WO2020090242A1 - Squeeze container - Google Patents

Squeeze container Download PDF

Info

Publication number
WO2020090242A1
WO2020090242A1 PCT/JP2019/035704 JP2019035704W WO2020090242A1 WO 2020090242 A1 WO2020090242 A1 WO 2020090242A1 JP 2019035704 W JP2019035704 W JP 2019035704W WO 2020090242 A1 WO2020090242 A1 WO 2020090242A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxygen barrier
barrier layer
mass
squeeze container
Prior art date
Application number
PCT/JP2019/035704
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 安齋
高 飯田
小松 威久男
大槻 雅彦
美子 村屋
Original Assignee
メビウスパッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メビウスパッケージング株式会社 filed Critical メビウスパッケージング株式会社
Publication of WO2020090242A1 publication Critical patent/WO2020090242A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/32Containers adapted to be temporarily deformed by external pressure to expel contents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a squeeze container.
  • plastic containers are widely used for various purposes because they are easy to mold and can be manufactured at low cost.
  • a plastic container is used as a squeeze container in which ketchup, mayonnaise, and the like are contained as contents, and the contents are pushed out by pushing the body. It is required for these packaging containers that the deterioration of the contents and the deterioration of the flavor due to the oxygen remaining in the containers and the oxygen permeating the walls of the containers are suppressed.
  • oxygen permeation does not occur through the wall of the container, whereas in plastic containers oxygen permeation may occur through the wall of the container.
  • plastic containers have a multi-layer structure.
  • an oxygen barrier layer containing an oxygen barrier resin such as an ethylene-vinyl alcohol copolymer (hereinafter also referred to as EVOH) is provided in addition to an outer layer and an inner layer containing an olefin resin.
  • EVOH ethylene-vinyl alcohol copolymer
  • These layers are generally adhered to each other via an adhesive layer containing an adhesive resin.
  • Patent Document 2 when the multilayer structure is formed, the inner and outer layers mainly composed of polyolefin and the intermediate layer mainly composed of EVOH are laminated without providing the adhesive layer between the respective layers.
  • a multi-layer packaging material that enhances adhesion is disclosed.
  • the oxygen barrier layer containing EVOH as the main component When oxygen permeation is suppressed by the oxygen barrier layer containing EVOH as the main component, if moisture-rich contents are stored in the container, the oxygen barrier property of the oxygen barrier layer will decrease due to the humidity. To prevent this, the oxygen barrier layer is usually placed on the lower humidity side, i.e. on the outside of the container as much as possible. Further, in order to simplify the layer structure of the container, the oxygen barrier layer is usually provided as a single layer. On the other hand, when a container is manufactured by direct blow molding, a large amount of scrap such as burrs is discharged, so from the viewpoint of cost reduction and environmental protection, this is crushed and mixed with virgin material to form a part of the container. Recycling is usually performed as (regrind layer). Further, as described above, since the oxygen barrier layer is arranged as much as possible outside the container, the regrind layer is usually arranged inside the oxygen barrier layer.
  • Patent Document 3 describes that an odor barrier layer is provided in order to prevent migration of an odor component derived from an oxygen-absorbing layer that can be contained in a plastic container to the inside and the outside.
  • the present inventors have tried to dispose oxygen barrier layers made of a single EVOH on both sides of the regrind layer.
  • oxygen barrier layers made of EVOH alone are arranged, the rigidity becomes high when used as a squeeze container, and the squeeze property deteriorates.
  • An object of the present invention is to provide a squeeze container that can suppress the transfer of odor derived from the regrind layer to the contents and has a high squeeze property.
  • the squeeze container according to the present invention is a squeeze container including an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside,
  • the oxygen barrier layer A and the oxygen barrier layer B each include an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer.
  • a squeeze container that can suppress the transfer of odor derived from the regrind layer to the contents and has a high squeeze property.
  • the squeeze container according to the present invention includes an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside.
  • the oxygen barrier layer A and the oxygen barrier layer B each include an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer. That is, the oxygen barrier layer A contains an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer, and the oxygen barrier layer B contains an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer. And a solubilizing agent.
  • the oxygen barrier layer A is provided outside the regrind layer in order to suppress oxygen permeation, but also the oxygen barrier layer B is separately provided inside the regrind layer. Therefore, transfer of odorous components contained in the regrind layer to the contents can be suppressed.
  • the oxygen barrier layer composed of EVOH alone has high rigidity
  • the oxygen barrier layer A and the oxygen barrier layer B containing polyethylene and a compatibilizer are used in addition to EVOH. , Low rigidity and high squeeze property (extrudability).
  • the oxygen barrier layer A and the oxygen barrier layer B have adhesiveness, it is not necessary to separately arrange an adhesive layer, and the manufacturing process can be simplified.
  • FIG. 1 An example of the squeeze container according to the present invention is shown in FIG.
  • the squeeze container shown in FIG. 1 includes a mouth portion 1 that can be opened and closed by a cap, a body portion 2 that is a central portion of the squeeze container, and a bottom portion 3. By pushing the body 2, the contents are pushed out from the mouth 1.
  • the body portion 2 may have any shape in cross section, and may not have the bottom portion 3.
  • the end portion of the body portion 2 may be fused or It may be in the form of a tube that is closed by being folded.
  • the layer structure of the squeeze container according to the present invention is not particularly limited as long as the oxygen barrier layer A, the regrind layer, and the oxygen barrier layer B are included in this order from the outside.
  • the squeeze container may include an outer layer and an inner layer in addition to the oxygen barrier layer A, the regrind layer, and the oxygen barrier layer B, and may further include other layers.
  • the other layer include a virgin layer made of a virgin material described later.
  • the squeeze container does not include an oxygen absorption layer having an oxygen absorption property.
  • the oxygen barrier layer A and the oxygen barrier layer B have adhesiveness, it is preferable that the squeeze container does not include a general adhesive layer other than the oxygen barrier layer A and the oxygen barrier layer B.
  • the general adhesive layer refers to a layer made of an adhesive resin that does not include a material having an oxygen barrier property, and is a layer made of a modified polyolefin resin, for example.
  • the squeeze container has at least two oxygen barrier layers, but may have three or more layers.
  • the squeeze container may have, for example, a five-layer structure of outer layer / oxygen barrier layer A / regrind layer / oxygen barrier layer B / inner layer, and outer layer / oxygen barrier layer A / virgin layer / regrind layer / It may have a 6-layer structure of oxygen barrier layer B / inner layer, and may have a 7-layer structure of outer layer / oxygen barrier layer A / virgin layer / regrind layer / virgin layer / oxygen barrier layer B / inner layer.
  • FIG. 2 shows a sectional view of a squeeze container having a seven-layer structure of outer layer 4 / oxygen barrier layer A5 / virgin layer 6 / regrind layer 7 / virgin layer 6 / oxygen barrier layer B8 / inner layer 9.
  • the thickness of the thinnest part of the body of the squeeze container is preferably 180 to 1500 ⁇ m, more preferably 200 to 1200 ⁇ m, and even more preferably 300 to 1100 ⁇ m.
  • the thickness is 180 ⁇ m or more, the container can be stably stored without being deformed or damaged during squeeze. If the thickness exceeds 1500 ⁇ m, squeeze becomes difficult.
  • the body part of the squeeze container is a content accommodating part excluding the mouth part, and indicates a part in a range above 5 mm above the ground contact surface of the bottom part.
  • TOC Total Organic Carbon contained in the ultrapure water , Total organic carbon
  • the TOC amount is a value that serves as an index indicating the amount of odorous components such as aldehydes and ketones contained in the regrind layer that migrates to the content. The smaller the TOC amount, the less the odorous components migrate to the content. Indicates that.
  • the TOC amount When the TOC amount is less than 0.7 mass ppm, the transfer of odorous components to the contents is sufficiently suppressed.
  • the TOC amount can be measured using a total organic carbon meter (trade name: TOC-V CPH, manufactured by Shimadzu Corporation).
  • the compressive strength in the longitudinal direction of the squeeze container is preferably 70 N or less, more preferably 40 to 70 N.
  • the compressive strength is a value measured by the following method. After filling the squeeze container with the same amount of water as the content filling amount and performing conditioning at 23 ° C. for 24 hours, compression is performed in the longitudinal direction of the squeeze container using a compression tester, and the compressive strength is measured. The compression is performed under the conditions of 20 mm / min and no V notch.
  • a Tensilon universal tester (trade name: RTG-1310, manufactured by A & D Co., Ltd.) can be used.
  • the oxygen barrier layer A and the oxygen barrier layer B each include EVOH, polyethylene, and a compatibilizer. Since the oxygen barrier layer A and the oxygen barrier layer B contain EVOH having a gas barrier property, they have a function of blocking permeation of oxygen and odorous components contained in the regrind layer. Further, EVOH and polyethylene are compatibilized by a compatibilizing agent and are homogeneously distributed, so that the oxygen barrier layer A and the oxygen barrier layer B are derived from polyethylene and are formed into an outer layer, an inner layer and a regrind layer. It shows excellent adhesion. The composition and thickness (mass ratio) of the oxygen barrier layer A and the oxygen barrier layer B may be the same or different.
  • EVOH a copolymer saponification product obtained by saponifying an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol% so that the saponification degree becomes 96 mol% or more, particularly 99 mol% or more. Compounds are preferred. From the viewpoint of gas barrier properties, the ethylene content is preferably 20 to 38 mol%.
  • the EVOH (saponified ethylene-vinyl acetate copolymer) is 0.01 dl / g or more, particularly 0.05 dl / g or more when measured at 30 ° C. in a mixed solvent having a phenol / water mass ratio of 85/15. Can have an intrinsic viscosity of.
  • LDPE low density polyethylene
  • LDPE is polyethylene having a density within the range of 0.910 g / cm 3 or more and less than 0.930 g / cm 3 , and includes linear low density polyethylene.
  • the melt flow rate (MFR) of LDPE at 190 ° C. under a load of 2.16 kg is 0.1 g / 10 min or more.
  • the MFR is preferably 30 g / 10 min or less from the viewpoint of moldability.
  • the MFR is more preferably 0.3 to 10 g / 10 min.
  • a compatibilizer is used to compatibilize EVOH and polyethylene, reduce the size of the phase separation structure of both, and enhance the cohesive force between EVOH and polyethylene.
  • the compatibilizer include carboxylic acids such as maleic acid, itaconic acid and fumaric acid or anhydrides thereof, maleic acid-polyethylene copolymers, maleic anhydride-polyethylene copolymers, amides and esters for graft modification.
  • Graft-modified olefin resin ethylene- (meth) acrylic acid copolymer, ethylene-vinyl acetate copolymer, saponified ethylene-vinyl acetate copolymer having a saponification degree of 20 to 100%, ethylene content of 85 %, Ethylene-vinyl alcohol copolymers, hydrotalcite compounds, ionomers (ion-crosslinking olefin copolymers) and the like. These may be used alone or in combination of two or more.
  • the compatibilizer a resin having no acid or acid anhydride that chemically reacts with EVOH is preferable, and an ionomer is particularly preferable.
  • Each of the oxygen barrier layer A and the oxygen barrier layer B preferably contains EVOH and polyethylene in a mass ratio of 95: 5 to 50:50, and more preferably in a mass ratio of 90:10 to 55:45. Preferably, it is more preferably contained in a mass ratio of 85:15 to 60:40, and particularly preferably contained in a mass ratio of 80:20 to 65:35. Further, each of the oxygen barrier layer A and the oxygen barrier layer B preferably contains 1 to 49 parts by mass of a compatibilizer per 100 parts by mass of the total amount of EVOH and polyethylene, and preferably 2 to 40 parts by mass of the phase compatibilizer.
  • the oxygen barrier layer A and the oxygen barrier layer B each contain EVOH, polyethylene, and a compatibilizing agent within the range of the mass ratio, whereby the rigidity of the squeeze container is lowered while maintaining the gas barrier property. can do.
  • the EVOH, polyethylene, and the compatibilizer can be mixed by, for example, melt-kneading in a kneading section provided in an extruder or an injection machine.
  • the ratio of the total mass of the oxygen barrier layer A and the oxygen barrier layer B to the mass of the squeeze container is preferably 1 to 30% by mass, more preferably 3 to 20% by mass. More preferably, it is from about 10% by mass.
  • the ratio is 1% by mass or more, the permeation of oxygen and odorous components contained in the regrind layer can be sufficiently blocked.
  • the squeeze property can be improved by setting the ratio to 30% by mass or less.
  • the ratio of the mass of the oxygen barrier layer B to the mass of the squeeze container is preferably 0.5 to 15 mass%, more preferably 1.5 to 10 mass%, and 2.5 to 5 mass%. It is more preferable that the content is% by mass. When the proportion is 0.5% by mass or more, the permeation of the odorous component contained in the regrind layer can be sufficiently blocked. Further, the squeeze property can be improved by setting the above ratio to 15% by mass or less.
  • the preferable range of the ratio of the mass of the oxygen barrier layer A to the mass of the squeeze container is the same as that of the oxygen barrier layer B.
  • the regrind layer is also called a repro layer and is a layer containing scrap resin obtained by crushing a portion other than the container such as resin or burr discharged at the start of molding. That is, the scrap resin is a mixture of materials constituting each layer contained in the container, and the regrind layer is a layer containing the mixture.
  • the scrap resin has a thermal history, it contains odorous components such as carbonyl group-containing compounds such as aldehydes and ketones, which are decomposition products of the resin.
  • the transfer of the odorous component to the contents is blocked by the oxygen barrier layer B.
  • the regrind layer can use the virgin material in addition to the scrap resin.
  • LDPE or the like can be used as the virgin material.
  • the proportion of the scrap resin in the regrind layer is preferably 1 to 100% by mass. That is, the regrind layer may be made of the scrap resin.
  • the ratio of the mass of the regrind layer to the mass of the squeeze container is not particularly limited, but can be, for example, 30 to 80% by mass, preferably 35 to 70% by mass, and 40 to 60% by mass. Is more preferable.
  • the layer included in the squeeze container can be confirmed by, for example, observing a section prepared by a microtome with an optical microscope, material analysis using a Fourier transform infrared spectrophotometer, or a combination thereof. Is. Specifically, in an optical microscope observation, it was observed in a sea-island shape in which materials with different refractive indexes were dispersed, and in a material analysis using a Fourier transform infrared spectrophotometer, in addition to polyethylene, OH groups characteristic of EVOH were observed. The spectrum based on the stretching vibration of is recognized.
  • the outer layer and the inner layer may include an olefin resin.
  • polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear ultra low density polyethylene (LVLDPE), Polypropylene, ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, Examples thereof include ion-crosslinked olefin copolymers (ionomers). These may be used alone or in combination of two or more. Among these, polyethylene is preferable, and low density polyethylene (LDPE) is more preferable, from the viewpoint of higher adhesiveness to the oxygen barrier layer A and the oxygen barrier layer B.
  • LDPE low density polyethylene
  • LDPE low density polyethylene
  • LDPE low density polyethylene
  • the material forming the outer layer and the material forming the inner layer may be the same or different. Further, the outer layer and the inner layer may contain a lubricant, a modifier, a pigment, an ultraviolet absorber, etc., if necessary.
  • the ratio of the mass of the outer layer to the mass of the squeeze container is not particularly limited, but can be, for example, 5 to 30% by mass, and preferably 10 to 20% by mass.
  • the ratio of the mass of the inner layer to the mass of the squeeze container is not particularly limited, but can be, for example, 10 to 40% by mass, and preferably 15 to 30% by mass.
  • the squeeze container according to the present invention may optionally include a virgin layer.
  • the virgin material contained in the virgin layer include the virgin material contained in the regrind layer.
  • the ratio of the mass of the virgin layer to the mass of the squeeze container is not particularly limited, but can be, for example, 0.1 to 5 mass%.
  • the method for producing the squeeze container according to the present invention is not particularly limited, and for example, a step of producing a tubular parison including an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside, , Sandwiching the parison with a mold, pinching off and fusing the parison, and blowing a gas into the parison to form the parison.
  • the material of each layer constituting the tube container is coextruded using a multi-layer multiple die to manufacture a tubular parison.
  • the melt-extruded parison is supplied into a mold, and the parison is sandwiched between the molds from both sides to pinch off and fuse the parison.
  • a compressed gas such as air is blown into the parison to expand the parison and shape it into the shape of a container. After that, it is cooled, the mold is opened, and the molded product is taken out.
  • the squeeze container according to the present invention can be used as a container for housing and storing wasabi, ginger, mustard, ketchup, mayonnaise, jam, viscous food such as chocolate, toothpaste, cosmetics and the like.
  • the squeeze container according to the present invention transfer of odor of the container itself to the contents can be suppressed. Further, since the squeeze container according to the present invention has a high squeeze property, the contents can be easily pushed out.
  • Example 1 The flavor evaluation, elution property evaluation, and rigidity evaluation of the bottles obtained in Example 1 and Comparative Example 1 were performed by the following methods.
  • Example 1 and Comparative Example 1 were filled with 400 g of ultrapure water at 85 ° C., and the mouth was sealed with a sealing material. After performing sterilization by inversion for 10 minutes, it was cooled to room temperature in running water and stored for one week.
  • the flavor of ultrapure water (hereinafter also referred to as a test solution) in the bottle after storage was evaluated by the following three-point identification / preference method.
  • Example 1 and Comparative Example 1 were filled with 400 g of water and conditioned at 23 ° C. for 24 hours.
  • a compression tester Tesilon universal tester, trade name: RTG-1310, manufactured by A & D Co., Ltd.
  • compression is performed in the vertical direction of the bottle (direction from the mouth of the bottle to the bottom) ( 20 mm / min, no V notch) and compressive strength were measured. Twenty-four measurements were performed, and the averaged results are shown in Table 1.
  • LDPE (trade name: LB420M, manufactured by Nippon Polyethylene Corporation) was prepared as a material for the inner layer, the outer layer, and the virgin layer.
  • materials for the oxygen barrier layers A and B 70 parts by mass of EVOH (trade name: DC3203RB, manufactured by Nippon Gosei Co., Ltd.), 20 parts by mass of LDPE (trade name: LB420M, manufactured by Nippon Polyethylene Co., Ltd.), and compatibilization
  • a mixture containing 10 parts by mass of an ionomer resin (trade name: Himilan 1601, manufactured by Mitsui DuPont Polychemical Co., Ltd.) as an agent was prepared.
  • LDPE low density polyethylene
  • LB420M a mixture of 60 parts by mass of LDPE (trade name: LB420M, manufactured by Japan Polyethylene Corporation) and 40 parts by mass of a recycled mixture of layer materials (scrap resin) was prepared.
  • the materials of the inner layer, the outer layer and the virgin layer, the oxygen barrier layers A and B, and the regrind layer were respectively charged into three extruders, and the outer layer / oxygen barrier layer A / virgin layer / regrind layer / oxygen barrier layer B / A six-layer inner parison was extruded.
  • the multilayer parison was molded by direct blow molding to obtain a bottle as a squeeze container having a capacity of 420 ml and a mass of 18 g.
  • the thickness of the thinnest part of the body of the bottle was 300 ⁇ m.
  • the mass fraction of each layer is as follows: outer layer (15.0 mass%) / oxygen barrier layer A (3.3 mass%) / virgin layer (1.0 mass%) / regrind layer (52.4 mass%). / Oxygen barrier layer B (3.3 mass%) / inner layer (25.0 mass%).
  • LDPE (trade name: LB420M, manufactured by Nippon Polyethylene Corporation) was prepared as a material for the inner layer and the outer layer.
  • EVOH (trade name: DC3203RB, manufactured by Nippon Gosei Co., Ltd.) was prepared as a material for the oxygen barrier layer.
  • a modified polyolefin resin (trade name: Modic L522, manufactured by Mitsubishi Chemical Corporation) was prepared as a material for the adhesive layer.
  • a mixture of 60 parts by mass of LDPE (trade name: LB420M, manufactured by Japan Polyethylene Corporation) and 40 parts by mass of a recycled mixture of layer materials (scrap resin) was prepared.
  • the materials for the inner and outer layers, the oxygen barrier layer, the adhesive layer, and the regrind layer are respectively charged into four extruders, and are composed of 6 layers of outer layer / adhesive layer / oxygen barrier layer / adhesive layer / regrind layer / inner layer.
  • a multi-layer parison was extruded.
  • the multilayer parison was molded by direct blow molding to obtain a bottle as a squeeze container having a capacity of 420 ml and a mass of 18 g.
  • the thickness of the thinnest part of the body of the bottle was 300 ⁇ m.
  • the mass fraction of each layer is as follows: outer layer (15.0% by mass) / adhesive layer (1.0% by mass) / oxygen barrier layer (2.4% by mass) / adhesive layer (1.0% by mass) / It was a grind layer (65.6% by mass) / inner layer (15.0% by mass).
  • Example 1 As shown in Table 1, in the flavor evaluation (three-point identification / preference method), Example 1 was significantly distinguished from Comparative Example 1, and it was confirmed that Example 1 was favorably superior to Comparative Example 1. It was Furthermore, many of the panels that correctly answered the identification test commented that Example 1 had a weaker taste and smell of plastic and the like than Comparative Example 1. In addition, in the dissolution evaluation, it was confirmed that Example 1 had a smaller TOC amount than Comparative Example 1. From these evaluations, in Example 1, the transfer of odorous components such as aldehydes and ketones contained in the regrind layer to the contents was partially blocked by the oxygen barrier layer B existing between the regrind layer and the inner layer. It is speculated that it was done.
  • Example 1 had lower compressive strength and lower rigidity, that is, higher squeeze property than Comparative Example 1.
  • Comparative Example 1 simple EVOH was used as the material for the oxygen barrier layer, whereas in Example 1, a mixture containing LDPE and a compatibilizer was used as the material for the oxygen barrier layers A and B in addition to EVOH. Therefore, it is assumed that the rigidity of the entire bottle was lowered in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

The present invention provides a squeeze container which is capable of suppressing transfer of the odor derived from a regrind layer to the contents, while having high squeezing properties. A squeeze container which sequentially comprises an oxygen barrier layer A, a regrind layer and an oxygen barrier layer B in this order from the outer side, and which is configured such that the oxygen barrier layer A and the oxygen barrier layer B contain an ethylene-vinyl alcohol copolymer, a polyethylene and a compatibilizer.

Description

スクイズ容器Squeeze container
 本発明は、スクイズ容器に関する。 The present invention relates to a squeeze container.
 包装容器としては、一般的に金属缶、ガラスビン、各種プラスチック容器等が使用されている。これらの中でもプラスチック容器は成形が容易であり、安価に製造できるため、各種用途に広く使用されている。例えば、プラスチック容器はケチャップ、マヨネーズ等を内容物として収容し、胴部を押すことで内容物を押し出すスクイズ容器として使用されている。これらの包装容器には、容器内に残留する酸素や容器の壁を透過する酸素による内容物の変質や、フレーバーの低下が抑制されることが求められる。特に、金属缶やガラスビンでは容器の壁を通じての酸素透過は生じないが、プラスチック容器では容器の壁を通じての酸素透過が生じる場合がある。 As the packaging container, metal cans, glass bottles, various plastic containers, etc. are generally used. Of these, plastic containers are widely used for various purposes because they are easy to mold and can be manufactured at low cost. For example, a plastic container is used as a squeeze container in which ketchup, mayonnaise, and the like are contained as contents, and the contents are pushed out by pushing the body. It is required for these packaging containers that the deterioration of the contents and the deterioration of the flavor due to the oxygen remaining in the containers and the oxygen permeating the walls of the containers are suppressed. In particular, in metal cans and glass bottles, oxygen permeation does not occur through the wall of the container, whereas in plastic containers oxygen permeation may occur through the wall of the container.
 前記酸素透過を抑制するため、プラスチック容器を多層構造とすることが行われている。例えば、プラスチック容器を構成する層として、オレフィン系樹脂を含む外層及び内層に加えて、エチレン-ビニルアルコール共重合体(以下、EVOHとも示す)等の酸素バリア性樹脂を含む酸素バリア層を設けることが行われている(例えば特許文献1)。これらの層は、一般的に接着性樹脂を含む接着層を介して互いに接着されている。一方、特許文献2には、前記多層構造を形成する際に、特に各層の間に前記接着層を設けることなく、ポリオレフィンを主体とする内外層とEVOHを主体とする中間層を積層した際の接着力を増強する多層包装材が開示されている。  In order to suppress the oxygen permeation, plastic containers have a multi-layer structure. For example, as a layer constituting a plastic container, an oxygen barrier layer containing an oxygen barrier resin such as an ethylene-vinyl alcohol copolymer (hereinafter also referred to as EVOH) is provided in addition to an outer layer and an inner layer containing an olefin resin. Is performed (for example, Patent Document 1). These layers are generally adhered to each other via an adhesive layer containing an adhesive resin. On the other hand, in Patent Document 2, when the multilayer structure is formed, the inner and outer layers mainly composed of polyolefin and the intermediate layer mainly composed of EVOH are laminated without providing the adhesive layer between the respective layers. A multi-layer packaging material that enhances adhesion is disclosed.
 EVOHを主成分として含む酸素バリア層により酸素透過を抑制する場合、容器内に水分を多く含む内容物を保存すると、その湿度により酸素バリア層の酸素バリア性が低下する。これを防ぐため、酸素バリア層は通常湿度の低い側、すなわち出来るだけ容器の外側に配置される。また、容器の層構成を簡略化するため、通常酸素バリア層は単層として設けられる。一方、ダイレクトブロー成形により容器を製造する際に、バリなどのスクラップが多量に排出されるため、低コスト化や環境保全の観点からこれを粉砕し、バージン材と混合して、容器の一部(リグラインド層)としてリサイクルすることが通常行われている。また、前述したように、酸素バリア層は出来るだけ容器の外側に配置されるため、リグラインド層は通常酸素バリア層より内側に配置される。 When oxygen permeation is suppressed by the oxygen barrier layer containing EVOH as the main component, if moisture-rich contents are stored in the container, the oxygen barrier property of the oxygen barrier layer will decrease due to the humidity. To prevent this, the oxygen barrier layer is usually placed on the lower humidity side, i.e. on the outside of the container as much as possible. Further, in order to simplify the layer structure of the container, the oxygen barrier layer is usually provided as a single layer. On the other hand, when a container is manufactured by direct blow molding, a large amount of scrap such as burrs is discharged, so from the viewpoint of cost reduction and environmental protection, this is crushed and mixed with virgin material to form a part of the container. Recycling is usually performed as (regrind layer). Further, as described above, since the oxygen barrier layer is arranged as much as possible outside the container, the regrind layer is usually arranged inside the oxygen barrier layer.
 近年、プラスチック容器に詰められる内容物の多様化により、容器由来の臭気をこれまでにも増して抑制することが求められるようになっている。リグラインド層は、熱履歴を受けた材料を含むため、臭気の要因になると考えられている。特許文献3には、プラスチック容器に含まれ得る酸素吸収性層由来の臭気成分の内部及び外部への移行を防ぐために、臭気バリア層を設けることが記載されている。 In recent years, due to the diversification of the contents packed in plastic containers, it has become necessary to further suppress the odor originating from the containers. The regrind layer contains materials that have undergone a thermal history and is therefore considered to be a source of odor. Patent Document 3 describes that an odor barrier layer is provided in order to prevent migration of an odor component derived from an oxygen-absorbing layer that can be contained in a plastic container to the inside and the outside.
特開2001-253426号公報JP 2001-253426 A 特開昭49-35482号公報JP-A-49-35482 特開2005-1371号公報JP-A-2005-1371
 リグラインド層由来の臭気成分を十分に遮断する観点から、本発明者らはリグラインド層の両側にEVOH単体からなる酸素バリア層を配置することを試みた。しかしながら、EVOH単体からなる酸素バリア層を複数配置すると、スクイズ容器として用いる場合に剛性が高くなり、スクイズ性が低下した。 From the viewpoint of sufficiently blocking the odorous components derived from the regrind layer, the present inventors have tried to dispose oxygen barrier layers made of a single EVOH on both sides of the regrind layer. However, when a plurality of oxygen barrier layers made of EVOH alone are arranged, the rigidity becomes high when used as a squeeze container, and the squeeze property deteriorates.
 本発明は、リグラインド層由来の臭気の内容物への移行を抑制でき、かつ、スクイズ性が高いスクイズ容器を提供することを目的とする。 An object of the present invention is to provide a squeeze container that can suppress the transfer of odor derived from the regrind layer to the contents and has a high squeeze property.
 本発明に係るスクイズ容器は、外側から順に、酸素バリア層Aと、リグラインド層と、酸素バリア層Bとをこの順序で含むスクイズ容器であって、
 前記酸素バリア層A及び前記酸素バリア層Bが、それぞれエチレン-ビニルアルコール共重合体と、ポリエチレンと、相容化剤と、を含む。
The squeeze container according to the present invention is a squeeze container including an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside,
The oxygen barrier layer A and the oxygen barrier layer B each include an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer.
 本発明によれば、リグラインド層由来の臭気の内容物への移行を抑制でき、かつ、スクイズ性が高いスクイズ容器を提供することができる。 According to the present invention, it is possible to provide a squeeze container that can suppress the transfer of odor derived from the regrind layer to the contents and has a high squeeze property.
本発明に係るスクイズ容器の一例を示す正面図である。It is a front view showing an example of a squeeze container concerning the present invention. 本発明に係るスクイズ容器の層構成の一例を示す断面図である。It is sectional drawing which shows an example of the laminated constitution of the squeeze container which concerns on this invention.
 本発明に係るスクイズ容器は、外側から順に、酸素バリア層Aと、リグラインド層と、酸素バリア層Bとをこの順序で含む。また、前記酸素バリア層A及び前記酸素バリア層Bは、それぞれエチレン-ビニルアルコール共重合体と、ポリエチレンと、相容化剤と、を含む。すなわち、前記酸素バリア層Aは、エチレン-ビニルアルコール共重合体と、ポリエチレンと、相容化剤と、を含み、前記酸素バリア層Bは、エチレン-ビニルアルコール共重合体と、ポリエチレンと、相容化剤と、を含む。 The squeeze container according to the present invention includes an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside. Further, the oxygen barrier layer A and the oxygen barrier layer B each include an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer. That is, the oxygen barrier layer A contains an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer, and the oxygen barrier layer B contains an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer. And a solubilizing agent.
 本発明に係るスクイズ容器では、酸素透過を抑制するためにリグラインド層より外側に酸素バリア層Aが設けられているだけでなく、リグラインド層より内側にも酸素バリア層Bが別途設けられているため、リグラインド層に含まれる臭気成分の内容物への移行を抑制することができる。また、EVOH単体からなる酸素バリア層は剛性が高いが、本発明に係るスクイズ容器では、EVOH以外に、ポリエチレンと、相容化剤と、を含む酸素バリア層A及び酸素バリア層Bを用いるため、剛性が低く、スクイズ性(押し出し性)が高い。さらに、前記酸素バリア層A及び前記酸素バリア層Bは接着性を有するため、接着層を別途配置する必要がなく、製造工程を簡略化することができる。以下、本発明の詳細について説明する。 In the squeeze container according to the present invention, not only the oxygen barrier layer A is provided outside the regrind layer in order to suppress oxygen permeation, but also the oxygen barrier layer B is separately provided inside the regrind layer. Therefore, transfer of odorous components contained in the regrind layer to the contents can be suppressed. Further, although the oxygen barrier layer composed of EVOH alone has high rigidity, in the squeeze container according to the present invention, the oxygen barrier layer A and the oxygen barrier layer B containing polyethylene and a compatibilizer are used in addition to EVOH. , Low rigidity and high squeeze property (extrudability). Furthermore, since the oxygen barrier layer A and the oxygen barrier layer B have adhesiveness, it is not necessary to separately arrange an adhesive layer, and the manufacturing process can be simplified. Hereinafter, details of the present invention will be described.
 本発明に係るスクイズ容器の一例を図1に示す。図1に示されるスクイズ容器は、キャップにより開閉が可能である口部1と、スクイズ容器の中央部である胴部2と、底部3とを備える。胴部2を押すことで、内容物は口部1から外部へ押し出される。なお、本発明に係るスクイズ容器は胴部2の形状が横断面において、何れの形状であってもよく、また、底部3を有さなくでもよく、例えば胴部2の末端部分が融着又は折り畳まれることで封止されたチューブ状の形態であってもよい。 An example of the squeeze container according to the present invention is shown in FIG. The squeeze container shown in FIG. 1 includes a mouth portion 1 that can be opened and closed by a cap, a body portion 2 that is a central portion of the squeeze container, and a bottom portion 3. By pushing the body 2, the contents are pushed out from the mouth 1. In the squeeze container according to the present invention, the body portion 2 may have any shape in cross section, and may not have the bottom portion 3. For example, the end portion of the body portion 2 may be fused or It may be in the form of a tube that is closed by being folded.
 本発明に係るスクイズ容器は、外側から順に、酸素バリア層Aと、リグラインド層と、酸素バリア層Bとをこの順序で含めば、その層構成は特に限定されない。例えば、前記スクイズ容器は、酸素バリア層A、リグラインド層、及び酸素バリア層B以外に、外層と内層を含むことができ、さらに他の層を含んでもよい。前記他の層としては、例えば後述するバージン材からなるバージン層等が挙げられる。なお、前記スクイズ容器は酸素吸収性を有する酸素吸収層を含まないことが好ましい。また、酸素バリア層A及び酸素バリア層Bは接着性を有するため、前記スクイズ容器は酸素バリア層A及び酸素バリア層B以外の一般的な接着層を含まないことが好ましい。ここで、一般的な接着層とは、酸素バリア性を有する材料等を含まない接着性樹脂からなる層を示し、例えば変性ポリオレフィン樹脂からなる層である。また、前記スクイズ容器は酸素バリア層を少なくとも2層有するが、3層以上有してもよい。 The layer structure of the squeeze container according to the present invention is not particularly limited as long as the oxygen barrier layer A, the regrind layer, and the oxygen barrier layer B are included in this order from the outside. For example, the squeeze container may include an outer layer and an inner layer in addition to the oxygen barrier layer A, the regrind layer, and the oxygen barrier layer B, and may further include other layers. Examples of the other layer include a virgin layer made of a virgin material described later. In addition, it is preferable that the squeeze container does not include an oxygen absorption layer having an oxygen absorption property. Further, since the oxygen barrier layer A and the oxygen barrier layer B have adhesiveness, it is preferable that the squeeze container does not include a general adhesive layer other than the oxygen barrier layer A and the oxygen barrier layer B. Here, the general adhesive layer refers to a layer made of an adhesive resin that does not include a material having an oxygen barrier property, and is a layer made of a modified polyolefin resin, for example. The squeeze container has at least two oxygen barrier layers, but may have three or more layers.
 前記スクイズ容器は、例えば、外層/酸素バリア層A/リグラインド層/酸素バリア層B/内層の5層構成を有していてもよく、外層/酸素バリア層A/バージン層/リグラインド層/酸素バリア層B/内層の6層構成を有していてもよく、外層/酸素バリア層A/バージン層/リグラインド層/バージン層/酸素バリア層B/内層の7層構成を有していてもよい。一例として、図2に、外層4/酸素バリア層A5/バージン層6/リグラインド層7/バージン層6/酸素バリア層B8/内層9の7層構成を有するスクイズ容器の断面図を示す。 The squeeze container may have, for example, a five-layer structure of outer layer / oxygen barrier layer A / regrind layer / oxygen barrier layer B / inner layer, and outer layer / oxygen barrier layer A / virgin layer / regrind layer / It may have a 6-layer structure of oxygen barrier layer B / inner layer, and may have a 7-layer structure of outer layer / oxygen barrier layer A / virgin layer / regrind layer / virgin layer / oxygen barrier layer B / inner layer. Good. As an example, FIG. 2 shows a sectional view of a squeeze container having a seven-layer structure of outer layer 4 / oxygen barrier layer A5 / virgin layer 6 / regrind layer 7 / virgin layer 6 / oxygen barrier layer B8 / inner layer 9.
 スクイズ容器の胴部における最も薄い部分の厚みは、180~1500μmが好ましく、200~1200μmがより好ましく、300~1100μmがさらに好ましい。前記厚みが180μm以上であることにより、スクイズ時に容器が変形したり破損したりすることなく、内容物を安定して保存できる。また、前記厚みが1500μmを超えるとスクイズが困難となる。なお、ここでスクイズ容器の胴部とは、口部を除いた内容物収容部であって、底部の接地面上5mmより上の範囲の部分を示す。 The thickness of the thinnest part of the body of the squeeze container is preferably 180 to 1500 μm, more preferably 200 to 1200 μm, and even more preferably 300 to 1100 μm. When the thickness is 180 μm or more, the container can be stably stored without being deformed or damaged during squeeze. If the thickness exceeds 1500 μm, squeeze becomes difficult. Here, the body part of the squeeze container is a content accommodating part excluding the mouth part, and indicates a part in a range above 5 mm above the ground contact surface of the bottom part.
 スクイズ容器内に85℃の超純水を充填して封止した後、10分間転倒殺菌を行い、室温まで冷却して一週間保管した後の、前記超純水に含まれるTOC(Total Organic Carbon、全有機炭素)量は、0.7質量ppm未満であることが好ましく、0.5質量ppm以下であることがより好ましく、0.4質量ppm以下であることがさらに好ましい。前記TOC量は、リグラインド層に含まれるアルデヒド、ケトン等の臭気成分が内容物へ移行する量を示す指標となる値であり、前記TOC量が少ないほど、臭気成分の内容物へ移行が少ないことを示す。前記TOC量が0.7質量ppm未満であることにより、臭気成分の内容物へ移行が十分に抑制される。なお、TOC量の測定は、全有機炭素計(商品名:TOC-V CPH、(株)島津製作所製)を用いて測定することができる。 After filling the squeeze container with ultrapure water at 85 ° C and sealing, sterilizing by inversion for 10 minutes, cooling to room temperature and storing for 1 week, TOC (Total Organic Carbon) contained in the ultrapure water , Total organic carbon) is preferably less than 0.7 mass ppm, more preferably 0.5 mass ppm or less, still more preferably 0.4 mass ppm or less. The TOC amount is a value that serves as an index indicating the amount of odorous components such as aldehydes and ketones contained in the regrind layer that migrates to the content. The smaller the TOC amount, the less the odorous components migrate to the content. Indicates that. When the TOC amount is less than 0.7 mass ppm, the transfer of odorous components to the contents is sufficiently suppressed. The TOC amount can be measured using a total organic carbon meter (trade name: TOC-V CPH, manufactured by Shimadzu Corporation).
 スクイズ容器の剛性について、スクイズ容器の縦方向(スクイズ容器の口部から底部へ向かう方向)の圧縮強度は70N以下であることが好ましく、40~70Nであることがより好ましい。前記圧縮強度が70N以下であることにより、スクイズ容器の内容物を容易に外部へ押し出すことができ、スクイズ性が向上する。また、前記圧縮強度が40N以上であることにより、容器の自立性が向上する。なお、前記圧縮強度は以下の方法により測定される値である。スクイズ容器内に内容物充填量と同量の水を充填し、23℃で24時間コンディショニングを行った後、圧縮試験機を用いてスクイズ容器の縦方向に圧縮を行い、圧縮強度を測定する。圧縮は、20mm/min、Vノッチなしの条件で行う。圧縮試験機としては、テンシロン万能試験機(商品名:RTG-1310、(株)エー・アンド・デイ製)を用いることができる。 Regarding the rigidity of the squeeze container, the compressive strength in the longitudinal direction of the squeeze container (direction from the mouth of the squeeze container to the bottom) is preferably 70 N or less, more preferably 40 to 70 N. When the compressive strength is 70 N or less, the contents of the squeeze container can be easily pushed out to improve the squeeze property. In addition, when the compressive strength is 40 N or more, the self-supporting property of the container is improved. The compressive strength is a value measured by the following method. After filling the squeeze container with the same amount of water as the content filling amount and performing conditioning at 23 ° C. for 24 hours, compression is performed in the longitudinal direction of the squeeze container using a compression tester, and the compressive strength is measured. The compression is performed under the conditions of 20 mm / min and no V notch. As the compression tester, a Tensilon universal tester (trade name: RTG-1310, manufactured by A & D Co., Ltd.) can be used.
 (酸素バリア層A及び酸素バリア層B)
 酸素バリア層A及び酸素バリア層Bは、それぞれEVOHと、ポリエチレンと、相容化剤とを含む。酸素バリア層A及び酸素バリア層Bはガスバリア性を有するEVOHを含むため、酸素及びリグラインド層に含まれる臭気成分の透過を遮断する機能を有する。また、EVOHとポリエチレンとは相容化剤によって相容化されて均質に分布しているため、ポリエチレンに由来して、酸素バリア層A及び酸素バリア層Bは、外層、内層やリグラインド層に対して優れた接着性を示す。なお、酸素バリア層Aと酸素バリア層Bの組成や厚み(質量比率)は同じであってもよく、異なっていてもよい。
(Oxygen barrier layer A and oxygen barrier layer B)
The oxygen barrier layer A and the oxygen barrier layer B each include EVOH, polyethylene, and a compatibilizer. Since the oxygen barrier layer A and the oxygen barrier layer B contain EVOH having a gas barrier property, they have a function of blocking permeation of oxygen and odorous components contained in the regrind layer. Further, EVOH and polyethylene are compatibilized by a compatibilizing agent and are homogeneously distributed, so that the oxygen barrier layer A and the oxygen barrier layer B are derived from polyethylene and are formed into an outer layer, an inner layer and a regrind layer. It shows excellent adhesion. The composition and thickness (mass ratio) of the oxygen barrier layer A and the oxygen barrier layer B may be the same or different.
 EVOHとしては、エチレン含有量が20~60モル%のエチレン-酢酸ビニル共重合体を、ケン化度が96モル%以上、特に99モル%以上となるようにケン化して得られる共重合体ケン化物が好ましい。前記エチレン含有量は、ガスバリア性の観点から20~38モル%であることが好ましい。前記EVOH(エチレン-酢酸ビニル共重合体ケン化物)は、フェノール/水の質量比が85/15の混合溶媒中、30℃で測定して0.01dl/g以上、特に0.05dl/g以上の固有粘度を有することができる。 As EVOH, a copolymer saponification product obtained by saponifying an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol% so that the saponification degree becomes 96 mol% or more, particularly 99 mol% or more. Compounds are preferred. From the viewpoint of gas barrier properties, the ethylene content is preferably 20 to 38 mol%. The EVOH (saponified ethylene-vinyl acetate copolymer) is 0.01 dl / g or more, particularly 0.05 dl / g or more when measured at 30 ° C. in a mixed solvent having a phenol / water mass ratio of 85/15. Can have an intrinsic viscosity of.
 ポリエチレンとしては、低密度ポリエチレン(以下、LDPEとも示す)が好ましい。LDPEは、密度が0.910g/cm以上0.930g/cm未満の範囲内であるポリエチレンであり、線状低密度ポリエチレンも含まれる。成形時におけるEVOHとの相分離等を抑制し、層間剥離を防止する観点から、LDPEの190℃、2.16kg荷重でのメルトフローレート(MFR)は、0.1g/10min以上であることが好ましい。また、該MFRは成形性の観点から30g/10min以下であることが好ましい。該MFRは0.3~10g/10minであることがより好ましい。 As the polyethylene, low density polyethylene (hereinafter, also referred to as LDPE) is preferable. LDPE is polyethylene having a density within the range of 0.910 g / cm 3 or more and less than 0.930 g / cm 3 , and includes linear low density polyethylene. From the viewpoint of suppressing phase separation from EVOH during molding and preventing delamination, the melt flow rate (MFR) of LDPE at 190 ° C. under a load of 2.16 kg is 0.1 g / 10 min or more. preferable. Further, the MFR is preferably 30 g / 10 min or less from the viewpoint of moldability. The MFR is more preferably 0.3 to 10 g / 10 min.
 相容化剤は、EVOHとポリエチレンとを相容化させ、両者の相分離構造のサイズを小さくし、EVOHとポリエチレンとの凝集力を高めるために使用される。相容化剤としては、例えばマレイン酸、イタコン酸、フマル酸等のカルボン酸又はその無水物、マレイン酸-ポリエチレン共重合体、無水マレイン酸-ポリエチレン共重合体、アミド、エステルなどでグラフト変性されたグラフト変性オレフィン樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-酢酸ビニル共重合体、ケン化度が20~100%であるエチレン-酢酸ビニル共重合体ケン化物、エチレン含有量が85%以上であるエチレン-ビニルアルコール共重合体、ハイドロタルサイト化合物、アイオノマー(イオン架橋オレフィン系共重合体)等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でも、相容化剤としては、EVOHと化学反応を起こす酸・酸無水物を有さない樹脂が好ましく、特にアイオノマーが好ましい。 A compatibilizer is used to compatibilize EVOH and polyethylene, reduce the size of the phase separation structure of both, and enhance the cohesive force between EVOH and polyethylene. Examples of the compatibilizer include carboxylic acids such as maleic acid, itaconic acid and fumaric acid or anhydrides thereof, maleic acid-polyethylene copolymers, maleic anhydride-polyethylene copolymers, amides and esters for graft modification. Graft-modified olefin resin, ethylene- (meth) acrylic acid copolymer, ethylene-vinyl acetate copolymer, saponified ethylene-vinyl acetate copolymer having a saponification degree of 20 to 100%, ethylene content of 85 %, Ethylene-vinyl alcohol copolymers, hydrotalcite compounds, ionomers (ion-crosslinking olefin copolymers) and the like. These may be used alone or in combination of two or more. Among these, as the compatibilizer, a resin having no acid or acid anhydride that chemically reacts with EVOH is preferable, and an ionomer is particularly preferable.
 前記酸素バリア層A及び前記酸素バリア層Bはそれぞれ、EVOHとポリエチレンとを95:5~50:50の質量比で含むことが好ましく、90:10~55:45の質量比で含むことがより好ましく、85:15~60:40の質量比で含むことがさらに好ましく、80:20~65:35の質量比で含むことが特に好ましい。さらに、前記酸素バリア層A及び前記酸素バリア層Bはそれぞれ、EVOHとポリエチレンとの合計量100質量部当たり1~49質量部の相容化剤を含むことが好ましく、2~40質量部の相容化剤を含むことがより好ましく、3~30質量部の相容化剤を含むことがさらに好ましく、4~20質量部の相容化剤を含むことが特に好ましい。前記酸素バリア層A及び前記酸素バリア層Bが、それぞれEVOHと、ポリエチレンと、相容化剤とを前記質量比率の範囲内で含むことにより、ガスバリア性を維持しつつ、スクイズ容器の剛性を低くすることができる。 Each of the oxygen barrier layer A and the oxygen barrier layer B preferably contains EVOH and polyethylene in a mass ratio of 95: 5 to 50:50, and more preferably in a mass ratio of 90:10 to 55:45. Preferably, it is more preferably contained in a mass ratio of 85:15 to 60:40, and particularly preferably contained in a mass ratio of 80:20 to 65:35. Further, each of the oxygen barrier layer A and the oxygen barrier layer B preferably contains 1 to 49 parts by mass of a compatibilizer per 100 parts by mass of the total amount of EVOH and polyethylene, and preferably 2 to 40 parts by mass of the phase compatibilizer. It is more preferable to include a compatibilizer, it is more preferable to include 3 to 30 parts by mass of the compatibilizer, and it is particularly preferable to include 4 to 20 parts by mass of the compatibilizer. The oxygen barrier layer A and the oxygen barrier layer B each contain EVOH, polyethylene, and a compatibilizing agent within the range of the mass ratio, whereby the rigidity of the squeeze container is lowered while maintaining the gas barrier property. can do.
 EVOH、ポリエチレン、及び相容化剤の混合は、例えば押出機や射出機に設けられている混練部で溶融混練することにより実施することができる。 The EVOH, polyethylene, and the compatibilizer can be mixed by, for example, melt-kneading in a kneading section provided in an extruder or an injection machine.
 前記スクイズ容器の質量に対する、前記酸素バリア層A及び前記酸素バリア層Bの合計の質量の割合は、1~30質量%であることが好ましく、3~20質量%であることがより好ましく、5~10質量%であることがさらに好ましい。前記割合が1質量%以上であることにより、酸素及びリグラインド層に含まれる臭気成分の透過を十分に遮断することができる。また、前記割合が30質量%以下であることにより、スクイズ性を向上させることができる。 The ratio of the total mass of the oxygen barrier layer A and the oxygen barrier layer B to the mass of the squeeze container is preferably 1 to 30% by mass, more preferably 3 to 20% by mass. More preferably, it is from about 10% by mass. When the ratio is 1% by mass or more, the permeation of oxygen and odorous components contained in the regrind layer can be sufficiently blocked. In addition, the squeeze property can be improved by setting the ratio to 30% by mass or less.
 前記スクイズ容器の質量に対する、前記酸素バリア層Bの質量の割合は、0.5~15質量%であることが好ましく、1.5~10質量%であることがより好ましく、2.5~5質量%であることがさらに好ましい。前記割合が0.5質量%以上であることにより、リグラインド層に含まれる臭気成分の透過を十分に遮断することができる。また、前記割合が15質量%以下であることにより、スクイズ性を向上させることができる。なお、前記スクイズ容器の質量に対する、前記酸素バリア層Aの質量の割合の好ましい範囲についても、前記酸素バリア層Bと同様である。 The ratio of the mass of the oxygen barrier layer B to the mass of the squeeze container is preferably 0.5 to 15 mass%, more preferably 1.5 to 10 mass%, and 2.5 to 5 mass%. It is more preferable that the content is% by mass. When the proportion is 0.5% by mass or more, the permeation of the odorous component contained in the regrind layer can be sufficiently blocked. Further, the squeeze property can be improved by setting the above ratio to 15% by mass or less. The preferable range of the ratio of the mass of the oxygen barrier layer A to the mass of the squeeze container is the same as that of the oxygen barrier layer B.
 (リグラインド層)
 リグラインド層はリプロ層とも呼ばれ、成形開始時に排出される樹脂やバリなどの容器以外の部分を粉砕したスクラップ樹脂を含む層である。即ち、スクラップ樹脂は容器に含まれる各層を構成する材料の混合物であり、リグラインド層は該混合物を含む層である。該スクラップ樹脂を再利用することにより、未使用の樹脂であるバージン材の使用量を低減できるため、環境保全の観点から好ましく、また製造コストを低減できる。しかし、前記スクラップ樹脂は熱履歴を有するため、樹脂の分解物であるアルデヒドやケトン等のカルボニル基含有化合物等の臭気成分を含む。本発明に係るスクイズ容器では、該臭気成分の内容物への移行を、酸素バリア層Bによって遮断する。
(Regrind layer)
The regrind layer is also called a repro layer and is a layer containing scrap resin obtained by crushing a portion other than the container such as resin or burr discharged at the start of molding. That is, the scrap resin is a mixture of materials constituting each layer contained in the container, and the regrind layer is a layer containing the mixture. By recycling the scrap resin, the amount of virgin material, which is an unused resin, can be reduced, which is preferable from the viewpoint of environmental protection, and the manufacturing cost can be reduced. However, since the scrap resin has a thermal history, it contains odorous components such as carbonyl group-containing compounds such as aldehydes and ketones, which are decomposition products of the resin. In the squeeze container according to the present invention, the transfer of the odorous component to the contents is blocked by the oxygen barrier layer B.
 リグラインド層は、前記スクラップ樹脂以外に、前記バージン材を併用することもできる。前記バージン材としては、例えばLDPE等を用いることができる。しかし、リグラインド層中の前記スクラップ樹脂の割合は1~100質量%であることが好ましい。すなわち、リグラインド層は前記スクラップ樹脂からなってもよい。 The regrind layer can use the virgin material in addition to the scrap resin. LDPE or the like can be used as the virgin material. However, the proportion of the scrap resin in the regrind layer is preferably 1 to 100% by mass. That is, the regrind layer may be made of the scrap resin.
 前記スクイズ容器の質量に対するリグラインド層の質量の割合は特に限定されないが、例えば30~80質量%であることができ、35~70質量%であることが好ましく、40~60質量%であることがより好ましい。 The ratio of the mass of the regrind layer to the mass of the squeeze container is not particularly limited, but can be, for example, 30 to 80% by mass, preferably 35 to 70% by mass, and 40 to 60% by mass. Is more preferable.
 なお、スクイズ容器に含まれる層がリグラインド層であることは、例えば、ミクロトームで作製した切片の光学顕微鏡観察、フーリエ変換赤外分光光度計を用いた材料分析、または、それらの組合せによって確認可能である。具体的には、光学顕微鏡観察では、屈折率の異なる材料が分散した海島状に観察されたり、フーリエ変換赤外分光光度計を用いた材料分析では、ポリエチレンの他にEVOHに特徴的なOH基の伸縮振動に基づくスペクトルが認められたりする。 Note that the layer included in the squeeze container can be confirmed by, for example, observing a section prepared by a microtome with an optical microscope, material analysis using a Fourier transform infrared spectrophotometer, or a combination thereof. Is. Specifically, in an optical microscope observation, it was observed in a sea-island shape in which materials with different refractive indexes were dispersed, and in a material analysis using a Fourier transform infrared spectrophotometer, in addition to polyethylene, OH groups characteristic of EVOH were observed. The spectrum based on the stretching vibration of is recognized.
 (外層、内層)
 外層及び内層はオレフィン系樹脂を含むことができる。オレフィン系樹脂としては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(LVLDPE)等のポリエチレンや、ポリプロピレン、エチレン-プロピレン共重合体、ポリブテン-1、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体、エチレン-酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でも、酸素バリア層A及び酸素バリア層Bとの接着性がより高い観点からポリエチレンが好ましく、低密度ポリエチレン(LDPE)がより好ましい。
(Outer layer, inner layer)
The outer layer and the inner layer may include an olefin resin. As the olefin resin, polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear ultra low density polyethylene (LVLDPE), Polypropylene, ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, Examples thereof include ion-crosslinked olefin copolymers (ionomers). These may be used alone or in combination of two or more. Among these, polyethylene is preferable, and low density polyethylene (LDPE) is more preferable, from the viewpoint of higher adhesiveness to the oxygen barrier layer A and the oxygen barrier layer B.
 外層を構成する材料と、内層を構成する材料とは同じであってもよく、異なっていてもよい。また、外層及び内層は、必要に応じて、滑剤、改質剤、顔料、紫外線吸収剤等を含んでもよい。 The material forming the outer layer and the material forming the inner layer may be the same or different. Further, the outer layer and the inner layer may contain a lubricant, a modifier, a pigment, an ultraviolet absorber, etc., if necessary.
 スクイズ容器の質量に対する外層の質量の割合は特に限定されないが、例えば5~30質量%であることができ、10~20質量%であることが好ましい。スクイズ容器の質量に対する内層の質量の割合は特に限定されないが、例えば10~40質量%であることができ、15~30質量%であることが好ましい。 The ratio of the mass of the outer layer to the mass of the squeeze container is not particularly limited, but can be, for example, 5 to 30% by mass, and preferably 10 to 20% by mass. The ratio of the mass of the inner layer to the mass of the squeeze container is not particularly limited, but can be, for example, 10 to 40% by mass, and preferably 15 to 30% by mass.
 (バージン層)
 本発明に係るスクイズ容器は、必要に応じてバージン層を含むことができる。バージン層に含まれるバージン材としては、前述したリグラインド層に含まれ得るバージン材が挙げられる。前記スクイズ容器がバージン層を有する場合、前記スクイズ容器の質量に対するバージン層の質量の割合は特に限定されないが、例えば0.1~5質量%であることができる。
(Virgin layer)
The squeeze container according to the present invention may optionally include a virgin layer. Examples of the virgin material contained in the virgin layer include the virgin material contained in the regrind layer. When the squeeze container has a virgin layer, the ratio of the mass of the virgin layer to the mass of the squeeze container is not particularly limited, but can be, for example, 0.1 to 5 mass%.
 (スクイズ容器の製造方法)
 本発明に係るスクイズ容器の製造方法は特に限定されないが、例えば外側から順に、酸素バリア層Aと、リグラインド層と、酸素バリア層Bとをこの順序で含むチューブ状のパリソンを製造する工程と、前記パリソンを金型で挟んで前記パリソンをピンチオフするとともに融着させ、前記パリソンの内部に気体を吹き込んで成形する工程と、を含むことができる。具体的には、まず、チューブ容器を構成する各層の材料を、多層多重ダイスを使用して共押出しすることでチューブ状のパリソンを製造する。次に、溶融押出されたパリソンを金型内に供給し、パリソンを金型で両側から挟んでパリソンをピンチオフすると共に融着する。次に、パリソンの内部に空気などの圧縮気体を吹き込んで膨張させ、容器の形状に成形する。その後、冷却し、金型を開いて成形品を取り出す。
(Method of manufacturing squeeze container)
The method for producing the squeeze container according to the present invention is not particularly limited, and for example, a step of producing a tubular parison including an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside, , Sandwiching the parison with a mold, pinching off and fusing the parison, and blowing a gas into the parison to form the parison. Specifically, first, the material of each layer constituting the tube container is coextruded using a multi-layer multiple die to manufacture a tubular parison. Next, the melt-extruded parison is supplied into a mold, and the parison is sandwiched between the molds from both sides to pinch off and fuse the parison. Next, a compressed gas such as air is blown into the parison to expand the parison and shape it into the shape of a container. After that, it is cooled, the mold is opened, and the molded product is taken out.
 (用途)
 本発明に係るスクイズ容器は、わさび、しょうが、からし、ケチャップ、マヨネーズ、ジャム、チョコレート等の粘性食品、練歯磨、化粧品等を収容し、保存するための容器として用いることができる。本発明に係るスクイズ容器を用いることで、容器自体の臭気の内容物への移行を抑制することができる。また、本発明に係るスクイズ容器はスクイズ性が高いため、内容物を容易に外部へ押し出すことができる。
(Use)
The squeeze container according to the present invention can be used as a container for housing and storing wasabi, ginger, mustard, ketchup, mayonnaise, jam, viscous food such as chocolate, toothpaste, cosmetics and the like. By using the squeeze container according to the present invention, transfer of odor of the container itself to the contents can be suppressed. Further, since the squeeze container according to the present invention has a high squeeze property, the contents can be easily pushed out.
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例1及び比較例1により得られたボトルのフレーバー評価、溶出性評価、及び剛性評価は、以下の方法により行った。 Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples. The flavor evaluation, elution property evaluation, and rigidity evaluation of the bottles obtained in Example 1 and Comparative Example 1 were performed by the following methods.
 [フレーバー評価]
 実施例1及び比較例1により得られたボトル内に、85℃の超純水を400g充填し、口部をシール材で封止した。10分間転倒殺菌を行った後、流水中で室温まで冷却し、一週間保管した。保管後のボトル内の超純水(以下、試験液とも示す)のフレーバーを、以下の3点識別・嗜好法により評価した。
[Flavor evaluation]
The bottles obtained in Example 1 and Comparative Example 1 were filled with 400 g of ultrapure water at 85 ° C., and the mouth was sealed with a sealing material. After performing sterilization by inversion for 10 minutes, it was cooled to room temperature in running water and stored for one week. The flavor of ultrapure water (hereinafter also referred to as a test solution) in the bottle after storage was evaluated by the following three-point identification / preference method.
 (3点識別・嗜好法)
 パネル10名により、実施例1の試験液及び比較例1の試験液を用いて、3点識別法により識別テストを行った。具体的には、2つの実施例1の試験液及び1つの比較例1の試験液の3つの試験液の組み合わせ、又は、2つの比較例1の試験液及び1つの実施例1の試験液の3つの試験液の組み合わせ、をパネルに提示し、1つだけ異なる試験液を当てる識別テストを、パネル1名に対して2回行った。回答数(20)に対する正解数を表1に示す。
(3 point identification / preference method)
An identification test was carried out by 10 panelists using the test liquid of Example 1 and the test liquid of Comparative Example 1 by the three-point identification method. Specifically, a combination of three test solutions of two test solutions of Example 1 and one test solution of Comparative Example 1 or two test solutions of Comparative Example 1 and one test solution of Example 1 A combination test of three test solutions was presented on the panel, and a discrimination test in which only one test solution was applied was performed twice for one panel. Table 1 shows the number of correct answers to the number of answers (20).
 また、嗜好テストとして、前記識別テストに正解したパネルに対して、識別した試験液のいずれが好ましいフレーバーであるかについて問合せた。結果を表1に示す。 Also, as a taste test, we asked the panel that answered correctly in the identification test which of the identified test liquids had the preferable flavor. The results are shown in Table 1.
 [溶出性評価]
 前記フレーバー評価における実施例1の試験液及び比較例1の試験液について、TOC(Total Organic Carbon、全有機炭素)量を、全有機炭素計(商品名:TOC-V CPH、(株)島津製作所製)を用いて測定した。該測定を3回行い、その平均値を算出した。結果を表1に示す。
[Dissolution evaluation]
Regarding the test liquid of Example 1 and the test liquid of Comparative Example 1 in the flavor evaluation, the TOC (Total Organic Carbon) amount was measured by a total organic carbon meter (trade name: TOC-V CPH, manufactured by Shimadzu Corporation). Manufactured). The measurement was performed 3 times, and the average value was calculated. The results are shown in Table 1.
 [剛性評価]
 実施例1及び比較例1により得られたボトル内に水400gを充填し、23℃で24時間コンディショニングを行った。圧縮試験機(テンシロン万能試験機、商品名:RTG-1310、(株)エー・アンド・デイ製)を用いて、ボトルの縦方向(ボトルの口部から底部へ向かう方向)に圧縮を行い(20mm/min、Vノッチなし)、圧縮強度を測定した。測定は24本行い、平均した結果を表1に示す。
[Rigidity evaluation]
The bottles obtained in Example 1 and Comparative Example 1 were filled with 400 g of water and conditioned at 23 ° C. for 24 hours. Using a compression tester (Tensilon universal tester, trade name: RTG-1310, manufactured by A & D Co., Ltd.), compression is performed in the vertical direction of the bottle (direction from the mouth of the bottle to the bottom) ( 20 mm / min, no V notch) and compressive strength were measured. Twenty-four measurements were performed, and the averaged results are shown in Table 1.
 [実施例1]
 内層、外層、及びバージン層用の材料として、LDPE(商品名:LB420M、日本ポリエチレン(株)製)を準備した。酸素バリア層A及びBの材料として、EVOH(商品名:DC3203RB、日本合成(株)製)70質量部、LDPE(商品名:LB420M、日本ポリエチレン(株)製)20質量部、及び相容化剤としてのアイオノマー樹脂(商品名:ハイミラン1601、三井・デュポンポリケミカル社製)10質量部を含む混合物を準備した。リグラインド層の材料として、LDPE(商品名:LB420M、日本ポリエチレン(株)製)60質量部と、再利用した各層材料の混合物(スクラップ樹脂)40質量部と、の混合物を準備した。内層、外層及びバージン層、酸素バリア層A及びB、並びにリグラインド層の各材料を3つの押出機にそれぞれ投入し、外層/酸素バリア層A/バージン層/リグラインド層/酸素バリア層B/内層の6層からなる多層パリソンを押出した。次いで、前記多層パリソンを用いてダイレクトブロー成形により成形し、容量420ml、質量18gのスクイズ容器であるボトルを得た。
[Example 1]
LDPE (trade name: LB420M, manufactured by Nippon Polyethylene Corporation) was prepared as a material for the inner layer, the outer layer, and the virgin layer. As materials for the oxygen barrier layers A and B, 70 parts by mass of EVOH (trade name: DC3203RB, manufactured by Nippon Gosei Co., Ltd.), 20 parts by mass of LDPE (trade name: LB420M, manufactured by Nippon Polyethylene Co., Ltd.), and compatibilization A mixture containing 10 parts by mass of an ionomer resin (trade name: Himilan 1601, manufactured by Mitsui DuPont Polychemical Co., Ltd.) as an agent was prepared. As a material for the regrind layer, a mixture of 60 parts by mass of LDPE (trade name: LB420M, manufactured by Japan Polyethylene Corporation) and 40 parts by mass of a recycled mixture of layer materials (scrap resin) was prepared. The materials of the inner layer, the outer layer and the virgin layer, the oxygen barrier layers A and B, and the regrind layer were respectively charged into three extruders, and the outer layer / oxygen barrier layer A / virgin layer / regrind layer / oxygen barrier layer B / A six-layer inner parison was extruded. Next, the multilayer parison was molded by direct blow molding to obtain a bottle as a squeeze container having a capacity of 420 ml and a mass of 18 g.
 前記ボトルの胴部における最も薄い部分の厚みは300μmであった。また、各層の質量分率は、外層(15.0質量%)/酸素バリア層A(3.3質量%)/バージン層(1.0質量%)/リグラインド層(52.4質量%)/酸素バリア層B(3.3質量%)/内層(25.0質量%)であった。 The thickness of the thinnest part of the body of the bottle was 300 μm. The mass fraction of each layer is as follows: outer layer (15.0 mass%) / oxygen barrier layer A (3.3 mass%) / virgin layer (1.0 mass%) / regrind layer (52.4 mass%). / Oxygen barrier layer B (3.3 mass%) / inner layer (25.0 mass%).
 前記ボトルに対して、前記フレーバー評価、溶出性評価、及び剛性評価を行った。結果を表1に示す。 The flavor evaluation, elution property evaluation, and rigidity evaluation were performed on the bottle. The results are shown in Table 1.
 [比較例1]
 内層及び外層用の材料として、LDPE(商品名:LB420M、日本ポリエチレン(株)製)を準備した。酸素バリア層の材料として、EVOH(商品名:DC3203RB、日本合成(株)製)を準備した。接着層の材料として、変性ポリオレフィン樹脂(商品名:モディックL522、三菱化学(株)製)を準備した。リグラインド層の材料として、LDPE(商品名:LB420M、日本ポリエチレン(株)製)60質量部と、再利用した各層材料の混合物(スクラップ樹脂)40質量部と、の混合物を準備した。内層及び外層、酸素バリア層、接着層、並びにリグラインド層の各材料を4つの押出機にそれぞれ投入し、外層/接着層/酸素バリア層/接着層/リグラインド層/内層の6層からなる多層パリソンを押出した。次いで、前記多層パリソンを用いてダイレクトブロー成形により成形し、容量420ml、質量18gのスクイズ容器であるボトルを得た。
[Comparative Example 1]
LDPE (trade name: LB420M, manufactured by Nippon Polyethylene Corporation) was prepared as a material for the inner layer and the outer layer. EVOH (trade name: DC3203RB, manufactured by Nippon Gosei Co., Ltd.) was prepared as a material for the oxygen barrier layer. A modified polyolefin resin (trade name: Modic L522, manufactured by Mitsubishi Chemical Corporation) was prepared as a material for the adhesive layer. As a material for the regrind layer, a mixture of 60 parts by mass of LDPE (trade name: LB420M, manufactured by Japan Polyethylene Corporation) and 40 parts by mass of a recycled mixture of layer materials (scrap resin) was prepared. The materials for the inner and outer layers, the oxygen barrier layer, the adhesive layer, and the regrind layer are respectively charged into four extruders, and are composed of 6 layers of outer layer / adhesive layer / oxygen barrier layer / adhesive layer / regrind layer / inner layer. A multi-layer parison was extruded. Next, the multilayer parison was molded by direct blow molding to obtain a bottle as a squeeze container having a capacity of 420 ml and a mass of 18 g.
 前記ボトルの胴部における最も薄い部分の厚みは300μmであった。また、各層の質量分率は、外層(15.0質量%)/接着層(1.0質量%)/酸素バリア層(2.4質量%)/接着層(1.0質量%)/リグラインド層(65.6質量%)/内層(15.0質量%)であった。 The thickness of the thinnest part of the body of the bottle was 300 μm. The mass fraction of each layer is as follows: outer layer (15.0% by mass) / adhesive layer (1.0% by mass) / oxygen barrier layer (2.4% by mass) / adhesive layer (1.0% by mass) / It was a grind layer (65.6% by mass) / inner layer (15.0% by mass).
 前記ボトルに対して、前記フレーバー評価、溶出性評価、及び剛性評価を行った。結果を表1に示す。 The flavor evaluation, elution property evaluation, and rigidity evaluation were performed on the bottle. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、フレーバー評価(3点識別・嗜好法)において、実施例1は比較例1と有意に識別され、実施例1は比較例1よりも優位に好まれることが確認された。さらに、識別テストに正解したパネルの多くが、実施例1は比較例1に対して、プラスチック等の味及び臭いが弱いとコメントした。また、溶出性評価では、実施例1は比較例1よりもTOC量が少ないことが確認された。これらの評価より、実施例1では、リグラインド層に含まれるアルデヒド、ケトン等の臭気成分の内容物への移行が、リグラインド層と内層との間に存在する酸素バリア層Bによって一部遮断されたことが推測される。 As shown in Table 1, in the flavor evaluation (three-point identification / preference method), Example 1 was significantly distinguished from Comparative Example 1, and it was confirmed that Example 1 was favorably superior to Comparative Example 1. It was Furthermore, many of the panels that correctly answered the identification test commented that Example 1 had a weaker taste and smell of plastic and the like than Comparative Example 1. In addition, in the dissolution evaluation, it was confirmed that Example 1 had a smaller TOC amount than Comparative Example 1. From these evaluations, in Example 1, the transfer of odorous components such as aldehydes and ketones contained in the regrind layer to the contents was partially blocked by the oxygen barrier layer B existing between the regrind layer and the inner layer. It is speculated that it was done.
 また、剛性評価では、比較例1よりも実施例1の方が、圧縮強度が低く、剛性が低い、すなわちスクイズ性が高いことが確認された。比較例1では酸素バリア層の材料としてEVOH単体を用いたのに対し、実施例1では酸素バリア層A及びBの材料として、EVOH以外に、LDPEと相容化剤を含む混合物を用いており、これにより実施例1ではボトル全体の剛性が低下したと推測される。 Further, in the rigidity evaluation, it was confirmed that Example 1 had lower compressive strength and lower rigidity, that is, higher squeeze property than Comparative Example 1. In Comparative Example 1, simple EVOH was used as the material for the oxygen barrier layer, whereas in Example 1, a mixture containing LDPE and a compatibilizer was used as the material for the oxygen barrier layers A and B in addition to EVOH. Therefore, it is assumed that the rigidity of the entire bottle was lowered in Example 1.
1 口部
2 胴部
3 底部
4 外層
5 酸素バリア層A
6 バージン層
7 リグラインド層
8 酸素バリア層B
9 内層
1 Mouth 2 Body 3 Bottom 4 Outer Layer 5 Oxygen Barrier Layer A
6 Virgin layer 7 Regrind layer 8 Oxygen barrier layer B
9 Inner layer

Claims (6)

  1.  外側から順に、酸素バリア層Aと、リグラインド層と、酸素バリア層Bとをこの順序で含むスクイズ容器であって、
     前記酸素バリア層A及び前記酸素バリア層Bが、それぞれエチレン-ビニルアルコール共重合体と、ポリエチレンと、相容化剤と、を含むスクイズ容器。
    A squeeze container including an oxygen barrier layer A, a regrind layer, and an oxygen barrier layer B in this order from the outside,
    A squeeze container in which the oxygen barrier layer A and the oxygen barrier layer B each contain an ethylene-vinyl alcohol copolymer, polyethylene, and a compatibilizer.
  2.  前記酸素バリア層A及び前記酸素バリア層Bがそれぞれ、エチレン-ビニルアルコール共重合体とポリエチレンとを95:5~50:50の質量比で含み、さらに、エチレン-ビニルアルコール共重合体とポリエチレンとの合計量100質量部当たり1~49質量部の相容化剤を含む請求項1に記載のスクイズ容器。 The oxygen barrier layer A and the oxygen barrier layer B each contain an ethylene-vinyl alcohol copolymer and polyethylene in a mass ratio of 95: 5 to 50:50, and further include an ethylene-vinyl alcohol copolymer and polyethylene. The squeeze container according to claim 1, further comprising 1 to 49 parts by mass of the compatibilizer per 100 parts by mass of the total amount of the compatibilizer.
  3.  前記スクイズ容器の質量に対する、前記酸素バリア層A及び前記酸素バリア層Bの合計の質量の割合が1~30質量%である請求項1又は2に記載のスクイズ容器。 The squeeze container according to claim 1 or 2, wherein a ratio of a total mass of the oxygen barrier layer A and the oxygen barrier layer B to a mass of the squeeze container is 1 to 30% by mass.
  4.  前記スクイズ容器の質量に対する、前記酸素バリア層Bの質量の割合が0.5~15質量%である請求項1から3のいずれか一項に記載のスクイズ容器。 The squeeze container according to any one of claims 1 to 3, wherein a ratio of the mass of the oxygen barrier layer B to the mass of the squeeze container is 0.5 to 15 mass%.
  5.  前記スクイズ容器の胴部における最も薄い部分の厚みが180~1500μmである請求項1から4のいずれか一項に記載のスクイズ容器。 The squeeze container according to any one of claims 1 to 4, wherein the thinnest part of the body of the squeeze container has a thickness of 180 to 1500 µm.
  6.  前記スクイズ容器が、外層と、前記酸素バリア層Aと、前記リグラインド層と、前記酸素バリア層Bと、内層とをこの順序で含む請求項1から5のいずれか一項に記載のスクイズ容器。
     
    The squeeze container according to claim 1, wherein the squeeze container includes an outer layer, the oxygen barrier layer A, the regrind layer, the oxygen barrier layer B, and an inner layer in this order. ..
PCT/JP2019/035704 2018-10-31 2019-09-11 Squeeze container WO2020090242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204688 2018-10-31
JP2018204688A JP2020070050A (en) 2018-10-31 2018-10-31 Squeeze container

Publications (1)

Publication Number Publication Date
WO2020090242A1 true WO2020090242A1 (en) 2020-05-07

Family

ID=70461832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035704 WO2020090242A1 (en) 2018-10-31 2019-09-11 Squeeze container

Country Status (2)

Country Link
JP (2) JP2020070050A (en)
WO (1) WO2020090242A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192998A (en) * 2019-05-28 2020-12-03 株式会社吉野工業所 Extrusion blow-molded container
JP7485943B2 (en) * 2020-08-31 2024-05-17 キョーラク株式会社 Plastic containers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999686A (en) * 1973-01-27 1974-09-20
JPH05147177A (en) * 1991-11-27 1993-06-15 Nippon Synthetic Chem Ind Co Ltd:The Laminated material
JPH10204229A (en) * 1996-11-19 1998-08-04 Kuraray Co Ltd Resin composition and multi-layered structure product
JP2003063543A (en) * 2001-08-23 2003-03-05 Nippon Synthetic Chem Ind Co Ltd:The Squeezing-out multi-layer container
JP2013224166A (en) * 2012-04-23 2013-10-31 Toyo Seikan Co Ltd Multilayer container including regrind layer with suppressed yellowing
JP2018135133A (en) * 2017-02-22 2018-08-30 東洋製罐株式会社 Multilayer container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999686A (en) * 1973-01-27 1974-09-20
JPH05147177A (en) * 1991-11-27 1993-06-15 Nippon Synthetic Chem Ind Co Ltd:The Laminated material
JPH10204229A (en) * 1996-11-19 1998-08-04 Kuraray Co Ltd Resin composition and multi-layered structure product
JP2003063543A (en) * 2001-08-23 2003-03-05 Nippon Synthetic Chem Ind Co Ltd:The Squeezing-out multi-layer container
JP2013224166A (en) * 2012-04-23 2013-10-31 Toyo Seikan Co Ltd Multilayer container including regrind layer with suppressed yellowing
JP2018135133A (en) * 2017-02-22 2018-08-30 東洋製罐株式会社 Multilayer container

Also Published As

Publication number Publication date
JP2020070050A (en) 2020-05-07
JP2023036850A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US4079850A (en) Multi-layer blow molded container and process for preparation thereof
JP2023036850A (en) squeeze container
KR20190040244A (en) Oxygen barrier plastic materials
US20140076928A1 (en) Material composition, laminate tube and method for manufacture thereof
JP2699814B2 (en) Plastic multilayer container and cooked rice package with excellent flavor retention
JPH0680150A (en) Tubular contailer, and its top mouth part
JP3702503B2 (en) Oily food container
JP2006224482A (en) Multilayered film
JPS61249750A (en) Multilayer plastic vessel
JPS63237924A (en) Manufacture of multi-layer vessel
JPH10114371A (en) Oxygen-absorbing multi-layer plastic container excellent in preservability
US8268419B2 (en) Polypouch for packaging of superior kerosene oil
JP2004291538A (en) Multilayer plastic container for housing content with low moisture content, and package wherein content is housed in the multilayer plastic container
JP5282326B2 (en) Seal plug using hygroscopic laminate
JP2004237647A (en) Plastic multi-layer container for oxidizing hair dye
JP2000033674A (en) Multilayered film and product thereof
JP5165277B2 (en) Multilayer bottle
JP7260333B2 (en) Direct blow multilayer container
WO2019230929A1 (en) Multi-layer plastic container comprising ethylene-vinyl alcohol copolymer
JP2011088636A (en) Product contained in multilayer plastic container
JPH115721A (en) Multilayer tube vessel for dentifrice, package and production of package
JP5428615B2 (en) Plastic container with suppressed coloring due to contents
JP6323079B2 (en) Multi-layer squeeze bottle
JP2001079996A (en) Laminated packaging material
JP6764440B2 (en) Container and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878765

Country of ref document: EP

Kind code of ref document: A1