627 is configured to be controlled to be opened and closed by the reaction gas supply unit 54, and to control the flow rate of outflow. In the case of the configuration in which the downdraft of the rotary blade 101 flows into the air supply device 622 as in the present embodiment, a large amount of air may flow into the cathode flow channel 620. According to the configuration of the air exhaust valve 627, the flow rate of air can be reduced by closing the air exhaust valve 627 even when the amount of inflowing air is too large.
 外気吸入管71が水素ガス排出管72により排出される水素ガスを吸入してしまうと、カソード流路620内で水素および酸素の反応が進行し、膜電極構造体60中において所望の反応が進行しなくなるおそれがある。また、カソード流路620中に水が発生し、応答性が低下するおそれがある。そこで、外気吸入管71の吸入口は、水素ガス排出管72の排出口とは異なる回転翼の近傍に配置されている。本実施形態においては、外気吸入管71は、回転翼101-3bの近傍に配置され、水素ガス排出管72は、回転翼101-1bの近傍に配置されている。本実施形態においては、外気吸入管71および水素ガス排出管72は1か所が屈曲した管であったが、本発明の技術的範囲はこれに限られない。 When the outside air suction pipe 71 sucks the hydrogen gas discharged from the hydrogen gas discharge pipe 72, the reaction of hydrogen and oxygen proceeds in the cathode flow channel 620, and the desired reaction proceeds in the membrane electrode structure 60. There is a risk that it will not. In addition, water may be generated in the cathode channel 620 and the responsiveness may be reduced. Therefore, the suction port of the outside air suction pipe 71 is arranged in the vicinity of the rotary blade different from the discharge port of the hydrogen gas discharge pipe 72. In the present embodiment, the outside air suction pipe 71 is arranged near the rotary blade 101-3b, and the hydrogen gas discharge pipe 72 is arranged near the rotary blade 101-1b. In the present embodiment, the outside air suction pipe 71 and the hydrogen gas discharge pipe 72 are pipes bent at one location, but the technical scope of the present invention is not limited to this.
 図8に示す反応ガス供給部54は、燃料電池50に供給され、燃料電池50から排出される反応ガスの流量を調整する機能部である。反応ガスとは、水素等の還元性ガス、および当該還元性ガスと反応させて電力を取り出すための酸化性ガスである。酸化性ガスは、例えば空気であり、より具体的には空気に含有される酸素ガスである。反応ガス供給部54は、水素流量調整部541、および酸素流量調整部542を有する。水素流量調整部541は、主として、前述した水素ガス供給管611、水素タンク612、アノード側排出口616、および水素排出弁617(図9参照)により構成されている。酸素流量調整部542は、主として、空気供給管621、空気供給装置622、カソード側排出口626、および空気排出弁627により構成されている。水素流量調整部541は、反応ガス流量調整部の例である。 The reaction gas supply unit 54 shown in FIG. 8 is a functional unit that adjusts the flow rate of the reaction gas supplied to the fuel cell 50 and discharged from the fuel cell 50. The reaction gas is a reducing gas such as hydrogen, and an oxidizing gas for reacting with the reducing gas to extract electric power. The oxidizing gas is, for example, air, and more specifically, oxygen gas contained in air. The reaction gas supply unit 54 has a hydrogen flow rate adjusting unit 541 and an oxygen flow rate adjusting unit 542. The hydrogen flow rate adjusting unit 541 is mainly configured by the hydrogen gas supply pipe 611, the hydrogen tank 612, the anode side discharge port 616, and the hydrogen discharge valve 617 (see FIG. 9) described above. The oxygen flow rate adjusting unit 542 mainly includes an air supply pipe 621, an air supply device 622, a cathode side discharge port 626, and an air discharge valve 627. The hydrogen flow rate adjusting unit 541 is an example of a reaction gas flow rate adjusting unit.
 図12に示すように、積層されている複数の膜電極構造体60は、それぞれ湾曲したI-V特性を有する。正常I-V曲線70は、膜電極構造体60が適切に動作しているときを示す。反応ガスの供給量や、膜電極構造体60周辺の温湿度の影響により、膜電極構造体60の発電環境が理想的な状態から外れると、I-V曲線は、正常I-V曲線70よりもやや下回り、領域A乃至Cの内部に移動する。膜電極構造体60の発電環境が理想的な状態でない場合、すなわちI-V曲線が領域A乃至C内に位置している場合、同量の電流値を引くと、発揮される電圧値は正常I-V曲線70にある場合と比較して低い。ただし、所望する電流値を下げることで、発揮される電圧値を上昇させることができる。また、I-V曲線の位置に応じて、必要な電圧値を得るために所望すべき電流値を求めることができる。例えば、正常I-V曲線70以下の領域を複数の領域A乃至Cに分割し、I-V曲線が属する領域に基づいて、所望すべき電流値を決定することも可能である。 As shown in FIG. 12, the plurality of stacked membrane electrode structures 60 each have curved I-V characteristics. The normal IV curve 70 shows when the membrane electrode structure 60 is operating properly. When the power generation environment of the membrane electrode structure 60 deviates from the ideal state due to the influence of the supply amount of the reaction gas and the temperature and humidity around the membrane electrode structure 60, the IV curve is slightly lower than the normal IV curve 70, Move to the inside of areas A to C. When the power generation environment of the membrane electrode structure 60 is not in an ideal state, that is, when the IV curve is located in the regions A to C, when the same amount of current value is subtracted, the generated voltage value is the normal IV curve. Low compared to being at 70. However, the voltage value to be exerted can be increased by decreasing the desired current value. Further, it is possible to obtain a desired current value in order to obtain a necessary voltage value according to the position of the I-V curve. For example, it is possible to divide the area below the normal I-V curve 70 into a plurality of areas A to C and determine the desired current value based on the area to which the I-V curve belongs.
 また、I-V曲線が正常I-V曲線70を下回っている場合、後述する回復アクションを実行することで、I-V曲線を上昇させ、又は正常I-V曲線70上に移動させることが可能である。 Also, if the I-V curve is below the normal I-V curve 70, it is possible to raise the I-V curve or move it to the normal I-V curve 70 by executing the recovery action described below.
 なお、図12は、1個の膜電極構造体60が有するI-V特性であり、各膜電極構造体60は、ドローン100内の位置や、燃料電池積層体60s内における位置、またそれぞれの構造が有するばらつき等によって異なるI-V曲線上で挙動する。そこで、燃料電池積層体60s全体の発電量とは別に、膜電極構造体60単体の発電量を計測し、適切に動作しているか監視してもよい。特に、燃料電池積層体60sの両端部や略中央部等、発電環境が悪化しやすい位置に配置されている膜電極構造体60の発電量を監視するとよい。 Note that FIG. 12 shows IV characteristics of one membrane electrode structure 60, and each membrane electrode structure 60 has a position in the drone 100, a position in the fuel cell stack 60s, and respective structures. It behaves on an IV curve that varies depending on the variations that it has. Therefore, in addition to the power generation amount of the entire fuel cell stack 60s, the power generation amount of the membrane electrode structure 60 alone may be measured and monitored for proper operation. In particular, it is preferable to monitor the power generation amount of the membrane electrode structure 60 arranged at positions where the power generation environment is likely to be deteriorated, such as both ends of the fuel cell stack 60s or substantially the center.
 図8に示すように、制御部20は、飛行制御部21と、燃料電池制御部24と、アノード側排出口制御部300と、を備える。 As shown in FIG. 8, the control unit 20 includes a flight control unit 21, a fuel cell control unit 24, and an anode side exhaust port control unit 300.
 飛行制御部21は、ドローン100が有する推進器、例えばモーター102およびモーター102により回転動作を行う回転翼101を制御することにより、ドローン100の飛行を制御する機能部である。飛行制御部21は、各モーター102により各回転翼101の回転数を個別に制御可能であり、各回転翼101により発生する下降気流の風力を制御することができる。 The flight control unit 21 is a functional unit that controls the flight of the drone 100 by controlling the propulsion device of the drone 100, for example, the motor 102 and the rotary wing 101 that rotates with the motor 102. The flight control unit 21 can individually control the rotation speed of each rotor 101 by each motor 102, and can control the wind force of the descending airflow generated by each rotor 101.
 燃料電池制御部24は、燃料電池50が発電状態にある場合において、発電量の目標値と、燃料電池50の出力可能値とを比較して、反応ガスの供給量の制御、および水素パージを燃料電池50に実行させる。 When the fuel cell 50 is in the power generation state, the fuel cell control unit 24 compares the target value of the power generation amount with the outputtable value of the fuel cell 50 to control the reaction gas supply amount and perform hydrogen purging. The fuel cell 50 is executed.
 水素パージとは、燃料電池50の発電量を増加させるための動作の1態様である。具体的には、アノード側排出口616および水素排出弁617を開放した状態で、水素供給バルブ613をさらに開放し、速い流量で水素ガスをアノード流路610に流入させる。水素ガスは、燃料電池積層体60sのアノード側に吹き付けられ、特にアノード側の触媒603に付着した水を吹き飛ばし、除去する。吹き飛ばされた水は、アノード側排出口616から排出される。1回の水素パージで、この工程を、短時間に断続的に複数回行ってもよい。燃料電池積層体60sのアノード側に付着した水は、膜電極構造体60における水素と酸素の応答性を低下させてしまう。水素パージにより水を除去する構成によれば、燃料電池50の出力可能値を上昇させることができる。水素パージは、燃料電池50の出力可能値が所定以下になったことに基づいて行ってもよいし、出力可能値に関わらず定期的に行ってもよい。 ▽ Hydrogen purging is one mode of operation for increasing the power generation amount of the fuel cell 50. Specifically, with the anode side discharge port 616 and the hydrogen discharge valve 617 open, the hydrogen supply valve 613 is further opened to allow hydrogen gas to flow into the anode flow channel 610 at a high flow rate. The hydrogen gas is blown onto the anode side of the fuel cell stack 60s, and in particular blows off and removes water attached to the catalyst 603 on the anode side. The water blown off is discharged from the anode side discharge port 616. This process may be intermittently performed multiple times in a short time with one hydrogen purge. Water attached to the anode side of the fuel cell stack 60s reduces the responsiveness of hydrogen and oxygen in the membrane electrode structure 60. According to the configuration in which water is removed by hydrogen purging, the outputtable value of the fuel cell 50 can be increased. The hydrogen purging may be performed based on the outputtable value of the fuel cell 50 becoming equal to or lower than a predetermined value, or may be periodically performed regardless of the outputtable value.
 アノード側排出口制御部300は、アノード側排出口616の開閉を制御する機能部である。排出口制御部300は、例えば、回転翼101の稼働状態に応じて、アノード側排出口616の開閉を制御する。アノード側排出口制御部300は、回転翼101の発生する推力が所定値未満もしくは停止している場合には、アノード側排出口616の開動作を禁止する。また、アノード側排出口制御部300は、回転翼101の発生する推力が所定値以上の場合に、アノード側排出口616の開動作を許可する。 The anode-side outlet control unit 300 is a functional unit that controls opening / closing of the anode-side outlet 616. The outlet control unit 300 controls opening / closing of the anode-side outlet 616, for example, according to the operating state of the rotary blade 101. The anode-side outlet control unit 300 prohibits the opening operation of the anode-side outlet 616 when the thrust generated by the rotor blades 101 is less than a predetermined value or is stopped. Further, the anode-side outlet control unit 300 permits the opening operation of the anode-side outlet 616 when the thrust generated by the rotary blade 101 is equal to or greater than a predetermined value.
 回転翼101の発生する推力は、回転翼101の回転速度又は回転数に基づいて推定してもよい。すなわち、アノード側排出口制御部300は、回転翼101の回転速度が所定値未満又は停止している場合に、アノード側排出口616の開動作を禁止し、回転翼101の回転速度が所定以上の場合に、アノード側排出口616の開動作を許可してもよい。アノード側排出口616の開動作を許可する回転翼101の回転速度は、排出される水素ガスの濃度を、水素ガスが発火する濃度である8%未満とすることができる流速を発生させる回転速度が望ましい。また、アノード側排出口制御部300は、少なくとも回転翼101が回転していることを条件に排出口の開動作を許可するとよい。 The thrust generated by the rotor blade 101 may be estimated based on the rotation speed or the rotation speed of the rotor blade 101. That is, the anode-side outlet control unit 300 prohibits the opening operation of the anode-side outlet 616 when the rotation speed of the rotating blade 101 is lower than a predetermined value or is stopped, and the rotation speed of the rotating blade 101 is equal to or higher than a predetermined value. In this case, the opening operation of the anode side discharge port 616 may be permitted. The rotation speed of the rotor blade 101 that permits the opening operation of the anode side discharge port 616 is a rotation speed that generates a flow velocity that allows the concentration of discharged hydrogen gas to be less than 8%, which is the concentration at which hydrogen gas ignites. Is desirable. Further, the anode-side outlet control unit 300 may permit the opening operation of the outlet on the condition that at least the rotary blade 101 is rotating.
 アノード側排出口制御部300は、水素濃度調整部30を備える。 The anode-side outlet control unit 300 includes a hydrogen concentration adjusting unit 30.
 水素濃度調整部30は、燃料電池50の主にアノード側排出口616から排出される水素ガスの濃度を所定濃度以下に担保する機能部である。水素濃度調整部30は、所定時間後に排出される水素ガスの排出量を予測し、水素ガスの排出濃度が所定以上になることが予測される場合は、所定の動作を行う。なお、アノード側排出口制御部300および水素濃度調整部30は、燃料電池電源装置502が有する構成であってもよい。水素濃度調整部30は、反応ガス濃度調整部の例である。 The hydrogen concentration adjusting unit 30 is a functional unit that ensures the concentration of hydrogen gas discharged mainly from the anode side discharge port 616 of the fuel cell 50 to be below a predetermined concentration. The hydrogen concentration adjusting unit 30 predicts the discharge amount of hydrogen gas discharged after a predetermined time, and performs a predetermined operation when it is predicted that the hydrogen gas discharge concentration will be equal to or higher than a predetermined value. The anode-side outlet control unit 300 and the hydrogen concentration adjustment unit 30 may be included in the fuel cell power supply device 502. The hydrogen concentration adjusting unit 30 is an example of a reaction gas concentration adjusting unit.
 水素濃度調整部30は、水素排出予測部31と、濃度調整要否判定部32と、濃度調整部33と、水素濃度検知部34と、を備える。 The hydrogen concentration adjustment unit 30 includes a hydrogen discharge prediction unit 31, a concentration adjustment necessity determination unit 32, a concentration adjustment unit 33, and a hydrogen concentration detection unit 34.
 水素排出予測部31は、主にアノード側排出口616から排出される水素ガスの排出有無、および水素ガスの排出量、とくに単位時間当たりの排出流量を予測する機能部である。水素排出予測部31は、例えば、水素流量調整部541が水素ガスの排出を要している旨の情報を燃料電池電源装置502から受信することにより、水素ガスの放出の有無および排出流量を予測する。また、水素排出予測部31は、燃料電池50が起動、停止、および水素パージを行う旨の情報を燃料電池電源装置502から受信することにより、水素ガスの放出が行われることを予測してもよい。その際、水素排出予測部31は、起動、停止、および水素パージのそれぞれに対し、水素ガスの排出流量があらかじめ関連付けられて記憶されていて、実行予定のアクションに応じて水素ガスの排出流量を予測してもよい。 The hydrogen discharge prediction unit 31 is a functional unit that predicts the presence / absence of discharge of hydrogen gas mainly discharged from the anode side discharge port 616, and the discharge amount of hydrogen gas, particularly the discharge flow rate per unit time. The hydrogen discharge prediction unit 31 predicts the presence / absence of discharge of hydrogen gas and the discharge flow rate, for example, by receiving from the fuel cell power supply device 502 information that the hydrogen flow rate adjustment unit 541 requires discharge of hydrogen gas. To do. Further, the hydrogen discharge predicting unit 31 may predict that the hydrogen gas will be released by receiving information from the fuel cell power supply device 502 that the fuel cell 50 will be started, stopped, and purged with hydrogen. Good. At that time, the hydrogen discharge prediction unit 31 stores the discharge flow rate of the hydrogen gas in advance in association with each of start, stop, and hydrogen purge, and stores the discharge flow rate of the hydrogen gas according to the action to be executed. You may predict.
 濃度調整要否判定部32は、予測される水素ガスの排出流量と、ドローン100が有する推進器の稼働量と、に基づいて、水素ガス濃度の調整動作の要否を判定する機能部である。稼働量とは、例えばモーター102および回転翼101の回転数である。ドローン100の推進器は、進行方向後方に気流を発生させてドローン100を飛行させる種々の構成が適用可能であり、稼働量は、この気流の流量に対応する値であり、ドローン100に発生する発揮推力に対応する。濃度調整要否判定部32は、推進器の稼働量に応じた水素ガスの希釈可能流量と、水素ガスの排出流量と、が互いに関連付けられて記憶される、希釈可能流量―排出流量テーブルを参照可能である。濃度調整要否判定部32は、予測される排出流量が、排出時における推進器の希釈可能流量よりも大きいとき、水素濃度の調整が必要であると判定する。 The concentration adjustment necessity determination unit 32 is a functional unit that determines the necessity of the hydrogen gas concentration adjustment operation based on the predicted hydrogen gas discharge flow rate and the operating amount of the propulsion device of the drone 100. .. The operating amount is, for example, the number of rotations of the motor 102 and the rotary blade 101. The propulsion device of the drone 100 can be applied with various configurations in which the air flow is generated backward in the traveling direction to fly the drone 100, and the operation amount is a value corresponding to the flow rate of this air flow, and is generated in the drone 100. Corresponds to the exerted thrust. The concentration adjustment necessity determination unit 32 refers to a dilutable flow rate-exhaust flow rate table in which the dilutable flow rate of hydrogen gas according to the operating amount of the thruster and the discharge flow rate of hydrogen gas are stored in association with each other. It is possible. The concentration adjustment necessity determination unit 32 determines that adjustment of the hydrogen concentration is necessary when the predicted discharge flow rate is larger than the dilutable flow rate of the propulsion device at the time of discharge.
 濃度調整部33は、排出される水素ガスの濃度調整を行う機能部である。濃度調整の手段として、推進器の稼働量を上昇させて水素ガスを希釈する手段と、推進器の稼働量に応じて水素の排出流量を制限する手段と、が取り得る。そこで、濃度調整部33は、水素希釈部331と、許容流量送信部332と、を備える。 The concentration adjusting unit 33 is a functional unit that adjusts the concentration of the discharged hydrogen gas. As means for adjusting the concentration, a means for increasing the operating amount of the thruster to dilute the hydrogen gas and a means for limiting the hydrogen discharge flow rate according to the operating amount of the thruster can be used. Therefore, the concentration adjusting unit 33 includes a hydrogen diluting unit 331 and an allowable flow rate transmitting unit 332.
 水素希釈部331は、排出される水素ガスを所定濃度以下に希釈する機能部である。水素希釈部331は、ドローン100の推進器、すなわちモーター102、およびモーター102により回転する回転翼101を、水素ガスを希釈するための構成として利用する。この構成によれば、水素ガスを希釈するための構成を別に有する必要がなく、ドローン100の構成を簡素にすることができる。 The hydrogen diluting unit 331 is a functional unit that dilutes the discharged hydrogen gas to a predetermined concentration or less. The hydrogen diluting unit 331 uses the propeller of the drone 100, that is, the motor 102 and the rotary blade 101 rotated by the motor 102, as a component for diluting hydrogen gas. According to this configuration, it is not necessary to separately have a configuration for diluting the hydrogen gas, and the configuration of the drone 100 can be simplified.
 水素希釈部331は、希釈可能流量―排出流量テーブルに基づいて、推進器の稼働量を、水素ガス濃度を所定濃度以下に希釈するために必要な稼働量まで上昇させる要請指令を飛行制御部21に出力する。ドローン100の起動、停止、および回復アクションにおいて、水素ガスの希釈が必要である場合、水素排出弁617は、水素希釈部331により推進器の稼働量が上昇した後に開かれる。希釈後の水素ガス濃度は、例えば4%以下である。 The hydrogen diluting unit 331 issues a request command to increase the operating amount of the propulsion device to the operating amount necessary for diluting the hydrogen gas concentration to a predetermined concentration or less based on the dilutable flow rate-exhaust flow rate table. Output to. When hydrogen gas needs to be diluted in the start, stop, and recovery actions of the drone 100, the hydrogen discharge valve 617 is opened after the hydrogen diluting unit 331 increases the operating amount of the propulsion device. The hydrogen gas concentration after dilution is, for example, 4% or less.
 水素希釈部331により回転翼101の稼働量が上昇するとき、仮に水素ガス排出管72が配置される1個の回転翼101の稼働量のみを増加させてしまうと、ドローン100が意図しない動作をしてしまう。そこで、飛行制御部21は、水素希釈部331に要請される稼働量に基づいて、すべての回転翼101の稼働量を再制御する。このとき、ドローン100は、例えば前進又は加速、上昇、もしくはヨー回転を行うことがある。 When the operating amount of the rotor blade 101 is increased by the hydrogen diluting unit 331, if the operating amount of only one rotor blade 101 in which the hydrogen gas exhaust pipe 72 is arranged is increased, the drone 100 may operate unintentionally. Resulting in. Therefore, the flight control unit 21 re-controls the operating amounts of all the rotor blades 101 based on the operating amount requested of the hydrogen diluting unit 331. At this time, the drone 100 may perform forward or acceleration, ascent, or yaw rotation, for example.
 許容流量送信部332は、推進器の稼働量に応じて、排出が許容される水素ガスの流量を算出し、水素流量調整部541に送信する機能部である。水素流量調整部541は、許容される範囲で水素ガスが排出されるよう、水素ガスの流量を調整する。具体的には、水素流量調整部541は、水素排出弁617の開閉のデューティ比を低下させることで、水素ガスの流量を低下させる。 The allowable flow rate transmission unit 332 is a functional unit that calculates the flow rate of hydrogen gas that is allowed to be discharged according to the operating amount of the propulsion device and sends it to the hydrogen flow rate adjustment unit 541. The hydrogen flow rate adjusting unit 541 adjusts the flow rate of hydrogen gas so that the hydrogen gas is discharged within an allowable range. Specifically, the hydrogen flow rate adjusting unit 541 reduces the flow rate of hydrogen gas by reducing the duty ratio of opening and closing the hydrogen discharge valve 617.
 水素希釈部331および許容流量送信部332は、いずれか一方のみが動作してもよいし、両方が動作してもよい。推進器を所定以上の稼働量で稼働させると、ドローン100の移動に影響を及ぼし、薬剤散布や監視のための動作の妨げになる恐れがあるため、推進器の稼働量には上限がある。すなわち、水素希釈部331により希釈可能な水素濃度には上限がある。したがって、水素ガスの排出流量が希釈可能な値を上回る場合は、推進器の稼働量を上昇させる措置に加えて、許容流量を低下させる措置を取り得る。なお、水素希釈部331により希釈可能な水素濃度は、ドローン100の状態により異なる。例えば、ドローン100が飛行中の場合は、着陸状態の場合に比べて稼働量の上限は大きい。 Only one of the hydrogen diluting unit 331 and the allowable flow rate transmitting unit 332 may operate, or both may operate. If the propulsion device is operated at a predetermined operation amount or more, it may affect the movement of the drone 100 and hinder the operation for drug spraying or monitoring. Therefore, the propulsion device operation amount has an upper limit. That is, there is an upper limit to the hydrogen concentration that can be diluted by the hydrogen diluting unit 331. Therefore, when the discharge flow rate of the hydrogen gas exceeds the dilutable value, it is possible to take measures to reduce the allowable flow rate in addition to increasing the operating amount of the propulsion device. The hydrogen concentration that can be diluted by the hydrogen diluting unit 331 varies depending on the state of the drone 100. For example, when the drone 100 is flying, the upper limit of the operating amount is larger than when the drone 100 is landing.
 水素濃度検知部34は、ドローン100の周囲の水素ガス濃度を検知する機能部であり、例えば水素濃度センサを有している。検知される水素ガス濃度は、濃度調整要否判定部32にフィードバックされ、排出される水素ガス濃度が所定以下になっているか否かを再判定してもよい。また、水素濃度検知部34は、水素の濃度調整の後か否かに関わらず、水素濃度を定期的に検知していてもよい。水素濃度検知部34が所定以上の水素濃度を検知すると、濃度調整部33は水素濃度の調整を実行する。 The hydrogen concentration detection unit 34 is a functional unit that detects the hydrogen gas concentration around the drone 100, and has, for example, a hydrogen concentration sensor. The detected hydrogen gas concentration may be fed back to the concentration adjustment necessity determination unit 32 to redetermine whether or not the discharged hydrogen gas concentration is below a predetermined level. Further, the hydrogen concentration detection unit 34 may detect the hydrogen concentration regularly regardless of whether or not the hydrogen concentration has been adjusted. When the hydrogen concentration detector 34 detects a hydrogen concentration equal to or higher than a predetermined value, the concentration adjuster 33 adjusts the hydrogen concentration.
 図13を用いて、水素濃度調整部30が水素ガスの排出濃度を調整するフローを説明する。まず、水素排出予測部31は、アノード側排出口616から水素ガスの排出が予定されていることを予測する(S31)。水素排出が予測されないとき、ステップS31に戻る。ステップS31は、定期的に繰り返されてもよいし、水素の排出を示す信号を受信することでステップS31が実行されるように構成されていてもよい。 A flow in which the hydrogen concentration adjusting unit 30 adjusts the exhaust concentration of hydrogen gas will be described with reference to FIG. First, the hydrogen discharge prediction unit 31 predicts that hydrogen gas is scheduled to be discharged from the anode side discharge port 616 (S31). When hydrogen discharge is not predicted, the process returns to step S31. Step S31 may be periodically repeated, or step S31 may be configured to be executed by receiving a signal indicating the discharge of hydrogen.
 水素排出が予測されるとき、濃度調整要否判定部32は、推進器の稼働量に基づいて算出される希釈可能流量が、予測される水素の排出流量以上か否かを判定する(S32)。希釈可能流量が排出流量以上である場合、予測される水素が排出されても当該水素は所定濃度以下に希釈されて大気に排出されるため、水素濃度を調整することなく水素排出弁617を開放して水素の排出を開始し(S33)、ステップS31に戻る。希釈可能流量が排出流量より小さい場合、ステップS34に進む。 When hydrogen discharge is predicted, the concentration adjustment necessity determination unit 32 determines whether the dilutable flow rate calculated based on the operating amount of the propulsion device is equal to or higher than the predicted hydrogen discharge flow rate (S32). .. When the dilutable flow rate is equal to or higher than the discharge flow rate, even if the predicted hydrogen is discharged, the hydrogen is diluted to a predetermined concentration or less and discharged to the atmosphere, so the hydrogen discharge valve 617 is opened without adjusting the hydrogen concentration. Then, the discharge of hydrogen is started (S33), and the process returns to step S31. If the dilutable flow rate is smaller than the discharge flow rate, the process proceeds to step S34.
 濃度調整部33は、推進器の稼働量が水素希釈部331により調整可能な最大稼働量か否か判定する(S34)。最大稼働量未満であるとき、水素希釈部331は推進器の稼働量を上昇させる(S35)。次いで、ステップS32に戻り、稼働量を上昇させた後の推進器による希釈可能流量が排出流量以上となっているかを再判定する。ステップS34において、推進器の稼働量が当該最大稼働量に達している場合、許容流量送信部332は、水素流量調整部541に推進器の稼働量に応じた許容流量を送信し、水素流量調整部541は、水素排出弁617の開閉により水素流量を調整して排出する(S36)。すなわち、排出流量を減少させて排出する。 The concentration adjusting unit 33 determines whether the operating amount of the propulsion device is the maximum operating amount that can be adjusted by the hydrogen diluting unit 331 (S34). When it is less than the maximum operating amount, the hydrogen diluting unit 331 increases the operating amount of the propulsion device (S35). Next, returning to step S32, it is re-determined whether the dilutable flow rate by the propeller after increasing the operation amount is equal to or higher than the discharge flow rate. In step S34, when the operating amount of the propulsion device has reached the maximum operating amount, the allowable flow rate transmitting unit 332 transmits the allowable flow rate according to the operating amount of the propulsion device to the hydrogen flow rate adjusting unit 541 to adjust the hydrogen flow rate. The part 541 adjusts the hydrogen flow rate by opening and closing the hydrogen discharge valve 617 and discharges it (S36). That is, the discharge flow rate is reduced and the discharge is performed.
 次いで、濃度調整部33は、推進器による希釈可能流量が排出流量以上か否かを再度判定する(S37)。希釈可能流量が排出流量以上である場合、ステップS31に戻る。希釈可能流量が排出流量未満である場合、ドローン100はその旨を使用者に通知し、また、飛行中の場合には合わせて退避行動をとってもよい(S38)。 Next, the concentration adjusting unit 33 determines again whether the dilutable flow rate by the propellant is equal to or higher than the discharge flow rate (S37). When the dilutable flow rate is equal to or higher than the discharge flow rate, the process returns to step S31. If the dilutable flow rate is less than the discharge flow rate, the drone 100 may notify the user to that effect, and may take evacuation action together during flight (S38).
 退避行動は、通常の着陸動作、ホバリングを例とする空中停止や、最短のルートで直ちに所定の帰還地点まで移動する「緊急帰還」を含む。所定の帰還地点とは、あらかじめフライトコントローラー501に記憶させた地点であり、例えば離陸した地点である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。 Evacuation behavior includes normal landing operation, air stop as an example of hovering, and "emergency return" to immediately move to a predetermined return point by the shortest route. The predetermined return point is a point stored in advance in the flight controller 501, for example, a point at which the flight controller 501 has taken off. The predetermined return point is, for example, a land point where the user 402 can approach the drone 100, and the user 402 can inspect the drone 100 reaching the return point or manually carry it to another place. can do.
 さらに、退避行動は、最適化されたルートで所定の帰還地点まで移動する「通常帰還」であってもよい。最適化されたルートとは、例えば、通常帰還指令を受信する前に薬剤散布したルートを参照して算出されるルートである。例えば、ドローン100は、まだ薬剤を散布していないルートを経由して、薬剤を散布しながら所定の帰還地点まで移動する。
 さらにまた、退避行動は、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」も含む。
Furthermore, the evacuation behavior may be a "normal return" in which the route is optimized to move to a predetermined return point. The optimized route is, for example, a route calculated by referring to the route in which the drug is sprayed before receiving the normal return command. For example, the drone 100 moves to a predetermined return point while spraying the drug via a route that has not yet sprayed the drug.
Furthermore, the evacuation action also includes an “emergency stop” in which all the rotor blades are stopped and the drone 100 is dropped downward from the spot.
 なお、本実施形態においては、ドローン100の飛行の動力源は燃料電池50のみであったが、合わせてバッテリーを搭載していてもよい。 In addition, in the present embodiment, the power source for the flight of the drone 100 was only the fuel cell 50, but a battery may be mounted together.
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、他の用途のドローンや、燃料電池を動力として動作可能な機械全般に適用可能である。特に、自律的に動作する機械に適用可能である。 In the present description, the agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and a drone for other applications or a machine that can operate using a fuel cell as a power source. It is generally applicable. In particular, it is applicable to a machine that operates autonomously.
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、自律飛行時であっても、高い安全性を維持できる。
 

 
(Technically remarkable effect of the present invention)
The drone according to the present invention can maintain high safety even during autonomous flight.


Claims (24)

  1.  気流を発生する推進器を稼働させることにより推力を発生させる飛行制御部と、
     反応ガスを燃料として前記飛行制御部に電力を供給可能な燃料電池電源装置と、
     前記反応ガスを前記燃料電池電源装置の外部に排出する、開閉可能な反応ガス排出口と、
     前記推進器の稼働状態に応じて、前記反応ガス排出口の開閉を制御する反応ガス排出口制御部と、
    を備える、
    ドローン。
     
    A flight control unit that generates thrust by operating a propulsion device that generates an air flow,
    A fuel cell power supply device capable of supplying electric power to the flight control unit by using a reaction gas as fuel,
    An openable and closable reaction gas outlet for discharging the reaction gas to the outside of the fuel cell power supply;
    Depending on the operating state of the propulsion device, a reaction gas outlet control unit for controlling the opening and closing of the reaction gas outlet,
    With
    Drone.
  2.  前記反応ガス排出口制御部は、前記推進器の発生する推力が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可する、
    請求項1記載のドローン。
     
    The reaction gas outlet control unit prohibits the opening operation of the reaction gas outlet when the thrust generated by the propulsion device is less than a predetermined value or is stopped, and the thrust generated by the propulsion device has a predetermined value. In the above case, the opening operation of the reaction gas discharge port is permitted,
    The drone according to claim 1.
  3.  前記推進器は、回転動作を行う回転翼で構成され、
     前記反応ガス排出口制御部は、前記回転翼の回転速度が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可する、
    請求項1記載のドローン。
     
    The propulsion device is composed of rotary blades that perform a rotary operation,
    The reaction gas outlet control unit prohibits the opening operation of the reaction gas outlet when the rotation speed of the rotary blade is less than or equal to a predetermined value or is stopped, and the thrust generated by the propulsion device is equal to or greater than a predetermined value. In the case of, the opening operation of the reaction gas outlet is permitted,
    The drone according to claim 1.
  4.  前記反応ガス排出口制御部は、前記推進器が発生させる気流により、前記反応ガス排出口から排出される反応ガスの濃度を所定の濃度以下に調整する反応ガス濃度調整部を備える、
    請求項1乃至3のいずれかに記載のドローン。
     
    The reaction gas discharge control unit includes a reaction gas concentration adjusting unit that adjusts the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device,
    The drone according to any one of claims 1 to 3.
  5.  前記反応ガス濃度調整部は、所定時間後に反応ガスが排出されることを予測し、前記予測に基づいて反応ガスの濃度を調整する、
    請求項4記載のドローン。
     
    The reaction gas concentration adjusting unit predicts that the reaction gas will be discharged after a predetermined time, and adjusts the concentration of the reaction gas based on the prediction.
    The drone according to claim 4.
  6.  前記反応ガス濃度調整部は、所定時間後に排出される反応ガスの流量を予測し、前記流量により排出が予測される反応ガスの濃度が、前記推進器が発生させている前記気流により希釈可能な濃度を上回るとき、前記推進器の稼働量を上昇させる要請指令を前記飛行制御部に出力する、
    請求項4又は5記載のドローン。
     
    The reaction gas concentration adjusting unit predicts a flow rate of the reaction gas discharged after a predetermined time, and the concentration of the reaction gas predicted to be discharged by the flow rate can be diluted by the airflow generated by the propulsion device. When the concentration is exceeded, a request command to increase the operating amount of the propulsion device is output to the flight control unit,
    The drone according to claim 4 or 5.
  7.  前記ドローンは複数の推進器を有し、前記反応ガス濃度調整部により1個の前記推進器の稼働量の上昇が要請されるとき、前記飛行制御部は、当該稼働量に基づいてすべての前記推進器の稼働量を制御する、
    請求項4乃至6のいずれかに記載のドローン。
     
    The drone has a plurality of propulsion units, and when the reaction gas concentration adjusting unit requests an increase in the operating amount of one of the propulsion units, the flight control unit determines all of the operating units based on the operating amount. Control the amount of operation of the propulsion device,
    The drone according to any one of claims 4 to 6.
  8.  反応ガスの排出流量を調整する反応ガス流量調整部をさらに備え、
     前記反応ガス流量調整部は、前記推進器の稼働量に基づいて、当該稼働量の前記推進器により所定濃度以下に希釈可能な流量になるように、前記排出流量を調整する、
    請求項1乃至7のいずれかに記載のドローン。
     
    Further comprising a reaction gas flow rate adjusting unit for adjusting the discharge flow rate of the reaction gas,
    The reaction gas flow rate adjusting unit adjusts the discharge flow rate based on the operating amount of the propulsion device so that the flow amount can be diluted to a predetermined concentration or less by the operating device of the operating amount.
    The drone according to any one of claims 1 to 7.
  9.  前記燃料電池電源装置から排出される前記反応ガスを、前記推進器によって生じる気流の流路中に導く反応ガス排出管をさらに備える、
    請求項1乃至8のいずれかに記載のドローン。
     
    The reaction gas exhausted from the fuel cell power supply device is further provided with a reaction gas exhaust pipe that guides the reaction gas into a flow path of an air flow generated by the propulsion device
    The drone according to any one of claims 1 to 8.
  10.  前記反応ガス排出管の排出口は、前記推進器によって生じる気流のうち前記ドローンから離れる方向に進行する下降気流の流路中に配置されている、
    請求項9記載のドローン。
     
    An outlet of the reaction gas exhaust pipe is arranged in a flow path of a descending air flow that advances in a direction away from the drone among the air flows generated by the propulsion device,
    The drone according to claim 9.
  11.  前記燃料電池電源装置に流入する、前記反応ガスとは異なる第2反応ガスを、前記推進器によって生じる気流の流路中から前記燃料電池電源装置に流入させる第2反応ガス吸入管をさらに備える、
    請求項1乃至10のいずれかに記載のドローン。
     
    The fuel cell power supply device further comprises a second reaction gas suction pipe for introducing a second reaction gas different from the reaction gas into the fuel cell power supply device from a flow path of an air flow generated by the propulsion device.
    The drone according to any one of claims 1 to 10.
  12.  前記第2反応ガス吸入管の吸入口は、前記推進器によって生じる気流のうち前記ドローンから離れる方向に進行する下降気流の流路中に配置されている、
    請求項11記載のドローン。
     
    The suction port of the second reaction gas suction pipe is arranged in a flow path of a descending air flow that advances in a direction away from the drone among the air flows generated by the propulsion device.
    The drone according to claim 11.
  13.  前記ドローンは複数の推進器を有し、前記第2反応ガス吸入管の吸入口は、前記燃料電池電源装置から排出される前記反応ガスを、前記推進器によって生じる気流の流路中に導く反応ガス排出管が配置される前記推進器とは異なる推進器が生じる気流の流路中に配置されている、
    請求項11又は12記載のドローン。
     
     
    The drone has a plurality of propulsion devices, and an intake port of the second reaction gas intake pipe is a reaction that guides the reaction gas discharged from the fuel cell power supply device into a flow path of an air flow generated by the propulsion device. Arranged in the flow path of the air flow generated by a propulsion device different from the propulsion device in which the gas exhaust pipe is arranged,
    The drone according to claim 11 or 12.

  14.  前記燃料電池電源装置は、膜電極構造体で仕切られた一方側に前記反応ガスを吸入する吸入口と前記反応ガス排出口を備え、他方側に前記第2反応ガス吸入管の吸入口と空気を前記燃料電池電源装置の外部に排出する第2排出口を備える、
    請求項11乃至13のいずれかに記載のドローン。
     
    The fuel cell power supply device includes a suction port for sucking the reaction gas and the reaction gas discharge port on one side partitioned by a membrane electrode structure, and a suction port of the second reaction gas suction pipe and air on the other side. A second outlet for discharging the fuel cell to the outside of the fuel cell power supply device,
    The drone according to any one of claims 11 to 13.
  15.  前記第2反応ガスは、酸素である、請求項11乃至14のいずれかに記載のドローン。
     
    The drone according to claim 11, wherein the second reaction gas is oxygen.
  16.  前記反応ガスは、水素ガスである、請求項1乃至15のいずれかに記載のドローン。
     
    The drone according to claim 1, wherein the reaction gas is hydrogen gas.
  17.  気流を発生する推進器を稼働させることにより推力を発生させる飛行制御部と、
     反応ガスを燃料として前記飛行制御部に電力を供給可能な燃料電池電源装置と、
     前記反応ガスを前記燃料電池電源装置の外部に排出する、開閉可能な反応ガス排出口と、
    を有するドローンの制御方法であって、
     前記推進器を稼働させることにより気流を発生させる稼働ステップと、
     前記飛行制御部に電力を供給する供給ステップと、
     前記推進器の稼働状態に応じて、前記反応ガス排出口の開閉を制御する排出制御ステップと、
    を含む、ドローンの制御方法。
     
    A flight control unit that generates thrust by operating a thruster that generates an air flow,
    A fuel cell power supply device capable of supplying electric power to the flight control unit by using a reaction gas as fuel,
    An openable and closable reaction gas outlet for discharging the reaction gas to the outside of the fuel cell power supply;
    A method of controlling a drone having:
    An operating step of generating an air flow by operating the propulsion device,
    A supply step of supplying power to the flight control section,
    An emission control step of controlling the opening and closing of the reaction gas exhaust port according to the operating state of the propulsion device,
    Controlling drones, including:
  18.  前記排出制御ステップは、前記推進器の発生する推力が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可する、
    請求項17記載のドローンの制御方法。
     
    In the discharge control step, when the thrust generated by the propulsion device is less than a predetermined value or is stopped, the opening operation of the reaction gas discharge port is prohibited, and the thrust generated by the propulsion device is equal to or larger than a predetermined value. To permit the opening operation of the reaction gas discharge port,
    The drone control method according to claim 17.
  19.  前記推進器は、回転動作を行う回転翼で構成され、
     前記排出制御ステップは、前記回転翼の回転速度が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可する、
    請求項17記載のドローンの制御方法。
     
    The propulsion device is composed of rotary blades that perform a rotary operation,
    The discharge control step prohibits the opening operation of the reaction gas discharge port when the rotation speed of the rotary blade is less than or equal to a predetermined value or is stopped, and when the thrust generated by the propulsion device is equal to or greater than a predetermined value. Permitting the opening operation of the reaction gas outlet,
    The drone control method according to claim 17.
  20.  前記排出制御ステップは、前記推進器が発生させる気流により、前記反応ガス排出口から排出される反応ガスの濃度を所定の濃度以下に調整する反応ガス濃度調整ステップを含む、
    請求項17乃至19のいずれかに記載のドローンの制御方法。
     
     
    The discharge control step includes a reaction gas concentration adjusting step of adjusting the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device,
    The drone control method according to claim 17.

  21.  気流を発生する推進器を稼働させることにより推力を発生させる飛行制御部と、
     反応ガスを燃料として前記飛行制御部に電力を供給可能な燃料電池電源装置と、
     前記反応ガスを前記燃料電池電源装置の外部に排出する、開閉可能な反応ガス排出口と、
    を有するドローンの制御プログラムであって、
     前記推進器を稼働させることにより気流を発生させる稼働命令と、
     前記飛行制御部に電力を供給する供給命令と、
    前記推進器の稼働状態に応じて、前記反応ガス排出口の開閉を制御する排出制御命令と、
    をコンピュータに実行させる、ドローンの制御プログラム。
     
    A flight control unit that generates thrust by operating a thruster that generates an air flow,
    A fuel cell power supply device capable of supplying electric power to the flight control unit by using a reaction gas as fuel,
    An openable and closable reaction gas outlet for discharging the reaction gas to the outside of the fuel cell power supply;
    A drone control program having
    An operation command for generating an airflow by operating the propulsion device,
    A supply command for supplying power to the flight control unit,
    Depending on the operating state of the propulsion device, a discharge control command for controlling the opening and closing of the reaction gas discharge port,
    A drone control program that causes a computer to execute.
  22.  前記排出制御命令は、前記推進器の発生する推力が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可する、
    請求項21記載のドローンの制御プログラム。
     
    The emission control command prohibits the opening operation of the reaction gas discharge port when the thrust force generated by the propulsion device is less than or equal to a predetermined value or is stopped, and the thrust force generated by the propulsion device is greater than or equal to a predetermined value. To permit the opening operation of the reaction gas discharge port,
    The drone control program according to claim 21.
  23.  前記推進器は、回転動作を行う回転翼で構成され、
     前記排出制御命令は、前記回転翼の回転速度が所定値未満もしくは停止している場合に、前記反応ガス排出口の開動作を禁止し、前記推進器の発生する推力が所定値以上の場合に、前記反応ガス排出口の開動作を許可する、
    請求項21記載のドローンの制御プログラム。
     
    The propulsion device is composed of rotary blades that perform a rotary operation,
    The discharge control command prohibits the opening operation of the reaction gas discharge port when the rotation speed of the rotary blade is less than or equal to a predetermined value or is stopped, and when the thrust generated by the propulsion device is equal to or greater than a predetermined value. Permitting the opening operation of the reaction gas outlet,
    The drone control program according to claim 21.
  24.  前記排出制御命令は、前記推進器が発生させる気流により、前記反応ガス排出口から排出される反応ガスの濃度を所定の濃度以下に調整する反応ガス濃度調整命令を含む、
    請求項21乃至23のいずれかに記載のドローンの制御プログラム。
     

     
    The emission control command includes a reaction gas concentration adjustment command for adjusting the concentration of the reaction gas discharged from the reaction gas discharge port to a predetermined concentration or less by an air flow generated by the propulsion device,
    The drone control program according to any one of claims 21 to 23.


PCT/JP2019/042548 2018-10-31 2019-10-30 Drone, drone control method, and drone control program WO2020090879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570164A JP6751932B1 (en) 2018-10-31 2019-10-30 Drones, drone control methods, and drone control programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204818 2018-10-31
JP2018204818 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090879A1 true WO2020090879A1 (en) 2020-05-07

Family

ID=70463254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042548 WO2020090879A1 (en) 2018-10-31 2019-10-30 Drone, drone control method, and drone control program

Country Status (2)

Country Link
JP (1) JP6751932B1 (en)
WO (1) WO2020090879A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472813B2 (en) 2021-02-03 2024-04-23 トヨタ自動車株式会社 Multicopter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023258A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Fuel cell system
KR20170014295A (en) * 2015-07-29 2017-02-08 하이리움산업(주) Power supply system for unmanned aerial vehicle and control method of the same
JP2017114186A (en) * 2015-12-22 2017-06-29 株式会社プロドローン Multi-copter
US20170240291A1 (en) * 2016-02-22 2017-08-24 Hylium Industries, Inc. Fuel cell power pack for multicopter
JP2017530042A (en) * 2015-07-06 2017-10-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd UAV fuel cell system and method
US20180273194A1 (en) * 2015-05-01 2018-09-27 Intelligent Energy Limited Aerial vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023258A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Fuel cell system
US20180273194A1 (en) * 2015-05-01 2018-09-27 Intelligent Energy Limited Aerial vehicle
JP2017530042A (en) * 2015-07-06 2017-10-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd UAV fuel cell system and method
KR20170014295A (en) * 2015-07-29 2017-02-08 하이리움산업(주) Power supply system for unmanned aerial vehicle and control method of the same
JP2017114186A (en) * 2015-12-22 2017-06-29 株式会社プロドローン Multi-copter
US20170240291A1 (en) * 2016-02-22 2017-08-24 Hylium Industries, Inc. Fuel cell power pack for multicopter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472813B2 (en) 2021-02-03 2024-04-23 トヨタ自動車株式会社 Multicopter

Also Published As

Publication number Publication date
JP6751932B1 (en) 2020-09-09
JPWO2020090879A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6777355B2 (en) Drone system, drone system control method, and drone system control program
WO2019168042A1 (en) Drone, control method thereof, and program
US12014641B2 (en) Agricultural drone having improved foolproof
JP6733948B2 (en) Drone, its control method, and control program
JP6727525B2 (en) Drone, drone control method, and drone control program
JP6837254B2 (en) Drone system, drone, drone system control method, and drone system control program
JP6745519B2 (en) Drone, drone control method, and drone control program
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
WO2019208606A1 (en) System, method, and computer program for controlling ejection of chemicals
WO2020137554A1 (en) Drone, method of controlling drone, and drone control program
WO2020116442A1 (en) Moving body
US20200348698A1 (en) Agricultural drone having improved safety
JP6913979B2 (en) Drone
WO2020090879A1 (en) Drone, drone control method, and drone control program
JP6888219B2 (en) Drone
WO2020090671A1 (en) Drone, drone control method, and drone control program
WO2020116444A1 (en) Drone system
WO2019189077A1 (en) Drone, control method thereof, and program
WO2019208607A1 (en) System, method, and computer program for preventing leakage of chemicals
WO2019235585A1 (en) Chemical discharge control system, control method therefor, and control program
WO2020116493A1 (en) Moving body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019570164

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879409

Country of ref document: EP

Kind code of ref document: A1