WO2020088111A1 - Structure de conduite d'air à écoulement tangentiel, radiateur soufflant et climatiseur pourvu de structure de conduite d'air à écoulement tangentiel - Google Patents

Structure de conduite d'air à écoulement tangentiel, radiateur soufflant et climatiseur pourvu de structure de conduite d'air à écoulement tangentiel Download PDF

Info

Publication number
WO2020088111A1
WO2020088111A1 PCT/CN2019/105003 CN2019105003W WO2020088111A1 WO 2020088111 A1 WO2020088111 A1 WO 2020088111A1 CN 2019105003 W CN2019105003 W CN 2019105003W WO 2020088111 A1 WO2020088111 A1 WO 2020088111A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
flow
panel
duct structure
flow duct
Prior art date
Application number
PCT/CN2019/105003
Other languages
English (en)
Chinese (zh)
Inventor
朱芳勇
廖俊杰
李树云
李业强
李建建
王现林
吴俊鸿
高旭
陈志伟
陈启荣
暨文伟
石浩哲
朱振
王启龙
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020088111A1 publication Critical patent/WO2020088111A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0052Details for air heaters
    • F24H9/0057Guiding means
    • F24H9/0063Guiding means in air channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression

Definitions

  • the present application relates to the technical field of fans, in particular to a cross-flow duct structure, a heater, and an air conditioner having the same.
  • the requirements for indoor heat exchange equipment such as air conditioners and heaters are getting higher and higher.
  • the indoor unit of the heat exchange equipment is required to have small size, thin thickness, and beautiful appearance, and on the one hand, there is an increasing demand for quietness.
  • the small size of the shell will cause abnormal noise due to dynamic and static interference between the shell and the moving parts including the fan blades and the motor. This contradicts the customer's silent experience.
  • the purpose of the present application is to address the deficiencies in the above technology, and propose an air-conditioning indoor unit air guide structure and an air conditioner, aiming to solve the problem of gaps existing in the existing air-conditioner indoor unit air guide plate after closing.
  • the technical problem solved by the present application is that under the condition that the air intake of the heat exchange equipment is limited, the cross-flow fan blade acts as a high-speed moving component, and the static gradient is too close to the static panel component due to dynamic and static interference, and the speed gradient is too large to cause abnormal noise.
  • the present application provides a cross-flow duct structure, including a volute, a panel, an air inlet, and an air outlet, a cross-flow fan blade is provided in the volute, and an unequal space is formed between the panel and the cross-flow fan blade
  • the minimum distance between the panel and the cross-flow fan blade is L, and a wind guide structure is provided at the position of the panel.
  • the wind guide structure is a bent or straight plate structure, one end of which is fixed on the panel, and the other end is suspended.
  • the wind guide structure when the wind guide structure is a curved plate structure, the wind guide structure is curved in an arc shape as a whole, and the bending direction is the same as the circumferential velocity vector of the rotation of the nearest cross-flow blade.
  • the wind guide structure is an arc-shaped structure in which the panel is arranged to protrude toward the inside of the cross-flow duct.
  • the wind guide structure is a structure that pushes the position of the panel outward, so that the minimum gap between the panel and the cross-flow wind blade is greater than L.
  • the number of the wind guiding structure is not less than one.
  • a plurality of the air guide structures are sequentially arranged along the panel near the air outlet side, wherein the first air guide structure is disposed at a minimum distance between the panel and the cross-flow blades.
  • the distance between the hanging end of each wind guide structure and the rotation center of the cross-flow wind blade is the same.
  • the arrangement of the wind guide structure satisfies the following conditions:
  • Dmin represents the minimum gap between the cross-flow vane and the panel
  • d represents the horizontal length of the wind guide structure.
  • a grille mechanism is provided on the air outlet.
  • the present application also provides a heater, including the above-mentioned cross-flow duct structure.
  • the present application also provides an air conditioner including the above-mentioned cross-flow duct structure.
  • FIG. 1 is a schematic diagram of the main body structure of a heater according to an embodiment of the present application.
  • FIG. 2 is a view of the position requirements of the wind guide structure according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a simulation solution according to an embodiment of the present application.
  • Fig. 4 is a cloud diagram of broadband noise distribution based on the schemes of Fig. 3;
  • This application aims to solve the problem of abnormal wind duct noise caused by limited shell size, and proposes a cross-flow duct structure, including a volute, a panel, an air inlet, and an air outlet.
  • the volute is provided with a cross-flow wind blade
  • An unequal spacing space is formed between the panel and the cross-flow blades, the minimum distance between the panel and the cross-flow blades is L, and a wind guide structure is provided at the position of the panel.
  • the cross-flow duct structure of the present application can be applied to heaters and air conditioners.
  • This application adopts a special wind guide structure at the position of the smallest gap between the cross-flow fan blade and the panel to promote the volute tongue outflow to return to the cross-flow area in advance, so as to achieve the purpose of improving efficiency and reducing noise.
  • a heater is used as an example to further describe the structure of the cross-flow duct.
  • the structure of the heater is shown in Figure 1.
  • the main structure includes the air inlet 1 and the inlet grille, the panel 2, the cross-flow fan 3, the air guide structure 4, the volute 5, the heat exchange equipment 6, the air outlet 7, the snail Shell 8, throat 9, etc.
  • the air inlet 1 and the air inlet grille the air inlet 1 is at the upper end of the heater, the air inlet grille is placed in the air inlet 1, and the air inlet grille has the function of preventing burns.
  • the panel 2 is on one side of the air inlet 1 and the lower part of the intake grille. When the heater is installed, the panel 2 faces the customer.
  • the cross-flow fan blade 3 is a high-speed rotating moving part inside the heater.
  • the wind guide structure 4 is provided at the position of the panel 2.
  • the structure of the volute tongue 5 of the cross-flow air duct is located between the heat exchange device 6 and the cross-flow air blade 3, and is at a certain distance from the cross-flow air blade 3.
  • the heat exchange device 6 is a heat generating device in a heater, and is downstream of the cross-flow fan blade 3.
  • the air outlet 7 is located on the lower side of the cross-flow fan and the heat exchange device 6 and is close to the panel 2.
  • the associated air outlet 7 includes but is not limited to structures such as an outlet grille, guide vanes, and air guide plates.
  • the volute 8 is structured on the other side of the cross-flow fan blade 3 and wraps the cross-flow fan blade 3 with the panel 2 on the left and right sides.
  • volute 8 and the volute tongue 5 and the panel 2 together with the cross-flow fan 3, a cross-flow duct for the heater is formed.
  • the volute 9 structure is connected between the volute 8 and the air inlet 1 and is connected to the upstream of the volute 8 structure.
  • the wind guide structure 4 is a bent plate structure, one end of which is fixed on the panel 2 and the other end is suspended.
  • the wind guiding structure 4 may be arranged as shown in FIG. 1 in an overall upward curve, and the upward direction is the same as the circumferential velocity vector at which the nearest cross-flow blade rotates.
  • the wind guide structure 4 is a straight plate structure as shown in FIG. 7, one end of which is fixed on the panel 2 and the other end is suspended.
  • the setting of the wind guiding structure satisfies the following conditions:
  • D min represents the minimum gap between the cross flow vane 3 and the panel 2; d represents the horizontal length of the wind guide structure.
  • the wind guide structure is a straight plate or a curved plate structure
  • the wind guide structure may be provided in multiples, that is, 2 to n wind guide structures of the same or different lengths and the same or different intervals are used.
  • three equidistant wind guide structures are used as an example for description.
  • the arrangement of a plurality of the wind guiding structures is shown in FIG. 5 and is arranged in sequence along the panel 2 close to the air outlet 7 side, wherein the first wind guiding structure is provided at At the minimum distance between the panel 2 and the cross flow vane 3.
  • the distance between the hanging end of each wind guide structure and the center of rotation of the cross-flow fan blade 3 is the same, this structure can better improve the air flow of the cross-flow fan, and more effectively improve the overall fan Silent performance.
  • the wind guide structure is shown in FIG. 6, and the panel 2 is arranged as an arc structure convex toward the inside of the cross-flow duct.
  • the wind guide structure may also be a structure as shown in Scheme 1 in FIG. 3, that is, the position of the panel 2 is pushed outward so that the minimum between the panel 2 and the cross flow vane 3 is The gap is greater than L.
  • the advantage of this solution is that the distance between the panel 2 and the cross-flow blade 3 increases due to the position of the panel 2, which reduces the mutual interference caused by the panel 2 and the cross-flow blade 3 being too close. Can effectively reduce noise. But this solution will further aggravate the leakage at the volute. Therefore, this solution is mainly used to verify whether the cause of noise is related to the distance between the panel and the wind blade.
  • the volute tongue of the cross-flow fan needs to maintain a certain distance from the fan blade, but this gap is also the main location of the leakage flow. After the high-speed airflow leaks from the volute tongue gap, it returns to the panel area. The high-speed airflow interacts with the panel to produce an abnormal sound.
  • a local diversion structure at the minimum gap between the cross-flow vane and the panel, although it seems to further shorten the gap between the panel and the vane, due to the small cross-section of the diversion structure, the erosion area is limited, and the diversion structure will leak the volute tongue
  • the flow is forced back into the cross flow area, reducing the volute leakage flow and the eccentric vortex size (see Figure 3 and the table below for details). The simulation results show that by adding this local diversion structure, the flow rate is increased by 17%, and the broadband noise is Was dropped.
  • the plan 1 is to push the position of the panel 2 outward;
  • the plan 2 is an arc structure protruding toward the inside of the cross-flow duct;
  • Option 4 is to set a longer straight plate at the minimum gap between the cross-flow vane 3 and the panel 2;
  • Option 5 is to set a minimum between the cross-flow vane 3 and the panel 2 A straight plate is provided above the gap.
  • this application increases the airflow of the cross-flow duct to return to the cross-flow area at an appropriate position by adding a wind guide device locally, thereby increasing the air volume of the cross-flow fan and achieving the purpose of improving efficiency;
  • the high-speed airflow at the tongue position re-enters the flow area as soon as possible, reducing the action time of the high-speed airflow at this position and the panel, and minimizing the noise abnormality caused by dynamic and static interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Flow Control Members (AREA)

Abstract

La présente invention concerne une structure de conduite d'air à écoulement tangentiel, un radiateur soufflant et un climatiseur pourvu de la structure de conduite d'air à écoulement tangentiel. La structure de conduite d'air à écoulement tangentiel comprend une volute, un panneau, une entrée d'air et une sortie d'air ; une pale de ventilateur tangentiel est agencée dans la volute ; le panneau et la pale de ventilateur tangentiel sont espacés inégalement ; l'espacement minimal entre le panneau et la pale de ventilateur tangentiel est égal à L ; une structure de guidage d'air est agencée sur le panneau. La structure de conduite d'air à écoulement tangentiel de la présente invention peut être appliquée au radiateur soufflant. Selon la présente invention, un appareil de guidage d'air est ajouté localement afin d'amener l'écoulement de sortie d'une languette en spirale de la conduite d'air à écoulement tangentiel à retourner vers une zone d'écoulement tangentiel à une position appropriée à l'avance, ce qui permet d'améliorer le volume d'air d'un ventilateur tangentiel et d'atteindre l'objectif d'amélioration de l'efficacité ; un écoulement d'air à grande vitesse, au niveau de la languette en spirale, entre de nouveau dans la zone d'écoulement tangentiel dès que possible afin de raccourcir un temps d'action entre l'écoulement d'air à grande vitesse au niveau de ladite position et le panneau et de réduire le plus possible le bruit anormal provoqué par l'interaction rotor-stator.
PCT/CN2019/105003 2018-11-02 2019-09-10 Structure de conduite d'air à écoulement tangentiel, radiateur soufflant et climatiseur pourvu de structure de conduite d'air à écoulement tangentiel WO2020088111A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811301364.8 2018-11-02
CN201811301364.8A CN109237790B (zh) 2018-11-02 2018-11-02 一种贯流风道结构、暖风机及具有其的空调器

Publications (1)

Publication Number Publication Date
WO2020088111A1 true WO2020088111A1 (fr) 2020-05-07

Family

ID=65080441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105003 WO2020088111A1 (fr) 2018-11-02 2019-09-10 Structure de conduite d'air à écoulement tangentiel, radiateur soufflant et climatiseur pourvu de structure de conduite d'air à écoulement tangentiel

Country Status (2)

Country Link
CN (1) CN109237790B (fr)
WO (1) WO2020088111A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237790B (zh) * 2018-11-02 2024-04-30 珠海格力电器股份有限公司 一种贯流风道结构、暖风机及具有其的空调器
CN110553399B (zh) * 2019-07-17 2021-07-20 珠海格力电器股份有限公司 一种贯流风道组件及暖风机
CN110529924A (zh) * 2019-09-20 2019-12-03 珠海格力电器股份有限公司 一种风道组件及具有风道组件的装置
CN116007058B (zh) * 2022-12-21 2024-06-04 珠海格力电器股份有限公司 一种风机组件及空调室内机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202040895U (zh) * 2011-03-25 2011-11-16 广州华凌空调设备有限公司 一种空调器室内机
CN103017264A (zh) * 2012-12-29 2013-04-03 李力游 一种立式风道的空调室内机
EP2628416B1 (fr) * 2012-02-17 2015-01-21 Hussmann Corporation Présentoir réfrigéré à diviseur de flux d'air
CN104764093A (zh) * 2015-03-25 2015-07-08 广东美的制冷设备有限公司 挂壁式空调器室内机
CN106352407A (zh) * 2016-09-19 2017-01-25 珠海格力电器股份有限公司 空调器
CN207501231U (zh) * 2017-11-02 2018-06-15 周冬芬 一种改进暖风机
CN109237790A (zh) * 2018-11-02 2019-01-18 珠海格力电器股份有限公司 一种贯流风道结构、暖风机及具有其的空调器
CN209101570U (zh) * 2018-11-02 2019-07-12 珠海格力电器股份有限公司 一种贯流风道结构、暖风机及具有其的空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202040895U (zh) * 2011-03-25 2011-11-16 广州华凌空调设备有限公司 一种空调器室内机
EP2628416B1 (fr) * 2012-02-17 2015-01-21 Hussmann Corporation Présentoir réfrigéré à diviseur de flux d'air
CN103017264A (zh) * 2012-12-29 2013-04-03 李力游 一种立式风道的空调室内机
CN104764093A (zh) * 2015-03-25 2015-07-08 广东美的制冷设备有限公司 挂壁式空调器室内机
CN106352407A (zh) * 2016-09-19 2017-01-25 珠海格力电器股份有限公司 空调器
CN207501231U (zh) * 2017-11-02 2018-06-15 周冬芬 一种改进暖风机
CN109237790A (zh) * 2018-11-02 2019-01-18 珠海格力电器股份有限公司 一种贯流风道结构、暖风机及具有其的空调器
CN209101570U (zh) * 2018-11-02 2019-07-12 珠海格力电器股份有限公司 一种贯流风道结构、暖风机及具有其的空调器

Also Published As

Publication number Publication date
CN109237790B (zh) 2024-04-30
CN109237790A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020088111A1 (fr) Structure de conduite d'air à écoulement tangentiel, radiateur soufflant et climatiseur pourvu de structure de conduite d'air à écoulement tangentiel
US9267511B2 (en) Turbofan and indoor unit of air-conditioning apparatus including the same
WO2019136939A1 (fr) Pale de ventilateur axial, ensemble pale de ventilateur axial et ensemble conduit de ventilateur axial
US10480817B2 (en) Duct-type indoor unit of air conditioner
JP4690682B2 (ja) 空調機
CN108869405B (zh) 一种双进风离心风机和吸油烟机
CN108644905B (zh) 出风风道结构和空调器
US20150226227A1 (en) Turbo fan and air conditioner
CN202532618U (zh) 一种卡式空调机以及应用于该卡式空调机的降噪栅格
WO2016119473A1 (fr) Système d'échange de refroidissement d'unité intérieure de climatisation
KR20130041639A (ko) 시로코팬 및 그를 갖는 공기조화기
JPWO2017145275A1 (ja) 送風機及びそれを用いた空気調和機
JP6611676B2 (ja) 送風機および冷凍サイクル装置の室外機
CN209101570U (zh) 一种贯流风道结构、暖风机及具有其的空调器
EP3726061B1 (fr) Ensemble conduit d'air pour ventilateur axial
JP2013096378A (ja) 遠心送風機
JP2008202855A (ja) 空冷ヒートポンプチラー
JP5293684B2 (ja) 空気調和機の室内機
KR102136879B1 (ko) 터보팬 및 이를 사용한 천정형 공기조화기
US20170003038A1 (en) Air-conditioning indoor machine
JP6601994B2 (ja) 空気調和機の室内機及びこれを用いた空気調和機
JP6029355B2 (ja) 空気調和機の室内機
WO2022142359A1 (fr) Appareil d'alimentation en air
JP2011196572A (ja) 空気調和機の室内機
JPH03229991A (ja) 横断流送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879982

Country of ref document: EP

Kind code of ref document: A1