WO2019208606A1 - System, method, and computer program for controlling ejection of chemicals - Google Patents

System, method, and computer program for controlling ejection of chemicals Download PDF

Info

Publication number
WO2019208606A1
WO2019208606A1 PCT/JP2019/017340 JP2019017340W WO2019208606A1 WO 2019208606 A1 WO2019208606 A1 WO 2019208606A1 JP 2019017340 W JP2019017340 W JP 2019017340W WO 2019208606 A1 WO2019208606 A1 WO 2019208606A1
Authority
WO
WIPO (PCT)
Prior art keywords
medicine
drug
discharge
sensor
type
Prior art date
Application number
PCT/JP2019/017340
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020515506A priority Critical patent/JP6749626B2/en
Publication of WO2019208606A1 publication Critical patent/WO2019208606A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors

Definitions

  • the present invention relates to an unmanned aerial vehicle (drone) for spraying chemicals such as agricultural chemicals on a field, and more particularly to a drone with improved safety, a control method thereof, and a program.
  • drone unmanned aerial vehicle
  • the drone can know the absolute position of its own aircraft accurately in centimeters during flight. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • An object of the present invention is to accurately control the discharge of a drug in an agricultural machine that sprays the drug and to increase the safety of the drug spray.
  • a medicine discharge control system in an agricultural machine that has a medicine tank for storing medicine and a discharge port for discharging the medicine, and sprays the medicine, A system for controlling the discharge of the medicine, a first pressure sensor that measures the discharge pressure of the medicine, a second pressure sensor that is provided in the vicinity of the pump and that measures the discharge pressure of the medicine discharged downstream A pressure sensor, a pump sensor that measures the number of rotations of a rotor that sucks the drug from the drug tank and discharges it downstream in a pump that discharges the drug stored in the drug tank downstream, or a flow rate of the drug Any one of a plurality of sensors, and the discharge amount of the medicine is detected by any one of the sensors.
  • a first determination processing unit that determines abnormal discharge of the medicine by any one of the first pressure sensor, the second pressure sensor, the pump sensor, or the flow rate sensor, It is good also as what has.
  • the first determination processing unit may determine an abnormal discharge based on a pressure loss calculated from the discharge pressure of the medicine measured by the first pressure sensor and the second pressure sensor. Good.
  • the first determination processing unit is configured to determine the discharge pressure of the medicine measured by the first pressure sensor or the second pressure sensor and the rotational speed of the rotor measured by the pump sensor. Based on this, it is also possible to determine the ejection abnormality.
  • the first determination may further include a drug type determination sensor that determines a type of the drug stored in the drug tank, and an input reception unit that receives an input of information related to the type of the drug.
  • the processing unit may further determine a setting abnormality based on the type of the drug determined by the drug type determination sensor and the information related to the type of the drug received by the input receiving unit.
  • the first determination processing unit further includes a nozzle type determination sensor that determines a type of a nozzle attached to the discharge port of the medicine, and an input reception unit that receives an input of information related to the type of the medicine. Furthermore, based on the information on the medicine type determined in advance according to the type of the nozzle determined by the nozzle type determination sensor and the information on the type of medicine received by the input receiving means, a setting abnormality is detected. It may be determined.
  • the first determination processing unit further determines the type of the medicine determined in advance according to the type of the medicine determined by the medicine type determination sensor and the type of the nozzle determined by the nozzle type determination sensor. Based on this, a setting abnormality may be determined.
  • the first determination processing unit may further include a first retraction control unit that causes the agricultural machine to take a retreat action when it is determined that the ejection abnormality or the setting abnormality has occurred.
  • the first determination processing unit may further include a first blocking mechanism that blocks the discharge of the medicine when it is determined that the discharge is abnormal or the setting is abnormal.
  • the apparatus further includes an altitude measuring means for measuring the altitude of the agricultural machine, and the second determination processing unit determines that an abnormal state occurs when the altitude of the agricultural machine exceeds a predetermined altitude. It may be a thing.
  • the apparatus further comprises a wind speed measuring means for measuring the wind speed around the agricultural machine, and the second determination processing unit is abnormal when the wind speed around the agricultural machine becomes equal to or higher than a predetermined wind speed. It is good also as what judges a state.
  • the apparatus further comprises a temperature / humidity measuring means for measuring the ambient temperature and humidity of the agricultural machine, and the second determination processing unit is configured such that the ambient temperature of the agricultural machine is equal to or higher than a predetermined temperature and the humidity is higher. It may be determined as an abnormal state when the humidity is equal to or lower than a predetermined humidity.
  • the second determination processing unit may further include a second retraction control unit that causes the agricultural machine to perform a retreat action when it is determined as an abnormal state.
  • the second determination processing unit may further include a blocking mechanism that blocks the discharge of the medicine when it is determined as an abnormal state.
  • the detection of the discharge amount of the medicine by any one of the sensors may be performed constantly during use of the agricultural machine.
  • the agricultural machine may be a drone.
  • a medicine discharge control method is provided in an agricultural machine having a medicine tank for storing medicine and a discharge port for discharging the medicine, and spraying the medicine, A system for controlling the discharge of a medicine, a first pressure sensor that measures the discharge pressure of the medicine, a second pressure sensor that is provided in the vicinity of the pump and that measures the discharge pressure of the medicine discharged downstream A pressure sensor, a pump sensor for measuring the number of rotations of a rotor that sucks the medicine from the medicine tank and discharges the medicine downstream in a pump for discharging the medicine stored in the medicine tank downstream, or a flow rate of the medicine A system having any one of a plurality of sensors for measuring a flow rate sensor detects the discharge amount of the medicine by any one of the sensors. Management, to run.
  • a computer program is provided in an agricultural machine that has a medicine tank for storing medicine and a discharge port for discharging the medicine, and sprays the medicine.
  • a system for controlling discharge the first pressure sensor for measuring the discharge pressure of the medicine, the second pressure sensor for measuring the discharge pressure of the medicine to be discharged downstream, provided in the vicinity of the pump
  • a pump sensor that measures the number of rotations of a rotor that sucks the medicine from the medicine tank and discharges the medicine downstream in the pump that discharges the medicine stored in the medicine tank downstream, or measures the flow rate of the medicine
  • a computer program executed by a system having any one of a plurality of sensors. Processing for detecting the discharge amount of the drug by either a plurality of sensors of the chromatography, to execution.
  • the computer program can be provided by downloading via a network such as the Internet or can be provided by being recorded on various readable recording media.
  • 1 is an example of an overall conceptual diagram of a medicine dispensing system using an embodiment of a medicine dispensing drone equipped with a medicine discharge control system according to the present invention.
  • FIG. 1 is a plan view of an embodiment of the drone 100 according to the present invention
  • FIG. 2 is a front view thereof (viewed from the traveling direction side)
  • FIG. 3 is a right side view thereof.
  • drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type).
  • power means electric power, prime mover, etc.
  • control method whether wireless or wired, autonomous flight type or manual control type.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are means for flying the drone 100 Considering the balance between flight stability, airframe size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors for example, 101-1a and 101-1b
  • their corresponding motors for example, 102-1a and 102-1b
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling and deforming to the rotor side at the time of collision and to prevent interference with the rotor.
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operating device (not shown) that has a dedicated emergency stop function may be used (the emergency operating device has a large emergency stop button etc. so that it can respond quickly in an emergency) It is desirable to be a dedicated device with It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration), and is preferably a 6-axis sensor.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
  • sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • the altitude and speed upper limit of the drone is extremely important for maintaining safety. This is because the user 402 is not always attached to the controller 401 and is operating the drone 100. If the altitude of the drone 100 exceeds the predetermined altitude, the impact at the time of a ground collision in the event of a fall may exceed the safety regulations (in the unlikely event that it may cause serious damage when it collides with a person) . In addition, it is desirable to limit the altitude in order to minimize the scattering (drift) of the drug outside the target field. Similarly, if the speed of the drone 100 exceeds a predetermined speed, it can be a big problem in terms of safety. In addition to falling, impacts when colliding with obstacles (especially humans) may exceed safety standards.
  • the drone 100 includes altitude measurement means, speed measurement means, or both for input to the flight controller 501.
  • a weight measuring means may be provided. It is desirable that the flight controller 501 receives the measured information as input and controls the motor 102 so that the drone 100 does not exceed a predetermined limit altitude, a predetermined limit speed, or both.
  • the drone 100 measures the aircraft altitude using a plurality of sensors.
  • a combination of GPS 504, 6-axis gyro sensor 505, barometric pressure sensor 507, sonar 509, and laser sensor 508 may be used.
  • the distance to the ground may be measured by providing the multispectral camera 512 or the obstacle detection camera 513 with a passive autofocus function.
  • Duplexing / multiplexing may be performed by using a plurality of sensors of the same type, may be performed by using a plurality of sensors in combination, or may be performed by both.
  • the sonar 509 can perform accurate measurement when the field 403 is the ground, but is difficult when the field 403 is water (in this case, the laser sensor 508 is appropriate). Since there are advantages and disadvantages depending on the measurement method, it is desirable to use a plurality of types of sensors together. In addition, in the event of disturbance of GPS radio waves, abnormality of the base station, etc., even if the GPS 504 is multiplexed, it will be an obstacle, so it is desirable to provide altitude measuring means other than GPS.
  • GPS504 can make the most accurate measurement, but only absolute height can be measured, so it is impossible to measure accurate ground altitude in uneven field 403 such as irrigation channels, while Sonar 509 measures ground altitude to measure the distance to the ground. This is because it can be measured.
  • measurements are made using both GPS504 and Sonar 509, and the results are compared. If the difference is within a predetermined threshold (for example, 10 centimeters), the measured value of GPS504 is used for altitude measurement. May be determined that the unevenness of the field 403 is large, and the measurement value of the sonar 509 may be used for altitude measurement.
  • GPS504 is an indispensable function for grasping the drone's flight position anyway, so if GPS504 does not function during takeoff due to malfunction or disturbance, control (interlock) prohibiting drone takeoff is performed. It is desirable to do so.
  • GPS stops functioning due to interruption of radio waves from GPS satellites during flight, temporary interruption of communication, or reception interruptions due to communication interference the drone 100 will fly over on the spot. It is desirable to perform control to stop (hover). If the GPS does not function even after a predetermined time has elapsed, the hovering may be stopped and the drone 100 may be softly landed on the spot, or returned to the landing point 406 or the like. At this time, an error message may be displayed on the controller 401 and the user 402 may be instructed.
  • the drone 100 can be operated within the restricted altitudes defined by laws and regulations, safety standards, etc. It is possible to fly with.
  • the limit altitude at the time of measurement using the sonar 509 is 2 meters
  • the limit altitude at the time of measurement using the GPS 504 may be 1.5 meters.
  • the ascent rate (altitude change over time) may be limited. This is because if the ascent rate is not limited, there is a risk that the drone 100 may temporarily exceed the limit altitude due to sensor measurement delay, flight controller 501 processing delay, and the like.
  • the upper limit value of the ascending speed may be set lower than when the altitude is measured by another method such as the sonar 509. This is because the GPS 504 may not be able to measure temporarily due to radio wave disturbances or positioning satellite conditions, so the risk of the drone temporarily exceeding the restricted altitude increases.
  • the drone 100 may measure the aircraft speed using a plurality of sensors.
  • 6-axis gyro sensor 505 speed can be obtained by integration of acceleration
  • GPS Doppler 504-3 measurement of aircraft speed by processing the phase difference of radio waves from multiple GPS base stations with software
  • changes in absolute coordinates measured by the GPS 504 may be used.
  • the drone 100 can be operated within the speed limit defined by laws and regulations, safety standards, etc. It is possible to fly at a speed of 20 km / h.
  • the weight of the drug is over 10 kilograms. Since the weight of the fuselage only is typically about 25 kilograms, there is a big difference in the overall weight at the start of spraying and near the end of spraying.
  • the altitude and speed of the drone 100 may be adjusted according to changes in the overall weight. For example, if the safety standards stipulate the impact force on the surface of the drone 100 when it falls naturally, the impact force is determined by altitude, speed, and weight (proportional to the square of speed and proportional to altitude and weight) Therefore, the altitude limit may be increased when the aircraft weight is light. Similarly, the speed limit may be increased when the aircraft weight is light. Alternatively, the limit altitude may be set low when the flight speed is fast, and the limit speed may be set slow when the flight altitude is high.
  • the body weight may be estimated using the acceleration measured by the 6-axis gyro sensor 505 or the acceleration as a differential value of the speed measured by means such as the GPS Doppler 504-3 or the GPS 504.
  • the thrust of the motor 102 is T
  • the acceleration of gravity is g
  • the measured acceleration of the aircraft is ⁇
  • the weight of the aircraft may be estimated by measuring the inclination of the aircraft of the drone 100 during the uniform speed flight.
  • the inclination of the airframe may be directly measured by providing a gyro sensor, or may be estimated by differentiating the measured value of the 6-axis type 6-axis gyro sensor 505 twice.
  • the aircraft's air resistance, gravity, and thrust from the rotor blades are balanced.
  • Air resistance is a function of the aircraft's flight speed
  • thrust by the rotor blades is a function of the number of revolutions of the motor
  • gravity is a function of the weight of the aircraft, so weight is the inclination of the aircraft, the number of revolutions of the motor, If the flight speed is known, it can be estimated.
  • a wind sensor may be provided and the air resistance coefficient may be corrected by the wind force and the wind direction.
  • the level of the drug is measured by the level sensor in the drug tank, and the remaining amount of drug is measured.
  • the weight of the entire aircraft may be estimated by providing a water pressure sensor in the medicine tank and estimating the weight of the medicine in the medicine tank.
  • the medicine discharge control system according to the present embodiment is provided in an agricultural machine for spraying medicine, particularly in this example, the medicine spraying drone 100, and controls medicine discharge accurately and detects medicine discharge abnormality. .
  • the medicine discharge abnormality actually occurs, and in addition to a state where a medicine exceeding a specified value is being discharged, such a medicine discharging abnormality occurs.
  • the medicine tank 104 is a tank for storing the medicine to be sprayed.
  • the medicine tank 104 is provided with an openable / closable lid for filling the medicine or taking out the stored medicine.
  • An open / close sensor 104a capable of detecting an open / close state is attached to the openable / closable lid.
  • the open / close sensor 104a can be constituted by, for example, a magnet attached to the lid and a sensor attached to the main body and sensing the magnetic force and contact of the magnet. Thereby, the open / closed state of the lid is determined, the user can recognize the open / closed state of the lid, and the situation where the medicine is sprayed while the lid is open can be prevented.
  • the medicine tank 104 is provided with a medicine type discrimination sensor 104b.
  • the medicine type discrimination sensor 104b can discriminate the type of medicine stored in the medicine tank 104.
  • the medicine type discrimination sensor 104b is constituted by, for example, a device capable of measuring the viscosity, conductivity, or pH of the medicine in the medicine tank 104, and the value of each measured item and the reference value for each medicine And the type of medicine can be determined.
  • a cartridge type drug tank is used as the drug tank 104, an IC or the like in which the drug type data is recorded is attached to the cartridge type drug tank.
  • the type of medicine can be determined.
  • the particle size of the drug varies depending on the type. If a drug with a particle size smaller than the drug intended to be sprayed is accidentally sprayed, drift (scattering of the drug other than the target) will occur. , Adhesion) is high and cannot be overlooked.
  • the medicine tank 104 is provided with a liquid shortage sensor 511 for detecting the liquid shortage of the medicine.
  • a liquid shortage sensor 511 for detecting the liquid shortage of the medicine.
  • the medicine when the medicine runs out, it includes not only the case where the medicine runs out, but also the case where the amount of medicine falls below a predetermined amount, and detects the running out of medicine according to an arbitrarily set amount. Can do.
  • a medicine transpiration detection function and a temperature / humidity measurement function in the medicine tank 104 may be provided in the medicine tank 104 so that the medicine is managed in an appropriate state.
  • the pump 106 discharges the medicine stored in the medicine tank 104 downstream, and each medicine nozzle 103-1, 103-2, via the medicine hose 105-1, 105-2, 105-3, 105-4, Send to 103-3, 103-4.
  • the medicine is delivered from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, and 103-4.
  • the medicine is delivered along this delivery path. Is referred to as the downstream direction, and the opposite direction may be referred to as the upstream direction.
  • a part of the medicine is sent again from the medicine tank 104 to the medicine tank 104 through the three-way valve 122.
  • the three-way valve 122 side is referred to as a downstream direction
  • the medicine tank 104 side is referred to as an upstream direction. Yes.
  • the expansion tank 141 is a tank for temporarily storing the medicine delivered from the three-way valve 122 and returning it to the medicine tank 104.
  • a path from the three-way valve 122 to the drug tank 104 via the expansion tank 141 is a path for removing (defoaming) bubbles in the drug. By circulating this path and temporarily storing it in the expansion tank 141, the defoaming of the medicine can be performed.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 deliver the drug only in a certain direction and in the direction opposite to the certain direction. This is a valve for preventing the inflow, that is, the back flow.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 are provided from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3.
  • 103-4 plays a role of a blocking mechanism that blocks the discharge of the drug, and if it can play a role of blocking the discharge of the drug, the other mechanism such as an electromagnetic valve is used as the blocking mechanism You can also.
  • the check valve 121-1 is provided between the drug tank 104 and the pump 106, in the vicinity of the drug discharge port provided in the drug tank 104, and the check valve 121-2 is provided with the three-way valve 122 and the drug.
  • the nozzles 103-1, 103-2, 103-3, 103-4 are provided, and check valves 121-4, 121-5, 121-6, 121-7 are provided to discharge the medicine 103a- 1, 103a-2, 103a-3, 103a-4, and a check valve 121-3 is provided between the three-way valve 122 and the expansion tank 141.
  • the check valve 121-1 controls the medicine sent out from the medicine tank 104 in the downstream direction so that it cannot flow back to the medicine tank 104.
  • the check valve 121-2 controls the medicine sent from the pump 106 in the downstream direction so that it cannot flow back to the pump 106. Further, the check valve 121-3 controls the medicine sent from the three-way valve 122 in the upstream direction where the expansion tank 141 is present and prevents the backflow to the three-way valve 122. Furthermore, the check valves 121-4, 121-5, 121-6, 121-7 can block the discharge of medicine from the discharge ports 103a-1, 103a-2, 103a-3, 103a-4. I have to. Various check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7, such as swing type, lift type, and wafer type, are used. It is not limited to a specific one. Regardless of this example, more check valves may be provided in appropriate locations than in this example.
  • the three-way valve 122 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, A branch point between the path connected to 103-4 and the path connected from the pump 106 to the drug tank 104 via the expansion tank 141 is configured, and the drug is sent to each path according to the switching operation.
  • the path leading from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, 103-4 causes the drug to be discharged from the drug nozzles 103-1, 103-2, 103-3, 103-4. It is a route for spraying medicine.
  • the path leading from the pump 106 to the medicine tank 104 via the expansion tank 141 is a path for removing (defoaming) bubbles in the medicine as described above.
  • the flow sensor 510 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and is sent to the drug nozzles 103-1, 103-2, 103-3, 103-4. Measure the drug flow rate. Based on the flow rate of the medicine measured by the flow sensor 510, the amount of the medicine spread on the field 403 can be grasped.
  • the pressure sensors 111-1 and 111-2 are provided at the discharge port of the drug and measure the discharge pressure of the drug discharged from the drug nozzles 103-1, 103-2, 103-3, and 103-4 to the outside.
  • the pressure sensors 111-1 and 111-2 are provided on the downstream side of the pump 106, and measure the discharge pressure of the medicine discharged downstream.
  • the pump sensor 106a measures the number of rotations of the rotor that sucks the drug from the drug tank 104 and discharges it downstream in the pump 106. By measuring the number of rotations of the rotor of the pump 106 by the pump sensor 106a, the amount of the medicine delivered by the pump 106 can be grasped, and an abnormal discharge such as excessive discharge of the medicine can be determined, or the discharge of the medicine can be determined. Can be controlled.
  • the nozzle type discrimination sensors 114-1, 114-2, 114-3, 114-4 discriminate the types of the drug nozzles 103-1, 103-2, 103-3, 103-4 attached to the drug discharge ports. be able to. Due to the difference in particle diameter for each sprayed drug, the drug nozzles 103-1, 103-2, 103-3, and 103-4 are usually used in accordance with the drug. Therefore, by determining whether the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 are appropriate, it is possible to prevent the wrong medicine from being sprayed.
  • a mechanism for fitting or engaging with the drug nozzles 103-1, 103-2, 103-3, 103-4 is provided at the discharge port, and the drug nozzles 103-1, 103-2, 103 are provided.
  • -3, 103-4 is a mechanism that fits or engages with the spout-side fitting or engagement mechanism, and includes a plurality of drug nozzles 103-1, 103-2, 103-3, 103-4 A differently shaped mechanism is provided for each.
  • the medicine nozzles 103-1, 103-2, 103-3, 103-4 are attached to the discharge ports, different shapes are identified for the medicine nozzles 103-1, 103-2, 103-3, 103-4. By doing so, the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 can be determined.
  • a discharge port with a cock for discharging medicine stored in the path to the outside (Indicated as “DRAIN” in FIG. 6).
  • DRAIN a discharge port with a cock for discharging medicine stored in the path to the outside
  • the flight controller 501 includes a first determination processing unit 11, a first control unit 12, a threshold information storage unit 22, and an input receiving unit 501a for determining a drug ejection abnormality.
  • a first determination processing unit 11 a first control unit 12, a threshold information storage unit 22, and an input receiving unit 501a for determining a drug ejection abnormality.
  • a threshold information storage unit 22 a threshold information storage unit 22 .
  • an input receiving unit 501a for determining a drug ejection abnormality.
  • FIG. 7 only functions necessary for the medicine ejection control in the present embodiment are shown as the functions of the flight controller 501.
  • the first control unit 12 causes the drone 100 to take a predetermined safety action when it is determined as a result of the determination process by the first determination processing unit 11 described later that a medicine ejection abnormality or a setting abnormality has occurred.
  • the predetermined safety action is a evacuation action if in flight, and a flight regulation measure if it is in a pre-flight preparation state.
  • the evacuation action includes, for example, a normal landing operation, an air stop such as hovering, and “emergency return” that moves immediately to a predetermined return point by the shortest route.
  • the predetermined return point is a point that is previously stored in the flight controller 501, for example, a point that has taken off.
  • the predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
  • the evacuation action may be a “normal return” that moves to a predetermined return point by an optimized route.
  • the optimized route is, for example, a route that is calculated with reference to a route in which medicine is dispersed before receiving a normal feedback command.
  • the drone 100 moves to a predetermined return point while spraying the drug via a route where the drug is not yet sprayed.
  • the retreating action includes “emergency stop” in which all the rotary blades are stopped and the drone 100 is dropped downward from the spot.
  • the flight regulation measure is a measure that regulates the flight in a pre-flight preparation stage, and rejects the flight instruction of the user or requests the user to check the state.
  • a flight regulation measure When a flight regulation measure is taken, it may be controlled so that it cannot fly unless an abnormality is confirmed or maintained.
  • the first control unit 12 is not limited to the case where an abnormality occurs in the drone 100, and can control to a predetermined discharge amount and flow rate based on the discharge amount and flow rate of the medicine measured by each sensor.
  • the threshold information storage unit 22 is a storage unit that stores a threshold value serving as a reference for pressure, flow rate, and the like in determination processing by the first determination processing unit 11 described later.
  • the input receiving unit 501a can receive input of various types of information such as information related to the type of medicine.
  • the first determination processing unit 11 can execute the following first to sixth determination processes. The flow of each determination process is as shown in FIG. 8, and each process will be described based on this.
  • the first determination processing unit 11 can determine a discharge abnormality based on the discharge pressure of the medicine measured by the pressure sensors 111-1 and 111-2 as the first determination process. Specifically, when the discharge pressure of the medicine measured by the pressure sensors 111-1 and 111-2 is equal to or higher than a predetermined value, it can be determined that the discharge is abnormal.
  • the first determination processing unit 11 acquires information relating to the discharge pressure of the medicine as a status (S101), and compares the predetermined value stored in the threshold information storage unit 22 with the status to determine an ejection abnormality ( S102). As a result, if it is determined that the discharge is abnormal, the first control unit 12 takes a predetermined safety action (S103).
  • a discharge abnormality is determined based on the pressure loss calculated from the discharge pressure measured by the pressure sensors 111-1 and 111-2. Specifically, the pressure loss is calculated from the difference between the discharge pressure of the medicine measured by the pressure sensor 111-1 and the discharge pressure of the medicine measured by the pressure sensor 111-2, and the pressure loss is greater than or equal to a predetermined value. If there is, it can be determined that the discharge is abnormal. By determining the discharge abnormality based on the pressure loss, it is possible to detect a drug leakage abnormality between the internal three-way valve 122 and the pressure sensors 111-1 and 111-2.
  • the first determination processing unit 11 acquires information on the discharge pressure of the medicine as the status (S101), calculates the pressure loss, and compares it with the predetermined value stored in the threshold information storage unit 22. Abnormality is judged (S102). As a result, if it is determined that the discharge is abnormal, the first control unit 12 takes a predetermined safety action (S103).
  • a discharge abnormality is determined based on the rotation speed of the rotor in the pump 106 measured by the pump sensor 106a. Specifically, it is possible to determine that the discharge is abnormal when the rotational speed of the rotor measured by the pump sensor 106a is equal to or greater than a predetermined value. In this case, it is presumed that the rotor is in an over-rotating state, so that it can be determined that a medicine exceeding the safe discharge amount is being sprayed.
  • the first determination processing unit 11 acquires information related to the number of rotations of the rotor in the pump 106 as a status (S101), and compares the predetermined value stored in the threshold information storage unit 22 with the status for discharge. Abnormality is judged (S102). As a result, if it is determined that the discharge is abnormal, the first control unit 12 takes a predetermined safety action (S103).
  • a fourth determination process it is determined whether or not there is an abnormal state based on the drug type determined by the drug type determination sensor 104b and the information related to the drug type received by the input receiving unit 501a. Specifically, if the type of the drug determined by the drug type determination sensor 104b is different from the type of the drug received by the input unit, it is assumed that there is a possibility that an unscheduled drug may be sprayed. It can be judged.
  • the first determination processing unit 11 acquires information on the type of drug from each of the drug type determination sensor 104b and the input reception unit 501a as the status (S101), and compares these to determine whether or not there is an abnormal state. Judgment is made (S102). As a result, when it is determined that the state is abnormal, the first control unit 12 takes a predetermined safety action (S103).
  • the medicine nozzles 103-1, 103-2, 103-3, 103-4 determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4 are used. Whether or not there is an abnormal state is determined based on the type of medicine determined in advance according to the type of information and the information related to the type of medicine received by the input receiving unit 501a.
  • the types of medicine nozzles 103-1, 103-2, 103-3, and 103-4 determined by the nozzle type determination sensors 114-1, 114-2, 114-3, and 114-4, and the input
  • the type of medicine received by the means is different, it is possible to determine that there is a possibility that unscheduled medicine may be sprayed, and that it is an abnormal state.
  • the first determination processing unit 11 uses, as the status, the medicine nozzles 103-1, 103-2, 103-3 determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4. , Information on the type of medicine predetermined according to the type of 103-4 and the type of medicine received by the input receiving unit 501a is acquired (S101), and these are compared to determine whether or not there is an abnormal state. Judgment is made (S102). As a result, when it is determined that the state is abnormal, the first control unit 12 takes a predetermined safety action (S103).
  • the type of medicine determined by the medicine type determination sensor 104b and the drug nozzle 103- determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4 are used. It is determined whether or not there is an abnormal state based on the type of medicine determined in advance according to the types of 1, 103-2, 103-3, and 103-4. Specifically, the type of medicine determined by the medicine type determination sensor 104b and the drug nozzles 103-1, 103- determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4. 2. If the predetermined drug type differs depending on the type of 2, 103-3, 103-4, it may be determined that there is a risk of unscheduled drug spraying and that it is an abnormal condition it can.
  • the first determination processing unit 11 is determined as the status by the drug type determined by the drug type determination sensor 104b and the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4.
  • Information on the type of medicine determined in advance according to the type of medicine nozzles 103-1, 103-2, 103-3, 103-4 is acquired (S101), and these are compared to determine whether or not there is an abnormal state. Is determined (S102).
  • the first control unit 12 takes a predetermined safety action (S103).
  • the drug discharge pressure measured by the pressure sensors 111-1 and 111-2, the pressure sensor 111-1 and the pressure sensor 111-2 are measured.
  • the pressure loss calculated from the difference in the discharge pressure of the medicine, the number of rotations of the rotor in the pump 106 measured by the pump sensor 106a, and the medicine flow rate measured by the flow sensor 510 are used in combination.
  • a drug discharge abnormality has occurred. Can be judged. Thereby, it is possible to accurately determine an abnormal discharge of the medicine and to take a safety action such as a retreat action or a safety regulation measure.
  • the discharge control system in the first to third determination processes, it is basically determined that the excessive discharge of the medicine is an abnormal discharge. This is because if the amount of medicine sprayed on the field 403 exceeds the specified value, there may be concerns about the surrounding environment and the safety of the crops that have been sprayed with the medicine may be impaired. Since there is no such concern, it is determined that excessive discharge is an abnormal discharge. On the other hand, in the discharge control system according to the present embodiment, it is determined whether or not the pressure measured from the pressure sensors 111-1, 111-2 and the pump sensor 106a and the rotational speed of the pump rotor are below a predetermined value. Thus, it is possible to identify a shortage of medicine discharge and determine that this is a discharge abnormality.
  • the medicine discharge control executed by each sensor and the first determination processing unit 11 is preferably configured as a redundant system that is always executed, but is configured to be executed intermittently at a predetermined timing. You can also
  • the flight controller 501 may include a second determination processing unit 13 for determining an abnormality in the distribution of medicines.
  • the drug dispersion abnormality judged here is mainly caused by drug drift (spray of the drug outside the target field), but the drug is locally sprayed even within the field 403. Is also included in spraying abnormalities.
  • statuses such as altitude, speed, wind speed, temperature, humidity, and position of the drone 100 are used as basic data for determination.
  • the drug has a small particle size, especially when using a small particle size, the higher the altitude (for example, 2 m or more), the higher the possibility that the drug will be scattered to an unintended location. It becomes impossible to attach to crops on the ground with high accuracy.
  • the slower the speed for example, 5 km / h or less
  • the higher the wind speed the higher the possibility that the medicine will be scattered outside the target.
  • the drone 100 includes an altitude measuring unit 131, a speed measuring unit 132, a wind speed measuring unit 133, a temperature / humidity measuring unit 134, a position measuring unit 135, and a threshold information storage unit. 136 and a second control unit 137 are provided.
  • the threshold information storage unit 136 is a storage unit that stores a threshold value serving as a reference such as a pressure and a flow rate in the determination process by the second determination processing unit 13 described later.
  • the second control unit 137 causes the drone 100 to take a predetermined safety action when it is determined that the drone 100 is in an abnormal state as a result of the determination process by the second determination processing unit 13 described later.
  • the predetermined safety action in the second control unit 137 is a retreat action if in flight, and a flight regulation measure if it is in a pre-flight preparation state.
  • the retreat action and the flight regulation measures are the same as those by the first control unit 12 described above.
  • the second control unit 137 is not limited to the case where an abnormality occurs in the drone 100, and can be controlled to a predetermined discharge amount and flow rate based on the discharge amount and flow rate of the medicine measured by each sensor.
  • the functions required directly for the processing executed by the second determination processing unit are as shown in FIG. 9, and the second determination processing unit 13 makes the following first to fifth functions by these functional units. Judgment processing can be executed.
  • the flow of each determination process is as shown in FIG. 10, and each process will be described based on this.
  • the second determination processing unit 13 can determine whether or not there is an abnormal state based on the altitude of the drone 100 measured by the altitude measuring unit 131 as the first determination processing. Specifically, when the altitude of the drone 100 measured by the altitude measuring unit 131 is equal to or higher than a predetermined altitude, it can be determined as an abnormal state.
  • the second determination processing unit 13 acquires information related to the altitude of the drone 100 as a status (S201), and determines whether or not it is in an abnormal state in comparison with a predetermined value stored in the threshold information storage unit 136. (S202). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
  • the second determination process it is possible to determine whether or not there is an abnormal state based on the speed of the drone 100 measured by the speed measuring unit 132. Specifically, when the speed of the drone 100 measured by the speed measuring unit 132 is equal to or lower than a predetermined speed, it can be determined that the abnormal state.
  • the second determination processing unit 13 acquires information related to the speed of the drone 100 as the status (S201), and determines whether or not it is in an abnormal state in comparison with a predetermined value stored in the threshold information storage unit 136. (S202). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
  • a third determination process it is possible to determine whether or not there is an abnormal state based on the wind speed measured by the wind speed measuring unit 133. Specifically, when the wind speed measured by the wind speed measuring unit 133 is equal to or higher than a predetermined speed, it can be determined that the state is abnormal.
  • the second determination processing unit 13 acquires information relating to the wind speed as a status (S201), and determines whether or not there is an abnormal state in comparison with a predetermined value stored in the threshold information storage unit 136 (S202). .
  • emergency measures are taken (S203).
  • the third determination process can be executed not only during the flight but also at the pre-flight preparation stage, and if it is determined that the vehicle is in an abnormal state, measures may be taken to restrict the flight.
  • the fourth determination process it is possible to determine whether or not there is an abnormal state based on the temperature and humidity measured by the temperature and humidity measurement unit 134. Specifically, regarding the temperature and humidity measured by the temperature and humidity measurement unit 134, it can be determined that the temperature is not lower than a predetermined value and the humidity is not higher than a predetermined value.
  • the second determination processing unit 13 acquires information related to temperature and humidity as a status (S201), and determines whether or not an abnormal state is compared with a predetermined value stored in the threshold information storage unit 126 (S202). ). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
  • the fourth determination process can be executed not only during the flight but also at the pre-flight preparation stage, and if it is determined that the vehicle is in an abnormal state, measures may be taken to restrict the flight.
  • the temperature / humidity measurement unit 134 may be provided in the drone 100 itself, but is provided in the vicinity of the communication base station and the field 403, which is acquired by the drone 100 by communication. It is good.
  • the fifth determination process it is possible to determine whether or not the abnormal state is based on the position of the drone 100 measured by the position measurement unit 135.
  • the position of the drone 100 grasped by the position measurement unit 135 can be determined as an abnormal state when the position is the field 403.
  • the position measuring unit 135 can be realized by, for example, GPS (Global Positioning System).
  • the second determination processing unit 13 acquires information related to the position of the drone 100 as a status (S201), and is in an abnormal state as compared with position information such as coordinates of the field 403 stored in the threshold information storage unit 136. It is determined whether or not (S202). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
  • the discharge or the dispersion of the medicine can be accurately recognized by each sensor, and the safety of the medicine can be improved.
  • each sensor and the second determination processing unit 13 is preferably configured as a redundant system that is always executed, but is intermittently executed at a predetermined timing. It can also be configured.
  • the check valve 121 provided in the path from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3, and 103-4. -1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 may be forcibly closed to prevent the medicine from being discharged.
  • the first determination processing unit 11 and the second determination processing unit 13 are provided in the flight controller 501 of the drone 100, but not limited thereto, the flight controller 501 via a predetermined communication line.
  • the server or the like that acquired the data may include the determination processing unit, and the determination process may be executed by the server or the like.
  • the present invention is applicable to, for example, an agricultural drone that monitors the growth by a camera and a general drone without spraying the drug.
  • each sensor can automatically and immediately detect an abnormal discharge of the medicine, so that the abnormal discharge of the medicine can be prevented in advance, and the actual discharge abnormality of the medicine can be quickly dealt with. Further, it can be widely applied to various agricultural machines for spraying medicine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Catching Or Destruction (AREA)
  • Special Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Spray Control Apparatus (AREA)

Abstract

[Problem] To accurately control the ejection of chemicals and increase the safety of the ejection of the chemicals in an agricultural machine for spraying the chemicals. [Solution] This system, which is for controlling the ejection of chemicals and is provided in an agricultural machine that has a chemical tank and a chemical ejection port and sprays chemicals, has a plurality of sensors and detects the discharge amount of the chemicals by means of the sensors. The sensors may be any among: pressure sensors for measuring the ejection pressure of the chemicals; pressure sensors provided in the vicinity of a pump and measuring the ejection pressure of the chemicals ejected downstream; pump sensors for measuring the rotation speed of a rotor inside the pump; and flow sensors for measuring the flow rate of the chemicals.

Description

薬剤の吐出制御システム、方法、及びコンピュータプログラムDrug ejection control system, method, and computer program
本願発明は、圃場に対して農薬などの薬剤散布等を行なう農業用無人飛行体(ドローン)、特に、安全性を高めたドローン、その制御方法、および、プログラムに関する。 The present invention relates to an unmanned aerial vehicle (drone) for spraying chemicals such as agricultural chemicals on a field, and more particularly to a drone with improved safety, a control method thereof, and a program.
一般にドローンと呼ばれる小型無人ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 Applications of small unmanned helicopters (multicopters) generally called drones are progressing. One of the important application fields is spraying of chemicals such as agricultural chemicals and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In Japan, where the farmland is small compared to the West, it is often appropriate to use drones rather than manned airplanes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic-Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 With the technology such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Time Kinematic-Global Positioning System), the drone can know the absolute position of its own aircraft accurately in centimeters during flight. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。また、薬剤散布用の農業用機械において、圃場への薬剤散布を前提に、自律的に異常を検知する技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flying drones for spraying agricultural chemicals. A drone loaded with drugs weighs several tens of kilograms, which can have serious consequences in the event of an accident such as falling on a person. Moreover, since the operator of the drone is usually not an expert, a foolproof mechanism is necessary, but this has not been sufficiently considered. Until now, drone safety technology that presupposes maneuvering by humans has existed (for example, Patent Document 2), but it addresses the safety issues specific to autonomous flight drones, especially for agricultural chemical spraying There was no technology to do this. In addition, there has been no technology for autonomously detecting an abnormality on the premise that a medicine is sprayed on a field in an agricultural machine for spraying medicine.
特許公開公報 特開2001-120151Patent Publication Gazette Japanese Patent Laid-Open No. 2001-120151 特許公開公報 特開2017-163265Patent publication gazette JP, 2017-163265, A 特許公開公報 特開2006-001485Patent Publication Gazette JP-A-2006-001485
薬剤の散布を行なう農業用機械において、薬剤の吐出を精度よく制御し、薬剤の散布の安全性を高めることを目的とする。 An object of the present invention is to accurately control the discharge of a drug in an agricultural machine that sprays the drug and to increase the safety of the drug spray.
上記目的を達成するため、本発明に係る薬剤の吐出制御システムは、薬剤を保管する薬剤タンクと、当該薬剤を吐出する吐出口とを有し、薬剤を散布する農業用機械、に備えられ、前記薬剤の吐出を制御するためのシステムであって、前記薬剤の吐出圧を測定する第一の圧力センサー、前記ポンプの近傍に設けられ、下流へ吐き出される前記薬剤の吐出圧を測定する第二の圧力センサー、前記薬剤タンク内に貯留された前記薬剤を下流へ吐き出すポンプ内において前記薬剤を前記薬剤タンクから吸い込むと共に下流へ吐き出す回転子の回転数を測定するポンプ用センサー、又は前記薬剤の流量を測定する流量センサ―、のいずれか複数のセンサー、を有し、前記センサーのうちのいずれか複数のセンサーによって前記薬剤の吐出量を検知する。 In order to achieve the above object, a medicine discharge control system according to the present invention is provided in an agricultural machine that has a medicine tank for storing medicine and a discharge port for discharging the medicine, and sprays the medicine, A system for controlling the discharge of the medicine, a first pressure sensor that measures the discharge pressure of the medicine, a second pressure sensor that is provided in the vicinity of the pump and that measures the discharge pressure of the medicine discharged downstream A pressure sensor, a pump sensor that measures the number of rotations of a rotor that sucks the drug from the drug tank and discharges it downstream in a pump that discharges the drug stored in the drug tank downstream, or a flow rate of the drug Any one of a plurality of sensors, and the discharge amount of the medicine is detected by any one of the sensors.
また、前記第一の圧力センサー、前記第二の圧力センサー、前記ポンプ用センサー、又は前記流量センサーのうちのいずれか複数のセンサーにより、前記薬剤の吐出異常を判断する第一の判断処理部、を有するものとしてもよい。 Further, a first determination processing unit that determines abnormal discharge of the medicine by any one of the first pressure sensor, the second pressure sensor, the pump sensor, or the flow rate sensor, It is good also as what has.
また、前記第一の判断処理部は、前記第一の圧力センサーと前記第二の圧力センサーによって測定された前記薬剤の吐出圧から算出される圧力損失に基づき、吐出異常を判断するものとしてもよい。 The first determination processing unit may determine an abnormal discharge based on a pressure loss calculated from the discharge pressure of the medicine measured by the first pressure sensor and the second pressure sensor. Good.
また、前記第一の判断処理部は、前記第一の圧力センサー又は前記第二の圧力センサーにより測定された前記薬剤の吐出圧と、前記ポンプ用センサーにより測定された前記回転子の回転数に基づき、吐出異常を判断するものとしてもよい。 In addition, the first determination processing unit is configured to determine the discharge pressure of the medicine measured by the first pressure sensor or the second pressure sensor and the rotational speed of the rotor measured by the pump sensor. Based on this, it is also possible to determine the ejection abnormality.
また、前記薬剤タンク内に貯留されている前記薬剤の種別を判別する薬剤種別判別センサーと、前記薬剤の種別に係る情報の入力を受け付ける入力受付手段と、をさらに有し、前記第一の判断処理部はさらに、前記薬剤種別判別センサーにより判別された前記薬剤の種別と、前記入力受付手段により受け付けた前記薬剤の種別に係る情報に基づき、設定異常を判断するものとしてもよい。 The first determination may further include a drug type determination sensor that determines a type of the drug stored in the drug tank, and an input reception unit that receives an input of information related to the type of the drug. The processing unit may further determine a setting abnormality based on the type of the drug determined by the drug type determination sensor and the information related to the type of the drug received by the input receiving unit.
また、前記薬剤の吐出口に取り付けられるノズルの種別を判別するノズル種別判別センサーと、前記薬剤の種別に係る情報の入力を受け付ける入力受付手段と、をさらに有し、前記第一の判断処理部はさらに、前記ノズル種別判別センサーにより判別された前記ノズルの種別に応じて予め決められている前記薬剤の種別と、前記入力受付手段により受け付けた前記薬剤の種別に係る情報に基づき、設定異常を判断するものとしてもよい。 The first determination processing unit further includes a nozzle type determination sensor that determines a type of a nozzle attached to the discharge port of the medicine, and an input reception unit that receives an input of information related to the type of the medicine. Furthermore, based on the information on the medicine type determined in advance according to the type of the nozzle determined by the nozzle type determination sensor and the information on the type of medicine received by the input receiving means, a setting abnormality is detected. It may be determined.
また、前記薬剤タンク内に貯留されている前記薬剤の種別を判別する薬剤種別判別センサーと、前記薬剤の吐出口に取り付けられるノズルの種別を判別するノズル種別判別センサーと、をさらに有し、前記第一の判断処理部はさらに、前記薬剤種別判別センサーにより判別された前記薬剤の種別と、前記ノズル種別判別センサーにより判別された前記ノズルの種別に応じて予め決められている前記薬剤の種別に基づき、設定異常を判断するものとしてもよい。 In addition, it further includes a medicine type determination sensor that determines the type of the medicine stored in the medicine tank, and a nozzle type determination sensor that determines the type of the nozzle attached to the discharge port of the medicine, The first determination processing unit further determines the type of the medicine determined in advance according to the type of the medicine determined by the medicine type determination sensor and the type of the nozzle determined by the nozzle type determination sensor. Based on this, a setting abnormality may be determined.
また、前記第一の判断処理部により、吐出異常又は設定異常と判断されたときに、前記農業用機械に退避行動を取らせる第一の退避制御手段、をさらに有するものとしてもよい。 The first determination processing unit may further include a first retraction control unit that causes the agricultural machine to take a retreat action when it is determined that the ejection abnormality or the setting abnormality has occurred.
また、前記第一の判断処理部により、吐出異常又は設定異常と判断されたときに、前記薬剤の吐出を遮断する第一の遮断機構、をさらに有するものとしてもよい。 In addition, the first determination processing unit may further include a first blocking mechanism that blocks the discharge of the medicine when it is determined that the discharge is abnormal or the setting is abnormal.
また、前記薬剤の散布異常を判断する第二の判断処理部、をさらに有するものとしてもよい。 Moreover, it is good also as what has further the 2nd judgment process part which judges the dispersion | distribution abnormality of the said chemical | medical agent.
また、前記農業用機械の高度を測定する高度測定手段、をさらに有し、前記第二の判断処理部は、前記農業用機械の高度が所定の高度以上になったときに異常状態と判断するものとしてもよい。 Further, the apparatus further includes an altitude measuring means for measuring the altitude of the agricultural machine, and the second determination processing unit determines that an abnormal state occurs when the altitude of the agricultural machine exceeds a predetermined altitude. It may be a thing.
また、前記農業用機械の速度を測定する速度測定手段、をさらに有し、前記第二の判断処理部は、前記農業用機械の速度が所定の速度以下になったときに異常状態と判断するものとしてもよい。 Moreover, it has a speed measurement means which measures the speed of the said agricultural machine, and said 2nd judgment process part judges that it is in an abnormal state when the speed of the said agricultural machine becomes below predetermined speed. It may be a thing.
また、前記農業用機械の周囲の風速を測定する風速測定手段、をさらに有し、前記第二の判断処理部は、前記農業用機械の周囲の風速が所定の風速以上になったときに異常状態と判断するものとしてもよい。 Further, the apparatus further comprises a wind speed measuring means for measuring the wind speed around the agricultural machine, and the second determination processing unit is abnormal when the wind speed around the agricultural machine becomes equal to or higher than a predetermined wind speed. It is good also as what judges a state.
また、前記農業用機械の周囲の温度及び湿度を測定する温湿度測定手段、をさらに有し、前記第二の判断処理部は、前記農業用機械の周囲の温度が所定の温度以上且つ湿度が所定の湿度以下のときに異常状態と判断するものとしてもよい。 Further, the apparatus further comprises a temperature / humidity measuring means for measuring the ambient temperature and humidity of the agricultural machine, and the second determination processing unit is configured such that the ambient temperature of the agricultural machine is equal to or higher than a predetermined temperature and the humidity is higher. It may be determined as an abnormal state when the humidity is equal to or lower than a predetermined humidity.
また、前記第二の判断処理部により、異常状態と判断されたときに、前記農業用機械に退避行動を取らせる第二の退避制御手段、をさらに有するものとしてもよい。 In addition, the second determination processing unit may further include a second retraction control unit that causes the agricultural machine to perform a retreat action when it is determined as an abnormal state.
また、前記第二の判断処理部により、異常状態と判断されたときに、前記薬剤の吐出を遮断する遮断機構、をさらに有するものとしてもよい。 In addition, the second determination processing unit may further include a blocking mechanism that blocks the discharge of the medicine when it is determined as an abnormal state.
また、前記センサーのうちのいずれか複数のセンサーによる前記薬剤の吐出量の検知は、前記農業用機械の使用中、常時実行されるものとしてもよい。 In addition, the detection of the discharge amount of the medicine by any one of the sensors may be performed constantly during use of the agricultural machine.
また、前記農業用機械はドローンであるものとしてもよい。 The agricultural machine may be a drone.
また、本発明の別の観点に係る薬剤の吐出制御方法は、薬剤を保管する薬剤タンクと、当該薬剤を吐出する吐出口とを有し、薬剤を散布する農業用機械、に備えられ、当該薬剤の吐出を制御するためのシステムであって、前記薬剤の吐出圧を測定する第一の圧力センサー、前記ポンプの近傍に設けられ、下流へ吐き出される前記薬剤の吐出圧を測定する第二の圧力センサー、前記薬剤タンク内に貯留された前記薬剤を下流へ吐き出すポンプ内において前記薬剤を前記薬剤タンクから吸い込むと共に下流へ吐き出す回転子の回転数を測定するポンプ用センサー、又は前記薬剤の流量を測定する流量センサ―、のいずれか複数のセンサー、を有するシステムが、前記センサーのうちのいずれか複数のセンサーによって前記薬剤の吐出量を検知する処理、を実行する。 Further, a medicine discharge control method according to another aspect of the present invention is provided in an agricultural machine having a medicine tank for storing medicine and a discharge port for discharging the medicine, and spraying the medicine, A system for controlling the discharge of a medicine, a first pressure sensor that measures the discharge pressure of the medicine, a second pressure sensor that is provided in the vicinity of the pump and that measures the discharge pressure of the medicine discharged downstream A pressure sensor, a pump sensor for measuring the number of rotations of a rotor that sucks the medicine from the medicine tank and discharges the medicine downstream in a pump for discharging the medicine stored in the medicine tank downstream, or a flow rate of the medicine A system having any one of a plurality of sensors for measuring a flow rate sensor detects the discharge amount of the medicine by any one of the sensors. Management, to run.
また、本発明のさらに別の観点に係るコンピュータプログラムは、薬剤を保管する薬剤タンクと、当該薬剤を吐出する吐出口とを有し、薬剤を散布する農業用機械、に備えられ、当該薬剤の吐出を制御するためのシステムであって、前記薬剤の吐出圧を測定する第一の圧力センサー、前記ポンプの近傍に設けられ、下流へ吐き出される前記薬剤の吐出圧を測定する第二の圧力センサー、前記薬剤タンク内に貯留された前記薬剤を下流へ吐き出すポンプ内において前記薬剤を前記薬剤タンクから吸い込むと共に下流へ吐き出す回転子の回転数を測定するポンプ用センサー、又は前記薬剤の流量を測定する流量センサ―、のいずれか複数のセンサー、を有するシステムが実行するコンピュータプログラムであって、前記システムに対し、前記センサーのうちのいずれか複数のセンサーによって前記薬剤の吐出量を検知する処理、を実行させる。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、読み取り可能な各種の記録媒体に記録して提供したりすることができる。
A computer program according to still another aspect of the present invention is provided in an agricultural machine that has a medicine tank for storing medicine and a discharge port for discharging the medicine, and sprays the medicine. A system for controlling discharge, the first pressure sensor for measuring the discharge pressure of the medicine, the second pressure sensor for measuring the discharge pressure of the medicine to be discharged downstream, provided in the vicinity of the pump A pump sensor that measures the number of rotations of a rotor that sucks the medicine from the medicine tank and discharges the medicine downstream in the pump that discharges the medicine stored in the medicine tank downstream, or measures the flow rate of the medicine A computer program executed by a system having any one of a plurality of sensors. Processing for detecting the discharge amount of the drug by either a plurality of sensors of the chromatography, to execution.
The computer program can be provided by downloading via a network such as the Internet or can be provided by being recorded on various readable recording media.
本発明によれば、薬剤の散布を行なう農業用機械において、薬剤の散布の安全性を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, in the agricultural machine which spreads a chemical | medical agent, the safety | security of chemical | medical agent spreading can be improved.
本願発明に係る薬剤の吐出制御システムを搭載した薬剤散布用ドローンの実施例の平面図である。It is a top view of the example of the drone for medicine distribution which carries the medicine discharge control system concerning the invention in this application. 本願発明に係る薬剤の吐出制御システムを搭載した薬剤散布用ドローンの実施例の正面図である。It is a front view of the Example of the drone for chemical | medical agent dispersion | distribution which mounts the discharge control system of the chemical | medical agent which concerns on this invention. 本願発明に係る薬剤の吐出制御システムを搭載した薬剤散布用ドローンの実施例の右側面図である。It is a right view of the Example of the drone for chemical | medical agent dispersion | distribution which mounts the discharge control system of the chemical | medical agent which concerns on this invention. 本願発明に係る薬剤の吐出制御システムを搭載した薬剤散布用ドローンの実施例を使用した薬剤散布システムの全体概念図の例である。1 is an example of an overall conceptual diagram of a medicine dispensing system using an embodiment of a medicine dispensing drone equipped with a medicine discharge control system according to the present invention. 本願発明に係る薬剤の吐出制御システムを搭載した薬剤散布用ドローンの実施例の制御機能を表した模式図である。It is the schematic diagram showing the control function of the Example of the drone for chemical | medical agent distribution which mounts the discharge control system of the chemical | medical agent which concerns on this invention. 本願発明に係る薬剤の吐出制御システムの構成を表した模式図である。It is the schematic diagram showing the structure of the discharge control system of the chemical | medical agent which concerns on this invention. 本願発明に係る薬剤の吐出制御システムが備える機能の一部を表した機能ブロック図である。It is a functional block diagram showing a part of function with which the discharge control system of medicine concerning the present invention is provided. 本願発明に係る薬剤の吐出制御システムによって実行される処理の一例を表した処理フロー図である。It is a processing flow figure showing an example of processing performed by the discharge control system of medicine concerning the invention in this application. 本願発明に係る薬剤の吐出制御システムが備える機能の一部を表した機能ブロック図である。It is a functional block diagram showing a part of function with which the discharge control system of medicine concerning the present invention is provided. 本願発明に係る薬剤の吐出制御システムによって実行される処理の一例を表した処理フロー図である。It is a processing flow figure showing an example of processing performed by the discharge control system of medicine concerning the invention in this application.
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。 Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings. All figures are exemplary.
図1に本願発明に係るドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。 FIG. 1 is a plan view of an embodiment of the drone 100 according to the present invention, FIG. 2 is a front view thereof (viewed from the traveling direction side), and FIG. 3 is a right side view thereof. In the specification of the present application, drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type). First, it shall refer to an aircraft in general having a plurality of rotor blades or flying means.
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられていることが望ましい。 The rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also called rotor) are means for flying the drone 100 Considering the balance between flight stability, airframe size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら上の構造であることが望ましい。衝突時に当該部材がローター側に座屈変形することを防ぎ、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b Rotating means (typically an electric motor, but it may be a motor), one for each rotor blade It is desirable that The upper and lower rotors (for example, 101-1a and 101-1b) in one set and their corresponding motors (for example, 102-1a and 102-1b) are used for drone flight stability, etc. It is desirable that the axes are collinear and rotate in opposite directions. Although some of the rotor blades 101-3b and the motor 102-3b are not shown, their positions are self-explanatory and are in the positions shown if there is a left side view. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling and deforming to the rotor side at the time of collision and to prevent interference with the rotor.
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられていることが望ましい。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, and 103-4 are means for spraying the drug downward, and it is preferable that four nozzles are provided. In addition, in this specification, a chemical | medical agent generally refers to the liquid or powder disperse | distributed to agricultural fields, such as an agricultural chemical, a herbicide, liquid fertilizer, an insecticide, a seed | species, and water.
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられていることが望ましい。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
図4に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピュータプログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。 FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention. This figure is a schematic diagram, and the scale is not accurate. The controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that runs a computer program. The drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operating device (not shown) that has a dedicated emergency stop function may be used (the emergency operating device has a large emergency stop button etc. so that it can respond quickly in an emergency) It is desirable to be a dedicated device with It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100. Actually, the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different. Usually, the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。 The base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi The communication master unit and the RTK-GPS base station may be independent devices). The farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route. In addition, the drone 100 may be provided with the topographic information and the like of the stored farm 403. In addition, the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Usually, the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine. The flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
図5に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっていることが望ましい。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 The schematic diagram showing the control function of the Example of the drone for chemical distribution which concerns on FIG. 5 at this invention is shown. The flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100. The actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。 The battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable. The battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker. The battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。 The flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device. The base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
6軸ジャイロセンサー505はドローン機体の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)であり、6軸センサーであることが望ましい。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration), and is preferably a 6-axis sensor. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism. The atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves. These sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less. The multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to perform various settings. Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. . The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open. The medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。 The flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 The LED 107 is a display means for informing the drone operator of the drone status. Display means such as a liquid crystal display may be used instead of or in addition to the LED. The buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal. The Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective. The warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state). These input / output means may be selected according to drone cost targets and performance requirements, and may be duplexed / multiplexed.
自律飛行により薬剤等の散布を行なう農業用ドローンにおいては、ドローンの高度、および、速度の上限を維持することが安全性維持のためにきわめて重要である。使用者402に操縦器401に常に貼り付いてドローン100を操縦しているわけではないからである。ドローン100の高度が所定の高度を超えると万一の落下時の地上衝突時の衝撃が安全規制を超える可能性がある(万一、人に衝突した時に深刻な被害を与える可能性がある)。加えて、目的とする圃場外への薬剤の飛散(ドリフト)を最小化するためにも高度を制限することが望ましい。同様に、ドローン100の速度が所定の速度を超えると安全面で大きな問題となり得る。落下時に加えて、障害物(特に人間)に衝突した際の衝撃が安全基準を超える可能性がある。 In an agricultural drone that sprays medicines or the like by autonomous flight, maintaining the altitude and speed upper limit of the drone is extremely important for maintaining safety. This is because the user 402 is not always attached to the controller 401 and is operating the drone 100. If the altitude of the drone 100 exceeds the predetermined altitude, the impact at the time of a ground collision in the event of a fall may exceed the safety regulations (in the unlikely event that it may cause serious damage when it collides with a person) . In addition, it is desirable to limit the altitude in order to minimize the scattering (drift) of the drug outside the target field. Similarly, if the speed of the drone 100 exceeds a predetermined speed, it can be a big problem in terms of safety. In addition to falling, impacts when colliding with obstacles (especially humans) may exceed safety standards.
安全基準を遵守するために、本願発明に係るドローン100は、フライトコントローラー501の入力とするための高度測定手段、速度測定手段、または、その両方を備えることが望ましい。加えて、重量測定手段を備えていてもよい。フライトコントローラー501は、これらの測定された情報を入力とし、ドローン100が所定の制限高度、所定の制限速度、または、その両方を超えないようモーター102を制御することが望ましい。 In order to comply with safety standards, it is desirable that the drone 100 according to the present invention includes altitude measurement means, speed measurement means, or both for input to the flight controller 501. In addition, a weight measuring means may be provided. It is desirable that the flight controller 501 receives the measured information as input and controls the motor 102 so that the drone 100 does not exceed a predetermined limit altitude, a predetermined limit speed, or both.
(高度測定)
本願発明に係るドローン100は複数のセンサーを使用して機体高度を測定することが望ましい。高度の測定には、GPS504、6軸ジャイロセンサー505、気圧センサー507、ソナー509、レーザーセンサー508の組み合わせを使用してよい。また、マルチスペクトルカメラ512、または、障害物検知カメラ513にパッシブ方式のオートフォーカス機能を備えることで対地距離を測定してもよい。この場合に、測定器やセンサーは故障に備えて二重化または多重化することが望ましい。二重化・多重化は同種のセンサーを複数使用することで行なってもよく、複数方式のセンサーを併用することで行なってもよく、その両方によって行なってもよい。
(Altitude measurement)
It is desirable that the drone 100 according to the present invention measures the aircraft altitude using a plurality of sensors. For measurement of altitude, a combination of GPS 504, 6-axis gyro sensor 505, barometric pressure sensor 507, sonar 509, and laser sensor 508 may be used. Alternatively, the distance to the ground may be measured by providing the multispectral camera 512 or the obstacle detection camera 513 with a passive autofocus function. In this case, it is desirable to duplicate or multiplex measuring instruments and sensors in preparation for failure. Duplexing / multiplexing may be performed by using a plurality of sensors of the same type, may be performed by using a plurality of sensors in combination, or may be performed by both.
たとえば、ソナー509は圃場403が地面である場合には正確な測定が可能だが、圃場403が水面である場合には正確な測定が難しい(この場合には、レーザーセンサー508が適切である)等、測定方式により得手不得手があるため、複数方式のセンサーを併用することが望ましい。また、GPSの電波の外乱や基地局の異常等が発生した場合には仮にGPS504を多重化していたとしても全体障害となってしまうため、GPS以外の高度測定手段も備えることが望ましい。 For example, the sonar 509 can perform accurate measurement when the field 403 is the ground, but is difficult when the field 403 is water (in this case, the laser sensor 508 is appropriate). Since there are advantages and disadvantages depending on the measurement method, it is desirable to use a plurality of types of sensors together. In addition, in the event of disturbance of GPS radio waves, abnormality of the base station, etc., even if the GPS 504 is multiplexed, it will be an obstacle, so it is desirable to provide altitude measuring means other than GPS.
特に、離陸時の初期高度測定にはGPS504を使用し、飛行中はソナー509を使用することが望ましい。GPS504は最も正確な測定を行なえるが絶対高度しか測定できないため、用水路など凹凸のある圃場403では正確な対地高度を測定できないのに対して、ソナー509は地面に対する距離を測定するため対地高度を測定できるからである。水平飛行中にGPS504とソナー509の両方による測定を行なって結果を比較し、その差が所定の閾値(たとえば10センチメートル)以内であるときにはGPS504の測定値を高度測定に使用し、所定の閾値を超えたときには圃場403の凹凸が大きいと判断して、ソナー509の測定値を高度測定に使用するようにしてもよい。 In particular, it is desirable to use the GPS 504 for the initial altitude measurement at takeoff and the sonar 509 during the flight. GPS504 can make the most accurate measurement, but only absolute height can be measured, so it is impossible to measure accurate ground altitude in uneven field 403 such as irrigation channels, while Sonar 509 measures ground altitude to measure the distance to the ground. This is because it can be measured. During level flight, measurements are made using both GPS504 and Sonar 509, and the results are compared. If the difference is within a predetermined threshold (for example, 10 centimeters), the measured value of GPS504 is used for altitude measurement. May be determined that the unevenness of the field 403 is large, and the measurement value of the sonar 509 may be used for altitude measurement.
なお、GPS504は、ドローンの飛行位置の把握のためにいずれにせよ不可欠な機能となるため、離陸時にGPS504が故障や外乱等により機能しない場合にはドローンの離陸を禁止する制御(インターロック)を行なうことが望ましい。また、飛行中にGPS衛星からの電波がさえぎられて一時的な受信不能となる、通信妨害が発生し受信不能となる等によりGPSが機能しなくなった場合には、ドローン100をその場で上空停止(ホバリング)させる制御を行なうことが望ましい。所定時間経過後もGPSが機能しない場合には、ホバリングを停止し、その場でドローン100をその場で軟着陸、または、発着地点406等に帰還させる制御を行なってもよい。この際に、操縦器401にエラー・メッセージを表示し、使用者402の指示を仰いでもよい。 Note that GPS504 is an indispensable function for grasping the drone's flight position anyway, so if GPS504 does not function during takeoff due to malfunction or disturbance, control (interlock) prohibiting drone takeoff is performed. It is desirable to do so. In addition, if GPS stops functioning due to interruption of radio waves from GPS satellites during flight, temporary interruption of communication, or reception interruptions due to communication interference, the drone 100 will fly over on the spot. It is desirable to perform control to stop (hover). If the GPS does not function even after a predetermined time has elapsed, the hovering may be stopped and the drone 100 may be softly landed on the spot, or returned to the landing point 406 or the like. At this time, an error message may be displayed on the controller 401 and the user 402 may be instructed.
これらの高度測定手段により測定された高度情報をドローン100の飛行制御手段の入力とすることで、人間の目視による操縦がなくとも、ドローン100を法規制や安全基準等により定められた制限高度内で飛行させることが可能となる。 By using the altitude information measured by these altitude measuring means as input to the flight control means of the drone 100, the drone 100 can be operated within the restricted altitudes defined by laws and regulations, safety standards, etc. It is possible to fly with.
GPS504によって高度を測定している場合には、ソナー509により測定を行なっている場合と比較して、制限高度を低く設定することが望ましい。GPSはドローン100の高度の絶対値を測定しているのに対して、ソナー509はドローン100と地表との距離を測定しているため、地形の高低を考慮して制限高度に余裕を持たせることが望ましいからである。たとえば、ソナー509を使用した測定時の制限高度が2メートルである場合には、GPS504を使用した測定時の制限高度を1.5メートルとしてよい。 When the altitude is measured by the GPS 504, it is desirable to set the limit altitude low compared to the case where the sonar 509 is measuring. While GPS measures the absolute value of the drone 100 altitude, sonar 509 measures the distance between the drone 100 and the surface of the earth, so allowance for the restricted altitude considering the height of the terrain. This is because it is desirable. For example, when the limit altitude at the time of measurement using the sonar 509 is 2 meters, the limit altitude at the time of measurement using the GPS 504 may be 1.5 meters.
ドローン100の絶対的な高度の制限に加えて、上昇速度(高度の時間あたりの変化)を制限してもよい。上昇速度を制限しないとセンサーの測定の遅延、および、フライトコントローラー501の処理の遅延等により、ドローン100が制限高度を一時的に超えてしまうリスクがあるからである。この場合において、GPS504によって高度を測定している場合には、ソナー509等の他の方法によって高度を測定している場合と比較して上昇速度の上限値を低く設定してもよい。GPS504は、電波の外乱や測位衛星の状況により一時的に測定ができないことがあるため、ドローンが制限高度を一時的に超えるリスクが高くなるからである。 In addition to the absolute altitude limit of the drone 100, the ascent rate (altitude change over time) may be limited. This is because if the ascent rate is not limited, there is a risk that the drone 100 may temporarily exceed the limit altitude due to sensor measurement delay, flight controller 501 processing delay, and the like. In this case, when the altitude is measured by the GPS 504, the upper limit value of the ascending speed may be set lower than when the altitude is measured by another method such as the sonar 509. This is because the GPS 504 may not be able to measure temporarily due to radio wave disturbances or positioning satellite conditions, so the risk of the drone temporarily exceeding the restricted altitude increases.
(速度制限)
本願発明に係るドローン100は、複数のセンサーを使用して機体速度を測定してよい。速度の測定には、6軸ジャイロセンサー505(加速度の積分により速度が得られる)、GPSドップラー504-3(複数のGPS基地局からの電波の位相差をソフトウェアで処理することで機体速度を測定できる)、または、GPS504が測定した絶対座標の変化等を使用してよい。この場合に、測定器やセンサーは故障に備えて、二重化または多重化することが望ましい。二重化または多重化は同一方式内で行なうと共に、異なる方式間で行なうことが好ましい。たとえば、GPSが電波外乱や測位衛星の障害により利用できない場合には、GPSのみを二重化していた場合に全体障害となってしまうからである。
(Speed limit)
The drone 100 according to the present invention may measure the aircraft speed using a plurality of sensors. For speed measurement, 6-axis gyro sensor 505 (speed can be obtained by integration of acceleration), GPS Doppler 504-3 (measurement of aircraft speed by processing the phase difference of radio waves from multiple GPS base stations with software) Or changes in absolute coordinates measured by the GPS 504 may be used. In this case, it is desirable to duplicate or multiplex measuring instruments and sensors in preparation for failure. Duplexing or multiplexing is preferably performed within the same system and between different systems. For example, if GPS cannot be used due to radio wave disturbance or positioning satellite failure, the entire failure will occur if only GPS is duplicated.
これらの高度測定手段により測定された速度情報をフライトコントローラー501の入力とすることで、人間の目視による操縦がなくとも、ドローン100を法規制や安全基準等により定められた制限速度内(たとえば、時速20Km)で飛行させることが可能となる。 By using the speed information measured by these altitude measuring means as the input to the flight controller 501, the drone 100 can be operated within the speed limit defined by laws and regulations, safety standards, etc. It is possible to fly at a speed of 20 km / h.
(重量測定)
典型的なドローン100による農薬散布のケースでは、薬剤の重量は10キログラム以上となる。機体部分のみの重量は典型的には25キログラム程度であるため、散布開始時と散布終了間近の時では全体重量には大きな差が生じる。全体重量の変化に応じて、ドローン100の高度および速度を調整してもよい。たとえば、安全基準により、ドローン100の自然落下時の地表での衝撃力が規定されているのであれば、衝撃力は高度と速度と重量により決まる(速度の二乗に比例し、高度と重量に比例する)ため、機体重量が軽い時には制限高度を高くしてもよい。同様に、機体重量が軽い時には制限速度を速くしてもよい。また、飛行速度が速い時には制限高度を低く設定し、飛行高度が高い時には制限速度を遅く設定してもよい。
(Weight measurement)
In the case of a typical drone 100 pesticide spray, the weight of the drug is over 10 kilograms. Since the weight of the fuselage only is typically about 25 kilograms, there is a big difference in the overall weight at the start of spraying and near the end of spraying. The altitude and speed of the drone 100 may be adjusted according to changes in the overall weight. For example, if the safety standards stipulate the impact force on the surface of the drone 100 when it falls naturally, the impact force is determined by altitude, speed, and weight (proportional to the square of speed and proportional to altitude and weight) Therefore, the altitude limit may be increased when the aircraft weight is light. Similarly, the speed limit may be increased when the aircraft weight is light. Alternatively, the limit altitude may be set low when the flight speed is fast, and the limit speed may be set slow when the flight altitude is high.
機体重量は6軸ジャイロセンサー505によって測定された加速度、または、GPSドップラー504-3やGPS504等の手段によって測定された速度の微分値としての加速度を使用して推定してよい。上昇時であれば、モーター102の推力をT、重力加速度をg、測定された機体の加速度をαとすれば、機体全体の重量Mは、M=T/(α+g)として求められる。モーター102の推力Tはモーターの回転数によって決まり、フライトコントローラー501はモーター回転数を測定できることから、機体の重量を推定可能である。また、モーター回転数を直接的に測定できない場合には、フライトコントローラー501がモーター102に指令した目的回転数をモーター回転数とみなし、そこから推力を推定してもよい。 The body weight may be estimated using the acceleration measured by the 6-axis gyro sensor 505 or the acceleration as a differential value of the speed measured by means such as the GPS Doppler 504-3 or the GPS 504. When the vehicle is ascending, if the thrust of the motor 102 is T, the acceleration of gravity is g, and the measured acceleration of the aircraft is α, the weight M of the entire aircraft can be obtained as M = T / (α + g). Since the thrust T of the motor 102 is determined by the number of revolutions of the motor, and the flight controller 501 can measure the number of revolutions of the motor, the weight of the aircraft can be estimated. If the motor rotation speed cannot be measured directly, the target rotation speed commanded by the flight controller 501 to the motor 102 may be regarded as the motor rotation speed, and the thrust may be estimated therefrom.
また、等速水平飛行中のドローン100の機体の傾きを測定することで機体重量を推定してよい。機体の傾きはジャイロセンサーを備えることで直接測定してもよいし、6軸方式の6軸ジャイロセンサー505の測定値を二回微分することで推定してもよい。等速水平飛行中には機体の空気抵抗力、重力、回転翼による推力が釣り合っている。空気抵抗力は機体の飛行速度の関数であり、回転翼による推力はモーターの回転数の関数であり、重力は機体重量の関数であることから、重量は機体の傾き、モーターの回転数、機体の飛行速度が既知であれば推定することができる。なお、風力センサーを設けて、風力と風向によって空気抵抗係数を補正してもよい。 Alternatively, the weight of the aircraft may be estimated by measuring the inclination of the aircraft of the drone 100 during the uniform speed flight. The inclination of the airframe may be directly measured by providing a gyro sensor, or may be estimated by differentiating the measured value of the 6-axis type 6-axis gyro sensor 505 twice. During constant-velocity horizontal flight, the aircraft's air resistance, gravity, and thrust from the rotor blades are balanced. Air resistance is a function of the aircraft's flight speed, thrust by the rotor blades is a function of the number of revolutions of the motor, and gravity is a function of the weight of the aircraft, so weight is the inclination of the aircraft, the number of revolutions of the motor, If the flight speed is known, it can be estimated. A wind sensor may be provided and the air resistance coefficient may be corrected by the wind force and the wind direction.
また、飛行中に重量が変化する最大の要因は薬剤の量であることから、薬剤タンク中のレベルセンサーで薬剤の液面の高さを測定することで薬剤の残量を測定し、そこから機体全体の重量を推定してもよい。この場合には、薬剤タンク中に水圧センサーを備え、薬剤タンク中の薬剤の重量を推定することで、機体全体の重量を推定してもよい。 In addition, since the greatest factor that changes weight during flight is the amount of drug, the level of the drug is measured by the level sensor in the drug tank, and the remaining amount of drug is measured. You may estimate the weight of the whole body. In this case, the weight of the entire aircraft may be estimated by providing a water pressure sensor in the medicine tank and estimating the weight of the medicine in the medicine tank.
図6及び図7により、本願発明の実施例に係る薬剤の吐出制御システムの構成及び機能を示す。
本実施形態に係る薬剤の吐出制御システムは、薬剤を散布する農業用機械、特に本例では薬剤散布用ドローン100に備えられ、薬剤の吐出を精度よく制御すると共に、薬剤の吐出異常を検知する。
なお、本実施形態において、薬剤の「吐出異常」といった場合には、現実に薬剤の吐出異常を来たし、規定値を超える薬剤が吐出されている状態のほか、このような薬剤の吐出異常となる虞のある準備状態や、散布予定とは異なる薬剤が現実に散布され、又は散布される虞がある設定異常の状態を含む。
6 and 7 show the configuration and function of a medicine ejection control system according to an embodiment of the present invention.
The medicine discharge control system according to the present embodiment is provided in an agricultural machine for spraying medicine, particularly in this example, the medicine spraying drone 100, and controls medicine discharge accurately and detects medicine discharge abnormality. .
In the present embodiment, in the case of “discharging abnormality” of a medicine, the medicine discharge abnormality actually occurs, and in addition to a state where a medicine exceeding a specified value is being discharged, such a medicine discharging abnormality occurs. This includes a preparation state that has a fear and a setting abnormality state in which a drug different from the spraying schedule is actually sprayed or is likely to be sprayed.
薬剤タンク104は上述の通り、散布される薬剤を保管するためのタンクである。
この薬剤タンク104には、薬剤を充填したり、保管している薬剤を出したりするための開閉可能な蓋が取り付けられている。この開閉可能な蓋には、開閉状態を検知可能な開閉センサー104aが取り付けられている。この開閉センサー104aは例えば、蓋に取り付けられたマグネットと、本体に取り付けられて、このマグネットの磁力や接触を感知する感知器によって構成することができる。これにより蓋の開閉状態を判別して、使用者に蓋の開閉状態を認識可能とし、蓋が開いたまま薬剤の散布が行われるといった事態を防ぐことができる。
As described above, the medicine tank 104 is a tank for storing the medicine to be sprayed.
The medicine tank 104 is provided with an openable / closable lid for filling the medicine or taking out the stored medicine. An open / close sensor 104a capable of detecting an open / close state is attached to the openable / closable lid. The open / close sensor 104a can be constituted by, for example, a magnet attached to the lid and a sensor attached to the main body and sensing the magnetic force and contact of the magnet. Thereby, the open / closed state of the lid is determined, the user can recognize the open / closed state of the lid, and the situation where the medicine is sprayed while the lid is open can be prevented.
また、薬剤タンク104には薬剤種別判別センサー104bが設けられている。薬剤種別判別センサー104bは、薬剤タンク104内に貯留されている薬剤の種別を判別することができる。
この薬剤種別判別センサー104bは例えば、薬剤タンク104内の薬剤の粘度や導電率、あるいはpHを測定することのできる装置によって構成され、測定された各項目の値と、薬剤ごとの基準となる値とを対比し、薬剤の種別を判別することができる。
The medicine tank 104 is provided with a medicine type discrimination sensor 104b. The medicine type discrimination sensor 104b can discriminate the type of medicine stored in the medicine tank 104.
The medicine type discrimination sensor 104b is constituted by, for example, a device capable of measuring the viscosity, conductivity, or pH of the medicine in the medicine tank 104, and the value of each measured item and the reference value for each medicine And the type of medicine can be determined.
なお、これに限らず、例えば薬剤タンク104としてカートリッジ式の薬剤タンクを用いれば、当該カートリッジ式の薬剤タンクに薬剤種別のデータを記録したIC等を付しておき、当該IC等から薬剤種別のデータを取得する手段を設けることで、薬剤の種別を判別することもできる。 For example, if a cartridge type drug tank is used as the drug tank 104, an IC or the like in which the drug type data is recorded is attached to the cartridge type drug tank. By providing means for acquiring data, the type of medicine can be determined.
ここで、薬剤は複数の種類のものが用いられる場合があるため、散布を予定している薬剤が薬剤タンク104内に保管されているかどうかを判別することは有用である。特に、薬剤の粒子径は種類に応じて異なるところ、散布を予定していた薬剤よりも粒子径の小さい薬剤を誤って散布してしまった場合には、ドリフト(薬剤の目的物以外への飛散、付着)を惹き起こす可能性が高く、看過できない。 Here, since there are cases where a plurality of types of drugs are used, it is useful to determine whether or not a drug scheduled to be sprayed is stored in the drug tank 104. In particular, the particle size of the drug varies depending on the type. If a drug with a particle size smaller than the drug intended to be sprayed is accidentally sprayed, drift (scattering of the drug other than the target) will occur. , Adhesion) is high and cannot be overlooked.
また、薬剤タンク104には、薬剤の液切れを検知するための液切れセンサー511が取り付けられている。なお、薬剤の液切れには、薬剤がなくなった場合のほか、薬剤の量が所定の量以下になった場合を含み、任意に設定された量に応じて、薬剤の液切れを検知することができる。 The medicine tank 104 is provided with a liquid shortage sensor 511 for detecting the liquid shortage of the medicine. In addition, when the medicine runs out, it includes not only the case where the medicine runs out, but also the case where the amount of medicine falls below a predetermined amount, and detects the running out of medicine according to an arbitrarily set amount. Can do.
なお、薬剤タンク104内における薬剤の蒸散検知機能や、温度・湿度の測定機能などを薬剤タンク104に設け、薬剤が適切な状態に管理されるようにするとよい。 It should be noted that a medicine transpiration detection function and a temperature / humidity measurement function in the medicine tank 104 may be provided in the medicine tank 104 so that the medicine is managed in an appropriate state.
ポンプ106は、薬剤タンク104内に保管されている薬剤を下流へ吐き出し、薬剤ホース105-1、105-2、105-3、105-4を介して各薬剤ノズル103-1、103-2、103-3、103-4へ送出する。
なお、薬剤は薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4へ送出されるところ、本実施形態の説明では、この送出経路に沿って薬剤が送出される方向を下流方向と称し、これとは逆の方向を上流方向と称することがある。なお、薬剤は一部、薬剤タンク104から三方弁122を介して再び薬剤タンク104へ送出されるが、この経路に関しては、三方弁122側を下流方向、薬剤タンク104側を上流方向と称している。
The pump 106 discharges the medicine stored in the medicine tank 104 downstream, and each medicine nozzle 103-1, 103-2, via the medicine hose 105-1, 105-2, 105-3, 105-4, Send to 103-3, 103-4.
Note that the medicine is delivered from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, and 103-4. In the description of the present embodiment, the medicine is delivered along this delivery path. Is referred to as the downstream direction, and the opposite direction may be referred to as the upstream direction. A part of the medicine is sent again from the medicine tank 104 to the medicine tank 104 through the three-way valve 122. In this route, the three-way valve 122 side is referred to as a downstream direction, and the medicine tank 104 side is referred to as an upstream direction. Yes.
拡張タンク141は、三方弁122から送出された薬剤を一時的に貯留させ、薬剤タンク104に戻すためのタンクである。
三方弁122から拡張タンク141を介して薬剤タンク104に至る経路は、薬剤中の気泡を除去(脱泡)するための経路である。この経路を循環させると共に、拡張タンク141に一時的に貯留させることで薬剤の脱泡を行うことができる。
The expansion tank 141 is a tank for temporarily storing the medicine delivered from the three-way valve 122 and returning it to the medicine tank 104.
A path from the three-way valve 122 to the drug tank 104 via the expansion tank 141 is a path for removing (defoaming) bubbles in the drug. By circulating this path and temporarily storing it in the expansion tank 141, the defoaming of the medicine can be performed.
逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤を一定方向のみに送出し、当該一定方向とは逆の方向への流入、即ち逆流を防ぐための弁である。この逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路において、薬剤の吐出を遮断する遮断機構の役割を果たしており、薬剤の吐出を遮断する役割を果たすことができれば、遮断機構として電磁弁など、他の機構のものを用いることもできる。 The check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 deliver the drug only in a certain direction and in the direction opposite to the certain direction. This is a valve for preventing the inflow, that is, the back flow. The check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 are provided from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3. , 103-4 plays a role of a blocking mechanism that blocks the discharge of the drug, and if it can play a role of blocking the discharge of the drug, the other mechanism such as an electromagnetic valve is used as the blocking mechanism You can also.
本例では、逆止弁121-1が薬剤タンク104とポンプ106の間であって、薬剤タンク104に設けられた薬剤吐出口近傍に設けられ、逆止弁121-2が三方弁122と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、逆止弁121-4、121-5、121-6、121-7が薬剤の外部への吐出口103a-1、103a-2、103a-3、103a-4に設けられ、逆止弁121-3が三方弁122と拡張タンク141の間に設けられている。逆止弁121-1は、薬剤タンク104から送出された薬剤を下流方向へ送出させ、薬剤タンク104へ逆流不能に制御している。また、逆止弁121-2は、ポンプ106から送出された薬剤を下流方向へ送出させ、ポンプ106へ逆流不能に制御している。また、逆止弁121-3は、三方弁122から送出された薬剤を拡張タンク141のある上流方向へ送出させ、三方弁122へ逆流不能に制御している。さらに、逆止弁121-4、121-5、121-6、121-7は、吐出口103a-1、103a-2、103a-3、103a-4から薬剤が外部へ吐出するのを遮断可能にしている。
なお、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7には、スイング式、リフト式、ウエハ式など、各種のものを用いることができ、特に特定のものに限られることはない。また、本例に関わらず、本例よりも多くの逆止弁を適宜の箇所に設けてもよい。
In this example, the check valve 121-1 is provided between the drug tank 104 and the pump 106, in the vicinity of the drug discharge port provided in the drug tank 104, and the check valve 121-2 is provided with the three-way valve 122 and the drug. The nozzles 103-1, 103-2, 103-3, 103-4 are provided, and check valves 121-4, 121-5, 121-6, 121-7 are provided to discharge the medicine 103a- 1, 103a-2, 103a-3, 103a-4, and a check valve 121-3 is provided between the three-way valve 122 and the expansion tank 141. The check valve 121-1 controls the medicine sent out from the medicine tank 104 in the downstream direction so that it cannot flow back to the medicine tank 104. The check valve 121-2 controls the medicine sent from the pump 106 in the downstream direction so that it cannot flow back to the pump 106. Further, the check valve 121-3 controls the medicine sent from the three-way valve 122 in the upstream direction where the expansion tank 141 is present and prevents the backflow to the three-way valve 122. Furthermore, the check valves 121-4, 121-5, 121-6, 121-7 can block the discharge of medicine from the discharge ports 103a-1, 103a-2, 103a-3, 103a-4. I have to.
Various check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7, such as swing type, lift type, and wafer type, are used. It is not limited to a specific one. Regardless of this example, more check valves may be provided in appropriate locations than in this example.
三方弁122は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられており、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路と、ポンプ106から拡張タンク141を介して薬剤タンク104へつながる経路の分岐点を構成しており、切替操作に応じて薬剤を各経路へ送出させる。
ここで、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路は、薬剤を薬剤ノズル103-1、103-2、103-3、103-4から吐出させ、薬剤を散布させるための経路である。
また、ポンプ106から拡張タンク141を介して薬剤タンク104へつながる経路は上述の通り、薬剤中の気泡を除去(脱泡)するための経路である。
The three-way valve 122 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, A branch point between the path connected to 103-4 and the path connected from the pump 106 to the drug tank 104 via the expansion tank 141 is configured, and the drug is sent to each path according to the switching operation.
Here, the path leading from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, 103-4 causes the drug to be discharged from the drug nozzles 103-1, 103-2, 103-3, 103-4. It is a route for spraying medicine.
Further, the path leading from the pump 106 to the medicine tank 104 via the expansion tank 141 is a path for removing (defoaming) bubbles in the medicine as described above.
流量センサー510は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、薬剤ノズル103-1、103-2、103-3、103-4へ送出されている薬剤の流量を測定する。この流量センサー510によって測定された薬剤の流量に基づき、圃場403に散布した薬剤の量を把握することができる。 The flow sensor 510 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and is sent to the drug nozzles 103-1, 103-2, 103-3, 103-4. Measure the drug flow rate. Based on the flow rate of the medicine measured by the flow sensor 510, the amount of the medicine spread on the field 403 can be grasped.
圧力センサー111-1、111-2は、薬剤の吐出口に設けられ、薬剤ノズル103-1、103-2、103-3、103-4から外部へ吐出される薬剤の吐出圧を測定する。
圧力センサー111-1、111-2は、ポンプ106の下流側に設けられ、下流へ吐き出される薬剤の吐出圧を測定する。
これらの圧力センサー111-1、111-2によって薬剤の吐出圧を測定することにより、各圧力センサーの111-1、111-2から得られる薬剤の吐出圧及び/又は各圧力センサー111-1、111-2による測定値から求められる圧力損失の数値に基づき、薬剤の吐出状況を精度よく把握して、薬剤の過剰吐出などの吐出異常を判断したり、薬剤の吐出を制御したりすることができる。
The pressure sensors 111-1 and 111-2 are provided at the discharge port of the drug and measure the discharge pressure of the drug discharged from the drug nozzles 103-1, 103-2, 103-3, and 103-4 to the outside.
The pressure sensors 111-1 and 111-2 are provided on the downstream side of the pump 106, and measure the discharge pressure of the medicine discharged downstream.
By measuring the discharge pressure of the drug by these pressure sensors 111-1, 111-2, the discharge pressure of the drug obtained from each pressure sensor 111-1, 111-2 and / or each pressure sensor 111-1, Based on the value of pressure loss obtained from the measurement value of 111-2, it is possible to accurately grasp the discharge state of the drug, judge discharge abnormalities such as excessive discharge of the drug, and control the discharge of the drug it can.
ポンプ用センサー106aは、ポンプ106内において薬剤を薬剤タンク104から吸い込むと共に下流へ吐き出す回転子の回転数を測定する。
このポンプ用センサー106aによってポンプ106の回転子の回転数を測定することにより、ポンプ106によって送出されている薬剤の量を把握し、薬剤の過剰吐出などの吐出異常を判断したり、薬剤の吐出を制御したりすることができる。
The pump sensor 106a measures the number of rotations of the rotor that sucks the drug from the drug tank 104 and discharges it downstream in the pump 106.
By measuring the number of rotations of the rotor of the pump 106 by the pump sensor 106a, the amount of the medicine delivered by the pump 106 can be grasped, and an abnormal discharge such as excessive discharge of the medicine can be determined, or the discharge of the medicine can be determined. Can be controlled.
ノズル種別判別センサー114-1、114-2、114-3、114-4は、薬剤の吐出口に取り付けられる薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。
散布される薬剤ごとの粒子径の違いから、薬剤ノズル103-1、103-2、103-3、103-4は通常、薬剤に応じて用いられるものが異なっている。そのため、薬剤ノズル103-1、103-2、103-3、103-4の種別が適切か否かを判別することで、誤った薬剤の散布を防ぐことができる。
The nozzle type discrimination sensors 114-1, 114-2, 114-3, 114-4 discriminate the types of the drug nozzles 103-1, 103-2, 103-3, 103-4 attached to the drug discharge ports. be able to.
Due to the difference in particle diameter for each sprayed drug, the drug nozzles 103-1, 103-2, 103-3, and 103-4 are usually used in accordance with the drug. Therefore, by determining whether the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 are appropriate, it is possible to prevent the wrong medicine from being sprayed.
具体的には例えば、吐出口に薬剤ノズル103-1、103-2、103-3、103-4と嵌合又は係合する機構を設けておき、薬剤ノズル103-1、103-2、103-3、103-4には、当該吐口側の嵌合又は係合機構に嵌合又は係合する機構であって、複数の薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状の機構を設ける。そして、吐出口に薬剤ノズル103-1、103-2、103-3、103-4を取り付けた際、薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状を識別することにより、薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。 Specifically, for example, a mechanism for fitting or engaging with the drug nozzles 103-1, 103-2, 103-3, 103-4 is provided at the discharge port, and the drug nozzles 103-1, 103-2, 103 are provided. -3, 103-4 is a mechanism that fits or engages with the spout-side fitting or engagement mechanism, and includes a plurality of drug nozzles 103-1, 103-2, 103-3, 103-4 A differently shaped mechanism is provided for each. When the medicine nozzles 103-1, 103-2, 103-3, 103-4 are attached to the discharge ports, different shapes are identified for the medicine nozzles 103-1, 103-2, 103-3, 103-4. By doing so, the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 can be determined.
なお、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路の途中には、当該経路中に貯留する薬剤を外部へ排出するためのコック付きの排出口(図6中、「DRAIN」と表記)が設けられている。圃場403への薬剤の散布が終わった後などにおいて、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路に溜まっている薬剤を排出させる場合には、この排出口より薬剤を排出させることができる。 In addition, in the middle of the path from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, 103-4, a discharge port with a cock for discharging medicine stored in the path to the outside (Indicated as “DRAIN” in FIG. 6). For example, after the spraying of the medicine on the field 403 is finished, when discharging the medicine accumulated in the path from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, 103-4, The drug can be discharged from this discharge port.
本実施形態において、フライトコントローラー501は図7に示されるように、薬剤の吐出異常を判断するための第一判断処理部11、第一制御部12、閾値情報記憶部22、入力受付部501aを有している。
なお、図7においては、フライトコントローラー501が備える機能として、本実施形態における薬剤の吐出制御に必要な機能のみを示している。
In the present embodiment, as shown in FIG. 7, the flight controller 501 includes a first determination processing unit 11, a first control unit 12, a threshold information storage unit 22, and an input receiving unit 501a for determining a drug ejection abnormality. Have.
In FIG. 7, only functions necessary for the medicine ejection control in the present embodiment are shown as the functions of the flight controller 501.
第一制御部12は、後述する第一判断処理部11による判断処理の結果、薬剤の吐出異常又は設定異常が発生していると判断されたときに、ドローン100に所定の安全行動を取らせる。
ここで、所定の安全行動とは、飛行中であれば退避行動、飛行前の準備状態であれば飛行規制措置である。
The first control unit 12 causes the drone 100 to take a predetermined safety action when it is determined as a result of the determination process by the first determination processing unit 11 described later that a medicine ejection abnormality or a setting abnormality has occurred. .
Here, the predetermined safety action is a evacuation action if in flight, and a flight regulation measure if it is in a pre-flight preparation state.
退避行動は例えば、通常の着陸動作、ホバリングを例とする空中停止や、最短のルートで直ちに所定の帰還地点まで移動する「緊急帰還」を含む。所定の帰還地点とは、あらかじめフライトコントローラー501に記憶させた地点であり、例えば離陸した地点である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
また、退避行動は、最適化されたルートで所定の帰還地点まで移動する「通常帰還」であってもよい。最適化されたルートとは、例えば、通常帰還指令を受信する前に薬剤散布したルートを参照して算出されるルートである。例えば、ドローン100は、まだ薬剤を散布していないルートを経由して、薬剤を散布しながら所定の帰還地点まで移動する。
さらに、退避行動は、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」も含む。
The evacuation action includes, for example, a normal landing operation, an air stop such as hovering, and “emergency return” that moves immediately to a predetermined return point by the shortest route. The predetermined return point is a point that is previously stored in the flight controller 501, for example, a point that has taken off. The predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
Further, the evacuation action may be a “normal return” that moves to a predetermined return point by an optimized route. The optimized route is, for example, a route that is calculated with reference to a route in which medicine is dispersed before receiving a normal feedback command. For example, the drone 100 moves to a predetermined return point while spraying the drug via a route where the drug is not yet sprayed.
Further, the retreating action includes “emergency stop” in which all the rotary blades are stopped and the drone 100 is dropped downward from the spot.
飛行規制措置は、飛行前の準備段階において飛行を規制する措置であって、使用者の飛行命令を拒否したり、使用者に状態の確認を要求したりするものである。
飛行規制措置がとられた場合には、異常の確認や整備がなされない限り、飛行できないように制御されてもよい。
The flight regulation measure is a measure that regulates the flight in a pre-flight preparation stage, and rejects the flight instruction of the user or requests the user to check the state.
When a flight regulation measure is taken, it may be controlled so that it cannot fly unless an abnormality is confirmed or maintained.
なお、第一制御部12は、ドローン100に異常が生じた場合に限らず、各センサーによって測定された薬剤の吐出量や流量に基づき、所定の吐出量や流量に制御することができる。 The first control unit 12 is not limited to the case where an abnormality occurs in the drone 100, and can control to a predetermined discharge amount and flow rate based on the discharge amount and flow rate of the medicine measured by each sensor.
閾値情報記憶部22は、後述する第一判断処理部11による判断処理に際して、圧力や流量などの基準となる閾値を記憶した記憶部である。 The threshold information storage unit 22 is a storage unit that stores a threshold value serving as a reference for pressure, flow rate, and the like in determination processing by the first determination processing unit 11 described later.
入力受付部501aは、薬剤の種別に係る情報など、各種の情報の入力を受け付けることができる。
この第一判断処理部11は以下の第一乃至第六の判断処理を実行することができる。なお、各判断処理の流れは図8に示す通りとなり、これに基づき、各処理について説明する。
The input receiving unit 501a can receive input of various types of information such as information related to the type of medicine.
The first determination processing unit 11 can execute the following first to sixth determination processes. The flow of each determination process is as shown in FIG. 8, and each process will be described based on this.
第一判断処理部11は、第一の判断処理として、圧力センサー111-1、111-2によって測定された薬剤の吐出圧に基づき、吐出異常を判断することができる。具体的には、圧力センサー111-1、111-2によって測定された薬剤の吐出圧が所定値以上であった場合に、吐出異常と判断することができる。 The first determination processing unit 11 can determine a discharge abnormality based on the discharge pressure of the medicine measured by the pressure sensors 111-1 and 111-2 as the first determination process. Specifically, when the discharge pressure of the medicine measured by the pressure sensors 111-1 and 111-2 is equal to or higher than a predetermined value, it can be determined that the discharge is abnormal.
即ち、第一判断処理部11は、ステータスとして薬剤の吐出圧に係る情報を取得し(S101)、閾値情報記憶部22に記憶されている所定値とステータスを対比して吐出異常を判断する(S102)。その結果、吐出異常と判断した場合には、第一制御部12により所定の安全行動をとらせる(S103)。 That is, the first determination processing unit 11 acquires information relating to the discharge pressure of the medicine as a status (S101), and compares the predetermined value stored in the threshold information storage unit 22 with the status to determine an ejection abnormality ( S102). As a result, if it is determined that the discharge is abnormal, the first control unit 12 takes a predetermined safety action (S103).
また、第二の判断処理として、圧力センサー111-1、111-2によって測定された吐出圧から算出される圧力損失に基づき、吐出異常を判断する。具体的には、圧力センサー111-1によって測定された薬剤の吐出圧と、圧力センサー111-2によって測定された薬剤の吐出圧の差分から圧力損失を算出し、当該圧力損失が所定値以上であった場合に、吐出異常と判断することができる。圧力損失によって吐出異常を判断することで、内部の三方弁122や圧力センサー111-1、111-2間における薬剤の漏出異常なども検知することができる。 Further, as a second determination process, a discharge abnormality is determined based on the pressure loss calculated from the discharge pressure measured by the pressure sensors 111-1 and 111-2. Specifically, the pressure loss is calculated from the difference between the discharge pressure of the medicine measured by the pressure sensor 111-1 and the discharge pressure of the medicine measured by the pressure sensor 111-2, and the pressure loss is greater than or equal to a predetermined value. If there is, it can be determined that the discharge is abnormal. By determining the discharge abnormality based on the pressure loss, it is possible to detect a drug leakage abnormality between the internal three-way valve 122 and the pressure sensors 111-1 and 111-2.
即ち、第一判断処理部11は、ステータスとして薬剤の吐出圧に係る情報を取得し(S101)、圧力損失を算出した上で閾値情報記憶部22に記憶されている所定値と対比して吐出異常を判断する(S102)。その結果、吐出異常と判断した場合には、第一制御部12により所定の安全行動をとらせる(S103)。 That is, the first determination processing unit 11 acquires information on the discharge pressure of the medicine as the status (S101), calculates the pressure loss, and compares it with the predetermined value stored in the threshold information storage unit 22. Abnormality is judged (S102). As a result, if it is determined that the discharge is abnormal, the first control unit 12 takes a predetermined safety action (S103).
また、第三の判断処理として、ポンプ用センサー106aにより測定されたポンプ106内の回転子の回転数に基づき、吐出異常を判断する。具体的には、ポンプ用センサー106aによって測定された回転子の回転数が所定値以上であった場合に、吐出異常と判断することができる。この場合、回転子が過回転している状態にあると推測され、これにより安全な吐出量を上回る薬剤が散布されていると判断できる。 Further, as a third determination process, a discharge abnormality is determined based on the rotation speed of the rotor in the pump 106 measured by the pump sensor 106a. Specifically, it is possible to determine that the discharge is abnormal when the rotational speed of the rotor measured by the pump sensor 106a is equal to or greater than a predetermined value. In this case, it is presumed that the rotor is in an over-rotating state, so that it can be determined that a medicine exceeding the safe discharge amount is being sprayed.
即ち、第一判断処理部11は、ステータスとしてポンプ106内の回転子の回転数に係る情報を取得し(S101)、閾値情報記憶部22に記憶されている所定値とステータスを対比して吐出異常を判断する(S102)。その結果、吐出異常と判断した場合には、第一制御部12により所定の安全行動をとらせる(S103)。 That is, the first determination processing unit 11 acquires information related to the number of rotations of the rotor in the pump 106 as a status (S101), and compares the predetermined value stored in the threshold information storage unit 22 with the status for discharge. Abnormality is judged (S102). As a result, if it is determined that the discharge is abnormal, the first control unit 12 takes a predetermined safety action (S103).
また、第四の判断処理として、薬剤種別判別センサー104bにより判別された薬剤の種別と、入力受付部501aにより受け付けた薬剤の種別に係る情報に基づき、異常状態か否かを判断する。具体的には、薬剤種別判別センサー104bにより判別された薬剤の種別と、入力手段により受け付けた薬剤の種別が異なる場合に、予定していない薬剤の散布が行われる虞があるものとして、異常状態と判断することができる。 Further, as a fourth determination process, it is determined whether or not there is an abnormal state based on the drug type determined by the drug type determination sensor 104b and the information related to the drug type received by the input receiving unit 501a. Specifically, if the type of the drug determined by the drug type determination sensor 104b is different from the type of the drug received by the input unit, it is assumed that there is a possibility that an unscheduled drug may be sprayed. It can be judged.
即ち、第一判断処理部11は、ステータスとして、薬剤種別判別センサ―104bと入力受付部501aそれぞれから薬剤の種別に係る情報を取得し(S101)、これらを対比して異常状態か否かを判断する(S102)。その結果、異常状態と判断した場合には、第一制御部12により所定の安全行動をとらせる(S103)。 That is, the first determination processing unit 11 acquires information on the type of drug from each of the drug type determination sensor 104b and the input reception unit 501a as the status (S101), and compares these to determine whether or not there is an abnormal state. Judgment is made (S102). As a result, when it is determined that the state is abnormal, the first control unit 12 takes a predetermined safety action (S103).
また、第五の記判断処理として、ノズル種別判別センサー114-1、114-2、114-3、114-4により判別された薬剤ノズル103-1、103-2、103-3、103-4の種別に応じて予め決められている薬剤の種別と、入力受付部501aにより受け付けた薬剤の種別に係る情報に基づき、異常状態か否かを判断する。具体的には、ノズル種別判別センサー114-1、114-2、114-3、114-4により判別された薬剤ノズル103-1、103-2、103-3、103-4の種別と、入力手段により受け付けた薬剤の種別が異なる場合に、予定していない薬剤の散布が行われる虞があるものとして、異常状態と判断することができる。 Further, as the fifth determination process, the medicine nozzles 103-1, 103-2, 103-3, 103-4 determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4 are used. Whether or not there is an abnormal state is determined based on the type of medicine determined in advance according to the type of information and the information related to the type of medicine received by the input receiving unit 501a. Specifically, the types of medicine nozzles 103-1, 103-2, 103-3, and 103-4 determined by the nozzle type determination sensors 114-1, 114-2, 114-3, and 114-4, and the input When the type of medicine received by the means is different, it is possible to determine that there is a possibility that unscheduled medicine may be sprayed, and that it is an abnormal state.
即ち、第一判断処理部11は、ステータスとして、ノズル種別判別センサ―114-1、114-2、114-3、114-4により判別された薬剤ノズル103-1、103-2、103-3、103-4の種別に応じて予め決められている薬剤の種別と、入力受付部501aにより受け付けた薬剤の種別に係る情報を取得し(S101)、これらを対比して異常状態か否かを判断する(S102)。その結果、異常状態と判断した場合には、第一制御部12により所定の安全行動をとらせる(S103)。 That is, the first determination processing unit 11 uses, as the status, the medicine nozzles 103-1, 103-2, 103-3 determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4. , Information on the type of medicine predetermined according to the type of 103-4 and the type of medicine received by the input receiving unit 501a is acquired (S101), and these are compared to determine whether or not there is an abnormal state. Judgment is made (S102). As a result, when it is determined that the state is abnormal, the first control unit 12 takes a predetermined safety action (S103).
また、第六の判断処理として、薬剤種別判別センサー104bにより判別された薬剤の種別と、ノズル種別判別センサー114-1、114-2、114-3、114-4により判別された薬剤ノズル103-1、103-2、103-3、103-4の種別に応じて予め決められている薬剤の種別に基づき、異常状態か否かを判断する。具体的には、薬剤種別判別センサー104bにより判別された薬剤の種別と、ノズル種別判別センサー114-1、114-2、114-3、114-4により判別された薬剤ノズル103-1、103-2、103-3、103-4の種別に応じて予め決められている薬剤の種別が異なる場合に、予定していない薬剤の散布が行われる虞があるものとして、異常状態と判断することができる。 Further, as a sixth determination process, the type of medicine determined by the medicine type determination sensor 104b and the drug nozzle 103- determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4 are used. It is determined whether or not there is an abnormal state based on the type of medicine determined in advance according to the types of 1, 103-2, 103-3, and 103-4. Specifically, the type of medicine determined by the medicine type determination sensor 104b and the drug nozzles 103-1, 103- determined by the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4. 2. If the predetermined drug type differs depending on the type of 2, 103-3, 103-4, it may be determined that there is a risk of unscheduled drug spraying and that it is an abnormal condition it can.
即ち、第一判断処理部11は、ステータスとして、薬剤種別判別センサー104bにより判別された薬剤の種別と、ノズル種別判別センサー114-1、114-2、114-3、114-4により判別された薬剤ノズル103-1、103-2、103-3、103-4の種別に応じて予め決められている薬剤の種別に係る情報を取得し(S101)、これらを対比して異常状態か否かを判断する(S102)。その結果、異常状態と判断した場合には、第一制御部12により所定の安全行動をとらせる(S103)。 That is, the first determination processing unit 11 is determined as the status by the drug type determined by the drug type determination sensor 104b and the nozzle type determination sensors 114-1, 114-2, 114-3, 114-4. Information on the type of medicine determined in advance according to the type of medicine nozzles 103-1, 103-2, 103-3, 103-4 is acquired (S101), and these are compared to determine whether or not there is an abnormal state. Is determined (S102). As a result, when it is determined that the state is abnormal, the first control unit 12 takes a predetermined safety action (S103).
なお、薬剤の吐出制御システムにおける薬剤の吐出異常の判断処理においては、圧力センサー111-1、111-2によって測定された薬剤の吐出圧、圧力センサー111-1及び圧力センサー111-2によって測定された薬剤の吐出圧の差分から算出された圧力損失、ポンプ用センサー106aにより測定されたポンプ106内の回転子の回転数、流量センサー510により測定された薬剤の流量、のいずれかを組み合わせて判断することもできる。例えば、ポンプ106内の回転子の回転数と流量センサー510により測定された薬剤の流量、圧力センサー111-1、111-2によって測定された薬剤の吐出圧とポンプ用センサー106aにより測定されたポンプ106内の回転子の回転数、あるいは、圧力センサー111-1及び圧力センサー111-2によって測定された薬剤の吐出圧の差分から算出された圧力損失と流量センサー510により測定された薬剤の流量など、複数の検出情報を用いる。これら複数のセンサーによって取得された情報を対比することにより、その比率から薬剤の吐出異常を判断することもできる。例えば、流量センサーにより測定された薬剤の流量に対し、圧力センサー111-1、111-2によって測定された吐出圧が、正常時よりも小さいあるいは大きい場合には、薬剤の吐出異常が発生していると判断することができる。これにより、薬剤の吐出異常を精度よく判別し、退避行動や安全規制措置といった安全行動をとらせることができる。 In the determination process for abnormal drug discharge in the drug discharge control system, the drug discharge pressure measured by the pressure sensors 111-1 and 111-2, the pressure sensor 111-1 and the pressure sensor 111-2 are measured. The pressure loss calculated from the difference in the discharge pressure of the medicine, the number of rotations of the rotor in the pump 106 measured by the pump sensor 106a, and the medicine flow rate measured by the flow sensor 510 are used in combination. You can also For example, the number of rotations of the rotor in the pump 106, the flow rate of the drug measured by the flow sensor 510, the discharge pressure of the drug measured by the pressure sensors 111-1, 111-2, and the pump measured by the pump sensor 106a The number of rotations of the rotor in 106, the pressure loss calculated from the difference between the discharge pressures of the drugs measured by the pressure sensor 111-1 and the pressure sensor 111-2, the drug flow rate measured by the flow sensor 510, etc. A plurality of detection information is used. By comparing the information acquired by the plurality of sensors, it is possible to determine a drug ejection abnormality from the ratio. For example, if the discharge pressure measured by the pressure sensors 111-1 and 111-2 is smaller or larger than the normal time with respect to the flow rate of the drug measured by the flow sensor, a drug discharge abnormality has occurred. Can be judged. Thereby, it is possible to accurately determine an abnormal discharge of the medicine and to take a safety action such as a retreat action or a safety regulation measure.
なお、以上の吐出制御システムの動作のうち、第一乃至第三の判断処理では、基本的には薬剤の過剰吐出を吐出異常と判断している。これは、圃場403に散布する薬剤の量が規定値を超える場合、周辺環境への懸念や薬剤の散布を受けた農作物等の安全性が損なわれる虞がある一方、規定値を下回る場合には、そのような虞がないことから、過剰吐出を吐出異常と判断している。他方、本実施形態に係る吐出制御システムにおいて、圧力センサー111-1、111-2やポンプ用センサー106aから測定される圧力やポンプの回転子の回転数が所定値を下回るか否かを判断することで、薬剤の吐出不足を識別し、これを吐出異常と判断することもできる。 Of the operations of the discharge control system described above, in the first to third determination processes, it is basically determined that the excessive discharge of the medicine is an abnormal discharge. This is because if the amount of medicine sprayed on the field 403 exceeds the specified value, there may be concerns about the surrounding environment and the safety of the crops that have been sprayed with the medicine may be impaired. Since there is no such concern, it is determined that excessive discharge is an abnormal discharge. On the other hand, in the discharge control system according to the present embodiment, it is determined whether or not the pressure measured from the pressure sensors 111-1, 111-2 and the pump sensor 106a and the rotational speed of the pump rotor are below a predetermined value. Thus, it is possible to identify a shortage of medicine discharge and determine that this is a discharge abnormality.
また、各センサー及び第一判断処理部11によって実行される薬剤の吐出制御は、常時実行される冗長なシステムとして構成するのが好適であるが、断続的に所定のタイミングで実行するように構成することもできる。 The medicine discharge control executed by each sensor and the first determination processing unit 11 is preferably configured as a redundant system that is always executed, but is configured to be executed intermittently at a predetermined timing. You can also
また、本実施形態において、あるいは他の実施形態において、フライトコントローラー501は、薬剤の散布異常を判断するための第二判断処理部13を有するものとしてもよい。
なお、ここで判断する薬剤の散布異常とは、薬剤のドリフト(目的とする圃場外への薬剤の飛散)を主とするが、圃場403内であっても局所的に薬剤が散布される状態も散布異常に含む。
In this embodiment, or in other embodiments, the flight controller 501 may include a second determination processing unit 13 for determining an abnormality in the distribution of medicines.
It should be noted that the drug dispersion abnormality judged here is mainly caused by drug drift (spray of the drug outside the target field), but the drug is locally sprayed even within the field 403. Is also included in spraying abnormalities.
薬剤の散布異常を判断する場合には、ドローン100の高度、速度、風速、温度、湿度、位置といったステータスを判断の基礎データとして用いる。これらのステータスについて、薬剤はその粒子径が細かく、特に粒子径の細かいものを使用する場合、高度は高くなればなるほど(例えば、2m以上)、薬剤が目的外の場所へ飛散する可能性が高まり、精度よく地上の作物へ付着させることができなくなる。また、速度は遅くなればなるほど(例えば5km/h以下)、薬剤が局所的に散布され、局所的に薬剤の濃度が高くなる可能性が高まる。また、風速は速くなればなるほど、薬剤が目的外のところへ飛散する可能性が高くなる。また、温度と湿度については、温度が高く、湿度が低い状態になればなるほど、散布した薬剤自体が乾燥しやすくなり、圃場403に散布された薬剤の水分が蒸散する結果、乾いた薬剤の粒子が圃場403外へ飛散する可能性が高くなる。また、ドローン100が圃場403外へ行ってしまった場合には当然、圃場403へ薬剤を散布してしまうことになる。
これらのステータスを取得するため、ドローン100には図9に示されるように、高度測定部131、速度測定部132、風速測定部133、温湿度測定部134、位置測定部135、閾値情報記憶部136、第二制御部137が備えられる。
When determining an abnormality in the distribution of the medicine, statuses such as altitude, speed, wind speed, temperature, humidity, and position of the drone 100 are used as basic data for determination. For these statuses, the drug has a small particle size, especially when using a small particle size, the higher the altitude (for example, 2 m or more), the higher the possibility that the drug will be scattered to an unintended location. It becomes impossible to attach to crops on the ground with high accuracy. In addition, the slower the speed (for example, 5 km / h or less), the higher the possibility that the drug is locally dispersed and the concentration of the drug is locally increased. In addition, the higher the wind speed, the higher the possibility that the medicine will be scattered outside the target. As for temperature and humidity, the higher the temperature and the lower the humidity, the easier the sprayed drug itself dries, and the moisture of the drug sprayed on the field 403 evaporates, resulting in dry drug particles. Is likely to scatter outside the field 403. In addition, when the drone 100 goes out of the field 403, the drug is naturally sprayed on the field 403.
In order to acquire these statuses, as shown in FIG. 9, the drone 100 includes an altitude measuring unit 131, a speed measuring unit 132, a wind speed measuring unit 133, a temperature / humidity measuring unit 134, a position measuring unit 135, and a threshold information storage unit. 136 and a second control unit 137 are provided.
なお、閾値情報記憶部136は閾値情報記憶部22と同様、後述する第二判断処理部13による判断処理に際して、圧力や流量などの基準となる閾値を記憶した記憶部である。
また、第二制御部137は、後述する第二判断処理部13による判断処理の結果、ドローン100が異常状態にあると判断されたときに、ドローン100に所定の安全行動を取らせる。
この第二制御部137における所定の安全行動とは、飛行中であれば退避行動、飛行前の準備状態であれば飛行規制措置である。退避行動及び飛行規制措置については、上述した第一制御部12によるのと同様である。なお、この第二制御部137も、ドローン100に異常が生じた場合に限らず、各センサーによって測定された薬剤の吐出量や流量に基づき、所定の吐出量や流量に制御することができる。
Similar to the threshold information storage unit 22, the threshold information storage unit 136 is a storage unit that stores a threshold value serving as a reference such as a pressure and a flow rate in the determination process by the second determination processing unit 13 described later.
Further, the second control unit 137 causes the drone 100 to take a predetermined safety action when it is determined that the drone 100 is in an abnormal state as a result of the determination process by the second determination processing unit 13 described later.
The predetermined safety action in the second control unit 137 is a retreat action if in flight, and a flight regulation measure if it is in a pre-flight preparation state. The retreat action and the flight regulation measures are the same as those by the first control unit 12 described above. The second control unit 137 is not limited to the case where an abnormality occurs in the drone 100, and can be controlled to a predetermined discharge amount and flow rate based on the discharge amount and flow rate of the medicine measured by each sensor.
この第二判断処理部によって実行される処理に直接、必要とされる機能は図9に示されるとおりであり、これらの機能部により、第二判断処理部13は以下の第一乃至第五の判断処理を実行することができる。なお、各判断処理の流れは図10に示すとおりとなり、これに基づき、各処理について説明する。 The functions required directly for the processing executed by the second determination processing unit are as shown in FIG. 9, and the second determination processing unit 13 makes the following first to fifth functions by these functional units. Judgment processing can be executed. The flow of each determination process is as shown in FIG. 10, and each process will be described based on this.
第二判断処理部13は、第一の判断処理として、高度測定部131によって測定されたドローン100の高度に基づき、異常状態か否かを判断することができる。具体的には、高度測定部131によって測定されたドローン100の高度が所定の高度以上であった場合に、異常状態と判断することができる。 The second determination processing unit 13 can determine whether or not there is an abnormal state based on the altitude of the drone 100 measured by the altitude measuring unit 131 as the first determination processing. Specifically, when the altitude of the drone 100 measured by the altitude measuring unit 131 is equal to or higher than a predetermined altitude, it can be determined as an abnormal state.
即ち、第二判断処理部13は、ステータスとしてドローン100の高度に係る情報を取得し(S201)、閾値情報記憶部136に記憶されている所定値と対比して異常状態か否かを判断する(S202)。その結果、異常状態と判断した場合には、第二制御部137により所定の安全行動をとらせる(S203)。 That is, the second determination processing unit 13 acquires information related to the altitude of the drone 100 as a status (S201), and determines whether or not it is in an abnormal state in comparison with a predetermined value stored in the threshold information storage unit 136. (S202). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
また、第二の判断処理として、速度測定部132によって測定されたドローン100の速度に基づき、異常状態か否かを判断することができる。具体的には、速度測定部132によって測定されたドローン100の速度が所定の速度以下であった場合に、異常状態と判断することができる。 Further, as the second determination process, it is possible to determine whether or not there is an abnormal state based on the speed of the drone 100 measured by the speed measuring unit 132. Specifically, when the speed of the drone 100 measured by the speed measuring unit 132 is equal to or lower than a predetermined speed, it can be determined that the abnormal state.
即ち、第二判断処理部13は、ステータスとしてドローン100の速度に係る情報を取得し(S201)、閾値情報記憶部136に記憶されている所定値と対比して異常状態か否かを判断する(S202)。その結果、異常状態と判断した場合には、第二制御部137により所定の安全行動をとらせる(S203)。 In other words, the second determination processing unit 13 acquires information related to the speed of the drone 100 as the status (S201), and determines whether or not it is in an abnormal state in comparison with a predetermined value stored in the threshold information storage unit 136. (S202). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
また、第三の判断処理として、風速測定部133によって測定された風速に基づき、異常状態か否かを判断することができる。具体的には、風速測定部133によって測定された風速が所定の速度以以上であった場合に、異常状態と判断することができる。 Further, as a third determination process, it is possible to determine whether or not there is an abnormal state based on the wind speed measured by the wind speed measuring unit 133. Specifically, when the wind speed measured by the wind speed measuring unit 133 is equal to or higher than a predetermined speed, it can be determined that the state is abnormal.
即ち、第二判断処理部13は、ステータスとして風速に係る情報を取得し(S201)、閾値情報記憶部136に記憶されている所定値と対比して異常状態か否かを判断する(S202)。その結果、異常状態と判断した場合には、緊急措置をとる(S203)。
なお、この第三の判断処理に関しては、飛行中のみならず、飛行前の準備段階においても実行可能であり、異常状態にあると判断した場合には飛行を規制する措置を講じるとよい。
In other words, the second determination processing unit 13 acquires information relating to the wind speed as a status (S201), and determines whether or not there is an abnormal state in comparison with a predetermined value stored in the threshold information storage unit 136 (S202). . As a result, when it is determined that the state is abnormal, emergency measures are taken (S203).
The third determination process can be executed not only during the flight but also at the pre-flight preparation stage, and if it is determined that the vehicle is in an abnormal state, measures may be taken to restrict the flight.
また、第四の判断処理として、温湿度測定部134によって測定された温湿度に基づき、異常状態か否かを判断することができる。具体的には、温湿度測定部134によって測定された温湿度について、温度が所定値以上、湿度が所定値以下であった場合に、異常状態と判断することができる。 Further, as the fourth determination process, it is possible to determine whether or not there is an abnormal state based on the temperature and humidity measured by the temperature and humidity measurement unit 134. Specifically, regarding the temperature and humidity measured by the temperature and humidity measurement unit 134, it can be determined that the temperature is not lower than a predetermined value and the humidity is not higher than a predetermined value.
即ち、第二判断処理部13は、ステータスとして温湿度に係る情報を取得し(S201)、閾値情報記憶部126に記憶されている所定値と対比して異常状態か否かを判断する(S202)。その結果、異常状態と判断した場合には、第二制御部137により所定の安全行動をとらせる(S203)。
なお、この第四判断処理に関しては、飛行中のみならず、飛行前の準備段階においても実行可能であり、異常状態にあると判断した場合には飛行を規制する措置を講じるとよい。
That is, the second determination processing unit 13 acquires information related to temperature and humidity as a status (S201), and determines whether or not an abnormal state is compared with a predetermined value stored in the threshold information storage unit 126 (S202). ). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
The fourth determination process can be executed not only during the flight but also at the pre-flight preparation stage, and if it is determined that the vehicle is in an abnormal state, measures may be taken to restrict the flight.
なお、第四の判断処理に関して、温湿度測定部134は、ドローン100自体が備えてもよいが、通信の基地局や、圃場403周辺に備えるものとし、これを通信によってドローン100が取得するものとしてもよい。 Regarding the fourth determination process, the temperature / humidity measurement unit 134 may be provided in the drone 100 itself, but is provided in the vicinity of the communication base station and the field 403, which is acquired by the drone 100 by communication. It is good.
また、第五の判断処理として、位置測定部135によって測定されたドローン100の位置に基づき、異常状態か否かを判断することができる。具体的には、位置測定部135によって把握されたドローン100の位置について、圃場403であった場合に異常状態と判断することができる。
なお、位置測定部135は例えば、GPS(Global Positioning System)によって実現することができる。
Further, as the fifth determination process, it is possible to determine whether or not the abnormal state is based on the position of the drone 100 measured by the position measurement unit 135. Specifically, the position of the drone 100 grasped by the position measurement unit 135 can be determined as an abnormal state when the position is the field 403.
The position measuring unit 135 can be realized by, for example, GPS (Global Positioning System).
即ち、第二判断処理部13は、ステータスとしてドローン100の位置に係る情報を取得し(S201)、閾値情報記憶部136に記憶されている圃場403の座標等の位置情報と対比して異常状態か否かを判断する(S202)。その結果、異常状態と判断した場合には、第二制御部137により所定の安全行動をとらせる(S203)。 That is, the second determination processing unit 13 acquires information related to the position of the drone 100 as a status (S201), and is in an abnormal state as compared with position information such as coordinates of the field 403 stored in the threshold information storage unit 136. It is determined whether or not (S202). As a result, when it is determined that the state is abnormal, the second control unit 137 causes a predetermined safety action to be taken (S203).
以上の実施例によれば、薬剤の散布を行なうドローン100等の農業用機械において、各センサーによって薬剤の吐出あるいは散布を精度よく認識することができ、薬剤の散布の安全性を高めることができる。 According to the above embodiment, in an agricultural machine such as the drone 100 that sprays a medicine, the discharge or the dispersion of the medicine can be accurately recognized by each sensor, and the safety of the medicine can be improved. .
なお、各センサー及び第二判断処理部13によって実行される薬剤の散布異常検知は、常時実行される冗長なシステムとして構成するのが好適であるが、断続的に所定のタイミングで実行するように構成することもできる。 It should be noted that the detection of abnormal drug distribution executed by each sensor and the second determination processing unit 13 is preferably configured as a redundant system that is always executed, but is intermittently executed at a predetermined timing. It can also be configured.
また、以上の本実施形態において、異常状態を判別した場合には、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路に設けられた逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7を強制的に閉弁させ、薬剤の吐出を遮断するとよい。 In the above-described embodiment, when an abnormal state is determined, the check valve 121 provided in the path from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3, and 103-4. -1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 may be forcibly closed to prevent the medicine from being discharged.
以上の実施例においては、第一判断処理部11や第二判断処理部13をドローン100のフライトコントローラー501が備えるものとしたが、これに限らず、フライトコントローラー501から所定の通信回線を介してデータを取得したサーバ等が当該判断処理部を備え、当該サーバ等で判断処理が実行されるようになっていてもよい。 In the above embodiment, the first determination processing unit 11 and the second determination processing unit 13 are provided in the flight controller 501 of the drone 100, but not limited thereto, the flight controller 501 via a predetermined communication line. The server or the like that acquired the data may include the determination processing unit, and the determination process may be executed by the server or the like.
薬剤散布を目的とするドローンの実施例を説明してきたが、本願発明は薬剤散布を行なわず、たとえば、カメラによる生育監視を行なう農業用ドローン、および、一般的なドローンにも適用可能である。 Although the example of the drone for the purpose of spraying the drug has been described, the present invention is applicable to, for example, an agricultural drone that monitors the growth by a camera and a general drone without spraying the drug.
(本願発明による技術的に顕著な効果)
本願発明により、薬剤の散布を行なう農業用機械において、薬剤の散布の安全性を高めることができる。特に、各センサーにより、薬剤の吐出異常を自動的且つ即座に検知することができるので、薬剤の吐出異常を未然に防いだり、現実に発生した薬剤の吐出異常に素早く対応することができる。
また、薬剤を散布する各種の農業用機械に広く適用することができる。

 
(Technologically significant effect of the present invention)
According to the present invention, the safety of spraying medicine can be improved in an agricultural machine for spraying medicine. In particular, each sensor can automatically and immediately detect an abnormal discharge of the medicine, so that the abnormal discharge of the medicine can be prevented in advance, and the actual discharge abnormality of the medicine can be quickly dealt with.
Further, it can be widely applied to various agricultural machines for spraying medicine.

Claims (20)

  1.  薬剤を保管する薬剤タンクと、当該薬剤を吐出する吐出口と、を有し、薬剤を散布する農業用機械、に備えられ、
     前記薬剤の吐出を制御するためのシステムであって、
     前記薬剤の吐出圧を測定する第一の圧力センサー、ポンプの近傍に設けられ、下流へ吐き出される前記薬剤の吐出圧を測定する第二の圧力センサー、前記薬剤タンク内に貯留された前記薬剤を下流へ吐き出すポンプ内において前記薬剤を前記薬剤タンクから吸い込むと共に下流へ吐き出す回転子の回転数を測定するポンプ用センサー、又は前記薬剤の流量を測定する流量センサ―、のいずれか複数のセンサー、を有し、
     前記センサーのうちのいずれか複数のセンサーによって前記薬剤の吐出量を検知する、
     薬剤の吐出制御システム。
    Agricultural machinery having a medicine tank for storing medicine and a discharge port for discharging the medicine, and spraying the medicine,
    A system for controlling the discharge of the medicine,
    A first pressure sensor for measuring the discharge pressure of the medicine; a second pressure sensor for measuring a discharge pressure of the medicine to be discharged downstream; and the medicine stored in the medicine tank. A sensor for a pump that measures the number of rotations of a rotor that sucks the drug from the drug tank and discharges the drug downstream in a pump that discharges downstream, or a flow rate sensor that measures the flow rate of the drug. Have
    Detecting the discharge amount of the medicine by any one of the sensors;
    Drug discharge control system.
  2.  前記第一の圧力センサー、前記第二の圧力センサー、前記ポンプ用センサー、又は前記流量センサーのうちのいずれか複数のセンサーにより、前記薬剤の吐出異常を判断する第一の判断処理部、を有する、
    請求項1記載の薬剤の吐出制御システム。
    A first determination processing unit configured to determine abnormal discharge of the medicine by any one of the first pressure sensor, the second pressure sensor, the pump sensor, and the flow rate sensor; ,
    The medicine discharge control system according to claim 1.
  3.  前記第一の判断処理部は、前記第一の圧力センサーと前記第二の圧力センサーによって測定された前記薬剤の吐出圧から算出される圧力損失に基づき、吐出異常を判断する、
     請求項2記載の薬剤の吐出制御システム。
    The first determination processing unit determines a discharge abnormality based on a pressure loss calculated from a discharge pressure of the medicine measured by the first pressure sensor and the second pressure sensor.
    The medicine discharge control system according to claim 2.
  4.  前記第一の判断処理部は、前記第一の圧力センサー又は前記第二の圧力センサーにより測定された前記薬剤の吐出圧と、前記ポンプ用センサーにより測定された前記回転子の回転数に基づき、吐出異常を判断する、
     請求項2記載の薬剤の吐出制御システム。
    The first determination processing unit is based on the discharge pressure of the medicine measured by the first pressure sensor or the second pressure sensor and the rotational speed of the rotor measured by the pump sensor. Judgment of abnormal discharge,
    The medicine discharge control system according to claim 2.
  5.  前記薬剤タンク内に貯留されている前記薬剤の種別を判別する薬剤種別判別センサーと、
     前記薬剤の種別に係る情報の入力を受け付ける入力受付手段と、をさらに有し、
     前記第一の判断処理部はさらに、前記薬剤種別判別センサーにより判別された前記薬剤の種別と、前記入力受付手段により受け付けた前記薬剤の種別に係る情報に基づき、設定異常を判断する、
     請求項2乃至4いずれかの項に記載の薬剤の吐出制御システム。
    A drug type determination sensor for determining the type of the drug stored in the drug tank;
    Input receiving means for receiving input of information relating to the type of the medicine,
    The first determination processing unit further determines a setting abnormality based on the type of the drug determined by the drug type determination sensor and the information related to the type of the drug received by the input receiving unit.
    The medicine discharge control system according to any one of claims 2 to 4.
  6.  前記薬剤の吐出口に取り付けられるノズルの種別を判別するノズル種別判別センサーと、
     前記薬剤の種別に係る情報の入力を受け付ける入力受付手段と、をさらに有し、
     前記第一の判断処理部はさらに、前記ノズル種別判別センサーにより判別された前記ノズルの種別に応じて予め決められている前記薬剤の種別と、前記入力受付手段により受け付けた前記薬剤の種別に係る情報に基づき、設定異常を判断する、
     請求項2乃至5いずれかの項に記載の薬剤の吐出制御システム。
    A nozzle type determination sensor for determining the type of nozzle attached to the discharge port of the medicine;
    Input receiving means for receiving input of information relating to the type of the medicine,
    The first determination processing unit further relates to the type of the medicine determined in advance according to the type of the nozzle determined by the nozzle type determination sensor and the type of the medicine received by the input receiving unit. Based on the information, determine the setting abnormality,
    The medicine discharge control system according to any one of claims 2 to 5.
  7.  前記薬剤タンク内に貯留されている前記薬剤の種別を判別する薬剤種別判別センサーと、
     前記薬剤の吐出口に取り付けられるノズルの種別を判別するノズル種別判別センサーと、をさらに有し、
     前記第一の判断処理部はさらに、前記薬剤種別判別センサーにより判別された前記薬剤の種別と、前記ノズル種別判別センサーにより判別された前記ノズルの種別に応じて予め決められている前記薬剤の種別に基づき、設定異常を判断する、
     請求項2乃至5いずれかの項に記載の薬剤の吐出制御システム。
    A drug type determination sensor for determining the type of the drug stored in the drug tank;
    A nozzle type determination sensor for determining the type of nozzle attached to the discharge port of the medicine,
    The first determination processing unit further includes a type of the drug determined in advance according to the type of the drug determined by the drug type determination sensor and the type of the nozzle determined by the nozzle type determination sensor. To determine the setting abnormality based on
    The medicine discharge control system according to any one of claims 2 to 5.
  8.  前記第一の判断処理部により、吐出異常又は設定異常と判断されたときに、前記農業用機械に所定の安全行動を取らせる第一の制御手段、をさらに有する、
     請求項2乃至7いずれかの項に記載の薬剤の吐出制御システム。
    The first determination processing unit further includes a first control unit that causes the agricultural machine to take a predetermined safety action when it is determined as an ejection abnormality or a setting abnormality.
    The medicine discharge control system according to any one of claims 2 to 7.
  9.  前記第一の判断処理部により、吐出異常又は設定異常と判断されたときに、前記薬剤の吐出を遮断する第一の遮断機構、をさらに有する、
     請求項2乃至8いずれかの項に記載の薬剤の吐出制御システム。
    A first blocking mechanism that blocks the discharge of the medicine when the first determination processing unit determines that the discharge is abnormal or the setting is abnormal.
    The medicine discharge control system according to any one of claims 2 to 8.
  10.  前記薬剤の散布異常を判断する第二の判断処理部、をさらに有する、
     請求項1乃至9いずれかの項に記載の薬剤の吐出制御システム。
    A second determination processing unit for determining a spraying abnormality of the medicine;
    The medicine discharge control system according to any one of claims 1 to 9.
  11.  前記農業用機械の高度を測定する高度測定手段、をさらに有し、
     前記第二の判断処理部は、前記農業用機械の高度が所定の高度以上になったときに異常状態と判断する、
     請求項10記載の薬剤の吐出制御システム。
    An altitude measuring means for measuring the altitude of the agricultural machine,
    The second determination processing unit determines an abnormal state when an altitude of the agricultural machine is equal to or higher than a predetermined altitude.
    The medicine discharge control system according to claim 10.
  12.  前記農業用機械の速度を測定する速度測定手段、をさらに有し、
     前記第二の判断処理部は、前記農業用機械の速度が所定の速度以下になったときに異常状態と判断する、
     請求項10記載の薬剤の吐出制御システム。
    A speed measuring means for measuring the speed of the agricultural machine;
    The second determination processing unit determines an abnormal state when the speed of the agricultural machine is equal to or lower than a predetermined speed.
    The medicine discharge control system according to claim 10.
  13.  前記農業用機械の周囲の風速を測定する風速測定手段、をさらに有し、
     前記第二の判断処理部は、前記農業用機械の周囲の風速が所定の風速以上になったときに異常状態と判断する、
     請求項10記載の薬剤の吐出制御システム。
    Wind speed measuring means for measuring the wind speed around the agricultural machine,
    The second determination processing unit determines an abnormal state when the wind speed around the agricultural machine becomes equal to or higher than a predetermined wind speed.
    The medicine discharge control system according to claim 10.
  14.  前記農業用機械の周囲の温度及び湿度を測定する温湿度測定手段、をさらに有し、
     前記第二の判断処理部は、前記農業用機械の周囲の温度が所定の温度以上且つ湿度が所定の湿度以下のときに異常状態と判断する、
     請求項10記載の薬剤の吐出制御システム。
    Temperature and humidity measuring means for measuring the ambient temperature and humidity of the agricultural machine;
    The second determination processing unit determines an abnormal state when the ambient temperature of the agricultural machine is equal to or higher than a predetermined temperature and the humidity is equal to or lower than a predetermined humidity.
    The medicine discharge control system according to claim 10.
  15.  前記第二の判断処理部により、異常状態と判断されたときに、前記農業用機械に所定の安全行動を取らせる第二の制御手段、をさらに有する、
     請求項10乃至14いずれかの項に記載の薬剤の吐出制御システム。
    A second control means for causing the agricultural machine to take a predetermined safety action when it is determined by the second determination processing unit to be in an abnormal state;
    The medicine discharge control system according to any one of claims 10 to 14.
  16.  前記第二の判断処理部により、異常状態と判断されたときに、前記薬剤の吐出を遮断する遮断機構、をさらに有する、
     請求項10乃至15いずれかの項に記載の薬剤の吐出制御システム。
    A shut-off mechanism that shuts off the discharge of the medicine when the second judgment processing unit judges that it is an abnormal state;
    The medicine discharge control system according to any one of claims 10 to 15.
  17.  前記センサーのうちのいずれか複数のセンサーによる前記薬剤の吐出量の検知は、前記農業用機械の使用中、常時実行される、
     請求項1乃至16いずれかの項に記載の薬剤の吐出制御システム。
    Detection of the discharge amount of the medicine by any one of the sensors is always performed during use of the agricultural machine.
    The medicine discharge control system according to any one of claims 1 to 16.
  18.  前記農業用機械はドローンである、
     請求項1乃至17いずれかの項に記載の薬剤の吐出制御システム。
    The agricultural machine is a drone,
    The medicine discharge control system according to any one of claims 1 to 17.
  19.  薬剤を保管する薬剤タンクと、当該薬剤を吐出する吐出口とを有し、薬剤を散布する農業用機械、に備えられ、当該薬剤の吐出を制御するためのシステムであって、
     前記薬剤の吐出圧を測定する第一の圧力センサー、ポンプの近傍に設けられ、下流へ吐き出される前記薬剤の吐出圧を測定する第二の圧力センサー、前記薬剤タンク内に貯留された前記薬剤を下流へ吐き出すポンプ内において前記薬剤を前記薬剤タンクから吸い込むと共に下流へ吐き出す回転子の回転数を測定するポンプ用センサー、又は前記薬剤の流量を測定する流量センサ―、のいずれか複数のセンサー、を有するシステムが、
     前記センサーのうちのいずれか複数のセンサーによって前記薬剤の吐出量を検知する処理、を実行する、
     薬剤の吐出制御方法。
    A system for controlling the discharge of the drug, which is provided in an agricultural machine that has a drug tank for storing the drug and a discharge port for discharging the drug and sprays the drug,
    A first pressure sensor for measuring the discharge pressure of the medicine; a second pressure sensor for measuring a discharge pressure of the medicine to be discharged downstream; and the medicine stored in the medicine tank. A sensor for a pump that measures the number of rotations of a rotor that sucks the drug from the drug tank and discharges the drug downstream in a pump that discharges downstream, or a flow rate sensor that measures the flow rate of the drug. The system that has
    A process of detecting the amount of the medicine discharged by any one of the sensors.
    A method for controlling the discharge of a medicine.
  20.  薬剤を保管する薬剤タンクと、当該薬剤を吐出する吐出口とを有し、薬剤を散布する農業用機械、に備えられ、当該薬剤の吐出を制御するためのシステムであって、
     前記薬剤の吐出圧を測定する第一の圧力センサー、ポンプの近傍に設けられ、下流へ吐き出される前記薬剤の吐出圧を測定する第二の圧力センサー、前記薬剤タンク内に貯留された前記薬剤を下流へ吐き出すポンプ内において前記薬剤を前記薬剤タンクから吸い込むと共に下流へ吐き出す回転子の回転数を測定するポンプ用センサー、又は前記薬剤の流量を測定する流量センサ―、のいずれか複数のセンサー、を有するシステムが実行するコンピュータプログラムであって、
     前記システムに対し、
     前記センサーのうちのいずれか複数のセンサーによって前記薬剤の吐出量を検知する処理、を実行させる、
     コンピュータプログラム。

     
    A system for controlling the discharge of the drug, which is provided in an agricultural machine that has a drug tank for storing the drug and a discharge port for discharging the drug and sprays the drug,
    A first pressure sensor for measuring the discharge pressure of the medicine; a second pressure sensor for measuring a discharge pressure of the medicine to be discharged downstream; and the medicine stored in the medicine tank. A sensor for a pump that measures the number of rotations of a rotor that sucks the drug from the drug tank and discharges the drug downstream in a pump that discharges downstream, or a flow rate sensor that measures the flow rate of the drug. A computer program executed by a system having:
    For the system
    A process of detecting the discharge amount of the medicine by any one of the sensors.
    Computer program.

PCT/JP2019/017340 2018-04-25 2019-04-24 System, method, and computer program for controlling ejection of chemicals WO2019208606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515506A JP6749626B2 (en) 2018-04-25 2019-04-24 Drug ejection control system, method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084144 2018-04-25
JP2018084144 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208606A1 true WO2019208606A1 (en) 2019-10-31

Family

ID=68295439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017340 WO2019208606A1 (en) 2018-04-25 2019-04-24 System, method, and computer program for controlling ejection of chemicals

Country Status (2)

Country Link
JP (1) JP6749626B2 (en)
WO (1) WO2019208606A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144987A1 (en) * 2020-01-17 2021-07-22 株式会社ナイルワークス Flight control method for chemical spraying by drone, and information processing terminal
JPWO2021171631A1 (en) * 2020-02-28 2021-09-02
WO2021192233A1 (en) * 2020-03-27 2021-09-30 株式会社ナイルワークス Liquid-dispersing drone and drone control method
WO2021192234A1 (en) * 2020-03-27 2021-09-30 株式会社ナイルワークス Drone for spraying liquid and method for controlling drone
WO2022061771A1 (en) * 2020-09-25 2022-03-31 深圳市大疆创新科技有限公司 Agricultural plant protection unmanned aerial vehicle, sowing control method and storage medium
WO2022266879A1 (en) * 2021-06-23 2022-12-29 深圳市大疆创新科技有限公司 Fault detection method and apparatus for plant protection system, and movable platform and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159981A (en) * 1981-03-30 1982-10-02 Hitachi Constr Mach Co Ltd Abnormal pressure indicator in suction side circuit of hydraulic pump
JP3756063B2 (en) * 2001-01-16 2006-03-15 株式会社丸山製作所 Drug spraying control device
JP2012060899A (en) * 2010-09-14 2012-03-29 Iseki & Co Ltd Self-propelled pest control machine
JP2014523499A (en) * 2011-05-05 2014-09-11 エクシジェント テクノロジーズ, エルエルシー System and method for differential pressure control of a reciprocating electrokinetic pump
KR20170016774A (en) * 2015-08-04 2017-02-14 김재형 System for spraying fluids with a driverless aircraft
KR101845324B1 (en) * 2017-08-31 2018-04-04 (주)에이엠시스템 Hinged type swing tank drones and their operating methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203825A (en) * 1994-01-25 1995-08-08 Earth Chem Corp Ltd Insect-controlling method and device therefor
JP3830632B2 (en) * 1997-09-26 2006-10-04 ヤマハ発動機株式会社 Detachable structure of tank in unmanned helicopter
JP2001157860A (en) * 1999-12-03 2001-06-12 Kioritz Corp Self-traveling sprayer
JP2002153193A (en) * 2000-11-21 2002-05-28 Yamato Denki Kk Spreader
JP4146224B2 (en) * 2002-02-22 2008-09-10 大日本除蟲菊株式会社 Chemical volatilization device
JP2005201219A (en) * 2004-01-19 2005-07-28 Denso Corp Liquid characteristic distinction device
JP2007030544A (en) * 2005-07-22 2007-02-08 Yanmar Agricult Equip Co Ltd Aerial spray device
JP4328982B2 (en) * 2007-02-28 2009-09-09 ブラザー工業株式会社 Inkjet recording device
EP2158560B1 (en) * 2007-06-09 2010-09-22 Novo Nordisk A/S Contact free reading of reservoir identification codes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159981A (en) * 1981-03-30 1982-10-02 Hitachi Constr Mach Co Ltd Abnormal pressure indicator in suction side circuit of hydraulic pump
JP3756063B2 (en) * 2001-01-16 2006-03-15 株式会社丸山製作所 Drug spraying control device
JP2012060899A (en) * 2010-09-14 2012-03-29 Iseki & Co Ltd Self-propelled pest control machine
JP2014523499A (en) * 2011-05-05 2014-09-11 エクシジェント テクノロジーズ, エルエルシー System and method for differential pressure control of a reciprocating electrokinetic pump
KR20170016774A (en) * 2015-08-04 2017-02-14 김재형 System for spraying fluids with a driverless aircraft
KR101845324B1 (en) * 2017-08-31 2018-04-04 (주)에이엠시스템 Hinged type swing tank drones and their operating methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144987A1 (en) * 2020-01-17 2021-07-22 株式会社ナイルワークス Flight control method for chemical spraying by drone, and information processing terminal
JPWO2021144987A1 (en) * 2020-01-17 2021-07-22
JP7227658B2 (en) 2020-01-17 2023-02-22 株式会社ナイルワークス Drone chemical spraying flight control method and information processing terminal
JPWO2021171631A1 (en) * 2020-02-28 2021-09-02
JP7417319B2 (en) 2020-02-28 2024-01-18 株式会社ナイルワークス Drone for chemical spraying
WO2021192233A1 (en) * 2020-03-27 2021-09-30 株式会社ナイルワークス Liquid-dispersing drone and drone control method
WO2021192234A1 (en) * 2020-03-27 2021-09-30 株式会社ナイルワークス Drone for spraying liquid and method for controlling drone
JP7460198B2 (en) 2020-03-27 2024-04-02 株式会社ナイルワークス Drone for spraying liquid and drone control method
WO2022061771A1 (en) * 2020-09-25 2022-03-31 深圳市大疆创新科技有限公司 Agricultural plant protection unmanned aerial vehicle, sowing control method and storage medium
WO2022266879A1 (en) * 2021-06-23 2022-12-29 深圳市大疆创新科技有限公司 Fault detection method and apparatus for plant protection system, and movable platform and storage medium

Also Published As

Publication number Publication date
JPWO2019208606A1 (en) 2020-07-27
JP6749626B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
WO2019208606A1 (en) System, method, and computer program for controlling ejection of chemicals
JP6752481B2 (en) Drones, how to control them, and programs
JP6777355B2 (en) Drone system, drone system control method, and drone system control program
JP6913978B2 (en) Fault detection systems, methods, and computer programs
JP6803592B2 (en) Drone system, drone, pilot, drone system control method, and drone system control program
CN111566010B (en) Unmanned aerial vehicle, unmanned aerial vehicle control method, and computer-readable recording medium
JPWO2020022266A1 (en) Drones, drone control methods, and drone control programs
WO2019168045A1 (en) Drone, control method thereof, and program
JP6889502B2 (en) Drones, drone control methods, and drone control programs
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
WO2020004366A1 (en) Drone system, method for controlling drone system, and control program for drone system
WO2019168079A1 (en) Agricultural drone having improved safety
JP6746126B2 (en) System and method for preventing drug leakage
JP6901187B2 (en) Drug spraying system, control method of drug spraying system, and drug spraying system control program
JP6746157B2 (en) Drug replenishment control system, sprayer, drone, drug replenishment system control method, and drug replenishment system control program
JP6996792B2 (en) Drug discharge control system, its control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792399

Country of ref document: EP

Kind code of ref document: A1