WO2020085015A1 - Electrode and solid-state lithium ion secondary battery - Google Patents

Electrode and solid-state lithium ion secondary battery Download PDF

Info

Publication number
WO2020085015A1
WO2020085015A1 PCT/JP2019/038835 JP2019038835W WO2020085015A1 WO 2020085015 A1 WO2020085015 A1 WO 2020085015A1 JP 2019038835 W JP2019038835 W JP 2019038835W WO 2020085015 A1 WO2020085015 A1 WO 2020085015A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipo
electrode
oxide
active material
glass
Prior art date
Application number
PCT/JP2019/038835
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 山本
淳一 丹羽
明 後藤
武文 福本
町田 信也
Original Assignee
株式会社豊田自動織機
学校法人甲南学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 学校法人甲南学園 filed Critical 株式会社豊田自動織機
Publication of WO2020085015A1 publication Critical patent/WO2020085015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid-state lithium-ion secondary battery and an electrode used in the solid-state lithium-ion secondary battery.
  • non-aqueous secondary batteries in which a resin separator is impregnated with a non-aqueous electrolytic solution containing an organic solvent are mainly used as secondary batteries.
  • the non-aqueous electrolyte containing the organic solvent is not completely fixed by the separator, the non-aqueous electrolyte may leak when the battery is damaged.
  • solid-state secondary batteries using solid electrolytes such as ceramics and polymers instead of non-aqueous electrolyte and resin separators are being actively researched and developed.
  • sulfides have the property that the conductivity of lithium ions, which are charge carriers, is relatively high.
  • the sulfide material is relatively soft, it has excellent moldability and has an advantage that it is easy to form an interface between the sulfide material and the active material used for the electrode.
  • the sulfide material and the active material can be brought into close contact with each other only by pressurizing a mixture thereof to form the above interface, so that a conduction path for lithium ions can be easily secured.
  • the oxide is made into a solid electrolyte through sintering at a high temperature.
  • the solid electrolyte made of an oxide has a high density and a dense structure, so that the problem of dendrite hardly occurs.
  • a solid electrolyte using an oxide is poor in moldability because it is hard and forms an interface between the oxide type solid electrolyte and the active material used for the electrode. Is relatively difficult.
  • the solid-type secondary electrolyte is sputtered by adhering the positive electrode active material to the oxide-type solid electrolyte by sputtering, or the sintering method by sintering the bonded product in which the positive-electrode active material is adhered to the oxide-type solid electrolyte. I had no choice but to manufacture batteries.
  • the thickness of the positive electrode is on the nano level, and it is difficult to increase the capacity of the solid secondary battery.
  • the positive electrode active material may be denatured due to heat.
  • Li 7 La 3 Zr 2 O 12 As described in Non-Patent Document 1, Weppner et al. Proposed Li 7 La 3 Zr 2 O 12 as a garnet-type oxide that exhibits high conductivity and is electrochemically stable. Li 7 La 3 Zr 2 O 12, which is this oxide type solid electrolyte, is generally produced at a temperature of 1000 ° C. or higher.
  • the positive electrode in this reason, to improve the adhesion between the Li 7 La 3 Zr 2 O 12 and the positive electrode active material, for example, the raw material powder of Li 7 La 3 Zr 2 powder O 12 or Li 7 La 3 Zr 2 O 12
  • heating at 1000 ° C. or higher is required.
  • the positive electrode active material may be denatured due to such temperature, it is practically difficult to adopt the sintering method.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new electrode suitable for a solid-state lithium-ion secondary battery that includes an oxide-type solid electrolyte as a separator.
  • the present inventor has conceived a technique of bringing electrodes into close contact with a separator made of an oxide type solid electrolyte by utilizing the property of low melting point glass containing lithium. Specifically, by containing a low-melting-point glass containing lithium in the electrode active material layer in which the electrode active material is present, while ensuring movement of lithium ions inside the electrode active material layer, It was recalled that the moldability and the adhesiveness of the electrode active material layer and the separator made of the oxide type solid electrolyte are secured. Then, the present inventor has completed the present invention by paying attention to LiPO 3 —Li 2 SO 4 type glass as a low melting point glass containing lithium and conducting intensive studies.
  • the electrode of the present invention contains an oxide electrolyte and an electrode active material produced by melting and cooling a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4. It is characterized by including an electrode active material layer and a current collector.
  • x and y satisfy x ⁇ 0, y ⁇ 0, and 0 ⁇ x + y ⁇ 60.
  • the solid-state lithium-ion secondary battery of the present invention includes the electrode of the present invention, a counter electrode, and a separator made of an oxide-type solid electrolyte as a material between the electrode and the counter electrode.
  • the electrode of the present invention is excellent in its own moldability and is also excellent in forming an interface with a separator using an oxide type solid electrolyte as a material.
  • 3 is a powder X-ray diffraction chart of Evaluation Example 1.
  • 3 is a DSC chart of LiPO 3 —Li 2 SO 4 type glass of Production Example
  • E. 3 is a charge / discharge curve of the lithium-ion secondary battery of Reference Example 1.
  • 3 is a schematic diagram of a solid-state lithium-ion secondary battery of Example 2.
  • FIG. 3 is a charging curve of the solid-state lithium-ion secondary battery of Example 2.
  • 3 is a discharge curve of the solid-state lithium-ion secondary battery of Example 2.
  • 5 is a charge / discharge curve of the solid-state lithium-ion secondary battery of Example 3. It is an overwriting of the Raman spectrum of the evaluation example 11.
  • 5 is a charge / discharge curve of the solid-state lithium-ion secondary battery of Example 5.
  • 9 is a charge / discharge curve of the solid-state lithium-ion secondary battery of Example 6.
  • the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in the range.
  • the upper limit value and the lower limit value, and the numerical values listed in Examples, Reference Examples, and the like can be arbitrarily combined to form a numerical value range. Further, numerical values arbitrarily selected from the numerical range can be set as upper and lower numerical values.
  • the electrode of the present invention is an oxide electrolyte prepared by melting and cooling a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (in the present specification, " It may be referred to as "LiPO 3 -Li 2 SO 4 based glass"), an electrode active material layer containing an electrode active material, and a current collector.
  • x and y satisfy x ⁇ 0, y ⁇ 0, and 0 ⁇ x + y ⁇ 60.
  • the electrode of the present invention may be a positive electrode or a negative electrode.
  • the electrode of the present invention is preferably the positive electrode. If the electrode is a positive electrode, the electrode active material is the positive electrode active material and the electrode active material layer is the positive electrode active material layer. If the electrode is a negative electrode, the electrode active material is the negative electrode active material and the electrode active material layer is the negative electrode active material layer.
  • the positive electrode active material as long as it can be used as a positive electrode active material for a secondary battery, for example, the general formula of the layered rock salt structure: Li a Ni b Co c M d D e O f (M is Al and / or Mn, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, At least one element selected from Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P and V.
  • Li 2 MnO 3 can be mentioned.
  • a spinel such as LiMn 2 O 4 , Li 2 Mn 2 O 4 and the like, and a solid solution composed of a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (M in the formula: Are selected from at least one of Co, Ni, Mn, and Fe)) and the like.
  • tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal)
  • LiMPO 4 F such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal
  • Any of the metal oxides used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element contained in the basic composition may be substituted with another metal element.
  • a positive electrode active material material that does not contain lithium ions that contribute to charge and discharge for example, simple substance of sulfur, a compound of sulfur and carbon, a metal sulfide such as TiS 2 , V 2 O 5 , MnO.
  • oxides such as 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic compounds, and other known materials.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, or phenoxyl may be adopted as the positive electrode active material.
  • a positive electrode active material containing no lithium it is necessary to add ions to the positive electrode and / or the negative electrode by a known method in advance.
  • a metal or a compound containing the ion may be used.
  • the general formula of the layered rock salt structure Li a Ni b Co c M d D e O f (M is Al and / or Mn .D is W, Mo, Re , Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, Sc, Sn , In, Y, Bi, S, Si, Na, K, P, and V.
  • 0.2 ⁇ a ⁇ 2, b + c + d + e 1, 0 ⁇ e ⁇ 1, 1.7 ⁇
  • a lithium composite metal oxide represented by the formula: f ⁇ 3 is preferable.
  • the values of b, c, and d are not particularly limited as long as the above conditions are satisfied, but those satisfying 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1 Good, and at least one of b, c, d is in the range of 10/100 ⁇ b ⁇ 95/100, 1/100 ⁇ c ⁇ 60/100, 1/100 ⁇ d ⁇ 60/100.
  • the range of 40/100 ⁇ b ⁇ 90/100, 1/100 ⁇ c ⁇ 40/100, 1/100 ⁇ d ⁇ 40/100 is more preferable, and 60/100 ⁇ b ⁇ 85/100, The range of 1/100 ⁇ c ⁇ 20/100 and 1/100 ⁇ d ⁇ 20/100 is more preferable.
  • any numerical value within the range defined by the above general formula may be used, and preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ e ⁇ 0.2, 1.8 ⁇ f ⁇ 2. 0.5, more preferably 0.8 ⁇ a ⁇ 1.3, 0 ⁇ e ⁇ 0.1, and 1.9 ⁇ f ⁇ 2.1, respectively.
  • the negative electrode active material a material capable of inserting and extracting lithium ions can be used. Therefore, there is no particular limitation as long as it is a simple substance, an alloy, or a compound capable of inserting and extracting lithium ions.
  • the negative electrode active material Li, Group 14 elements such as carbon, silicon, germanium, and tin, Group 13 elements such as aluminum and indium, Group 12 elements such as zinc and cadmium, Group 15 elements such as antimony and bismuth, and magnesium.
  • An alkaline earth metal such as calcium, or a Group 11 element such as silver or gold may be used alone.
  • the negative electrode active material When silicon or the like is used as the negative electrode active material, one atom of silicon reacts with a plurality of lithium, resulting in a high-capacity active material. However, there is a problem that the volume expansion and contraction accompanying lithium absorption and desorption becomes significant. Since this may occur, it is also preferable to employ an alloy or compound in which a simple substance such as silicon is combined with another element such as a transition metal as the negative electrode active material in order to reduce the possibility.
  • Specific examples of alloys or compounds include tin-based materials such as Ag—Sn alloys, Cu—Sn alloys, Co—Sn alloys, carbon-based materials such as various graphites, and SiO x (0.3 ⁇ x ⁇ 1.6).
  • a silicon-based material a silicon simple substance, or a composite of a silicon-based material and a carbon-based material.
  • LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 which is a raw material of the LiPO 3 --Li 2 SO 4 system glass, are x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ . Satisfy 60. Since x + y is within the range of 0 ⁇ x + y ⁇ 60, the LiPO 3 —Li 2 SO 4 based glass is in a glass state and exhibits a certain degree of conductivity. When LiPO 3 —Li 2 SO 4 system glass is measured by a powder X-ray diffractometer, a halo showing an amorphous state is observed.
  • LiPO 3 —Li 2 SO 4 type glass exhibits a glass transition temperature in a relatively low temperature region. Therefore, during the production of the electrode of the present invention, the mixture of the electrode active material and LiPO 3 -Li 2 SO 4 -based glass, by heating at a temperature above the glass transition temperature of LiPO 3 -Li 2 SO 4 -based glass, LiPO The 3- Li 2 SO 4 based glass can be softened and enter the gaps between the particles of the electrode active material. As a result, an electrode active material layer having a dense structure is formed.
  • x + y the lower the glass transition temperature of the LiPO 3 —Li 2 SO 4 based glass tends to be. From the viewpoint that the heating temperature at the time of manufacturing the electrode can be lowered, x + y is preferably large. Further, it is considered that the LiPO 3 —Li 2 SO 4 based glass using the raw material in which the value of x + y is in the range of 45 to 55 has the maximum value of electric conductivity of the LiPO 3 —Li 2 SO 4 based glass. On the other hand, when the value of x + y exceeds 60, crystals are likely to be generated, and it may be difficult to manufacture glass.
  • x + y preferably satisfies 40 ⁇ x + y ⁇ 60, more preferably 45 ⁇ x + y ⁇ 55, and further preferably 47 ⁇ x + y ⁇ 53. .
  • the LiPO 3 —Li 2 SO 4 system glass plays an important role for ensuring the denseness and formability of the electrode active material layer, and further, as a current collector. It plays an important role in ensuring the adhesiveness of the electrode active material layer.
  • the LiPO 3 —Li 2 SO 4 based glass plays an important role in ensuring the conductivity and the lithium ion conductivity of the electrode active material layer in terms of the function of the electrode of the present invention.
  • LiPO 3 —Li 2 SO 4 -based glass is a suitable interface between the electrode of the present invention and a separator using an oxide-type solid electrolyte as a material. Play an important role in forming the.
  • the mass ratio of the electrode active material and LiPO 3 —Li 2 SO 4 based glass is preferably in the range of 8: 2 to 3: 7, more preferably in the range of 7: 3 to 4: 6. preferable.
  • the LiPO 3 —Li 2 SO 4 based glass can be produced by heating and melting a mixture of LiPO 3 glass, Li 2 SO 4 and / or Li 2 WO 4 to form a liquid, and rapidly cooling the liquid.
  • the LiPO 3 glass can be manufactured by heating a mixture of a Li compound and a phosphoric acid compound into a liquid and rapidly cooling the liquid.
  • the present inventor also used (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (x, which was used as a raw material, due to the melting temperature during the production of LiPO 3 --Li 2 SO 4 system glass.
  • y satisfy x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ 60) and the composition in the LiPO 3 —Li 2 SO 4 based glass may be different from each other. I found out. Specifically, it was found that at the time of manufacturing, a part of S escapes from the system.
  • the LiPO 3 —Li 2 SO 4 type glass produced by removing a part of S out of the system at the time of production exhibits properties of excellent electrical conductivity and smooth movement of lithium ions. I also found out. It is considered that when S is released from the system, it is released as sulfur oxide along with oxygen.
  • the melting in the production of the LiPO 3 —Li 2 SO 4 type glass is performed in the atmosphere, that is, in the presence of oxygen, so that oxygen is abundant in the system. Therefore, since the amount of oxygen required for the production of a stable product is supplied, it is not expected that the amount of oxygen is unnaturally insufficient in the LiPO 3 —Li 2 SO 4 based glass.
  • the melting temperature in the above production method is preferably in the range of 650 to 950 ° C, more preferably in the range of 700 to 900 ° C, and even more preferably in the range of 750 to 850 ° C.
  • the melting temperature may be changed in multiple steps.
  • the holding time of the melting temperature in the above production method may be, for example, 0.5 to 5 hours, 1 to 4 hours, and 1.5 to 3 hours, although it depends on the melting temperature.
  • the LiPO 3 —Li 2 SO 4 system glass having a composition in which a part of S is separated from the elemental composition of the raw material is suitable for the performance as an electrolyte.
  • composition of LiPO 3 —Li 2 SO 4 system glass in which a part of S is desorbed from the elemental composition of the raw material is Li (100 + x + y) P (100- (x + y)) S x1 W y O (300 + x + y) (however, x1 ⁇ x is satisfied).
  • composition formula (1) corresponds to the composition formula of the raw material divided by about 100.
  • Li a P b S c W d O e a, b, c, d and e are 1 ⁇ a ⁇ 1.6, 0.4 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 0.6, 0 ⁇ d ⁇ 0.6, 0 ⁇ c + d ⁇ 0.6 , B + c + d ⁇ 1, 3 ⁇ e ⁇ 3.6 are satisfied.
  • the range of a is 1.2 ⁇ a ⁇ 1.6, 1.4 ⁇ a ⁇ 1.58, 1.45 ⁇ a ⁇ 1.57, 1.50 ⁇ a ⁇ 1.56, 1.51 ⁇
  • a ⁇ 1.55 can be exemplified.
  • Examples of the range of b include 0.4 ⁇ b ⁇ 0.8, 0.45 ⁇ b ⁇ 0.6, 0.47 ⁇ b ⁇ 0.55, and 0.48 ⁇ b ⁇ 0.52.
  • Examples of the range of c include 0.05 ⁇ c ⁇ 0.5, 0.1 ⁇ c ⁇ 0.4, 0.15 ⁇ c ⁇ 0.38, and 0.2 ⁇ c ⁇ 0.35.
  • Examples of the range of e include 3.01 ⁇ e ⁇ 3.4, 3.02 ⁇ e ⁇ 3.2, and 3.03 ⁇ e ⁇ 3.15.
  • a solid electrolyte other than LiPO 3 —Li 2 SO 4 based glass and known additives such as a conduction aid are blended within a range not departing from the gist of the present invention. May be.
  • the conduction aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the electrically conductive auxiliary agent may be a chemically inert electronic high conductor, and carbonaceous fine particles such as carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles are exemplified. It Examples of carbon black include acetylene black, Ketjen black (registered trademark), furnace black, channel black and the like. These conductive aids can be added to the active material layer either individually or in combination of two or more.
  • Current collector refers to a chemically inactive electron high conductor that keeps current flowing through the electrodes during discharging or charging of the solid-state lithium-ion secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, stainless steel, etc. A metal material can be illustrated.
  • the current collector may be covered with a known protective layer. You may use what collected the surface of the collector by a well-known method as a collector.
  • the current collector can take the form of foil, sheet, film, wire, rod, mesh, or the like. Therefore, as the current collector, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be preferably used. When the current collector is in the form of foil, sheet or film, its thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the method for producing the electrode of the present invention includes: A composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (where x and y satisfy x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ 60).
  • a step of mixing the oxide type electrolyte produced by melting and cooling and the electrode active material to form a mixture (hereinafter sometimes referred to as a mixing step), Heating the mixture at a temperature in the range above the glass transition temperature and below the crystallization temperature of the oxide-type electrolyte in the state where the mixture and the current collector are in contact with each other (hereinafter sometimes referred to as a heating step);
  • the manufacturing method having
  • a general mixer such as a mixing stirrer, a ball mill, a sand mill, a bead mill, a disperser, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer may be adopted.
  • the heating temperature in the heating step is too high, the LiPO 3 —Li 2 SO 4 based glass may be crystallized, which is inconvenient. Furthermore, the electrode active material may be deteriorated or deteriorated. From these points, the upper limit of the heating temperature is preferably less than 400 ° C.
  • the heating temperature in the heating step is preferably a glass transition temperature (hereinafter sometimes abbreviated as Tg) of LiPO 3 —Li 2 SO 4 based glass or more and less than 400 ° C., more preferably Tg or more and 350 ° C. or less, and more than Tg or more.
  • Tg glass transition temperature
  • the temperature is more preferably 330 ° C. or lower, particularly preferably Tg or higher and 310 ° C.
  • the heating temperature in the heating step may be Tg + 5 ° C. to Tg + 40 ° C., Tg + 5 ° C. to Tg + 30 ° C., or Tg + 5 ° C. to Tg + 20 ° C.
  • the heating step it is preferable to secure the time and environment for the softened LiPO 3 —Li 2 SO 4 based glass to flow into the gaps between the particles of the electrode active material during heating.
  • the time and environment for the softened LiPO 3 —Li 2 SO 4 based glass it is preferable to maintain the condition for applying and / or reducing the external pressure to the mixture for a certain period of time.
  • the heating step is preferably performed in an atmosphere that suppresses deterioration of the electrode active material and the LiPO 3 —Li 2 SO 4 based glass, and is performed in an atmosphere of an inert gas such as helium, argon, or nitrogen. preferable.
  • a heating device used in the heating step a pressurizing-heating device (hot press etc.) capable of pressurizing is preferable, and further, a discharge plasma sintering device capable of pressurizing and heating while energizing can also be used. it can.
  • the solid-state lithium-ion secondary battery of the present invention includes the electrode of the present invention, a counter electrode, and a separator made of an oxide solid electrolyte as a material between the electrode and the counter electrode.
  • the counter electrode may be the electrode of the present invention or a conventional general electrode.
  • oxide type solid electrolyte one that does not react with lithium during the operation of the solid state lithium ion secondary battery and does not cause a reduction reaction during the operation of the solid state lithium ion secondary battery is selected.
  • oxide type solid electrolyte examples include garnet type oxide, NASICON type oxide, and LISICON type oxide.
  • oxide type solid electrolyte an oxide containing no transition metal in the composition is desirable in view of the potential window. The reason is that when an oxide containing a transition metal is used as the solid electrolyte, when a material having a low potential is used for the negative electrode, the transition metal in the solid electrolyte is reduced before the negative electrode reaction, and therefore the applied current is This is because it is used not for the reaction but for the reductive decomposition of the electrolyte.
  • a composition formula Li a M 1 3 M 2 2 O 12 5 ⁇ a ⁇ 7, M 1 is Y, La, Pr, Nd, Sm, Lu, Mg, Ca, or One or more elements selected from Sr or Ba, M 2 is an oxide represented by one or more elements selected from Zr, Hf, Nb or Ta, and Li and M of the composition formula.
  • some of 1 or M 2 can be exemplified oxides substituted with Li, M 1 or M 2. More specific garnet-type oxides, Li 7 La 3 Zr 2 O 12, Li 5 La 3 Nb 2 O 12, Li 5 La 3 Ta 2 O 12, Li 5 La 3 (Nb, Ta) 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 can be mentioned.
  • the garnet-type oxide is particularly preferable because it has the advantage that it does not react even under a high potential condition of 5 V or 6 V between the positive electrode and the negative electrode in addition to the advantage that it does not react under a condition where the potential with respect to lithium is 0 V or lower. .
  • NASICON-type oxide a composition formula Li a M 3 b M 4 c P d O e (0.5 ⁇ a ⁇ 5, 0 ⁇ b ⁇ 3, 0.5 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 3, 2 ⁇ b + d ⁇ 4, 3 ⁇ e ⁇ 12, M 3 is one or more elements selected from B, Al, Ga, In, C, Si, Ge, Sn, Sb, or Se, and M 4 is Ti or Zr. , Hf, Ge, In, Ga, Sn, or one or more elements selected from Al).
  • Suitable NASICON-type oxides include those in which M 3 is Al and M 4 is Ge, and specifically, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 can be exemplified.
  • LISICON-type oxide is an oxide represented by the composition formula Li 4-2x Zn x GeO 4 (0 ⁇ x ⁇ 1).
  • LiPON which part of oxygen in the Li 3 PO 4, Li 3 PO 4 was replaced by nitrogen, can be exemplified Li 3 BO 3.
  • a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (where x and y satisfy x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ 60).
  • An oxide type electrolyte produced by melting and cooling the composition represented may be adopted as an oxide type solid electrolyte as a separator.
  • a composition represented by LiPO 3 —Li 2 SO 4 based glass in the electrode of the present invention and (100-x) LiPO 3 ⁇ xLi 2 SO 4 (x satisfies 0 ⁇ x ⁇ 60) in the separator is prepared.
  • the oxide electrolytes produced by melting and cooling may be different or the same.
  • the thickness (t) of the separator made of the oxide solid electrolyte is preferably 0.1 ⁇ m ⁇ t ⁇ 2000 ⁇ m, more preferably 0.5 ⁇ m ⁇ t ⁇ 1500 ⁇ m, and further preferably 1 ⁇ m ⁇ t ⁇ 300 ⁇ m. If t is too thick, the resistance increases, which makes it difficult to operate as a battery, and there is a concern that the solid-state lithium-ion secondary battery may increase in size. On the other hand, if t is too thin, manufacturing work may be difficult.
  • a state in which LiPO 3 —Li 2 SO 4 -based glass exists between the current collector of the electrode and the separator made of the oxide-type solid electrolyte it is preferable to perform the step of heating at a temperature within the range of the glass transition temperature of the LiPO 3 —Li 2 SO 4 based glass or more and less than the crystallization temperature (hereinafter, sometimes referred to as an electrode-separator adhesion step).
  • the electrode-separator adhesion step include a state in which an electrode active material layer is sandwiched between a current collector and a separator made of an oxide solid electrolyte, or an electrode active material and LiPO 3 -Li. while sandwiching a mixture of 2 SO 4 -based glass, it may be mentioned the step of heating at a temperature of LiPO 3 -Li within 2 SO 4 system range below the glass transition temperature or higher and the crystallization temperature of the glass.
  • the LiPO 3 —Li 2 SO 4 based glass is softened, and the electrode active material layer can be appropriately adhered to the separator made of the oxide solid electrolyte. Therefore, the interface formed between the electrode and the separator of the present invention is extremely suitable.
  • the electrode of the present invention having a current collector and an electrode active material layer may be used, or the electrode active material and LiPO 3 —Li 2 SO 2 may be used. Alternatively, the electrode active material layer may be used after separately manufacturing the electrode active material layer containing the 4 system glass.
  • the electrode of the present invention is produced and the electrode of the present invention and oxide are produced in one step.
  • a laminated body in which a separator made of a solid electrolyte is closely attached is manufactured.
  • the heating temperature in the electrode-separator contact step is preferably the glass transition temperature of LiPO 3 —Li 2 SO 4 glass or higher and lower than 400 ° C., more preferably Tg or higher and 350 ° C. or lower, still more preferably Tg or higher and 330 ° C. or lower, and Tg or lower. It is particularly preferable that the temperature is 310 ° C. or lower and Tg is 300 ° C. or lower.
  • the heating temperature in the electrode-separator contacting step may be Tg + 5 ° C. to Tg + 40 ° C., Tg + 5 ° C. to Tg + 30 ° C., or Tg + 5 ° C. to Tg + 20 ° C.
  • the electrode-separator contacting step it is preferable to apply an external pressure in the stacking direction of the current collector and the separator during heating.
  • the electrode-separator contacting step is preferably carried out in an atmosphere that suppresses the deterioration of the electrode active material and the LiPO 3 —Li 2 SO 4 based glass.
  • the solid-state lithium-ion secondary battery of the present invention due to its configuration, the electrode active material layer and the separator made of the oxide-type solid electrolyte can be suitably bonded, so that a lithium-ion conduction path is preferably secured. it can. Furthermore, since the solid-state lithium-ion secondary battery of the present invention employs a separator made of an oxide-type solid electrolyte, dendrite formation can be suitably suppressed.
  • the shape of the solid-state lithium-ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylinder type, a square type, a coin type and a laminated type can be adopted.
  • the solid-state lithium-ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be any vehicle that uses electric energy from the secondary battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a solid-state lithium-ion secondary battery is mounted on a vehicle, it is advisable to connect a plurality of solid-state lithium-ion secondary batteries in series to form an assembled battery.
  • Examples of devices equipped with the solid-state lithium-ion secondary battery include, in addition to vehicles, personal computers, portable communication devices, and other battery-driven home appliances, office devices, industrial devices, and the like.
  • the solid-state lithium-ion secondary battery of the present invention is a power storage device and power smoothing device for wind power generation, solar power generation, hydroelectric power generation and other power systems, power supply for ships and / or power supply for auxiliary machinery, Power supply source for aircraft and spacecraft and / or auxiliary machinery, auxiliary power supply for vehicles that do not use electricity as power source, mobile home robot power supply, system backup power supply, uninterruptible power supply It may be used as a power storage device or a power storage device that temporarily stores electric power required for charging in a charging station for electric vehicles.
  • Production Example B A transparent LiPO 3 —Li 2 SO 4 based glass of Production Example B was produced in the same manner as in Production Example A, except that LiPO 3 glass and Li 2 SO 4 ⁇ H 2 O were used at a molar ratio of 60:40. did.
  • Production Example D A transparent LiPO 3 —Li 2 SO 4 based glass of Production Example D was produced in the same manner as in Production Example A, except that LiPO 3 glass and Li 2 SO 4 ⁇ H 2 O were used at a molar ratio of 50:50. did.
  • Production Example K A transparent LiPO 3 -Li of Production Example K was prepared in the same manner as in Production Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:30:20. 2 SO 4 type glass was manufactured.
  • LiPO 3 -Li of Preparation Example O was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:10:40. 2 SO 4 type glass was manufactured.
  • LiPO 3 -Li of Preparation Example R was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 60:20:20. 2 SO 4 type glass was manufactured.
  • LiPO 3 glass except for using the Li 2 SO 4 ⁇ H 2 O and Li 2 WO 4 in a molar ratio 30:35:35 are in Production Example A similar method, LiPO 3 -Li 2 SO of Preparation T 4 series glass was manufactured. White turbidity was observed in the LiPO 3 —Li 2 SO 4 based glass of Production Example T. Such cloudiness is considered to be crystals.
  • Table 1 shows a list of the produced LiPO 3 —Li 2 SO 4 based glasses.
  • FIG. 2 shows a DSC chart of the LiPO 3 —Li 2 SO 4 based glass of Production Example E.
  • the difference between Tc and Tg is almost constant in any LiPO 3 —Li 2 SO 4 based glass.
  • Tg tends to increase as the value of y increases.
  • x (or x + y) in the raw material of the LiPO 3 —Li 2 SO 4 system glass is preferably 45 ⁇ x (or x + y) ⁇ 55. , 47 ⁇ x (or x + y) ⁇ 53 is more preferable.
  • An annular insulating synthetic resin was placed on the copper foil.
  • the insulating synthetic resin was filled with the LiPO 3 —Li 2 SO 4 system glass of Production Example D in the ring, and a small amount of a mixed solvent of ethylene carbonate and diethyl carbonate was added.
  • a cell for evaluation in which the LiPO 3 —Li 2 SO 4 system glass of Production Example D was sandwiched between the copper foil and the lithium foil was produced.
  • the evaluation cell was subjected to a cyclic voltammetry (hereinafter sometimes abbreviated as CV) test in which a voltage of 0 to 2 V was applied. did.
  • CV cyclic voltammetry
  • Example 1 59 parts by mass of LiCoO 2 as a positive electrode active material, 39 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example D, and 2 parts by mass of acetylene black as a conductive additive were mixed to form a positive electrode active material layer.
  • a manufacturing composition was prepared. The composition for producing a positive electrode active material layer was placed in a pressure-heating device under a nitrogen atmosphere. The composition for producing the positive electrode active material layer was heated to 300 ° C. and held for 15 minutes. Then, the composition for producing a positive electrode active material layer heated at 300 ° C. was pressurized at 100 MPa, and the heated / pressurized state was maintained for 30 minutes, and then cooled to room temperature to obtain the positive electrode active material layer of Example 1. Manufactured.
  • a foil made of stainless steel (corresponding to SUS316) having a diameter of 15.5 mm and a thickness of 1 mm was prepared as a current collector.
  • paste-like graphite powder-dispersed water was prepared as a binder between the current collector and the positive electrode active material layer of Example 1.
  • Graphite powder-dispersed water was applied to the surface of the current collector, and the positive electrode active material layer of Example 1 was placed thereon to form a laminate.
  • the positive electrode of Example 1 was manufactured by drying a laminated body and removing water.
  • a metal lithium foil having a thickness of 500 ⁇ m was cut into a diameter of 16 mm to obtain a negative electrode.
  • a glass filter having a diameter of 16 mm and a thickness of 1 mm was prepared as a separator.
  • LiPF 6 was dissolved at a concentration of 1 mol / L in an organic solvent in which ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate were mixed at a volume ratio of 3: 4: 4 to obtain an electrolytic solution.
  • the separator was sandwiched between the positive electrode and the negative electrode of Example 1 to form an electrode body.
  • This electrode body was housed in a coin type battery case CR2032 (Hosen Co., Ltd.), and an electrolytic solution was further injected to obtain a coin type battery. This was used as the lithium-ion secondary battery of Reference Example 1.
  • Example 2 40 parts by mass of a layered rock salt structure lithium nickel cobalt manganese composite oxide as a positive electrode active material, 58 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example D, and 2 parts by mass of acetylene black as a conductive additive. Were mixed to obtain a composition for producing a positive electrode active material layer.
  • LiPO 3 —Li 2 SO 4 glass of Production Example D 50 mg was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
  • a lithium foil having a diameter of 6 mm and a mass of 58.8 mg was prepared.
  • composition for producing a positive electrode active material layer 2.5 mg was placed on an Al foil as a current collector, and a separator was placed thereon. These are heated at 300 ° C. and pressurized at 130 MPa, and the heated / pressurized state is maintained for 30 minutes to form a positive electrode active material layer having a thickness of 0.0148 mm, and a current collector and a positive electrode active material layer.
  • a laminated body was manufactured in which an oxide type solid electrolyte as a separator was integrated. Further, a lithium foil and a Cu foil as a current collector were laminated on the oxide type solid electrolyte and pressed to manufacture a solid type lithium ion secondary battery of Example 2.
  • a cylindrical side molding die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316).
  • a molding apparatus including a molding die and a lower molding die was used.
  • FIG. 4 shows a schematic diagram of the solid-state lithium-ion secondary battery of Example 2 immediately after production.
  • a positive electrode 1 in which a current collector and a positive electrode active material layer are laminated, an oxide solid electrolyte 2 as a separator, a lithium foil 3, and a Cu foil 4 are laminated in this order on a lower mold 10.
  • the upper mold 11 is arranged on the Cu foil 4, and the positive electrode 1, the oxide solid electrolyte 2, the lithium foil 3 and the Cu foil 4 are pressed by the upper mold 11 and the lower mold 10.
  • Reference numeral 5 is a side molding die made of ceramics and having an inner diameter of 10 mm.
  • the theoretical capacity of the positive electrode active material used is about 180 mAh / g. From the discharge capacity of the discharge curve in FIG. 6, it can be said that the solid-state lithium-ion secondary battery of Example 2 exhibited a substantially quantitative capacity.
  • Example 3 As a positive electrode active material, 59.8 parts by mass of a lithium nickel cobalt manganese composite oxide having a layered rock salt structure, 38 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example L, and 2.2 parts by mass as a conduction aid. Part of acetylene black was mixed with a ball mill at 100 rpm for 72 hours to obtain a composition for producing a positive electrode active material layer.
  • LiPO 3 —Li 2 SO 4 type glass of Production Example D 51.3 mg was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
  • a lithium foil having a diameter of 4 mm and an indium foil having a diameter of 6 mm were prepared.
  • 1.4 mg of the positive electrode active material layer-producing composition was placed on an Al foil as a current collector, and a separator was placed thereon. These are heated at 300 ° C. and pressurized at 130 MPa, and the heated / pressurized state is maintained for 30 minutes to form a positive electrode active material layer and to oxidize the current collector, the positive electrode active material layer, and the separator. A laminate in which the physical solid electrolyte was integrated was manufactured. Further, a lithium foil and an indium foil were laminated on the oxide type solid electrolyte and pressed to manufacture a solid type lithium ion secondary battery of Example 3.
  • a cylindrical side forming die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316) were used.
  • a molding apparatus including a molding die and a lower molding die was used.
  • Example 4 Using a ball mill, 30 parts by mass of Li 4 Ti 5 O 12 as a negative electrode active material, 60 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example D, and 10 parts by mass of acetylene black as a conductive additive were used. And mixed at 100 rpm for 72 hours to obtain a composition for producing a negative electrode active material layer.
  • LiPO 3 —Li 2 SO 4 glass of Production Example D 50 mg was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
  • composition for producing a negative electrode active material layer was placed on an Al foil as a current collector, and a separator was placed thereon. These are heated at 300 ° C. and pressurized at 130 MPa, and the heated / pressurized state is maintained for 30 minutes to form a negative electrode active material layer, and at the same time, to oxidize the current collector, the negative electrode active material layer, and the separator.
  • a laminate in which the physical solid electrolyte was integrated was manufactured. Further, a lithium foil and a Cu foil as a current collector were laminated on the oxide type solid electrolyte and pressed to manufacture a solid type lithium ion secondary battery of Example 4.
  • a cylindrical side forming die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316) were used.
  • a molding apparatus including a molding die and a lower molding die was used.
  • the liquid was rapidly cooled and solidified to produce a transparent bulk LiPO 3 —Li 2 SO 4 based glass of Production Example U. Further, by pulverizing the bulk LiPO 3 -Li 2 SO 4 glass of Preparation U, to produce a powdery LiPO 3 -Li 2 SO 4 glass of Preparation U.
  • Production Example V Transparent bulk of Production Example V was prepared in the same manner as in Production Example U, except that the melting conditions were changed to heating at 500 ° C. for 1 hour, heating at 600 ° C. for 1 hour, heating at 700 ° C. for 1 hour, and heating at 800 ° C. for 2 hours.
  • the LiPO 3 —Li 2 SO 4 based glass and the powdery LiPO 3 —Li 2 SO 4 based glass of Production Example V were produced.
  • generation of white smoke was observed during melting at 700 ° C., and generation of a small amount of white smoke was also observed during melting at 800 ° C.
  • Production Example X Transparent, in the same manner as in Production Example U, except that the melting conditions were changed to heating at 500 ° C. for 1 hour, heating at 600 ° C. for 1 hour, heating at 700 ° C. for 1 hour, heating at 800 ° C. for 1 hour, and heating at 900 ° C. for 2 hours.
  • the bulk LiPO 3 —Li 2 SO 4 based glass of Production Example X and the powdery LiPO 3 —Li 2 SO 4 based glass of Production Example X were produced. Although white smoke was observed to be generated during melting at 700 ° C and 800 ° C, almost no white smoke was observed during melting at 900 ° C.
  • Production Example Y Transparent, in the same manner as in Production Example U, except that the melting conditions were changed to heating at 500 ° C. for 1 hour, heating at 600 ° C. for 1 hour, heating at 700 ° C. for 1 hour, heating at 800 ° C. for 1 hour, and heating at 900 ° C. for 4 hours.
  • the bulk LiPO 3 —Li 2 SO 4 based glass of Production Example Y and the powdery LiPO 3 —Li 2 SO 4 based glass of Production Example Y were produced. Although white smoke was observed to be generated during melting at 700 ° C and 800 ° C, almost no white smoke was observed during melting at 900 ° C.
  • the activation energy here means substantially the energy required for the lithium ions to move. Therefore, the smaller the activation energy is, the less the lithium ions contained in the LiPO 3 —Li 2 SO 4 system glass are. It can be said that the function as a charge carrier is easily exhibited. From the results of Table 5, it can be said that the higher the heating temperature at the time of melting, the higher the electrical conductivity of the bulk LiPO 3 —Li 2 SO 4 based glass and the more the activation energy tends to decrease.
  • the powdery (pellet) LiPO 3 —Li 2 SO 4 type glass showed similar electrical conductivity regardless of the manufacturing conditions, but the activation energy tended to decrease as the heating temperature during melting increased. It can be said that there is.
  • the activation energy in the powder form (pellet) was not significantly increased as compared with the bulk form. That is, since the energy when ions move in the bulk and powder (pellet) LiPO3-Li2SO4 type glass does not fluctuate significantly, the bulk LiPO 3 -Li 2 SO 4 type glass is once powdered and re-molded. Even so, the conduction mechanisms of the two do not seem to change significantly.
  • the peaks derived from the SO 4 structure were clearly observed in the Raman spectra of the powdery LiPO 3 —Li 2 SO 4 based glasses of Production Example U, Production Example V, and Production Example X, the PO 3 structure was clearly observed. Almost no peak derived from was observed. Further, from the Raman spectra of the powdery LiPO 3 —Li 2 SO 4 type glasses of Production Example U, Production Example V, and Production Example X, the peak derived from the O 3 PO—PO 3 structure was around 1050 cm ⁇ 1. It was slightly observed near 760 cm ⁇ 1 , and the strength was strong in the order of Production Example U ⁇ Production Example V ⁇ Production Example X. It can be said that the higher the melting temperature, the stronger the intensity of the peak derived from the O 3 PO—PO 3 structure.
  • Example 5 As the positive electrode active material, 59 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 having a layered rock salt structure, 39 parts by mass of powdered LiPO 3 —Li 2 SO 4 system glass of Production Example V, and conductive 2 parts by mass of acetylene black was mixed as an auxiliary agent to obtain a composition for producing a positive electrode active material layer.
  • pelletized Li 4.4 Si was prepared.
  • Example 5 a solid lithium ion secondary battery of Example 5 was manufactured by disposing pelletized Li 4.4 Si on the oxide solid electrolyte in the integrated laminated body and applying pressure at 380 MPa. .
  • Example 6 As a negative electrode active material, a lithium foil having a diameter of 4 mm and an indium foil having a diameter of 6 mm were prepared. Using the negative electrode active material described above, changing the pressure when manufacturing a laminate in which the current collector, the positive electrode active material layer, and the oxide-type solid electrolyte as a separator are integrated to 400 MPa, and integrating The solid-state lithium ion of Example 6 was manufactured in the same manner as in Example 5, except that the pressure at the time of manufacturing the solid-state lithium-ion secondary battery by pressing the laminated body and the negative electrode active material was changed to 100 MPa. A secondary battery was manufactured.

Abstract

The purpose of the present invention is to provide a novel electrode that is suitable for a solid-state lithium ion secondary battery which has a solid oxide electrolyte as a separator. This electrode is characterized by comprising a collector and an electrode active material layer which contains an electrode active material and an oxide-based electrolyte produced by melting and cooling a composition represented by (100−(x+y))LiPO3∙xLi2SO4∙yLi2WO4. In the composition, x and y satisfy x≥0, y≥0, and 0<x+y≤60.

Description

電極及び固体型リチウムイオン二次電池Electrode and solid-state lithium ion secondary battery
 本発明は、固体型リチウムイオン二次電池と固体型リチウムイオン二次電池に用いられる電極に関する。 The present invention relates to a solid-state lithium-ion secondary battery and an electrode used in the solid-state lithium-ion secondary battery.
 現在、二次電池としては、樹脂製セパレータに有機溶媒を含む非水電解液を含浸させた非水系二次電池が主に用いられている。ここで、有機溶媒を含む非水電解液はセパレータで完全に固定化されていないため、電池破損時には非水電解液が液漏れするおそれがある。 Currently, non-aqueous secondary batteries in which a resin separator is impregnated with a non-aqueous electrolytic solution containing an organic solvent are mainly used as secondary batteries. Here, since the non-aqueous electrolyte containing the organic solvent is not completely fixed by the separator, the non-aqueous electrolyte may leak when the battery is damaged.
 そのため、非水電解液及び樹脂製セパレータの代わりに、セラミックスや高分子などの固体電解質を用いた、固体型二次電池の開発研究が盛んに行われている。 Therefore, solid-state secondary batteries using solid electrolytes such as ceramics and polymers instead of non-aqueous electrolyte and resin separators are being actively researched and developed.
 例えば、特許文献1に記載されているように、主に硫化物からなる固体電解質を用いた固体型二次電池の検討が行われている。ここで、硫化物は電荷担体であるリチウムイオンの伝導性が比較的高いとの性質を示す。そのうえ、硫化物材料は比較的やわらかいため成形性に優れており、硫化物材料と電極に用いられる活物質との界面を形成するのが容易であるとの利点を有する。例えば、硫化物材料と活物質とは、これらの混合物を加圧するだけで密着し、上記界面を形成できるため、リチウムイオンの伝導パスが容易に確保できる。 For example, as described in Patent Document 1, a solid-state secondary battery using a solid electrolyte mainly composed of sulfide is being studied. Here, sulfides have the property that the conductivity of lithium ions, which are charge carriers, is relatively high. In addition, since the sulfide material is relatively soft, it has excellent moldability and has an advantage that it is easy to form an interface between the sulfide material and the active material used for the electrode. For example, the sulfide material and the active material can be brought into close contact with each other only by pressurizing a mixture thereof to form the above interface, so that a conduction path for lithium ions can be easily secured.
 しかし、主に硫化物からなる固体電解質をセパレータに用いる際、加圧により粒子同士を接触させるため、疎な部分ができる。そして、当該固体電解質をセパレータとして用いた固体型二次電池を作動すると、上記の疎な部分にリチウムイオンが集中し、その結果として、リチウム金属からなるデンドライトが形成されてしまうとの問題がある。この問題を解決するためには、当該固体電解質からなるセパレータの厚みを増加せざるを得なかった。 However, when a solid electrolyte consisting mainly of sulfide is used for the separator, the particles are brought into contact with each other by pressurization, so that a sparse part is created. Then, when a solid secondary battery using the solid electrolyte as a separator is operated, lithium ions are concentrated in the sparse portion, and as a result, there is a problem that dendrites made of lithium metal are formed. . In order to solve this problem, the thickness of the separator made of the solid electrolyte had to be increased.
 また、固体電解質として酸化物を用いる検討も行われている。通常、酸化物は高温での焼結を経て固体電解質とされる。酸化物からなる固体電解質は高密度であり、緻密な構造体であるためデンドライトの問題は生じにくい。 Also, studies are being conducted using oxides as the solid electrolyte. Usually, the oxide is made into a solid electrolyte through sintering at a high temperature. The solid electrolyte made of an oxide has a high density and a dense structure, so that the problem of dendrite hardly occurs.
 しかし、酸化物を用いた固体電解質(以下、酸化物型固体電解質ということがある。)は硬いため成形性に劣り、酸化物型固体電解質と電極に用いられる活物質との界面を形成するのが比較的困難である。実際には、酸化物型固体電解質に正極活物質をスパッタで付着させるスパッタ法や、酸化物型固体電解質に正極活物質を密着させた接合物を焼結させる焼結法で、固体型二次電池の製造を行わざるを得なかった。ここで、スパッタ法で製造された二次電池においては、正極の厚みがナノ水準であり、固体型二次電池の容量を大きくすることが困難であった。また、焼結法で製造された固体型二次電池においては、熱に因る正極活物質の変性が懸念される。 However, a solid electrolyte using an oxide (hereinafter sometimes referred to as an oxide type solid electrolyte) is poor in moldability because it is hard and forms an interface between the oxide type solid electrolyte and the active material used for the electrode. Is relatively difficult. In practice, the solid-type secondary electrolyte is sputtered by adhering the positive electrode active material to the oxide-type solid electrolyte by sputtering, or the sintering method by sintering the bonded product in which the positive-electrode active material is adhered to the oxide-type solid electrolyte. I had no choice but to manufacture batteries. Here, in the secondary battery manufactured by the sputtering method, the thickness of the positive electrode is on the nano level, and it is difficult to increase the capacity of the solid secondary battery. In addition, in the solid secondary battery manufactured by the sintering method, there is a concern that the positive electrode active material may be denatured due to heat.
 非特許文献1に記載されるように、Weppnerらによって、高い導電率を示し電気化学的に安定なガーネット型酸化物としてLiLaZr12が提案された。
 この酸化物型固体電解質であるLiLaZr12は1000℃以上の温度で作製することが一般的である。そのため、LiLaZr12と正極活物質との密着性を向上させる目的で、例えば、LiLaZr12の粉末又はLiLaZr12の原料粉末に正極活物質を密着させた接合物を用いて焼結法を適用しようとする場合には、1000℃以上の加熱が必要となる。しかしながら、かかる温度に因り、正極活物質が変性するおそれがあるため、事実上、焼結法を採用することが困難であった。
As described in Non-Patent Document 1, Weppner et al. Proposed Li 7 La 3 Zr 2 O 12 as a garnet-type oxide that exhibits high conductivity and is electrochemically stable.
Li 7 La 3 Zr 2 O 12, which is this oxide type solid electrolyte, is generally produced at a temperature of 1000 ° C. or higher. The positive electrode in this reason, to improve the adhesion between the Li 7 La 3 Zr 2 O 12 and the positive electrode active material, for example, the raw material powder of Li 7 La 3 Zr 2 powder O 12 or Li 7 La 3 Zr 2 O 12 When applying a sintering method using a bonded product in which an active material is in close contact, heating at 1000 ° C. or higher is required. However, since the positive electrode active material may be denatured due to such temperature, it is practically difficult to adopt the sintering method.
特開2005-228570号公報Japanese Patent Laid-Open No. 2005-228570
 上述のように、従来の固体型二次電池には種々の課題があり、新たな固体型二次電池の提供が熱望されている。 As mentioned above, conventional solid-state secondary batteries have various problems, and there is a strong desire to provide new solid-state secondary batteries.
 本発明は、かかる事情に鑑みて為されたものであり、特に、酸化物型固体電解質をセパレータとして備える固体型リチウムイオン二次電池に適する、新たな電極を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a new electrode suitable for a solid-state lithium-ion secondary battery that includes an oxide-type solid electrolyte as a separator.
 本発明者は、リチウムを含有する低融点のガラスの性質を利用して、電極と酸化物型固体電解質を材料とするセパレータとを密着させる技術を想起した。具体的には、リチウムを含有する低融点のガラスを電極活物質が存在する電極活物質層に含有させることで、電極活物質層内部におけるリチウムイオンの移動を担保しつつ、電極活物質層の成形性と、電極活物質層及び酸化物型固体電解質を材料とするセパレータの密着性を確保させることを想起した。
 そして、本発明者は、リチウムを含有する低融点のガラスとして、LiPO-LiSO系ガラスに着目し、鋭意検討を重ねることにより、本発明を完成するに至った。
The present inventor has conceived a technique of bringing electrodes into close contact with a separator made of an oxide type solid electrolyte by utilizing the property of low melting point glass containing lithium. Specifically, by containing a low-melting-point glass containing lithium in the electrode active material layer in which the electrode active material is present, while ensuring movement of lithium ions inside the electrode active material layer, It was recalled that the moldability and the adhesiveness of the electrode active material layer and the separator made of the oxide type solid electrolyte are secured.
Then, the present inventor has completed the present invention by paying attention to LiPO 3 —Li 2 SO 4 type glass as a low melting point glass containing lithium and conducting intensive studies.
 本発明の電極は、(100-(x+y))LiPO・xLiSO・yLiWOで表される組成物を溶融及び冷却して製造した酸化物型電解質並びに電極活物質を含有する電極活物質層と、集電体とを備えることを特徴とする。前記組成物において、x及びyは、x≧0、y≧0、0<x+y≦60を満足する。
 本発明の固体型リチウムイオン二次電池は、本発明の電極と、対極と、前記電極及び前記対極の間に、酸化物型固体電解質を材料とするセパレータと、を備えることを特徴とする。
The electrode of the present invention contains an oxide electrolyte and an electrode active material produced by melting and cooling a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4. It is characterized by including an electrode active material layer and a current collector. In the composition, x and y satisfy x ≧ 0, y ≧ 0, and 0 <x + y ≦ 60.
The solid-state lithium-ion secondary battery of the present invention includes the electrode of the present invention, a counter electrode, and a separator made of an oxide-type solid electrolyte as a material between the electrode and the counter electrode.
 本発明の電極は、自身の成形性に優れ、かつ、酸化物型固体電解質を材料とするセパレータとの界面形成にも優れる。 The electrode of the present invention is excellent in its own moldability and is also excellent in forming an interface with a separator using an oxide type solid electrolyte as a material.
評価例1の粉末X線回折チャートである。3 is a powder X-ray diffraction chart of Evaluation Example 1. 製造例EのLiPO-LiSO系ガラスのDSCチャートである。 3 is a DSC chart of LiPO 3 —Li 2 SO 4 type glass of Production Example E. 参考例1のリチウムイオン二次電池の充放電曲線である。3 is a charge / discharge curve of the lithium-ion secondary battery of Reference Example 1. 実施例2の固体型リチウムイオン二次電池の模式図である。3 is a schematic diagram of a solid-state lithium-ion secondary battery of Example 2. FIG. 実施例2の固体型リチウムイオン二次電池の充電曲線である。3 is a charging curve of the solid-state lithium-ion secondary battery of Example 2. 実施例2の固体型リチウムイオン二次電池の放電曲線である。3 is a discharge curve of the solid-state lithium-ion secondary battery of Example 2. 実施例3の固体型リチウムイオン二次電池の充放電曲線である。5 is a charge / discharge curve of the solid-state lithium-ion secondary battery of Example 3. 評価例11のラマンスペクトルの重ね書きである。It is an overwriting of the Raman spectrum of the evaluation example 11. 実施例5の固体型リチウムイオン二次電池の充放電曲線である。5 is a charge / discharge curve of the solid-state lithium-ion secondary battery of Example 5. 実施例6の固体型リチウムイオン二次電池の充放電曲線である。9 is a charge / discharge curve of the solid-state lithium-ion secondary battery of Example 6.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例や参考例等に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 A mode for carrying out the present invention will be described below. In addition, unless otherwise specified, the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in the range. The upper limit value and the lower limit value, and the numerical values listed in Examples, Reference Examples, and the like can be arbitrarily combined to form a numerical value range. Further, numerical values arbitrarily selected from the numerical range can be set as upper and lower numerical values.
 本発明の電極は、(100-(x+y))LiPO・xLiSO・yLiWOで表される組成物を溶融及び冷却して製造した酸化物型電解質(本明細書において、「LiPO-LiSO系ガラス」ということがある。)、並びに、電極活物質を含有する電極活物質層と、集電体とを備えることを特徴とする。前記組成物において、x及びyは、x≧0、y≧0、0<x+y≦60を満足する。 The electrode of the present invention is an oxide electrolyte prepared by melting and cooling a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (in the present specification, " It may be referred to as "LiPO 3 -Li 2 SO 4 based glass"), an electrode active material layer containing an electrode active material, and a current collector. In the composition, x and y satisfy x ≧ 0, y ≧ 0, and 0 <x + y ≦ 60.
 本発明の電極は、正極であってもよいし、負極であってもよい。ただし、本発明の電極が負極の場合は、LiWOのW6+が還元するおそれがあるため、y=0であるのが好ましい。換言すれば、y>0であれば、本発明の電極は正極であるのが好ましい。
 なお、電極が正極であれば、電極活物質は正極活物質であり、電極活物質層は正極活物質層である。電極が負極であれば、電極活物質は負極活物質であり、電極活物質層は負極活物質層である。
The electrode of the present invention may be a positive electrode or a negative electrode. However, when the electrode of the present invention is a negative electrode, W 6+ of Li 2 WO 4 may be reduced, so that y = 0 is preferable. In other words, if y> 0, the electrode of the present invention is preferably the positive electrode.
If the electrode is a positive electrode, the electrode active material is the positive electrode active material and the electrode active material layer is the positive electrode active material layer. If the electrode is a negative electrode, the electrode active material is the negative electrode active material and the electrode active material layer is the negative electrode active material layer.
 正極活物質としては、二次電池の正極活物質として用いられるものであればよく、例えば、層状岩塩構造の一般式:LiNiCo(MはAl及び/又はMnである。DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素である。0.2≦a≦2、b+c+d+e=1、0≦e<1、1.7≦f≦3を満足する。)で表されるリチウム複合金属酸化物、LiMnOを挙げることができる。また、正極活物質として、LiMn、LiMn等のスピネル、及びスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極および/または負極に、公知の方法により、予めイオンを添加させておく必要がある。ここで、当該イオンを添加するためには、金属または当該イオンを含む化合物を用いればよい。 As the positive electrode active material, as long as it can be used as a positive electrode active material for a secondary battery, for example, the general formula of the layered rock salt structure: Li a Ni b Co c M d D e O f (M is Al and / or Mn, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, At least one element selected from Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P and V. 0.2 ≦ a ≦ 2, b + c + d + e = 1 , 0 ≦ e <1, and 1.7 ≦ f ≦ 3 are satisfied.), Li 2 MnO 3 can be mentioned. Further, as a positive electrode active material, a spinel such as LiMn 2 O 4 , Li 2 Mn 2 O 4 and the like, and a solid solution composed of a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (M in the formula: Are selected from at least one of Co, Ni, Mn, and Fe)) and the like. Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any of the metal oxides used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element contained in the basic composition may be substituted with another metal element. Further, as the positive electrode active material, a positive electrode active material material that does not contain lithium ions that contribute to charge and discharge, for example, simple substance of sulfur, a compound of sulfur and carbon, a metal sulfide such as TiS 2 , V 2 O 5 , MnO. It is also possible to use oxides such as 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic compounds, and other known materials. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, or phenoxyl may be adopted as the positive electrode active material. When a positive electrode active material containing no lithium is used, it is necessary to add ions to the positive electrode and / or the negative electrode by a known method in advance. Here, in order to add the ion, a metal or a compound containing the ion may be used.
 正極活物質としては、高容量である点から、層状岩塩構造の一般式:LiNiCo(MはAl及び/又はMnである。DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素である。0.2≦a≦2、b+c+d+e=1、0≦e<1、1.7≦f≦3を満足する。)で表されるリチウム複合金属酸化物が好ましい。 As the positive electrode active material, from the viewpoint of high capacity, the general formula of the layered rock salt structure: Li a Ni b Co c M d D e O f (M is Al and / or Mn .D is W, Mo, Re , Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, Sc, Sn , In, Y, Bi, S, Si, Na, K, P, and V. 0.2 ≦ a ≦ 2, b + c + d + e = 1, 0 ≦ e <1, 1.7 ≦ A lithium composite metal oxide represented by the formula: f ≦ 3 is preferable.
 上記一般式において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、0<b<1、0<c<1、0<d<1であるものが良く、また、b、c、dの少なくともいずれか一つが10/100<b<95/100、1/100<c<60/100、1/100<d<60/100の範囲であることが好ましく、40/100<b<90/100、1/100<c<40/100、1/100<d<40/100の範囲であることがより好ましく、60/100<b<85/100、1/100<c<20/100、1/100<d<20/100の範囲であることがさらに好ましい。 In the above general formula, the values of b, c, and d are not particularly limited as long as the above conditions are satisfied, but those satisfying 0 <b <1, 0 <c <1, 0 <d <1 Good, and at least one of b, c, d is in the range of 10/100 <b <95/100, 1/100 <c <60/100, 1/100 <d <60/100. More preferably, the range of 40/100 <b <90/100, 1/100 <c <40/100, 1/100 <d <40/100 is more preferable, and 60/100 <b <85/100, The range of 1/100 <c <20/100 and 1/100 <d <20/100 is more preferable.
 a、e、fについては、上記一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1をそれぞれ例示することができる。 As for a, e, and f, any numerical value within the range defined by the above general formula may be used, and preferably 0.5 ≦ a ≦ 1.5, 0 ≦ e <0.2, 1.8 ≦ f ≦ 2. 0.5, more preferably 0.8 ≦ a ≦ 1.3, 0 ≦ e <0.1, and 1.9 ≦ f ≦ 2.1, respectively.
 負極活物質としては、リチウムイオンを吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じるおそれがあるため、当該おそれの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金又は化合物を負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、SiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3-xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 As the negative electrode active material, a material capable of inserting and extracting lithium ions can be used. Therefore, there is no particular limitation as long as it is a simple substance, an alloy, or a compound capable of inserting and extracting lithium ions. For example, as the negative electrode active material, Li, Group 14 elements such as carbon, silicon, germanium, and tin, Group 13 elements such as aluminum and indium, Group 12 elements such as zinc and cadmium, Group 15 elements such as antimony and bismuth, and magnesium. , An alkaline earth metal such as calcium, or a Group 11 element such as silver or gold may be used alone. When silicon or the like is used as the negative electrode active material, one atom of silicon reacts with a plurality of lithium, resulting in a high-capacity active material. However, there is a problem that the volume expansion and contraction accompanying lithium absorption and desorption becomes significant. Since this may occur, it is also preferable to employ an alloy or compound in which a simple substance such as silicon is combined with another element such as a transition metal as the negative electrode active material in order to reduce the possibility. Specific examples of alloys or compounds include tin-based materials such as Ag—Sn alloys, Cu—Sn alloys, Co—Sn alloys, carbon-based materials such as various graphites, and SiO x (0.3 ≦ x ≦ 1.6). And a silicon-based material, a silicon simple substance, or a composite of a silicon-based material and a carbon-based material. Further, as a negative electrode active material, an oxide such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 or Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be adopted. One or more of these may be used as the negative electrode active material.
 LiPO-LiSO系ガラスの原料である(100-(x+y))LiPO・xLiSO・yLiWOにおけるx及びyは、x≧0、y≧0、0<x+y≦60を満足する。x+yが0<x+y≦60の範囲内であるため、LiPO-LiSO系ガラスはガラス状態であり、一定程度の導電性を示す。LiPO-LiSO系ガラスを粉末X線回折装置で測定すると、非晶質を示すハローが観測される。 X and y in (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4, which is a raw material of the LiPO 3 --Li 2 SO 4 system glass, are x ≧ 0, y ≧ 0, 0 <x + y ≦. Satisfy 60. Since x + y is within the range of 0 <x + y ≦ 60, the LiPO 3 —Li 2 SO 4 based glass is in a glass state and exhibits a certain degree of conductivity. When LiPO 3 —Li 2 SO 4 system glass is measured by a powder X-ray diffractometer, a halo showing an amorphous state is observed.
 LiPO-LiSO系ガラスは、比較的低温領域にガラス転移温度を示す。そのため、本発明の電極の製造時に、電極活物質及びLiPO-LiSO系ガラスの混合物を、LiPO-LiSO系ガラスのガラス転移温度以上の温度で加熱することで、LiPO-LiSO系ガラスが軟化して、電極活物質の粒子間の隙間に入ることができる。その結果、緻密な構造の電極活物質層が形成される。 LiPO 3 —Li 2 SO 4 type glass exhibits a glass transition temperature in a relatively low temperature region. Therefore, during the production of the electrode of the present invention, the mixture of the electrode active material and LiPO 3 -Li 2 SO 4 -based glass, by heating at a temperature above the glass transition temperature of LiPO 3 -Li 2 SO 4 -based glass, LiPO The 3- Li 2 SO 4 based glass can be softened and enter the gaps between the particles of the electrode active material. As a result, an electrode active material layer having a dense structure is formed.
 x+yが大きいほど、LiPO-LiSO系ガラスのガラス転移温度が低くなる傾向にある。電極を製造する際の加熱温度を低くすることができる点では、x+yが大きい方が好ましい。
 また、x+yの値が45~55の範囲内の原料を用いたLiPO-LiSO系ガラスに、LiPO-LiSO系ガラスの電気伝導性の極大値があると考えられる。
 他方、x+yの値が60を超えると、結晶が生成しやすくなり、ガラス状態のものを製造するのが困難となる場合がある。
 以上の事項を総合すると、x+yは、40≦x+y<60を満足するのが好ましく、45≦x+y≦55を満足するのがより好ましく、47≦x+y≦53を満足するのがさらに好ましいと考えられる。
The larger x + y, the lower the glass transition temperature of the LiPO 3 —Li 2 SO 4 based glass tends to be. From the viewpoint that the heating temperature at the time of manufacturing the electrode can be lowered, x + y is preferably large.
Further, it is considered that the LiPO 3 —Li 2 SO 4 based glass using the raw material in which the value of x + y is in the range of 45 to 55 has the maximum value of electric conductivity of the LiPO 3 —Li 2 SO 4 based glass.
On the other hand, when the value of x + y exceeds 60, crystals are likely to be generated, and it may be difficult to manufacture glass.
Considering all the above matters, it is considered that x + y preferably satisfies 40 ≦ x + y <60, more preferably 45 ≦ x + y ≦ 55, and further preferably 47 ≦ x + y ≦ 53. .
 xの範囲としては、x=0、0<x≦60、40≦x≦60、45≦x≦55、47≦x≦53を例示できる。
 yの範囲としては、y=0、0<y≦40、10≦y≦35、15≦y≦35を例示できる。
Examples of the range of x include x = 0, 0 <x ≦ 60, 40 ≦ x ≦ 60, 45 ≦ x ≦ 55, and 47 ≦ x ≦ 53.
Examples of the range of y include y = 0, 0 <y ≦ 40, 10 ≦ y ≦ 35, and 15 ≦ y ≦ 35.
 LiPO-LiSO系ガラスは、本発明の電極の構造の面では、電極活物質層の緻密性と成形性を確保するための重要な役割を担っており、さらに、集電体と電極活物質層の密着性を確保するための重要な役割を担っている。
 また、LiPO-LiSO系ガラスは、本発明の電極の機能の面では、電極活物質層の導電性及びリチウムイオン伝導性を確保するための重要な役割を担っている。
In terms of the structure of the electrode of the present invention, the LiPO 3 —Li 2 SO 4 system glass plays an important role for ensuring the denseness and formability of the electrode active material layer, and further, as a current collector. It plays an important role in ensuring the adhesiveness of the electrode active material layer.
In addition, the LiPO 3 —Li 2 SO 4 based glass plays an important role in ensuring the conductivity and the lithium ion conductivity of the electrode active material layer in terms of the function of the electrode of the present invention.
 そして、LiPO-LiSO系ガラスは、本発明の固体型リチウムイオン二次電池においては、本発明の電極と、酸化物型固体電解質を材料とするセパレータとの間に、好適な界面を形成するための重要な役割を担っている。 In the solid-state lithium-ion secondary battery of the present invention, LiPO 3 —Li 2 SO 4 -based glass is a suitable interface between the electrode of the present invention and a separator using an oxide-type solid electrolyte as a material. Play an important role in forming the.
 本発明の電極において、電極活物質とLiPO-LiSO系ガラスの質量比としては、8:2~3:7の範囲内が好ましく、7:3~4:6の範囲内がより好ましい。 In the electrode of the present invention, the mass ratio of the electrode active material and LiPO 3 —Li 2 SO 4 based glass is preferably in the range of 8: 2 to 3: 7, more preferably in the range of 7: 3 to 4: 6. preferable.
 LiPO-LiSO系ガラスは、LiPOガラス、LiSO及び/又はLiWOの混合物を加熱して溶融することで液体とし、当該液体を急速に冷却することで製造できる。ここで、LiPOガラスは、Li化合物及びリン酸化合物の混合物を加熱して液体とし、当該液体を急速に冷却することで製造できる。 The LiPO 3 —Li 2 SO 4 based glass can be produced by heating and melting a mixture of LiPO 3 glass, Li 2 SO 4 and / or Li 2 WO 4 to form a liquid, and rapidly cooling the liquid. . Here, the LiPO 3 glass can be manufactured by heating a mixture of a Li compound and a phosphoric acid compound into a liquid and rapidly cooling the liquid.
 また、本発明者は、LiPO-LiSO系ガラスの製造時の溶融温度に因り、原料で用いた(100-(x+y))LiPO・xLiSO・yLiWO(x及びyは、x≧0、y≧0、0<x+y≦60を満足する。)で表される組成物の組成と、LiPO-LiSO系ガラスにおける組成とが異なる場合があることを知見した。具体的には、製造時に、一部のSが系外に離脱することを知見した。さらに、製造時に、一部のSが系外に離脱して製造されたLiPO-LiSO系ガラスは、電気伝導度に優れ、かつリチウムイオンの円滑な移動に優れるとの性質を示すことも知見した。
 なお、Sが系外に離脱する際には、酸素を伴い、硫黄酸化物として離脱すると考えられる。ここで、LiPO-LiSO系ガラスの製造における溶融は、大気下、すなわち酸素存在下で実施されるため、系内に酸素は潤沢に存在する。したがって、安定な生成物の製造に必要な量の酸素が供給されているので、LiPO-LiSO系ガラスにおいては、酸素量が不自然に不足する事態は想定されない。
The present inventor also used (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (x, which was used as a raw material, due to the melting temperature during the production of LiPO 3 --Li 2 SO 4 system glass. And y satisfy x ≧ 0, y ≧ 0, 0 <x + y ≦ 60) and the composition in the LiPO 3 —Li 2 SO 4 based glass may be different from each other. I found out. Specifically, it was found that at the time of manufacturing, a part of S escapes from the system. Further, the LiPO 3 —Li 2 SO 4 type glass produced by removing a part of S out of the system at the time of production exhibits properties of excellent electrical conductivity and smooth movement of lithium ions. I also found out.
It is considered that when S is released from the system, it is released as sulfur oxide along with oxygen. Here, the melting in the production of the LiPO 3 —Li 2 SO 4 type glass is performed in the atmosphere, that is, in the presence of oxygen, so that oxygen is abundant in the system. Therefore, since the amount of oxygen required for the production of a stable product is supplied, it is not expected that the amount of oxygen is unnaturally insufficient in the LiPO 3 —Li 2 SO 4 based glass.
 以上の知見から、Sを含む原料を使用した、以下の発明を把握できる。 Based on the above findings, the following inventions using raw materials containing S can be understood.
 (100-(x+y))LiPO・xLiSO・yLiWO(x及びyは、x>0、y≧0、0<x+y≦60を満足する。)で表される組成物を、当該組成物からSが離脱する条件下で溶融し、冷却することを特徴とする酸化物型電解質の製造方法。 A composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (x and y satisfy x> 0, y ≧ 0, and 0 <x + y ≦ 60). A method for producing an oxide-type electrolyte, characterized in that the composition is melted and cooled under the condition that S is separated from the composition.
 上記の製造方法における溶融温度としては、650~950℃の範囲内が好ましく、700~900℃の範囲内がより好ましく、750~850℃の範囲内がさらに好ましい。溶融温度を多段階で変動させてもよい。
 上記の製造方法における溶融温度の保持時間としては、溶融温度に因るものの、0.5~5時間、1~4時間、1.5~3時間を例示できる。
The melting temperature in the above production method is preferably in the range of 650 to 950 ° C, more preferably in the range of 700 to 900 ° C, and even more preferably in the range of 750 to 850 ° C. The melting temperature may be changed in multiple steps.
The holding time of the melting temperature in the above production method may be, for example, 0.5 to 5 hours, 1 to 4 hours, and 1.5 to 3 hours, although it depends on the melting temperature.
 原料の元素組成から一部のSが離脱した組成のLiPO-LiSO系ガラスは、電解質としての性能に適したものであるといえる。
 ここで、Sを含む原料である(100-(x+y))LiPO・xLiSO・yLiWO(x及びyは、x>0、y≧0、0<x+y≦60を満足する。)との組成物を組成式で表わすと、Li(100+x+y)(100-(x+y))(300+x+y)となる。そして、原料の元素組成から一部のSが離脱したLiPO-LiSO系ガラスの組成は、Li(100+x+y)(100-(x+y))x1(300+x+y)(ただし、x1<xを満足する。)となる。
It can be said that the LiPO 3 —Li 2 SO 4 system glass having a composition in which a part of S is separated from the elemental composition of the raw material is suitable for the performance as an electrolyte.
Here, (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (x and y satisfy x> 0, y ≧ 0, 0 <x + y ≦ 60, which is a raw material containing S. When representing the composition of the.) in formula, the Li (100 + x + y) P (100- (x + y)) S x W y O (300 + x + y). And, the composition of LiPO 3 —Li 2 SO 4 system glass in which a part of S is desorbed from the elemental composition of the raw material is Li (100 + x + y) P (100- (x + y)) S x1 W y O (300 + x + y) (however, x1 <x is satisfied).
 原料の元素組成から一部のSが離脱したLiPO-LiSO系ガラスの組成を、原料の組成と切り離して記述すると、以下の組成式(1)が導かれる。以下の組成式(1)は、原料の組成式を概ね100で除したものに相当する。なお、原料の組成ではb+c+d=1を満足することになるが、以下の組成式(1)ではb+c+d<1となる。 When the composition of the LiPO 3 —Li 2 SO 4 system glass in which a part of S is separated from the elemental composition of the raw material is described separately from the composition of the raw material, the following composition formula (1) is derived. The following composition formula (1) corresponds to the composition formula of the raw material divided by about 100. The composition of the raw material satisfies b + c + d = 1, but in the following composition formula (1), b + c + d <1.
 組成式(1)  Li
 a、b、c、d及びeは、1<a≦1.6、0.4≦b<1、0<c<0.6、0≦d≦0.6、0<c+d≦0.6、b+c+d<1、3<e≦3.6のすべての関係を満足する。
Compositional formula (1) Li a P b S c W d O e
a, b, c, d and e are 1 <a ≦ 1.6, 0.4 ≦ b <1, 0 <c <0.6, 0 ≦ d ≦ 0.6, 0 <c + d ≦ 0.6 , B + c + d <1, 3 <e ≦ 3.6 are satisfied.
 aの範囲としては、1.2≦a≦1.6、1.4≦a≦1.58、1.45≦a≦1.57、1.50≦a≦1.56、1.51≦a≦1.55を例示できる。
 bの範囲としては、0.4≦b≦0.8、0.45≦b≦0.6、0.47≦b≦0.55、0.48≦b≦0.52を例示できる。
 cの範囲としては、0.05≦c≦0.5、0.1≦c≦0.4、0.15≦c≦0.38、0.2≦c≦0.35を例示できる。
 dの範囲としては、0.1≦d≦0.5、0.15≦d≦0.45、0.2≦d≦0.4、0.25≦d≦0.35を例示できる。d=0でもよい。
 eの範囲としては、3.01≦e≦3.4、3.02≦e≦3.2、3.03≦e≦3.15を例示できる。
The range of a is 1.2 ≦ a ≦ 1.6, 1.4 ≦ a ≦ 1.58, 1.45 ≦ a ≦ 1.57, 1.50 ≦ a ≦ 1.56, 1.51 ≦ For example, a ≦ 1.55 can be exemplified.
Examples of the range of b include 0.4 ≦ b ≦ 0.8, 0.45 ≦ b ≦ 0.6, 0.47 ≦ b ≦ 0.55, and 0.48 ≦ b ≦ 0.52.
Examples of the range of c include 0.05 ≦ c ≦ 0.5, 0.1 ≦ c ≦ 0.4, 0.15 ≦ c ≦ 0.38, and 0.2 ≦ c ≦ 0.35.
Examples of the range of d include 0.1 ≦ d ≦ 0.5, 0.15 ≦ d ≦ 0.45, 0.2 ≦ d ≦ 0.4, and 0.25 ≦ d ≦ 0.35. It may be d = 0.
Examples of the range of e include 3.01 ≦ e ≦ 3.4, 3.02 ≦ e ≦ 3.2, and 3.03 ≦ e ≦ 3.15.
 ラマン分光光度計にてLiPO-LiSO系ガラスを測定すると、ラマンスペクトルにおいて、SO構造に由来するピーク及び/又はOP-O-PO構造に由来するピークが観察される場合がある。 When the LiPO 3 —Li 2 SO 4 system glass is measured with a Raman spectrophotometer, a peak derived from the SO 4 structure and / or a peak derived from the O 3 P—O—PO 3 structure are observed in the Raman spectrum. There are cases.
 本発明の電極における電極活物質層には、本発明の趣旨を逸脱しない範囲で、LiPO-LiSO系ガラス以外の固体電解質や、導電助剤などの公知の添加剤が配合されていてもよい。 In the electrode active material layer of the electrode of the present invention, a solid electrolyte other than LiPO 3 —Li 2 SO 4 based glass and known additives such as a conduction aid are blended within a range not departing from the gist of the present invention. May be.
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。
 電極活物質層中の導電助剤の配合割合は、質量比で、電極活物質:導電助剤=1:0.01~1:0.3であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
The conduction aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent. The electrically conductive auxiliary agent may be a chemically inert electronic high conductor, and carbonaceous fine particles such as carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles are exemplified. It Examples of carbon black include acetylene black, Ketjen black (registered trademark), furnace black, channel black and the like. These conductive aids can be added to the active material layer either individually or in combination of two or more.
The mixing ratio of the conductive auxiliary agent in the electrode active material layer is preferably electrode active material: conductive auxiliary agent = 1: 0.01 to 1: 0.3 in terms of mass ratio. This is because if the amount of the conductive additive is too small, an efficient conductive path cannot be formed, and if the amount of the conductive additive is too large, the moldability of the active material layer deteriorates and the energy density of the electrode decreases.
 集電体は、固体型リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 Current collector refers to a chemically inactive electron high conductor that keeps current flowing through the electrodes during discharging or charging of the solid-state lithium-ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, stainless steel, etc. A metal material can be illustrated. The current collector may be covered with a known protective layer. You may use what collected the surface of the collector by a well-known method as a collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of foil, sheet, film, wire, rod, mesh, or the like. Therefore, as the current collector, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be preferably used. When the current collector is in the form of foil, sheet or film, its thickness is preferably in the range of 1 μm to 100 μm.
 本発明の電極の製造方法としては、
 (100-(x+y))LiPO・xLiSO・yLiWO(x及びyは、x≧0、y≧0、0<x+y≦60を満足する。)で表される組成物を溶融及び冷却して製造した酸化物型電解質並びに電極活物質を混合して混合物とする工程(以下、混合工程ということがある。)、
 混合物と集電体が接した状態で、前記酸化物型電解質のガラス転移温度以上かつ結晶化温度未満の範囲内の温度で加熱する工程(以下、加熱工程ということがある。)、
 を有する製造方法を例示できる。
The method for producing the electrode of the present invention includes:
A composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (where x and y satisfy x ≧ 0, y ≧ 0, 0 <x + y ≦ 60). A step of mixing the oxide type electrolyte produced by melting and cooling and the electrode active material to form a mixture (hereinafter sometimes referred to as a mixing step),
Heating the mixture at a temperature in the range above the glass transition temperature and below the crystallization temperature of the oxide-type electrolyte in the state where the mixture and the current collector are in contact with each other (hereinafter sometimes referred to as a heating step);
The manufacturing method having
 混合工程における混合機としては、混合攪拌機、ボールミル、サンドミル、ビーズミル、分散機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサーなどの、一般的なものを採用すればよい。 As a mixer in the mixing step, a general mixer such as a mixing stirrer, a ball mill, a sand mill, a bead mill, a disperser, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer may be adopted.
 加熱工程における加熱温度が高すぎると、LiPO-LiSO系ガラスが結晶化する場合があるため、不都合である。さらに、電極活物質の劣化や変質が生じるおそれがある。これらの点から、加熱温度の上限は400℃未満が好ましい。
 加熱工程における加熱温度としては、LiPO-LiSO系ガラスのガラス転移温度(以下、Tgと略すことがある。)以上400℃未満が好ましく、Tg以上350℃以下がより好ましく、Tg以上330℃以下がさらに好ましく、Tg以上310℃以下が特に好ましく、Tg以上300℃以下が最も好ましい。また、加熱工程における加熱温度としては、Tg+5℃~Tg+40℃の範囲内、Tg+5℃~Tg+30℃の範囲内、Tg+5℃~Tg+20℃の範囲内としてもよい。
If the heating temperature in the heating step is too high, the LiPO 3 —Li 2 SO 4 based glass may be crystallized, which is inconvenient. Furthermore, the electrode active material may be deteriorated or deteriorated. From these points, the upper limit of the heating temperature is preferably less than 400 ° C.
The heating temperature in the heating step is preferably a glass transition temperature (hereinafter sometimes abbreviated as Tg) of LiPO 3 —Li 2 SO 4 based glass or more and less than 400 ° C., more preferably Tg or more and 350 ° C. or less, and more than Tg or more. The temperature is more preferably 330 ° C. or lower, particularly preferably Tg or higher and 310 ° C. or lower, and most preferably Tg or higher and 300 ° C. or lower. The heating temperature in the heating step may be Tg + 5 ° C. to Tg + 40 ° C., Tg + 5 ° C. to Tg + 30 ° C., or Tg + 5 ° C. to Tg + 20 ° C.
 加熱工程においては、加熱時に、軟化したLiPO-LiSO系ガラスが電極活物質の粒子間の隙間に流動するための時間や環境を確保するのが好ましい。例えば、電極活物質及びLiPO-LiSO系ガラスの混合物の加熱時に、混合物に対して外圧を加える及び/又は減じる条件を、一定時間、維持させることが好ましい。特に、電極活物質及びLiPO-LiSO系ガラスの混合物を、無加圧条件下又は減圧下で一定時間加熱した後、加熱条件下で、所望の形状に加圧成型することが好ましい。 In the heating step, it is preferable to secure the time and environment for the softened LiPO 3 —Li 2 SO 4 based glass to flow into the gaps between the particles of the electrode active material during heating. For example, when heating the mixture of the electrode active material and the LiPO 3 —Li 2 SO 4 based glass, it is preferable to maintain the condition for applying and / or reducing the external pressure to the mixture for a certain period of time. In particular, it is preferable to heat the mixture of the electrode active material and the LiPO 3 —Li 2 SO 4 based glass under a non-pressurized condition or under reduced pressure for a certain period of time, and then press-mold into a desired shape under the heated condition. .
 加熱工程は、電極活物質及びLiPO-LiSO系ガラスの劣化を抑制する雰囲気下で実施されるのが好ましく、ヘリウム、アルゴン、窒素などの不活性ガス雰囲気下で実施されるのが好ましい。
 加熱工程で使用される加熱装置としては、加圧可能な加圧-加熱装置(ホットプレスなど)が好ましく、さらには、通電しながら加圧及び加熱可能な放電プラズマ焼結装置も使用することができる。
The heating step is preferably performed in an atmosphere that suppresses deterioration of the electrode active material and the LiPO 3 —Li 2 SO 4 based glass, and is performed in an atmosphere of an inert gas such as helium, argon, or nitrogen. preferable.
As a heating device used in the heating step, a pressurizing-heating device (hot press etc.) capable of pressurizing is preferable, and further, a discharge plasma sintering device capable of pressurizing and heating while energizing can also be used. it can.
 次に、本発明の固体型リチウムイオン二次電池について説明する。
 本発明の固体型リチウムイオン二次電池は、本発明の電極と、対極と、前記電極及び前記対極の間に、酸化型固体電解質を材料とするセパレータと、を備えることを特徴とする。
Next, the solid-state lithium-ion secondary battery of the present invention will be described.
The solid-state lithium-ion secondary battery of the present invention includes the electrode of the present invention, a counter electrode, and a separator made of an oxide solid electrolyte as a material between the electrode and the counter electrode.
 対極は、本発明の電極であってもよいし、従来の一般的な電極であってもよい。 The counter electrode may be the electrode of the present invention or a conventional general electrode.
 次に、酸化物型固体電解質を材料とするセパレータについて説明する。
 酸化物型固体電解質としては、固体型リチウムイオン二次電池の動作時にリチウムと反応せず、かつ、固体型リチウムイオン二次電池の動作時に還元反応も生じないものが選択される。
Next, a separator made of an oxide solid electrolyte will be described.
As the oxide type solid electrolyte, one that does not react with lithium during the operation of the solid state lithium ion secondary battery and does not cause a reduction reaction during the operation of the solid state lithium ion secondary battery is selected.
 一般的な酸化物型固体電解質は、焼結させて製造されるため、緻密な構造体となっている。 ㆍ General oxide type solid electrolytes are manufactured by sintering, so they have a dense structure.
 酸化物型固体電解質としては、ガーネット型酸化物、NASICON型酸化物、LISICON型酸化物を挙げることができる。酸化物型固体電解質としては、電位窓の関係から組成内に遷移金属を含まない酸化物が望ましい。その理由は、遷移金属を含む酸化物を固体電解質として用いると、負極に電位の低い材料を用いた場合、負極反応より先に固体電解質中の遷移金属が還元されるため、印加した電流が電池反応ではなく電解質の還元分解に使用されてしまうためである。 Examples of the oxide type solid electrolyte include garnet type oxide, NASICON type oxide, and LISICON type oxide. As the oxide type solid electrolyte, an oxide containing no transition metal in the composition is desirable in view of the potential window. The reason is that when an oxide containing a transition metal is used as the solid electrolyte, when a material having a low potential is used for the negative electrode, the transition metal in the solid electrolyte is reduced before the negative electrode reaction, and therefore the applied current is This is because it is used not for the reaction but for the reductive decomposition of the electrolyte.
 ガーネット型酸化物としては、ガーネット結晶構造を示す組成式Li 12(5≦a≦7、MはY、La、Pr、Nd、Sm、Lu、Mg、Ca、Sr又はBaから選択される1種以上の元素。MはZr、Hf、Nb又はTaから選択される1種以上の元素。)で表される酸化物、及び、当該組成式のLi、M又はMの一部がLi、M又はMで置換された酸化物を挙げることができる。より具体的なガーネット型酸化物としては、LiLaZr12、LiLaNb12、LiLaTa12、LiLa(Nb,Ta)12、LiBaLaTa12を挙げることができる。ガーネット型酸化物は、対リチウム電位が0V以下の条件で反応しないとの利点に加えて、正極及び負極間が5Vや6Vとなる高電位条件においても反応しないとの利点があるため、特に好ましい。 As the garnet-type oxide, a composition formula Li a M 1 3 M 2 2 O 12 (5 ≦ a ≦ 7, M 1 is Y, La, Pr, Nd, Sm, Lu, Mg, Ca, or One or more elements selected from Sr or Ba, M 2 is an oxide represented by one or more elements selected from Zr, Hf, Nb or Ta, and Li and M of the composition formula. some of 1 or M 2 can be exemplified oxides substituted with Li, M 1 or M 2. More specific garnet-type oxides, Li 7 La 3 Zr 2 O 12, Li 5 La 3 Nb 2 O 12, Li 5 La 3 Ta 2 O 12, Li 5 La 3 (Nb, Ta) 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 can be mentioned. The garnet-type oxide is particularly preferable because it has the advantage that it does not react even under a high potential condition of 5 V or 6 V between the positive electrode and the negative electrode in addition to the advantage that it does not react under a condition where the potential with respect to lithium is 0 V or lower. .
 NASICON型酸化物としては、組成式Li (0.5<a<5、0≦b<3、0.5≦c<3、0<d≦3、2<b+d<4、3<e≦12、MはB、Al、Ga、In、C、Si、Ge、Sn、Sb又はSeから選択される1種以上の元素。MはTi、Zr、Hf、Ge、In、Ga、Sn又はAlから選択される1種以上の元素。)で表される酸化物を挙げることができる。好適なNASICON型酸化物としては、MがAl、MがGeのものを挙げることができ、具体的にはLi1.5Al0.5Ge1.512を例示できる。 As the NASICON-type oxide, a composition formula Li a M 3 b M 4 c P d O e (0.5 <a <5, 0 ≦ b <3, 0.5 ≦ c <3, 0 <d ≦ 3, 2 <b + d <4, 3 <e ≦ 12, M 3 is one or more elements selected from B, Al, Ga, In, C, Si, Ge, Sn, Sb, or Se, and M 4 is Ti or Zr. , Hf, Ge, In, Ga, Sn, or one or more elements selected from Al). Suitable NASICON-type oxides include those in which M 3 is Al and M 4 is Ge, and specifically, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 can be exemplified.
 LISICON型酸化物としては、組成式Li4-2xZnGeO(0≦x≦1)で表される酸化物を例示できる。 An example of the LISICON-type oxide is an oxide represented by the composition formula Li 4-2x Zn x GeO 4 (0 ≦ x ≦ 1).
 上記以外の酸化物型固体電解質の具体例として、LiPO、LiPOの酸素の一部が窒素で置換したLiPON、LiBOを例示できる。 Specific examples of the oxide solid electrolyte other than the above, LiPON which part of oxygen in the Li 3 PO 4, Li 3 PO 4 was replaced by nitrogen, can be exemplified Li 3 BO 3.
 また、(100-(x+y))LiPO・xLiSO・yLiWO(x及びyは、x≧0、y≧0、0<x+y≦60を満足する。)で表される組成物を溶融及び冷却して製造した酸化物型電解質のうち、y=0のもの、すなわち、(100-x)LiPO・xLiSO(xは0<x≦60を満足する。)で表される組成物を溶融及び冷却して製造した酸化物型電解質を、セパレータとしての酸化物型固体電解質として採用してもよい。
 (100-x)LiPO・xLiSO(xは0<x≦60を満足する。)で表される組成物を溶融及び冷却して製造した酸化物型電解質をセパレータとして採用した場合には、加工・成形が容易であるといえる。さらには、本発明の電極における電極活物質層とセパレータとの親和性が優れることになるので、両者の界面は良好に形成されると考えられる。
Further, a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 (where x and y satisfy x ≧ 0, y ≧ 0, 0 <x + y ≦ 60). Among oxide type electrolytes produced by melting and cooling the product, y = 0, that is, (100-x) LiPO 3 .xLi 2 SO 4 (x satisfies 0 <x ≦ 60). An oxide type electrolyte produced by melting and cooling the composition represented may be adopted as an oxide type solid electrolyte as a separator.
When an oxide electrolyte prepared by melting and cooling a composition represented by (100-x) LiPO 3 .xLi 2 SO 4 (x satisfies 0 <x ≦ 60) is used as a separator Can be said to be easy to process and mold. Furthermore, since the affinity between the electrode active material layer and the separator in the electrode of the present invention is excellent, it is considered that the interface between the two is well formed.
 本発明の電極におけるLiPO-LiSO系ガラスと、セパレータにおける(100-x)LiPO・xLiSO(xは0<x≦60を満足する。)で表される組成物を溶融及び冷却して製造した酸化物型電解質は、異なるものであってもよいし、同一のものであってもよい。 A composition represented by LiPO 3 —Li 2 SO 4 based glass in the electrode of the present invention and (100-x) LiPO 3 · xLi 2 SO 4 (x satisfies 0 <x ≦ 60) in the separator is prepared. The oxide electrolytes produced by melting and cooling may be different or the same.
 酸化物型固体電解質を材料とするセパレータの厚み(t)は、0.1μm≦t≦2000μmが好ましく、0.5μm≦t≦1500μmがより好ましく、1μm≦t≦300μmがさらに好ましい。tが厚すぎると、抵抗が大きくなり、電池として作動困難になるだけでなく、固体型リチウムイオン二次電池が大型化してしまうことが懸念される。他方、tが薄すぎると製造作業が困難となる場合がある。 The thickness (t) of the separator made of the oxide solid electrolyte is preferably 0.1 μm ≦ t ≦ 2000 μm, more preferably 0.5 μm ≦ t ≦ 1500 μm, and further preferably 1 μm ≦ t ≦ 300 μm. If t is too thick, the resistance increases, which makes it difficult to operate as a battery, and there is a concern that the solid-state lithium-ion secondary battery may increase in size. On the other hand, if t is too thin, manufacturing work may be difficult.
 本発明の固体型リチウムイオン二次電池の製造方法においては、電極の集電体と酸化物型固体電解質を材料とするセパレータとの間に、LiPO-LiSO系ガラスが存在する状態で、LiPO-LiSO系ガラスのガラス転移温度以上かつ結晶化温度未満の範囲内の温度で加熱する工程(以下、電極-セパレータ密着工程ということがある。)を行うことが好ましい。
 電極-セパレータ密着工程の具体例としては、集電体と酸化物型固体電解質を材料とするセパレータとの間に、電極活物質層を挟んだ状態で、又は、電極活物質及びLiPO-LiSO系ガラスの混合物を挟んだ状態で、LiPO-LiSO系ガラスのガラス転移温度以上かつ結晶化温度未満の範囲内の温度で加熱する工程を挙げることができる。
In the method for producing a solid-state lithium-ion secondary battery of the present invention, a state in which LiPO 3 —Li 2 SO 4 -based glass exists between the current collector of the electrode and the separator made of the oxide-type solid electrolyte Then, it is preferable to perform the step of heating at a temperature within the range of the glass transition temperature of the LiPO 3 —Li 2 SO 4 based glass or more and less than the crystallization temperature (hereinafter, sometimes referred to as an electrode-separator adhesion step).
Specific examples of the electrode-separator adhesion step include a state in which an electrode active material layer is sandwiched between a current collector and a separator made of an oxide solid electrolyte, or an electrode active material and LiPO 3 -Li. while sandwiching a mixture of 2 SO 4 -based glass, it may be mentioned the step of heating at a temperature of LiPO 3 -Li within 2 SO 4 system range below the glass transition temperature or higher and the crystallization temperature of the glass.
 電極-セパレータ密着工程に因り、LiPO-LiSO系ガラスが軟化して、電極活物質層が酸化物型固体電解質を材料とするセパレータと、好適に密着できる。そのため、本発明の電極及びセパレータの間で形成される界面は、著しく好適なものとなる。 Due to the electrode-separator contacting step, the LiPO 3 —Li 2 SO 4 based glass is softened, and the electrode active material layer can be appropriately adhered to the separator made of the oxide solid electrolyte. Therefore, the interface formed between the electrode and the separator of the present invention is extremely suitable.
 電極-セパレータ密着工程において電極活物質層を用いる場合には、集電体と電極活物質層を具備する本発明の電極を用いてもよいし、又は、電極活物質及びLiPO-LiSO系ガラスを含有する電極活物質層を別途製造した上で、当該電極活物質層を用いてもよい。 When the electrode active material layer is used in the electrode-separator adhesion step, the electrode of the present invention having a current collector and an electrode active material layer may be used, or the electrode active material and LiPO 3 —Li 2 SO 2 may be used. Alternatively, the electrode active material layer may be used after separately manufacturing the electrode active material layer containing the 4 system glass.
 電極-セパレータ密着工程において、電極活物質及びLiPO-LiSO系ガラスの混合物を用いる場合には、一の工程で、本発明の電極が製造されると共に、本発明の電極と酸化物型固体電解質を材料とするセパレータが密着した積層体が製造されることになる。 When a mixture of an electrode active material and LiPO 3 —Li 2 SO 4 type glass is used in the electrode-separator contacting step, the electrode of the present invention is produced and the electrode of the present invention and oxide are produced in one step. A laminated body in which a separator made of a solid electrolyte is closely attached is manufactured.
 電極の製造方法における加熱工程にて説明したのと同様に、電極-セパレータ密着工程における加熱温度が高すぎると、LiPO-LiSO系ガラスが結晶化する場合があるため、不都合である。さらに、電極活物質の劣化や変質が生じるおそれがある。
 電極-セパレータ密着工程における加熱温度としては、LiPO-LiSO系ガラスのガラス転移温度以上400℃未満が好ましく、Tg以上350℃以下がより好ましく、Tg以上330℃以下がさらに好ましく、Tg以上310℃以下が特に好ましく、Tg以上300℃以下が最も好ましい。また、電極-セパレータ密着工程における加熱温度としては、Tg+5℃~Tg+40℃の範囲内、Tg+5℃~Tg+30℃の範囲内、Tg+5℃~Tg+20℃の範囲内としてもよい。
As described in the heating step in the electrode manufacturing method, if the heating temperature in the electrode-separator contacting step is too high, the LiPO 3 —Li 2 SO 4 based glass may crystallize, which is inconvenient. . Furthermore, the electrode active material may be deteriorated or deteriorated.
The heating temperature in the electrode-separator contact step is preferably the glass transition temperature of LiPO 3 —Li 2 SO 4 glass or higher and lower than 400 ° C., more preferably Tg or higher and 350 ° C. or lower, still more preferably Tg or higher and 330 ° C. or lower, and Tg or lower. It is particularly preferable that the temperature is 310 ° C. or lower and Tg is 300 ° C. or lower. The heating temperature in the electrode-separator contacting step may be Tg + 5 ° C. to Tg + 40 ° C., Tg + 5 ° C. to Tg + 30 ° C., or Tg + 5 ° C. to Tg + 20 ° C.
 電極-セパレータ密着工程においては、加熱時に、集電体とセパレータの積層方向に外圧を加えることが好ましい。電極-セパレータ密着工程は、電極活物質及びLiPO-LiSO系ガラスの劣化を抑制する雰囲気下で実施されるのが好ましい。 In the electrode-separator contacting step, it is preferable to apply an external pressure in the stacking direction of the current collector and the separator during heating. The electrode-separator contacting step is preferably carried out in an atmosphere that suppresses the deterioration of the electrode active material and the LiPO 3 —Li 2 SO 4 based glass.
 本発明の固体型リチウムイオン二次電池は、その構成に因り、電極活物質層と酸化物型固体電解質を材料とするセパレータとが好適に接合し得るため、リチウムイオンの伝導パスが好適に確保できる。さらに、本発明の固体型リチウムイオン二次電池は、酸化物型固体電解質を材料とするセパレータを採用しているため、デンドライト形成を好適に抑制できる。 The solid-state lithium-ion secondary battery of the present invention, due to its configuration, the electrode active material layer and the separator made of the oxide-type solid electrolyte can be suitably bonded, so that a lithium-ion conduction path is preferably secured. it can. Furthermore, since the solid-state lithium-ion secondary battery of the present invention employs a separator made of an oxide-type solid electrolyte, dendrite formation can be suitably suppressed.
 本発明の固体型リチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the solid-state lithium-ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylinder type, a square type, a coin type and a laminated type can be adopted.
 本発明の固体型リチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部に二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両に固体型リチウムイオン二次電池を搭載する場合には、固体型リチウムイオン二次電池を複数直列に接続して組電池とするとよい。固体型リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明の固体型リチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The solid-state lithium-ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be any vehicle that uses electric energy from the secondary battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. When a solid-state lithium-ion secondary battery is mounted on a vehicle, it is advisable to connect a plurality of solid-state lithium-ion secondary batteries in series to form an assembled battery. Examples of devices equipped with the solid-state lithium-ion secondary battery include, in addition to vehicles, personal computers, portable communication devices, and other battery-driven home appliances, office devices, industrial devices, and the like. Further, the solid-state lithium-ion secondary battery of the present invention is a power storage device and power smoothing device for wind power generation, solar power generation, hydroelectric power generation and other power systems, power supply for ships and / or power supply for auxiliary machinery, Power supply source for aircraft and spacecraft and / or auxiliary machinery, auxiliary power supply for vehicles that do not use electricity as power source, mobile home robot power supply, system backup power supply, uninterruptible power supply It may be used as a power storage device or a power storage device that temporarily stores electric power required for charging in a charging station for electric vehicles.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. Without departing from the scope of the present invention, various modifications and improvements can be made by those skilled in the art.
 以下に、実施例等を示し、本発明を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 The present invention will be specifically described below by showing Examples and the like. The present invention is not limited to these examples.
 (製造例A)
 LiCO及び(NHHPOをモル比1:2で秤量して、混合し、混合物とした。当該混合物を950℃に加熱して溶融し、液体とした。当該液体を急冷して、固化させた後に、粉砕することで、LiPOガラスを得た。
 LiPOガラス及びLiSO・HOをモル比70:30で秤量して、混合し、混合物とした。大気下、当該混合物を850℃付近に加熱して、液体とした。当該液体を急冷して、固化させた後に、粉砕することで、透明な製造例AのLiPO-LiSO系ガラスを製造した。
 製造例AのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=30、y=0のものに相当する。
(Production Example A)
Li 2 CO 3 and (NH 4 ) 2 HPO 4 were weighed in a molar ratio of 1: 2 and mixed to form a mixture. The mixture was heated to 950 ° C. and melted into a liquid. The liquid was rapidly cooled, solidified, and then pulverized to obtain LiPO 3 glass.
LiPO 3 glass and Li 2 SO 4 .H 2 O were weighed at a molar ratio of 70:30 and mixed to obtain a mixture. The mixture was heated to about 850 ° C. in the air to form a liquid. The liquid was rapidly cooled, solidified, and then pulverized to produce a transparent LiPO 3 —Li 2 SO 4 -based glass of Production Example A.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example A corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 30 and y = 0. .
 (製造例B)
 LiPOガラス及びLiSO・HOをモル比60:40で用いた以外は、製造例Aと同様の方法で、透明な製造例BのLiPO-LiSO系ガラスを製造した。
 製造例BのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=40、y=0のものに相当する。
(Production Example B)
A transparent LiPO 3 —Li 2 SO 4 based glass of Production Example B was produced in the same manner as in Production Example A, except that LiPO 3 glass and Li 2 SO 4 · H 2 O were used at a molar ratio of 60:40. did.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example B corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 40 and y = 0. .
 (製造例C)
 LiPOガラス及びLiSO・HOをモル比55:45で用いた以外は、製造例Aと同様の方法で、透明な製造例CのLiPO-LiSO系ガラスを製造した。
 製造例CのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=45、y=0のものに相当する。
(Production Example C)
A transparent LiPO 3 —Li 2 SO 4 -based glass of Production Example C was produced in the same manner as in Production Example A except that LiPO 3 glass and Li 2 SO 4 · H 2 O were used at a molar ratio of 55:45. did.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example C corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 45 and y = 0. .
 (製造例D)
 LiPOガラス及びLiSO・HOをモル比50:50で用いた以外は、製造例Aと同様の方法で、透明な製造例DのLiPO-LiSO系ガラスを製造した。
 製造例DのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=50、y=0のものに相当する。
(Production Example D)
A transparent LiPO 3 —Li 2 SO 4 based glass of Production Example D was produced in the same manner as in Production Example A, except that LiPO 3 glass and Li 2 SO 4 · H 2 O were used at a molar ratio of 50:50. did.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example D corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 50 and y = 0. .
 (製造例E)
 LiPOガラス及びLiSO・HOをモル比45:55で用いた以外は、製造例Aと同様の方法で、透明な製造例EのLiPO-LiSO系ガラスを製造した。
 製造例EのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=55、y=0のものに相当する。
(Production Example E)
A transparent LiPO 3 —Li 2 SO 4 -based glass of Production Example E was produced in the same manner as in Production Example A except that LiPO 3 glass and Li 2 SO 4 · H 2 O were used at a molar ratio of 45:55. did.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example E corresponds to (100- (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 55 and y = 0. .
 (製造例F)
 LiPOガラス及びLiSO・HOをモル比40:60で用いた以外は、製造例Aと同様の方法で、製造例FのLiPO-LiSO系ガラスを製造した。
 製造例FのLiPO-LiSO系ガラスには、やや白濁が観察された。
 製造例FのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=60、y=0のものに相当する。
(Production Example F)
Except for using LiPO 3 glass and Li 2 SO 4 · H 2 O in a molar ratio 40:60, in Production Example A and the same method was prepared LiPO 3 -Li 2 SO 4 glass of Preparation F.
A slight white turbidity was observed in the LiPO 3 —Li 2 SO 4 based glass of Production Example F.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example F corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 60 and y = 0. .
 (製造例G)
 LiPOガラス及びLiSO・HOをモル比35:65で用いた以外は、製造例Aと同様の方法で、製造例GのLiPO-LiSO系ガラスを製造した。
 製造例GのLiPO-LiSO系ガラスには、白濁が観察された。かかる白濁は結晶と考えられる。
 製造例GのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=65、y=0のものに相当する。
(Production Example G)
Except for using LiPO 3 glass and Li 2 SO 4 · H 2 O in a molar ratio 35:65 is in Production Example A and the same method was prepared LiPO 3 -Li 2 SO 4 glass of Preparation G.
White turbidity was observed in the LiPO 3 —Li 2 SO 4 based glass of Production Example G. Such cloudiness is considered to be crystals.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example G corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 65 and y = 0. .
 (製造例H)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:45:5で用いた以外は、製造例Aと同様の方法で、透明な製造例HのLiPO-LiSO系ガラスを製造した。
 製造例HのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=45、y=5のものに相当する。
(Production Example H)
A transparent LiPO 3 -Li of Preparation Example H was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50: 45: 5. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example H corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 45 and y = 5. .
 (製造例I)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:40:10で用いた以外は、製造例Aと同様の方法で、透明な製造例IのLiPO-LiSO系ガラスを製造した。
 製造例IのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=40、y=10のものに相当する。
(Production Example I)
A transparent LiPO 3 -Li of Preparation Example I was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:40:10. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example I corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 with x = 40 and y = 10. .
 (製造例J)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:35:15で用いた以外は、製造例Aと同様の方法で、透明な製造例JのLiPO-LiSO系ガラスを製造した。
 製造例JのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=35、y=15のものに相当する。
(Production Example J)
A transparent LiPO 3 -Li of Preparation Example J was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used in a molar ratio of 50:35:15. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example J corresponds to (100− (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 , where x = 35 and y = 15. .
 (製造例K)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:30:20で用いた以外は、製造例Aと同様の方法で、透明な製造例KのLiPO-LiSO系ガラスを製造した。
 製造例KのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=30、y=20のものに相当する。
(Production Example K)
A transparent LiPO 3 -Li of Production Example K was prepared in the same manner as in Production Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:30:20. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example K corresponds to (100− (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 , where x = 30 and y = 20. .
 (製造例L)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:25:25で用いた以外は、製造例Aと同様の方法で、透明な製造例LのLiPO-LiSO系ガラスを製造した。
 製造例LのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=25、y=25のものに相当する。
(Production Example L)
A transparent LiPO 3 -Li of Preparation Example L was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:25:25. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example L corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 25 and y = 25. .
 (製造例M)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:20:30で用いた以外は、製造例Aと同様の方法で、透明な製造例MのLiPO-LiSO系ガラスを製造した。
 製造例MのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=20、y=30のものに相当する。
(Production Example M)
A transparent LiPO 3 -Li of Preparation Example M was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:20:30. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example M corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 20 and y = 30. .
 (製造例N)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:15:35で用いた以外は、製造例Aと同様の方法で、透明な製造例NのLiPO-LiSO系ガラスを製造した。
 製造例NのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=15、y=35のものに相当する。
(Production Example N)
A transparent LiPO 3 -Li of Preparation Example N was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:15:35. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example N corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 15 and y = 35. .
 (製造例O)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:10:40で用いた以外は、製造例Aと同様の方法で、透明な製造例OのLiPO-LiSO系ガラスを製造した。
 製造例OのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=10、y=40のものに相当する。
(Production Example O)
A transparent LiPO 3 -Li of Preparation Example O was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50:10:40. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example O corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 with x = 10 and y = 40. .
 (製造例P)
 LiPOガラス、LiSO・HO及びLiWOをモル比50:5:45で用いた以外は、製造例Aと同様の方法で、透明な製造例PのLiPO-LiSO系ガラスを製造した。
 製造例PのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=5、y=45のものに相当する。
(Production Example P)
A transparent LiPO 3 -Li of Preparation Example P was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 50: 5: 45. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example P corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 with x = 5 and y = 45. .
 (製造例Q)
 LiPOガラス及びLiWOをモル比50:50で用いた以外は、製造例Aと同様の方法で、透明な製造例QのLiPO-LiSO系ガラスを製造した。
 製造例QのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=0、y=50のものに相当する。
(Production Example Q)
A transparent LiPO 3 —Li 2 SO 4 -based glass of Production Example Q was produced in the same manner as in Production Example A, except that LiPO 3 glass and Li 2 WO 4 were used at a molar ratio of 50:50.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example Q corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 0 and y = 50. .
 (製造例R)
 LiPOガラス、LiSO・HO及びLiWOをモル比60:20:20で用いた以外は、製造例Aと同様の方法で、透明な製造例RのLiPO-LiSO系ガラスを製造した。
 製造例RのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=20、y=20のものに相当する。
(Production Example R)
A transparent LiPO 3 -Li of Preparation Example R was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 60:20:20. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example R corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 20 and y = 20. .
 (製造例S)
 LiPOガラス、LiSO・HO及びLiWOをモル比40:30:30で用いた以外は、製造例Aと同様の方法で、透明な製造例SのLiPO-LiSO系ガラスを製造した。
 製造例SのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=30、y=30のものに相当する。
(Production Example S)
A transparent LiPO 3 -Li of Preparation Example S was prepared in the same manner as in Preparation Example A, except that LiPO 3 glass, Li 2 SO 4 .H 2 O and Li 2 WO 4 were used at a molar ratio of 40:30:30. 2 SO 4 type glass was manufactured.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example S corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 30 and y = 30. .
 (製造例T)
 LiPOガラス、LiSO・HO及びLiWOをモル比30:35:35で用いた以外は、製造例Aと同様の方法で、製造例TのLiPO-LiSO系ガラスを製造した。
 製造例TのLiPO-LiSO系ガラスには、白濁が観察された。かかる白濁は結晶と考えられる。
 製造例TのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=35、y=35のものに相当する。
(Production Example T)
LiPO 3 glass, except for using the Li 2 SO 4 · H 2 O and Li 2 WO 4 in a molar ratio 30:35:35 are in Production Example A similar method, LiPO 3 -Li 2 SO of Preparation T 4 series glass was manufactured.
White turbidity was observed in the LiPO 3 —Li 2 SO 4 based glass of Production Example T. Such cloudiness is considered to be crystals.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example T corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 35 and y = 35. .
 製造したLiPO-LiSO系ガラスの一覧を表1に示す。  Table 1 shows a list of the produced LiPO 3 —Li 2 SO 4 based glasses.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (評価例1)
 製造例A、製造例B、製造例D及び製造例FのLiPO-LiSO系ガラス、並びに、LiPOガラスにつき、Cu-Καを用いた粉末X線回折装置にて、分析を行った。各粉末X線回折チャートを図1に示す。
(Evaluation example 1)
The LiPO 3 —Li 2 SO 4 based glasses of Production Example A, Production Example B, Production Example D, and Production Example F, and LiPO 3 glass were analyzed by a powder X-ray diffractometer using Cu—Kα. It was The powder X-ray diffraction chart is shown in FIG.
 その結果、x=0であるLiPOガラス並びにx=30~50である原料を用いた製造例A、製造例B及び製造例DのLiPO-LiSO系ガラスにおいては、非晶質を示すハローが、20~30°の範囲にわたり、観測された。x=60である原料を用いた製造例FのLiPO-LiSO系ガラスにおいては、非晶質を示すハローに加えて、若干のピークらしきものが観測された。 As a result, manufacturing examples using a raw material which is LiPO 3 glass and x = 30 ~ 50 is x = 0 A, in LiPO 3 -Li 2 SO 4 glass of Preparation B and Preparation D is amorphous A halo indicating is observed over the range 20-30 °. In the LiPO 3 —Li 2 SO 4 based glass of Production Example F using the raw material of x = 60, some peak-like substances were observed in addition to the halo showing amorphous.
 以上の結果から、xが60未満の原料を用いた場合にはLiPO-LiSO系ガラスはガラス状態であるものの、xが60以上の原料を用いた場合にはLiPO-LiSO系ガラスには結晶が混在する場合があるといえる。 These results, although LiPO 3 -Li 2 SO 4 based glass when x was used for less than 60 material is glass state, LiPO 3 if x was used 60 or more ingredients -Li 2 It can be said that crystals may be mixed in the SO 4 type glass.
 (評価例2)
 製造例C、製造例D、製造例E、製造例F、製造例H、製造例I、製造例K、製造例L、製造例O及び製造例PのLiPO-LiSO系ガラス、並びに、LiPOガラスにつき、示差走査熱量計(以下、DSCと略すことがある。)にて、ガラス転移温度(Tg)の測定及び結晶化温度(Tc)の測定を行った。DSCの昇温速度は10℃/分とし、室温から450℃又は500℃までの範囲を測定対象とした。
 これらの結果のうち、y=0の原料を用いたLiPO-LiSO系ガラスの結果を表2-1に示し、y>0の原料を用いたLiPO-LiSO系ガラスの結果を表2-2に示す。また、製造例EのLiPO-LiSO系ガラスのDSCチャートを図2に示す。 
(Evaluation example 2)
Production Example C, Production Example D, Production Example E, Production Example F, Production Example H, Production Example I, Production Example K, Production Example L, Production Example O, and Production Example P, LiPO 3 —Li 2 SO 4 based glass, In addition, the glass transition temperature (Tg) and the crystallization temperature (Tc) of the LiPO 3 glass were measured with a differential scanning calorimeter (hereinafter sometimes abbreviated as DSC). The temperature rising rate of DSC was 10 ° C./min, and the range from room temperature to 450 ° C. or 500 ° C. was the measurement target.
Among these results, the results of the LiPO 3 —Li 2 SO 4 based glass using the raw material of y = 0 are shown in Table 2-1 and the LiPO 3 —Li 2 SO 4 based glass using the raw material of y> 0 is shown. The results are shown in Table 2-2. Further, FIG. 2 shows a DSC chart of the LiPO 3 —Li 2 SO 4 based glass of Production Example E.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2-1から、y=0の原料を用いたLiPO-LiSO系ガラスのxが増加するに従い、Tgが減少傾向にあることがわかる。また、いずれのLiPO-LiSO系ガラスにおいても、TcとTgの差が一定程度であるといえる。  From Table 2-1, it is understood that Tg tends to decrease as x of the LiPO 3 —Li 2 SO 4 based glass using the raw material of y = 0 increases. In addition, it can be said that the difference between Tc and Tg is almost constant in any LiPO 3 —Li 2 SO 4 based glass.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2-2から、yの値が上昇するに従い、Tgが増加傾向にあることがわかる。 From Table 2-2, it can be seen that Tg tends to increase as the value of y increases.
 (評価例3)
 製造例C、製造例D、製造例E、製造例FのLiPO-LiSO系ガラス、並びに、LiPOガラスにつき、それぞれのガラスを用いた電気伝導度測定用セルを製造して、25℃での抵抗を測定した。測定された抵抗値に基づき、電気伝導度を算出した。
 これらの結果を表3に示す。 
(Evaluation example 3)
With respect to LiPO 3 —Li 2 SO 4 system glass of Production Example C, Production Example D, Production Example E, and Production Example F, and an electric conductivity measurement cell using each glass for LiPO 3 glass, The resistance at 25 ° C was measured. The electrical conductivity was calculated based on the measured resistance value.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3から、LiPOガラスにLiSOを添加することで、著しく電気伝導度が向上するといえる。また、xの値が45~55の範囲内の原料を用いたLiPO-LiSO系ガラスに、LiPO-LiSO系ガラスの電気伝導性の極大値があると考えられる。 From Table 3, it can be said that the addition of Li 2 SO 4 to LiPO 3 glass significantly improves the electric conductivity. Further, it is considered that the LiPO 3 —Li 2 SO 4 based glass using the raw material in which the value of x is in the range of 45 to 55 has the maximum value of electric conductivity of the LiPO 3 —Li 2 SO 4 based glass.
 評価例1~評価例3の結果を総合して考察すると、LiPO-LiSO系ガラスの原料において、x(又はx+y)は45≦x(又はx+y)≦55を満足するのが好ましく、47≦x(又はx+y)≦53を満足するのがさらに好ましいといえる。 Comprehensively considering the results of Evaluation Examples 1 to 3, x (or x + y) in the raw material of the LiPO 3 —Li 2 SO 4 system glass is preferably 45 ≦ x (or x + y) ≦ 55. , 47 ≦ x (or x + y) ≦ 53 is more preferable.
 また、製造例H~製造例SのLiPO-LiSO系ガラスにつき、それぞれのガラスを用いた電気伝導度測定用セルを製造して、25℃での抵抗を測定した。測定された抵抗値に基づき、バルクガラスとしての電気伝導度を算出した。
 さらに、製造例H~製造例SのLiPO-LiSO系ガラスにつき、ボールミルで粉砕し、200メッシュの篩を通過させて微粉末とした。当該微粉末を360MPaの圧力でプレスして、ペレットを製造した。当該ペレットを用いた電気伝導度測定用セルを製造して、25℃での抵抗を測定した。測定された抵抗値に基づき、ペレットとしての電気伝導度を算出した。
 これらの結果を表4に示す。なお、表4の空欄は未測定を意味する。 
Further, with respect to the LiPO 3 —Li 2 SO 4 type glass of Production Example H to Production Example S, an electric conductivity measuring cell was produced using each glass, and the resistance at 25 ° C. was measured. The electrical conductivity of the bulk glass was calculated based on the measured resistance value.
Further, the LiPO 3 —Li 2 SO 4 type glass of Production Example H to Production Example S was crushed with a ball mill and passed through a 200-mesh sieve to obtain a fine powder. The fine powder was pressed at a pressure of 360 MPa to produce pellets. A cell for measuring electric conductivity was manufactured using the pellet, and the resistance at 25 ° C. was measured. The electrical conductivity of the pellet was calculated based on the measured resistance value.
The results are shown in Table 4. The blank in Table 4 means unmeasured.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4から、バルクガラスにおいては、原料のyが上昇するに従い、LiPO-LiSO系ガラスの電気伝導度が向上する傾向にあるといえる。LiPO-LiSO系ガラス粉末を圧縮したペレットにおいては、原料のyの値が20~25の範囲内のものに、電気伝導度の極大値があると考えられる。 From Table 4, it can be said that in the bulk glass, the electric conductivity of the LiPO 3 —Li 2 SO 4 based glass tends to improve as the y of the raw material increases. In the pellets obtained by compressing the LiPO 3 —Li 2 SO 4 based glass powder, it is considered that the maximum value of the electric conductivity is found when the y value of the raw material is in the range of 20 to 25.
 (評価例4)
 以下のとおり、製造例DのLiPO-LiSO系ガラスの還元に対する耐久性を試験した。
(Evaluation example 4)
The LiPO 3 —Li 2 SO 4 based glass of Production Example D was tested for durability against reduction as follows.
 銅箔の上に環状の絶縁性合成樹脂を配置した。絶縁性合成樹脂の環内に製造例DのLiPO-LiSO系ガラスを充填し、さらに、エチレンカーボネートとジエチルカーボネートの混合溶媒を少量添加した。絶縁性合成樹脂の上側にリチウム箔を配置することで、銅箔とリチウム箔とで製造例DのLiPO-LiSO系ガラスを挟んだ状態の評価用セルを製造した。
 評価用セルにおける銅箔を作用極、リチウム箔を対極及び参照極とみなして、評価用セルを0~2Vの電圧を印加するサイクリックボルタンメトリー(以下、CVと略すことがある。)試験に供した。
 その結果、CV曲線からは、LiPO-LiSO系ガラスの還元分解に由来する挙動(電流)が観察されなかった。LiPO-LiSO系ガラスは還元条件下での耐久性に優れるといえる。
An annular insulating synthetic resin was placed on the copper foil. The insulating synthetic resin was filled with the LiPO 3 —Li 2 SO 4 system glass of Production Example D in the ring, and a small amount of a mixed solvent of ethylene carbonate and diethyl carbonate was added. By disposing the lithium foil on the upper side of the insulating synthetic resin, a cell for evaluation in which the LiPO 3 —Li 2 SO 4 system glass of Production Example D was sandwiched between the copper foil and the lithium foil was produced.
Using the copper foil in the evaluation cell as the working electrode and the lithium foil as the counter electrode and the reference electrode, the evaluation cell was subjected to a cyclic voltammetry (hereinafter sometimes abbreviated as CV) test in which a voltage of 0 to 2 V was applied. did.
As a result, the behavior (current) derived from the reductive decomposition of LiPO 3 —Li 2 SO 4 glass was not observed from the CV curve. It can be said that the LiPO 3 —Li 2 SO 4 based glass has excellent durability under reducing conditions.
 比較試験として、製造例DのLiPO-LiSO系ガラスに替えて、50LiPO・50LiVOで表されるLiPO-LiVO系ガラスを充填した評価用セルを製造して、0.5~3Vの電圧を印加するサイクリックボルタンメトリー試験を行った。
 その結果、電圧が2.2Vの時点でV5+がV4+に還元されたと推定される電流が観測された。電圧が2.2V以下の条件下では、LiPO-LiVO系ガラスの使用は不適切であるといえる。
As a comparative test, in place of the LiPO 3 -Li 2 SO 4 glass of Preparation D, manufactures evaluation cell filled with LiPO 3 -LiVO 3 based glass represented by 50LiPO 3 · 50LiVO 3, 0. A cyclic voltammetry test in which a voltage of 5 to 3 V is applied was performed.
As a result, a current estimated to have reduced V 5+ to V 4+ was observed at a voltage of 2.2V. It can be said that the use of LiPO 3 —LiVO 3 based glass is inappropriate under the condition that the voltage is 2.2 V or less.
 (実施例1)
 正極活物質として59質量部のLiCoOと、39質量部の製造例DのLiPO-LiSO系ガラスと、導電助剤として2質量部のアセチレンブラックを混合して、正極活物質層製造用組成物とした。窒素雰囲気下、正極活物質層製造用組成物を加圧-加熱装置内に配置した。正極活物質層製造用組成物を300℃に加熱して、15分間保持した。次いで、300℃で加熱状態の正極活物質層製造用組成物を100MPaで加圧して、加熱・加圧状態を30分間保持した後に、室温まで冷却して、実施例1の正極活物質層を製造した。
(Example 1)
59 parts by mass of LiCoO 2 as a positive electrode active material, 39 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example D, and 2 parts by mass of acetylene black as a conductive additive were mixed to form a positive electrode active material layer. A manufacturing composition was prepared. The composition for producing a positive electrode active material layer was placed in a pressure-heating device under a nitrogen atmosphere. The composition for producing the positive electrode active material layer was heated to 300 ° C. and held for 15 minutes. Then, the composition for producing a positive electrode active material layer heated at 300 ° C. was pressurized at 100 MPa, and the heated / pressurized state was maintained for 30 minutes, and then cooled to room temperature to obtain the positive electrode active material layer of Example 1. Manufactured.
 集電体として、径15.5mm、厚さ1mmのステンレス鋼製(SUS316に相当する。)の箔を準備した。集電体と、実施例1の正極活物質層との結着剤として、ペースト状の黒鉛粉末分散水を準備した。
 集電体の表面に黒鉛粉末分散水を塗布し、その上に実施例1の正極活物質層を配置して積層体とした。積層体を乾燥させて水を除去することで、実施例1の正極を製造した。
A foil made of stainless steel (corresponding to SUS316) having a diameter of 15.5 mm and a thickness of 1 mm was prepared as a current collector. As a binder between the current collector and the positive electrode active material layer of Example 1, paste-like graphite powder-dispersed water was prepared.
Graphite powder-dispersed water was applied to the surface of the current collector, and the positive electrode active material layer of Example 1 was placed thereon to form a laminate. The positive electrode of Example 1 was manufactured by drying a laminated body and removing water.
 厚さ500μmの金属リチウム箔を径16mmに裁断し負極とした。セパレータとして径16mm、厚さ1mmのガラスフィルターを準備した。エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを体積比3:4:4で混合した有機溶媒に、LiPFを濃度1mol/Lで溶解させて、電解液とした。 A metal lithium foil having a thickness of 500 μm was cut into a diameter of 16 mm to obtain a negative electrode. A glass filter having a diameter of 16 mm and a thickness of 1 mm was prepared as a separator. LiPF 6 was dissolved at a concentration of 1 mol / L in an organic solvent in which ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate were mixed at a volume ratio of 3: 4: 4 to obtain an electrolytic solution.
 セパレータを実施例1の正極と負極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを参考例1のリチウムイオン二次電池とした。 The separator was sandwiched between the positive electrode and the negative electrode of Example 1 to form an electrode body. This electrode body was housed in a coin type battery case CR2032 (Hosen Co., Ltd.), and an electrolytic solution was further injected to obtain a coin type battery. This was used as the lithium-ion secondary battery of Reference Example 1.
 (評価例5)
 参考例1のリチウムイオン二次電池に対して、充電レート0.1C、放電レート0.05Cでの充放電を行った。観測された充放電曲線を図3に示す。
 図3から、参考例1のリチウムイオン二次電池は好適に充放電を行ったことがわかる。
(Evaluation example 5)
The lithium-ion secondary battery of Reference Example 1 was charged and discharged at a charge rate of 0.1C and a discharge rate of 0.05C. The observed charge / discharge curve is shown in FIG.
From FIG. 3, it can be seen that the lithium-ion secondary battery of Reference Example 1 was suitably charged and discharged.
 (実施例2)
 正極活物質として40質量部の層状岩塩構造のリチウムニッケルコバルトマンガン複合酸化物と、58質量部の製造例DのLiPO-LiSO系ガラスと、導電助剤として2質量部のアセチレンブラックを混合して、正極活物質層製造用組成物とした。
(Example 2)
40 parts by mass of a layered rock salt structure lithium nickel cobalt manganese composite oxide as a positive electrode active material, 58 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example D, and 2 parts by mass of acetylene black as a conductive additive. Were mixed to obtain a composition for producing a positive electrode active material layer.
 50mgの製造例DのLiPO-LiSO系ガラスを、室温条件下、130MPaで加圧して、径10mm、厚さ0.5mmの酸化物型固体電解質とした。これをセパレータとして使用した。 50 mg of LiPO 3 —Li 2 SO 4 glass of Production Example D was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
 負極活物質として、径6mm、質量58.8mgのリチウム箔を準備した。 As a negative electrode active material, a lithium foil having a diameter of 6 mm and a mass of 58.8 mg was prepared.
 集電体としてのAl箔の上に2.5mgの正極活物質層製造用組成物を配置し、その上にセパレータを配置した。これらを、300℃での加熱及び130MPaで加圧して、加熱・加圧状態を30分間維持することで、厚み0.0148mmの正極活物質層を形成させるとともに、集電体と正極活物質層とセパレータとしての酸化物型固体電解質が一体化した積層体を製造した。さらに、酸化物型固体電解質の上にリチウム箔及び集電体としてのCu箔を積層し、加圧して、実施例2の固体型リチウムイオン二次電池を製造した。 2.5 mg of the composition for producing a positive electrode active material layer was placed on an Al foil as a current collector, and a separator was placed thereon. These are heated at 300 ° C. and pressurized at 130 MPa, and the heated / pressurized state is maintained for 30 minutes to form a positive electrode active material layer having a thickness of 0.0148 mm, and a current collector and a positive electrode active material layer. A laminated body was manufactured in which an oxide type solid electrolyte as a separator was integrated. Further, a lithium foil and a Cu foil as a current collector were laminated on the oxide type solid electrolyte and pressed to manufacture a solid type lithium ion secondary battery of Example 2.
 なお、セパレータ及び実施例2の固体型リチウムイオン二次電池の製造には、セラミックス製であって内径10mmの円筒状の側部成形型、並びに、ステンレス鋼製(SUS316に相当する。)の上部成形型及び下部成形型で構成される成形装置を用いた。 In addition, in manufacturing the separator and the solid-state lithium-ion secondary battery of Example 2, a cylindrical side molding die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316). A molding apparatus including a molding die and a lower molding die was used.
 製造直後の実施例2の固体型リチウムイオン二次電池の模式図を、図4に示す。
 図4において、下部成形型10の上に、集電体及び正極活物質層が積層した正極1、セパレータとしての酸化物型固体電解質2、リチウム箔3、Cu箔4がこの順に積層されている。Cu箔4の上には上部成形型11が配置されており、正極1、酸化物型固体電解質2、リチウム箔3及びCu箔4は、上部成形型11と下部成形型10で加圧されている。
 なお、5はセラミックス製であって内径10mmの側部成形型である。
FIG. 4 shows a schematic diagram of the solid-state lithium-ion secondary battery of Example 2 immediately after production.
In FIG. 4, a positive electrode 1 in which a current collector and a positive electrode active material layer are laminated, an oxide solid electrolyte 2 as a separator, a lithium foil 3, and a Cu foil 4 are laminated in this order on a lower mold 10. . The upper mold 11 is arranged on the Cu foil 4, and the positive electrode 1, the oxide solid electrolyte 2, the lithium foil 3 and the Cu foil 4 are pressed by the upper mold 11 and the lower mold 10. There is.
Reference numeral 5 is a side molding die made of ceramics and having an inner diameter of 10 mm.
 (評価例6)
 100℃の恒温層中で、実施例2の固体型リチウムイオン二次電池に対して、電流レート10μA/cm、電圧2.5~4.35Vの条件で充放電を行い、充放電曲線を観察した。充電曲線を図5に示し、放電曲線を図6に示す。図5及び図6において、縦軸は電圧(V)であり、横軸は容量(mAh/g)である。
(Evaluation example 6)
The solid-state lithium-ion secondary battery of Example 2 was charged and discharged in a constant temperature layer of 100 ° C. under conditions of a current rate of 10 μA / cm 2 and a voltage of 2.5 to 4.35 V, and a charge-discharge curve was obtained. I observed. The charge curve is shown in FIG. 5 and the discharge curve is shown in FIG. 5 and 6, the vertical axis represents voltage (V) and the horizontal axis represents capacity (mAh / g).
 使用した正極活物質の理論容量は180mAh/g程度である。図6における放電曲線の放電容量からみて、実施例2の固体型リチウムイオン二次電池はほぼ定量的な容量を示したといえる。 The theoretical capacity of the positive electrode active material used is about 180 mAh / g. From the discharge capacity of the discharge curve in FIG. 6, it can be said that the solid-state lithium-ion secondary battery of Example 2 exhibited a substantially quantitative capacity.
 (実施例3)
 正極活物質として59.8質量部の層状岩塩構造のリチウムニッケルコバルトマンガン複合酸化物と、38質量部の製造例LのLiPO-LiSO系ガラスと、導電助剤として2.2質量部のアセチレンブラックを、ボールミルを用いて100rpmで72時間混合して、正極活物質層製造用組成物とした。
(Example 3)
As a positive electrode active material, 59.8 parts by mass of a lithium nickel cobalt manganese composite oxide having a layered rock salt structure, 38 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example L, and 2.2 parts by mass as a conduction aid. Part of acetylene black was mixed with a ball mill at 100 rpm for 72 hours to obtain a composition for producing a positive electrode active material layer.
 51.3mgの製造例DのLiPO-LiSO系ガラスを、室温条件下、130MPaで加圧して、径10mm、厚さ0.5mmの酸化物型固体電解質とした。これをセパレータとして使用した。 51.3 mg of LiPO 3 —Li 2 SO 4 type glass of Production Example D was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
 負極活物質として、径4mmのリチウム箔及び径6mmのインジウム箔を準備した。 As a negative electrode active material, a lithium foil having a diameter of 4 mm and an indium foil having a diameter of 6 mm were prepared.
 集電体としてのAl箔の上に1.4mgの正極活物質層製造用組成物を配置し、その上にセパレータを配置した。これらを、300℃での加熱及び130MPaで加圧して、加熱・加圧状態を30分間維持することで、正極活物質層を形成させるとともに、集電体と正極活物質層とセパレータとしての酸化物型固体電解質が一体化した積層体を製造した。さらに、酸化物型固体電解質の上にリチウム箔及びインジウム箔を積層し、加圧して、実施例3の固体型リチウムイオン二次電池を製造した。 1.4 mg of the positive electrode active material layer-producing composition was placed on an Al foil as a current collector, and a separator was placed thereon. These are heated at 300 ° C. and pressurized at 130 MPa, and the heated / pressurized state is maintained for 30 minutes to form a positive electrode active material layer and to oxidize the current collector, the positive electrode active material layer, and the separator. A laminate in which the physical solid electrolyte was integrated was manufactured. Further, a lithium foil and an indium foil were laminated on the oxide type solid electrolyte and pressed to manufacture a solid type lithium ion secondary battery of Example 3.
 なお、セパレータ及び実施例3の固体型リチウムイオン二次電池の製造には、セラミックス製であって内径10mmの円筒状の側部成形型、並びに、ステンレス鋼製(SUS316に相当する。)の上部成形型及び下部成形型で構成される成形装置を用いた。 To manufacture the separator and the solid-state lithium-ion secondary battery of Example 3, a cylindrical side forming die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316) were used. A molding apparatus including a molding die and a lower molding die was used.
 (評価例7)
 100℃の恒温層中で、実施例3の固体型リチウムイオン二次電池に対して、電流レート10μA/cm、電圧2~4Vの条件で充放電を行い、充放電曲線を観察した。充放電曲線を図7に示す。
 図7から、実施例3の固体型リチウムイオン二次電池が好適に充放電することが確認できる。
(Evaluation example 7)
The solid-state lithium-ion secondary battery of Example 3 was charged and discharged in a constant temperature layer of 100 ° C. under conditions of a current rate of 10 μA / cm 2 and a voltage of 2 to 4 V, and a charge-discharge curve was observed. The charge / discharge curve is shown in FIG. 7.
From FIG. 7, it can be confirmed that the solid-state lithium-ion secondary battery of Example 3 is suitably charged and discharged.
 (実施例4)
 負極活物質として30質量部のLiTi12と、60質量部の製造例DのLiPO-LiSO系ガラスと、導電助剤として10質量部のアセチレンブラックを、ボールミルを用いて100rpmで72時間混合して、負極活物質層製造用組成物とした。
(Example 4)
Using a ball mill, 30 parts by mass of Li 4 Ti 5 O 12 as a negative electrode active material, 60 parts by mass of LiPO 3 —Li 2 SO 4 based glass of Production Example D, and 10 parts by mass of acetylene black as a conductive additive were used. And mixed at 100 rpm for 72 hours to obtain a composition for producing a negative electrode active material layer.
 50mgの製造例DのLiPO-LiSO系ガラスを、室温条件下、130MPaで加圧して、径10mm、厚さ0.5mmの酸化物型固体電解質とした。これをセパレータとして使用した。 50 mg of LiPO 3 —Li 2 SO 4 glass of Production Example D was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
 集電体としてのAl箔の上に70mgの負極活物質層製造用組成物を配置し、その上にセパレータを配置した。これらを、300℃での加熱及び130MPaで加圧して、加熱・加圧状態を30分間維持することで、負極活物質層を形成させるとともに、集電体と負極活物質層とセパレータとしての酸化物型固体電解質が一体化した積層体を製造した。さらに、酸化物型固体電解質の上にリチウム箔及び集電体としてのCu箔を積層し、加圧して、実施例4の固体型リチウムイオン二次電池を製造した。 70 mg of the composition for producing a negative electrode active material layer was placed on an Al foil as a current collector, and a separator was placed thereon. These are heated at 300 ° C. and pressurized at 130 MPa, and the heated / pressurized state is maintained for 30 minutes to form a negative electrode active material layer, and at the same time, to oxidize the current collector, the negative electrode active material layer, and the separator. A laminate in which the physical solid electrolyte was integrated was manufactured. Further, a lithium foil and a Cu foil as a current collector were laminated on the oxide type solid electrolyte and pressed to manufacture a solid type lithium ion secondary battery of Example 4.
 なお、セパレータ及び実施例4の固体型リチウムイオン二次電池の製造には、セラミックス製であって内径10mmの円筒状の側部成形型、並びに、ステンレス鋼製(SUS316に相当する。)の上部成形型及び下部成形型で構成される成形装置を用いた。 For manufacturing the separator and the solid-state lithium-ion secondary battery of Example 4, a cylindrical side forming die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316) were used. A molding apparatus including a molding die and a lower molding die was used.
 (評価例8)
 100℃の恒温層中で、実施例4の固体型リチウムイオン二次電池に対して、電流レート0.39μA/cm又は電流レート7.8μA/cm、電圧0.5~2.5Vの条件で充放電を行ったところ、実施例4の固体型リチウムイオン二次電池が充放電することが確認できた。
(Evaluation example 8)
In the constant temperature layer of 100 ° C., with respect to the solid-state lithium-ion secondary battery of Example 4, a current rate of 0.39 μA / cm 2 or a current rate of 7.8 μA / cm 2 , and a voltage of 0.5 to 2.5 V When charging / discharging was performed under the conditions, it was confirmed that the solid-state lithium-ion secondary battery of Example 4 was charged / discharged.
 (製造例U)
 LiCO及び(NHHPOをモル比1:2で秤量して、混合し、混合物とした。大気雰囲気下、当該混合物を900℃に加熱して、液体とした。当該液体を急冷して、固化させた後に、粉砕することで、LiPOガラスを得た。
 LiPOガラス及びLiSO・HOをモル比50:50で秤量して、混合し、混合物とした。大気下、当該混合物を白金製るつぼに入れて、500℃1時間加熱、600℃1時間加熱及び700℃2時間加熱して溶融することで、液体とした。なお、700℃での溶融時に、白煙の発生が観察された。当該液体を急冷して、固化させて、透明な製造例Uのバルク状LiPO-LiSO系ガラスを製造した。さらに、製造例Uのバルク状LiPO-LiSO系ガラスを粉砕することで、製造例Uの粉末状LiPO-LiSO系ガラスを製造した。
 製造例UのLiPO-LiSO系ガラスの原料は、(100-(x+y))LiPO・xLiSO・yLiWOにおいて、x=50、y=0のものに相当する。以下に記述する製造例V~製造例Yの原料も同様である。
(Production Example U)
Li 2 CO 3 and (NH 4 ) 2 HPO 4 were weighed in a molar ratio of 1: 2 and mixed to form a mixture. The mixture was heated to 900 ° C. in an air atmosphere to give a liquid. The liquid was rapidly cooled, solidified, and then pulverized to obtain LiPO 3 glass.
LiPO 3 glass and Li 2 SO 4 .H 2 O were weighed at a molar ratio of 50:50 and mixed to obtain a mixture. The mixture was placed in a platinum crucible under the atmosphere and heated at 500 ° C. for 1 hour, 600 ° C. for 1 hour and 700 ° C. for 2 hours to be melted to obtain a liquid. In addition, generation of white smoke was observed during melting at 700 ° C. The liquid was rapidly cooled and solidified to produce a transparent bulk LiPO 3 —Li 2 SO 4 based glass of Production Example U. Further, by pulverizing the bulk LiPO 3 -Li 2 SO 4 glass of Preparation U, to produce a powdery LiPO 3 -Li 2 SO 4 glass of Preparation U.
The raw material of the LiPO 3 —Li 2 SO 4 based glass of Production Example U corresponds to (100− (x + y)) LiPO 3 · xLi 2 SO 4 · yLi 2 WO 4 at x = 50 and y = 0. . The same applies to the raw materials of Production Examples V to Y described below.
 (製造例V)
 溶融条件を、500℃1時間加熱、600℃1時間加熱、700℃1時間加熱及び800℃2時間加熱に変更したこと以外は、製造例Uと同様の方法で、透明な製造例Vのバルク状LiPO-LiSO系ガラス、及び、製造例Vの粉末状LiPO-LiSO系ガラスを製造した。
 なお、700℃での溶融時に白煙の発生が観察され、800℃での溶融時にも少量の白煙の発生が観察された。
(Production Example V)
Transparent bulk of Production Example V was prepared in the same manner as in Production Example U, except that the melting conditions were changed to heating at 500 ° C. for 1 hour, heating at 600 ° C. for 1 hour, heating at 700 ° C. for 1 hour, and heating at 800 ° C. for 2 hours. The LiPO 3 —Li 2 SO 4 based glass and the powdery LiPO 3 —Li 2 SO 4 based glass of Production Example V were produced.
In addition, generation of white smoke was observed during melting at 700 ° C., and generation of a small amount of white smoke was also observed during melting at 800 ° C.
 (製造例W)
 白金製るつぼをアルミナ製るつぼに変更したこと以外は、製造例Vと同様の方法で、透明な製造例Wのバルク状LiPO-LiSO系ガラス、及び、製造例Wの粉末状LiPO-LiSO系ガラスを製造した。
 なお、700℃での溶融時に白煙の発生が観察され、800℃での溶融時にも少量の白煙の発生が観察された。
(Production Example W)
Bulk LiPO 3 —Li 2 SO 4 -based glass of Transparent Production Example W and powdery LiPO of Production Example W were prepared in the same manner as in Production Example V, except that the platinum crucible was changed to an alumina crucible. A 3- Li 2 SO 4 based glass was produced.
In addition, generation of white smoke was observed during melting at 700 ° C., and generation of a small amount of white smoke was also observed during melting at 800 ° C.
 (製造例X)
 溶融条件を、500℃1時間加熱、600℃1時間加熱、700℃1時間加熱、800℃1時間加熱及び900℃2時間加熱に変更したこと以外は、製造例Uと同様の方法で、透明な製造例Xのバルク状LiPO-LiSO系ガラス、及び、製造例Xの粉末状LiPO-LiSO系ガラスを製造した。
 なお、700℃及び800℃での溶融時に白煙の発生が観察されたが、900℃での溶融時には白煙がほとんど観察されなかった。
(Production Example X)
Transparent, in the same manner as in Production Example U, except that the melting conditions were changed to heating at 500 ° C. for 1 hour, heating at 600 ° C. for 1 hour, heating at 700 ° C. for 1 hour, heating at 800 ° C. for 1 hour, and heating at 900 ° C. for 2 hours. The bulk LiPO 3 —Li 2 SO 4 based glass of Production Example X and the powdery LiPO 3 —Li 2 SO 4 based glass of Production Example X were produced.
Although white smoke was observed to be generated during melting at 700 ° C and 800 ° C, almost no white smoke was observed during melting at 900 ° C.
 (製造例Y)
 溶融条件を、500℃1時間加熱、600℃1時間加熱、700℃1時間加熱、800℃1時間加熱及び900℃4時間加熱に変更したこと以外は、製造例Uと同様の方法で、透明な製造例Yのバルク状LiPO-LiSO系ガラス、及び、製造例Yの粉末状LiPO-LiSO系ガラスを製造した。
 なお、700℃及び800℃での溶融時に白煙の発生が観察されたが、900℃での溶融時には白煙がほとんど観察されなかった。
(Production Example Y)
Transparent, in the same manner as in Production Example U, except that the melting conditions were changed to heating at 500 ° C. for 1 hour, heating at 600 ° C. for 1 hour, heating at 700 ° C. for 1 hour, heating at 800 ° C. for 1 hour, and heating at 900 ° C. for 4 hours. The bulk LiPO 3 —Li 2 SO 4 based glass of Production Example Y and the powdery LiPO 3 —Li 2 SO 4 based glass of Production Example Y were produced.
Although white smoke was observed to be generated during melting at 700 ° C and 800 ° C, almost no white smoke was observed during melting at 900 ° C.
 (評価例9)
 製造例U~製造例Yのバルク状LiPO-LiSO系ガラスにつき、それぞれのガラスを用いた電気伝導度測定用セルを製造して、25℃での抵抗を測定した。測定された値に基づき、バルクガラスとしての25℃での電気伝導度を算出した。さらに、電気伝導度測定用セルに対して、複数の温度条件下における抵抗を測定し、電気伝導度を算出した。測定温度の逆数(1/T)と、電気伝導度及び測定温度の乗数(σ×T)とをアレニウスプロットで示したところ、グラフは線形を示した。各アレニウスプロットから、各LiPO-LiSO系ガラスの活性化エネルギーを算出した。
 また、製造例U~製造例Yの粉末状LiPO-LiSO系ガラスにつき、360MPaの圧力でプレスして、ペレットを製造した。当該ペレットを用いた電気伝導度測定用セルを製造して、上述と同様の評価を行った。
 以上の結果を表5に示す。 
(Evaluation example 9)
With respect to the bulk LiPO 3 —Li 2 SO 4 type glass of Production Example U to Production Example Y, an electric conductivity measuring cell was produced using each glass, and the resistance at 25 ° C. was measured. Based on the measured values, the electrical conductivity of the bulk glass at 25 ° C was calculated. Furthermore, the resistance under a plurality of temperature conditions was measured for the electric conductivity measuring cell, and the electric conductivity was calculated. When the reciprocal of the measurement temperature (1 / T) and the electric conductivity and the multiplier of the measurement temperature (σ × T) were shown by an Arrhenius plot, the graph was linear. From each Arrhenius plot, the activation energy of each LiPO 3 —Li 2 SO 4 system glass was calculated.
Further, the powdery LiPO 3 —Li 2 SO 4 type glass of Production Example U to Production Example Y was pressed at a pressure of 360 MPa to produce pellets. A cell for measuring electric conductivity using the pellet was manufactured and evaluated in the same manner as described above.
The above results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ここでの活性化エネルギーは、実質的に、リチウムイオンが移動する際の必要なエネルギーを意味する、よって、活性化エネルギーが小さいほど、LiPO-LiSO系ガラスに含まれるリチウムイオンは、電荷担体としての機能を発揮しやすいといえる。
 表5の結果から、溶融時の加熱温度が高いほど、バルク状LiPO-LiSO系ガラスの電気伝導度が増加し、活性化エネルギーが減少する傾向にあるといえる。粉末状(ペレット)LiPO-LiSO系ガラスについては、製造条件に関わらず同程度の電気伝導度を示したが、溶融時の加熱温度が高いほど、活性化エネルギーが減少する傾向にあるといえる。
 また、いずれの場合においても、バルク状に比べ、粉末状(ペレット)の活性化エネルギーが大きく増加することはなかった。すなわち、バルク状と粉末状(ペレット)のLiPO3-Li2SO4系ガラス内のイオンが移動する際のエネルギーは大きく変動しないことから、バルク状LiPO-LiSO系ガラスをいったん粉末にし、再度成型しても、両者の導電機構は大きく変わらないと思われる。
The activation energy here means substantially the energy required for the lithium ions to move. Therefore, the smaller the activation energy is, the less the lithium ions contained in the LiPO 3 —Li 2 SO 4 system glass are. It can be said that the function as a charge carrier is easily exhibited.
From the results of Table 5, it can be said that the higher the heating temperature at the time of melting, the higher the electrical conductivity of the bulk LiPO 3 —Li 2 SO 4 based glass and the more the activation energy tends to decrease. The powdery (pellet) LiPO 3 —Li 2 SO 4 type glass showed similar electrical conductivity regardless of the manufacturing conditions, but the activation energy tended to decrease as the heating temperature during melting increased. It can be said that there is.
Further, in any case, the activation energy in the powder form (pellet) was not significantly increased as compared with the bulk form. That is, since the energy when ions move in the bulk and powder (pellet) LiPO3-Li2SO4 type glass does not fluctuate significantly, the bulk LiPO 3 -Li 2 SO 4 type glass is once powdered and re-molded. Even so, the conduction mechanisms of the two do not seem to change significantly.
 (評価例10)
 製造例U、製造例W、製造例X及び製造例Yの粉末状LiPO-LiSO系ガラスにつき、高周波誘導結合プラズマ(ICP)分析に供して、元素分析を行った。
 元素分析結果に基づき、Pを基準としたLi、S及びOのモル比を表6に示す。なお、Oのモル比については、試料全体からLi、P及びSの質量を減じた残部をOの質量とみなして、計算で算出した。 
(Evaluation example 10)
The powdery LiPO 3 —Li 2 SO 4 -based glasses of Production Example U, Production Example W, Production Example X, and Production Example Y were subjected to high-frequency inductively coupled plasma (ICP) analysis for elemental analysis.
Table 6 shows the molar ratios of Li, S, and O based on P based on the elemental analysis results. In addition, the molar ratio of O was calculated by considering the balance of the total amount of Li, P, and S subtracted from the entire sample as the mass of O.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6の結果から、製造例U、製造例W、製造例X及び製造例Yの粉末状LiPO-LiSO系ガラスにおいては、溶融時の加熱温度が高いほど、Sのモル比が小さくなることがわかる。
 製造例U、製造例W、製造例X及び製造例Yにおいては、原料:50LiPO・50LiSOからの元素の収支が無い場合、生成物の組成式はLiPSOとなる。
 以上の分析結果から、製造例U~製造例Yの粉末状LiPO-LiSO系ガラスにおいては、製造時に、一部のSが系外に離脱したといえる。製造例U~製造例Yにおける製造時の白煙の発生等を鑑みると、製造例U~製造例Yにおいては、Sが硫黄酸化物として、系外に離脱したと推定される。
From the results of Table 6, in the powdery LiPO 3 —Li 2 SO 4 based glasses of Production Example U, Production Example W, Production Example X, and Production Example Y, the higher the heating temperature at the time of melting, the more the molar ratio of S becomes. You can see that it will be smaller.
In Production Example U, Production Example W, Production Example X, and Production Example Y, when there is no balance of elements from the raw material: 50LiPO 3 .50Li 2 SO 4 , the composition formula of the product is Li 3 PSO 7 .
From the above analysis results, it can be said that in the powdery LiPO 3 —Li 2 SO 4 type glasses of Production Example U to Production Example Y, part of S was released from the system during production. Considering the generation of white smoke during manufacturing in Manufacturing Examples U to Y, it is estimated that in Manufacturing Examples U to Y, S was released as a sulfur oxide out of the system.
 評価例9及び評価例10の結果から、一部のSが系外に離脱可能な温度条件下で溶融を行うと、電気伝導度に優れ、かつリチウムイオンの円滑な移動に優れるとの、電解質としての性能に適したLiPO-LiSO系ガラスを製造できると考えられる。 From the results of Evaluation Example 9 and Evaluation Example 10, when a part of S is melted under a temperature condition where it can be separated from the system, the electrolyte has excellent electric conductivity and smooth movement of lithium ions. It is considered that a LiPO 3 —Li 2 SO 4 based glass suitable for the above performance can be produced.
 (評価例11)
 ラマン分光光度計にて、製造例U、製造例V及び製造例Xの粉末状LiPO-LiSO系ガラスのラマン散乱光を測定した。参照として、LiPOガラス及びLiSOガラスのラマン散乱光を測定した。
 得られたラマンスペクトルを重ね書きして図8に示す。
(Evaluation example 11)
Raman spectrophotometer was used to measure the Raman scattered light of the powdery LiPO 3 —Li 2 SO 4 based glasses of Production Example U, Production Example V, and Production Example X. As a reference, Raman scattered light of LiPO 3 glass and Li 2 SO 4 glass was measured.
The Raman spectrum obtained is overwritten and shown in FIG.
 製造例U、製造例V及び製造例Xの粉末状LiPO-LiSO系ガラスのラマンスペクトルからは、いずれも、SO構造に由来するピークが明確に観察されたが、PO構造に由来するピークはほとんど観察されなかった。
 また、製造例U、製造例V及び製造例Xの粉末状LiPO-LiSO系ガラスのラマンスペクトルからは、OP-O-PO構造に由来するピークが1050cm-1付近及び760cm-1付近に若干観察され、その強度は、製造例U→製造例V→製造例Xの順に強かった。溶融温度が高いほど、OP-O-PO構造に由来するピークの強度が強くなるといえる。
Although the peaks derived from the SO 4 structure were clearly observed in the Raman spectra of the powdery LiPO 3 —Li 2 SO 4 based glasses of Production Example U, Production Example V, and Production Example X, the PO 3 structure was clearly observed. Almost no peak derived from was observed.
Further, from the Raman spectra of the powdery LiPO 3 —Li 2 SO 4 type glasses of Production Example U, Production Example V, and Production Example X, the peak derived from the O 3 PO—PO 3 structure was around 1050 cm −1. It was slightly observed near 760 cm −1 , and the strength was strong in the order of Production Example U → Production Example V → Production Example X. It can be said that the higher the melting temperature, the stronger the intensity of the peak derived from the O 3 PO—PO 3 structure.
 (評価例12)
 NMR装置にて、製造例Vの粉末状LiPO-LiSO系ガラスについての31P-NMRを測定したところ、OP-O-PO構造を支持するピークが観測された。
(Evaluation example 12)
When 31 P-NMR of the powdery LiPO 3 —Li 2 SO 4 type glass of Production Example V was measured with an NMR apparatus, a peak supporting the O 3 P—O—PO 3 structure was observed.
 (実施例5)
 正極活物質として59質量部の層状岩塩構造のLiNi1/3Co1/3Mn1/3と、39質量部の製造例Vの粉末状LiPO-LiSO系ガラスと、導電助剤として2質量部のアセチレンブラックを混合して、正極活物質層製造用組成物とした。
(Example 5)
As the positive electrode active material, 59 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 having a layered rock salt structure, 39 parts by mass of powdered LiPO 3 —Li 2 SO 4 system glass of Production Example V, and conductive 2 parts by mass of acetylene black was mixed as an auxiliary agent to obtain a composition for producing a positive electrode active material layer.
 49.6mgの製造例Vの粉末状LiPO-LiSO系ガラスを、室温条件下、130MPaで加圧して、径10mm、厚さ0.5mmの酸化物型固体電解質とした。これをセパレータとして使用した。 49.6 mg of powdered LiPO 3 —Li 2 SO 4 type glass of Production Example V was pressed at 130 MPa under room temperature conditions to obtain an oxide solid electrolyte having a diameter of 10 mm and a thickness of 0.5 mm. This was used as a separator.
 負極活物質として、ペレット状のLi4.4Siを準備した。 As the negative electrode active material, pelletized Li 4.4 Si was prepared.
 集電体としてのAl箔の上に4.5mgの正極活物質層製造用組成物を配置し、その上にセパレータを配置した。これらを、380MPaで加圧して正極活物質層を形成させるとともに、集電体と正極活物質層とセパレータとしての酸化物型固体電解質が一体化した積層体を製造した。さらに、一体化した積層体における酸化物型固体電解質の上に、ペレット状のLi4.4Siを配置し、380MPaで加圧することで、実施例5の固体型リチウムイオン二次電池を製造した。 4.5 mg of the composition for producing a positive electrode active material layer was placed on an Al foil as a current collector, and a separator was placed thereon. These were pressed at 380 MPa to form a positive electrode active material layer, and a laminate in which a current collector, a positive electrode active material layer and an oxide type solid electrolyte as a separator were integrated was manufactured. Furthermore, a solid lithium ion secondary battery of Example 5 was manufactured by disposing pelletized Li 4.4 Si on the oxide solid electrolyte in the integrated laminated body and applying pressure at 380 MPa. .
 なお、セパレータ及び実施例5の固体型リチウムイオン二次電池の製造には、セラミックス製であって内径10mmの円筒状の側部成形型、並びに、ステンレス鋼製(SUS316に相当する。)の上部成形型及び下部成形型で構成される成形装置を用いた。 In addition, in manufacturing the separator and the solid-state lithium-ion secondary battery of Example 5, a cylindrical side forming die made of ceramics and having an inner diameter of 10 mm, and an upper portion made of stainless steel (corresponding to SUS316). A molding apparatus including a molding die and a lower molding die was used.
 (実施例6)
 負極活物質として、径4mmのリチウム箔及び径6mmのインジウム箔を準備した。
 上述の負極活物質を用いたこと、集電体と正極活物質層とセパレータとしての酸化物型固体電解質が一体化した積層体を製造する際の圧力を400MPaに変更したこと、及び、一体化した積層体と負極活物質を加圧して固体型リチウムイオン二次電池を製造する際の圧力を100MPaに変更したこと以外は、実施例5と同様の方法で、実施例6の固体型リチウムイオン二次電池を製造した。
(Example 6)
As a negative electrode active material, a lithium foil having a diameter of 4 mm and an indium foil having a diameter of 6 mm were prepared.
Using the negative electrode active material described above, changing the pressure when manufacturing a laminate in which the current collector, the positive electrode active material layer, and the oxide-type solid electrolyte as a separator are integrated to 400 MPa, and integrating The solid-state lithium ion of Example 6 was manufactured in the same manner as in Example 5, except that the pressure at the time of manufacturing the solid-state lithium-ion secondary battery by pressing the laminated body and the negative electrode active material was changed to 100 MPa. A secondary battery was manufactured.
 (評価例13)
 100℃の恒温層中で、実施例5の固体型リチウムイオン二次電池に対して、電流レート0.10mA/cmにて電圧4.2Vまで充電し、電圧2.5Vまで放電するとの充放電を5回繰り返した。実施例5の固体型リチウムイオン二次電池の充放電曲線を図9に示す。
 また、100℃の恒温層中で、実施例6の固体型リチウムイオン二次電池に対して、電流レート0.10mA/cmにて電圧3.7Vまで充電し、電圧2Vまで放電するとの充放電を5回繰り返した。実施例6の固体型リチウムイオン二次電池の充放電曲線を図10に示す。
 いずれの固体型リチウムイオン二次電池も繰り返し充放電可能であることが確認できた。
(Evaluation example 13)
Charge the solid-state lithium-ion secondary battery of Example 5 at a current rate of 0.10 mA / cm 2 to a voltage of 4.2 V and discharge to a voltage of 2.5 V in a constant temperature layer of 100 ° C. The discharge was repeated 5 times. The charge / discharge curve of the solid-state lithium-ion secondary battery of Example 5 is shown in FIG.
Further, in the constant temperature layer of 100 ° C., the solid-state lithium-ion secondary battery of Example 6 was charged at a current rate of 0.10 mA / cm 2 to a voltage of 3.7 V and discharged to a voltage of 2 V. The discharge was repeated 5 times. The charge / discharge curve of the solid-state lithium-ion secondary battery of Example 6 is shown in FIG.
It was confirmed that any of the solid lithium ion secondary batteries could be repeatedly charged and discharged.

Claims (15)

  1.  (100-(x+y))LiPO・xLiSO・yLiWOで表される組成物を溶融及び冷却して製造した酸化物型電解質並びに電極活物質を含有する電極活物質層と、集電体とを備えることを特徴とする電極。
     前記組成物において、x及びyは、x≧0、y≧0、0<x+y≦60を満足する。
    An electrode active material layer containing an oxide type electrolyte and an electrode active material, which is produced by melting and cooling a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 . An electrode comprising a current collector.
    In the composition, x and y satisfy x ≧ 0, y ≧ 0, and 0 <x + y ≦ 60.
  2.  前記電極活物質と前記酸化物型電解質の質量比が8:2~3:7の範囲内である請求項1に記載の電極。 The electrode according to claim 1, wherein the mass ratio of the electrode active material and the oxide type electrolyte is in the range of 8: 2 to 3: 7.
  3.  45≦x+y≦55を満足する請求項1又は2に記載の電極。 The electrode according to claim 1 or 2, which satisfies 45 ≦ x + y ≦ 55.
  4.  前記電極が正極である請求項1~3のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the electrode is a positive electrode.
  5.  y>0である請求項4に記載の電極。 The electrode according to claim 4, wherein y> 0.
  6.  前記電極が負極であり、y=0である請求項1~3のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the electrode is a negative electrode and y = 0.
  7.  請求項1~6のいずれか1項に記載の電極と、
     前記電極の対極と、
     前記電極及び前記対極の間に、酸化物型固体電解質を材料とするセパレータと、
     を備えることを特徴とする固体型リチウムイオン二次電池。
    An electrode according to any one of claims 1 to 6,
    A counter electrode of the electrode,
    Between the electrode and the counter electrode, a separator made of an oxide solid electrolyte as a material,
    A solid-state lithium-ion secondary battery comprising:
  8.  前記セパレータにおける前記酸化物型固体電解質が前記酸化物型電解質であってy=0のものである、請求項7に記載の固体型リチウムイオン二次電池。 The solid-state lithium-ion secondary battery according to claim 7, wherein the oxide-type solid electrolyte in the separator is the oxide-type electrolyte and y = 0.
  9.  請求項1~6のいずれか1項に記載の電極の製造方法であって、
     前記電極活物質及び前記酸化物型電解質を混合して混合物とする工程、
     前記混合物と前記集電体が接した状態で、前記酸化物型電解質のガラス転移温度以上かつ結晶化温度未満の範囲内の温度で加熱する工程、
     を有する製造方法。
    A method for manufacturing the electrode according to any one of claims 1 to 6,
    A step of mixing the electrode active material and the oxide electrolyte to form a mixture,
    In a state where the mixture and the current collector are in contact with each other, a step of heating at a temperature within a range of the glass transition temperature of the oxide type electrolyte or more and less than the crystallization temperature,
    And a manufacturing method.
  10.  請求項7又は8に記載の固体型リチウムイオン二次電池の製造方法であって、
     前記集電体と前記セパレータとの間に、前記電極活物質及び前記酸化物型電解質が存在する状態で、前記酸化物型電解質のガラス転移温度以上かつ結晶化温度未満の範囲内の温度で加熱する工程、
     を有する製造方法。
    A method for manufacturing a solid-state lithium-ion secondary battery according to claim 7 or 8, wherein
    Between the current collector and the separator, in a state where the electrode active material and the oxide electrolyte are present, heated at a temperature within a range of the glass transition temperature of the oxide electrolyte or more and less than the crystallization temperature. Process,
    And a manufacturing method.
  11.  Li、P、O並びにS及び/又はWを含有する酸化物型電解質であって、Li、P、S、W及びOの組成が下記組成式(1)で表されることを特徴とする酸化物型電解質。
     組成式(1)  Li
     a、b、c、d及びeは、1<a≦1.6、0.4≦b<1、0<c<0.6、0≦d≦0.6、0<c+d≦0.6、b+c+d<1、3<e≦3.6のすべての関係を満足する。
    An oxide type electrolyte containing Li, P, O and S and / or W, wherein the composition of Li, P, S, W and O is represented by the following composition formula (1). Solid electrolyte.
    Compositional formula (1) Li a P b S c W d O e
    a, b, c, d and e are 1 <a ≦ 1.6, 0.4 ≦ b <1, 0 <c <0.6, 0 ≦ d ≦ 0.6, 0 <c + d ≦ 0.6 , B + c + d <1, 3 <e ≦ 3.6 are satisfied.
  12.  ラマン分光光度計にて測定したラマンスペクトルにおいて、SO構造に由来するピーク及びOP-O-PO構造に由来するピークが観察される請求項11に記載の酸化物型電解質。
     ただし、前記組成式(1)において、cは0<c≦0.6を満足する。
    The oxide-type electrolyte according to claim 11, wherein a peak derived from an SO 4 structure and a peak derived from an O 3 PO—PO—PO 3 structure are observed in a Raman spectrum measured by a Raman spectrophotometer.
    However, in the composition formula (1), c satisfies 0 <c ≦ 0.6.
  13.  請求項11又は12に記載の酸化物型電解質の製造方法であって、
     (100-(x+y))LiPO・xLiSO・yLiWOで表される組成物を、当該組成物からSが離脱する条件下で溶融し、冷却することを特徴とする酸化物型電解質の製造方法。
     前記組成物において、x及びyは、x>0、y≧0、0<x+y≦60を満足する。
    It is a manufacturing method of the oxide type electrolyte of Claim 11 or 12, Comprising:
    An oxide characterized in that a composition represented by (100- (x + y)) LiPO 3 .xLi 2 SO 4 .yLi 2 WO 4 is melted and cooled under the condition that S is desorbed from the composition. Method for producing a mold electrolyte.
    In the composition, x and y satisfy x> 0, y ≧ 0, and 0 <x + y ≦ 60.
  14. 請求項11又は12に記載の酸化物型電解質を備える電極。 An electrode comprising the oxide type electrolyte according to claim 11.
  15.  請求項11又は12に記載の酸化物型電解質を備える固体型リチウムイオン二次電池。 A solid-state lithium-ion secondary battery comprising the oxide-type electrolyte according to claim 11 or 12.
PCT/JP2019/038835 2018-10-26 2019-10-02 Electrode and solid-state lithium ion secondary battery WO2020085015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018202058A JP2022013953A (en) 2018-10-26 2018-10-26 Electrode and solid-type lithium ion secondary battery
JP2018-202058 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085015A1 true WO2020085015A1 (en) 2020-04-30

Family

ID=70331066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038835 WO2020085015A1 (en) 2018-10-26 2019-10-02 Electrode and solid-state lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2022013953A (en)
WO (1) WO2020085015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020985A1 (en) * 2020-07-17 2022-01-20 Uop Llc Mixed metal manganese oxide material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011996A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2005038843A (en) * 2003-06-27 2005-02-10 Matsushita Electric Ind Co Ltd Solid electrolyte and all solid battery using it
US20150207171A1 (en) * 2012-08-16 2015-07-23 The Regents Of The University Of California Thin film electrolyte based 3d micro-batteries
JP2017045725A (en) * 2015-08-25 2017-03-02 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
JP2017119611A (en) * 2015-12-26 2017-07-06 アルプス電気株式会社 Inorganic composition, glass electrolyte, secondary battery and device
WO2017169599A1 (en) * 2016-03-31 2017-10-05 公立大学法人大阪府立大学 Amorphous oxide-based positive electrode active material, method for producing same and use of same
WO2018123479A1 (en) * 2016-12-27 2018-07-05 日本碍子株式会社 Lithium ion cell and method for manufacturing same
JP2019192588A (en) * 2018-04-27 2019-10-31 富士通株式会社 Solid electrolyte, and method for producing the same, and battery, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011996A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2005038843A (en) * 2003-06-27 2005-02-10 Matsushita Electric Ind Co Ltd Solid electrolyte and all solid battery using it
US20150207171A1 (en) * 2012-08-16 2015-07-23 The Regents Of The University Of California Thin film electrolyte based 3d micro-batteries
JP2017045725A (en) * 2015-08-25 2017-03-02 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
JP2017119611A (en) * 2015-12-26 2017-07-06 アルプス電気株式会社 Inorganic composition, glass electrolyte, secondary battery and device
WO2017169599A1 (en) * 2016-03-31 2017-10-05 公立大学法人大阪府立大学 Amorphous oxide-based positive electrode active material, method for producing same and use of same
WO2018123479A1 (en) * 2016-12-27 2018-07-05 日本碍子株式会社 Lithium ion cell and method for manufacturing same
JP2019192588A (en) * 2018-04-27 2019-10-31 富士通株式会社 Solid electrolyte, and method for producing the same, and battery, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020985A1 (en) * 2020-07-17 2022-01-20 Uop Llc Mixed metal manganese oxide material

Also Published As

Publication number Publication date
JP2022013953A (en) 2022-01-19

Similar Documents

Publication Publication Date Title
US11929463B2 (en) All-solid-state secondary battery and method of charging the same
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
KR102637919B1 (en) Solid electrolyte for lithium-ion electrochemical cells
US6855460B2 (en) Negative electrodes for lithium cells and batteries
JP6431707B2 (en) Electrode layer for all solid state battery and all solid state battery
JP5552974B2 (en) Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid state battery
KR101886358B1 (en) All solid state battery having LATP-containing cathode electrode composite and manufacturing method the same
US9899662B2 (en) Method for producing electrodes for all-solid battery and method for producing all-solid battery
JP2008091328A (en) Lithium secondary cell and its manufacturing method
CN103620831B (en) Negative electrode active material for electrical
CN103858266A (en) Battery and Method for Manufacturing Same
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2013041749A (en) Battery system
CN109841898A (en) Solid electrolyte and its preparation method and electrochemical appliance and electronic device comprising it
CN111668484A (en) Negative electrode active material and electricity storage device
JP2016085843A (en) Solid type secondary battery
JP7164939B2 (en) All-solid secondary battery
JP2017157473A (en) Lithium ion secondary battery
JP5668608B2 (en) Manufacturing method of all solid state battery
WO2020085015A1 (en) Electrode and solid-state lithium ion secondary battery
JP2020068181A (en) Positive electrode and solid-state lithium ion secondary battery
JP2020068188A (en) Solid-state lithium ion secondary battery
JP7284225B2 (en) Sulfide-based solid electrolyte for all-solid secondary battery, method for producing the same, and all-solid secondary battery including the same
US20230106063A1 (en) Solid-state battery and method for producing solid-state battery
CN111066182B9 (en) Negative electrode active material for electric device, method for producing same, and electric device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP