WO2020087514A1 - 一种高纯度丙酸钙的过滤与结晶装置及使用方法 - Google Patents

一种高纯度丙酸钙的过滤与结晶装置及使用方法 Download PDF

Info

Publication number
WO2020087514A1
WO2020087514A1 PCT/CN2018/113742 CN2018113742W WO2020087514A1 WO 2020087514 A1 WO2020087514 A1 WO 2020087514A1 CN 2018113742 W CN2018113742 W CN 2018113742W WO 2020087514 A1 WO2020087514 A1 WO 2020087514A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporative
membrane filter
separator
evaporation
pipeline
Prior art date
Application number
PCT/CN2018/113742
Other languages
English (en)
French (fr)
Inventor
许卫东
Original Assignee
南通奥凯生物技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通奥凯生物技术开发有限公司 filed Critical 南通奥凯生物技术开发有限公司
Priority to PCT/CN2018/113742 priority Critical patent/WO2020087514A1/zh
Publication of WO2020087514A1 publication Critical patent/WO2020087514A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/122Propionic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the field of chemical manufacturing, in particular to a high-purity calcium propionate filtering and crystallization device and method of use.
  • Calcium propionate is a white crystal or powder. It is a safe and reliable mold inhibitor for food and feed approved by the World Health Organization (WHO) and the United Nations Food and Agriculture Organization (FAO). Calcium propionate, like other fats, can be absorbed by humans and animals through metabolism and supply the necessary calcium for humans and animals. This advantage is unmatched by other antifungal agents and is considered GRAS. Calcium propionate is an acid-type food preservative. Under acidic conditions, it produces free propionic acid and has antibacterial effect. Its bacteriostatic effect is affected by the environmental pH value. At pH 5.0, the mold has the best inhibitory effect; at pH 6.0, the bacteriostatic ability is significantly reduced, and the minimum bacteriostatic concentration is 0.01%.
  • the melting point of calcium propionate is above 400 °C, and it is odorless or slightly odorous. Easily deliquescent in humid air. It can be made into monohydrate or trihydrate. It is a mono-inclined plate crystal, slightly soluble in methanol, ethanol, insoluble in benzene and acetone.
  • the pH of the 10% aqueous solution is equal to 7.4. Sensitive to light and heat, decomposed into calcium carbonate at 330-340 degrees. Calcium propionate decomposes into propionic acid under acidic conditions. Propionic acid has a narrower antibacterial spectrum than benzoic acid and sorbic acid, and its antibacterial effect is weaker. It has special effects on mold, but has limited effect on bacteria, but no effect on yeast.
  • Calcium propionate can be used as an anti-mold agent for food and feed, and as a preservative for bread and pastries. Calcium propionate is easy to mix with flour evenly, while serving as a freshness preservative, it can also provide the necessary calcium for the human body and play a role in strengthening food. Calcium propionate has an inhibitory effect on mold and aerobic Bacillus that can cause the production of sticky filaments in bread, but has no inhibitory effect on yeast. It is effective for mold, aerobic spore-producing bacteria, gram-negative bacteria, aflatoxin, etc. in starch, protein-containing and oily substances, and has unique anti-mold and antiseptic properties. It is a food, brewing, feed, Chinese medicine preparation, etc.
  • Calcium propionate as a feed additive can effectively suppress feed mold and extend the shelf life of feed. If it is combined with other inorganic salts, it can also increase the appetite of livestock and increase the milk yield of dairy cows. Calcium propionate has low volatility, high temperature resistance, good animal adaptability, and is suitable for use in a variety of feeds. In addition, calcium propionate can also be used as an additive in toothpaste and cosmetics, and plays a good antiseptic role.
  • the equipment for large-scale production of calcium propionate at home and abroad is a general enamel reactor. Its mature process is roughly as follows: that is, the neutralization reaction of propionic acid and calcium hydroxide or sodium carbonate is carried out, and then subjected to evaporation crystallization, dehydration, drying Finished products are obtained through packaging and other processes.
  • the solubility of the reaction is not well controlled, and the filtration and evaporation effect is not good, resulting in waste of energy and low yield. Therefore, the existing process and equipment for filtering and evaporating crystalline calcium propionate need to be improved.
  • the purpose of the present invention is to provide a high-purity calcium propionate filtration and crystallization device and method of use that have a large amount of filtration, a good filtration effect, and energy saving and consumption reduction in view of the shortcomings of the prior art.
  • the technical scheme adopted by the present invention is: a high-purity calcium propionate filtering and crystallization device, including a feed port, a filtering part, an evaporating crystallization part, and a discharging tube which are connected to each other in sequence
  • the filtering Part includes a bag filter, the upper end of the bag filter communicates with the feed port through the pipeline A, the lower end of the bag filter communicates with the upper end of the plate heat exchanger through the pipeline B; the plate heat exchanger The lower end is connected to one end of the membrane filter A and the membrane filter B through the pipeline C, respectively, and the other ends of the membrane filter A and the membrane filter B are connected to the evaporating crystallization part through the material return pipeline, and the membrane filter B Above the membrane filter A and parallel to each other.
  • the evaporative crystallization part includes a preheater, an evaporative separation part, and a steam reflux part which are sequentially connected.
  • the upper end of the preheater communicates with the material return pipe, and the lower end of the preheater communicates with the evaporation separation part through the pipe D.
  • the steam return part includes a concentration tank, the bottom of the concentration tank communicates with the evaporation separation part through a pipe E, and the upper end of the concentration tank communicates with a preheater through a pipe F.
  • a discharge pipe is also connected to the evaporation separation part.
  • the evaporative separation part includes an evaporative separator A, an evaporative separator B, and an evaporative separator C that communicate with each other, and the connection mode with other components is that the lower end of the evaporative separator A is connected to the preheater through a pipe D
  • the lower ends communicate with each other, and the upper ends of the evaporation separator A, the evaporation separator B, and the evaporation separator C respectively communicate with the bottom of the concentration tank through a pipe E.
  • a discharge pipe is connected to the bottom of the evaporation separator C.
  • a high-pressure primary pump is fixed on the pipeline A
  • a high-pressure secondary pump is fixed on the pipeline C.
  • the invention also discloses a method for using the high-purity calcium propionate filtering and crystallization device as described above, including the following method steps:
  • reaction solution is sent to the plate heat exchanger via the pipeline B;
  • the plate heat exchanger transfers part of the heat of the hot solution to the cold solution to achieve heat exchange and prevent condensation and crystallization;
  • the reaction solution is transported to the membrane filter A through the pipeline C.
  • the membrane filter A filters the fine impurities in the reaction solution and transports it to the preheater through the material return pipeline for heating;
  • reaction solution that can be filtered in the membrane filter A will continue to be filtered in the membrane filter B in the future. After filtration, it will also be transported to the preheater through the material return pipe for heating;
  • reaction solution after filtration and preheating is evaporated and separated through evaporative separator A, evaporative separator B, and evaporative separator C respectively, and the finished product flows out of the discharge pipe;
  • the steam generated by the evaporation separator A, evaporation separator B, and evaporation separator C in the evaporation process is secondarily concentrated and evaporated by the concentration tank, and the generated secondary steam is sent to the preheater as a heat source to continue recycling.
  • the working pressure of the high-pressure primary pump and the high-pressure secondary pump is 0.3-0.4 MPa.
  • the filtration accuracy of the membrane filter A and the membrane filter B is 0.5-1um.
  • the calcium propionate filtration and crystallization device of the present invention through the double filtration of the membrane filter A and the membrane filter B in the filtration part, increases the filtration amount and the filtration speed, and the plate heat exchanger can remove the hot solution The heat is transferred to the cold solution, which plays the role of heat exchange and saves energy consumption.
  • the triple evaporation separation is used to make the evaporation and crystallization more full.
  • the steam mechanical recompression technology of the concentration tank is then used to recycle the steam generated in the evaporation and crystallization process. , Energy saving and consumption reduction, production efficiency is greatly improved, and the effect is good.
  • the double filtration of the membrane filter A and the membrane filter B that are designed in parallel up and down makes the reaction solution that can be filtered in the membrane filter A continue to be filtered through the membrane filter B, which increases the filtration Increase the filtration speed and speed up production.
  • the plate heat exchanger of the present invention transfers part of the heat of the hot solution to the cold solution to achieve heat exchange and prevent condensation and crystallization.
  • the triple evaporation separation of the evaporation separator A, the evaporation separator B, and the evaporation separator C makes the evaporation and crystallization more sufficient, and the quality of the finished product is better.
  • the present invention utilizes the steam mechanical recompression technology of the concentration tank to recycle the steam generated in the evaporation and crystallization process, saving energy and reducing consumption, and saving the production cost of the enterprise.
  • the use method of the calcium propionate filtration and crystallization device of the present invention is 0.3-0.4MPa, so that the reaction solution can be smoothly placed in the pipeline without wasting energy consumption Medium transmission improves production efficiency and reduces enterprise costs.
  • the filtration accuracy of the membrane filter A and membrane filter B is 0.5-1um, so that the fine impurities in the reaction solution can be fully filtered, the filtration effect is better, and the purity of the finished product high.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • Figure 2 is a flow chart of the present invention.
  • a high-purity calcium propionate filtering and crystallization device of the present invention includes a feed inlet 1, a filtering part, an evaporating crystallization part, and a discharge pipe that are connected to each other.
  • the filtering part includes a bag filter 4, the upper end of the bag filter 4 communicates with the feed port 1 through a pipe A3, and the lower end of the bag filter 4 communicates with the upper end of the plate heat exchanger 6 through a pipe B5.
  • the lower end of the plate heat exchanger 6 communicates with one end of the membrane filter A9 and the membrane filter B10 through the pipe C7, and the other ends of the membrane filter A9 and the membrane filter B10 are connected to the evaporative crystallization part through the material return pipe 11 and the membrane filters
  • the filter B10 is above the membrane filter A9 and parallel to each other.
  • the evaporative crystallization part includes a preheater 12, an evaporative separation part, and a steam reflux part which are sequentially connected.
  • the upper end of the preheater 12 communicates with the material return pipe 11, and the lower end of the preheater 12 communicates with the evaporation separation part through a pipe D13.
  • the steam return portion includes a concentration tank 18, the bottom of the concentration tank 18 communicates with the evaporation separation portion through a pipe E17, and the upper end of the concentration tank 18 communicates with the preheater 12 through a pipe F19.
  • the evaporative separation part includes an evaporative separator A14, an evaporative separator B15, and an evaporative separator C16 that are in communication with each other, and the connection with other components is as follows: the lower end of the evaporative separator A14 communicates with the lower end of the preheater 12 through a pipe D13, The upper ends of the evaporative separator A14, the evaporative separator B15, and the evaporative separator C16 communicate with the bottom of the concentration tank 18 through pipes E17, respectively.
  • a discharge pipe 20 is connected to the bottom of the evaporation separator C16.
  • a high-pressure primary pump 2 is fixed on the pipeline A3
  • a high-pressure secondary pump 8 is fixed on the pipeline C7.
  • the filtering part of the present invention passes through the double filtration of the membrane filter A9 and the membrane filter B10 designed in parallel up and down, so that the reaction solution that will be filtered in the membrane filter A9 in the future will continue to be filtered through the membrane filter B10, increasing the amount of filtration.
  • the filtration speed is increased and the production speed is accelerated.
  • the plate heat exchanger 6 transfers part of the heat of the hot solution to the cold solution to achieve heat exchange and prevent condensation and crystallization.
  • the steam mechanical recompression technology of the concentration tank 18 is used to recycle the steam generated in the evaporation and crystallization process, saving energy and reducing consumption, and saving the production cost of the enterprise.
  • the invention also discloses a method for using the high-purity calcium propionate filtering and crystallization device as described above, including the following method steps:
  • the bag filter 4 filters the impurities of large particles in the reaction solution, and then the reaction solution is transferred to the plate heat exchanger 6 through the pipeline B5;
  • the plate heat exchanger 6 transfers part of the heat of the hot solution to the cold solution to achieve heat exchange and prevent condensation and crystallization;
  • the reaction solution is transported to the membrane filter A9 through the pipeline C7, and the membrane filter A9 filters the fine impurities in the reaction solution and transports it to the preheater 12 through the material return pipeline 11 for heating;
  • reaction solution that can be filtered in the membrane filter A9 in the future continues to be filtered in the membrane filter B10. After the filtration, it is also transported to the preheater 12 through the material return pipe 11 for heating;
  • reaction solution After filtering and preheating, the reaction solution is evaporated and separated by evaporation separator A14, evaporation separator B15, and evaporation separator C16, and the finished product flows out from the discharge pipe 20;
  • the vapor generated by the evaporation separator A14, the evaporation separator B15, and the evaporation separator C16 in the evaporation process is secondarily concentrated and evaporated by the concentration tank 18, and the generated secondary steam is sent to the preheater 12 as a heat source to continue to be recycled.
  • the operating pressure of the high-pressure primary pump 2 and the high-pressure secondary pump 8 is 0.3-0.4 MPa.
  • the filtration accuracy of the membrane filter A9 and membrane filter B10 is 0.5-1um.
  • the use method of the calcium propionate filtration and crystallization device of the present invention is 0.3-0.4MPa, so that the reaction solution can be smoothly placed in the pipeline without wasting energy consumption Medium transmission improves production efficiency and reduces enterprise costs.
  • the filtration accuracy of the membrane filter A9 and membrane filter B10 is 0.5-1um, so that the fine impurities in the reaction solution can be fully filtered, the filtration effect is better, and the purity of the finished product is high.
  • the calcium propionate filtration and crystallization device and use method of the present invention increase the amount of filtration and increase the filtration speed through the double filtration of the membrane filter A and the membrane filter B in the filtration part, and the plate heat exchanger can convert the hot solution The heat is transferred to the cold solution, which plays the role of heat exchange and saves energy consumption.
  • the triple evaporation separation is used to make the evaporation and crystallization more full.
  • the steam mechanical recompression technology of the concentration tank is then used to recycle the steam generated during the evaporation and crystallization process. Utilization, energy saving and consumption reduction, production efficiency is greatly improved, and the effect is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种高纯度丙酸钙的过滤与结晶装置,包括相互连通的进料口、过滤部分、蒸发结晶部分、出料管,过滤部分包括袋式过滤器;板式换热器下端部通过管道C分别与膜过滤器A和膜过滤器B的一端连通,另一端通过物料回流管道与蒸发结晶部分相连。蒸发结晶部分包括依次连通的预热器、蒸发分离部分、蒸汽回流部分。蒸汽回流部分包括浓缩罐,浓缩罐的底部通过管道E与蒸发分离部分连通,浓缩罐上端部通过管道F与预热器连通。本发明还公开了该装置的使用方法,本发明将蒸发结晶过程中产生的蒸汽循环利用,节能降耗,生产效率大大提高,且效果好。

Description

一种高纯度丙酸钙的过滤与结晶装置及使用方法 技术领域
本发明涉及化工制造领域,特别是涉及一种高纯度丙酸钙的过滤与结晶装置及使用方法。
背景技术
丙酸钙外观为白色晶体或粉末,是世界卫生组织(WHO)和***粮农组织(FAO)批准使用的安全可靠的食品与饲料用防霉剂。丙酸钙与其它脂肪一样可以通过代谢被人畜吸收,并供给人畜必需的钙,这一优点是其它防霉剂所无法相比的,被认为GRAS。丙酸钙是酸型食品防腐剂,在酸性条件下,产生游离丙酸,具有抗菌作用。其抑菌作用受环境pH值的影响,在pH值5.0时霉菌的抑制作用最佳;pH值6.0时抑菌能力明显降低,最小抑菌浓度为0.01%。在酸性介质(淀粉、含蛋白质和油脂物质)中对各类霉菌、革兰氏阴性杆菌或好氧芽孢杆菌有较强的抑制作用,还可以抑制黄曲霉素的产生,而对酵母菌无害,对人畜无害,无毒副作用。是食品、酿造、饲料、中药制剂诸方面的一种新型、安全、高效的食品与饲料用防霉剂。
丙酸钙的熔点在400℃以上,无臭或具轻微特臭。在湿空气中易潮解。可制成一水物或三水物,为单斜板状结晶,微溶于甲醇、乙醇,不溶于苯及丙酮。10%水溶液pH等于7.4。对光,热敏感,330~340度分解为碳酸钙。丙酸钙在酸性条件下分解成丙酸。丙酸的抗菌谱比 苯甲酸和山梨酸窄,抗菌作用弱些。它对霉菌有特效,而对细菌作用有限,对酵母则没有作用。
丙酸钙可用作食品及饲料的防霉剂,用于面包及糕点的保存剂。丙酸钙易于与面粉混合均匀,在作为保鲜防腐剂的同时又能提供人体必需的钙质,起到强化食品的作用。丙酸钙对霉菌和能引起面包产生粘丝物质的好气性芽孢杆菌有抑制作用,对酵母无抑制作用。在淀粉、含蛋白质和油脂物质中对霉菌、好气性芽孢产生菌、革兰氏阴性菌、黄曲霉素等有效,具有独特的防霉、防腐性质,是食品、酿造、饲料、中药制剂诸方面的一种新型、安全、高效、广谱食品与饲料用防霉剂。丙酸钙作为饲料添加剂可有效地抑制饲料发霉、延长饲料保存期,若与其他无机盐配合还可提高牲畜的食欲,提高奶牛的奶产量。丙酸钙挥发性小、耐高温、动物适应性好,适合于多种饲料使用。此外,丙酸钙也可作为牙膏,化妆品的添加剂,起到良好的防腐作用。
目前国内外规模化生产丙酸钙的设备为一般的搪瓷反应釜,其成熟工艺的工序大致如下:即取丙酸与氢氧化钙或碳酸钠中和反应,再经蒸发结晶、脱水、干燥、包装等工序获得成品,然而由于各反应物在反应过程中一次性添加,反应溶度不好控制,且过滤蒸发效果不好,造成能源的浪费,成品率不高。故现有的这种过滤、蒸发结晶丙酸钙的工艺及设备有待改进。
发明内容
本发明的目的在于针对现有技术的不足,提供一种过滤量多、过滤效果好且节能降耗的高纯度丙酸钙的过滤与结晶装置及使用方法。
为解决上述技术问题,本发明采用的技术方案为:一种高纯度丙酸钙的过滤与结晶装置,包括依次相互连通的进料口、过滤部分、蒸发结晶部分、出料管,所述过滤部分包括袋式过滤器,所述袋式过滤器上端部通过管道A与进料口连通,所述袋式过滤器下端部通过管道B与板式换热器上端部连通;所述板式换热器下端部通过管道C分别与膜过滤器A和膜过滤器B的一端连通,所述膜过滤器A和膜过滤器B的另一端通过物料回流管道与蒸发结晶部分相连,所述膜过滤器B在膜过滤器A的上方且相互平行。
所述蒸发结晶部分包括依次连通的预热器、蒸发分离部分、蒸汽回流部分。
所述预热器上端部与物料回流管道相连通,预热器下端部通过管道D与蒸发分离部分连通。
所述蒸汽回流部分包括浓缩罐,所述浓缩罐的底部通过管道E与蒸发分离部分连通,浓缩罐上端部通过管道F与预热器连通。
所述蒸发分离部分还连接有出料管。
进一步的,所述蒸发分离部分包括相互连通的蒸发分离器A、蒸发分离器B、蒸发分离器C,且与其他部件的连接方式为,蒸发分离器A的下端部通过管道D与预热器下端部连通,蒸发分离器A、蒸发分离器B、蒸发分离器C的上端部分别通过管道E与浓缩罐底部连通。
进一步优化,所述蒸发分离器C底部连接有出料管。
进一步的,所述管道A上固定设有高压一级泵,所述管道C上固定设有高压二级泵。
本发明还公开了一种如上所述的高纯度丙酸钙的过滤与结晶装置的使用方法,包括如下方法步骤:
a.将固体氢氧化钙和丙酸反应后的反应溶液投入进料口,打开高压一级泵和高压二级泵,通过高压一级泵的作用将反应溶液经管道A送至袋式过滤器;
b.袋式过滤器将反应溶液中大颗粒的杂质过滤后,经管道B将反应溶液输送至板式换热器;
c.板式换热器将热溶液的部分热量传递给***液,达到热量交换,防止冷凝结晶的目的;
d.通过高压二级泵的作用,将反应溶液经管道C输送至膜过滤器A,膜过滤器A将反应溶液中的细小杂质过滤后通过物料回流管道输送至预热器加热;
e.同时,未来得及在膜过滤器A中过滤的反应溶液继续在膜过滤器B中继续过滤,过滤完后,同样经物料回流管道输送至预热器加热;
f.过滤、预热之后的反应溶液分别通过蒸发分离器A、蒸发分离器B、蒸发分离器C蒸发分离结晶,成品从出料管中流出;
g.蒸发分离器A、蒸发分离器B、蒸发分离器C在蒸发过程中产生的蒸汽经浓缩罐二次浓缩蒸发后,产生的二次蒸汽输送至预热器作为热源继续循环使用。
进一步的,所述高压一级泵和高压二级泵的使用压力为0.3-0.4MPa。
进一步的,所述膜过滤器A和膜过滤器B的过滤精度为0.5-1um。
本发明的有益效果如下:
1.本发明的丙酸钙过滤与结晶装置,通过在过滤部分膜过滤器A和膜过滤器B的双重过滤,加大了过滤量,提高了过滤速度,板式换热器能将热溶液的热量传递给***液,起到了热量交换的作用,节约了能耗,同时通过三重蒸发分离,使蒸发结晶更充分,再利用浓缩罐的蒸汽机械再压缩技术将蒸发结晶过程中产生的蒸汽循环利用,节能降耗,生产效率大大提高,且效果好。
2.本发明在过滤部分通过上下平行设计的膜过滤器A和膜过滤器B的双重过滤,使未来得及在膜过滤器A中过滤的反应溶液继续通过膜过滤器B过滤,加大了过滤量,提高了过滤速度,加快了生产速度。
3.本发明的板式换热器将热溶液的部分热量传递给***液,达到热量交换,防止冷凝结晶的目的。
4.本发明通过蒸发分离器A、蒸发分离器B、蒸发分离器C的三重蒸发分离,使蒸发结晶更充分,成品质量更好。
5.本发明利用浓缩罐的蒸汽机械再压缩技术将蒸发结晶过程中产生的蒸汽循环利用,节能降耗,节约了企业的生产成本。
6.本发明的丙酸钙过滤与结晶装置使用方法,高压一级泵和高压二级泵的使用压力为0.3-0.4MPa,使在不浪费能耗的前提下,将反应溶液顺利的在管道中输送,提高了生产效率和减少了企业成本。
7.本发明的丙酸钙过滤与结晶装置使用方法,膜过滤器A和膜过滤器B的过滤精度为0.5-1um,使反应溶液内的细小杂质能充分过滤,过滤效果更好,成品纯度高。
附图说明
图1为本发明的结构示意图。
图2为本发明的使用流程图。
附图说明:1、进料口,2、高压一级泵,3、管道A,4、袋式过滤器,5、管道B,6、板式换热器,7、管道C,8、高压二级泵,9、膜过滤器A,10、膜过滤器B,11、物料回流管道,12、预热器,13、管道D,14、蒸发分离器A,15、蒸发分离器B,16、蒸发分离器C,17、管道E,18、浓缩罐,19、管道F,20、出料管。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
如图1所示,本发明的一种高纯度丙酸钙的过滤与结晶装置,包括相互连通的进料口1、过滤部分、蒸发结晶部分、出料管。
过滤部分包括袋式过滤器4,袋式过滤器4上端部通过管道A3与进料口1连通,袋式过滤器4下端部通过管道B5与板式换热器6上端部连通。板式换热器6下端部通过管道C7分别与膜过滤器A9和膜过滤器B10的一端连通,膜过滤器A9和膜过滤器B10的另一端通过物料回流管道11与蒸发结晶部分相连,膜过滤器B10在膜过滤器 A9的上方且相互平行。
蒸发结晶部分包括依次连通的预热器12、蒸发分离部分、蒸汽回流部分。
预热器12上端部与物料回流管道11相连通,预热器12下端部通过管道D13与蒸发分离部分连通。
蒸汽回流部分包括浓缩罐18,浓缩罐18的底部通过管道E17与蒸发分离部分连通,浓缩罐18上端部通过管道F19与预热器12连通。
蒸发分离部分包括相互连通的蒸发分离器A14、蒸发分离器B15、蒸发分离器C16,且与其他部件的连接方式为:蒸发分离器A14的下端部通过管道D13与预热器12下端部连通,蒸发分离器A14、蒸发分离器B15、蒸发分离器C16的上端部分别通过管道E17与浓缩罐18底部连通。蒸发分离器C16底部连接有出料管20。
作为对本装置的进一步优化,管道A3上固定设有高压一级泵2,管道C7上固定设有高压二级泵8。
本发明在过滤部分通过上下平行设计的膜过滤器A9和膜过滤器B10的双重过滤,使未来得及在膜过滤器A9中过滤的反应溶液继续通过膜过滤器B10过滤,加大了过滤量,提高了过滤速度,加快了生产速度。板式换热器6将热溶液的部分热量传递给***液,达到热量交换,防止冷凝结晶的目的。通过蒸发分离器A14、蒸发分离器B15、蒸发分离器C16的三重蒸发分离,使蒸发结晶更充分,成品质量更好。利用浓缩罐18的蒸汽机械再压缩技术将蒸发结晶过程中产生的蒸汽循环利用,节能降耗,节约了企业的生产成本。
本发明还公开了一种如上所述的高纯度丙酸钙的过滤与结晶装置的使用方法,包括如下方法步骤:
a.将固体氢氧化钙和丙酸反应后的反应溶液投入进料口1,打开高压一级泵2和高压二级泵8,通过高压一级泵2的作用将反应溶液经管道A3送至袋式过滤器4;
b.袋式过滤器4将反应溶液中大颗粒的杂质过滤后,经管道B5将反应溶液输送至板式换热器6;
c.板式换热器6将热溶液的部分热量传递给***液,达到热量交换,防止冷凝结晶的目的;
d.通过高压二级泵8的作用,将反应溶液经管道C7输送至膜过滤器A9,膜过滤器A9将反应溶液中的细小杂质过滤后通过物料回流管道11输送至预热器12加热;
e.同时,未来得及在膜过滤器A9中过滤的反应溶液继续在膜过滤器B10中继续过滤,过滤完后,同样经物料回流管道11输送至预热器12加热;
f.过滤、预热之后的反应溶液分别通过蒸发分离器A14、蒸发分离器B15、蒸发分离器C16蒸发分离结晶,成品从出料管20中流出;
g.蒸发分离器A14、蒸发分离器B15、蒸发分离器C16在蒸发过程中产生的蒸汽经浓缩罐18二次浓缩蒸发后,产生的二次蒸汽输送至预热器12作为热源继续循环使用。
作为对本方法的进一步优化,高压一级泵2和高压二级泵8的使 用压力为0.3-0.4MPa。膜过滤器A9和膜过滤器B10的过滤精度为0.5-1um。
本发明的丙酸钙过滤与结晶装置使用方法,高压一级泵2和高压二级泵8的使用压力为0.3-0.4MPa,使在不浪费能耗的前提下,将反应溶液顺利的在管道中输送,提高了生产效率和减少了企业成本。膜过滤器A9和膜过滤器B10的过滤精度为0.5-1um,使反应溶液内的细小杂质能充分过滤,过滤效果更好,成品纯度高。
本发明的丙酸钙过滤与结晶装置及使用方法,通过在过滤部分膜过滤器A和膜过滤器B的双重过滤,加大了过滤量,提高了过滤速度,板式换热器能将热溶液的热量传递给***液,起到了热量交换的作用,节约了能耗,同时通过三重蒸发分离,使蒸发结晶更充分,再利用浓缩罐的蒸汽机械再压缩技术将蒸发结晶过程中产生的蒸汽循环利用,节能降耗,生产效率大大提高,且效果好。

Claims (7)

  1. 一种高纯度丙酸钙的过滤与结晶装置,包括依次相互连通的进料口、过滤部分、蒸发结晶部分、出料管,其特征在于:
    所述过滤部分包括袋式过滤器,所述袋式过滤器上端部通过管道A与进料口连通,所述袋式过滤器下端部通过管道B与板式换热器上端部连通;所述板式换热器下端部通过管道C分别与膜过滤器A和膜过滤器B的一端连通,所述膜过滤器A和膜过滤器B的另一端通过物料回流管道与蒸发结晶部分相连,所述膜过滤器B在膜过滤器A的上方且相互平行;
    所述蒸发结晶部分包括依次连通的预热器、蒸发分离部分、蒸汽回流部分;
    所述预热器上端部与物料回流管道相连通,预热器下端部通过管道D与蒸发分离部分连通;
    所述蒸汽回流部分包括浓缩罐,所述浓缩罐的底部通过管道E与蒸发分离部分连通,浓缩罐上端部通过管道F与预热器连通;
    所述蒸发分离部分还连接有出料管。
  2. 根据权利要求1所述的一种高纯度丙酸钙的过滤与结晶装置,其特征在于:所述蒸发分离部分包括相互连通的蒸发分离器A、蒸发分离器B、蒸发分离器C,且与其他部件的连接方式为,蒸发分离器A的下端部通过管道D与预热器下端部连通,蒸发分离器A、蒸发分离器B、蒸发分离器C的上端部分别通过管道E与浓缩罐底部连通。
  3. 根据权利要求2所述的一种高纯度丙酸钙的过滤与结晶装置,其特征在于:所述蒸发分离器C底部连接有出料管。
  4. 根据权利要求1所述的一种高纯度丙酸钙的过滤与结晶装置,其特征在于:所述管道A上固定设有高压一级泵,所述管道C上固定设有高压二级泵。
  5. 一种权利要求1-4任意一项所述的高纯度丙酸钙的过滤与结晶装置的使用方法,其特征在于:包括如下方法步骤:
    a.将固体氢氧化钙和丙酸反应后的反应溶液投入进料口,打开高压一级泵和高压二级泵,通过高压一级泵的作用将反应溶液经管道A送至袋式过滤器;
    b.袋式过滤器将反应溶液中大颗粒的杂质过滤后,经管道B将反应溶液输送至板式换热器;
    c.板式换热器将热溶液的部分热量传递给***液,达到热量交换,防止冷凝结晶的目的;
    d.通过高压二级泵的作用,将反应溶液经管道C输送至膜过滤器A,膜过滤器A将反应溶液中的细小杂质过滤后通过物料回流管道输送至预热器加热;
    e.同时,未来得及在膜过滤器A中过滤的反应溶液继续在膜过滤器B中继续过滤,过滤完后,同样经物料回流管道输送至预热器加热;
    f.过滤、预热之后的反应溶液分别通过蒸发分离器A、蒸发分离器B、蒸发分离器C蒸发分离结晶,成品从出料管中流出;
    g.蒸发分离器A、蒸发分离器B、蒸发分离器C在蒸发过程中产生的蒸汽经浓缩罐二次浓缩蒸发后,产生的二次蒸汽输送至预热器作为热源继续循环使用。
  6. 根据权利要求5所述的高纯度丙酸钙的过滤与结晶装置的使用方法,其特征在于:所述高压一级泵和高压二级泵的使用压力为0.3-0.4MPa。
  7. 根据权利要求5所述的高纯度丙酸钙的过滤与结晶装置的使用方法,其特征在于:所述膜过滤器A和膜过滤器B的过滤精度为0.5-1um。
PCT/CN2018/113742 2018-11-02 2018-11-02 一种高纯度丙酸钙的过滤与结晶装置及使用方法 WO2020087514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113742 WO2020087514A1 (zh) 2018-11-02 2018-11-02 一种高纯度丙酸钙的过滤与结晶装置及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113742 WO2020087514A1 (zh) 2018-11-02 2018-11-02 一种高纯度丙酸钙的过滤与结晶装置及使用方法

Publications (1)

Publication Number Publication Date
WO2020087514A1 true WO2020087514A1 (zh) 2020-05-07

Family

ID=70463382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113742 WO2020087514A1 (zh) 2018-11-02 2018-11-02 一种高纯度丙酸钙的过滤与结晶装置及使用方法

Country Status (1)

Country Link
WO (1) WO2020087514A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747174A (zh) * 2010-01-15 2010-06-23 连云港树人科创食品添加剂有限公司 丙酸钙的制备方法及二效闪蒸装置
CN104496790A (zh) * 2014-12-30 2015-04-08 南通奥凯生物技术开发有限公司 一种高纯度丙酸钙的过滤与结晶装置及使用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747174A (zh) * 2010-01-15 2010-06-23 连云港树人科创食品添加剂有限公司 丙酸钙的制备方法及二效闪蒸装置
CN104496790A (zh) * 2014-12-30 2015-04-08 南通奥凯生物技术开发有限公司 一种高纯度丙酸钙的过滤与结晶装置及使用方法

Similar Documents

Publication Publication Date Title
CN106512457B (zh) 苏氨酸四效浓缩结晶藕合***及其工作过程
CN104473120B (zh) 一种味精的生产工艺
CN101747174B (zh) 丙酸钙的制备方法及二效闪蒸装置
CN101691349A (zh) 一种从发酵液中提取色氨酸的工艺
CN102643209B (zh) 一种l-谷氨酰胺的提取方法
CN102793053A (zh) 一种高蛋白低灰分血浆蛋白粉的生产工艺
CN104945026A (zh) 一种稀硝酸废水生产农用硝酸铵钙的装置及生产方法
CN100423646C (zh) 一种从曲拉干酪素工业废弃液中回收乳清蛋白的工艺
CN104496790B (zh) 一种高纯度丙酸钙的过滤与结晶装置及使用方法
WO2020087514A1 (zh) 一种高纯度丙酸钙的过滤与结晶装置及使用方法
CN211245768U (zh) 一种粗脂肪酸和甘油的分离***
CN1679993A (zh) 中药药液连续高效真空浓缩工艺及设备
CN210560178U (zh) 缬氨酸二效浓缩结晶***
CN106512461B (zh) 一种粒状丙酸钙的低温蒸发结晶装置及工艺
CN212854665U (zh) 一种新型半水浴杀菌式自循环双效浓缩装置
CN204097371U (zh) 山梨酸钾的生产装置
CN102550799A (zh) 一种从发酵液中快速提取食用抗菌肽的方法
CN210419326U (zh) 一种高盐废水高效单效蒸发***
CN111905393A (zh) 一种新型半水浴杀菌式自循环双效浓缩装置
CN205925037U (zh) 硫酸法钛白钛液的浓缩装置
CN110483318A (zh) 一种l-苏氨酸的提取方法
CN206424600U (zh) 苏氨酸四效浓缩结晶藕合***
CN217391815U (zh) 一种聚葡萄糖液分离提纯装置
CN206198723U (zh) 一种亚氯酸钠副产物废硫酸生产硫酸氢钠用配料罐
CN112691398B (zh) 多效连续脱氨蒸发***及利用其进行缬氨酸脱氨的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938789

Country of ref document: EP

Kind code of ref document: A1