WO2020083985A1 - Procédé et dispositif pour la détermination sans charge de paramètres d'affectation de position en fonction de la charge d'une machine synchrone sans capteur de position - Google Patents

Procédé et dispositif pour la détermination sans charge de paramètres d'affectation de position en fonction de la charge d'une machine synchrone sans capteur de position Download PDF

Info

Publication number
WO2020083985A1
WO2020083985A1 PCT/EP2019/078879 EP2019078879W WO2020083985A1 WO 2020083985 A1 WO2020083985 A1 WO 2020083985A1 EP 2019078879 W EP2019078879 W EP 2019078879W WO 2020083985 A1 WO2020083985 A1 WO 2020083985A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
anisotropy
load
inductance
free
Prior art date
Application number
PCT/EP2019/078879
Other languages
German (de)
English (en)
Inventor
Peter Landsmann
Dirk Paulus
Sascha Kühl
Original Assignee
Kostal Drives Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102018008689.6A external-priority patent/DE102018008689A1/de
Application filed by Kostal Drives Technology Gmbh filed Critical Kostal Drives Technology Gmbh
Priority to EP19794498.6A priority Critical patent/EP3871331A1/fr
Publication of WO2020083985A1 publication Critical patent/WO2020083985A1/fr
Priority to US17/225,744 priority patent/US11641172B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/186Circuit arrangements for detecting position without separate position detecting elements using difference of inductance or reluctance between the phases

Definitions

  • fundamental wave methods require a current-dependent parameterization of the inductance [4] [5]
  • Anisotropy-based methods [6] [7] [8] evaluate the positional dependency of the inductance of the machine, which does not require a speed, but have several problems and hurdles that explain why many applications still have one today Position encoder (with its disadvantages) need.
  • anisotropy-based methods require a current-dependent parameterization of the anisotropy shift [9] [10] [11] [12].
  • Encoderless control of synchronous machines in the entire speed range is implemented by a combination of methods from both classes [8] [13].
  • Magnetic simulation data can be used to determine the current-dependent course of inductance and anisotropy shift [14] [15], which deviate from reality and require access to the machine design. Or these curves can be measured on a test bench with a load machine and position encoder [16] [17], which in practice can be too time-consuming or impossible if an unknown synchronous machine is to be connected in the field.
  • the change in inductance (in the event of a change in current) can alternatively be tracked using online identification methods [23] [24] [25] [26], which, however, are delayed in principle (factor 10-1000 slower than the actual change) ) and are therefore accurate / stable only when stationary.
  • Fig. 1 rotor cross-sections with surface-mounted (left) and with buried
  • Fig. 8b with assumption for the anisotropy shift
  • Fig. 8c with assumption for the unique rotor position assignment (RPA).
  • machine is used here in the sense of an “electrical machine”, ie an electric motor or an electrical generator.
  • L d and L q are defined as the quotient of flux linkage (flow for short) and current and are characterized in that they have only one axis reference (eg q) in the subscript
  • Anisotropy-based methods use the high-frequency relationship
  • admittance Y Current response, which is why the inverse differential inductance is relevant, which is often simply referred to as admittance Y.
  • anisotropy amount Y & is half the difference between the directionally largest and smallest admittance
  • Direction dependency always means: Dependence on the direction of the current-voltage relationship (not the rotor position) over which various differential inductance values are effective (acting in the d-direction or, in q-direction and
  • the coupling component is approximately zero, which means that
  • the anisotropy angle () u is the direction of the smallest differential inductance and consequently the largest admittance.
  • the direction of the largest differential inductance and consequently the smallest admittance is offset by ⁇ 90 ° (electrical).
  • the anisotropy angle can therefore be calculated from both variables, for example as follows
  • Synchronous machines have a rotor cross-section in which the amount and shape of the soft magnetic material do not differ between the different magnetic paths of the phase windings, so that their magnetic anisotropy is based solely on the fact that the exciting element (e.g. permanent magnet or excitation winding) localizes the soft magnetic material ( depending on the direction).
  • the magnetic anisotropy of these machines in the de-energized state is usually smaller, namely
  • 2nd Synchronous machines show a rotor cross-section in which the amount and / or shape of the soft magnetic material between distinguishes the different magnetic paths of the phase windings, which creates an additional anisotropic component.
  • the magnetic anisotropy of these machines in the de-energized state is usually greater, namely
  • FIG. 1 shows a typical example of a geometrically isotropic machine on the left and a typical example of a geometrically anisotropic machine on the right. Only the hatched areas have a high magnetic conductivity and, due to the geometry of the right cross section, lead to a significantly increased inductance in the q direction.
  • a method for the load-free determination of load-dependent position assignment parameters of a synchronous machine without a position encoder is presented below.
  • the synchronous machine is controlled via clocked clamping voltages, from which the inductance or admittance is calculated in connection with the measured current response.
  • the smallest load-free and the largest load-free differential inductance can also be known. From the smallest and the most
  • a load-free differential inductance corresponds to the derivative of the flux linkage after the current (cf. (10) - (12>) at the operating point with zero current.
  • the smallest and the largest differential inductance are the direction-dependent smallest and largest differential inductance values of an operating point, the directional dependency corresponding to the magnetic anisotropy.
  • the smallest load-free and the largest load-free differential inductance L dd0 and L qq0 are not known, these values can be calculated from the current-voltage relationship by electrical excitation of the machines.
  • the excitation can be, for example, test pulses, sinusoidal voltage profiles or a discrete-time voltage injection pattern.
  • There are easily different approaches to the calculation which usually relate the voltage excitation and the current response (eg current amplitude or current difference per time interval) in relation.
  • the anisotropy amount U D and the isotropic component U S can be internal calculation variables, from their values and the isotropic component at zero current and the inductances, for example
  • any other rules for calculating a differential inductance can also be used to measure the values and to provide as a basis for the method described in this document and / or for the described embodiments.
  • differential inductances are only directly effective for anisotropy methods, in some embodiments they are also used to parameterize fundamental wave methods.
  • occurs when the shaft drives quickly (eg nominal speed) in the event of a short circuit in the terminals
  • any other rules for calculating an amount of current equivalent to the excitation by the PM (or the field winding) can be used to determine the value of the short-circuit current for that described in this document
  • the basic idea of the saturation assumption and all of its embodiments is that in the de-energized state the machine is saturated to a certain degree in the d-direction by the PM and unsaturated in the q-direction and that the same degree of saturation will be present in the q-direction, if the short-circuit current i pm is impressed in the q direction.
  • some designs are subject to the assumption that the q-axis (direction perpendicular to the PM) assumes the same magnetic behavior as the d -axis (direction of the PM) in the de-energized state when in q direction the short-circuit current is impressed.
  • the rise (indicated by the dashed tangent with the rise triangle) is equal to the differential d inductance in the de-energized state
  • the PM flow ip pm can usually be calculated from the nameplate data (e.g. 0.471 times the nominal torque divided by the nominal current and number of pole pairs) or alternatively determined by rotating the shaft (e.g. from the ratio of induced voltage to speed).
  • the short circuit current is now p as the quotient from the excitation or PM flow chaining divided by a combination of the load-free
  • the combination corresponds to averaging, for example with the coefficients.
  • the short-circuit current can, for example, by a short-circuit ver
  • the short-circuit current i pm is a key parameter for the following calculations of parameters for fundamental wave methods in section 3.1 and for anisotropy methods in sections 3.2 and 3.3.
  • the presented calculation approaches for the parameters for anisotropy methods are preferably applicable to geometrically isotropic machine types. Therefore, in some embodiments, compensation and / or use for the location assignment of the anisotropy saturation calculations only takes place if the difference between the no-load largest and the no-load differential inductance is less than 20% of their sum.
  • One parameter of fundamental wave methods that is stored depending on the current to take account of saturation is, for example, the absolute inductance in the q direction
  • the absolute inductance Lq is calculated as a parameter for evaluating the induced voltage in such a way that, based on its value valid at zero current, it also has the largest differential-free inductance without load increasing current so that when the short-circuit current is reached () is equal to the mean value of the smallest and largest differential inductance (L i t0 and Iw o).
  • FIG. 3 shows an exemplary current-flow relationship in the q direction, which for a geometrically isotropic machine is the same as that in the d direction - with the difference that the curves are shifted horizontally relative to one another in such a way that the q curve symmetrically through the origin and the d-curve runs through -tprn.
  • central fundamental wave parameter L q can be approximated. This approximation applies well to geometrically isotropic machines. In the case of geometrically anisotropic machines, this approximation is subject to errors in the conservative range - that is, the Saturation is compensated too weakly because the actuation behavior of the soft magnetic material in the q direction cannot be derived from the d direction, but can still be used.
  • a saturation current vector is calculated by vectorially adding the phase current vector and the short-circuit current vector, the short-circuit current vector having the magnitude of the short-circuit current and oriented in the direction of the PM.
  • the saturation current vector by ft the phase current vector by ft and the short-circuit current vector
  • anisotropy shift 0 lir ie the shift in the anisotropy angle relative to the rotor (or the anisotropy angle in rotor coordinates) after the saturation current has been aligned in rotor coordinates
  • the anisotropy shift is used as a parameter
  • This shift angle is, for example, in operation under load from the measured anisotropy angle (Result of the anisotropy identification, eg one of the methods [6] [7] [8] [31]) subtracted in order to obtain the estimated rotor position
  • the anisotropy amount depends on the saturation current
  • a rule for unambiguous rotor position assignment can also be derived from the values known at the beginning /, d f0 , i qqQ and i pm .
  • the anisotropy amount K D is calculated as a parameter for a clear anisotropy rotor position assignment in such a way that it increases progressively from its value effective at zero current above the saturation current amount
  • the effective at zero current becomes effective in some embodiments
  • a progressive course means that the increase in f A (x) for positive arguments x is always positive and increases with increasing arguments
  • the progressive increase in the anisotropy amount corresponds to an increase proportional to the third power of the saturation current amount. This is represented, for example, by the following formula:
  • An anisotropy vector can be constructed from the anisotropy amount and anisotropy orientation in which all variables U D and 0 ! from the saturation current vector f depend. In contrast to (37), it cannot be assumed for the derivation of the unique rotor position assignment that the d-current component is zero
  • stator current vectorially in stator coordinates and give the saturation current in stator coordinates.
  • a model anisotropy vector constructed which has the length of the Anisotropiebetrags ⁇ Y A) and is aligned in two-fold anisotropy angle (2q a), wherein the anisotropy angle corresponds to (q a) the sum of rotor position (0 r) and Anisotropieverschiebung (q ⁇ IT) so that the model Anisotropy vector as a function of phase current vector (i *) and rotor position (0 r ) is described.
  • This model anisotropy vector is then represented by, for example.
  • the positional dependence of the model anisotropy vector is linearized for various stator-fixed current values in the target current working point uses a linear position assignment rule, which is a projection of the measured anisotropy vector corresponds to the linearization applicable to the measured current.
  • the target current operating point lies on the q axis
  • the coefficients k x , k y and fc 0 are stored model parameters and and the current result of the current measurement and anisotropy
  • the location assignment coefficients k x , k y and k 0 are determined only once after the initial determination of the inductances L dd0 , L qqü and the PM-
  • the anisotropy model e.g. respectively the measured current and a variable rotor position estimate ( This estimate is varied in such a way that the model best matches the current anisotropy measurement (e.g. or> D ) matches.
  • S ), which is close to the measured value und and the associated one, can be searched for, for example, for the location assignment in operation
  • Position value can be used as an estimate. For example, based on (58), the model based on (48) is now considered with a variable rotor position value $ r
  • Shaping corresponds to varying to best match a minimization of the distance between the model value and the measured value
  • the extreme point found can then be adopted as an estimated value ⁇ r .
  • a gradient descent method can be used to minimize it where the prefactor fe ⁇ depends on the position dependency
  • Bandwidth of the tracking of ⁇ r can scale.
  • the estimation errors caused by the fundamental wave inductance are significantly reduced in all machines using the saturation assumption compared to the operation with neglect of saturation, ie with constant parameter L q .
  • that estimation error does not exceed an error threshold of 5 ° electrically in a practical four-fold overload, while errors of up to 20 ° occur with constant L q .
  • those estimation errors are larger ( ⁇ 10 ° electrical in the load range shown) than with SPMs, but nevertheless significantly less than when operating with constant L q. Therefore, using the saturation assumption of the fundamental wave inductance can also make sense for geometrically anisotropic machines.
  • the estimation errors caused by the anisotropy shift are significantly reduced in geometrically isotropic machines using the saturation assumption compared to operation without taking saturation into account, ie with direct use of the anisotropy angle as the rotor position value.
  • SPM1 also represents a more difficult case where the estimation error also increases up to 15 ° with saturation assumption.
  • IPMs those anisotropy estimation errors are not only significantly larger than with SPMs, but also also often larger in amount than when using the anisotropy angle as the rotor position value. It is therefore not sensible to use the saturation assumption for the anisotropy shift in geometrically anisotropic machines.
  • a device for controlling and regulating a induction machine comprising a stator and a rotor, with one having a device for detecting a Number of phase currents and with a controller for controlling the PWM converter, which is set up and designed to carry out the method as described above; and one
  • Donors have a number of disadvantages, such as Increased system costs, reduced robustness, increased probability of failure and larger space requirements, which are the reason for the great industrial interest in obtaining the angle signal without using an encoder and using it for efficient control.
  • Basic wave methods evaluate the voltage induced under motion, deliver very good signal properties at medium and high speeds, but fail in the lower speed range, especially when stationary.
  • Anisotropy-based methods evaluate the position dependency of the inductance of the machine, which does not require a speed, but have several problems and hurdles that explain why many applications still require a position encoder (with its disadvantages).
  • the saturation behavior for a machine type can either be derived with average accuracy from the data of the computer-aided machine design, or can be determined experimentally with high accuracy on a test bench with position encoder and load machine. Often, however, both options are not available, e.g. if an unknown synchronous machine is connected to a converter and should achieve the best possible control results based on short initialization tests. Because these tests should also often be torque-free, a direct measurement of the actuation behavior is not always possible.
  • the embodiments described here relate certain physical properties of a synchronous machine to one another in such a way that rules can be derived in order to draw conclusions from the measurement values obtained in the torque-free state of the saturation behavior under load up to multiple overloads. This now enables even synchronous machines to be controlled stably and efficiently without a position encoder after a short, torque-free initiation measurement without a test bench (usual condition in the field) in the entire speed and load range up to multiple overloads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention concerne un procédé et respectivement, un dispositif pour la détermination sans charge de paramètres de position en fonction de la charge d'une machine synchrone sans capteur de position, qui est commandée par des tensions de blocage cadencées, lequel calcule l'inductance ou l'admittance en relation avec la réponse de courant mesurée ou dans lequel la plus petite inductance différentielle sans charge et la plus grande inductance différentielle sans charge sont connues, ces dernières et le courant de court-circuit permettant de prédire le comportement de saturation magnétique sous charge de l'inductance absolue et/ou de l'anisotropie magnétique de la machine synchrone et de l'utiliser pour l'affectation de position dans une régulation sans capteur de position.
PCT/EP2019/078879 2018-10-24 2019-10-23 Procédé et dispositif pour la détermination sans charge de paramètres d'affectation de position en fonction de la charge d'une machine synchrone sans capteur de position WO2020083985A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19794498.6A EP3871331A1 (fr) 2018-10-24 2019-10-23 Procédé et dispositif pour la détermination sans charge de paramètres d'affectation de position en fonction de la charge d'une machine synchrone sans capteur de position
US17/225,744 US11641172B2 (en) 2018-10-24 2021-04-08 Method and device for load-free determining of load-dependent positioning parameters of a synchronous machine without a position sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102018008384 2018-10-24
DE102018008384.6 2018-10-24
DE102018008689.6A DE102018008689A1 (de) 2018-10-24 2018-11-05 Verfahren und Vorrichtung zur lastfreien Bestimmung lastabhängiger Lagezuordnungsparameter einer Synchronmaschine ohne Lagegeber
DE102018008689.6 2018-11-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/225,744 Continuation US11641172B2 (en) 2018-10-24 2021-04-08 Method and device for load-free determining of load-dependent positioning parameters of a synchronous machine without a position sensor

Publications (1)

Publication Number Publication Date
WO2020083985A1 true WO2020083985A1 (fr) 2020-04-30

Family

ID=68344838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/078879 WO2020083985A1 (fr) 2018-10-24 2019-10-23 Procédé et dispositif pour la détermination sans charge de paramètres d'affectation de position en fonction de la charge d'une machine synchrone sans capteur de position

Country Status (1)

Country Link
WO (1) WO2020083985A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132553A1 (fr) * 2022-12-20 2024-06-27 Continental Automotive Technologies GmbH Procédé de calcul d'une position de flux de rotor d'un moteur électrique et module de commande

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019038A1 (fr) 1991-04-11 1992-10-29 Elin Energieanwendung Gesellschaft M.B.H. Procede et circuits pour determiner des variables d'etat electromagnetiques et mecaniques liees a la machine sur des generateurs a induction electrodynamiques alimentes par l'intermediaire de convertisseurs
US5969496A (en) 1997-06-23 1999-10-19 Toyota Jidosha Kabushiki Kaisha Method of controlling operation of synchronous motor and motor control apparatus for the same
DE19836237C1 (de) 1998-08-05 2000-03-30 Daimler Chrysler Ag Verfahren zur Messung richtungsabhängig gesättigter Streuinduktivitäten von Asynchronmotoren
US6801011B2 (en) 2001-03-26 2004-10-05 Kabushiki Kaisha Yaskawa Denki Magnetic pole position estimating method and control apparatus for synchronous motor
EP2290806A2 (fr) 2009-08-27 2011-03-02 Hitachi, Ltd. Appareil de commande pour moteur synchrone
EP2421147A1 (fr) 2010-08-16 2012-02-22 Baumüller Nürnberg GmbH Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur synchrone triphasé sans utilisation d'encodeur de vitesse
US8217605B2 (en) 2000-11-10 2012-07-10 Freescale Semiconductor, Inc. Motor controller for determining a position of a rotor of an AC motor, AC motor system, and method of determining a position of a rotor of an AC motor
US8228013B2 (en) 2008-09-10 2012-07-24 Rockwell Automation Technologies, Inc. Method and apparatus for automatically identifying electrical parameters in a sensor-less PMSM
US8373379B2 (en) 2010-10-21 2013-02-12 Schneider Electric USA, Inc. Methods and devices for estimation of induction motor inductance parameters
DE102015217986A1 (de) 2015-09-18 2017-03-23 Technische Universität München Verfahren zur Identifikation der magnetischen Anisotropie einer elektrischen Drehfeldmaschine
US20180131305A1 (en) * 2016-11-09 2018-05-10 Microchip Technology Incorporated System and method for starting synchronous motors

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019038A1 (fr) 1991-04-11 1992-10-29 Elin Energieanwendung Gesellschaft M.B.H. Procede et circuits pour determiner des variables d'etat electromagnetiques et mecaniques liees a la machine sur des generateurs a induction electrodynamiques alimentes par l'intermediaire de convertisseurs
US5969496A (en) 1997-06-23 1999-10-19 Toyota Jidosha Kabushiki Kaisha Method of controlling operation of synchronous motor and motor control apparatus for the same
DE19836237C1 (de) 1998-08-05 2000-03-30 Daimler Chrysler Ag Verfahren zur Messung richtungsabhängig gesättigter Streuinduktivitäten von Asynchronmotoren
US8217605B2 (en) 2000-11-10 2012-07-10 Freescale Semiconductor, Inc. Motor controller for determining a position of a rotor of an AC motor, AC motor system, and method of determining a position of a rotor of an AC motor
US6801011B2 (en) 2001-03-26 2004-10-05 Kabushiki Kaisha Yaskawa Denki Magnetic pole position estimating method and control apparatus for synchronous motor
US8228013B2 (en) 2008-09-10 2012-07-24 Rockwell Automation Technologies, Inc. Method and apparatus for automatically identifying electrical parameters in a sensor-less PMSM
EP2290806A2 (fr) 2009-08-27 2011-03-02 Hitachi, Ltd. Appareil de commande pour moteur synchrone
EP2421147A1 (fr) 2010-08-16 2012-02-22 Baumüller Nürnberg GmbH Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur synchrone triphasé sans utilisation d'encodeur de vitesse
US8373379B2 (en) 2010-10-21 2013-02-12 Schneider Electric USA, Inc. Methods and devices for estimation of induction motor inductance parameters
DE102015217986A1 (de) 2015-09-18 2017-03-23 Technische Universität München Verfahren zur Identifikation der magnetischen Anisotropie einer elektrischen Drehfeldmaschine
US20180131305A1 (en) * 2016-11-09 2018-05-10 Microchip Technology Incorporated System and method for starting synchronous motors

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
A. STIRBANI. BOLDEAG. ANDREESCU: "Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer", IEEE TRANS. ON IRIDUSTRY APPLICATIONS, November 2012 (2012-11-01), pages 1950 - 1958, XP011484808, DOI: 10.1109/TIA.2012.2226194
CHEN LEI ET AL: "Impact of bridge-saturation on anisotropy-based initial rotor polarity detection of interior permanent-magnet synchronous machines", 2016 19TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, 13 November 2016 (2016-11-13), pages 1 - 6, XP033054070 *
D. PAULUSP. LANDSMANNR. KENNEL: "Sensorless field- oriented control for permanent magnet synchronous machines with an arbitrary injection scheme and direct angle calculation", IEEE CONF. SLED, 2011, pages 41 - 46, XP032063454, DOI: 10.1109/SLED.2011.6051543
H. PETERI. HAHN: "Determination of differential inductances of permanent magnet synchronous machines for sensorless control", IEEE CONF. IEMDC, NIAGARA FALLS, 2011
K. WIEDMANNA. MERTENS: "Novel MRAS approach for online identification of key parameters for self-sensing control of PM synchronous machines", IEEE CONF. EPE/PEMC, NOVI SAD, 2012
M. A. HAMIDAJ. DE LEONA. GLUMINEAUR. BOISLIVEAU: "An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors With Online Parameter Identification", IEEE TRANS. ON INDUSTRIAL ELECTRONICS, February 2013 (2013-02-01), pages 739 - 748
M. J. CORLEYR. D. LORENZ: "Rotor position and velocity estimation for a salientpole permanent magnet synchronous machine at standstill and high speeds", IEEE TRANS, ON INDUSTRIAL APPLICATIONS, vol. 34, 1998, pages 784 - 789
M. SCHRÖDL: "Detection of the rotor position of a permanent magnet synchronous machine at standstill", IEEE CONF. ICEM, 1988, pages 51 - 56
N. BIANCHIS. BOLOGNANI: "Influence of rotor geometry of an interior PM motor on sensorless control feasibility", IEEE CONF IAS ANNUAL MEETING, 2005
P. L. JANSENR. D. LORENZ: "Transducerless position and velocity estimation in induction and salient ac machines", IEEE TRANS, ON INDUSTRIAL APPLICATIONS, vol. 31, 1995, pages 240 - 247
P. L. S. K. A. R. K. D. PAULUS: "Arbitrary injection for permanent magnet synchronous machines with multiple saliencies", IEEE CONF. ECCE, DENVER, 2013
P. LANDSMANND. PAULUSR. KENNEL: "Online identification of load angle compensation for anisotropy based sensorless control", IEEE CONF. SLED, BIRMINGHAM, 2011
P. LANDSMANNR. KENNEL, IEEE CONF. SLEDIPRECEDE, MUNICH, 2013
R. WUG. R. SLEMON: "A permanent magnet motor drive without a shaft sensor", IEEE TRANS. ON INDUSTRY APPLICATIONS, September 1991 (1991-09-01), pages 1005 - 1011
S. BOLOGNANIM. ZIGLIOTTOK. UNTERKOFLER: "On-line Parameter Commissioning in Sensorless PMSM Drives", IEEE CONF. ISIE, GUIMARAES, 1997
S. CHAIB. LEEJ. HONGS. SULS. KIM: "Design of IPMSM having high power density for position sensorless operation with high-frequency signal injection and the method of calculating inductance profile", IEEE CONF. ICEMS, BEIJING, 2011
S. EBERSBERGERB. PIEPENBREIER: "Identification of differential inductances of permanent magnet synchronous machines using test current signal injection", INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, SORRENTO, 2012
S. ICHIKAWAM. TOMITAS. DOKIS. OKUMA: "Sensorless control of permanentmagnet synchronous motors using online parameter identification based on system identification theory", IEEE TRANS. ON INDUSTRIAL ELECTRONICS, April 2006 (2006-04-01), pages 363 - 372, XP002558621, DOI: 10.1109/TIE.2006.870875
T. BOILEAUT. LEBOEUFB. NAHID-MOBARAKEHF. MEIBODY-TABAR: "Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study", IEEE TRANS. ON INDUSTRY APPLICATIONS, July 2011 (2011-07-01), pages 1944 - 1957, XP011329986, DOI: 10.1109/TIA.2011.2155010
T. FRENZKE: "Impacts of cross-saturation on sensorless control of surface permanent magnet synchronous motors", CONF. EPE, DRESDEN, 2005
T. FURUHASHIS. SANGWONGWANICHS. OKUMA: "A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer", IEEE TRANS. ON INDUSTRIAL ELECTRONICS, April 1992 (1992-04-01), pages 89 - 95, XP000300677, DOI: 10.1109/41.166729
W. HAMMELP. LANDSMANNR. M. KENNE!: "Operating point dependent anisotropies and assessment for position-sensorless control", EPE/ECCE EUROPE, KARLSRUHE, 2016
Z. Q. ZHUY. LID. HOWEC. M. BINGHAMD. STONE: "Influence of Machine Topology and Cross-Coupling Magnetic Saturation on Rotor Position Estimation Accuracy in Extended Back-EMF Based Sensorless PM Brushless AC Drives", IEEE INDUSTRY APPLICATIONS ANNUAL MEETING, 2007

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132553A1 (fr) * 2022-12-20 2024-06-27 Continental Automotive Technologies GmbH Procédé de calcul d'une position de flux de rotor d'un moteur électrique et module de commande

Similar Documents

Publication Publication Date Title
DE69623076T2 (de) System und Verfahren zur Steuerung von bürstenlosen Permanentmagnetmotoren
DE102006047206B9 (de) Verfahren zum Schätzen einer Magnetpolposition in einem Motor und Vorrichtung zum Steuern des Motors basierend auf der geschätzten Position
EP3288175B1 (fr) Procédé de commande sans capteur d'un moteur pmsm
DE60024222T2 (de) Verfahren zur Schätzung der Rotorlage eines Synchronmotors, Verfahren zur Steuerung eines sensorlosen Synchronmotors und eine Steuerung für einen Synchronmotor
EP2023479B1 (fr) Dispositif destiné au calcul de la vitesse et/ou de l'emplacement sans fil incluant un arrêt pour un rotor magnétique permanent de machine électrique
EP3837763A1 (fr) Procédé et dispositif de réglage d'un moteur synchrone sans codeur de position par association sans équivoque de l'admittance ou de l'inductance à la position du rotor
DE102012221757A1 (de) Synchronmaschinensteuervorrichtung
WO1992019038A1 (fr) Procede et circuits pour determiner des variables d'etat electromagnetiques et mecaniques liees a la machine sur des generateurs a induction electrodynamiques alimentes par l'intermediaire de convertisseurs
DE102007057499A1 (de) System und Verfahren zum Steuern eines Motors unter Verwendung eines mit einem magnetischen Fluss zusammenhängenden Parameters
DE102009051923A1 (de) Steuerungseinrichtung zum Berechnen einer elektrischen Leistungsaufnahme einer Industriemaschine
DE102006042702A1 (de) Verfahren zum Schätzen einer Magnetpolposition in einem Synchronmotor
DE112010001465T5 (de) Wechselstrommotor-Steuervorrichtung und Wechselstrommotor-Treibersystem
EP3332476A1 (fr) Procédé d'identification de l'anisotropie magnétique d'une machine électrique à champ tournant
EP0847617A1 (fr) Procede et dispositif de correction de la direction de flux d'un modele de flux d'un moteur a champ rotatif, commande sans capteur et par orientation de champ jusqu'a une frequence zero
EP3172829A1 (fr) Procédé de détermination d'une fréquence de rotor et/ou d'un angle de rotor d'un rotor d'une machine à réluctance, moyen de commande et dispositif d'entraînement
DE112008003590T5 (de) Magnetpolpositions-Schätzverfahren für einen AC-Synchronmotor
DE112016004132B4 (de) Steuervorrichtung eines elektrischen Synchronmotors, integriertes Motorsystem, Pumpensystem und Positioniersystem
CH712828A1 (de) Verfahren zur sensorlosen Bestimmung der Orientierung des Rotors eines eisenlosen PMSM-Motors.
DE60036679T2 (de) Regelung für eine geschaltete Reluktanzmaschine
WO2021105057A1 (fr) Procédé et dispositif de commande d'une machine synchrone sans capteur de position au moyen d'une attribution unique de la liaison de flux à la position du rotor
EP3729634B1 (fr) Procédé de détermination de la position d'un rotor d'une machine triphaseé, sans l'utilisation d'un encodeur, et dispositif de régulation d'un moteur triphasé sans l'utilisation d'un encodeur
WO2020083985A1 (fr) Procédé et dispositif pour la détermination sans charge de paramètres d'affectation de position en fonction de la charge d'une machine synchrone sans capteur de position
DE102008006098A1 (de) Drehmomentschätzeinrichtung für IPM-Motoren
EP1746717B1 (fr) Procédé d'estimation de la vitesse d'une machine asynchrone sans capteur
EP1746718B1 (fr) Procédé pour contrôler directement la réactance d'une machine à champ tournant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19794498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019794498

Country of ref document: EP

Effective date: 20210525