WO2020082216A1 - 衍射波导装置、显示装置及制造方法 - Google Patents

衍射波导装置、显示装置及制造方法 Download PDF

Info

Publication number
WO2020082216A1
WO2020082216A1 PCT/CN2018/111257 CN2018111257W WO2020082216A1 WO 2020082216 A1 WO2020082216 A1 WO 2020082216A1 CN 2018111257 W CN2018111257 W CN 2018111257W WO 2020082216 A1 WO2020082216 A1 WO 2020082216A1
Authority
WO
WIPO (PCT)
Prior art keywords
relief grating
layer
grating
relief
intermediate layer
Prior art date
Application number
PCT/CN2018/111257
Other languages
English (en)
French (fr)
Inventor
王喆
杨佶林
邹泉波
赵东峰
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to PCT/CN2018/111257 priority Critical patent/WO2020082216A1/zh
Publication of WO2020082216A1 publication Critical patent/WO2020082216A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to the field of waveguides, and more particularly, to a waveguide device used for diffraction; the present invention also relates to a display device using the above-mentioned waveguide device; the present invention also relates to a method of manufacturing a diffractive waveguide device.
  • optical waveguide technology There are many types of optical waveguide technology, and there are many fields of application.
  • the near-eye display uses the principle of grating diffraction in optical waveguide technology, so image display will be limited by the principle of diffraction: the grating has different diffraction efficiency for different wavelengths of light. Therefore, in order to achieve full-color display, optical waveguides usually require 2 to 3 layers of grating structures, and each layer works separately in a part of the visible light band, and then superimposed on the human eye to achieve the final full-color image.
  • Grating technologies commonly used in optical waveguides can be divided into two categories: One is holographic volume gratings, which use liquid materials doped with photosensitive molecules, which are cured after holographic exposure to form gratings.
  • the morphology of this type of grating is usually a thin film with a thickness of a few microns, and the surface does not have a micro-nano structure with a solid shape.
  • the other type is the surface relief grating.
  • the micro-nano structure in the shape of “trench” is directly made on the surface of the resin material by photolithography or nano-imprint.
  • the size of this type of grating is on the order of 100 nanometers.
  • Each layer of relief grating corresponds to an optical waveguide substrate to transmit the diffracted light waves.
  • R grating, G grating, and B grating respectively
  • three optical waveguide substrates need to be provided as R optical waveguide substrate, G optical waveguide substrate, and B optical waveguide substrate to transfer Light, G light, B light.
  • the waveguide device of this structure has a large size and cannot achieve the miniaturization of modern electronic products. In addition, the production cost is high.
  • An object of the present invention is to provide a new technical solution for a diffractive waveguide device.
  • a diffractive waveguide device including an optical waveguide substrate, on one end face of which one coupling grating is provided, and the coupling grating includes at least one layered together Two embossed grating layers, between two adjacent embossed grating layers supported by an intermediate layer; at least two embossed grating layers are configured such that the corresponding light in the light is diffracted by the respective embossed grating layer on the same optical waveguide substrate Spread.
  • the refractive index of the intermediate layer is the same as the refractive index of the relief grating layer.
  • the material of the intermediate layer is the same as the material of the relief grating layer.
  • the relief grating layer is provided with two layers, respectively referred to as an RG relief grating layer and a GB relief grating layer; the RG relief grating layer is configured to diffract R light and part of G light in full-color RGB light; The GB relief grating layer is configured to diffract B light and other G light in full-color RGB light.
  • the RG relief grating layer is disposed adjacent to the optical waveguide substrate, and the GB relief grating layer is laminated on the side of the RG relief grating layer away from the optical waveguide substrate through an intermediate layer; or,
  • the GB relief grating layer is disposed adjacent to the optical waveguide substrate, and the RG relief grating layer is laminated on the side of the GB relief grating layer away from the optical waveguide substrate through an intermediate layer.
  • the relief grating layer is provided with three layers, which are respectively denoted as R relief grating layer, G relief grating layer, and B relief grating layer; the R relief grating layer, G relief relief layer, and B relief relief layer are stacked together, and An intermediate layer is spaced between two adjacent relief grating layers; the R relief grating layer is configured to diffract R light in full-color RGB light; the G relief grating layer is configured to diffract full-color RGB light G light; the B relief grating layer is configured to diffract B light in full-color RGB light.
  • the R relief grating layer, the G relief grating layer, and the B relief grating layer are stacked on the end surface of the optical waveguide substrate in any order.
  • the optical waveguide substrate is glass.
  • the relief grating layer is formed by imprinting, photolithography, spin coating, or printing process.
  • the relief grating layer and the intermediate layer are bonded together.
  • it also includes a coupling-out grating, the structure of which is the same as that of the coupling-in grating; light is transmitted through the coupling-in grating in the optical waveguide substrate and is coupled out through the coupling-out grating.
  • it also includes a pupil-expanding grating.
  • the structure of the pupil-expanding grating is the same as that of the coupled-in grating and the coupled-out grating. Out.
  • a display device including the above-mentioned diffractive waveguide device.
  • a method for manufacturing the above diffractive waveguide device including the following steps:
  • the required grating pattern on the template can be etched, electron beam direct writing, holographic exposure, etc .;
  • S1 forming an adhesive layer on the substrate (by spin coating, spraying, etc.), and performing nano-imprinting on the adhesive layer to form the pattern of the first relief grating;
  • the method further includes the steps of repeating steps S2 and S3 to stack another intermediate layer and the third relief grating on the surface of the second relief grating.
  • the template is subjected to surface treatment, and a metal thin film may be plated.
  • the template before applying glue on the template of the second relief grating, the template is subjected to surface treatment, and an anti-sticking agent may be applied.
  • the surfaces of the first relief grating and the intermediate layer used for bonding are respectively subjected to plasma surface treatment.
  • a laser peeling method may be used.
  • a mechanical demolding method may be used.
  • a method for manufacturing the above diffractive waveguide device including the following steps:
  • Make the template needed for nano-imprint, and the required grating pattern on the template can be through photolithography, electron beam direct writing, holographic exposure, etc .;
  • S1 forming an adhesive layer on the substrate (by spin coating, spraying, etc.), and performing nano-imprinting on the adhesive layer to form the first relief grating pattern;
  • Step S1 is repeated once to form the pattern of the second relief grating; the second relief grating is stacked on the first intermediate layer by bonding and demolding.
  • steps S2 and S3 are repeated to stack a second intermediate layer on the second relief grating; then step S1 is repeated once to form a pattern of the third relief grating, and the third relief grating is stacked on the first Two on the middle layer.
  • multiple relief grating layers are overlapped on the same optical waveguide substrate, and the space between two adjacent relief grating layers is protected by an intermediate layer, which can not only reduce the thickness of the diffraction waveguide device, Moreover, the manufacturing cost of the two additional optical waveguide substrates can be saved. It is of great significance for realizing miniaturization and low-cost diffractive waveguide devices.
  • FIG. 1 is a plan view of the diffractive waveguide device of the present invention.
  • FIG. 2 is a cross-sectional view of the diffractive waveguide device of the present invention.
  • Fig. 3 is a schematic diagram of a grating coupled in the diffractive waveguide device of the present invention.
  • 4 and 5 are flowcharts of a manufacturing process of the diffractive waveguide device of the present invention.
  • 6 to 11 are flowcharts of another manufacturing process of the diffractive waveguide device of the present invention.
  • the present invention provides a diffractive waveguide device.
  • a diffractive waveguide device Referring to FIG. 1, it includes an optical waveguide substrate 1, and a coupling grating 2 is provided on one end surface of the optical waveguide substrate 1.
  • the optical waveguide substrate 1 can be selected from optical waveguide glass, optical waveguide lenses, etc., which are well known to those skilled in the art.
  • the coupling-in grating 2 is used to diffract the light to be conducted and make the diffracted light enter the optical waveguide substrate 1 to be conducted according to a predetermined direction. For full-color RGB (red, green, and blue) images, different grating patterns need to be selected to be diffracted separately, which is well known to those skilled in the art.
  • the coupled grating 2 of the present invention includes at least two relief grating layers stacked together, and the adjacent two relief grating layers are supported by an intermediate layer interval; at least two relief grating layers are configured as: corresponding light in light After being diffracted by their respective relief grating layers, they propagate in the same optical waveguide substrate.
  • the relief grating layer is provided with three layers, and an intermediate layer is supported between two adjacent relief grating layers.
  • the three relief grating layers are denoted as R relief grating layer 20, G relief grating layer 21, and B relief grating layer 22, respectively.
  • R relief grating layer 20, G relief grating layer 21, and B relief grating layer 22 are respectively provided with relief patterns of R light, G light, and B light diffraction:
  • R relief grating layer 20 is configured to diffract R in full-color RGB light Light
  • G relief grating layer 21 is configured to diffract G light in full-color RGB light
  • B relief grating layer 22 is configured to diffract B light in full-color RGB light. Therefore, the three-color relief grating layer can diffract the full-color RGB image to the optical waveguide substrate 1 for conduction.
  • This embossed pattern is a micro-nano structure made of "grooves" on the surface of the material.
  • the size of this type of grating is on the order of 100 nanometers.
  • it may be a relief pattern formed on the substrate by imprinting, photolithography, spin coating or printing process. This is common knowledge of those skilled in the art and will not be described in detail here.
  • an intermediate layer 23 is provided between the R relief grating layer 20 and the G relief grating layer 21 for interval protection; between the G relief grating layer 21 and the B relief grating layer 22 Another intermediate layer 23 performs interval protection.
  • the intermediate layer 23 can prevent the micro-nano structures in the two adjacent relief grating layers from interlacing together, and protect the micro-nano structures in the relief grating layer from damage.
  • each relief grating layer can be combined together in a manner well known to those skilled in the art.
  • the intermediate layer and the relief grating layer can be bonded together by means of heat and pressure, which is not described in detail here.
  • the refractive index of the two intermediate layers 23 is selected to be the same as the refractive index of the three-layer relief grating layer.
  • the material of the intermediate layer 23 is the same as the material of the relief grating layer, for example, the cured adhesive layer is selected.
  • the R relief grating layer 20, the G relief grating layer 21, and the B relief grating layer 22 are stacked on the end surface of the optical waveguide substrate 1 in any order.
  • the R relief grating layer 20, the intermediate layer 23, the G relief grating layer 21, the intermediate layer 23, and the B relief grating layer 22 are sequentially stacked in a direction perpendicular to the optical waveguide substrate 1 together.
  • R light in full-color RGB light is incident on the R relief grating layer 20 and then diffracted into the optical waveguide substrate 1 for conduction;
  • G light in full-color RGB light passes through the R relief grating layer 20 and is incident on the G relief
  • the grating layer 21 is diffracted into the optical waveguide substrate 1 for conduction;
  • the B light in the full-color RGB light passes through the R relief grating layer 20 and the G relief grating layer 21, is incident on the B relief grating layer 22, and is diffracted to the optical waveguide substrate 1 Conduction.
  • the R light, B light, and G light in the full-color RBG image are respectively diffracted into the optical waveguide substrate 1 for conduction, thereby realizing the transmission of the full-color RBG image.
  • the R relief grating layer 20, the B relief grating layer 22, the G relief grating layer 21 and the like can also be used for lamination, which will not be listed here.
  • multiple relief grating layers are overlapped on the same optical waveguide substrate, and the space between two adjacent relief grating layers is protected by an intermediate layer, which can not only reduce the thickness of the diffraction waveguide device, Moreover, the manufacturing cost of the two additional optical waveguide substrates can be saved. It is of great significance for realizing miniaturization and low-cost diffractive waveguide devices.
  • the relief grating layer may be provided with two layers, which are respectively referred to as RG relief grating layer and GB relief relief grating layer.
  • RG relief grating layer two layers, which are respectively referred to as RG relief grating layer and GB relief relief grating layer.
  • the "grooved" micro-nano structure on the RG relief grating layer allows R light and a part of G light to diffract; and the "grooved" shape on the GB relief grating layer
  • the micro-nano structure allows B light and another part of G light to be diffracted.
  • the RG relief grating layer can be configured to diffract R light and some G light in full-color RGB light; the GB relief grating layer can be configured to diffract B light and other G light in full-color RGB light.
  • the full-color RGB image diffraction is realized.
  • the relief patterns of the RG relief grating layer and the GB relief grating layer belong to the common knowledge of those skilled in the art, and will not be specifically described here.
  • the RG relief grating layer may be disposed adjacent to the optical waveguide substrate 1, and the GB relief grating layer is laminated on the side of the RG relief grating layer away from the optical waveguide substrate through an intermediate layer. It may also be that the GB relief grating layer is disposed adjacent to the optical waveguide substrate 1, and the RG relief grating layer is laminated on the side of the GB relief grating layer away from the optical waveguide substrate through an intermediate layer.
  • an intermediate layer is provided on the RG relief grating layer and the GB relief grating layer for spacing and support, and the RG relief grating layer and the GB can be protected Damage caused when the relief grating layer is stacked.
  • the diffraction efficiency of the superimposed relief gratings will be lower than that of the independently set relief gratings.
  • the ratio is related to the thickness. It is also related to the thickness of the intermediate layer. Studies have shown that the diffraction efficiency of the grating does not have a simple linear relationship with the thickness of the intermediate layer, so according to the optimization, a pressure sufficient to support the grating layer can be found, which is conducive to manufacturing and can also guarantee The thickness of the intermediate layer for the overall efficiency of the grating.
  • the diffractive waveguide device of the present invention after the full-color RGB image is conducted to a predetermined position in the optical waveguide substrate 1, it can be decoupled through the decoupling grating.
  • the diffractive waveguide device further includes a coupling-out grating 4, and the structure of the coupling-out grating 4 may be the same as that of the coupling-in grating 2.
  • the decoupling grating 4 when the decoupling grating 2 adopts a three-layer structure of an R relief grating layer 20, a B relief grating layer 22, and a G relief grating layer 21, the decoupling grating 4 also uses a three-layer relief grating layer stacked together through an intermediate layer, and is respectively R light, G light, B light, so as to realize the coupling of full-color RGB images.
  • the decoupling grating 4 when the decoupling grating 2 adopts a two-layer structure of an RG relief grating layer and a GB relief grating layer, the decoupling grating 4 also uses an RG relief grating layer and a GB relief grating layer, which are stacked together through an intermediate layer, respectively coupling out R light and Part of G light, B light and other parts of G light, so as to achieve the coupling of full-color RGB images.
  • the diffractive waveguide device further includes a pupil-expanding grating 3, refer to FIG.
  • the structure of the pupil-expanding grating 3 is the same as the structure of the coupling grating 2 and the coupling grating 4, for example, a stacked structure of three-layer relief grating or a stacked structure of two-layer relief grating.
  • the light is transmitted through the coupling grating 2 in the optical waveguide substrate 1, expanded by the pupil-expanding grating 3 and coupled out through the coupling-out grating 4.
  • the function of this pupil dilation grating 3 belongs to the common knowledge of those skilled in the art, and will not be described in detail here.
  • the above-mentioned diffractive waveguide device can be applied to a display device.
  • the present invention also provides a display device including the above-mentioned diffractive waveguide device.
  • the display device may be a display or an optical waveguide head-mounted device for near-eye display.
  • the invention also provides a manufacturing method of the above-mentioned diffractive waveguide device, by which a coupling grating, a pupil expansion grating or a coupling grating can be separately formed on an optical waveguide substrate.
  • a coupling grating, a pupil expansion grating or a coupling grating can be separately formed on an optical waveguide substrate.
  • the coupling grating, the pupil expansion grating, and the coupling grating can also be formed on the optical waveguide substrate at the same time.
  • the manufacturing method includes the following steps:
  • an adhesive layer 102 is formed on the substrate 101 by, for example, spin coating or spray coating.
  • the adhesive layer 102 may be photoresist or embossed adhesive, depending on the process of forming the grating pattern.
  • the imprint technique is used to form the grating pattern, so the adhesive layer 102 is made of imprinted glue.
  • photolithography, spin coating or printing processes can also be used to form the grating pattern, which will not be described one by one here.
  • the imprinting mold 103 required for nanoimprinting is produced, and the imprinting mold 103 has a required grating pattern.
  • a grating pattern can be formed on the imprinting mold 103 by means of photolithography, electron beam direct writing, or holographic exposure. This is common knowledge of those skilled in the art and will not be described in detail here.
  • the adhesive layer 102 may be nano-imprinted by the imprinting mold 103, and a grating pattern is initially formed after curing; after removing glue and other treatments, the pattern of the first relief grating 104 is formed.
  • S2 Fill a glue layer on the template of the second relief grating to form a second relief grating pattern in the template and an intermediate layer on the surface of the second relief grating pattern.
  • the template 201 of the second relief grating has a pattern for forming the second relief grating.
  • surface treatment can be performed on the template 201 in advance, for example, a layer of protective film or release film 202 is coated.
  • the protective film or release film 202 can be a metal thin film or can be coated with a layer of anti-sticking agent to facilitate Subsequent demoulding.
  • the glue is applied on the template 201 by spin coating or spraying.
  • the glue enters the pattern of the template 201 and forms the pattern of the second relief grating 203 after curing.
  • the second relief grating 203 is continuously coated with glue of the same material, and after curing, an intermediate layer 204 combined with the second relief grating 203 is formed.
  • the amount of glue can be controlled to form an integrated second relief grating 203 and intermediate layer 204 at the same time after curing, which will not be specifically described here.
  • the outer surface of the intermediate layer 204 and the surface of the first relief grating 104 can be bonded together by heating and pressing; afterwards, the template 201 of the second relief grating 203 is demolded to form a laminated layer The first relief grating 104, the intermediate layer 204, and the second relief grating 203 on the bottom 101.
  • the first relief grating 104 and the intermediate layer 204 before lamination are both cured adhesive layers.
  • the surfaces of the first relief grating 104 and the intermediate layer 204 for bonding can be plasma Surface treatment.
  • the demolding can be done by laser demolding.
  • the template 201 can be made of a light-transmitting material, and the protective film or the release film 202 can be irradiated by laser to separate the template 201 from the second relief grating 203.
  • a mechanical demoulding method can also be used, which is common knowledge of those skilled in the art and will not be described in detail here.
  • the manufacturing method of the present invention does not limit the order of the steps, for example, step S2 may be executed first, and then steps S1 and S3 may be executed. It is also possible to perform step S1 and step S2 simultaneously.
  • the above steps S2 and S3 may be repeated to stack another intermediate layer and a third relief grating on the surface of the second relief grating 203.
  • step S2 may be repeated to apply glue on another template to form a third relief grating and another intermediate layer formed on the third relief grating. And by repeating step S3, the intermediate layer on the surface of the third relief grating and the second relief grating are bonded together.
  • a first relief grating 104, an intermediate layer 204, a second relief grating 203, another intermediate layer, and a third relief grating stacked together are formed.
  • the substrate 101 of the present invention may be an optical waveguide substrate or a transit substrate.
  • the first relief grating 104, the intermediate layer 204, the second relief grating 203, another intermediate layer, and the third relief grating are directly stacked on the optical waveguide substrate.
  • the relay substrate can be detached in advance by means known to those skilled in the art such as laser irradiation, and then the stacked first relief grating 104, intermediate layer 204, and The second relief grating 203, another intermediate layer, and the third relief grating are transferred to the optical waveguide substrate, and will not be described in detail here.
  • an adhesive layer 1002 may be formed on the substrate 1001 by spin coating or spray coating.
  • the adhesive layer 1002 may be photoresist or embossed adhesive, depending on the process of forming the grating pattern.
  • the imprint technique is used to form the grating pattern, so the adhesive layer 1002 is made of imprinted glue.
  • photolithography, spin coating or printing processes can also be used to form the grating pattern, which will not be described one by one here.
  • the imprinting mold 1003 has the required grating pattern, for example, a grating pattern can be formed on the imprinting mold 1003 by means of photolithography, electron beam direct writing or holographic exposure. This is common knowledge of those skilled in the art and will not be described in detail here.
  • the glue layer 1002 can be nano-imprinted by the imprinting mold 1003, and a grating pattern is initially formed after curing; after removing glue and other treatments, the pattern of the first relief grating 1004 is formed.
  • the relay substrate 2001 may be light-transmitting glass or other materials that allow light to pass through, such as sapphire materials.
  • the first intermediate layer 2002 is formed after curing.
  • the outer surface of the first intermediate layer 2002 and the surface of the first relief grating 1004 can be bonded together by heating and pressing; afterwards, the transfer substrate 2001 of the first intermediate layer 2002 is demolded to form The first relief grating 1004 and the first intermediate layer 2002 laminated on the substrate 1001.
  • the first relief grating 1004 and the first intermediate layer 2002 before lamination are cured adhesive layers.
  • the first relief grating 1004 and the first intermediate layer 2002 can be used for bonding before lamination Plasma surface treatment.
  • the demolding can be done by laser demolding.
  • the transfer substrate 2001 can be made of light-transmitting materials, and the transfer substrate 2001 can be detached from the first intermediate layer 2002 by laser irradiation. Instructions.
  • Step S1 is repeated once to form the pattern of the second relief grating; and the second relief grating is laminated on the first intermediate layer.
  • a pattern of the second relief grating 1005 can be formed on another substrate, and the second relief grating 1005 and the first intermediate layer 2002 are combined by bonding. Subsequently, the substrate can be removed by demolding to obtain a second relief grating 1005 laminated on the first intermediate layer 2002, refer to FIG. 9.
  • the first relief grating 1004, the first intermediate layer 2002, and the second relief grating 1005 laminated on the substrate 1001 can be obtained by the above method. It should be noted that the manufacturing method of the present invention does not limit the order of the steps. For example, step S2 may be executed first, and then steps S1, S3, and S4 may be executed. It is also possible to perform step S1 and step S2 simultaneously.
  • steps S2 and S3 can be repeated to stack a second intermediate layer on the second relief grating layer; then step S1 is repeated once to form a pattern of the third relief grating, and the third relief grating can be stacked on the first Two on the middle layer.
  • step S2 may be repeated, and the second intermediate layer 2003 is formed by coating and curing on the transfer substrate. And by repeating step S3, the second intermediate layer 2003 and the second relief grating 1005 are bonded together.
  • the first relief grating 1004, the first intermediate layer 2002, the second relief grating 1005, and the second intermediate layer 2003 that are stacked together are formed, refer to FIG.
  • step S1 a pattern of the third relief grating 1006 is formed on another substrate, and the third relief grating 1006 is stacked on the second intermediate layer 2003 by bonding and demolding, refer to FIG. 11.
  • the substrate of the present invention may be an optical waveguide substrate or a transit substrate. No specific explanation will be given here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种衍射波导装置,包括光波导基底(1)和耦入光栅(2),耦入光栅(2)设置在光波导基底(1)的其中一侧端面上。耦入光栅(2)包括层叠在一起的至少两层浮雕光栅层(20,21,22),相邻两层浮雕光栅层(20,21,22)之间通过中间层(23)间隔支撑。至少两层浮雕光栅层(20,21,22)被配置为:光线中的相应光线分别通过各自的浮雕光栅层(20,21,22)衍射后在同一光波导基底(1)中传播。该衍射波导装置厚度小,省去了额外的两片光波导基底,对实现小型化、低成本的衍射波导装置有很大意义。

Description

衍射波导装置、显示装置及制造方法 技术领域
本发明涉及波导领域,更具体地,涉及一种用于衍射的波导装置;本发明还涉及应用上述波导装置的显示装置;本发明还涉及衍射波导装置的制造方法。
背景技术
光波导技术的种类很多,其应用的领域也很多。在显示领域,例如近眼显示采用的是光波导技术中的光栅衍射的原理,因此图像显示会受到衍射原理的限制:光栅对不同波长的光衍射效率不同。所以为了实现全彩显示,光波导通常需要2到3层光栅结构,每一层分别工作于可见光波段中的一部分,然后在人眼处叠加实现最终的全彩图像。
常用于光波导的光栅技术可以分为两类:一类是全息体光栅,其采用掺杂光敏分子的液体材料,通过全息曝光后再固化制成光栅。这一类光栅的形态通常是几微米厚的平面薄膜,表面没有实体形状的微纳结构。
另一类是表面浮雕光栅,由光刻蚀或者纳米压印在树脂材料表面直接制作出“沟槽”状的微纳结构,此类光栅尺寸在百纳米级别。每层浮雕光栅各对应一个光波导基底,以传导各自衍射的光波。例如当采用三个光栅层时,分别记为R光栅、G光栅、B光栅,则需要设置三个光波导基底分别作为R光波导基底、G光波导基底、B光波导基底,以分别传递R光、G光、B光。这种结构的波导装置尺寸大,无法实现现代电子产品的小型化发展。另外制作成本高。
发明内容
本发明的一个目的是提供一种衍射波导装置的新技术方案。
根据本发明的第一方面,提供了一种衍射波导装置,包括光波导基底,在所述光波导基底的其中一侧端面上设置有耦入光栅,所述耦入光栅包括层叠在一起的至少两层浮雕光栅层,相邻两层浮雕光栅层之间通过中间层间隔支撑;至少两层浮雕光栅层被配置为:光线中的相应光线分别通过各自的浮雕光栅层衍射后在同一光波导基底中传播。
可选地,所述中间层的折射率与浮雕光栅层的折射率相同。
可选地,所述中间层的材质和浮雕光栅层的材质相同。
可选地,所述浮雕光栅层设置有两层,分别记为RG浮雕光栅层,GB浮雕光栅层;所述RG浮雕光栅层被配置为衍射全彩RGB光线中的R光以及部分G光;所述GB浮雕光栅层被配置为衍射全彩RGB光线中的B光以及其它G光。
可选地,RG浮雕光栅层邻近光波导基底设置,GB浮雕光栅层通过中间层层叠在RG浮雕光栅层远离光波导基底的一侧;或者是,
GB浮雕光栅层邻近光波导基底设置,RG浮雕光栅层通过中间层层叠在GB浮雕光栅层远离光波导基底的一侧。
可选地,所述浮雕光栅层设置有三层,分别记为R浮雕光栅层、G浮雕光栅层、B浮雕光栅层;R浮雕光栅层、G浮雕光栅层、B浮雕光栅层层叠在一起,且相邻两个浮雕光栅层之间各有一中间层间隔支撑;所述R浮雕光栅层被配置为衍射全彩RGB光线中的R光;所述G浮雕光栅层被配置为衍射全彩RGB光线中的G光;所述B浮雕光栅层被配置为衍射全彩RGB光线中的B光。
可选地,R浮雕光栅层、G浮雕光栅层、B浮雕光栅层按照任意顺序层叠在光波导基底的端面上。
可选地,所述光波导基底为玻璃。
可选地,所述浮雕光栅层通过压印、光刻、旋涂或者印刷工艺形成。
可选地,所述浮雕光栅层、中间层键合在一起。
可选地,还包括耦出光栅,所述耦出光栅的结构与耦入光栅相同;光线经过耦入光栅在光波导基底中传导,并经过耦出光栅耦出。
可选地,还包括扩瞳光栅,扩瞳光栅的结构与耦入光栅、耦出光栅的 结构相同;光线经过耦入光栅在光波导基底中传导,经过扩瞳光栅扩展后并通过耦出光栅耦出。
根据本发明的第二方面,还提供了一种显示装置,包括上述的衍射波导装置。
根据本发明的第三方面,还提供了一种上述衍射波导装置的制造方法,包括以下步骤:
制作纳米压印所需要的模板,模板上有所需要的光栅图案,可以通过光刻蚀,电子束直写,全息曝光等方式;
S1:在衬底上形成胶层,(可以通过旋涂,喷涂等方式),并对胶层进行纳米压印,形成第一浮雕光栅的图案;
S2:在第二浮雕光栅的模板上进行表面处理,然后在上面填充胶层,(可以通过旋涂,喷涂等方式),形成位于模板中的第二浮雕光栅图案以及位于第二浮雕光栅图案表面上的中间层;
S3:将第二浮雕光栅图案表面的中间层与第一浮雕光栅键合在一起,键合后对第二浮雕光栅的模板进行脱模,形成层叠在光波导基底上的第一浮雕光栅、中间层、第二浮雕光栅。
可选地,还包括重复步骤S2、S3,以在第二浮雕光栅的表面层叠另一中间层以及第三浮雕光栅的步骤。
可选地,在第二浮雕光栅的模板上涂胶前,对模板进行表面处理,可以镀金属薄膜。
可选地,在第二浮雕光栅的模板上涂胶前,对模板进行表面处理,可以涂抗黏剂。
可选地,在键合前,分别对第一浮雕光栅、中间层用于键合的表面进行等离子表面处理。
可选地,在脱模时,可以使用激光剥离的方式。
可选地,在脱模时,可以使用机械脱模的方式。
根据本发明的第三方面,还提供了一种上述衍射波导装置的制造方法,包括以下步骤:
制作纳米压印所需要的模板,模板上有所需要的光栅图案,可以通过 光刻蚀,电子束直写,全息曝光等方式;
S1:在衬底上形成胶层,(可以通过旋涂,喷涂等方式),并对胶层进行处理纳米压印,形成第一浮雕光栅的图案;
S2:在中转基底上涂胶形成第一中间层;
S3:将第一中间层与第一浮雕光栅键合在一起,之后将中转基底去除;形成层叠在一起的第一浮雕光栅、第一中间层;
S4:重复一次步骤S1,形成第二浮雕光栅的图案;通过键合、脱模将第二浮雕光栅叠在第一中间层上。
可选地,在步骤S4之后,重复步骤S2、S3,在第二浮雕光栅上层叠第二中间层;之后重复一次步骤S1,形成第三浮雕光栅的图案,并将第三浮雕光栅层叠在第二中间层上。
本发明的衍射波导装置,将多层浮雕光栅层彼此重叠在同一个光波导基底上,相邻两个浮雕光栅层之间通过中间层进行间隔保护,这不仅可以减小衍射波导装置的厚度,而且还能省去额外的两片光波导基底的制作成本。对实现小型化、低成本的衍射波导装置有很大意义。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明衍射波导装置的俯视图。
图2是本发明衍射波导装置的剖面图。
图3是本发明衍射波导装置中耦入光栅的原理图。
图4、图5是本发明衍射波导装置的一种制造工艺的流程图。
图6至图11是本发明衍射波导装置的另一种制造工艺的流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到: 除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供了一种衍射波导装置,参考图1,包括光波导基底1,在光波导基底1的其中一侧端面上设置有耦入光栅2。光波导基底1可以选择本领域技术人员所熟知的光波导玻璃、光波导镜片等。耦入光栅2用于使待传导的光线发生衍射,并使衍射后的光线进入到光波导基底1中按照预定方向进行传导。对于全彩RGB(红绿蓝)图像而言,需要选择不同的光栅图案进行分别衍射,这对于本领域的技术人员而言是公知的。
本发明的耦入光栅2,包括层叠在一起的至少两层浮雕光栅层,相邻两层浮雕光栅层之间通过中间层间隔支撑;至少两层浮雕光栅层被配置为:光线中的相应光线分别通过各自的浮雕光栅层衍射后在同一光波导基底中传播。
在本发明一个具体的实施方式中,浮雕光栅层设置有三层,相邻两个浮雕光栅层之间各有一中间层间隔支撑。参考图2、图3,三层浮雕光栅层分别记为R浮雕光栅层20、G浮雕光栅层21、B浮雕光栅层22。R浮雕光栅层20、G浮雕光栅层21、B浮雕光栅层22上分别设置有R光、G光、B光衍射的浮雕图案:R浮雕光栅层20被配置为衍射全彩RGB光线中的R光;G浮雕光栅层21被配置为衍射全彩RGB光线中的G光;B浮雕光栅层22被配置为衍射全彩RGB光线中的B光。从而通过该三层浮雕光栅层可以将全 彩RGB图像全部衍射到光波导基底1进行传导。
这种浮雕图案是在材料表面制作出“沟槽”状的微纳结构,此类光栅尺寸在百纳米级别。例如可以是通过压印、光刻、旋涂或者印刷工艺,在基底上形成的浮雕图案后。这属于本领域技术人员的公知常识,在此不再具体说明。
为了使三层浮雕光栅可以层叠在一起,在R浮雕光栅层20与G浮雕光栅层21之间设置有中间层23进行间隔保护;在G浮雕光栅层21与B浮雕光栅层22之间设置有另一中间层23进行间隔保护。通过中间层23可以防止相邻两层浮雕光栅层中的微纳结构交错在一起,保护浮雕光栅层中的微纳结构不受损坏。
中间层和各浮雕光栅层可以通过本领域技术人员所熟知的方式结合在一起,例如可通过加热加压的方式使中间层和浮雕光栅层键合在一起,在此不再具体说明。
可选的是,为了避免光的一系列损耗,例如光在中间层发生全内反射等,两个中间层23的折射率选择与三层浮雕光栅层的折射率相同。
可选的是,中间层23的材质和浮雕光栅层的材质相同,例如均选择固化后的胶层。
可选的是,R浮雕光栅层20、G浮雕光栅层21、B浮雕光栅层22按照任意顺序层叠在光波导基底1的端面上。例如在图3示出的具体实施例中,R浮雕光栅层20、中间层23、G浮雕光栅层21、中间层23、B浮雕光栅层22依次在垂直于光波导基底1的方向上层叠在一起。
参考图3,全彩RGB光线中的R光入射到R浮雕光栅层20后衍射到光波导基底1中进行传导;全彩RGB光线中的G光穿过R浮雕光栅层20,入射到G浮雕光栅层21后衍射到光波导基底1中进行传导;全彩RGB光线中的B光穿过R浮雕光栅层20、G浮雕光栅层21,入射到B浮雕光栅层22后衍射到光波导基底1中进行传导。全彩RBG图像中的R光、B光、G光分别衍射到光波导基底1中进行传导,从而实现了全彩RBG图像的传导。
对于本领域的技术人员而言,还可以按照R浮雕光栅层20、B浮雕光栅层22、G浮雕光栅层21等方式进行层叠,在此不再一一列举。
本发明的衍射波导装置,将多层浮雕光栅层彼此重叠在同一个光波导基底上,相邻两个浮雕光栅层之间通过中间层进行间隔保护,这不仅可以减小衍射波导装置的厚度,而且还能省去额外的两片光波导基底的制作成本。对实现小型化、低成本的衍射波导装置有很大意义。
在本发明另一个可选的实施方式中,浮雕光栅层可以设置有两层,分别记为RG浮雕光栅层,GB浮雕光栅层。鉴于R光、G光、B光各自的波长等特点,RG浮雕光栅层上“沟槽”状的微纳结构允许R光和一部分G光发生衍射;而GB浮雕光栅层上“沟槽”状的微纳结构允许B光和另一部分G光发生衍射。使得RG浮雕光栅层可以被配置为衍射全彩RGB光线中的R光以及部分G光;GB浮雕光栅层可以被配置为衍射全彩RGB光线中的B光以及其它G光。最终通过RG浮雕光栅层、GB浮雕光栅层实现了全彩RGB图像的衍射。这种RG浮雕光栅层、GB浮雕光栅层的浮雕图案属于本领域技术人员的公知常识,在此不再具体说明。
具体地,RG浮雕光栅层可以邻近光波导基底1设置,GB浮雕光栅层通过中间层层叠在RG浮雕光栅层远离光波导基底的一侧。还可以是,GB浮雕光栅层邻近光波导基底1设置,RG浮雕光栅层通过中间层层叠在GB浮雕光栅层远离光波导基底的一侧。为了防止RG浮雕光栅层、GB浮雕光栅层的微纳结构交错在一起,在RG浮雕光栅层、GB浮雕光栅层设置有一中间层进行间隔、支撑,通过该中间层可以保护RG浮雕光栅层、GB浮雕光栅层在层叠时所造成的损坏。
不论是两层浮雕光栅层叠在一起还是三层浮雕光栅层叠在一起,重叠后的浮雕光栅的衍射效率,相对于独立设置的浮雕光栅的衍射效率会有所下降,这与各层浮雕光栅占空比和厚度有关。另外还和中间层的厚度有关,经研究表明,光栅的衍射效率并不与中间层的厚度呈简单的线性关系,所以根据优化可以找到一个足够支撑光栅层的压力,利于制作,同时又能保证光栅整体效率的中间层厚度。
本发明的衍射波导装置,全彩RGB图像在光波导基底1中传导至预定位置后,可以通过耦出光栅进行耦出。
参考图1、图2,在本发明一个可选的实施方式中,衍射波导装置, 还包括耦出光栅4,该耦出光栅4的结构可以与耦入光栅2相同。
例如当耦出光栅2采用R浮雕光栅层20、B浮雕光栅层22、G浮雕光栅层21三层结构时,耦出光栅4也采用三层浮雕光栅层经中间层层叠在一起,分别耦出R光、G光、B光,从而实现全彩RGB图像的耦出。
例如当耦出光栅2采用RG浮雕光栅层、GB浮雕光栅层两层结构层叠时,耦出光栅4也采用RG浮雕光栅层、GB浮雕光栅层经中间层层叠在一起,分别耦出R光和部分G光、B光和其它部分的G光,从而实现全彩RGB图像的耦出。
本发明可选的是,衍射波导装置还包括扩瞳光栅3,参考图1。扩瞳光栅3的结构与耦入光栅2、耦出光栅4的结构相同,例如采用三层浮雕光栅的层叠结构或者两层浮雕光栅的层叠结构。光线经过耦入光栅2在光波导基底1中传导,经过扩瞳光栅3扩展后并通过耦出光栅4耦出。这种扩瞳光栅3的功能属于本领域技术人员的公知常识,在此不再具体说明。
上述的衍射波导装置可以应用到显示装置中,为此本发明还提供了一种显示装置,包括上述的衍射波导装置。该显示装置可以是显示器或者是近眼显示的光波导头戴设备。
本发明还提供了一种上述衍射波导装置的制造方法,可以通过该制造方法在光波导基底上单独形成耦入光栅、扩瞳光栅或者耦出光栅。当然也可以在光波导基底上同时形成耦入光栅、扩瞳光栅、耦出光栅。
具体地,制造方法包括以下步骤:
S1:在衬底上形成胶层,并对胶层进行处理,形成第一浮雕光栅的图案。
参考图4,首先在衬底101上例如通过旋涂或者喷涂等方式形成胶层102。胶层102可以是光刻胶或者压印胶,这根据形成光栅图案的工艺决定。在本发明一个具体的实施方式中,选用压印技术形成光栅图案,因此胶层102选用压印胶材质。当然对于本领域的技术人员而言,还可以选用光刻、旋涂或者印刷工艺形成光栅图案,在此不再一一说明。
制作纳米压印所需要的压印模具103,压印模具103上有所需要的光栅图案,例如可以通过光刻蚀、电子束直写或者全息曝光等方式在压印模 具103上形成光栅图案,这属于本领域技术人员的公知常识,在此不再具体说明。
可通过压印模具103对胶层102进行纳米压印,固化后初步形成光栅图案;经过除残胶等处理,形成了第一浮雕光栅104的图案。
S2:在第二浮雕光栅的模板上填充胶层,形成位于模板中的第二浮雕光栅图案以及位于第二浮雕光栅图案表面上的中间层。
参考图5,第二浮雕光栅的模板201上具有用于形成第二浮雕光栅的图案。在涂胶之前可预先在模板201进行表面处理,例如镀一层保护膜或者离型膜202,该保护膜或者离型膜202可以是金属薄膜,也可以涂上一层抗黏剂,以便于后续的脱模。
在模板201上通过旋涂或者喷涂等方式进行涂胶,胶进入到模板201的图案中,并经固化后形成了第二浮雕光栅203的图案。
在第二浮雕光栅203上继续涂相同材质的胶,经固化后形成了与第二浮雕光栅203结合在一起的中间层204。
对于本领域的技术人员而言,可以控制涂胶量,固化后同时形成一体的第二浮雕光栅203、中间层204,在此不再具体说明。
S3:将第二浮雕光栅图案表面的中间层与第一浮雕光栅键合在一起后,键合后对第二浮雕光栅的模板进行脱模,形成层叠在衬底上的第一浮雕光栅、中间层、第二浮雕光栅。
参考图5,可通过加热加压的方式将中间层204的外表面与第一浮雕光栅104的表面键合在一起;之后对第二浮雕光栅203的模板201进行脱模,形成了层叠在衬底101上的第一浮雕光栅104、中间层204、第二浮雕光栅203。
层叠前的第一浮雕光栅104、中间层204均是固化后的胶层,为了便于二者的结合,在层叠前,可以对第一浮雕光栅104、中间层204用于键合的表面进行等离子表面处理。
脱模可以采用激光脱模的方式,例如模板201可以选用透光材质,通过激光照射保护膜或者离型膜202,使模板201与第二浮雕光栅203脱离。当然,也可以采用机械脱模的方式,这属于本领域技术人员的公知常识, 在此不再具体说明。
通过上述的方法可以得到层叠在衬底101上的第一浮雕光栅104、中间层204、第二浮雕光栅203。需要注意的是,本发明的制造方法不限定各步骤的顺序,例如也可以先执行步骤S2,再执行步骤S1、S3。也可以同时进行步骤S1和步骤S2等等。
本发明可选的是,可以重复上述的步骤S2、S3,在第二浮雕光栅203的表面层叠另一中间层以及第三浮雕光栅。
例如,可重复步骤S2,在另一模板上涂胶形成第三浮雕光栅以及形成在第三浮雕光栅上的另一中间层。并通过重复步骤S3,将第三浮雕光栅表面的中间层与第二浮雕光栅键合在一起。对该模板完成脱模后,形成了层叠在一起的第一浮雕光栅104、中间层204、第二浮雕光栅203、另一中间层、第三浮雕光栅。
需要注意的是,本发明的衬底101可以是光波导基底,也可以是中转衬底。例如当衬底101为光波导基底时,第一浮雕光栅104、中间层204、第二浮雕光栅203、另一中间层、第三浮雕光栅则直接层叠在光波导基底上。当衬底101选用透光的中转衬底时,则可通过激光照射等本领域技术人员所熟知的方式使中转衬底预先脱离,之后可将层叠的第一浮雕光栅104、中间层204、第二浮雕光栅203、另一中间层、第三浮雕光栅转移到光波导基底上,在此不再具体说明。
在本发明另一个实施例中,提供了衍射波导装置的另一种制造方法,包括以下步骤:
S1:在衬底上形成胶层,并对胶层进行处理,形成第一浮雕光栅的图案。
参考图6,首先在衬底1001上可通过旋涂或者喷涂等方式形成胶层1002。胶层1002可以是光刻胶或者压印胶,这根据形成光栅图案的工艺决定。在本发明一个具体的实施方式中,选用压印技术形成光栅图案,因此胶层1002选用压印胶材质。当然对于本领域的技术人员而言,还可以选用光刻、旋涂或者印刷工艺形成光栅图案,在此不再一一说明。
制作纳米压印所需要的压印模具1003,压印模具1003上有所需要的 光栅图案,例如可以通过光刻蚀、电子束直写或者全息曝光等方式在压印模具1003上形成光栅图案,这属于本领域技术人员的公知常识,在此不再具体说明。可通过压印模具1003对胶层1002进行纳米压印,固化后初步形成光栅图案;经过除残胶等处理,形成了第一浮雕光栅1004的图案。
S2:在中转基底上涂胶形成第一中间层。
参考图7,中转基底2001可以是透光玻璃或者是允许光透过的其它材质,例如蓝宝石材质。在中转基底2001进行涂胶,固化后形成第一中间层2002。
S3:将第一中间层与第一浮雕光栅键合在一起,之后将中转基底去除;形成层叠在一起的第一浮雕光栅、第一中间层。
参考图8,可通过加热加压的方式将第一中间层2002的外表面与第一浮雕光栅1004的表面键合在一起;之后对第一中间层2002的中转基底2001进行脱模,形成了层叠在衬底1001上的第一浮雕光栅1004、第一中间层2002。
层叠前的第一浮雕光栅1004、第一中间层2002均是固化后的胶层,为了便于二者的结合,在层叠前,可以对第一浮雕光栅1004、第一中间层2002用于键合的表面进行等离子表面处理。
脱模可以采用激光脱模的方式,例如中转基底2001可以选用透光材质,通过激光照射使中转基底2001与第一中间层2002脱离,这属于本领域技术人员的公知常识,在此不再具体说明。
S4:重复一次步骤S1,形成第二浮雕光栅的图案;并将第二浮雕光栅层叠在第一中间层上。
通过重复步骤1,可以在另一衬底上形成第二浮雕光栅1005的图案,并通过键合的方式将第二浮雕光栅1005与第一中间层2002结合在一起。后续可通过脱模的方式去除该衬底,得到层叠在第一中间层2002上的第二浮雕光栅1005,参考图9。
通过上述的方法可以得到层叠在衬底1001上的第一浮雕光栅1004、第一中间层2002、第二浮雕光栅1005。需要注意的是,本发明的制造方法不限定各步骤的顺序,例如也可以先执行步骤S2,再执行步骤S1、S3、S4。 也可以同时进行步骤S1和步骤S2等等。
本发明可选的是,可以重复步骤S2、S3,在第二浮雕光栅层上层叠第二中间层;之后重复一次步骤S1,形成第三浮雕光栅的图案,并将第三浮雕光栅层叠在第二中间层上。
例如,可重复步骤S2,在中转基底上涂胶固化形成第二中间层2003。并通过重复步骤S3,将第二中间层2003与第二浮雕光栅1005键合在一起。对该中转基底完成脱模后,形成了层叠在一起的第一浮雕光栅1004、第一中间层2002、第二浮雕光栅1005、第二中间层2003,参考图10。
重复一次步骤S1,在另一衬底上形成第三浮雕光栅1006的图案,并通过键合以及脱模的方式将第三浮雕光栅1006叠在第二中间层2003上,参考图11。
需要注意的是,本发明的衬底可以是光波导基底,也可以是中转衬底。在此不再具体说明。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (18)

  1. 一种衍射波导装置,包括光波导基底,在所述光波导基底的其中一侧端面上设置有耦入光栅,所述耦入光栅包括层叠在一起的至少两层浮雕光栅层,相邻两层浮雕光栅层之间通过中间层间隔支撑;至少两层浮雕光栅层被配置为:光线中的相应光线分别通过各自的浮雕光栅层衍射后在同一光波导基底中传播。
  2. 根据权利要求1所述的衍射波导装置,其中,所述中间层的折射率与浮雕光栅层的折射率相同。
  3. 根据权利要求1或2所述的衍射波导装置,其中,所述中间层的材质和浮雕光栅层的材质相同。
  4. 根据权利要求1至3任一项所述的衍射波导装置,其中,所述浮雕光栅层设置有两层,分别记为RG浮雕光栅层,GB浮雕光栅层;所述RG浮雕光栅层被配置为衍射全彩RGB光线中的R光以及部分G光;所述GB浮雕光栅层被配置为衍射全彩RGB光线中的B光以及其它G光。
  5. 根据权利要求4所述的衍射波导装置,其中,RG浮雕光栅层邻近光波导基底设置,GB浮雕光栅层通过中间层层叠在RG浮雕光栅层远离光波导基底的一侧;或者是,
    GB浮雕光栅层邻近光波导基底设置,RG浮雕光栅层通过中间层层叠在GB浮雕光栅层远离光波导基底的一侧。
  6. 根据权利要求1至3任一项所述的衍射波导装置,其中,所述浮雕光栅层设置有三层,分别记为R浮雕光栅层、G浮雕光栅层、B浮雕光栅层;R浮雕光栅层、G浮雕光栅层、B浮雕光栅层层叠在一起,且相邻两个浮雕光栅层之间各有一中间层间隔支撑;所述R浮雕光栅层被配置为衍射全彩RGB光线中的R光;所述G浮雕光栅层被配置为衍射全彩RGB光线中的G光;所述B浮雕光栅层被配置为衍射全彩RGB光线中的B光。
  7. 根据权利要求6所述的衍射波导装置,其中,R浮雕光栅层、G浮雕光栅层、B浮雕光栅层按照任意顺序层叠在光波导基底的端面上。
  8. 根据权利要求1至7任一项所述的衍射波导装置,其中,所述光 波导基底为玻璃。
  9. 根据权利要求1至8任一项所述的衍射波导装置,其中,所述浮雕光栅层通过压印、光刻、旋涂或者印刷工艺形成。
  10. 根据权利要求1至9任一项所述的衍射波导装置,其中,所述浮雕光栅层、中间层键合在一起。
  11. 根据权利要求1至10任一项所述的衍射波导装置,其中,还包括耦出光栅,所述耦出光栅的结构与耦入光栅相同;光线经过耦入光栅在光波导基底中传导,并经过耦出光栅耦出。
  12. 根据权利要求11所述的衍射波导装置,其中,还包括扩瞳光栅,扩瞳光栅的结构与耦入光栅、耦出光栅的结构相同;光线经过耦入光栅在光波导基底中传导,经过扩瞳光栅扩展后并通过耦出光栅耦出。
  13. 一种显示装置,包括根据权利要求1至12任一项所述的衍射波导装置。
  14. 一种根据权利要求1至12任一项所述衍射波导装置的制造方法,包括以下步骤:
    S1:在衬底上形成胶层,并对胶层进行处理,形成第一浮雕光栅的图案;
    S2:在第二浮雕光栅的模板上填充胶层,形成位于模板中的第二浮雕光栅图案以及位于第二浮雕光栅图案表面上的中间层;
    S3:将第二浮雕光栅图案表面的中间层与第一浮雕光栅键合在一起后,对第二浮雕光栅的模板进行脱模,形成层叠在光波导基底上的第一浮雕光栅、中间层、第二浮雕光栅。
  15. 根据权利要求14所述的制造方法,其中,还包括重复步骤S2、S3,以在第二浮雕光栅的表面层叠另一中间层以及第三浮雕光栅的步骤。
  16. 根据权利要求14或15所述的制造方法,其中,在键合前,分别对第一浮雕光栅、中间层用于键合的表面进行等离子表面处理。
  17. 根据权利要求14至16任一项所述衍射波导装置的制造方法,在步骤S2中,在第二浮雕光栅的模板上填充胶层之前,预先在第二浮雕光栅的模板上镀金属膜或者涂抗黏剂。18.一种根据权利要求1至12任一项所 述衍射波导装置的制造方法,包括以下步骤:
    S1:在衬底上形成胶层,并对胶层进行处理,形成第一浮雕光栅的图案;
    S2:在中转基底上涂胶形成第一中间层;
    S3:将第一中间层与第一浮雕光栅键合在一起,之后将中转基底去除;形成层叠在一起的第一浮雕光栅、第一中间层;
    S4:重复一次步骤S1,形成第二浮雕光栅的图案;通过键合、脱模将第二浮雕光栅叠在第一中间层上。
  18. 根据权利要求18所述的制造方法,其中,在步骤S4之后,重复步骤S2、S3,在第二浮雕光栅上层叠第二中间层;之后重复一次步骤S1,形成第三浮雕光栅的图案,并将第三浮雕光栅层叠在第二中间层上。
PCT/CN2018/111257 2018-10-22 2018-10-22 衍射波导装置、显示装置及制造方法 WO2020082216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111257 WO2020082216A1 (zh) 2018-10-22 2018-10-22 衍射波导装置、显示装置及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111257 WO2020082216A1 (zh) 2018-10-22 2018-10-22 衍射波导装置、显示装置及制造方法

Publications (1)

Publication Number Publication Date
WO2020082216A1 true WO2020082216A1 (zh) 2020-04-30

Family

ID=70330803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111257 WO2020082216A1 (zh) 2018-10-22 2018-10-22 衍射波导装置、显示装置及制造方法

Country Status (1)

Country Link
WO (1) WO2020082216A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637459A (zh) * 2002-05-13 2005-07-13 三星电子株式会社 可戴的彩色显示***
CN102119415A (zh) * 2008-11-05 2011-07-06 日立麦克赛尔株式会社 光栅元件、光拾取光学***以及光栅元件的设计方法
US20110242661A1 (en) * 2008-12-12 2011-10-06 Bae Systems Plc waveguides
CN102709419A (zh) * 2012-05-29 2012-10-03 东南大学 一种具有交叉光栅结构的发光二极管及其制备方法
CN104903774A (zh) * 2013-01-02 2015-09-09 谷歌公司 用于近眼显示器的光组合器
CN107797287A (zh) * 2017-11-28 2018-03-13 苏州苏大维格光电科技股份有限公司 光波导镜片及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637459A (zh) * 2002-05-13 2005-07-13 三星电子株式会社 可戴的彩色显示***
CN102119415A (zh) * 2008-11-05 2011-07-06 日立麦克赛尔株式会社 光栅元件、光拾取光学***以及光栅元件的设计方法
US20110242661A1 (en) * 2008-12-12 2011-10-06 Bae Systems Plc waveguides
CN102709419A (zh) * 2012-05-29 2012-10-03 东南大学 一种具有交叉光栅结构的发光二极管及其制备方法
CN104903774A (zh) * 2013-01-02 2015-09-09 谷歌公司 用于近眼显示器的光组合器
CN107797287A (zh) * 2017-11-28 2018-03-13 苏州苏大维格光电科技股份有限公司 光波导镜片及显示装置

Similar Documents

Publication Publication Date Title
US20220317347A1 (en) Waveguide and method for fabricating a waveguide master grating tool
CN111033118B (zh) 衍射导光板和制造衍射导光板的方法
JP5449148B2 (ja) 外装部品
CN111065942B (zh) 衍射导光板和制造衍射导光板的方法
JP2016122163A (ja) 光学フィルム及びその製造方法
US11307345B2 (en) Superimposed diffraction gratings for eyepieces
CN111474711B (zh) 全息波导显示装置和增强现实显示设备
KR20100029577A (ko) 기능성 나노패턴을 갖는 렌즈와 그 제조방법
CN114994814A (zh) 偏光散射膜及其制作方法、显示面板
WO2020082216A1 (zh) 衍射波导装置、显示装置及制造方法
TWI430879B (zh) 導光板及其製作方法
JP7190249B2 (ja) 光学デバイス
WO2019009199A1 (ja) 微細凹凸積層体及びその製造方法、並びに、カメラモジュール搭載装置
WO2022143227A1 (zh) 复合光栅及其制造方法、衍射光波导和电子设备
TW202115505A (zh) 波導及用於製造波導主光柵工具的方法
EP3809039A1 (en) Waveguide and method for fabricating a waveguide master grating tool
JP6766579B2 (ja) 光学デバイスの製造方法、および、光学デバイス
KR100985568B1 (ko) 스탬프를 이용한 렌즈 제조 방법
US20220317362A1 (en) Waveguide and method for fabricating a waveguide
EP3809038A1 (en) Waveguide and method for fabricating a waveguide
GB2586850A (en) Waveguide and method for fabricating a waveguide
JP4946715B2 (ja) 半透過型液晶表示装置用カラーフィルタの製造方法および半透過型液晶表示装置用カラーフィルタ形成用モールド
CN114660720A (zh) 光波导母版的制备方法、光波导及增强现实设备
CN115144943A (zh) 衍射光波导结构及其的制造方法和彩色衍射光波导
JP2002350626A (ja) カラーフィルタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938014

Country of ref document: EP

Kind code of ref document: A1