WO2020078143A1 - 量子点、制作方法、单光子源和qled - Google Patents

量子点、制作方法、单光子源和qled Download PDF

Info

Publication number
WO2020078143A1
WO2020078143A1 PCT/CN2019/104533 CN2019104533W WO2020078143A1 WO 2020078143 A1 WO2020078143 A1 WO 2020078143A1 CN 2019104533 W CN2019104533 W CN 2019104533W WO 2020078143 A1 WO2020078143 A1 WO 2020078143A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
quantum dot
ion
electrochemically inert
ligands
Prior art date
Application number
PCT/CN2019/104533
Other languages
English (en)
French (fr)
Inventor
彭笑刚
濮超丹
金一政
Original Assignee
浙江大学
纳晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 纳晶科技股份有限公司 filed Critical 浙江大学
Priority to US17/285,947 priority Critical patent/US11618853B2/en
Publication of WO2020078143A1 publication Critical patent/WO2020078143A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present disclosure relates to the field of optoelectronics, and in particular, to a quantum dot, a manufacturing method, a single photon source, and QLED.
  • Quantum dot light-emitting diode is an electroluminescent device that uses quantum dots as its light-emitting center. Quantum dots are inorganic semiconductor nanocrystals dispersed in a solution, so they can be processed through a solution process. It is generally believed that inorganic semiconductor nanocrystals have high photochemical stability. Therefore, QLED combines the advantages of efficient and stable inorganic light-emitting centers and solution processing, and is expected to achieve high-performance solution-process LEDs. In addition, quantum dots have continuously adjustable emission wavelengths, narrow emission spectrum half-widths, and high color purity. They have unique advantages in the modulation of high-color display screens and white light sources with high color rendering index. In the past two decades, the efficiency and lifespan of QLED devices have received extensive attention from researchers at home and abroad.
  • the external quantum efficiency (EQE) of QLED electroluminescence including red, green and blue has exceeded 20%.
  • the stability of the devices is not satisfactory, especially for blue devices. So far, the stability of all reported blue devices has decreased from an initial brightness of 1000 cd m -2 to 500 cd m -2 in less than 35 hours, that is, the half-life of the blue devices is T 50 ⁇ 35 hours.
  • QLEDs usually use quantum dots with a core-shell structure.
  • the luminescence center is considered to be an inorganic crystal with excellent stability.
  • the shell layer protects the luminescence center while isolating different luminescence centers, which can suppress excitons- The luminescence quenched by exciton interaction.
  • the main purpose of the present disclosure is to provide a quantum dot, a manufacturing method, a single photon source and a QLED to solve the problem that the surface ligand of the quantum dot in the prior art reacts with carriers under electro-excited conditions and falls off
  • the problem of low luminous efficiency of the device or the problem of low luminous efficiency of the device caused by the ligand on the surface of the quantum dot reacting with the carrier under the condition of electrical excitation, or the shedding of the ligand on the surface of the quantum dot under the condition of electrical excitation
  • the problem of low luminous efficiency of the device is to provide a quantum dot, a manufacturing method, a single photon source and a QLED to solve the problem that the surface ligand of the quantum dot in the prior art reacts with carriers under electro-excited conditions and falls off
  • the problem of low luminous efficiency of the device or the problem of low luminous efficiency of the device caused by the ligand on the surface of the quantum dot reacting with the carrier under the condition of electrical
  • a quantum dot including a quantum dot body and a ligand disposed on the outer surface of the quantum dot body, the ligand includes an electrochemically inert ligand, The reduction potential of the electrochemically inert ligand is greater than the potential corresponding to the conduction band bottom of the quantum dot body. The oxidation potential of the electrochemically inert ligand is less than the potential corresponding to the valence band bottom of the quantum dot body.
  • the electrochemically inert ligand accounts for More than 80% of all ligands on the outer surface of the quantum dot body.
  • the above-mentioned electrochemically inert ligand is selected from one of amine ligands, alkylphosphine ligands, metal carboxylate ligands, metal phosphonate ligands, inorganic metal salt ligands and mercaptan salt ligands Or more; wherein, the metal carboxylate ligand is selected from magnesium carboxylate ligand, calcium carboxylate ligand, aluminum carboxylate ligand, zirconium carboxylate ligand, lithium carboxylate ligand, sodium carboxylate ligand And one or more of barium carboxylate ligands, the anions of the above inorganic metal salt ligands are selected from one or more of halogen ions, phosphate ions and sulfate ions, the cations of the above inorganic metal salt ligands Including cations on the surface of the quantum dot body; preferably, the number of C in the metal carboxylate ligand and metal lig
  • the electrochemically inert ligand is a fatty amine ligand, preferably the number of C in the fatty amine ligand is between 4 and 22, and more preferably the fatty amine ligand is in the C number between 8 and 18 Of primary amine ligands.
  • the above-mentioned electrochemically inert ligand accounts for more than 90%, preferably 100%, of all the ligands on the outer surface of the quantum dot body.
  • the quantum dot body includes a quantum dot core and a shell surrounding the quantum dot core.
  • a method for manufacturing quantum dots includes: step S1, preparing a quantum dot preparation body, the preparation body including a quantum dot body and a surface provided on the outer surface of the quantum dot body Pre-ligand; step S2, using a modifier to replace at least part of the pre-ligand to form an electrochemically inert ligand on the outer surface of the quantum dot body, thereby forming the quantum dot, the electrochemically inert ligand
  • the reduction potential is greater than the potential corresponding to the bottom of the conduction band of the quantum dot body, the oxidation potential of the electrochemically inert ligand is less than the potential corresponding to the bottom of the valence band of the quantum dot body, and the substitution of the electrochemical inert ligand for the pre-ligand
  • the rate is above 80%.
  • the modifier is selected from the group consisting of electrochemically inert ligands, cations including the electrochemically inert ligands and anions of the electrochemically inert ligands, and compounds including the cations of the electrochemically inert ligands. At least one of the compounds including the anion of the aforementioned electrochemically inert ligand.
  • the above modifier includes a first modifier
  • the above step S2 includes: Step S21, preparing a first mixed solution, and heating to cause the first modifier to replace at least part of each of the above pre-ligands, in the quantum dot body
  • a first electrochemically inert ligand is formed on the outer surface of, and the replaced first mixed solution is purified to obtain the quantum dot.
  • the first mixed solution includes the preparation, the first solvent, and the first modifier.
  • the above modifier further includes a second modifier.
  • the above manufacturing method further includes step S22.
  • the above step S22 includes: preparing a second mixed solution such that the second modifier is added to each of the pre-ligands. At least part of the replacement, forming a second electrochemically inert ligand on the outer surface of the quantum dot body, the second mixed solution includes the quantum dot, the second solvent and the second modifier; heating the second mixed solution Until the quantum yield of the above quantum dots is greater than or equal to 80%.
  • the above modifier includes at least one of fatty amine, alkylphosphine, metal carboxylate, inorganic metal salt, inorganic acid and mercaptan salt.
  • the cation of the cation of the inorganic metal salt is selected from one or more of calcium ion, magnesium ion, aluminum ion, zirconium ion, lithium ion, sodium ion, and barium ion.
  • the cation of the metal carboxylate is selected from one or more of calcium ion, magnesium ion, aluminum ion, zirconium ion, lithium ion, sodium ion and barium ion.
  • the cation of the inorganic metal salt and the cation of the metal carboxylate are selected from one or more of calcium ion, magnesium ion, aluminum ion, zirconium ion, lithium ion, sodium ion and barium ion.
  • the anion in the above-mentioned inorganic metal salt is selected from one or more of halogen ion, phosphate ion and sulfate ion.
  • the anion in the above-mentioned inorganic acid is selected from one or more of halogen ion, phosphate ion and sulfate ion.
  • anions in the inorganic metal salt and the inorganic acid are selected from one or more of halogen ions, phosphate ions, and sulfate ions.
  • the first mixed solution further includes an anion precursor of the same type as the anion of the quantum dot body.
  • the above-mentioned electrochemically inert ligand includes fatty amines.
  • the above-mentioned electrochemically inert ligand includes alkylphosphine.
  • electrochemically inert ligands include fatty amines and alkylphosphines.
  • the fatty amine is C4 to C22 fatty amine.
  • the fatty amine is a primary amine of C8 to C18.
  • a single photon source including a quantum dot, the quantum dot being any one of the foregoing quantum dots or any quantum dot manufactured by any manufacturing method.
  • a QLED device including a quantum dot, the quantum dot being any one of the above-mentioned quantum dots or any quantum dot manufactured by any manufacturing method.
  • the ligand on the outer surface of the quantum dot body is an electrochemically inert ligand.
  • the ligand Under electrical excitation conditions, on the one hand, the ligand is electrochemically stable and will not react with carriers. In addition, no carriers are consumed, so that most of the carriers are used to emit light; on the other hand, because the electrochemically inert ligand is relatively stable, it will not fall off, and then will not form a large number of defects that affect the quantum dots Luminous efficiency. Therefore, since the quantum dot includes an electrochemically inert ligand, its luminous efficiency is higher, the device is more stable, and its reliability is higher.
  • 1 to 7 show graphs of test results of some embodiments.
  • the present disclosure proposes a quantum dot , Manufacturing method, single photon source and QLED.
  • a quantum dot in a typical embodiment of the present disclosure, includes a quantum dot body and a ligand disposed on the outer surface of the quantum dot body.
  • the ligand includes an electrochemically inert ligand.
  • the reduction potential of the chemically inert ligand is greater than the potential corresponding to the conduction band bottom of the quantum dot body, the oxidation potential of the electrochemically inert ligand is less than the potential corresponding to the valence band bottom of the quantum dot body, and the electrochemically inert ligand accounts for the above More than 80% of all ligands on the outer surface of the quantum dot body, that is, the ligands on the outer surface of the quantum dot body can be multiple, but electrochemically inert ligands account for more than 80% of all ligands, that is, greater than or Equal to 80%, the higher the proportion of electrochemically inert ligands, the higher and more stable the luminous efficiency of quantum dots.
  • the quantum dot body may be a group II-VI compound, a group III-V compound, a group IV-VI compound, a group II-III-IV compound, a group I-II-IV-VI compound, or a combination thereof.
  • Group II-VI compounds may be binary element compounds selected from CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS and mixtures thereof; selected from CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe , ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS and mixtures of ternary compounds; and selected from HgZnTeS, CdZnS Quaternary compounds of CdHgSeS, CdHgSeTe, CdHgSTe, HgZ
  • Group III-V compounds can be selected from the following: binary element compounds selected from GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb and mixtures thereof; selected from GaNP, GaAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb and mixtures of ternary elements; and selected from GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs , GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and mixtures of quaternary elements.
  • Group IV-VI compounds can be selected from the following: binary element compounds selected from SnS, SnSe, SnTe, PbS, PbSe, PbTe, and mixtures thereof; selected from SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, A ternary element mixture of SnPbTe and mixtures thereof; and a quaternary element compound selected from SnPbSSe, SnPbSeTe, SnPbSTe and mixtures thereof.
  • Group I-III-VI compounds may include CuInSe2, CuInS2, CuInGaSe, and CuInGaS, but are not limited thereto.
  • the group I-II-IV-VI compound may include CuZnSnSe and CuZnSnS, but it is not limited thereto.
  • the quantum dot body of the quantum dot has an electrochemically inert ligand on the outer surface.
  • the ligand is electrochemically stable and will not react with carriers and thus will not be consumed Carriers make most of the carriers used for luminescence; on the other hand, because the electrochemically inert ligand is relatively stable, it will not fall off, and will not form a large number of defects that will affect the luminous efficiency of quantum dots. Therefore, since the quantum dot includes an electrochemically inert ligand, its luminous efficiency is higher, the corresponding device is more stable, and its reliability is higher.
  • the electrochemical inert ligand on the outer surface of the quantum dot body of the present disclosure may be one kind or multiple kinds, and those skilled in the art may select one or more electrochemical inert ligands to be provided in the quantum dot body according to the actual situation Outer surface.
  • the electrochemically inert ligand of the present disclosure may be any potential that satisfies the above "reduction potential is greater than the potential corresponding to the conduction band bottom of the quantum dot body, and the oxidation inert ligand has an oxidation potential less than the potential corresponding to the valence band bottom of the quantum dot body
  • any ligand of " those skilled in the art can select a suitable electrochemically inert ligand according to the actual situation.
  • the electrochemically inert ligand may be selected from one or more of amine ligands, metal carboxylate ligands, metal phosphonate ligands, inorganic metal salt ligands, and mercaptan ligands; wherein, The metal carboxylate ligand is selected from magnesium carboxylate ligand, calcium carboxylate ligand, aluminum carboxylate ligand, zirconium carboxylate ligand, lithium carboxylate ligand, sodium carboxylate ligand, and barium carboxylate ligand.
  • the anions of the above inorganic metal salt ligands are selected from one or more of halogen ions, phosphate ions and sulfate ions
  • the above-mentioned inorganic metal salt ligand cations include the surface of the quantum dot body Cation.
  • the mercaptan ligand is selected from at least one of cadmium mercapto, zinc
  • the number of C in the metal carboxylate ligand and the metal phosphonate ligand is 22 or less.
  • the electrochemically inert ligand is a fatty amine ligand.
  • the fatty amine ligand is chemically stable under the action of an electric field.
  • the number of C in the fatty amine ligand is between 4 and 22, and it is further preferred that the fatty amine ligand is a primary amine ligand with between 8 and 18 C.
  • the electrochemically inert ligand accounts for more than 90% of all the ligands on the outer surface of the quantum dot body, which can further improve the luminous efficiency and stability of the quantum dot.
  • the above-mentioned electrochemically inert ligand accounts for 100% of all the ligands on the outer surface of the above-mentioned quantum dot body.
  • the quantum dot body of the present disclosure may be any available quantum dot in the prior art, and may be a core-shell quantum dot body or a non-core-shell quantum dot body. Those skilled in the art can select quantum dots with appropriate structures according to the actual situation.
  • the above-mentioned quantum dot body includes a quantum dot core and a shell surrounding the quantum dot core.
  • the outer surface of the shell is the outer surface of the quantum dot body, and the electrochemically inert ligand is located on the outer surface of the shell.
  • a method for manufacturing quantum dots includes: step S1, preparing a quantum dot preparation body including the quantum dot body And a pre-ligand disposed on the outer surface of the quantum dot body; step S2, at least part of the pre-ligand is replaced with a modifier to form an electrochemically inert ligand on the outer surface of the quantum dot body, thereby forming the above Quantum dots, the reduction potential of the electrochemically inert ligand is greater than the potential corresponding to the conduction band bottom of the quantum dot body, the oxidation potential of the electrochemically inert ligand is less than the potential corresponding to the valence band bottom of the quantum dot body, and the electrochemical The replacement rate of the inert ligand to replace the pre-ligand is above 80%, and the modifier is selected from the group consisting of electrochemical inert ligand itself, a compound including the cation of the electrochemical inert
  • the above manufacturing method first prepare a quantum dot preparation, and then use a modifier to replace at least part of the pre-ligand in the preparation, thereby forming an electrochemically inert ligand on the outer surface of the quantum dot body, and Form quantum dots with electrochemically inert ligands.
  • the electrochemical stability of the pre-ligand is lower than that of the electrochemically inert ligand, and redox consumption of the carrier will occur after injection of the carrier, which reduces the number of recombination of the carrier into the quantum dot.
  • the electrochemically inert ligand since the electrochemically inert ligand is relatively stable in electrochemical, it will not react with carriers, and thus will not consume the carriers, so that most of the carriers are used for luminescence; on the other hand, The electrochemically inert ligand is relatively stable, does not fall off, and thus does not form a large number of defects that affect the luminous efficiency of quantum dots. Therefore, since the quantum dot includes an electrochemically inert ligand, its luminous efficiency is higher, the device is more stable, and its reliability is higher.
  • the above-mentioned modifier includes a first modifier
  • the above step S2 includes: step S21, preparing a first mixed solution, and heating such that the first modifier has at least part of each of the pre-ligands Performing replacement to form a first electrochemically inert ligand on the outer surface of the quantum dot body, purifying the first mixed solution after replacement to obtain the quantum dot, the first mixed solution includes the preparation, the first Solvent and the above-mentioned first modifier.
  • the first modifier and the preparation are dissolved in the first solvent, so that the replacement rate of the first modifier with at least one of the cation of the pre-ligand, the anion of the pre-ligand, and the pre-ligand itself is higher.
  • step S21 can be repeated multiple times, so that the replacement rate of the first modifier to the anion or cation of the pre-ligand is higher, so that the first electrochemical inert ligand of quantum dots is more, quantum The luminous efficiency of the dot is higher, the device is more stable, and the reliability is better.
  • the above manufacturing method further includes step S22, and the step S22 includes: preparing a second mixture A solution such that the second modifier replaces at least part of each of the pre-ligands to form a second electrochemically inert ligand on the outer surface of the quantum dot body, and the second mixed solution includes the quantum dot and the second The solvent and the second modifier; heating the second mixed solution until the quantum yield of the quantum dots is greater than or equal to 80%.
  • step S22 can be repeated multiple times, so that the replacement rate of the anion or cation of the pre-ligand with the second modifier is higher, so that the second electrochemically inert ligand of the quantum dot is more, quantum The luminous efficiency of the dot is higher, the device is more stable, and the reliability is better.
  • the first solvent and the second solvent may be selected from solvents commonly used in quantum dot synthesis, such as octadecene, which is a non-coordinating solvent.
  • a person skilled in the art can decide whether to perform at least partial replacement of the preparation with the second modifier after step S21 according to the actual situation, to obtain quantum dots modified with a variety of electrochemically inert ligands.
  • the modifier of the present disclosure may be any chemical substance including an anion of an electrochemically inert ligand, or any chemical substance including a cation of an electrochemically inert ligand, or any anion and an electrochemical inert ligand. Cationic chemicals of electrochemically inert ligands.
  • the modifier can be the electrochemically inert ligand itself, and those skilled in the art can select a suitable modifier according to the actual situation.
  • the modifier can be one or more, without limitation, the modifier can be modified by cation exchange and anion exchange at the same time (such as alkali metal sulfate, phosphate, halogen salt, etc. as a modifier), or it can be one time Multiple modifiers are added sexually or in multiple stages so that the pre-ligand can be replaced with one or more electrochemically inert ligands.
  • the above modifier includes at least one of fatty amine, alkylphosphine, metal carboxylate, inorganic metal salt, inorganic acid and mercaptan salt.
  • fatty amine, alkylphosphine, metal carboxylate, inorganic metal salt, inorganic acid and mercapto salt replace the above pre-ligand as a whole.
  • the electrochemical performance of the electrochemically inert ligands formed by these modifiers is more stable, which greatly improves the lifetime of quantum dot electroluminescent devices.
  • the cation of the inorganic metal salt of the modifier is selected from one or more of calcium ion, magnesium ion, aluminum ion, zirconium ion, lithium ion, sodium ion, and barium ion. These cations are not easily reduced.
  • the cation of the metal carboxylate of the above modifier is selected from one or more of calcium ion, magnesium ion, aluminum ion, zirconium ion, lithium ion, sodium ion and barium ion . These cations are not easily reduced.
  • the cation of the inorganic metal salt of the modifier and the cation of the metal carboxylate are selected from calcium ion, magnesium ion, aluminum ion, zirconium ion, lithium ion, sodium ion and barium ion One or more of them. These cations are not easily reduced.
  • the cations of the inorganic metal salts and metal carboxylates of the present disclosure are not limited to the above-mentioned types, but can also be other cations capable of forming electrochemically inert ligands, and those skilled in the art can select appropriate ones according to the actual situation cation.
  • the anion in the above-mentioned inorganic metal salt of the present disclosure, or the anion in the above-mentioned inorganic acid, or the anion in the above-mentioned inorganic metal salt and the above-mentioned inorganic acid may be any anion in the prior art that can form the above-mentioned electrochemically inert ligand
  • the person skilled in the art can select a suitable anion according to the actual situation.
  • the anion in the inorganic metal salt is selected from one or more of halogen ion, phosphate ion and sulfate ion.
  • the anion in the above-mentioned inorganic acid is selected from one or more of halogen ion, phosphate ion and sulfate ion.
  • the anions in the inorganic metal salt and the inorganic acid are selected from one or more of halogen ions, phosphate ions, and sulfate ions.
  • the first mixed solution further includes a precursor of the same anion as the anion of the quantum dot body, the anion can react with the cation on the surface of the quantum dot body, so that the quantum dot body It is more stable, thereby ensuring the stability of the modifier and pre-ligand exchange system, and further improving the replacement rate of the modifier and modifier ligand, thereby obtaining quantum dots with more electrochemically inert ligands.
  • the quantum dot is a core-shell structure
  • the anion of the quantum dot body only refers to the anion of the shell.
  • the electrochemically inert ligands of the present disclosure may be selected from any electrochemically inert ligands in the prior art, and those skilled in the art may select a suitable electrochemically inert ligand according to the actual situation.
  • the above The electrochemically inert ligands include fatty amines.
  • the electrochemically inert ligands include alkylphosphines.
  • the electrochemically inert ligands include fatty amines and Alkylphosphine.
  • the above-mentioned fatty amines are C4-C22 fatty amines.
  • the fatty amine is a C8-C18 primary amine.
  • the alkylphosphine is preferably a trialkylphosphine, such as trioctylphosphine.
  • the alkylphosphine is a trialkylphosphine, wherein the alkyl groups in the three alkyl groups are independently selected from alkyl groups having 2 to 10 carbon atoms.
  • the preparations in the present disclosure can be manufactured by any method for manufacturing quantum dots in the prior art, and those skilled in the art can select a suitable method to form the corresponding preparations according to the materials of the corresponding preparations.
  • a single photon source including a quantum dot
  • the quantum dot is any one of the above-mentioned quantum dots or a quantum dot manufactured by any one of the foregoing manufacturing methods.
  • the above single photon source includes the above-mentioned quantum dots, its performance is relatively stable and its reliability is relatively high.
  • a QLED device including a quantum dot, and the quantum dot is any one of the foregoing quantum dots or a quantum dot manufactured by any of the foregoing manufacturing methods.
  • the above-mentioned QLED device includes the above-mentioned quantum dots, its performance is relatively stable and its life is relatively high.
  • the production process of quantum dots includes:
  • the preparation is a core-shell structured quantum dot, specifically a red CdSe / CdS core-shell quantum dot.
  • the synthesis process includes:
  • CdSe nuclear quantum dots Take 1 mL of the original reaction solution, add 2 mL of acetone, 0.5 mL of methanol, heat and centrifuge, and discard the supernatant. Dissolve the precipitate with 1 mL of toluene, add 1 mL of methanol, and heat and centrifuge. This step is repeated 2 times.
  • CdSe / CdS core-shell quantum dot synthesis Weigh 1 mL of cadmium acetate, 0.85 mL of oleic acid, 0.15 mL of decanoic acid, and 4 mL of ODE, mix and heat to 150 ° C, and blow for 10 minutes to form a reaction solution. Dissolve the CdSe nuclear quantum dots with cyclohexane, inject into the above reaction solution, continue to aerate for 10 minutes, raise the reaction temperature to 260 °C, add 0.1mol of S-ODE solution at a rate of 4mL / h until it reaches The required thickness of CdS (its emission peak is at 631 nm).
  • CdSe / CdS core-shell quantum dot purification the same process as CdSe core quantum dot purification.
  • the pre-ligand is replaced with a modifier to form an electrochemically inert ligand on the outer surface of the quantum dot body, and the modifier is oleylamine.
  • the specific process includes:
  • CdSe / CdS core-shell quantum dots (the ligand is cadmium carboxylate), dissolve in a solution including 2 mL of ODE, 2 mL of oleylamine, 1 mL * 0.1 mol of S-ODE, heat to 120 ° C, and react for 20 minutes. After cooling, 2 mL of methanol was added for centrifugal precipitation.
  • Example 1 The difference with Example 1 is that the modifier is n-octylamine.
  • Example 2 The difference from Example 2 is that the preparation of quantum dots is red CdSe / CdZnS quantum dots, and the synthesis process includes:
  • CdSe nuclear quantum dots Take 1 mL of the original reaction solution, add 2 mL of acetone, 0.5 mL of methanol, heat and centrifuge, and discard the supernatant. Dissolve the precipitate with 1 mL of toluene, add 1 mL of methanol, and heat and centrifuge. This step is repeated 2 times.
  • Example 3 The difference from Example 3 is that the modifier is oleylamine.
  • Example 1 The difference from Example 1 is that the process of replacing the pre-ligand with a modifier is different, and the modifier includes oleylamine and TBP, specifically including:
  • a modifier is used to replace at least part of the pre-ligand to form an electrochemically inert ligand on the outer surface of the quantum dot body.
  • the modifier is oleylamine.
  • the specific process includes:
  • CdSe / CdS core-shell quantum dots (the ligand is cadmium carboxylate), dissolve in a solution including 2 mL of ODE, 2 mL of oleylamine, 1 mL * 0.1 mol of S-ODE, heat to 120 ° C, and react for 20 minutes. After cooling, 2 mL of methanol was added for centrifugal precipitation.
  • Example 2 The difference from Example 1 is that the process of replacing the pre-ligand with a modifier is different.
  • the modifier is magnesium acetate, and the specific process includes:
  • Example 2 The difference from Example 1 is that the process of replacing the pre-ligand with a modifier is different.
  • the modifier is magnesium acetate, and the specific process includes:
  • Example 5 1 mmol of magnesium acetate, 3 mmol of oleic acid, and 4 mL of ODE were mixed and aerated at 150 ° C for 20 minutes, and then cooled to 100 ° C.
  • the quantum dots obtained in Example 5 were dispersed in 2 mL of toluene and added to the above solution, and the temperature was kept for 1 hour. Cool and purify.
  • Example 2 The difference from Example 1 is that the preparation of quantum dots is blue CdSeS / ZnSeS quantum dots, and the synthesis process includes:
  • CdSeS nuclear quantum dot purification take 1 mL of the original reaction solution, add 2 mL of acetone, 0.5 mL of methanol, heat and centrifuge, and discard the supernatant. Dissolve the precipitate with 1 mL of toluene, add 1 mL of methanol, and heat and centrifuge. This step is repeated 2 times.
  • Example 2 The difference from Example 1 is that the process of replacing the pre-ligand with a modifier is phosphoric acid and alkylphosphine.
  • the specific process includes: 0.5mmol phosphoric acid, 2mL toluene and 0.05mL TBP tributylphosphine, A mixed solution is formed, the prepared CdSe / CdS quantum dots are dispersed in toluene, and then the solution in which the quantum dots are dispersed is added to the above mixed solution. Incubate at 60 ° C for 2 hours. Cool and purify.
  • Example 1 The difference from Example 1 is that it does not include the replacement process of pre-ligands and modifiers.
  • Example 3 The difference from Example 3 is that it does not include the replacement process of pre-ligands and modifiers.
  • Example 8 The difference from Example 8 is that it does not include the replacement process of pre-ligands and modifiers.
  • the quantum dots of the above embodiments and comparative examples are applied to a QLED device.
  • the manufacturing process of the QLED device includes:
  • Base cleaning scrub the ITO substrate and glass with ethanol and acetone, if necessary, with detergent, and then ultrasonically clean with acetone, deionized water, and absolute ethanol for 10 minutes, and then quickly blow dry with a nitrogen gun Finally, it was treated under air plasma for 10 minutes.
  • PEDOT PSS on: ITO substrate spin coating
  • spin coating time 60s. After the spin coating is completed, it is annealed at 150 ° C for 15 minutes in the air, and then transferred to a glove box filled with nitrogen after being treated with oxygen plasma for 5 minutes.
  • Hole transport layer Spin on the glass / ITO / PEDOT: PSS with a concentration of 8 mg / mL of poly-TPD chlorobenzene solution at a speed of 2000 rpm. The spin coating time is 45 s. After the spin coating is completed, 120 to 150 Anneal for 30min at °C.
  • Laminated hole transport layer PVK solution dissolved in m-xylene is thermally coated on the poly-TPD at 2000-50rpm at 40-50 ° C, spin coating time is 45s, and PVK concentration is 1.5mg / mL. After the spin coating is completed, it is annealed in a glove box at 150 ° C for 20 min.
  • Quantum dot layer The quantum dot dissolved in n-octane solution was spin-coated on the hole transport layer at 2000 rpm, and the spin coating time was 60s.
  • the concentration of red quantum dots is between 10 and 15 mg / mL, the optical concentration (OD) is 80 to 120 at 400 nm, and the green and blue quantum dots are about 50 to 60 at 350 nm. No annealing treatment.
  • Electron transport layer Zn 0.9 Mg 0.1 O ethanol solution was spin-coated on the quantum dot layer at 2000 rpm, and the spin coating time was 45 s. The concentration of Zn 0.9 Mg 0.1 O is 0 mg / mL, and the OD is 200-300 at 280 nm. After the spin coating is completed, it is annealed in a glove box at 70 ° C for 20 min.
  • the evaporation rate is controlled at the first 10nm Following, then controlled at about.
  • the electrode thickness is 100 nm.
  • the life test of the device adopts the 32-channel life test system customized by Guangzhou New Vision.
  • the system architecture is a constant voltage and constant current source driving QLED to test the change of voltage or current; a photodiode detector and a test system to test the change of QLED brightness (photocurrent); a brightness meter to test and calibrate the brightness of QLED (photocurrent)
  • the test results are shown in Table 1.
  • the test results of the QLED device corresponding to Example 5 are shown in FIGS. 1 and 2.
  • the test results of the QLED device corresponding to Example 2 are shown in FIG. 3. 4 and FIG. 5, the test results of the QLED device corresponding to Example 8 are shown in FIG. 6.
  • the test results of the QLED device corresponding to Comparative Example 1 are shown in Figure 1, Figure 2 and Figure 6.
  • the test results of the QLED device corresponding to Comparative Example 2 are shown in Figures 4 and 5.
  • the half-life lifetime data in Table 1 is the half-life lifetime of the device measured at an initial brightness of 100 cd m -2 .
  • 7 is an infrared test of Example 1. It can be seen that there is almost no carboxylate signal after the exchange, so it is proved that the amine ligand of Example 1 is almost 100%.
  • Example 1 100000 18.6
  • Example 2 250000 18
  • Example 3 200000 18
  • Example 4 180000 15
  • Example 5 100000 19
  • Example 6 70000 10
  • Example 7 85000 10
  • Example 8 10000 9
  • Example 9 120000 10 Comparative Example 1 0.5 0.2
  • Comparative Example 1 is a CdSe / CdS system
  • the surface of Comparative Example 1 is cadmium carboxylate
  • Example 5 is a ligand-exchanged oleylamine surface.
  • EQE surface of quantum dot devices cadmium carboxylate as low as 0.2%
  • the amine ligand device EQE oil 19% of the surface both of two orders of magnitude difference, see in particular FIG. 1; -2 at an initial luminance of 100cd m under the conditions
  • the device of Example 5 7000cd m -2 at an initial luminance half-decay lifetime T 50 conditions more than 50 hours.
  • the surface of oleylamine ligand greatly improves the stability of the device, see Figure 2 for details.
  • Example CdSe / CdZnS alloy systems the surface of the quantum dot carboxylate after processing through n-octylamine, EQE of the device 3 is also raised from 10% to 18%, while the initial luminance of the device under conditions 10000cd m -2 The half-life T 50 is increased from 10 hours to 50 hours. See Figures 4 and 5 for details.
  • the quantum dot body of the present disclosure has an electrochemically inert ligand on the outer surface of the quantum dot body.
  • the ligand Under electrical excitation conditions, on the one hand, the ligand is electrochemically stable and will not react with carriers , And will not consume carriers, so that most of the carriers are used to emit light; on the other hand, because the electrochemically inert ligand is relatively stable, it will not fall off, and will not form a large number of defects that affect the quantum Point luminous efficiency. Therefore, since the quantum dot includes an electrochemically inert ligand, its luminous efficiency is higher, the corresponding device is more stable, and its reliability is higher.
  • the single photon source of the present disclosure includes the above-mentioned quantum dots, so that its performance is relatively stable and its reliability is relatively high.
  • the QLED device of the present disclosure includes the above-mentioned quantum dots, its performance is relatively stable and its reliability is relatively high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供了一种量子点、制作方法、单光子源和QLED。该量子点包括量子点本体和设置在量子点本体外表面的配体,配体包括电化学惰性配体,电化学惰性配体的还原电位大于量子点本体的导带底对应的电位,电化学惰性配体的氧化电位小于量子点本体的价带底对应的电位,电化学惰性配体占量子点本体外表面的所有配体的80%以上。该量子点由于包括电化学惰性配体,使得其发光效率较高,器件较稳定,可靠性较高。

Description

量子点、制作方法、单光子源和QLED 技术领域
本公开涉及光电领域,具体而言,涉及一种量子点、制作方法、单光子源和QLED。
背景技术
量子点发光二极管(QLED)是一种采用量子点为发光中心的电致发光器件。量子点是分散在溶液中的无机半导体纳米晶体,因此,可通过溶液工艺加工。通常认为,无机半导体纳米晶体拥有较高的光化学稳定性。因而,QLED结合高效稳定无机发光中心和溶液加工的优势,有望实现高性能的溶液工艺LED。并且,量子点的发光波长连续可调、发光光谱半峰宽窄且色纯度高,在高色域的显示屏和高显色指数的白光光源调制方面具有独特的优势。在过去的二十多年,QLED器件的效率和寿命研究受到国内外研究者的广泛关注。
随着量子点合成化学和工艺的进步,现在研究者们已经可以大批量合成光致发光效率接近100%的量子点。结合器件结构的设计和器件工艺的优化,目前,包括红绿蓝三色的QLED电致发光外量子效率(EQE)已经超过20%。尽管QLED器件的EQE在最近5年得到了突飞猛进地提升,然而,器件的稳定性却不尽如人意,尤其是蓝光器件。到目前为止,所有报道的蓝光器件的稳定性,由初始亮度为1000cd m -2下降到500cd m -2的时间少于35h,即蓝光器件的半衰寿命T 50<35h。
QLED通常采用核壳结构的量子点,一方面,认为发光中心是稳定性优异的无机晶体;另一方面,壳层在保护发光中心的同时起到了隔离不同发光中心的作用,可以抑制激子-激子相互作用带来的发光猝灭。这些优势使得QLED在理论上可以具有优异的稳定性,而事实上目前QLED的稳定性较差,没有充分发挥出量子点作为无机晶体的稳定性优势。因此,如何提高QLED的稳定性是最重要的课题,目前很多研究者们从平衡载流子注入角度去提高QLED稳定性。
在背景技术部分中公开的以上信息只是用来加强对本文所描述技术的背景技术的理解,因此,背景技术中可能包含某些信息,这些信息对于本领域技术人员来说并未形成在本国已知的现有技术。
发明内容
本公开的主要目的在于提供一种量子点、制作方法、单光子源和QLED,以解决现有技术中的量子点的表面配体在电致激发条件下与载流子发生反应和脱落导致的器件发光效率较低的问题,或者量子点表面配体在电激发条件下与载流子发生反应导致的器件发光效率较低的问题,或者量子点表面的配体在电激发条件下脱落导致的器件的发光效率较低的问题。
为了实现上述目的,根据本公开的一个方面,提供了一种量子点,该量子点包括量子点本体和设置在上述量子点本体外表面的配体,上述配体包括电化学惰性配体,上述电化学惰性配体的还原电位大于上述量子点本体的导带底对应的电位,上述电化学惰性配体的氧化电位小于上述量子点本体的价带底对应的电位,上述电化学惰性配体占上述量子点本体外表面的所有配体的80%以上。
进一步地,上述电化学惰性配体选自胺配体、烷基膦配体、金属羧酸盐配体、金属膦酸盐配体、无机金属盐配体和巯醇盐配体中的一种或多种;其中,上述金属羧酸盐配体选自羧酸镁配体、羧酸钙配体、羧酸铝配体、羧酸锆配体、羧酸锂配体、羧酸钠配体和羧酸钡配体中的一种或多种,上述无机金属盐配体的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种,上述无机金属盐配体的阳离子包括量子点本体表面的阳离子;优选地,上述金属羧酸盐配体和金属膦酸盐配体中的C个数小于等于22。
进一步地,上述电化学惰性配体为脂肪胺配体,优选上述脂肪胺配体中的C个数在4~22之间,进一步优选上述脂肪胺配体为C个数在8~18之间的伯胺配体。
进一步地,上述电化学惰性配体占上述量子点本体外表面的所有配体的90%以上,优选100%。
进一步地,上述量子点本体包括量子点核和包裹上述量子点核的壳体。
根据本公开的另一方面,提供了一种量子点的制作方法,该制作方法包括:步骤S1,制作量子点的预备体,上述预备体包括量子点本体和设置在上述量子点本体外表面的预配体;步骤S2,采用修饰剂对上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成电化学惰性配体,进而形成上述量子点,上述电化学惰性配体的还原电位大于上述量子点本体的导带底对应的电位,上述电化学惰性配体的氧化电位小于上述量子点本体的价带底对应的电位,且电化学惰性配体替换上述预配体的替换率在80%以上,上述修饰剂选自电化学惰性配体、包括上述电化学惰性配体的阳离子和上述电化学惰性配体的阴离子的化合物、包括上述电化学惰性配体的阳离子的化合物、包括上述电化学惰性配体的阴离子的化合物中的至少一种。
进一步地,上述修饰剂包括第一修饰剂,上述步骤S2包括:步骤S21,制备第一混合溶液,加热使得上述第一修饰剂对各上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成第一电化学惰性配体,对替换后的上述第一混合溶液进行提纯,得到上述量子点,上述第一混合溶液包括上述预备体、第一溶剂和上述第一修饰剂。
进一步地,上述修饰剂还包括第二修饰剂,在上述步骤S21之后,上述制作方法还包括步骤S22,上述步骤S22包括:制备第二混合溶液,使得上述第二修饰剂对各上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成第二电化学惰性配体,上述第二混合溶液包括上述量子点、第二溶剂和上述第二修饰剂;加热上述第二混合溶液直至上述量子点的量子产率大于或等于80%。
进一步地,上述修饰剂包括脂肪胺、烷基膦、金属羧酸盐、无机金属盐、无机酸与巯醇盐中的至少一种。
进一步地,上述无机金属盐的阳离子的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。
进一步地,上述金属羧酸盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。
进一步地,上述无机金属盐的阳离子和上述金属羧酸盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。
进一步地,上述无机金属盐中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
进一步地,上述无机酸中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
进一步地,上述无机金属盐和上述无机酸中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
进一步地,上述第一混合溶液还包括与上述量子点本体的阴离子种类相同的阴离子的前体。
进一步地,上述电化学惰性配体包括脂肪胺。
进一步地,上述电化学惰性配体包括烷基膦。
进一步地,上述电化学惰性配体包括脂肪胺和烷基膦。
进一步地,上述脂肪胺为C4~C22的脂肪胺。
进一步地,上述脂肪胺为C8~C18的伯胺。
根据本公开的再一方面,提供了一种单光子源,包括量子点,该量子点为任一种的上述量子点或任一种制作方法制作得到的量子点。
根据本公开的再一方面,提供了一种QLED器件,包括量子点,该量子点为任一种的上述量子点或任一种制作方法制作得到的量子点。
应用本公开的技术方案,量子点本体外表面的配体为电化学惰性配体,在电激发条件下,一方面,由于该配体的电化学较稳定,不会与载流子发生反应,进而不会消耗载流子,使得大部分的载流子都用于发光;另一方面,由于该电化学惰性配体比较稳定,不会发生脱落,进而不会形成大量的缺陷而影响量子点的发光效率。因此,该量子点由于包括电化学惰性配体,使得其发光效率较高,器件较稳定,可靠性较高。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1至图7示出了部分实施例的测试结果图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
发明人发现,当量子点成膜置于QLED器件中时,在电致激发条件下,载流子与配体会发生电化学反应。一方面消耗载流子使其没有用于发光;另一方面使量子点表面配体脱落,形成缺陷态从而使量子点的发光效率大幅下降,最终影响器件稳定性。因此,量子点表面配体的稳定性将对QLED器件的稳定性产生重要影响。
发明人发现,现有技术中,量子点表面的配体在电激发条件下与载流子发生反应和脱落导致的器件的发光效率较低,有时量子点表面的配体在电激发条件下与载流子发生反应导致的器件的发光效率较低,有时量子点表面的配体在电激发条件下脱落导致的器件的发光效率较低,为了解决如上的问题,本公开提出了一种量子点、制作方法、单光子源和QLED。
本公开的一种典型的实施方式中,提供了一种量子点,该量子点包括量子点本体和设置在上述量子点本体外表面的配体,上述配体包括电化学惰性配体,上述电化学惰性配体的还原电位大于上述量子点本体的导带底对应的电位,上述电化学惰性配体的氧化电位小于上述量子点本体的价带底对应的电位,上述电化学惰性配体占上述量子点本体外表面的所有配体的80%以上,即量子点本体的外表面上的配体可以是多种,但是,电化学惰性配体占所有的配体的80%以上,即大于或等于80%,电化学惰性配体的占比越高,量子点的发光效率越高且越稳定。
量子点本体可以为II-VI族化合物、III-V族化合物、IV-VI族化合物、II-III-IV族化合物、I-II-IV-VI族化合物或其组合。
II-VI族化合物可以是选自CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS及其混合物的二元元素化合物;选自CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS及其混合物的三元元素化合物;以及选自 HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe及其混合物的四元元素化合物。III-V族化合物可选自以下:选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb及其混合物的二元元素化合物;选自GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb及其混合物的三元元素化合物;以及选自GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb及其混合物的四元元素混合物。IV-VI族化合物可选自以下:选自SnS、SnSe、SnTe、PbS、PbSe、PbTe及其混合物的二元元素化合物;选自SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe及其混合物的三元元素混合物;以及选自SnPbSSe、SnPbSeTe、SnPbSTe及其混合物的四元元素化合物。I-III-VI族化合物可包含CuInSe2、CuInS2、CuInGaSe及CuInGaS,但并不仅限于此。I-II-IV-VI族化合物可包含CuZnSnSe及CuZnSnS,但并不仅限于此。
该量子点的量子点本体的外表面上具有电化学惰性配体,在电激发条件下,一方面,由于该配体的电化学较稳定,不会与载流子发生反应,进而不会消耗载流子,使得大部分的载流子都用于发光;另一方面,由于该电化学惰性配体比较稳定,不会发生脱落,进而不会形成大量的缺陷而影响量子点的发光效率。因此,该量子点由于包括电化学惰性配体,使得其发光效率较高,对应的器件较稳定,可靠性较高。
本公开的量子点本体的外表面的电化学惰性配体可以为一种,也可以为多种,本领域技术人员可以根据实际情况选择一种或多种电化学惰性配体设置在量子点本体的外表面。
本公开的电化学惰性配体可以为任何满足上述“还原电位大于上述量子点本体的导带底对应的电位,上述电化学惰性配体的氧化电位小于上述量子点本体的价带底对应的电位”的任何配体,本领域技术人员可以根据实际情况选择合适的电化学惰性配体。
具体地,电化学惰性配体可以选自胺配体、金属羧酸盐配体、金属膦酸盐配体、无机金属盐配体和巯醇盐配体中的一种或多种;其中,上述金属羧酸盐配体选自羧酸镁配体、羧酸钙配体、羧酸铝配体、羧酸锆配体、羧酸锂配体、羧酸钠配体、和羧酸钡配体中的一种或多种,上述无机金属盐配体的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种,上述无机金属盐配体的阳离子包括量子点本体表面的阳离子。上述巯醇盐配体选自巯基镉和巯基锌等中的至少一种。
为了提高量子点的分散性,本公开的一种实施例中,上述金属羧酸盐配体和金属膦酸盐配体中的C个数小于等于22。
本公开的一种实施例中,上述电化学惰性配体为脂肪胺配体。脂肪胺配体在电场作用下化学稳定性很高。
上述脂肪胺配体中的C个数在4~22之间,进一步优选上述脂肪胺配体为C个数在8~18之间的伯胺配体。
本公开的另一种实施例中,上述电化学惰性配体占上述量子点本体外表面的所有配体的90%以上,这样可以进一步提高量子点的发光效率和稳定性。为了更进一步提升量子点的这两个性能,本公开的一种优选实施例中,上述电化学惰性配体占上述量子点本体外表面的所有配体的100%。
本公开的量子点本体的可以为现有技术中的任何一种可用的量子点,可以为核壳量子点本体,也可以为非核壳结构的量子点本体。本领域技术人员可以根据实际情况选择合适结构的量子点。
为了提高稳定性,本公开的一种实施例中,上述量子点本体包括量子点核和包裹上述量子点核的壳体。在这种实施例中,壳体的外表面即为量子点本体的外表面,电化学惰性配***于壳体的外表面上。
本公开的另一种典型的实施方式中,提供了一种量子点的制作方法,如图1所示,该制作方法包括:步骤S1,制作量子点的预备体,上述预备体包括量子点本体和设置在上述量子点本体外表面的预配体;步骤S2,采用修饰剂对上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成电化学惰性配体,进而形成上述量子点,上述电化学惰性配体的还原电位大于上述量子点本体的导带底对应的电位,上述电化学惰性配体的氧化电位小于上述量子点本体的价带底对应的电位,且电化学惰性配体替换上述预配体的替换率在80%以上,上述修饰剂选自电化学惰性配体本身、包括所述电化学惰性配体的阳离子和所述电化学惰性配体的阴离子的化合物、包括所述电化学惰性配体的阳离子的化合物、包括所述电化学惰性配体的阴离子的化合物中的至少一种。
上述的制作方法中,先制作得到量子点的预备体,然后采用修饰剂对预备体中的预配体的至少部分进行替换,从而在量子点本体的外表面上形成电化学惰性配体,进而形成具有电化学惰性配体的量子点。在电激发条件下,预配体的电化学稳定性低于电化学惰性配体,在注入载流子后会发生氧化还原消耗载流子,使得载流子进入量子点的复合数量减少。相反地,由于该电化学惰性配体的电化学较稳定,不会与载流子发生反应,进而不会消耗载流子,使得大部分的载流子都用于发光;另一方面,由于该电化学惰性配体比较稳定,不会发生脱落,进而不会形成大量的缺陷而影响量子点的发光效率。因此,该量子点由于包括电化学惰性配体,使得其发光效率较高,器件较稳定,可靠性较高。
本公开的一种具体的实施例中,上述修饰剂包括第一修饰剂,上述步骤S2包括:步骤S21,制备第一混合溶液,加热使得上述第一修饰剂对各上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成第一电化学惰性配体,对替换后的上述第一混合溶液进行提纯,得到上述量子点,上述第一混合溶液包括上述预备体、第一溶剂和上述第一修饰剂。第一修饰剂和预备体溶于第一溶剂中,从而使得第一修饰剂对预配体的阳离子、预配体的阴离子和预配体本身中的至少一种的替换率更高。
在实际的制作过程中,可以重复多次步骤S21,从而使得第一修饰剂对预配体的阴离子或阳离子的替换率更高,从而使得量子点的第一电化学惰性配体更多,量子点的发光效率更高,器件更稳定,可靠性能更好。
为了在量子点本体的外表面替换形成多种电化学惰性配体,本公开的一种实施例中,上述步骤S21之后,上述制作方法还包括步骤S22,所述步骤S22包括:制备第二混合溶液,使得上述第二修饰剂对各上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成第二电化学惰性配体,上述第二混合溶液包括上述量子点、第二溶剂和上述第二修饰剂;加热上述第二混合溶液直至上述量子点的量子产率大于或等于80%。
在实际的制作过程中,可以重复多次步骤S22,从而使得第二修饰剂对预配体的阴离子或阳离子的替换率更高,从而使得量子点的第二电化学惰性配体更多,量子点的发光效率更高,器件更稳定,可靠性能更好。
第一溶剂和第二溶剂可以选自量子点合成中常用的溶剂,比如非配位溶剂的十八烯。
在实际的制作过程中,本领域技术人员可以根据实际情况决定是否在步骤S21之后进行第二修饰剂对预备体的至少部分替换,得到多种电化学惰性配体修饰的量子点。
本公开的修饰剂可以是任何的包括电化学惰性配体的阴离子的化学物质,或者是任何的包括电化学惰性配体的阳离子的化学物质,或者是任何的包括电化学惰性配体的阴离子和电化学惰性配体的阳离子的化学物质。当然,修饰剂可以是电化学惰性配体本身,本领域技术人员可以根据实际情况选择合适的修饰剂。修饰剂可以是一种或多种,并无限制,修饰剂可以同时进行阳离子交换和阴离子交换的修饰(比如碱金属的硫酸盐、磷酸盐、卤素盐等作为修饰剂时),也可以是一次性加入多种修饰剂或者分阶段加入多种修饰剂,从而预配体可以被替换成一种或多种电化学惰性配体。
本公开的另一种实施例中,上述修饰剂包括脂肪胺、烷基膦、金属羧酸盐、无机金属盐、无机酸与巯醇盐中的至少一种。上述脂肪胺、烷基膦、金属羧酸盐、无机金属盐、无机酸与巯醇盐中的一种或多种整体替换上述预配体。这些修饰剂形成的电化学惰性配体的电化学性能更加稳定,大大提高了量子点电致发光器件的寿命。
本公开的一种具体的实施例中,上述修饰剂的无机金属盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。这些阳离子不易被还原。
本公开的一种具体的实施例中,上述修饰剂的金属羧酸盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。这些阳离子不易被还原。
本公开的一种具体的实施例中,上述修饰剂的无机金属盐的阳离子和上述金属羧酸盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。这些阳离子不易被还原。
当然,本公开的无机金属盐和金属羧酸盐的阳离子并不限于上述提及的种类,还可以是其他的能够形成电化学惰性配体的阳离子,本领域技术人员可以根据实际情况选择合适的阳离子。
本公开的上述无机金属盐中的阴离子,或者上述无机酸中的阴离子,或者上述无机金属盐和上述无机酸中的阴离子,可以是现有技术中任何可以形成上述的电化学惰性配体的阴离子,本领域技术人员可以根据实际情况选择合适的阴离子。
本公开的一种具体的实施例中,上述无机金属盐中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
本公开的一种具体的实施例中,上述无机酸中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
本公开的一种具体的实施例中,上述无机金属盐和上述无机酸中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
修饰剂本公开的再一种实施例中,上述第一混合溶液还包括与上述量子点本体的阴离子相同的阴离子的前体,该阴离子可以与量子点本体表面的阳离子反应,这样使得量子点本体更加稳定,进而保证修饰剂和预配体交换体系的稳定,进一步提升修饰剂和修饰剂配体的替换率,从而得到具有更多的电化学惰性配体的量子点。如量子点是核壳结构,则量子点本体的阴离子仅指壳层的阴离子。
本公开的电化学惰性配体可以选自现有技术中任何的电化学惰性配体,本领域技术人员可以根据实际情况选择合适的电化学惰性配体,本公开的一种实施例中,上述电化学惰性配体包括脂肪胺,本公开的另一种实施例中,上述电化学惰性配体包括烷基膦,本公开的另一种实施例中,上述电化学惰性配体包括脂肪胺和烷基膦。
为了原料的可获得性,本公开的一种实施例中,上述脂肪胺为C4~C22的脂肪胺。为了进一步能够与量子点表面形成较为稳定的配位键,本公开的另一种实施例中,上述脂肪胺为C8~C18的伯胺。烷基膦优选为三烷基膦,如三辛基膦。
在一些实施例中,烷基膦为三烷基膦,其中三个烷基中的烷基独立选自碳原子数为2~10的烷基。
本公开中的预备体可以采用现有技术中任何的量子点的制作方法制作得到,本领域技术人员可以根据对应的预备体的材料选择合适的方法形成对应的预备体。
本公开的另一种典型的实施方式中,提供了一种单光子源,包括量子点,上述量子点为上述任一种的量子点或上述任一种制作方法制作得到的量子点。
上述的单光子源由于包括上述的量子点,使得其的性能比较稳定,可靠性比较高。
本公开的另一种典型的实施方式中,提供了一种QLED器件,包括量子点,上述量子点为上述任一种的量子点或上述任一种制作方法制作得到的量子点。
上述的QLED器件由于包括上述的量子点,使得其的性能比较稳定,寿命比较高。
为了使得本领域技术人员能够更加清楚本公开的技术方案以及技术效果,以下将结合具体的实施例来说明。
实施例1
量子点的制作过程包括:
先制作量子点的预备体,预备体为核壳结构的量子点,具体为红色CdSe/CdS核壳量子点,其合成过程包括:
称取0.2mmol的氧化镉、0.6mmol的硬脂酸和3mL的ODE混合,并加热至260℃溶解。
向上步形成的溶液注入1mL*0.1mol的硒粉-ODE悬浊液,8分钟后,每隔3分钟注入0.05mL*0.1mol的硒粉-ODE悬浊液直到CdSe量子点生长至所需要的尺寸(第一激子吸收峰在550nm),得到原反应溶液。
CdSe核量子点提纯:取1mL原反应溶液,加入2mL丙酮,0.5mL甲醇,加热离心,倒掉上层清液。用1mL甲苯溶解沉淀,加入1mL甲醇,加热离心。此步骤重复2次。
CdSe/CdS核壳量子点合成:称取1mL的醋酸镉、0.85mL的油酸、0.15mL的十酸和4mL的ODE,并混合且加热至150℃,鼓气10分钟,形成反应液。用环己烷溶解CdSe核量子点,注入到上述反应液中,继续鼓气10分钟,将反应温度升高至260℃,以4mL/h的速度滴加0.1mol的S-ODE溶液,直到达到所需的CdS厚度(其发射峰位在631nm)。
CdSe/CdS核壳量子点提纯:同CdSe核量子点提纯的过程一样。
然后,采用修饰剂对上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成电化学惰性配体,修饰剂为油胺,具体过程包括:
取CdSe/CdS核壳量子点(配体是羧酸镉),溶于包括2mL的ODE,2mL的油胺,1mL*0.1mol的S-ODE的溶液,加热至120℃,反应20分钟。冷却后加入2mL甲醇离心沉淀。
再重复上述操作,直到量子产率为80%。
实施例2
与实施例1之处在于:修饰剂为正辛胺。
实施例3
与实施例2的区别为:量子点的预备体为红色CdSe/CdZnS的量子点,其合成过程包括:
称取0.2mmol的氧化镉、0.6mmol的硬脂酸和3mL的ODE混合,并加热至260℃溶解。
向上步形成的溶液注入1mL*0.1mol的硒粉-ODE悬浊液,8分钟后,每隔3分钟注入0.05mL*0.1mol的硒粉-ODE悬浊液直到CdSe量子点生长至所需要的尺寸(第一激子吸收峰在550nm),得到原反应溶液。
CdSe核量子点提纯:取1mL原反应溶液,加入2mL丙酮,0.5mL甲醇,加热离心,倒掉上层清液。用1mL甲苯溶解沉淀,加入1mL甲醇,加热离心。此步骤重复2次。
取3mmol醋酸锌,0.3mmol醋酸镉,8mmol油酸和20mL ODE于100mL三颈瓶中,加热至300℃溶解。将2mLCdSe核注入三颈瓶中,然后将2.5mL 1mM STBP溶液迅速注入三颈瓶,反应15min后停止,降温。
实施例4
与实施例3的区别为:修饰剂为油胺。
实施例5
与实施例1的区别为:采用修饰剂替换预配体的过程不同,且修饰剂包括油胺和TBP,具体包括:
采用修饰剂对上述预配体的至少部分进行替换,在上述量子点本体的外表面上形成电化学惰性配体,修饰剂为油胺,具体过程包括:
取CdSe/CdS核壳量子点(配体是羧酸镉),溶于包括2mL的ODE,2mL的油胺,1mL*0.1mol的S-ODE的溶液,加热至120℃,反应20分钟。冷却后加入2mL甲醇离心沉淀。
再重复上述操作两次,沉淀所得量子点溶于2mL的甲苯和2mL的油胺混合溶液中,加入0.1mL的烷基膦(TBP),在50℃下退火直到量子产率接近90%。
实施例6
与实施例1的区别在于:用修饰剂替换预配体的过程不同,修饰剂为醋酸镁,具体过程包括:
将1mmol的醋酸镁、3mmol的油酸和4mL的ODE混合,并在150℃下鼓气20分钟,将预备体分散在ODE中加入到上述溶液中。升温至在200℃,保温30分钟。冷却,提纯。
实施例7
与实施例1的区别在于:用修饰剂替换预配体的过程不同,修饰剂为醋酸镁,具体过程包括:
将1mmol的醋酸镁、3mmol的油酸、4mL的ODE混合,并在150℃下鼓气20分钟,然后冷却至100℃。将实施例5得到的量子点分散在2mL的甲苯中加入到上述溶液,保温1小时。冷却,提纯。
实施例8
与实施例1的区别为:量子点的预备体为蓝色CdSeS/ZnSeS的量子点,其合成过程包括:
称取1mmol醋酸镉、2.5mmol油酸、15mL ODE于50mL三颈瓶中,加热至300℃溶解。将2mL 0.5mM硒硫ODE溶液(硫比硒物质量=3:1)注入三颈瓶中,反应10min后降温停止反应。
CdSeS核量子点提纯:取1mL原反应溶液,加入2mL丙酮,0.5mL甲醇,加热离心,倒掉上层清液。用1mL甲苯溶解沉淀,加入1mL甲醇,加热离心。此步骤重复2次。
取10mmol醋酸锌,28mmol油酸,40mL ODE于250mL三颈瓶中,加热至300℃溶解。将5mL CdSeS核注入三颈瓶中,然后注入5mL 1mM Se和S的TBP溶液(Se:S=1:3)注入三颈瓶,反应30min后停止,降温。提纯同上。
实施例9
与实施例1的区别在于为:用修饰剂替换预配体的过程不同,修饰剂为磷酸和烷基膦,具体过程包括:0.5mmol磷酸、2mL甲苯和0.05mL TBP三丁基膦混合后,形成混合溶液,预备体CdSe/CdS量子点分散在甲苯中,然后将分散有量子点的溶液加入到上述混合溶液中。在60℃下保温2小时。冷却,提纯。
对比例1
与实施例1的区别为:不包括预配体和修饰剂的替换过程。
对比例2
与实施例3的区别为:不包括预配体和修饰剂的替换过程。
对比例3
与实施例8的区别为:不包括预配体和修饰剂的替换过程。
将上述实施例和对比例的量子点应用在QLED器件中,该QLED器件的制作过程包括:
1.基底清洗:将ITO衬底和玻璃用乙醇和丙酮搓洗干净,必要时用洗洁精清洗,之后依次用丙酮、去离子水以及无水乙醇超声清洗10min,然后用氮***迅速吹干,最后,在空气等离子体下处理10min。
2.PEDOT:PSS在:ITO衬底上以3000rpm的转速旋涂PEDOT:PSS,旋涂时间为60s。旋涂完成后在空气中在150℃下退火15min,然后氧气等离子处理5min后转移至充满氮气的手套箱中。
3.空穴传输层:在玻璃/ITO/PEDOT:PSS上以2000rpm的转速旋涂浓度为8mg/mL poly-TPD氯苯溶液,旋涂时间45s,旋涂完成后在手套箱中120~150℃退火30min。
4.叠层空穴传输层:在poly-TPD之上以2000rpm的转速40-50℃热涂溶于间二甲苯的PVK溶液,旋涂时间45s,PVK浓度为1.5mg/mL。旋涂完成后在手套箱中以150℃退火20min。
5.量子点层:在空穴传输层之上以2000rpm的转速旋涂溶于正辛烷溶液的量子点,旋涂时间为60s。红色量子点的浓度在10~15mg/mL之间,光学浓度(OD)在400nm处80~120,绿光和蓝光量子点在350nm处约50~60。无退火处理。
6.电子传输层:在量子点层上以2000rpm的转速旋涂Zn 0.9Mg 0.1O的乙醇溶液,旋涂时间为45s。Zn 0.9Mg 0.1O的浓度为0mg/mL,OD在280nm处为200~300。旋涂完成后在手套箱中以70℃退火20min。
7.将旋涂完成的样品放入真空腔体,蒸镀顶层电极Ag。蒸镀速率在前10nm控制在
Figure PCTCN2019104533-appb-000001
以下,之后控制在
Figure PCTCN2019104533-appb-000002
左右。电极厚度为100nm。
8.蒸镀完成后用固化胶封装,隔绝水氧。
器件的寿命测试采用广州新视界公司定制的32路寿命测试***。***架构为恒压恒流源驱动QLED,测试电压或电流的变化;光电二极管探测器和测试***,测试QLED的亮度(光电流)变化;亮度计测试校准QLED的亮度(光电流)。
测试的结果见表1,实施例5对应的QLED器件的测试结果见图1和图2,实施例2对应的QLED器件的测试结果见图3,实施例3对应的QLED器件的测试结果见图4和图5,实施例8对应的QLED器件的测试结果见图6。对比例1对应的QLED器件的测试结果见图1、图2和图6。对比例2对应的QLED器件的测试结果见图4和图5。表1中的半衰寿命数据是器件在初始亮度为100cd m -2下测半衰寿命。图7为实施例1的红外测试,可以看到交换后羧酸根的信号几乎没有,所以证明实施例1的胺配体几乎是100%。
表1
  半衰寿命(小时) EQEmax(%)
实施例1 100000 18.6
实施例2 250000 18
实施例3 200000 18
实施例4 180000 15
实施例5 100000 19
实施例6 70000 10
实施例7 85000 10
实施例8 10000 9
实施例9 120000 10
对比例1 0.5 0.2
对比例2 40000 10
对比例3 2000 12
量子点表面处理对器件效率和寿命的有益效果:
对比例1与实施例5相比,都是CdSe/CdS体系,对比例1的表面是羧酸镉,实施例5是经过配体交换成为油胺配体表面。羧酸镉表面的量子点器件EQE低至0.2%,而油胺配体表面的器件EQE高达19%,两者有两个数量级的差别,具体参见图1所示;在100cd m -2初始亮度条件下,对比例1的器件的半衰寿命T 50仅10分钟,而实施例5的器件在7000cd m -2初始亮度条件下半衰寿命T 50超过50小时。由此可见,油胺配体表面大幅提升器件的稳定性,具体参见图2。
实施例2的CdSe/CdS体系经过正辛胺处理后相应器件在11500cd m -2初始亮度条件下的半衰寿命T 50也超过50小时,参见图3。
实施例3的CdSe/CdZnS合金体系,羧酸盐表面的量子点在经过正辛胺处理过后,器件的EQE也从10%提升到18%以上,而器件在10000cd m -2初始亮度条件下的半衰寿命T 50从10小时提升到50小时具体参见图4和图5。
实施例8的蓝光CdSeS/ZnSeS合金体系,羧酸盐表面的量子点在经过油胺处理过后,器件在1500cd m -2初始亮度条件下的半衰寿命T 50从15小时提升到80小时,参见图6。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
1)、本公开的量子点的量子点本体的外表面上具有电化学惰性配体,在电激发条件下,一方面,由于该配体的电化学较稳定,不会与载流子发生反应,进而不会消耗载流子,使得大部分的载流子都用于发光;另一方面,由于该电化学惰性配体比较稳定,不会发生脱落,进而不会形成大量的缺陷而影响量子点的发光效率。因此,该量子点由于包括电化学惰性配体,使得其发光效率较高,对应的器件较稳定,可靠性较高。
2)、本公开的单光子源由于包括上述的量子点,使得其性能比较稳定,可靠性比较高。
3)、本公开的QLED器件由于包括上述的量子点,使得其的性能比较稳定,可靠性比较高。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (23)

  1. 一种量子点,其特征在于,所述量子点包括量子点本体和设置在所述量子点本体外表面的配体,所述配体包括电化学惰性配体,所述电化学惰性配体的还原电位大于所述量子点本体的导带底对应的电位,所述电化学惰性配体的氧化电位小于所述量子点本体的价带底对应的电位,所述电化学惰性配体占所述量子点本体外表面的所有配体的80%以上。
  2. 根据权利要求1所述的量子点,其特征在于,所述电化学惰性配体选自胺配体、烷基膦配体、金属羧酸盐配体、金属膦酸盐配体、无机金属盐配体和巯醇盐配体中的一种或多种;其中,所述金属羧酸盐配体选自羧酸镁配体、羧酸钙配体、羧酸铝配体、羧酸锆配体、羧酸锂配体、羧酸钠配体和羧酸钡配体中的一种或多种,所述无机金属盐配体的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种,所述无机金属盐配体的阳离子包括量子点本体表面的阳离子;优选地,所述金属羧酸盐配体和金属膦酸盐配体中的C个数小于等于22。
  3. 根据权利要求2所述的量子点,其特征在于,所述电化学惰性配体为脂肪胺配体,优选所述脂肪胺配体中的C个数在4~22之间,进一步优选所述脂肪胺配体为C个数在8~18之间的伯胺配体。
  4. 根据权利要求1所述的量子点,其特征在于,所述电化学惰性配体占所述量子点本体外表面的所有配体的90%以上,优选100%。
  5. 根据权利要求1所述的量子点,其特征在于,所述量子点本体包括量子点核和包裹所述量子点核的壳体。
  6. 一种量子点的制作方法,其特征在于,所述制作方法包括:
    步骤S1,制作量子点的预备体,所述预备体包括量子点本体和设置在所述量子点本体外表面的预配体;
    步骤S2,采用修饰剂对所述预配体的至少部分进行替换,在所述量子点本体的外表面上形成电化学惰性配体,进而形成所述量子点,所述电化学惰性配体的还原电位大于所述量子点本体的导带底对应的电位,所述电化学惰性配体的氧化电位小于所述量子点本体的价带底对应的电位,且电化学惰性配体替换所述预配体的替换率在80%以上,所述修饰剂选自电化学惰性配体、包括所述电化学惰性配体的阳离子和所述电化学惰性配体的阴离子的化合物、包括所述电化学惰性配体的阳离子的化合物、包括所述电化学惰性配体的阴离子的化合物中的至少一种。
  7. 根据权利要求6所述的制作方法,其特征在于,所述修饰剂包括第一修饰剂,所述步骤S2包括:
    步骤S21,制备第一混合溶液,加热使得所述第一修饰剂对各所述预配体的至少部分进行替换,在所述量子点本体的外表面上形成第一电化学惰性配体,对替换后的所述第一混合溶液进行提纯,得到所述量子点,所述第一混合溶液包括所述预备体、第一溶 剂和所述第一修饰剂。
  8. 根据权利要求7所述的制作方法,其特征在于,所述修饰剂还包括第二修饰剂,在所述步骤S21之后,所述制作方法还包括步骤S22,所述步骤S22包括:
    制备第二混合溶液,使得所述第二修饰剂对各所述预配体的至少部分进行替换,在所述量子点本体的外表面上形成第二电化学惰性配体,所述第二混合溶液包括所述量子点、第二溶剂和所述第二修饰剂;
    加热所述第二混合溶液直至所述量子点的量子产率大于或等于80%。
  9. 根据权利要求6至8中的任一项所述的制作方法,其特征在于,所述修饰剂包括脂肪胺、烷基膦、金属羧酸盐、无机金属盐、无机酸与巯醇盐中的至少一种。
  10. 根据权利要求9所述的制作方法,其特征在于,所述无机金属盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。
  11. 根据权利要求9所述的制作方法,其特征在于,所述金属羧酸盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。
  12. 根据权利要求9所述的制作方法,其特征在于,所述无机金属盐的阳离子和所述金属羧酸盐的阳离子选自钙离子、镁离子、铝离子、锆离子、锂离子、钠离子和钡离子中的一种或多种。
  13. 根据权利要求9所述的制作方法,其特征在于,所述无机金属盐中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
  14. 根据权利要求9所述的制作方法,其特征在于,所述无机酸中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
  15. 根据权利要求9所述的制作方法,其特征在于,所述无机金属盐和所述无机酸中的阴离子选自卤素离子、磷酸根离子和硫酸根离子中的一种或多种。
  16. 根据权利要求7所述的制作方法,其特征在于,所述第一混合溶液还包括与所述量子点本体的阴离子种类相同的阴离子的前体。
  17. 根据权利要求12所述的制作方法,其特征在于,所述电化学惰性配体包括脂肪胺。
  18. 根据权利要求12所述的制作方法,其特征在于,所述电化学惰性配体包括烷基膦。
  19. 根据权利要求12所述的制作方法,其特征在于,所述电化学惰性配体包括脂肪胺和烷基膦。
  20. 根据权利要求17或19所述的制作方法,其特征在于,所述脂肪胺为C4~C22的脂肪胺。
  21. 根据权利要求17或19所述的制作方法,其特征在于,所述脂肪胺为C8~C18的伯胺。
  22. 一种单光子源,包括量子点,其特征在于,所述量子点为权利要求1至5中任一项的所述量子点或权利要求6至21中的任一项制作方法制作得到的量子点。
  23. 一种QLED器件,包括量子点,其特征在于,所述量子点为权利要求1至5中任一项的所述量子点或权利要求6至21中的任一项制作方法制作得到的量子点。
PCT/CN2019/104533 2018-10-18 2019-09-05 量子点、制作方法、单光子源和qled WO2020078143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/285,947 US11618853B2 (en) 2018-10-18 2019-09-05 QLED and method for manufacturing quantum dot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811216931.X 2018-10-18
CN201811216931.XA CN109468134B (zh) 2018-10-18 2018-10-18 量子点、制作方法、单光子源和qled

Publications (1)

Publication Number Publication Date
WO2020078143A1 true WO2020078143A1 (zh) 2020-04-23

Family

ID=65664140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104533 WO2020078143A1 (zh) 2018-10-18 2019-09-05 量子点、制作方法、单光子源和qled

Country Status (3)

Country Link
US (1) US11618853B2 (zh)
CN (2) CN112111277A (zh)
WO (1) WO2020078143A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111277A (zh) * 2018-10-18 2020-12-22 浙江大学 单光子源和qled
CN110205111B (zh) * 2019-05-23 2022-10-04 纳晶科技股份有限公司 量子点、量子点配体的制备方法、量子点的改性方法和光电器件
CN114342560A (zh) * 2019-09-04 2022-04-12 夏普株式会社 发光元件、发光装置、发光元件的制造方法
CN111686814B (zh) * 2020-06-19 2022-09-23 京东方科技集团股份有限公司 一种量子点配体、量子点催化剂和量子点器件
CN115181561A (zh) * 2021-04-02 2022-10-14 纳晶科技股份有限公司 纳米晶组合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065054A1 (en) * 2004-12-13 2006-06-22 Nanosquare Co., Ltd Method for synthesizing semiconductor quantom dots
CN101422621A (zh) * 2007-10-31 2009-05-06 韩国科学技术研究院 通过早期引入不规则结构,生产生物成像的纳米颗粒及其制造方法
CN103059868A (zh) * 2011-10-18 2013-04-24 三星电子株式会社 颗粒、颗粒的溶液和制造纳米颗粒的方法
CN104387772A (zh) * 2009-05-01 2015-03-04 纳米***公司 用于纳米结构体分散的官能化基质
CN105985774A (zh) * 2015-02-09 2016-10-05 纳晶科技股份有限公司 纳米晶-配体复合物、其制备方法、印刷材料及印刷材料的应用
WO2017147382A1 (en) * 2016-02-26 2017-08-31 Nanosys, Inc. Low cadmium content nanostructure compositions and uses thereof
CN107629783A (zh) * 2017-08-09 2018-01-26 浙江大学 核壳量子点、其制备方法及其应用
CN109468134A (zh) * 2018-10-18 2019-03-15 浙江大学 量子点、制作方法、单光子源和qled

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480511B1 (ko) * 2008-12-19 2015-01-08 삼성전자 주식회사 금속-계면활성제층으로 코팅된 나노 결정의 제조 방법
US20110175054A1 (en) * 2010-01-15 2011-07-21 Xiaofan Ren Device containing large-sized emitting colloidal nanocrystals
WO2013114308A1 (en) * 2012-02-03 2013-08-08 Koninklijke Philips N.V. Dual site surface capping for highly improving quantum efficiency and life time of luminescent nano particles
JP6454717B2 (ja) * 2014-02-04 2019-01-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 量子ドットのオキソ系及び水酸基系の複合無機リガンド
US9324562B1 (en) * 2014-11-12 2016-04-26 Alliance For Sustainable Energy, Llc Metal halide solid-state surface treatment for nanocrystal materials
EP3327813B1 (en) * 2016-11-25 2021-06-30 Samsung Electronics Co., Ltd. Light emitting device and display device including quantum dot
KR102354900B1 (ko) * 2017-09-12 2022-01-21 엘지디스플레이 주식회사 양자점 발광다이오드 및 이를 포함하는 양자점 발광장치
CN108913142B (zh) * 2018-06-29 2022-04-19 纳晶科技股份有限公司 包覆金属氧化物的量子点、其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065054A1 (en) * 2004-12-13 2006-06-22 Nanosquare Co., Ltd Method for synthesizing semiconductor quantom dots
CN101422621A (zh) * 2007-10-31 2009-05-06 韩国科学技术研究院 通过早期引入不规则结构,生产生物成像的纳米颗粒及其制造方法
CN104387772A (zh) * 2009-05-01 2015-03-04 纳米***公司 用于纳米结构体分散的官能化基质
CN103059868A (zh) * 2011-10-18 2013-04-24 三星电子株式会社 颗粒、颗粒的溶液和制造纳米颗粒的方法
CN105985774A (zh) * 2015-02-09 2016-10-05 纳晶科技股份有限公司 纳米晶-配体复合物、其制备方法、印刷材料及印刷材料的应用
WO2017147382A1 (en) * 2016-02-26 2017-08-31 Nanosys, Inc. Low cadmium content nanostructure compositions and uses thereof
CN107629783A (zh) * 2017-08-09 2018-01-26 浙江大学 核壳量子点、其制备方法及其应用
CN109468134A (zh) * 2018-10-18 2019-03-15 浙江大学 量子点、制作方法、单光子源和qled

Also Published As

Publication number Publication date
CN112111277A (zh) 2020-12-22
CN109468134A (zh) 2019-03-15
US20210380878A1 (en) 2021-12-09
US11618853B2 (en) 2023-04-04
CN109468134B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2020078143A1 (zh) 量子点、制作方法、单光子源和qled
US10090443B2 (en) Light source with quantum dots
KR102409499B1 (ko) 발광 나노결정 입자, 그의 제조방법 및 발광 나노결정 입자를 포함하는 소자
US10340427B2 (en) Quantum dots with inorganic ligands in an inorganic matrix
KR102446858B1 (ko) 양자점 제조 방법
US11793011B2 (en) Quantum dot device and display device
JP5175259B2 (ja) 量子ドット発光素子およびその製造方法
KR100901947B1 (ko) 반도체 나노결정을 이용하는 백색 발광 다이오드 및 그의제조방법
EP3683853B1 (en) Quantum dot device and electronic device
JP7199922B2 (ja) 量子ドット素子及び電子装置
US10535829B1 (en) Quantum dot device and display device
EP3599265B1 (en) Quantum dot device and display device
EP3537492A1 (en) Quantum dot device and electronic device
JP2008283180A (ja) ナノ結晶−金属酸化物複合体を用いる発光ダイオード素子およびその製造方法
US11098244B2 (en) Composition comprising inorganic nano particle structure, light conversion thin film using the same, and display apparatus using the film
US11910629B2 (en) Light emitting device, method of manufacturing the same, and display device
TW201910486A (zh) 量子點的製造方法、發光材料、發光元件以及顯示裝置
CN106590624A (zh) 一种发光纳米颗粒及其制备方法
KR20160130540A (ko) 양자점-비흡광성매질 복합체의 제조방법 및 이에 의해 제조되는 양자점-고분자 복합체
KR20220019947A (ko) 압전성과 발광성이 동기화된 소재 및 이를 포함하는 소자
US20240097068A1 (en) Quantum dot and light emitting device including the same
EP4202008A1 (en) Semiconductor nanoparticle and electronic device comprising same
US20210257551A1 (en) Quantum dot device, method of manufacturing the same, and electronic device
KR20240039955A (ko) 양자점 및 이를 포함하는 발광 소자
KR20240072580A (ko) 우수한 성능의 양자점 발광 다이오드 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874404

Country of ref document: EP

Kind code of ref document: A1