WO2020077903A1 - 双面显示装置及其制作方法 - Google Patents

双面显示装置及其制作方法 Download PDF

Info

Publication number
WO2020077903A1
WO2020077903A1 PCT/CN2019/071795 CN2019071795W WO2020077903A1 WO 2020077903 A1 WO2020077903 A1 WO 2020077903A1 CN 2019071795 W CN2019071795 W CN 2019071795W WO 2020077903 A1 WO2020077903 A1 WO 2020077903A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
hole
anode
cathode
reflective
Prior art date
Application number
PCT/CN2019/071795
Other languages
English (en)
French (fr)
Inventor
刘杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/462,230 priority Critical patent/US11038002B2/en
Publication of WO2020077903A1 publication Critical patent/WO2020077903A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • the present invention relates to the field of display, and in particular to a double-sided display device and a manufacturing method thereof.
  • Organic light-emitting diodes are also known as organic electro-laser displays and organic light-emitting semiconductors.
  • OLED Organic Light-Emitting Diode
  • the cold light film in the OLED display (Electroluminescence, EL) material is made by evaporation or printing, and the EL material in OLED is composed of multiple materials in a certain order, and the work function of the electrodes on both sides of the EL material must meet the requirements of the EL material In order to have a higher luminous efficiency, this leads to not many types of EL material electrodes.
  • FIG. 1 is a schematic diagram of a pixel structure for double-sided display, in which the first display area 4 and the second display area 5 are two independent units with different light emitting directions, and the first display area 1 corresponds to the left side in FIG. 2, the second The display area 5 corresponds to the right side in FIG. 2, and the outer border is the pixel definition layer 6.
  • the grid represents RGB sub-pixels, and other sub-pixel design methods can also be used.
  • 2 is a cross-sectional view of a prior art double-sided display device. The left side is the first display area 4, which is a bottom emission structure, and the light emitting direction is downward, and the right side is the second display area 5, which is a top emission structure. The light direction is upward.
  • An active layer 2 is provided on the upper surface of the substrate 1, the active layer contains at least one TFT device, an insulating layer 3 is provided on the upper surface of the active layer 2, and a pixel definition layer 6 is provided on the insulating layer 3.
  • the first display area 4 includes a first transparent anode 41 attached to the upper surface of the pixel definition layer 6, a first cold light sheet 42 attached to the first transparent anode 41, and a first reflective cathode 43 attached to the first cold light sheet The upper surface of 42 and the inner side wall of the first through hole 61.
  • the second display area 5 includes a reflective anode 51 attached to the upper surface of the pixel definition layer 6, a second cold light sheet 53 attached to the upper surface of the reflective anode 51, and a transparent cathode 54 attached to the second cold light sheet 53 The surface and the inner side wall of the second through hole 62.
  • the order of the EL material is required to be completely opposite to meet the requirements of luminous efficiency.
  • the EL material on the left is ordered as ABCDE
  • the EL material on the right The sorting must be EDCBA, so as to ensure reliable luminous efficiency. This requires Fine Mask evaporation can only be achieved by two complete processes, which greatly increases the complexity of the process.
  • the top launch structure on the right also has a difficult problem to solve.
  • transparent cathodes can only use metals such as magnesium-silver alloys, not ITO.
  • magnesium-silver alloy When magnesium-silver alloy is used as a transparent electrode, its thickness is affected by two contradictory factors of resistance and transparency. If the thickness is too large, the transmittance is too low; when the thickness is small, the transmittance is high, but the resistance is too large. Under normal circumstances, the R & D personnel will give priority to the design that meets the transmittance, and solve the voltage drop caused by excessive resistance by setting the auxiliary cathode.
  • the technical problem of the present invention is that in the prior art, two complete processes of fine mask evaporation must be used, which results in complicated processes; when the transparent cathode in the top-emission structure can only use magnesium-silver alloys and magnesium-silver alloys as transparent electrodes, When the transmittance is high, the thickness is small and the resistance is too large.
  • the invention provides a double-sided display device, comprising: a substrate; an active layer; a surface provided on one side of the substrate; an insulating layer provided on a surface of the active layer away from the substrate; A pixel definition layer disposed on a surface of the insulating layer away from the active layer; the pixel definition layer includes at least one first through hole and at least one second through hole; a first display area and a first Two display areas are provided on a surface of the insulating layer away from the substrate.
  • the first display area includes: a first transparent anode attached to a side surface of the insulating layer away from the active layer; the first transparent anode and the first through hole Oppositely arranged; a first cold light sheet, which is arranged in the first through hole, and is attached to a surface of the first transparent anode away from the insulating layer; and a first reflective cathode, which is arranged on the The first through hole is attached to a side surface of the first cold light sheet away from the first transparent anode and an inner side wall of the first through hole.
  • the second display area includes: a reflective anode attached to a side surface of the insulating layer away from the active layer, and separated from the first transparent anode, the reflective anode Opposite the second through hole; a second transparent anode covering the side surface of the reflective anode away from the active layer and the outer side wall of the reflective anode; a second cold light sheet, located on The second through hole is attached to a surface of the second transparent anode away from the reflective anode; and a transparent cathode is provided in the second through hole and attached to the first The side surface of the second cold light sheet away from the second transparent anode and the inner side wall of the second through hole.
  • the transparent cathode includes: a transparent extension portion attached to a surface of the pixel definition layer away from the substrate side, and extending to the inner sidewall of the second through hole; the transparent extension portion surrounds The second through hole; the double-sided display device further includes: a second reflective cathode attached to a surface of the transparent extension portion away from the substrate.
  • the double-sided display device further includes a second reflective cathode attached to the surface of the pixel definition layer away from the substrate side and surrounding the second through hole;
  • the transparent cathode includes a transparent The extending portion is attached to the surface of the second reflective cathode away from the substrate, and extends to the inner side wall of the second through hole.
  • the transparent cathode covers the surface of the first reflective cathode, the second cold light sheet, and the pixel definition layer on a side away from the substrate.
  • each TFT device is provided in the active layer; the gate electrode of each TFT device is provided in the insulating layer; the transparent anode is connected to the gate electrode of the first TFT device; The reflective anode is connected to the gate electrode of the second TFT device.
  • the invention also provides a method for manufacturing a double-sided display device.
  • the specific steps include: an S1 active layer preparation step, an active layer is formed on the upper surface of the substrate, and at least one TFT device is installed in the active layer; S2 is insulated In the layer preparation step, an insulating layer is formed on the upper surface of the active layer, and the insulating layer is exposed and etched to form a patterned gate electrode; S3 source-drain electrode preparation step, on the active layer The part of the surface that is not covered by the insulating layer is subjected to conductive treatment and etching treatment to make a patterned source and drain electrode; S4 reflective anode preparation step, a reflective anode is prepared in a second display area, and attached to the The upper surface of the insulating layer, and connected to the gate electrode of a second TFT device; S5 transparent anode preparation step, forming a first transparent anode in a first display area, attached to the upper surface of the insulating layer, and connected to a The
  • a second reflective cathode is prepared, attached to the upper surface of the pixel definition layer, and surrounding the second through hole; in the transparent cathode preparation step, the The transparent cathode includes a transparent extension attached to the upper surface of the second reflective cathode and extending to the inner side wall of the second through hole.
  • the transparent cathode is coated on the upper surfaces of the first reflective cathode, the second cold light sheet, and the pixel definition layer.
  • the execution order of the reflective cathode preparation step and the transparent cathode preparation step is reversed; the transparent cathode preparation step is performed first, and then the reflective cathode preparation step is performed.
  • the transparent cathode includes a transparent extension portion, attached to the upper surface of the pixel definition layer, and extending to the inner sidewall of the second through hole; the transparent extension portion Around the second through hole; in the reflective cathode preparation step, a second reflective cathode is prepared and attached to the upper surface of the transparent extension.
  • the technical effect of the present invention is to provide a double-sided display device and a manufacturing method thereof, which solves the technical problem in the prior art that two sets of electrodes have different requirements for the order of cold light sheets, and ensures reliable luminous efficiency;
  • the overlapping of the cathode uses the reflective cathode as the auxiliary electrode of the transparent cathode, which solves the technical problem of excessive cathode resistance in the top emission structure; at the same time, it simplifies the process of the evaporation process and improves the production efficiency.
  • FIG. 1 is a schematic diagram of a pixel structure of a double-sided display device in the prior art
  • FIG. 2 is a cross-sectional view of a double-sided display device in the prior art
  • FIG. 3 is a cross-sectional view of a double-sided display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of another manufacturing method of the double-sided display device according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view of a double-sided display device according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a method for manufacturing a double-sided display device according to Embodiment 2 of the present invention.
  • FIG. 8 is a cross-sectional view of a double-sided display device according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart of a method for manufacturing a double-sided display device according to Embodiment 3 of the present invention.
  • FIG. 10 is a cross-sectional view of a double-sided display device according to Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart of a method for manufacturing a double-sided display device according to Embodiment 4 of the present invention.
  • Active layer 21, first TFT device; 22, second TFT device;
  • the first display area 41, the first transparent anode; 42, the first cold light sheet; 43, the first reflective cathode;
  • Second display area 51, reflective anode; 52, second transparent anode; 53, second cold light sheet; 54, transparent cathode; 55, second reflective cathode;
  • Pixel definition layer 61, first through hole; 62, second through hole.
  • the component When certain components are described as “on” another component, the component may be placed directly on the other component; there may also be an intermediate component, which is placed on the intermediate component , And the intermediate component is placed on another component.
  • the two When a component is described as “installed to” or “connected to” another component, the two can be understood to be “installed” or “connected” directly, or a component “installed to” or “connected to” through an intermediate component Another component.
  • this embodiment provides a double-sided display device, including: a substrate 1, an active layer 2, an insulating layer 3, a first display area 4, a second display area 5, and a pixel definition layer 6.
  • the active layer 2 is provided on the upper surface of the substrate 1
  • the insulating layer 3 is provided on the upper surface of the active layer 2
  • the first display area 4 and the second display area 5 are arranged side by side above the insulating layer 3, and the pixel definition layer 6 is provided On the upper surface of the insulating layer.
  • At least one TFT device is installed in the active layer 2
  • the source-drain electrode of each TFT device is provided in the active layer 2
  • the gate electrode of each TFT device is provided in the insulating layer 3.
  • the pixel definition layer 6 includes at least one first through hole 61 and at least one second through hole 62.
  • the first display area 4 includes: a first transparent anode 41, a first cold light sheet 42, and a first reflective cathode 43.
  • the first transparent anode 41 is attached to the upper surface of the insulating layer 3, the first transparent anode 41 is disposed opposite to the first through hole 61, and is electrically connected to the first gate electrode through the insulating layer 3;
  • the first cold light sheet 42 is provided In the first through hole 61 and attached to the upper surface of the first transparent anode 41;
  • the first reflective cathode 43 is provided in the first through hole 61 and attached to the upper surface of the first cold light sheet 42 and the first The inner side wall of the through hole 61.
  • the second display area 5 includes: a reflective anode 51, a second transparent anode 52, a second cold light sheet 53, and a transparent cathode 54.
  • the reflective anode 51 is attached to the upper surface of the insulating layer 3 and is separated from the first transparent anode 41, the reflective anode 51 is disposed opposite to the second through hole 62, and is electrically connected to the second gate electrode through the insulating layer 3;
  • the second transparent anode 52 is wrapped around the outer walls of the reflective anode 51 and the reflective anode 51; the second cold light sheet 53 is disposed in the second through hole 62, and is attached to the upper surface of the second transparent anode 52, and the transparent cathode 54 is disposed
  • the second through hole 62 is attached to the upper surface of the second luminescent sheet 53 and the inner side wall of the second through hole 62.
  • the thickness of the first transparent anode 41 and the second transparent anode 52 is 20 nm to 100 nm.
  • Materials with high transmittance, high conductivity, and high work function are used, including: indium tin oxide, indium zinc oxide, aluminum doped zinc oxide Or indium zinc tin oxide;
  • reflective anode 51 uses materials with high reflectivity, high conductivity and high work function, including silver, gold or platinum;
  • transparent cathode 54 uses high penetration, high conductivity and low work function Of materials, including lanthanum hexaboride or magnesium-aluminum alloy; and the first reflective cathode 43 uses materials with high reflectivity, high conductivity, and low work function, including aluminum or magnesium.
  • This embodiment adopts the design of the transparent anode covering the reflective anode, which solves the technical problem that the two groups of electrodes have different requirements for the order of the cold light sheet material in the prior art.
  • the original must be used twice Fine
  • the evaporation process that can only be completed with Mask is simplified to a process that can be completed with only one Open Mask, simplifying the process flow and improving the efficiency of process production.
  • this embodiment also provides a method for manufacturing a double-sided display device, and the specific steps include S101 to S108.
  • S101 active layer preparation step an active layer 2 is made on the upper surface of the substrate 1, and at least one TFT device is installed in the active layer 2;
  • S102 insulating layer preparation step an insulating layer 3 is made on the upper surface of the active layer 2, Expose and etch the insulating layer 3 to make a patterned gate electrode;
  • S103 source-drain electrode preparation step conduct conductorization and etching treatment on the part of the upper surface of the active layer 2 that is not covered by the insulating layer 3 Patterned source and drain electrodes;
  • S104 reflective anode preparation step a reflective anode 51 is prepared in a second display area 5, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a second TFT device 22;
  • S105 In the preparation step of the transparent anode a first transparent anode 41 is formed in a first display area 4, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a first TFT device 21; formed in the second display area 5 A
  • the first through hole 61 is opposite to the first transparent anode 41, and the second through hole 62 is opposite to the reflective anode 51;
  • S107 cold light sheet preparation step in A first cold light sheet 42 is prepared in the first through hole 61 and is attached to the upper surface of the first transparent anode 41;
  • a second cold light sheet 53 is prepared in the second through hole 62 and is attached to the upper surface of the second transparent anode 52 ;
  • S108 reflective cathode preparation step a first reflective cathode 43 is prepared in the first through hole 61, attached to the upper surface of the first cold light sheet 42 and the inner wall of the first through hole 61;
  • S109 transparent cathode preparation step in the first
  • a transparent cathode 54 is prepared in the two through holes 62, and is attached to the upper surface of the second luminescent sheet 53 and the side wall of the second through hole 62.
  • this embodiment also provides a method for manufacturing a double-sided display device.
  • the specific steps include the following S201 to S209.
  • S201 active layer preparation step an active layer 2 is formed on the upper surface of the substrate 1, and at least one TFT device is installed in the active layer 2;
  • S202 insulating layer preparation step an insulating layer 3 is formed on the upper surface of the active layer 2, Expose and etch the insulating layer 3 to make a patterned gate electrode;
  • S203 source-drain electrode preparation step conduct conductorization and etching treatment on the part of the upper surface of the active layer 2 that is not covered by the insulating layer 3 Patterned source and drain electrodes;
  • S204 reflective anode preparation step a reflective anode 51 is prepared in a second display area 5, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a second TFT device 22;
  • S205 In the preparation step of the transparent anode, a first transparent anode 41 is formed in a first display area 4, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a first TFT device 21; formed in the second display area 5
  • the first through hole 61 is opposite to the first transparent anode 41, and the second through hole 62 is opposite to the reflective anode 51;
  • S207 cold light sheet preparation step in A first cold light sheet 42 is prepared in the first through hole 61 and is attached to the upper surface of the first transparent anode 41;
  • a second cold light sheet 53 is prepared in the second through hole 62 and is attached to the upper surface of the second transparent anode 52 ;
  • S208 transparent cathode preparation step a transparent cathode 54 is prepared in the second through hole 62, attached to the upper surface of the second luminescent sheet 53 and the side wall of the second through hole 62;
  • S209 reflective cathode preparation step in the first
  • a first reflective cathode 43 is prepared in the through hole 61 and is attached to the upper surface of the first cold light sheet 42 and the inner side wall of the first through hole 61.
  • This embodiment adopts the design of the transparent anode covering the reflective anode, which solves the technical problem that the two groups of electrodes have different requirements for the order of the cold light sheet material in the prior art.
  • the original must be used twice Fine
  • the evaporation process that can only be completed with Mask is simplified to a process that can be completed with only one Open Mask, simplifying the process flow and improving the efficiency of process production.
  • this embodiment provides a double-sided display device, which is mostly the same as the technical solution of Embodiment 1, except that the double-sided display device further includes a second reflective cathode 55 attached to the pixel
  • the upper surface of the layer 6 is defined and surrounds the second through-hole 62;
  • the transparent cathode 54 includes a transparent extension attached to the upper surface of the second reflective cathode 55 and extends to the inner wall of the second through-hole 62.
  • the transparent cathode 54 covers the upper surfaces of the first reflective cathode 43, the second cold light sheet 53 and the pixel definition layer 6, so that the first display area 4 and the second display area 5 have the same low potential.
  • This embodiment adopts the design of the transparent anode covering the reflective anode, which solves the technical problem that the two groups of electrodes have different requirements for the order of the cold light sheet material in the prior art.
  • the original must be used twice Fine
  • the evaporation process that can only be completed with Mask is simplified to a process that can be completed with only one Open Mask, simplifying the process flow and improving the efficiency of process production.
  • This embodiment adopts a design in which a transparent cathode is attached to a second reflective cathode, and the second reflective cathode 55 is used as an auxiliary electrode of the transparent cathode 54. Under the premise of keeping the thickness small, the cathode resistance can be effectively reduced, and the top emission is solved.
  • the technical problem of excessive cathode resistance in the structure balances the two factors of resistance and transparency, expands the choice of materials for transparent cathodes, and helps reduce production and use costs.
  • this embodiment also provides a method for manufacturing a double-sided display device, which specifically includes the following steps S301 to S309.
  • S301 active layer preparation step an active layer 2 is made on the upper surface of the substrate 1, and at least one TFT device is installed in the active layer 2;
  • S302 insulating layer preparation step an insulating layer 3 is made on the upper surface of the active layer 2, Expose and etch the insulating layer 3 to make a patterned gate electrode;
  • S303 Source-drain electrode preparation step conduct conductive treatment and etching treatment on the part of the upper surface of the active layer 2 that is not covered by the insulating layer 3 Patterned source and drain electrodes;
  • S304 reflective anode preparation step a reflective anode 51 is prepared in a second display area 5, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a second TFT device 22;
  • S305 In the preparation step of the transparent anode a first transparent anode 41 is formed in a first display area 4, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a first TFT device 21; formed in the second display area 5
  • the first through hole 61 is opposite to the first transparent anode 41, and the second through hole 62 is opposite to the reflective anode 51;
  • S307 cold light sheet preparation step in A first cold light sheet 42 is prepared in the first through hole 61 and is attached to the upper surface of the first transparent anode 41;
  • a second cold light sheet 53 is prepared in the second through hole 62 and is attached to the upper surface of the second transparent anode 52 ;
  • S308 reflective cathode preparation step prepare a first reflective cathode 43 in the first through hole 61, attached to the upper surface of the first cold light sheet 42 and the inner wall of the first through hole 61;
  • prepare a second reflective cathode 55 paste Attached to the upper surface of the pixel definition layer 6 and surrounding the second through-hole 62;
  • S309 transparent cathode preparation step a transparent cathode 54 is prepared in the second through-hole 62, attached to the upper surface of the second luminescent sheet 53 and the second The inner wall 62
  • This embodiment adopts the design of the transparent anode covering the reflective anode, which solves the technical problem that the two groups of electrodes have different requirements for the order of the cold light sheet material in the prior art.
  • the original must be used twice Fine
  • the evaporation process that can only be completed with Mask is simplified to a process that can be completed with only one Open Mask, simplifying the process flow and improving the efficiency of process production.
  • This embodiment adopts a design in which a transparent cathode is attached to a second reflective cathode, and the second reflective cathode 55 is used as an auxiliary electrode of the transparent cathode 54. Under the premise of keeping the thickness small, the cathode resistance can be effectively reduced, and the top emission is solved.
  • the technical problem of excessive cathode resistance in the structure balances the two factors of resistance and transparency, expands the choice of materials for transparent cathodes, and helps reduce production and use costs.
  • this embodiment provides a double-sided display device, which is mostly the same as the technical solution of Embodiment 1.
  • This embodiment adopts a design in which a transparent cathode and a reflective cathode are overlapped.
  • the transparent cathode 54 of 5 extends a transparent extension portion, attached to the upper surface of the pixel definition layer 6, and extends to the inner sidewall of the second through hole 62, the transparent extension portion is disposed around the second through hole 62; the transparent A second reflective cathode 55 is attached to the upper surface of the extension, and the second reflective cathode 55 is used as an auxiliary electrode of the transparent cathode 54.
  • the cathode resistance can be effectively reduced, which solves the problem in the top emission structure.
  • the technical problem of excessive cathode resistance balances the two factors of resistance and transparency, expands the selection range of materials for transparent cathodes, and helps reduce production and use costs.
  • this embodiment also provides a method for manufacturing a double-sided display device, and the specific steps include S401-S409.
  • S401 active layer preparation step an active layer 2 is made on the upper surface of the substrate 1, and at least one TFT device is installed in the active layer 2;
  • S402 insulating layer preparation step an insulating layer 3 is made on the upper surface of the active layer 2, Expose and etch the insulating layer 3 to make a patterned gate electrode;
  • S403 Source-drain electrode preparation step conduct conductorization and etching treatment on the part of the upper surface of the active layer 2 that is not covered by the insulating layer 3 Patterned source and drain electrodes;
  • S404 reflective anode preparation step a reflective anode 51 is prepared in a second display area 5, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a second TFT device 22;
  • S405 In the preparation step of the transparent anode, a first transparent anode 41 is formed in a first display area 4, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a first TFT device 21; formed in the second
  • the first through hole 61 is opposite to the first transparent anode 41, and the second through hole 62 is opposite to the reflective anode 51;
  • S407 cold light sheet preparation step in A first cold light sheet 42 is prepared in the first through hole 61 and is attached to the upper surface of the first transparent anode 41;
  • a second cold light sheet 53 is prepared in the second through hole 62 and is attached to the upper surface of the second transparent anode 52
  • S408 transparent cathode preparation step a transparent cathode 54 is prepared in the second through-hole 62, attached to the upper surface of the second luminescent sheet 53 and the side wall of the second through-hole 62; the transparent cathode 54 in the second display area 5
  • Extending a transparent extension portion attached to the upper surface of the pixel definition layer 6, and extending to the inner wall of the second through hole 62, the transparent extension portion is disposed around the second through hole 62;
  • S409 reflective cathode preparation step in A first reflective cathode 43 is prepared
  • This embodiment adopts the design of the transparent anode covering the reflective anode, which solves the technical problem that the two groups of electrodes have different requirements for the order of the cold light sheet material in the prior art.
  • the original must be used twice Fine
  • the evaporation process that can only be completed with Mask is simplified to a process that can be completed with only one Open Mask, simplifying the process flow and improving the efficiency of process production.
  • This embodiment adopts a design in which the second reflective cathode is attached to the transparent cathode, and the second reflective cathode 55 is used as an auxiliary electrode of the transparent cathode 54 to effectively reduce the cathode resistance under the premise of keeping the thickness small and solve the top emission
  • the technical problem of excessive cathode resistance in the structure balances the two factors of resistance and transparency, expands the choice of materials for transparent cathodes, and helps reduce production and use costs.
  • this embodiment provides a double-sided display device, which is mostly the same as the technical solution of Embodiment 1, except that in this embodiment, the transparent cathode 54 is coated with the first reflective cathode 43 and the second luminescence
  • the upper surface of the sheet 53 and the pixel defining layer 6 makes the first display area 4 and the second display area 5 have the same low potential.
  • this embodiment also provides a method for manufacturing a double-sided display device, and the specific steps include S501 to S509.
  • S501 active layer preparation step an active layer 2 is made on the upper surface of the substrate 1, and at least one TFT device is installed in the active layer 2;
  • S502 insulating layer preparation step an insulating layer 3 is made on the upper surface of the active layer 2, Expose and etch the insulating layer 3 to make a patterned gate electrode;
  • S503 source-drain electrode preparation step conduct conductorization and etching treatment on the part of the upper surface of the active layer 2 that is not covered by the insulating layer 3 Patterned source and drain electrodes;
  • S504 reflective anode preparation step a reflective anode 51 is prepared in a second display area 5, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a second TFT device 22;
  • S505 In the preparation step of the transparent anode a first transparent anode 41 is formed in a first display area 4, attached to the upper surface of the insulating layer 3, and connected to the gate electrode of a first TFT device 21; formed in the second
  • the first through hole 61 is opposite to the first transparent anode 41, and the second through hole 62 is opposite to the reflective anode 51;
  • S507 cold light sheet preparation step in A first cold light sheet 42 is prepared in the first through hole 61 and is attached to the upper surface of the first transparent anode 41;
  • a second cold light sheet 53 is prepared in the second through hole 62 and is attached to the upper surface of the second transparent anode 52 ;
  • S508 reflective cathode preparation step a first reflective cathode 43 is prepared in the first through hole 61, attached to the upper surface of the first cold light sheet 42 and the inner wall of the first through hole 61;
  • S509 transparent cathode preparation step in the first
  • a transparent cathode 54 is prepared in the two through holes 62, and is attached to the upper surface of the second luminescent sheet 53 and the side wall of the second through hole 62.
  • This embodiment adopts the design of the transparent anode covering the reflective anode, which solves the technical problem that the two groups of electrodes have different requirements for the order of the cold light sheet material in the prior art.
  • the original must be used twice Fine
  • the evaporation process that can only be completed with Mask is simplified to a process that can be completed with only one Open Mask, simplifying the process flow and improving the efficiency of process production.
  • This embodiment adopts the design of the transparent cathode covering the reflective cathode. Under the premise of keeping the thickness of the cathode small, the cathode resistance can be effectively reduced, the technical problem of excessive cathode resistance in the top emission structure is solved, and the resistance and transparency are balanced. This factor has expanded the range of materials used for transparent cathodes, which has helped reduce production costs.
  • the RGB light emitting method of the double-sided display device provided by the present invention may use three RGB pixels, or adopt a white light OLED, that is, all sub-pixels are of a white light structure, and then RGB sub-pixels are formed by means of color films. Luminous way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种双面显示装置及其制作方法,双面显示装置包括一基板(1)、一有源层(2)、一绝缘层(3)、一像素定义层(6)、一第一显示区(4)以及一第二显示区(5),第一显示区(4)包括一第一透明阳极(41)、一第一冷光片(42)以及一反射阴极(43),第二显示区(5)包括一反射阳极(51)、一第二透明阳极(52)、一第二冷光片(53)以及一透明阴极(54)。双面显示装置的制作方法包括:S1有源层制备步骤;S2绝缘层制备步骤;S3源漏电极图案制备步骤;S4反射阳极制备步骤;S5透明阳极制备步骤;S6像素定义层制备步骤;S7冷光片制备步骤;S8反射阴极制备步骤;以及S9透明阴极制备步骤。减少了工序,扩大了材料选取范围,提高了发光效率,提高了制作效率。

Description

双面显示装置及其制作方法 技术领域
本发明涉及显示领域,特别涉及一种双面显示装置及其制作方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode, OLED)又称为有机电激光显示、有机发光半导体。目前,OLED显示器中的冷光片 ( electroluminescence, EL)材料是采用蒸镀或者打印的方法制成,而OLED中EL材料是由多种材料按照一定的顺序组合而成的,并且EL材料两边的电极功函数必须符合EL材料的要求才能具有较高的发光效率,这也就导致EL材料的电极可选种类并不很多。
图1为双面显示的像素结构的示意图,其中第一显示区4和第二显示区5为两个独立且发光方向不同的单元,第一显示区1对应图2中的左侧,第二显示区5对应图2中的右侧,外边框为像素定义层6。方格代表RGB三亚像素,也可以采用其他的亚像素设计方式。图2为现有技术的双面显示装置的剖面图,左侧为第一显示区4,是底发射的结构,发光方向向下,右侧为第二显示区5,是顶发射的结构,发光方向向上。基板1上表面设有有源层2,有源层内含有至少一TFT器件,有源层2上表面设有绝缘层3,绝缘层3上设有像素定义层6。第一显示区4内包括第一透明阳极41,贴附于像素定义层6的上表面,第一冷光片42贴附于第一透明阳极41,第一反射阴极43贴附于第一冷光片42的上表面及第一通孔61的内侧壁。第二显示区5内包括反射阳极51,贴附于像素定义层6的上表面,第二冷光片53贴附于反射阳极51的上表面,透明阴极54贴附于第二冷光片53的上表面以及第二通孔62的内侧壁。
但是,采用这种结构的时候,由于EL材料功函数的要求,就要求EL材料的排序是完全相反的才能满足发光效率的要求,比如左侧的EL材料排序为ABCDE时,右侧的EL材料排序就必须为EDCBA,这样才能保证可靠的发光效率。这就要求必须采用Fine Mask蒸镀两个完整的工序才能实现,大大增加了工艺复杂度。
另一方面,右侧的顶发射结构也存在一个难以解决的难题。由于功函数的要求,透明阴极只能使用如镁银合金这种功函数的金属,不能使用ITO。而镁银合金作为透明电极时,其厚度受到电阻和透明度两个互相矛盾的因素的影响。厚度太大,则透过率太低;厚度较小时,透过率较高,但电阻太大。一般情况下,研发人员会优先选择满足透过率的设计,通过设置辅助阴极的方式解决电阻过大导致的压降问题。
技术问题
本发明的技术问题在于,现有技术中必须采用Fine Mask蒸镀两个完整的工序,导致工序复杂;顶发射结构中透明阴极只能使用如镁银合金,镁银合金作为透明电极时,其透过率较高时,厚度较小、电阻太大等。
技术解决方案
本发明提供一种双面显示装置,包括:一基板;一有源层;设于所述基板的一侧表面;一绝缘层,设于所述有源层远离所述基板的一侧表面;一像素定义层,设于所述绝缘层远离所述有源层的一侧表面;所述像素定义层包括至少一第一通孔及至少一第二通孔;一第一显示区及一第二显示区,设于所述绝缘层远离所述基板的一侧表面。
进一步地,其中,所述第一显示区包括:一第一透明阳极,贴附于所述绝缘层远离所述有源层的一侧表面;所述第一透明阳极与所述第一通孔相对设置;一第一冷光片,设于所述第一通孔内,且贴附于所述第一透明阳极远离所述绝缘层的一侧表面;以及一第一反射阴极,设于所述第一通孔内,且贴附于所述第一冷光片远离所述第一透明阳极的一侧表面及所述第一通孔内侧壁。
进一步地,其中,所述第二显示区包括:一反射阳极,贴附于所述绝缘层远离所述有源层的一侧表面,且与所述第一透明阳极相离,所述反射阳极与所述第二通孔相对设置;一第二透明阳极,包覆于所述反射阳极远离所述有源层的一侧表面及所述反射阳极的外侧壁;一第二冷光片,设于所述第二通孔内,且贴附于所述第二透明阳极远离所述反射阳极的一侧表面;以及一透明阴极,设于所述第二通孔内,且贴附于所述第二冷光片远离所述第二透明阳极的一侧表面及所述第二通孔内侧壁。
进一步地,所述透明阴极包括:一透明延伸部,贴附于所述像素定义层远离所述基板一侧的表面,且延伸至所述第二通孔内侧壁;所述透明延伸部环绕所述第二通孔;所述双面显示装置还包括:一第二反射阴极,贴附于所述透明延伸部远离所述基板一侧的表面。
进一步地,所述双面显示装置还包括一第二反射阴极,贴附于所述像素定义层远离所述基板一侧的表面,且环绕所述第二通孔;所述透明阴极包括一透明延伸部,贴附于所述第二反射阴极远离所述基板一侧的表面,且延伸至所述第二通孔内侧壁。
进一步地,所述透明阴极包覆于所述第一反射阴极、所述第二冷光片及所述像素定义层远离所述基板一侧的表面。
进一步地,每一TFT器件的源漏电极设于所述有源层内;每一TFT器件的栅电极设于所述绝缘层内;所述透明阳极连接至第一TFT器件的栅电极;所述反射阳极连接至第二TFT器件的栅电极。
本发明还提供一种双面显示装置的制作方法,具体步骤包括:S1有源层制备步骤,在基板上表面制作一有源层,在所述有源层内安装至少一TFT器件;S2绝缘层制备步骤,在所述有源层上表面制作一绝缘层,对所述绝缘层进行曝光刻蚀处理,制成图案化的栅电极;S3源漏电极制备步骤,对所述有源层上表面未被所述绝缘层覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;S4反射阳极制备步骤,在一第二显示区制备一反射阳极,贴附于所述绝缘层上表面,且连接至一第二TFT器件的栅电极; S5透明阳极制备步骤,在一第一显示区形成一第一透明阳极,贴附于所述绝缘层上表面,且连接至一第一TFT器件的栅电极;在所述第二显示区形成一第二透明阳极,包覆于所述反射阳极的上表面及外侧壁;S6像素定义层制备步骤,在所述绝缘层、所述反射阳极、所述第一透明阳极以及第二透明阳极上表面制备一像素定义层;所述像素定义层形成至少一第一通孔及至少一第二通孔,所述第一通孔与所述第一透明阳极相对设置,所述第二通孔与所述反射阳极相对设置;S7冷光片制备步骤,在所述第一通孔内制备第一冷光片,贴附于所述第一透明阳极上表面;在所述第二通孔内制备第二冷光片,贴附于所述第二透明阳极上表面;S8反射阴极制备步骤,在所述第一通孔内制备一第一反射阴极,贴附于所述第一冷光片上表面及所述第一通孔内侧壁;以及S9 透明阴极制备步骤,在所述第二通孔内制备一透明阴极,贴附于所述第二冷光片上表面及所述第二通孔内侧壁。
进一步地,在所述反射阴极制备步骤中,制备一第二反射阴极,贴附于所述像素定义层上表面,且环绕所述第二通孔;在所述透明阴极制备步骤中,所述透明阴极包括一透明延伸部,贴附于所述第二反射阴极上表面,且延伸至所述第二通孔内侧壁。
进一步地,在所述透明阴极制备步骤中,所述透明阴极包覆于所述第一反射阴极、所述第二冷光片及所述像素定义层的上表面。
进一步地,在所述冷光片制备步骤之后,调换所述反射阴极制备步骤与所述透明阴极制备步骤的执行顺序;先执行所述透明阴极制备步骤,再执行所述反射阴极制备步骤。
进一步地,在所述透明阴极制备步骤中,所述透明阴极包括一透明延伸部,贴附于所述像素定义层上表面,且延伸至所述第二通孔内侧壁;所述透明延伸部环绕所述第二通孔;在所述反射阴极制备步骤中,制备一第二反射阴极,贴附于所述透明延伸部上表面。
有益效果
本发明的技术效果在于,提供一种双面显示装置及其制作方法,解决了现有技术中两组电极对冷光片排序要求不同的技术问题,保证了可靠的发光效率;通过透明阴极于反射阴极的搭接,利用反射阴极作为透明阴极的辅助电极,解决了顶发射结构中阴极电阻过大的技术问题;同时简化了蒸镀工艺的工序,提高制作效率。
附图说明
图1为现有技术中双面显示装置的像素结构示意图;
图2为现有技术中双面显示装置的剖面图;
图3为本发明实施例1所述的双面显示装置的剖面图;
图4为本发明实施例1所述的双面显示装置的一种制作方法的流程图;
图5为本发明实施例1所述的双面显示装置的另一种制作方法的流程图;
图6为本发明实施例2所述的双面显示装置的剖面图;
图7为本发明实施例2所述的双面显示装置的制作方法的流程图;
图8为本发明实施例3所述的双面显示装置的剖面图;
图9为本发明实施例3所述的双面显示装置的制作方法的流程图;
图10为本发明实施例4所述的双面显示装置的剖面图;
图11为本发明实施例4所述的双面显示装置的制作方法的流程图。
部分组件标识如下:
1、基板;
2、有源层;21、第一TFT器件;22、第二TFT器件;
3、绝缘层;
4、第一显示区;41、第一透明阳极;42、第一冷光片;43、第一反射阴极;
5、第二显示区;51、反射阳极;52、第二透明阳极;53、第二冷光片;54、透明阴极;55、第二反射阴极;
6、像素定义层;61、第一通孔;62、第二通孔。
本发明的实施方式
以下结合说明书附图详细说明本发明的优选实施例,以向本领域中的技术人员完整介绍本发明的技术内容,以举例证明本发明可以实施,使得本发明公开的技术内容更加清楚,使得本领域的技术人员更容易理解如何实施本发明。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例,下文实施例的说明并非用来限制本发明的范围。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,本文所使用的方向用语是用来解释和说明本发明,而不是用来限定本发明的保护范围。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。此外,为了便于理解和描述,附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。
当某些组件,被描述为“在”另一组件“上”时,所述组件可以直接置于所述另一组件上;也可以存在一中间组件,所述组件置于所述中间组件上,且所述中间组件置于另一组件上。当一个组件被描述为“安装至”或“连接至”另一组件时,二者可以理解为直接“安装”或“连接”,或者一个组件通过一中间组件“安装至”或“连接至”另一个组件。
实施例1
如图3所示,本实施例提供一种双面显示装置,包括:基板1、有源层2、绝缘层3、第一显示区4、第二显示区5以及像素定义层6。有源层2设于基板1的上表面,绝缘层3设于有源层2的上表面,第一显示区4与第二显示区5并排设于绝缘层3的上方,像素定义层6设于绝缘层的上表面。有源层2内安装至少一TFT器件,每一TFT器件的源漏电极设于有源层2内,每一TFT器件的栅电极设于绝缘层3内。像素定义层6包括至少一第一通孔61以及至少一第二通孔62。
第一显示区4内包括:第一透明阳极41、第一冷光片42、第一反射阴极43。第一透明阳极41贴附于绝缘层3的上表面,第一透明阳极41与第一通孔61相对设置,穿过绝缘层3电连接至所述第一栅电极;第一冷光片42设于第一通孔61内,且贴附于第一透明阳极41的上表面;第一反射阴极43设于第一通孔61内,且贴附于第一冷光片42的上表面及第一通孔61内侧壁。
第二显示区5内包括:反射阳极51、第二透明阳极52、第二冷光片53、透明阴极54。反射阳极51贴附于绝缘层3的上表面,且与第一透明阳极41相离,反射阳极51与第二通孔62相对设置,穿过绝缘层3电连接至所述第二栅电极;第二透明阳极52包覆于反射阳极51及反射阳极51的外侧壁;第二冷光片53设于第二通孔62内,且贴附于第二透明阳极52的上表面,透明阴极54设于第二通孔62内,且贴附于第二冷光片53的上表面及第二通孔62内侧壁。
第一透明阳极41以及第二透明阳极52的厚度为20nm~100nm,采用具有高穿透率、高导电率和功函数高的材料,包括:氧化铟锡、氧化铟锌、铝参杂氧化锌或者铟锌锡氧化物;反射阳极51采用具有高反射率、高导电率和功函数高的材料,包括银、金或者铂;透明阴极54采用具有高穿透率、高导电率和功函数低的材料,包括六硼化镧或者镁铝合金;以及第一反射阴极43采用具有高反射率、高导电率和功函数低的材料,包括铝或者镁。
本实施例采用透明阳极包覆反射阳极的设计,解决了现有技术中两组电极对冷光片材料排序要求不同的技术问题,将原有的必须采用两次Fine Mask才能完成的蒸镀工艺,简化为只需一次Open Mask就可以完成的工艺,简化工艺流程,提高工艺制作效率。
如图4所示,本实施例还提供一种双面显示装置的制作方法,具体步骤包括S101~S108。
S101有源层制备步骤,在基板1上表面制作一有源层2,在有源层2内安装至少一TFT器件;S102绝缘层制备步骤,在有源层2上表面制作一绝缘层3,对绝缘层3进行曝光刻蚀处理,制成图案化的栅电极;S103源漏电极制备步骤,对有源层2上表面未被绝缘层3覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;S104反射阳极制备步骤,在一第二显示区5制备一反射阳极51,贴附于绝缘层3上表面,且连接至一第二TFT器件22的栅电极;S105透明阳极制备步骤,在一第一显示区4形成一第一透明阳极41,贴附于绝缘层3的上表面,且连接至一第一TFT器件21的栅电极;在第二显示区5形成一第二透明阳极52,包覆于反射阳极51的上表面及外侧壁;S106像素定义层制备步骤,在绝缘层3、反射阳极51、第一透明阳极41以及第二透明阳极52上表面制备一像素定义层6;像素定义层6形成至少一第一通孔61及至少一第二通孔62,第一通孔61与第一透明阳极41相对设置,第二通孔62与反射阳极51相对设置;S107冷光片制备步骤,在第一通孔61内制备一第一冷光片42,贴附于第一透明阳极41上表面;在第二通孔62内制备一第二冷光片53,贴附于第二透明阳极52上表面;S108反射阴极制备步骤,在第一通孔61内制备一第一反射阴极43,贴附于第一冷光片42上表面及第一通孔61内侧壁;以及S109 透明阴极制备步骤,在第二通孔62内制备一透明阴极54,贴附于第二冷光片53上表面及第二通孔内62侧壁。
如图5所示,本实施例还提供一种双面显示装置的制作方法,具体步骤包括如下S201~S209。
S201有源层制备步骤,在基板1上表面制作一有源层2,在有源层2内安装至少一TFT器件;S202绝缘层制备步骤,在有源层2上表面制作一绝缘层3,对绝缘层3进行曝光刻蚀处理,制成图案化的栅电极;S203源漏电极制备步骤,对有源层2上表面未被绝缘层3覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;S204反射阳极制备步骤,在一第二显示区5制备一反射阳极51,贴附于绝缘层3上表面,且连接至一第二TFT器件22的栅电极;S205透明阳极制备步骤,在一第一显示区4形成一第一透明阳极41,贴附于绝缘层3的上表面,且连接至一第一TFT器件21的栅电极;在第二显示区5形成一第二透明阳极52,包覆于反射阳极51的上表面及外侧壁;S206像素定义层制备步骤,在绝缘层3、反射阳极51、第一透明阳极41以及第二透明阳极52上表面制备一像素定义层6;像素定义层6形成至少一第一通孔61及至少一第二通孔62,第一通孔61与第一透明阳极41相对设置,第二通孔62与反射阳极51相对设置;S207冷光片制备步骤,在第一通孔61内制备一第一冷光片42,贴附于第一透明阳极41上表面;在第二通孔62内制备一第二冷光片53,贴附于第二透明阳极52上表面;S208透明阴极制备步骤,在第二通孔62内制备一透明阴极54,贴附于第二冷光片53上表面及第二通孔内62侧壁;以及S209 反射阴极制备步骤,在第一通孔61内制备一第一反射阴极43,贴附于第一冷光片42上表面及第一通孔61内侧壁。
本实施例采用透明阳极包覆反射阳极的设计,解决了现有技术中两组电极对冷光片材料排序要求不同的技术问题,将原有的必须采用两次Fine Mask才能完成的蒸镀工艺,简化为只需一次Open Mask就可以完成的工艺,简化工艺流程,提高工艺制作效率。
实施例2
如图6所示,本实施例提供一种双面显示装置,与实施例1的技术方案大部分相同,区别在于,所述双面显示装置还包括一第二反射阴极55,贴附于像素定义层6上表面,且环绕第二通孔62;透明阴极54包括一透明延伸部,贴附于第二反射阴极55上表面,且延伸至第二通孔62内侧壁。透明阴极54包覆于第一反射阴极43、第二冷光片53及像素定义层6的上表面,使得第一显示区4和第二显示区5拥有相同的低电位。
本实施例采用透明阳极包覆反射阳极的设计,解决了现有技术中两组电极对冷光片材料排序要求不同的技术问题,将原有的必须采用两次Fine Mask才能完成的蒸镀工艺,简化为只需一次Open Mask就可以完成的工艺,简化工艺流程,提高工艺制作效率。本实施例采用透明阴极贴附于第二反射阴极的设计,利用第二反射阴极55作为透明阴极54的辅助电极,在厚度保持较小的前提下,可以有效减小阴极电阻,解决了顶发射结构中阴极电阻过大的技术问题,平衡了电阻与透明度两个因素,扩大了透明阴极的材料的选用范围,有助于降低生产使用成本。
如图7所示,本实施例还提供一种双面显示装置的制作方法,具体包括如下步骤S301~S309。
S301有源层制备步骤,在基板1上表面制作一有源层2,在有源层2内安装至少一TFT器件;S302绝缘层制备步骤,在有源层2上表面制作一绝缘层3,对绝缘层3进行曝光刻蚀处理,制成图案化的栅电极;S303源漏电极制备步骤,对有源层2上表面未被绝缘层3覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;S304反射阳极制备步骤,在一第二显示区5制备一反射阳极51,贴附于绝缘层3上表面,且连接至一第二TFT器件22的栅电极;S305透明阳极制备步骤,在一第一显示区4形成一第一透明阳极41,贴附于绝缘层3的上表面,且连接至一第一TFT器件21的栅电极;在第二显示区5形成一第二透明阳极52,包覆于反射阳极51的上表面及外侧壁;S306像素定义层制备步骤,在绝缘层3、反射阳极51、第一透明阳极41以及第二透明阳极52上表面制备一像素定义层6;像素定义层6形成至少一第一通孔61及至少一第二通孔62,第一通孔61与第一透明阳极41相对设置,第二通孔62与反射阳极51相对设置;S307冷光片制备步骤,在第一通孔61内制备一第一冷光片42,贴附于第一透明阳极41上表面;在第二通孔62内制备一第二冷光片53,贴附于第二透明阳极52上表面;S308反射阴极制备步骤,在第一通孔61内制备一第一反射阴极43,贴附于第一冷光片42上表面及第一通孔61内侧壁;制备一第二反射阴极55,贴附于像素定义层6上表面,且环绕第二通孔62;以及S309 透明阴极制备步骤,在第二通孔62内制备一透明阴极54,贴附于第二冷光片53上表面及第二通孔内62侧壁;透明阴极54包括一透明延伸部,贴附于第二反射阴极55上表面,且延伸至第二通孔内侧壁62。
本实施例采用透明阳极包覆反射阳极的设计,解决了现有技术中两组电极对冷光片材料排序要求不同的技术问题,将原有的必须采用两次Fine Mask才能完成的蒸镀工艺,简化为只需一次Open Mask就可以完成的工艺,简化工艺流程,提高工艺制作效率。本实施例采用透明阴极贴附于第二反射阴极的设计,利用第二反射阴极55作为透明阴极54的辅助电极,在厚度保持较小的前提下,可以有效减小阴极电阻,解决了顶发射结构中阴极电阻过大的技术问题,平衡了电阻与透明度两个因素,扩大了透明阴极的材料的选用范围,有助于降低生产使用成本。
实施例3
如图8所示,本实施例提供一种双面显示装置,与实施例1的技术方案大部分相同,区别在于,本实施例采用透明阴极与反射阴极搭接的设计,在第二显示区5的透明阴极54延伸出一透明延伸部,贴附于像素定义层6的上表面,且延伸至第二通孔62内侧壁,所述透明延伸部环绕第二通孔62设置;所述透明延伸部的上表面贴附一第二反射阴极55,利用第二反射阴极55作为透明阴极54的辅助电极,在厚度保持较小的前提下,可以有效减小阴极电阻,解决了顶发射结构中阴极电阻过大的技术问题,平衡了电阻与透明度两个因素,扩大了透明阴极的材料的选用范围,有助于降低生产使用成本。
如图9所示,本实施例还提供一种双面显示装置的制作方法,具体步骤包括S401~S409。
S401有源层制备步骤,在基板1上表面制作一有源层2,在有源层2内安装至少一TFT器件;S402绝缘层制备步骤,在有源层2上表面制作一绝缘层3,对绝缘层3进行曝光刻蚀处理,制成图案化的栅电极;S403源漏电极制备步骤,对有源层2上表面未被绝缘层3覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;S404反射阳极制备步骤,在一第二显示区5制备一反射阳极51,贴附于绝缘层3上表面,且连接至一第二TFT器件22的栅电极;S405透明阳极制备步骤,在一第一显示区4形成一第一透明阳极41,贴附于绝缘层3的上表面,且连接至一第一TFT器件21的栅电极;在第二显示区5形成一第二透明阳极52,包覆于反射阳极51的上表面及外侧壁;S406像素定义层制备步骤,在绝缘层3、反射阳极51、第一透明阳极41以及第二透明阳极52上表面制备一像素定义层6;像素定义层6形成至少一第一通孔61及至少一第二通孔62,第一通孔61与第一透明阳极41相对设置,第二通孔62与反射阳极51相对设置;S407冷光片制备步骤,在第一通孔61内制备一第一冷光片42,贴附于第一透明阳极41上表面;在第二通孔62内制备一第二冷光片53,贴附于第二透明阳极52上表面;S408透明阴极制备步骤,在第二通孔62内制备一透明阴极54,贴附于第二冷光片53上表面及第二通孔内62侧壁;在第二显示区5的透明阴极54延伸出一透明延伸部,贴附于像素定义层6的上表面,且延伸至第二通孔62内侧壁,所述透明延伸部环绕第二通孔62设置;以及S409 反射阴极制备步骤,在第一通孔61内制备一第一反射阴极43,贴附于第一冷光片42上表面及第一通孔61内侧壁;制备一第二反射阴极55,贴附于所述透明延伸部的上表面。
本实施例采用透明阳极包覆反射阳极的设计,解决了现有技术中两组电极对冷光片材料排序要求不同的技术问题,将原有的必须采用两次Fine Mask才能完成的蒸镀工艺,简化为只需一次Open Mask就可以完成的工艺,简化工艺流程,提高工艺制作效率。本实施例采用第二反射阴极贴附于透明阴极的设计,利用第二反射阴极55作为透明阴极54的辅助电极,在厚度保持较小的前提下,可以有效减小阴极电阻,解决了顶发射结构中阴极电阻过大的技术问题,平衡了电阻与透明度两个因素,扩大了透明阴极的材料的选用范围,有助于降低生产使用成本。
实施例4
如图10所示,本实施例提供一种双面显示装置,与实施例1的技术方案大部分相同,区别在于,本实施例中透明阴极54包覆于第一反射阴极43、第二冷光片53以及像素定义层6的上表面,使得第一显示区4和第二显示区5具有相同的低电位。
如图11所示,本实施例还提供一种双面显示装置的制作方法,具体步骤包括S501~S509。
S501有源层制备步骤,在基板1上表面制作一有源层2,在有源层2内安装至少一TFT器件;S502绝缘层制备步骤,在有源层2上表面制作一绝缘层3,对绝缘层3进行曝光刻蚀处理,制成图案化的栅电极;S503源漏电极制备步骤,对有源层2上表面未被绝缘层3覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;S504反射阳极制备步骤,在一第二显示区5制备一反射阳极51,贴附于绝缘层3上表面,且连接至一第二TFT器件22的栅电极;S505透明阳极制备步骤,在一第一显示区4形成一第一透明阳极41,贴附于绝缘层3的上表面,且连接至一第一TFT器件21的栅电极;在第二显示区5形成一第二透明阳极52,包覆于反射阳极51的上表面及外侧壁;S506像素定义层制备步骤,在绝缘层3、反射阳极51、第一透明阳极41以及第二透明阳极52上表面制备一像素定义层6;像素定义层6形成至少一第一通孔61及至少一第二通孔62,第一通孔61与第一透明阳极41相对设置,第二通孔62与反射阳极51相对设置;S507冷光片制备步骤,在第一通孔61内制备一第一冷光片42,贴附于第一透明阳极41上表面;在第二通孔62内制备一第二冷光片53,贴附于第二透明阳极52上表面;S508反射阴极制备步骤,在第一通孔61内制备一第一反射阴极43,贴附于第一冷光片42上表面及第一通孔61内侧壁;以及S509 透明阴极制备步骤,在第二通孔62内制备一透明阴极54,贴附于第二冷光片53上表面及第二通孔内62侧壁。
本实施例采用透明阳极包覆反射阳极的设计,解决了现有技术中两组电极对冷光片材料排序要求不同的技术问题,将原有的必须采用两次Fine Mask才能完成的蒸镀工艺,简化为只需一次Open Mask就可以完成的工艺,简化工艺流程,提高工艺制作效率。本实施例采用透明阴极包覆反射阴极的设计,在阴极厚度保持较小的前提下,可以有效减小阴极电阻,解决了顶发射结构中阴极电阻过大的技术问题,平衡了电阻与透明度两个因素,扩大了透明阴极的材料的选用范围,有助于降低生产使用成本。
本发明提供的双面显示装置的RGB发光方式,可使用RGB三像素,或者采用白光OLED,即所有亚像素均为白光结构,再通过彩膜的方式形成RGB亚像素,本发明不局限于这些发光方式。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种双面显示装置,其包括:
    一基板;
    一有源层,设于所述基板的一侧表面;
    一绝缘层,设于所述有源层远离所述基板的一侧表面;
    一像素定义层,设于所述绝缘层远离所述有源层的一侧表面;所述像素定义层包括至少一第一通孔及至少一第二通孔;
    一第一显示区及一第二显示区,设于所述绝缘层远离所述基板的一侧表面;
    其中,所述第一显示区包括:
    一第一透明阳极,贴附于所述绝缘层远离所述有源层的一侧表面;所述第一透明阳极与所述第一通孔相对设置;
    一第一冷光片,设于所述第一通孔内,且贴附于所述第一透明阳极远离所述绝缘层的一侧表面;以及
    一第一反射阴极,设于所述第一通孔内,且贴附于所述第一冷光片远离所述第一透明阳极的一侧表面及所述第一通孔内侧壁;
    其中,所述第二显示区包括:
    一反射阳极,贴附于所述绝缘层远离所述有源层的一侧表面,且与所述第一透明阳极相离,所述反射阳极与所述第二通孔相对设置;
    一第二透明阳极,包覆于所述反射阳极远离所述有源层的一侧表面及所述反射阳极的外侧壁;
    一第二冷光片,设于所述第二通孔内,且贴附于所述第二透明阳极远离所述反射阳极的一侧表面;以及
    一透明阴极,设于所述第二通孔内,且贴附于所述第二冷光片远离所述第二透明阳极的一侧表面及所述第二通孔内侧壁。
  2. 如权利要求1所述的双面显示装置,其中,
    所述透明阴极包括:
    一透明延伸部,贴附于所述像素定义层远离所述基板一侧的表面,且延伸至所述第二通孔内侧壁;所述透明延伸部环绕所述第二通孔;
    所述双面显示装置还包括:
    一第二反射阴极,贴附于所述透明延伸部远离所述基板一侧的表面。
  3. 如权利要求1所述的双面显示装置,其还包括
    一第二反射阴极,贴附于所述像素定义层远离所述基板一侧的表面,且环绕所述第二通孔;
    所述透明阴极包括
    一透明延伸部,贴附于所述第二反射阴极远离所述基板一侧的表面,且延伸至所述第二通孔内侧壁。
  4. 如权利要求1所述的双面显示装置,其中,
    所述透明阴极包覆于所述第一反射阴极、所述第二冷光片及所述像素定义层远离所述基板一侧的表面。
  5. 如权利要求1所述的双面显示装置,其中,
    每一TFT器件的源漏电极设于所述有源层内;
    每一TFT器件的栅电极设于所述绝缘层内;
    所述透明阳极连接至第一TFT器件的栅电极;
    所述反射阳极连接至第二TFT器件的栅电极。
  6. 一种双面显示装置的制作方法,其具体步骤包括:
    S1有源层制备步骤,在基板上表面制作一有源层;
    S2绝缘层制备步骤,在所述有源层上表面制作一绝缘层,对所述绝缘层进行曝光刻蚀处理,制成图案化的栅电极;
    S3源漏电极制备步骤,对所述有源层上表面未被所述绝缘层覆盖的部分进行导体化处理及刻蚀处理,制成图案化的源漏电极;
    S4反射阳极制备步骤,在一第二显示区制备一反射阳极,贴附于所述绝缘层上表面;
    S5透明阳极制备步骤,在一第一显示区形成一第一透明阳极,贴附于所述绝缘层上表面;在所述第二显示区形成一第二透明阳极,包覆于所述反射阳极的上表面及外侧壁;
    S6像素定义层制备步骤,在所述绝缘层、所述反射阳极、所述第一透明阳极以及第二透明阳极上表面制备一像素定义层;所述像素定义层形成至少一第一通孔及至少一第二通孔,所述第一通孔与所述第一透明阳极相对设置,所述第二通孔与所述反射阳极相对设置;
    S7冷光片制备步骤,在所述第一通孔内制备第一冷光片,贴附于所述第一透明阳极上表面;在所述第二通孔内制备第二冷光片,贴附于所述第二透明阳极上表面;
    S8反射阴极制备步骤,在所述第一通孔内制备一第一反射阴极,贴附于所述第一冷光片上表面及所述第一通孔内侧壁;以及
    S9 透明阴极制备步骤,在所述第二通孔内制备一透明阴极,贴附于所述第二冷光片上表面及所述第二通孔内侧壁。
  7. 如权利要求6所述的双面显示装置的制作方法,其中,
    在所述反射阴极制备步骤中,
    制备一第二反射阴极,贴附于所述像素定义层上表面,且环绕所述第二通孔;
    在所述透明阴极制备步骤中,
    所述透明阴极包括一透明延伸部,贴附于所述第二反射阴极上表面,且延伸至所述第二通孔内侧壁。
  8. 如权利要求6所述的双面显示装置的制作方法,其中,
    在所述透明阴极制备步骤中,
    所述透明阴极包覆于所述第一反射阴极、所述第二冷光片及所述像素定义层的上表面。
  9. 如权利要求6所述的双面显示装置的制作方法,其中,
    在所述冷光片制备步骤之后,
    先执行所述透明阴极制备步骤,再执行所述反射阴极制备步骤。
  10. 如权利要求9所述的双面显示装置的制作方法,其中,
    在所述透明阴极制备步骤中,
    所述透明阴极包括一透明延伸部,贴附于所述像素定义层上表面,且延伸至所述第二通孔内侧壁;所述透明延伸部环绕所述第二通孔;
    在所述反射阴极制备步骤中,
    制备一第二反射阴极,贴附于所述透明延伸部上表面。
PCT/CN2019/071795 2018-10-17 2019-01-15 双面显示装置及其制作方法 WO2020077903A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/462,230 US11038002B2 (en) 2018-10-17 2019-01-15 Double-sided display device and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811208658.6 2018-10-17
CN201811208658.6A CN109273512A (zh) 2018-10-17 2018-10-17 双面显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2020077903A1 true WO2020077903A1 (zh) 2020-04-23

Family

ID=65192841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071795 WO2020077903A1 (zh) 2018-10-17 2019-01-15 双面显示装置及其制作方法

Country Status (3)

Country Link
US (1) US11038002B2 (zh)
CN (1) CN109273512A (zh)
WO (1) WO2020077903A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11997863B2 (en) * 2018-11-20 2024-05-28 Sony Semiconductor Solutions Corporation Display device, method for manufacturing display device, and electronic device
CN110767835B (zh) * 2019-03-29 2021-01-26 昆山国显光电有限公司 透明显示面板、显示屏、显示装置及掩膜板
CN110729328B (zh) 2019-09-17 2022-03-08 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及有机发光二极管显示装置
KR20210044946A (ko) * 2019-10-15 2021-04-26 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법
CN110767728B (zh) * 2019-10-31 2022-07-15 Oppo广东移动通信有限公司 显示装置及电子设备
CN111785852B (zh) * 2020-07-24 2023-09-22 京东方科技集团股份有限公司 一种显示基板、其制作方法、显示面板及显示装置
CN113555513B (zh) * 2021-07-16 2023-09-12 昆山国显光电有限公司 Oled显示面板及显示装置
CN113644220B (zh) * 2021-08-12 2023-08-01 京东方科技集团股份有限公司 一种显示面板、一种显示面板的制备方法和显示装置
CN117099503A (zh) * 2022-02-28 2023-11-21 京东方科技集团股份有限公司 一种显示基板、显示装置和制作方法
CN114883512B (zh) * 2022-05-31 2024-07-12 京东方科技集团股份有限公司 电致发光显示面板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816228A (zh) * 2005-11-29 2006-08-09 友达光电股份有限公司 主动式发光元件与主动式发光显示装置
KR20080089793A (ko) * 2007-04-02 2008-10-08 주식회사 나모텍 양면 디스플레이형 유기발광다이오드
CN101373576A (zh) * 2007-08-24 2009-02-25 统宝光电股份有限公司 图像显示***
CN103730484A (zh) * 2013-12-24 2014-04-16 京东方科技集团股份有限公司 一种双面显示面板
CN106601773A (zh) * 2016-12-15 2017-04-26 武汉华星光电技术有限公司 双面oled显示器件及其制作方法
CN106783913A (zh) * 2016-11-17 2017-05-31 武汉华星光电技术有限公司 Amoled双面显示器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622865B2 (en) * 2006-06-19 2009-11-24 Seiko Epson Corporation Light-emitting device, image forming apparatus, display device, and electronic apparatus
KR101281888B1 (ko) * 2006-06-30 2013-07-03 엘지디스플레이 주식회사 유기 전계 발광 표시 장치 및 이의 제조 방법
JP5126545B2 (ja) * 2009-02-09 2013-01-23 ソニー株式会社 表示装置の製造方法
TWI587734B (zh) * 2009-03-26 2017-06-11 精工愛普生股份有限公司 有機el裝置、有機el裝置之製造方法、及電子機器
TWI612656B (zh) * 2013-08-19 2018-01-21 友達光電股份有限公司 雙面發光式顯示面板
KR102418009B1 (ko) * 2015-06-25 2022-07-05 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102523344B1 (ko) * 2015-11-25 2023-04-20 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102643651B1 (ko) * 2019-03-26 2024-03-06 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 이를 포함하는 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816228A (zh) * 2005-11-29 2006-08-09 友达光电股份有限公司 主动式发光元件与主动式发光显示装置
KR20080089793A (ko) * 2007-04-02 2008-10-08 주식회사 나모텍 양면 디스플레이형 유기발광다이오드
CN101373576A (zh) * 2007-08-24 2009-02-25 统宝光电股份有限公司 图像显示***
CN103730484A (zh) * 2013-12-24 2014-04-16 京东方科技集团股份有限公司 一种双面显示面板
CN106783913A (zh) * 2016-11-17 2017-05-31 武汉华星光电技术有限公司 Amoled双面显示器
CN106601773A (zh) * 2016-12-15 2017-04-26 武汉华星光电技术有限公司 双面oled显示器件及其制作方法

Also Published As

Publication number Publication date
CN109273512A (zh) 2019-01-25
US11038002B2 (en) 2021-06-15
US20200273932A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2020077903A1 (zh) 双面显示装置及其制作方法
CN109671739B (zh) 大面积有机发光二极管显示器
US10276641B2 (en) Display panel and display device
KR102646658B1 (ko) 유기발광표시장치와 그 제조방법
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
WO2019080255A1 (zh) 透明oled显示器及其制作方法
WO2016176886A1 (zh) 柔性oled及其制作方法
JP2019121598A (ja) 上部発光型有機発光ダイオード表示装置
WO2016150030A1 (zh) Oled基板及其制作方法、oled显示面板和电子设备
US20210367186A1 (en) Oled display panel and manufacturing method
US20210159287A1 (en) Organic light emitting diode display panel and manufacturing method thereof
WO2018149106A1 (zh) 复合透明电极、oled及其制备方法、阵列基板和显示装置
US20150206930A1 (en) Light-emitting device wtih oxide thin film transistors and manufacturing method thereof
CN104867962B (zh) 一种oled阵列基板及其制作方法、oled显示装置
WO2019080252A1 (zh) Oled背板的制作方法
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
CN110444567A (zh) 一种阵列基板及其制作方法
WO2018223699A1 (zh) 显示面板及其制备方法、显示装置以及显示方法
CN104466021B (zh) Amoled器件结构及其制造方法
WO2019128152A1 (zh) 有机发光器件
KR20160017339A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
WO2021114474A1 (zh) 一种阵列基板及其制备方法
WO2021114421A1 (zh) 显示面板及其制作方法
US20210234117A1 (en) Display panel and method of manufacturing thereof
WO2015027532A1 (zh) 有机发光二极管阳极连接结构及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872818

Country of ref document: EP

Kind code of ref document: A1