WO2020075504A1 - Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle - Google Patents

Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle Download PDF

Info

Publication number
WO2020075504A1
WO2020075504A1 PCT/JP2019/037713 JP2019037713W WO2020075504A1 WO 2020075504 A1 WO2020075504 A1 WO 2020075504A1 JP 2019037713 W JP2019037713 W JP 2019037713W WO 2020075504 A1 WO2020075504 A1 WO 2020075504A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
conversion means
power supply
drive system
Prior art date
Application number
PCT/JP2019/037713
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 鉄本
基巳 嶋田
貴志 金子
健泰 川本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2020550340A priority Critical patent/JP7094381B2/en
Publication of WO2020075504A1 publication Critical patent/WO2020075504A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines

Definitions

  • the present invention relates to a railway vehicle drive system mounted on a railway vehicle and a method for charging a power storage device in a railway vehicle, and is applied to, for example, a charging method for charging a power storage device provided on an input side of an inverter device that drives a main motor. Is suitable.
  • the vehicle travels while being supplied with electric power from the trolley line, but if it stops in an area where power cannot be supplied due to power supply facilities, etc., it will not be able to travel further.
  • the driver of the vehicle may secure a predetermined speed in advance and drive the vehicle in an area where power cannot be supplied by a driving operation such as passing by coasting. I am running.
  • the driving method is limited due to the speed limitation of the vehicle, etc., the driving operation requires sophisticated technology so that the vehicle does not stop in the section where power cannot be supplied. The burden increases.
  • a power storage device such as a secondary battery that supplies electric power for enabling traveling in a certain section is mounted on the vehicle.
  • Railway vehicles have been put to practical use (see, for example, Patent Document 1).
  • a vehicle that has an energy source that enables the vehicle to drive on its own in a certain section even when the power from the trolley line is cut off has sufficient charge and discharge capacity and the minimum required charging capacity. It is necessary to mount a power storage device such as a secondary battery having the above and a charging device such as a chopper device for controlling the charge of the power storage device.
  • the power storage device is charged in a section where electric power can be supplied from the trolley line, and when the vehicle is running by itself in an area where electric power cannot be supplied from the commuter line or when the power supply is cut off. At times, the electric power stored in the power storage device is supplied to the drive device to drive the vehicle.
  • the present invention has been made to solve the above-mentioned problems, and a railway vehicle drive capable of simplifying the configuration and method for charging the power storage device for enabling the vehicle to run on its own in the electric railway system.
  • An object of the present invention is to provide a system and a method for charging a power storage device in a railway vehicle.
  • the present invention provides a railway drive system including a first power conversion means and a second power conversion means that can be connected to an overhead line, and is provided so as to be connectable to the second power conversion means.
  • Storage device a switch provided between the first power conversion unit and the second power conversion unit, and a contact control provided between the second power unit and the overhead wire A switch, a current-carrying direction switching means provided between the second power conversion means and the contact controller, and a controller for controlling the switch, the contact controller and the current-carrying direction switching means. , Is provided.
  • FIG. 1 is a block diagram showing a schematic configuration example of a railway vehicle drive system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example regarding charging of the power storage device of the first embodiment.
  • FIG. 3 is a flowchart illustrating a processing example when charging the power storage device of the first embodiment.
  • FIG. 4 is a flowchart showing an example of processing when the vehicle of the first embodiment is in an emergency run.
  • FIG. 5 is a diagram showing an example of application of the railway vehicle drive system of the first embodiment to a formation vehicle.
  • FIG. 6 is a block diagram showing a configuration example of a railway vehicle drive system according to the second embodiment.
  • FIG. 7 is a block diagram illustrating a configuration example regarding charging of the power storage device according to the second embodiment.
  • FIG. 8 is a block diagram showing a configuration example of a railway vehicle drive system according to the third embodiment.
  • FIG. 9 is a block diagram showing a configuration example of the railway vehicle drive system according to the fourth embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration example of the railway vehicle drive system of the first embodiment.
  • the railcar drive system 1 according to the first embodiment is a system mounted on a vehicle that drives the vehicle with AC power obtained by converting DC power supplied from a train line.
  • An electric train line is an overhead wire facility for transmitting electric energy for driving to a railway vehicle.
  • the railway vehicle drive system 1 includes current collectors 101 and 102 electrically connected to a train line and an inverter device 104 connected to the train line via high-speed circuit breakers 109 and 111, respectively. And 106.
  • the railway vehicle drive system 1 includes auxiliary power supply devices (SIV: also referred to as static inverters) 103 and 105 connected to a train line via high-speed circuit breakers 108 and 110, and a train line via a high-speed circuit breaker 112. It has a power storage device 107 connected thereto and a power storage control device 117 that monitors the power storage device 107.
  • auxiliary power supply devices SIV: also referred to as static inverters
  • the railcar drive system 1 also has main motors 114 and 115 connected to the output sides of the inverter devices 104 and 106. Further, the railway vehicle drive system 1 has an auxiliary power supply control device 116 connected to the auxiliary power supply device 105. The railway vehicle drive system 1 also has an extension power supply circuit 113 for connecting the auxiliary power supply devices 103 and 105. The railway vehicle drive system 1 has an extension power supply circuit connection switch 119 that switches connection and disconnection between the extension power supply circuit 113 and the auxiliary power supply device 103, and connects and disconnects the extension power supply circuit 113 and the auxiliary power supply device 105. It has a switch 118 for switching the extension power supply circuit.
  • the inverter devices 104 and 106 supply AC power obtained by converting the DC power supplied from the current collectors 101 and 102 to the main motors 114 and 115, respectively, to control the drive of the vehicle. Further, when the vehicle is powered, the auxiliary power supply devices 103 and 105 supply AC power obtained by converting the DC power supplied from the current collectors 101 and 102 to auxiliary power equipment such as a control power supply, an air conditioner, and lighting. .
  • the extension power supply circuit connection switches 118 and 119 are controlled to be in a disconnected state. Note that connection or disconnection between the auxiliary power supply device 103 and the auxiliary power supply device 105 may be controlled by only one of the extension power supply circuit connection switching devices 118 and 119.
  • the inverter device 106 supplies AC power obtained by converting the DC power supplied from the power storage device 107 to the main motor 115. Drive control of the vehicle. Further, when the vehicle is in an emergency run, auxiliary power supply device 105 supplies AC power obtained by converting the DC power supplied from power storage device 107 to the on-board auxiliary device. Further, when the vehicle is in an emergency run, the extension power supply circuit connection switch 118 is controlled to be in the connected state, and the auxiliary power supply device 105 converts the direct current power supplied from the power storage device 107 into the extended power supply. It is also supplied to the on-board auxiliary equipment of other vehicles via the circuit 113.
  • the auxiliary power supply device 103 and the inverter device 104 do not operate because there is no power supply from the train line and the power storage device 107 via the current collector 101.
  • the auxiliary power supply device 103 receives the DC power from the current collector 101, performs the inverter operation which is the original operation, and converts the DC power from the power line via the current collector 101 into AC power. Further, the operation of the auxiliary power supply device 105 is switched from the original inverter operation to the converter operation according to a command from the auxiliary power supply control device 116. In the auxiliary power supply device 105, the extension power supply circuit connection switches 118 and 119 are controlled to be in a connected state, and the AC power supplied from the auxiliary power supply device 103 via the extension power supply circuit 113 is converted into DC power, and the power storage device 107 is stored.
  • the power storage device 107 is charged by supplying a charging current to the power storage device 107.
  • the auxiliary power supply device 105 is connected to the power storage device 107 without a device such as a semiconductor switching device for controlling the charging voltage of the power storage device 107 within a predetermined range.
  • the auxiliary power supply device 105 operates in the inverter mode.
  • the interlock function that restricts the charging operation by prohibiting the switching from to the converter operation is enabled.
  • FIG. 2 is a block diagram showing a configuration example of charging the power storage device of the first embodiment.
  • the railway vehicle drive system 1 further includes a filter reactor 203 and a line breaker 206 connected between the high-speed circuit breaker 111 and the inverter device 106.
  • the filter capacitor 201 is connected between the positive and negative power supply lines of the inverter device 106.
  • the filter capacitor 201 and the filter reactor 203 form a filter circuit.
  • Four main electric motors 115a to 115d forming one control unit are connected to the three-phase AC power output side of the inverter device 106.
  • a filter reactor 204, a diode 208 with a short-circuit function, and a breaker 207 are connected between the high-speed circuit breaker 110 and the auxiliary power supply device 105.
  • the diode 208 with a short-circuit function has a diode 208b that allows a current to flow only in the forward direction from the current collector 102 side to the auxiliary power supply device 105, and a diode short-circuiting contactor 208a that is a switch connected in parallel with the diode 208b.
  • the diode short-circuiting contactor 208a When the diode short-circuiting contactor 208a is closed, the diode 208 with a short-circuit function is short-circuited and a current flows in the opposite direction. Further, in the railcar drive system 1, the filter capacitor 202 is connected between the positive and negative power supply lines of the auxiliary power supply device 105. The filter capacitor 202 and the filter reactor 204 form a filter circuit.
  • the diode 208 with a short-circuit function is an example of a current conduction direction switching means, but the current conduction direction switching means may be a bidirectional diode.
  • the filter reactor 205 is connected between the high speed circuit breaker 112 and the power storage device 107.
  • each negative power supply line of the auxiliary power supply device 105 and the inverter device 106 and one output end of the power storage device 107 are connected to the ground 209.
  • the auxiliary power supply device 103 is an example of a first power conversion unit, and the auxiliary power supply device 105 is an example of a second power conversion unit. Further, the extension power supply circuit 113 is an example of the first connecting means, and a connection line connecting the auxiliary power supply device 105 including the diode 208 with a short-circuit function and the power storage device 107 is an example of the second connecting means.
  • the processing device such as the CPU (Central Processing Unit) in the auxiliary power supply control device 116 receives the vehicle information from the cab of the vehicle.
  • the processing device such as the CPU (Central Processing Unit) in the auxiliary power supply control device 116 receives the vehicle information from the cab of the vehicle.
  • the charging request output from the vehicle control device 210 to be aggregated is recognized, the following processing is performed.
  • a power supply path is formed to output a command to close the extension power supply circuit connection switches 118 and 119 and to supply AC power from the auxiliary power supply device 103 to the auxiliary power supply device 105 via the extension power supply circuit 113. Check if it has been done.
  • a control command for disconnecting the current collector 102 from the train line is output to a control device that controls connection and disconnection of the current collector 102 and the train line.
  • a third A short-circuit command is output to the diode 208 with a short-circuit function to switch the rectifying operation from the current collector 102 side to the auxiliary power supply device 105 that is normally performed, so that the reverse current operation from the auxiliary power supply device 105 side to the power storage device 107 is performed. Move to a possible state.
  • a switching command for switching from inverter operation to converter operation is output to the auxiliary power supply device 105.
  • the power storage control device 117 monitors the charge amount of the power storage device 107 and outputs the information to the auxiliary power supply control device 116, thereby enabling the power storage device 107 to store appropriate power without excess or deficiency.
  • FIG. 3 is a flowchart showing a process example of charging the power storage device of the first embodiment.
  • the process of charging the power storage device of the first embodiment is executed by the processing device of the auxiliary power supply control device 116 at a predetermined cycle.
  • the auxiliary power supply control device 116 determines whether the vehicle is in the charging mode based on the vehicle information collected by the vehicle control device 210 or the like (step S11). If the auxiliary power supply control device 116 is in the charging mode (step S11: Yes), the process proceeds to step S12. On the other hand, when not in the charging mode (step S11: No), the auxiliary power supply control device 116 ends the process at the time of main charging.
  • step S12 the auxiliary power supply control device 116 confirms whether or not the power supply path is secured between the auxiliary power supply devices 103 and 105 by the extension power supply circuit 113 based on the vehicle information.
  • step S13 the auxiliary power supply control device 116 determines the result of the confirmation of the securement of the route in step S12, and when the route is secured (step S13: Yes), moves the process to step S14. On the other hand, if the route is not secured (step S13: No), the auxiliary power supply control device 116 ends the process during the main charging.
  • step S14 the auxiliary power supply control device 116 outputs a command to the control device that controls the connection and disconnection of the current collector 102 and the electric power line to lower the current collector 102 and disconnect it from the electric power line.
  • Control of connection and disconnection between the current collector 102 and the electric train line is performed for connection and disconnection of the auxiliary power supply device 106 and the electric train line.
  • control of connection and disconnection between the current collector 102 and the electric train line is performed.
  • the contact controller to perform may be either the current collector 102 itself or a switch.
  • step S15 the auxiliary power supply control device 116 outputs a close command to the diode short-circuiting contactor 208a of the diode 208 with a short-circuit function to close it, cancels the rectification operation, and the auxiliary power supply device 105 side stores the power storage device.
  • the state is such that the backflow operation to the 107 side is possible.
  • step S16 the auxiliary power supply control device 116 causes the auxiliary power supply device 105 to perform a gate start to operate the converter.
  • the auxiliary power supply device 105 operates as a converter, the power converted from alternating current to direct current is supplied to the power storage device 107 for charging without passing through the step-up / down circuit.
  • step S17 the auxiliary power supply control device 116 monitors the amount of electricity stored in the electricity storage device 107 after the start of charging monitored by the electricity storage control device 117, for example, by comparing the voltage of the electricity storage device 107 with a threshold value V1. Specifically, in step S17, auxiliary power supply control device 116 determines whether or not the voltage of power storage device 107 is equal to or lower than threshold V1, and when the voltage of power storage device 107 is equal to or lower than threshold V1 (step S17: Yes). ), The process is returned to step S16, and charging is continued until the power storage device 107 reaches an appropriate amount of power storage.
  • step S17 when the voltage of the power storage device 107 is higher than the threshold value V1 (step S17: No), the auxiliary power supply control device 116 ends the converter operation of the auxiliary power supply device 105 and ends the charging of the power storage device 107. The charging process ends.
  • FIG. 4 is a flowchart showing an example of processing during emergency travel of the vehicle according to the first embodiment.
  • the processing when the vehicle is in an emergency run according to the first embodiment is executed by the processing device of the auxiliary power supply control device 116 at a predetermined cycle.
  • the auxiliary power supply control device 116 determines whether or not the vehicle is in the emergency drive mode based on the vehicle information collected by the vehicle control device 210 or the like (step S21).
  • the auxiliary power supply control device 116 shifts the processing to step S22 when it is the emergency traveling mode (step S21: Yes).
  • the emergency driving mode is not set (step S21: No)
  • the auxiliary power supply control device 116 ends the processing during the emergency driving.
  • step S22 the auxiliary power supply control device 116 outputs an open command to the diode short-circuiting contactor 208a of the diode 208 with a short-circuit function to open the state, sets the rectification operation, and sets the power storage device 107 side to the auxiliary power supply device 105 side.
  • the normal forward rectifying operation to the state is made possible.
  • step S23 the auxiliary power supply control device 116 compares the amount of electricity stored in the electricity storage device 107, which is monitored by the electricity storage control device 117, after the vehicle has started an emergency run, for example, the voltage of the electricity storage device 107 with threshold values V1 and V2. To monitor. Specifically, in step S24, auxiliary power supply control device 116 determines whether the voltage of power storage device 107 is equal to or higher than threshold value V1 and equal to or lower than threshold value V2 (the amount of stored power is within a proper range sufficient for emergency travel). To do. When the voltage of power storage device 107 is equal to or higher than threshold value V1 and equal to or lower than threshold value V2 (step S24: Yes), auxiliary power supply control device 116 shifts the processing to steps S25 and S26.
  • step S25 the auxiliary power supply control device 116 supplies DC power to the inverter device 106.
  • the inverter device 106 enables emergency traveling by controlling the AC power supplied to the main motors 115a to 115d.
  • step S26 the auxiliary power supply control device 116 supplies electric power to the auxiliary power supply device 105 via the diode 208 with a short-circuit function and the breaker 207.
  • the auxiliary power supply device 105 performs a normal inverter operation and supplies AC power to the on-board auxiliary equipment of the vehicle.
  • the auxiliary power supply control device 116 shifts the processing to step S24.
  • step S24 if the voltage of the power storage device 107 is less than the threshold value V1 or greater than the threshold value V2 (step S24: No), the auxiliary power supply control device 116 ends the process during the emergency run.
  • auxiliary power supply control device 116 disconnects the auxiliary power supply devices 103 and 105 by opening the extension power supply circuit connection switching devices 118 and 119 at the end of the commercial operation of the vehicle equipped with the railway vehicle drive system 1. After disconnecting the current collector 102 from the trolley wire and disconnecting the auxiliary power supply device 105 from the trolley wire, the power supply of itself is stopped.
  • the auxiliary power supply control device 116 opens the extension power supply circuit connection switches 118 and 119 and closes the contact controllers such as the current collector 102 (during normal traveling) and the extension power supply. Switching between the normal mode and the charging mode is performed by outputting a command to switch between the circuit connecting switches 118 and 119 in the closed state and the contact controller in the second state (charging state) in which the contact controller is opened. .
  • the auxiliary power supply control device 116 performs a first control in which a current flowing from the diode 208 with a short-circuit function to the auxiliary power supply device 105 is conducted, and a second control in which a current from the auxiliary power supply device 105 to a diode 208 with a short-circuit function is conducted. Is output, and a command to reverse the operation (converter operation) is output to the auxiliary power supply device 105 in switching between the first control and the second control.
  • the auxiliary power supply control device 116 executes the above-described first control when it is detected that the connection between the auxiliary power supply devices 103 and 105 and the electric power line is detected, and the connection between the auxiliary power supply device 103 and the overhead line is established.
  • the second control is executed during the period.
  • FIG. 5 is a diagram showing an example of application of the railway vehicle drive system of the first embodiment to a rolling stock vehicle.
  • a seven-car train 100 includes a control trailer vehicle (Tc) 101-1, motor vehicles (M) 100-2 and 100-3, and a trailer vehicle (T) 100-4.
  • the control accompanying vehicle 101-1 is equipped with an auxiliary power supply device 103 to which electric power is supplied from the trolley line via the current collector 101 of the motor vehicle 100-3.
  • the motor vehicle 100-2 is equipped with an inverter device 104-1 that is supplied with electric power from a trolley wire via a current collector 101 of the motor vehicle 100-3 and drives a main motor (not shown).
  • the motor vehicle 100-3 has a current collector 101, and is equipped with an inverter device 104 that drives a main electric motor 114 (see FIG. 1) with electric power supplied from a train line via the current collector 101.
  • the trailer vehicle 100-4 is equipped with an auxiliary power supply device 105 to which electric power is supplied from the trolley line via the current collector 102 of the motor vehicle 100-6.
  • the extension power supply circuit 113 connects between the auxiliary power supply devices 103 and 105.
  • the motor vehicle 100-5 is equipped with an inverter device 106-1 which is supplied with electric power from the trolley wire via a current collector 102 of the motor vehicle 100-6 and drives a main motor (not shown).
  • the motor vehicle 100-6 has a current collecting device 102, and is equipped with an inverter device 106 that drives a main electric motor 115 (see FIG. 1) with electric power supplied from an electric line via the current collecting device 102.
  • the trailer vehicle 100-7 is equipped with a power storage device 107 to which charging power is supplied from the trolley line via the current collector 101 of the motor vehicle 100-6.
  • the number of each device (auxiliary power supply devices 103 and 105, inverter devices 104 and 106, and power storage device 107) and each device of the railway vehicle drive system 1 of the first embodiment are installed in any of the rolling stock vehicles 100. Is a design item that can be changed as appropriate.
  • the railway vehicle drive system 1 of the single rolling-stock set 100 has, as an existing configuration, the current collector 101, the inverter device 104, and the auxiliary power supply device 103. And a power collection device 102, an inverter device 106, an auxiliary power supply device 105, and a power storage device 107.
  • the power storage device is charged, the auxiliary power supply devices 103 and 105 are connected via the extension power supply circuit 113, the current collector 102 is disconnected from the power line, and the auxiliary power supply device 105 is operated as a converter.
  • current collection is performed without adding a chopper device (charging device) or the like and also using the conventional device for the power storage device 107 without diverting the existing configuration and significantly changing the system configuration.
  • a new charging method can be provided in which the power storage device 107 can be charged with direct-current power from a train line via the device 101. Even when the chopper device is provided, the power storage device 107 can be charged even when the chopper device fails.
  • Embodiment 2 Unlike the first embodiment, the railway vehicle drive system 1B of the second embodiment connects the auxiliary power supply device 103 to the inverter device 106 via the extension power supply circuit 113 and operates the inverter device 106 by the converter, thereby charging the battery charger 107. Is a system for charging. The differences from the first embodiment will be mainly described below.
  • FIG. 6 is a block diagram showing an example of the configuration of the railway vehicle drive system of the second embodiment.
  • the railway vehicle drive system 1B of the second embodiment is different from the railway vehicle drive system 1 of the first embodiment in that an inverter control device is provided on the output side of the inverter device 106 instead of the auxiliary power supply control device 116. 501 is connected.
  • the extension power supply circuit 113 does not connect between the auxiliary power supply devices 103 and 105, but connects between the auxiliary power supply device 103 and the inverter device 106.
  • the inverter device 106 is connected to one of the main motor 115 and the extension power supply circuit 113 by switching the switch 502 for connecting the extension power supply circuit.
  • the auxiliary power supply device 103 performs an inverter operation, which is the original operation, to convert the DC power supplied from the power line via the current collector 101 into AC power. Further, the operation of the inverter device 106 is switched from the original inverter operation to the converter operation according to a command from the inverter control device 501.
  • the inverter device 106 converts three-phase AC power supplied from the auxiliary power supply device 103 into DC power via the extension power supply circuit connection switch 502 that switches the connection between the extension power supply circuit 113 and the main motor 115,
  • the power storage device 107 is charged by supplying a charging current to the power storage device 107.
  • the inverter device 106 is connected to the power storage device 107 without a device such as a semiconductor switching device for controlling the charging voltage of the power storage device 107 within a predetermined range.
  • FIG. 7 is a block diagram showing a configuration example of charging the power storage device of the second embodiment.
  • the railway vehicle drive system 1B includes four main motors 115a to 115d, which constitute one control unit, and a three-phase extension power supply circuit 113 on the three-phase AC power output side of the inverter device 106.
  • Extension power supply circuit connection switches 502a, 502b, and 502c that switch connections with (113a, 113b, and 113c), respectively.
  • the filter reactor 204 and the disconnector 207 are connected between the high-speed circuit breaker 110 and the auxiliary power supply device 105. Further, in the railcar drive system 1B, the filter reactor 203, the diode 208B with a short-circuit function, and the breaker 206 are connected between the high-speed circuit breaker 111 and the inverter device 106.
  • the auxiliary power supply device 103 is an example of a first power conversion unit
  • the inverter device 106 is an example of a second power conversion unit.
  • the extension power supply circuit 113 is an example of the first connecting unit
  • the connection line connecting the inverter device 106 including the diode 208B with a short circuit function and the power storage device 107 is an example of the second connecting unit.
  • the extension power supply circuit connection switch 502 alone may control connection and disconnection between the auxiliary power supply device 103 and the inverter device 106.
  • a short-circuit command is output to the diode 208B with a short-circuit function to switch the rectifying operation from the current collector 102 side to the inverter device 106, which is normally performed, so that the backflow operation from the inverter device 106 side to the power storage device 107 is possible. Shift to the state.
  • a switching command for switching from inverter operation to converter operation is output to the inverter device 106.
  • the power storage control device 117 monitors the charge amount of the power storage device 107 and outputs the information to the inverter control device 501, so that the power storage device 107 can store appropriate power without excess or deficiency.
  • Embodiment 3 The railway vehicle drive system 1C of the third embodiment differs from the first embodiment in that the inverter device 104 is connected to the auxiliary power supply device 105 via the extension power supply circuit 113 and the auxiliary power supply device 105 is operated by the converter to charge the charging device. This is a system for charging 107.
  • the differences from the first embodiment will be mainly described below.
  • FIG. 8 is a block diagram showing a configuration example of the railway vehicle drive system of the third embodiment.
  • the railway vehicle drive system 1C of the third embodiment is different from the railway vehicle drive system 1 of the first embodiment in that the extension power supply circuit 113 does not connect between the auxiliary power supply devices 103 and 105.
  • the inverter device 104 and the auxiliary power supply device 105 are connected to each other.
  • the inverter device 104 is connected to either the main motor 114 or the extension power supply circuit 113 by switching the extension power supply circuit connection switch 601.
  • the connection and disconnection between the inverter device 104 and the auxiliary power supply device 105 may be controlled only by the switch 601 for connecting the extension power supply circuit.
  • the inverter device 104 performs an inverter operation, which is the original operation, to convert the DC power supplied from the power line via the current collector 101 into AC power. Further, the operation of the auxiliary power supply device 105 is switched from the original inverter operation to the converter operation according to a command from the auxiliary power supply control device 116.
  • the auxiliary power supply device 105 converts three-phase AC power supplied from the inverter device 104 into DC power via the extension power supply circuit connection switch 118 that is a switch that switches the connection between the extension power supply circuit 113 and the main motor 114. Then, the power storage device 107 is charged by supplying a charging current to the power storage device 107.
  • the inverter device 104 is an example of the first power conversion unit, and the auxiliary power supply device 105 is an example of the second power conversion unit. Further, the extension power supply circuit 113 is an example of the first connecting means, and a connection line connecting the auxiliary power supply device 105 including the diode 208 with a short-circuit function and the power storage device 107 is an example of the second connecting means.
  • the fourth embodiment is a system in which the inverter device 104 is connected to the inverter device 106 via the extension power feeding circuit 113 and the inverter device 106 is operated in a converter to charge the power storage device 107.
  • the differences from the first embodiment will be mainly described below.
  • FIG. 9 is a block diagram showing a configuration example of the railway vehicle drive system of the fourth embodiment.
  • the railway vehicle drive system 1D of the fourth embodiment is different from the railway vehicle drive system 1 of the first embodiment in that an inverter control device is provided on the output side of the inverter device 106 instead of the auxiliary power supply control device 116. 501 is connected.
  • the extension power supply circuit 113D includes the reactor 701 and connects the inverter devices 104 and 106.
  • the inverter device 104 is connected to either the main motor 114 or the extension power supply circuit 113D by switching the switch 601 for connecting the extension power supply circuit.
  • the inverter device 106 is connected to either the main motor 115 or the extension power supply circuit 113D by switching the switch 502 for connecting the extension power supply circuit. It should be noted that the connection and disconnection between the inverter device 104 and the inverter device 106 may be controlled only by the switch 502 for connecting the extension power supply circuit.
  • the inverter device 104 performs an inverter operation, which is the original operation, to convert the DC power supplied from the power line via the current collector 101 into AC power. Further, the operation of the inverter device 106 is switched from the original inverter operation to the converter operation according to a command from the inverter control device 501.
  • the inverter device 106 converts the three-phase AC power supplied from the inverter device 104 into DC power via the extension power supply circuit connection switch 502 that switches the connection between the extension power supply circuit 113D and the main motor 115, and stores the power.
  • the power storage device 107 is charged by supplying a charging current to the device 107.
  • the inverter device 104 is an example of the first power conversion unit
  • the inverter device 106 is an example of the second power conversion unit.
  • the extension power supply circuit 113D is an example of the first connecting unit
  • the connection line connecting the inverter device 106 including the diode 208B with a short-circuit function and the power storage device 107 is an example of the second connecting unit.
  • the electric power supplied from the electric power line is DC power, but in the present invention, the electric power supplied from the electric power line is AC power and is taken in via the current collector.
  • the present invention is also applicable to a configuration in which electric power is distributed after being converted from AC power to DC power, and is further converted into AC power by an inverter and an auxiliary power supply device.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • Auxiliary power supply control device 117 ... Storage control device , 118, 119 ... Switch for connecting extension power feeding circuit, 201, 202, 203, 204, 205 ... Filter reactor, 206, 207 ... Sink, 208, 208B ... Diode with reverse current function, 208a ... Contact for short-circuiting diode, 208b ... Diode, 209 ... Ground, 210 ... Vehicle controller, 501 ... Inverter controller, 502, 502a, 5002b, 601 ... Extension Switch for connecting power supply circuit, 701 ... Reactor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This railroad vehicle drive system is provided with: an electrical storage device, which is provided with a first power conversion means and a second power conversion means capable of connecting with wiring, and which is provided to be capable of connecting with the second power conversion means; an opening/closing unit provided between the first power conversion means and the second power conversion means; a contact control unit provided between the second power means and the wiring; a current conduction direction switching means provided between the second power conversion means and the contact control unit; and a control device that controls the opening/closing unit, the contact control unit, and the conduction direction switching means.

Description

鉄道車両駆動システム及び鉄道車両における蓄電装置の充電方法Railway vehicle drive system and method of charging power storage device in railway vehicle
 本発明は、鉄道車両に搭載される鉄道車両駆動システム及び鉄道車両における蓄電装置の充電方法に関し、例えば主電動機を駆動するインバータ装置の入力側に設けられた蓄電装置を充電する充電方法に適用して好適なるものである。 The present invention relates to a railway vehicle drive system mounted on a railway vehicle and a method for charging a power storage device in a railway vehicle, and is applied to, for example, a charging method for charging a power storage device provided on an input side of an inverter device that drives a main motor. Is suitable.
 電気鉄道システムにおいて車両は、電車線から電力の供給を受けて走行するが、給電設備等の理由で電力の供給を受けられない電力供給不可能区間で停止した場合、以後の走行が不可能になる。電力供給不可能区間を走行することが予め分かっている場合には、車両の運転士は、事前に所定の速度を確保して、惰行で通過する等の運転操作によって電力供給不能区間で車両の走行を行っている。しかし、車両の速度制限等により運転方法が制限されるような場合は、電力供給不可能区間で車両が停止することがないように、運転操作も高度な技術を要することとなり、運転士への負担が大きくなる。 In the electric railway system, the vehicle travels while being supplied with electric power from the trolley line, but if it stops in an area where power cannot be supplied due to power supply facilities, etc., it will not be able to travel further. Become. If it is known in advance that the vehicle will travel in an area where power cannot be supplied, the driver of the vehicle may secure a predetermined speed in advance and drive the vehicle in an area where power cannot be supplied by a driving operation such as passing by coasting. I am running. However, if the driving method is limited due to the speed limitation of the vehicle, etc., the driving operation requires sophisticated technology so that the vehicle does not stop in the section where power cannot be supplied. The burden increases.
 また電車線から電力の供給を受けられる電力供給可能区間であっても、何らかの要因により電車線からの電力の供給が一時的に遮断され車両が停止した場合には、車両の運転士が如何なる運転操作を行ったとしても、以後の車両の走行が不可能になる。 In addition, even if it is a section where power can be supplied from the trolley line, if the power supply from the trolley line is temporarily cut off for some reason and the vehicle stops, the driver of the vehicle Even if the operation is performed, the vehicle cannot travel thereafter.
 これらのように、車両に電力が供給されず走行不能に陥る状況を回避するために、一定区間の走行を可能にするための電力を供給する2次電池等の蓄電装置を車上に搭載する鉄道車両が実用化されている(例えば特許文献1参照)。 As described above, in order to avoid a situation where the vehicle is not supplied with electric power and cannot travel, a power storage device such as a secondary battery that supplies electric power for enabling traveling in a certain section is mounted on the vehicle. Railway vehicles have been put to practical use (see, for example, Patent Document 1).
特開2009-296731号公報JP, 2009-296731, A
 ここで、電車線からの電力が遮断される状況においても一定区間の車両の自力走行を可能にするためのエネルギー源を有する車両には、充放電能力が十分にありかつ必要最低限の充電容量を有する2次電池等の蓄電装置と、その蓄電装置を充電制御する例えばチョッパ装置等の充電装置の搭載が必要となる。このような車両においては、電車線から電力の供給を受けられる区間で蓄電装置に充電し、電車線から電力の供給を受けられない区間での自力走行時や電力の供給が遮断された緊急走行時には蓄電装置に蓄えられた電力を駆動装置に供給して走行を行う。 Here, a vehicle that has an energy source that enables the vehicle to drive on its own in a certain section even when the power from the trolley line is cut off has sufficient charge and discharge capacity and the minimum required charging capacity. It is necessary to mount a power storage device such as a secondary battery having the above and a charging device such as a chopper device for controlling the charge of the power storage device. In such a vehicle, the power storage device is charged in a section where electric power can be supplied from the trolley line, and when the vehicle is running by itself in an area where electric power cannot be supplied from the commuter line or when the power supply is cut off. At times, the electric power stored in the power storage device is supplied to the drive device to drive the vehicle.
 しかしながら、蓄電装置に蓄えられたエネルギーを利用する自力走行や緊急走行は頻繁に発生するわけではないため、蓄電装置の充電のための専用の機器を追加で搭載することなく、既に搭載されている機器を再利用した方式を確立するのが望ましい。 However, self-driving or emergency traveling using the energy stored in the power storage device does not occur frequently, so it is already installed without additionally installing a dedicated device for charging the power storage device. It is desirable to establish a system that reuses equipment.
 本発明は、上述の課題を解決するためになされたものであり、電気鉄道システムにおいて車両の自力走行を可能にするための蓄電装置の充電のための構成及び方法を簡略化可能な鉄道車両駆動システム及び鉄道車両における蓄電装置の充電方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and a railway vehicle drive capable of simplifying the configuration and method for charging the power storage device for enabling the vehicle to run on its own in the electric railway system. An object of the present invention is to provide a system and a method for charging a power storage device in a railway vehicle.
 上述の課題を解決するために本発明は、架線と接続可能な第1の電力変換手段及び第2の電力変換手段を備えた鉄道駆動システムにおいて、前記第2の電力変換手段と接続可能に設けられた蓄電装置と、前記第1の電力変換手段と前記第2の電力変換手段との間に設けられた開閉器と、前記第2の電力手段と前記架線との間に設けられた接触制御器と、前記第2の電力変換手段と前記接触制御器との間に設けられた電流の通電方向切換手段と、前記開閉器、前記接触制御器及び前記通電方向切換手段を制御する制御装置と、を備えるようにした。 In order to solve the above-mentioned problems, the present invention provides a railway drive system including a first power conversion means and a second power conversion means that can be connected to an overhead line, and is provided so as to be connectable to the second power conversion means. Storage device, a switch provided between the first power conversion unit and the second power conversion unit, and a contact control provided between the second power unit and the overhead wire A switch, a current-carrying direction switching means provided between the second power conversion means and the contact controller, and a controller for controlling the switch, the contact controller and the current-carrying direction switching means. , Is provided.
 本発明によれば、電気鉄道システムにおいて車両の自力走行を可能にするための蓄電装置の充電のための構成及び方法を簡略化できる。 According to the present invention, it is possible to simplify the configuration and method for charging the power storage device for enabling the vehicle to drive by itself in the electric railway system.
図1は、実施形態1の鉄道車両駆動システムの概略構成例を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration example of a railway vehicle drive system according to the first embodiment. 図2は、実施形態1の蓄電装置の充電に関する構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example regarding charging of the power storage device of the first embodiment. 図3は、実施形態1の蓄電装置の充電時の処理例を示すフローチャートである。FIG. 3 is a flowchart illustrating a processing example when charging the power storage device of the first embodiment. 図4は、実施形態1の車両の緊急走行時の処理例を示すフローチャートである。FIG. 4 is a flowchart showing an example of processing when the vehicle of the first embodiment is in an emergency run. 図5は、実施形態1の鉄道車両駆動システムの編成車両への適用例を示す図である。FIG. 5 is a diagram showing an example of application of the railway vehicle drive system of the first embodiment to a formation vehicle. 図6は、実施形態2の鉄道車両駆動システムの構成例を示すブロック図である。FIG. 6 is a block diagram showing a configuration example of a railway vehicle drive system according to the second embodiment. 図7は、実施形態2の蓄電装置の充電に関する構成例を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration example regarding charging of the power storage device according to the second embodiment. 図8は、実施形態3の鉄道車両駆動システムの構成例を示すブロック図である。FIG. 8 is a block diagram showing a configuration example of a railway vehicle drive system according to the third embodiment. 図9は、実施形態4の鉄道車両駆動システムの構成例を示すブロック図である。FIG. 9 is a block diagram showing a configuration example of the railway vehicle drive system according to the fourth embodiment.
 以下図面について、本発明の実施形態を詳述する。 The embodiments of the present invention will be described in detail below with reference to the drawings.
(1)実施形態1
(1-1)実施形態1の鉄道車両駆動システムの概略構成
 図1は、実施形態1の鉄道車両駆動システムの概略構成例を示すブロック図である。実施形態1の鉄道車両駆動システム1は、電車線から供給される直流電力を変換した交流電力で車両を駆動させる、車両に搭載されるシステムである。電車線は、鉄道車両に駆動のための電気エネルギーを伝達するための架線設備をいう。
(1) Embodiment 1
(1-1) Schematic Configuration of Railway Vehicle Drive System of First Embodiment FIG. 1 is a block diagram showing a schematic configuration example of the railway vehicle drive system of the first embodiment. The railcar drive system 1 according to the first embodiment is a system mounted on a vehicle that drives the vehicle with AC power obtained by converting DC power supplied from a train line. An electric train line is an overhead wire facility for transmitting electric energy for driving to a railway vehicle.
 鉄道車両駆動システム1は、図1に示すように、電車線と電気的と接続される集電装置101及び102と、高速回路遮断器109及び111それぞれを介し電車線と接続されるインバータ装置104及び106とを有する。また鉄道車両駆動システム1は、高速回路遮断器108及び110を介し電車線と接続される補助電源装置(SIV:静止形インバータともいう)103及び105と、高速回路遮断器112を介し電車線と接続される蓄電装置107と、蓄電装置107を監視する蓄電制御装置117とを有する。 As shown in FIG. 1, the railway vehicle drive system 1 includes current collectors 101 and 102 electrically connected to a train line and an inverter device 104 connected to the train line via high- speed circuit breakers 109 and 111, respectively. And 106. In addition, the railway vehicle drive system 1 includes auxiliary power supply devices (SIV: also referred to as static inverters) 103 and 105 connected to a train line via high- speed circuit breakers 108 and 110, and a train line via a high-speed circuit breaker 112. It has a power storage device 107 connected thereto and a power storage control device 117 that monitors the power storage device 107.
 また鉄道車両駆動システム1は、インバータ装置104及び106の出力側に接続される主電動機114及び115を有する。また鉄道車両駆動システム1は、補助電源装置105に接続される補助電源制御装置116を有する。また鉄道車両駆動システム1は、補助電源装置103及び105を接続するための延長給電回路113を有する。鉄道車両駆動システム1は、延長給電回路113と補助電源装置103との接続及び切断を切替える延長給電回路接続用切替器119を有し、延長給電回路113と補助電源装置105との接続及び切断を切替える延長給電回路接続用切替器118を有する。 The railcar drive system 1 also has main motors 114 and 115 connected to the output sides of the inverter devices 104 and 106. Further, the railway vehicle drive system 1 has an auxiliary power supply control device 116 connected to the auxiliary power supply device 105. The railway vehicle drive system 1 also has an extension power supply circuit 113 for connecting the auxiliary power supply devices 103 and 105. The railway vehicle drive system 1 has an extension power supply circuit connection switch 119 that switches connection and disconnection between the extension power supply circuit 113 and the auxiliary power supply device 103, and connects and disconnects the extension power supply circuit 113 and the auxiliary power supply device 105. It has a switch 118 for switching the extension power supply circuit.
 車両を力行させる際には、インバータ装置104及び106は、集電装置101及び102から供給された直流電力を変換した交流電力を主電動機114及び115にそれぞれ供給して車両の駆動制御を行う。また車両を力行させる際には、補助電源装置103及び105は、集電装置101及び102から供給された直流電力を変換した交流電力を制御電源や空調、照明等の車上補助機器に供給する。車両を力行させる際には、延長給電回路接続用切替器118及び119は、切断状態に制御される。なお延長給電回路接続用切替器118及び119の何れか一方のみで、補助電源装置103と補助電源装置105との接続及び切断を制御してもよい。 When the vehicle is powered, the inverter devices 104 and 106 supply AC power obtained by converting the DC power supplied from the current collectors 101 and 102 to the main motors 114 and 115, respectively, to control the drive of the vehicle. Further, when the vehicle is powered, the auxiliary power supply devices 103 and 105 supply AC power obtained by converting the DC power supplied from the current collectors 101 and 102 to auxiliary power equipment such as a control power supply, an air conditioner, and lighting. . When powering the vehicle, the extension power supply circuit connection switches 118 and 119 are controlled to be in a disconnected state. Note that connection or disconnection between the auxiliary power supply device 103 and the auxiliary power supply device 105 may be controlled by only one of the extension power supply circuit connection switching devices 118 and 119.
 電車線からの電力が供給されない電力供給不可能区間における車両の緊急走行時の際には、インバータ装置106は、蓄電装置107から供給された直流電力を変換した交流電力を主電動機115に供給して車両の駆動制御を行う。また車両の緊急走行時の際には、補助電源装置105は、蓄電装置107から供給された直流電力を変換した交流電力を車上補助機器に供給する。さらに車両の緊急走行時の際には、延長給電回路接続用切替器118が接続状態に制御され、補助電源装置105は、蓄電装置107から供給された直流電力を変換した交流電力を、延長給電回路113を介して他の車両の車上補助機器にも供給する。 When the vehicle is in an emergency running state in a section where power cannot be supplied from the electric power line, the inverter device 106 supplies AC power obtained by converting the DC power supplied from the power storage device 107 to the main motor 115. Drive control of the vehicle. Further, when the vehicle is in an emergency run, auxiliary power supply device 105 supplies AC power obtained by converting the DC power supplied from power storage device 107 to the on-board auxiliary device. Further, when the vehicle is in an emergency run, the extension power supply circuit connection switch 118 is controlled to be in the connected state, and the auxiliary power supply device 105 converts the direct current power supplied from the power storage device 107 into the extended power supply. It is also supplied to the on-board auxiliary equipment of other vehicles via the circuit 113.
 なお、車両の緊急走行時の際には、補助電源装置103及びインバータ装置104は、集電装置101を介した電車線及び蓄電装置107からの電力供給がないため、動作しない。 Note that when the vehicle is in an emergency run, the auxiliary power supply device 103 and the inverter device 104 do not operate because there is no power supply from the train line and the power storage device 107 via the current collector 101.
 次に補助電源装置103及び105を用いて、蓄電装置107の充電を行う動作を説明する。補助電源装置103は、集電装置101から直流電力の供給を受けて本来の動作であるインバータ運転を行い、集電装置101を介した電車線からの直流電力を交流電力に変換する。また補助電源装置105は、補助電源制御装置116からの指令により本来のインバータ運転からコンバータ運転に動作が切り替わる。補助電源装置105は、延長給電回路接続用切替器118及び119が接続状態に制御され、延長給電回路113を介して補助電源装置103から供給される交流電力を直流電力に変換し、蓄電装置107に充電電流を供給することで、蓄電装置107の充電を行う。この際、補助電源装置105は、蓄電装置107の充電電圧を所定の範囲に制御するための半導体スイッチング装置等の装置を介さず蓄電装置107に接続される。 Next, the operation of charging the power storage device 107 using the auxiliary power supply devices 103 and 105 will be described. The auxiliary power supply device 103 receives the DC power from the current collector 101, performs the inverter operation which is the original operation, and converts the DC power from the power line via the current collector 101 into AC power. Further, the operation of the auxiliary power supply device 105 is switched from the original inverter operation to the converter operation according to a command from the auxiliary power supply control device 116. In the auxiliary power supply device 105, the extension power supply circuit connection switches 118 and 119 are controlled to be in a connected state, and the AC power supplied from the auxiliary power supply device 103 via the extension power supply circuit 113 is converted into DC power, and the power storage device 107 is stored. The power storage device 107 is charged by supplying a charging current to the power storage device 107. At this time, the auxiliary power supply device 105 is connected to the power storage device 107 without a device such as a semiconductor switching device for controlling the charging voltage of the power storage device 107 within a predetermined range.
 その際に、補助電源装置105からの充電電流と集電装置102からの電流の競合を防止するために、集電装置102が電力線から切り離されていない場合には、補助電源装置105がインバータ運転からコンバータ運転へ切り替わることを禁止して充電動作を制限するインターロック機能が有効化される。 At that time, in order to prevent the charging current from the auxiliary power supply device 105 and the current from the current collector device 102 from competing with each other, when the current collector device 102 is not disconnected from the power line, the auxiliary power supply device 105 operates in the inverter mode. The interlock function that restricts the charging operation by prohibiting the switching from to the converter operation is enabled.
(1-2)実施形態1の蓄電装置の充電に関する構成例
 図2は、実施形態1の蓄電装置の充電に関する構成例を示すブロック図である。鉄道車両駆動システム1は、図2に示すように、さらに、高速回路遮断器111とインバータ装置106との間に、フィルタリアクトル203と断流器206とが接続される。また鉄道車両駆動システム1は、インバータ装置106の正負の電源線間に、フィルタコンデンサ201が接続される。フィルタコンデンサ201及びフィルタリアクトル203は、フィルタ回路を構成する。インバータ装置106には、3相の交流電力出力側に、1つの制御単位を構成する4つの主電動機115a~115dが接続されている。
(1-2) Configuration Example of Charging Power Storage Device of First Embodiment FIG. 2 is a block diagram showing a configuration example of charging the power storage device of the first embodiment. As shown in FIG. 2, the railway vehicle drive system 1 further includes a filter reactor 203 and a line breaker 206 connected between the high-speed circuit breaker 111 and the inverter device 106. Further, in the railway vehicle drive system 1, the filter capacitor 201 is connected between the positive and negative power supply lines of the inverter device 106. The filter capacitor 201 and the filter reactor 203 form a filter circuit. Four main electric motors 115a to 115d forming one control unit are connected to the three-phase AC power output side of the inverter device 106.
 また鉄道車両駆動システム1は、高速回路遮断器110と補助電源装置105との間に、フィルタリアクトル204と短絡機能付きダイオード208と断流器207とが接続される。短絡機能付きダイオード208は、集電装置102側から補助電源装置105への順方向にのみ電流を流すダイオード208bとダイオード208bに並列接続されたスイッチであるダイオード短落用コンタクタ208aとを有する。ダイオード短落用コンタクタ208aが、閉状態とされることにより、短絡機能付きダイオード208が短絡して逆方向に電流を流すようになる。また鉄道車両駆動システム1は、補助電源装置105の正負の電源線間に、フィルタコンデンサ202が接続される。フィルタコンデンサ202及びフィルタリアクトル204は、フィルタ回路を構成する。なお短絡機能付きダイオード208は電流の通電方向切換手段の一例であるが、電流の通電方向切換手段は双方向性ダイオードであってもよい。 Further, in the railway vehicle drive system 1, a filter reactor 204, a diode 208 with a short-circuit function, and a breaker 207 are connected between the high-speed circuit breaker 110 and the auxiliary power supply device 105. The diode 208 with a short-circuit function has a diode 208b that allows a current to flow only in the forward direction from the current collector 102 side to the auxiliary power supply device 105, and a diode short-circuiting contactor 208a that is a switch connected in parallel with the diode 208b. When the diode short-circuiting contactor 208a is closed, the diode 208 with a short-circuit function is short-circuited and a current flows in the opposite direction. Further, in the railcar drive system 1, the filter capacitor 202 is connected between the positive and negative power supply lines of the auxiliary power supply device 105. The filter capacitor 202 and the filter reactor 204 form a filter circuit. The diode 208 with a short-circuit function is an example of a current conduction direction switching means, but the current conduction direction switching means may be a bidirectional diode.
 また鉄道車両駆動システム1は、高速回路遮断器112と蓄電装置107との間に、フィルタリアクトル205が接続される。 Further, in the railway vehicle drive system 1, the filter reactor 205 is connected between the high speed circuit breaker 112 and the power storage device 107.
 また図2に示すように、補助電源装置105及びインバータ装置106の各マイナス電源線と、蓄電装置107の一方の出力端とが、接地209に接続されている。 Further, as shown in FIG. 2, each negative power supply line of the auxiliary power supply device 105 and the inverter device 106 and one output end of the power storage device 107 are connected to the ground 209.
 なお補助電源装置103が第1の電力変換手段の一例であり、補助電源装置105が第2の電力変換手段の一例である。また延長給電回路113が第1の接続手段の一例であり、短絡機能付きダイオード208を含む補助電源装置105と蓄電装置107とを接続する接続線が第2の接続手段の一例である。 The auxiliary power supply device 103 is an example of a first power conversion unit, and the auxiliary power supply device 105 is an example of a second power conversion unit. Further, the extension power supply circuit 113 is an example of the first connecting means, and a connection line connecting the auxiliary power supply device 105 including the diode 208 with a short-circuit function and the power storage device 107 is an example of the second connecting means.
 鉄道車両駆動システム1は、蓄電装置107への充電時の動作の際には、補助電源制御装置116内のCPU(Central Processing Unit)等の処理装置が、車両の運転台等からの車両情報を集約する車両用制御装置210が出力する充電要求を認識すると、次の処理を行う。 In the railway vehicle drive system 1, during the operation at the time of charging the power storage device 107, the processing device such as the CPU (Central Processing Unit) in the auxiliary power supply control device 116 receives the vehicle information from the cab of the vehicle. When the charging request output from the vehicle control device 210 to be aggregated is recognized, the following processing is performed.
(A1)延長給電回路接続用切替器118及び119を閉状態にする指令を出力し、補助電源装置103から延長給電回路113を介して補助電源装置105に交流電力が供給される給電経路が形成されているかを確認する。
(A2)集電装置102と電車線との接続及び切り離しを制御する制御装置に、集電装置102を電車線から切り離す制御指令を出力する。
(A3)短絡機能付きダイオード208に短絡指令を出力し、通常時に行う集電装置102側から補助電源装置105への整流動作を切替えて、補助電源装置105側から蓄電装置107への逆流動作が可能な状態に移行させる。
(A4)補助電源装置105にインバータ運転からコンバータ運転に切り換える切替指令を出力する。
(A1) A power supply path is formed to output a command to close the extension power supply circuit connection switches 118 and 119 and to supply AC power from the auxiliary power supply device 103 to the auxiliary power supply device 105 via the extension power supply circuit 113. Check if it has been done.
(A2) A control command for disconnecting the current collector 102 from the train line is output to a control device that controls connection and disconnection of the current collector 102 and the train line.
(A3) A short-circuit command is output to the diode 208 with a short-circuit function to switch the rectifying operation from the current collector 102 side to the auxiliary power supply device 105 that is normally performed, so that the reverse current operation from the auxiliary power supply device 105 side to the power storage device 107 is performed. Move to a possible state.
(A4) A switching command for switching from inverter operation to converter operation is output to the auxiliary power supply device 105.
 蓄電制御装置117は、蓄電装置107の充電量を監視して、その情報を補助電源制御装置116に出力することで、蓄電装置107が過不足なく適正な電力を蓄えることを可能にする。 The power storage control device 117 monitors the charge amount of the power storage device 107 and outputs the information to the auxiliary power supply control device 116, thereby enabling the power storage device 107 to store appropriate power without excess or deficiency.
(1-3)実施形態1の処理例
(1-3-1)充電処理
 図3は、実施形態1の蓄電装置の充電時の処理例を示すフローチャートである。実施形態1の蓄電装置の充電時の処理は、補助電源制御装置116の処理装置により所定周期で実行される。先ず、補助電源制御装置116は、当該車両が充電モードであるかどうかを車両用制御装置210等で集約される車両情報を基に判定する(ステップS11)。補助電源制御装置116は、充電モードである場合(ステップS11:Yes)、ステップS12へ処理を移す。一方、補助電源制御装置116は、充電モードでない場合(ステップS11:No)、本充電時の処理を終了する。
(1-3) Process Example of First Embodiment (1-3-1) Charging Process FIG. 3 is a flowchart showing a process example of charging the power storage device of the first embodiment. The process of charging the power storage device of the first embodiment is executed by the processing device of the auxiliary power supply control device 116 at a predetermined cycle. First, the auxiliary power supply control device 116 determines whether the vehicle is in the charging mode based on the vehicle information collected by the vehicle control device 210 or the like (step S11). If the auxiliary power supply control device 116 is in the charging mode (step S11: Yes), the process proceeds to step S12. On the other hand, when not in the charging mode (step S11: No), the auxiliary power supply control device 116 ends the process at the time of main charging.
 ステップS12では、補助電源制御装置116は、延長給電回路113によって補助電源装置103及び105間に給電経路が確保されているかどうかを、車両情報を基に確認する。 In step S12, the auxiliary power supply control device 116 confirms whether or not the power supply path is secured between the auxiliary power supply devices 103 and 105 by the extension power supply circuit 113 based on the vehicle information.
 ステップS13では、補助電源制御装置116は、ステップS12での経路の確保の確認の結果を判定し、経路が確保されている場合(ステップS13:Yes)、ステップS14へ処理を移す。一方、補助電源制御装置116は、経路が確保されていない場合(ステップS13:No)、本充電時の処理を終了する。 In step S13, the auxiliary power supply control device 116 determines the result of the confirmation of the securement of the route in step S12, and when the route is secured (step S13: Yes), moves the process to step S14. On the other hand, if the route is not secured (step S13: No), the auxiliary power supply control device 116 ends the process during the main charging.
 ステップS14では、補助電源制御装置116は、集電装置102と電車線との接続及び切り離しを制御する制御装置に指令を出力して集電装置102を下げて電車線から切り離す。なお集電装置102と電車線との接続及び切り離しの制御は、補助電源装置106と電車線との接続及び切り離しのために行うが、集電装置102と電車線との接続及び切り離しの制御を行う接触制御器は、集電装置102そのものであっても開閉器であっても何れでもよい。 In step S14, the auxiliary power supply control device 116 outputs a command to the control device that controls the connection and disconnection of the current collector 102 and the electric power line to lower the current collector 102 and disconnect it from the electric power line. Control of connection and disconnection between the current collector 102 and the electric train line is performed for connection and disconnection of the auxiliary power supply device 106 and the electric train line. However, control of connection and disconnection between the current collector 102 and the electric train line is performed. The contact controller to perform may be either the current collector 102 itself or a switch.
 次にステップS15では、補助電源制御装置116は、短絡機能付きダイオード208のダイオード短落用コンタクタ208aに閉指令を出力して閉状態にし、整流動作を解除し、補助電源装置105側から蓄電装置107側への逆流動作が可能な状態に移行させる。 Next, in step S15, the auxiliary power supply control device 116 outputs a close command to the diode short-circuiting contactor 208a of the diode 208 with a short-circuit function to close it, cancels the rectification operation, and the auxiliary power supply device 105 side stores the power storage device. The state is such that the backflow operation to the 107 side is possible.
 次にステップS16では、補助電源制御装置116は、補助電源装置105にゲートスタートしてコンバータ運転をさせる。補助電源装置105がコンバータ運転をすると、交流から直流に変換された電力が、昇降圧回路を介することなく、蓄電装置107に供給されて充電が行われる。 Next, in step S16, the auxiliary power supply control device 116 causes the auxiliary power supply device 105 to perform a gate start to operate the converter. When the auxiliary power supply device 105 operates as a converter, the power converted from alternating current to direct current is supplied to the power storage device 107 for charging without passing through the step-up / down circuit.
 ステップS17では、補助電源制御装置116は、蓄電制御装置117によって監視される充電開始後の蓄電装置107の蓄電量を、例えば蓄電装置107の電圧を閾値V1との比較により監視する。具体的には、ステップS17では、補助電源制御装置116は、蓄電装置107の電圧が閾値V1以下であるかどうかを判定し、蓄電装置107の電圧が閾値V1以下である場合(ステップS17:Yes)、ステップS16へ処理を戻し、蓄電装置107が適正な蓄電量になるまで充電を継続させる。一方、補助電源制御装置116は、蓄電装置107の電圧が閾値V1より大である場合(ステップS17:No)、補助電源装置105のコンバータ運転を終了して蓄電装置107の充電を終了し、本充電時の処理を終了する。 In step S17, the auxiliary power supply control device 116 monitors the amount of electricity stored in the electricity storage device 107 after the start of charging monitored by the electricity storage control device 117, for example, by comparing the voltage of the electricity storage device 107 with a threshold value V1. Specifically, in step S17, auxiliary power supply control device 116 determines whether or not the voltage of power storage device 107 is equal to or lower than threshold V1, and when the voltage of power storage device 107 is equal to or lower than threshold V1 (step S17: Yes). ), The process is returned to step S16, and charging is continued until the power storage device 107 reaches an appropriate amount of power storage. On the other hand, when the voltage of the power storage device 107 is higher than the threshold value V1 (step S17: No), the auxiliary power supply control device 116 ends the converter operation of the auxiliary power supply device 105 and ends the charging of the power storage device 107. The charging process ends.
(1-3-2)緊急走行時の処理
 図4は、実施形態1の車両の緊急走行時の処理例を示すフローチャートである。実施形態1の車両の緊急走行時の処理は、補助電源制御装置116の処理装置により所定周期で実行される。先ず、補助電源制御装置116は、当該車両が緊急走行モードであるかどうかを車両用制御装置210等で集約される車両情報を基に判定する(ステップS21)。補助電源制御装置116は、緊急走行モードである場合(ステップS21:Yes)、ステップS22へ処理を移す。一方、補助電源制御装置116は、緊急走行モードでない場合(ステップS21:No)、本緊急走行時の処理を終了する。
(1-3-2) Processing During Emergency Traveling FIG. 4 is a flowchart showing an example of processing during emergency travel of the vehicle according to the first embodiment. The processing when the vehicle is in an emergency run according to the first embodiment is executed by the processing device of the auxiliary power supply control device 116 at a predetermined cycle. First, the auxiliary power supply control device 116 determines whether or not the vehicle is in the emergency drive mode based on the vehicle information collected by the vehicle control device 210 or the like (step S21). The auxiliary power supply control device 116 shifts the processing to step S22 when it is the emergency traveling mode (step S21: Yes). On the other hand, when the emergency driving mode is not set (step S21: No), the auxiliary power supply control device 116 ends the processing during the emergency driving.
 ステップS22では、補助電源制御装置116は、短絡機能付きダイオード208のダイオード短落用コンタクタ208aに開指令を出力して開状態にし、整流動作を設定し、蓄電装置107側から補助電源装置105側への通常の順方向の整流動作が可能な状態に移行させる。 In step S22, the auxiliary power supply control device 116 outputs an open command to the diode short-circuiting contactor 208a of the diode 208 with a short-circuit function to open the state, sets the rectification operation, and sets the power storage device 107 side to the auxiliary power supply device 105 side. The normal forward rectifying operation to the state is made possible.
 次にステップS23では、補助電源制御装置116は、蓄電制御装置117によって監視される車両の緊急走行開始後の蓄電装置107の蓄電量を、例えば蓄電装置107の電圧を閾値V1及びV2との比較により監視する。具体的には、ステップS24では、補助電源制御装置116は、蓄電装置107の電圧が閾値V1以上かつ閾値V2以下である(蓄電量が緊急走行に十分な適正範囲内にある)かどうかを判定する。補助電源制御装置116は、蓄電装置107の電圧が閾値V1以上かつ閾値V2以下である場合(ステップS24:Yes)、ステップS25及びS26に処理を移す。 Next, in step S23, the auxiliary power supply control device 116 compares the amount of electricity stored in the electricity storage device 107, which is monitored by the electricity storage control device 117, after the vehicle has started an emergency run, for example, the voltage of the electricity storage device 107 with threshold values V1 and V2. To monitor. Specifically, in step S24, auxiliary power supply control device 116 determines whether the voltage of power storage device 107 is equal to or higher than threshold value V1 and equal to or lower than threshold value V2 (the amount of stored power is within a proper range sufficient for emergency travel). To do. When the voltage of power storage device 107 is equal to or higher than threshold value V1 and equal to or lower than threshold value V2 (step S24: Yes), auxiliary power supply control device 116 shifts the processing to steps S25 and S26.
 ステップS25では、補助電源制御装置116は、インバータ装置106に直流電力を供給する。インバータ装置106は、主電動機115a~115dへ供給する交流電力を制御することで緊急走行を可能にする。同時にステップS26では、補助電源制御装置116は、短絡機能付きダイオード208及び断流器207を介して補助電源装置105に電力を供給する。補助電源装置105は、通常のインバータ運転を行い、車両の車上補助機器に交流電力を供給する。補助電源制御装置116は、ステップS25及びS26が終了すると、ステップS24へ処理を移す。 In step S25, the auxiliary power supply control device 116 supplies DC power to the inverter device 106. The inverter device 106 enables emergency traveling by controlling the AC power supplied to the main motors 115a to 115d. At the same time, in step S26, the auxiliary power supply control device 116 supplies electric power to the auxiliary power supply device 105 via the diode 208 with a short-circuit function and the breaker 207. The auxiliary power supply device 105 performs a normal inverter operation and supplies AC power to the on-board auxiliary equipment of the vehicle. Upon completion of steps S25 and S26, the auxiliary power supply control device 116 shifts the processing to step S24.
 一方、補助電源制御装置116は、蓄電装置107の電圧が閾値V1未満又は閾値V2より大である場合(ステップS24:No)、本緊急走行時の処理を終了する。 On the other hand, if the voltage of the power storage device 107 is less than the threshold value V1 or greater than the threshold value V2 (step S24: No), the auxiliary power supply control device 116 ends the process during the emergency run.
 なお補助電源制御装置116は、鉄道車両駆動システム1を搭載した車両の営業運転終了時には、延長給電回路接続用切替器118及び119を開状態にして補助電源装置103及び105の接続を解除し、集電装置102を電車線から切り離して補助電源装置105と電車線との接続を解除した上で、自身の電源を停止する。 Note that the auxiliary power supply control device 116 disconnects the auxiliary power supply devices 103 and 105 by opening the extension power supply circuit connection switching devices 118 and 119 at the end of the commercial operation of the vehicle equipped with the railway vehicle drive system 1. After disconnecting the current collector 102 from the trolley wire and disconnecting the auxiliary power supply device 105 from the trolley wire, the power supply of itself is stopped.
 また補助電源制御装置116は、延長給電回路接続用切替器118及び119を開状態とし、かつ集電装置102等の接触制御器を閉状態とする第一状態(通常走行時)と、延長給電回路接続用切替器118及び119を閉状態とし、かつ接触制御器を開状態とする第二状態(充電状態)と、を切り替える指令を出力することで、通常モードと充電モードとの切り替えを行う。 In addition, the auxiliary power supply control device 116 opens the extension power supply circuit connection switches 118 and 119 and closes the contact controllers such as the current collector 102 (during normal traveling) and the extension power supply. Switching between the normal mode and the charging mode is performed by outputting a command to switch between the circuit connecting switches 118 and 119 in the closed state and the contact controller in the second state (charging state) in which the contact controller is opened. .
 また補助電源制御装置116は、短絡機能付きダイオード208から補助電源装置105に向かう電流を通電させる第一制御と、補助電源装置105から短絡機能付きダイオード208に向かう電流を通電させる第二制御と、を切り替える指令を出力し、第一制御と第二制御との切り替えにおいて、補助電源装置105に対して運転を逆転させる(コンバータ運転させる)指令を出力する。 In addition, the auxiliary power supply control device 116 performs a first control in which a current flowing from the diode 208 with a short-circuit function to the auxiliary power supply device 105 is conducted, and a second control in which a current from the auxiliary power supply device 105 to a diode 208 with a short-circuit function is conducted. Is output, and a command to reverse the operation (converter operation) is output to the auxiliary power supply device 105 in switching between the first control and the second control.
 また補助電源制御装置116は、補助電源装置103及び105と電車線との接続の解消が検知されると上記の第一制御を実行し、補助電源装置103と架線との接続が確立されている期間において上記の第二制御を実行する。 Further, the auxiliary power supply control device 116 executes the above-described first control when it is detected that the connection between the auxiliary power supply devices 103 and 105 and the electric power line is detected, and the connection between the auxiliary power supply device 103 and the overhead line is established. The second control is executed during the period.
(1-4)実施形態1の鉄道車両駆動システムの編成車両への適用
 図5は、実施形態1の鉄道車両駆動システムの編成車両への適用例を示す図である。図5では、図1と同一の構成要素には同一符号を付与すると共に、図1から構成要素の図示及び符号の付与を適宜追加及び省略している。図5に示すように、例えば7両編成の編成車両100は、制御付随車(Tc)101-1と、動力車(M)100-2及び100-3と、付随車(T)100-4と、動力車(M)100-5及び100-6と、付随車(T)100-7とから編成される。
(1-4) Application of Railway Vehicle Drive System of First Embodiment to Rolling Stock Vehicle FIG. 5 is a diagram showing an example of application of the railway vehicle drive system of the first embodiment to a rolling stock vehicle. In FIG. 5, the same components as those in FIG. 1 are assigned the same reference numerals, and the illustration of components and the assignment of the reference numerals from FIG. 1 are appropriately added or omitted. As shown in FIG. 5, for example, a seven-car train 100 includes a control trailer vehicle (Tc) 101-1, motor vehicles (M) 100-2 and 100-3, and a trailer vehicle (T) 100-4. , A power vehicle (M) 100-5 and 100-6, and a trailer vehicle (T) 100-7.
 制御付随車101-1は、動力車100-3が有する集電装置101を介して電車線から電力が供給される補助電源装置103を搭載している。動力車100-2は、動力車100-3が有する集電装置101を介して電車線から電力が供給され、図示しない主電動機を駆動するインバータ装置104-1を搭載している。動力車100-3は、集電装置101を有し、集電装置101を介して電車線から供給される電力で主電動機114(図1参照)を駆動するインバータ装置104を搭載している。 The control accompanying vehicle 101-1 is equipped with an auxiliary power supply device 103 to which electric power is supplied from the trolley line via the current collector 101 of the motor vehicle 100-3. The motor vehicle 100-2 is equipped with an inverter device 104-1 that is supplied with electric power from a trolley wire via a current collector 101 of the motor vehicle 100-3 and drives a main motor (not shown). The motor vehicle 100-3 has a current collector 101, and is equipped with an inverter device 104 that drives a main electric motor 114 (see FIG. 1) with electric power supplied from a train line via the current collector 101.
 付随車100-4は、動力車100-6が有する集電装置102を介して電車線から電力が供給される補助電源装置105を搭載している。補助電源装置103及び105間は、延長給電回路113で接続される。動力車100-5は、動力車100-6が有する集電装置102を介して電車線から電力が供給され、図示しない主電動機を駆動するインバータ装置106-1を搭載している。動力車100-6は、集電装置102を有し、集電装置102を介して電車線から供給される電力で主電動機115(図1参照)を駆動するインバータ装置106を搭載している。付随車100-7は、動力車100-6が有する集電装置101を介して電車線から充電電力が供給される蓄電装置107を搭載している。なお、実施形態1の鉄道車両駆動システム1の各装置(補助電源装置103及び105と、インバータ装置104及び106と、蓄電装置107)の数及び各装置を編成車両100の何れの車両に搭載するかは適宜変更可能な設計事項である。 The trailer vehicle 100-4 is equipped with an auxiliary power supply device 105 to which electric power is supplied from the trolley line via the current collector 102 of the motor vehicle 100-6. The extension power supply circuit 113 connects between the auxiliary power supply devices 103 and 105. The motor vehicle 100-5 is equipped with an inverter device 106-1 which is supplied with electric power from the trolley wire via a current collector 102 of the motor vehicle 100-6 and drives a main motor (not shown). The motor vehicle 100-6 has a current collecting device 102, and is equipped with an inverter device 106 that drives a main electric motor 115 (see FIG. 1) with electric power supplied from an electric line via the current collecting device 102. The trailer vehicle 100-7 is equipped with a power storage device 107 to which charging power is supplied from the trolley line via the current collector 101 of the motor vehicle 100-6. The number of each device (auxiliary power supply devices 103 and 105, inverter devices 104 and 106, and power storage device 107) and each device of the railway vehicle drive system 1 of the first embodiment are installed in any of the rolling stock vehicles 100. Is a design item that can be changed as appropriate.
(1-5)実施形態1の効果
 このように、本実施形態では、1つの編成車両100の鉄道車両駆動システム1は、既存構成として、集電装置101、インバータ装置104、及び補助電源装置103と、集電装置102、インバータ装置106、補助電源装置105、及び蓄電装置107とを有する。蓄電装置を充電する際には、延長給電回路113を介して補助電源装置103及び105を接続し、集電装置102を電車線から切り離して補助電源装置105をコンバータ運転させる。このように、本実施形態によれば、チョッパ装置(充電装置)等を追加せず蓄電装置107も従来装置を用いるように、既存構成を流用してシステム構成を大きく変更することなく、集電装置101を介した電車線からの直流電力で蓄電装置107を充電できる新規な充電方式を提供できる。またチョッパ装置を備える場合においても、チョッパ装置の故障時であっても蓄電装置107を充電できる。
(1-5) Effects of First Embodiment As described above, in the present embodiment, the railway vehicle drive system 1 of the single rolling-stock set 100 has, as an existing configuration, the current collector 101, the inverter device 104, and the auxiliary power supply device 103. And a power collection device 102, an inverter device 106, an auxiliary power supply device 105, and a power storage device 107. When the power storage device is charged, the auxiliary power supply devices 103 and 105 are connected via the extension power supply circuit 113, the current collector 102 is disconnected from the power line, and the auxiliary power supply device 105 is operated as a converter. As described above, according to the present embodiment, current collection is performed without adding a chopper device (charging device) or the like and also using the conventional device for the power storage device 107 without diverting the existing configuration and significantly changing the system configuration. A new charging method can be provided in which the power storage device 107 can be charged with direct-current power from a train line via the device 101. Even when the chopper device is provided, the power storage device 107 can be charged even when the chopper device fails.
(2)実施形態2
 実施形態2の鉄道車両駆動システム1Bは、実施形態1とは異なり、延長給電回路113を介して補助電源装置103をインバータ装置106に接続し、インバータ装置106をコンバータ運転させることにより、充電装置107を充電するシステムである。以下、実施形態1との相違点を中心に説明する。
(2) Embodiment 2
Unlike the first embodiment, the railway vehicle drive system 1B of the second embodiment connects the auxiliary power supply device 103 to the inverter device 106 via the extension power supply circuit 113 and operates the inverter device 106 by the converter, thereby charging the battery charger 107. Is a system for charging. The differences from the first embodiment will be mainly described below.
(2-1)実施形態2の鉄道車両駆動システムの概略構成
 図6は、実施形態2の鉄道車両駆動システムの構成例を示すブロック図である。図6に示すように、実施形態2の鉄道車両駆動システム1Bは、実施形態1の鉄道車両駆動システム1と比較して、補助電源制御装置116の代わりにインバータ装置106の出力側にインバータ制御装置501が接続される。また鉄道車両駆動システム1Bは、延長給電回路113が補助電源装置103及び105間を接続するのではなく、補助電源装置103及びインバータ装置106間を接続する。インバータ装置106は、延長給電回路接続用切替器502が切り替わることにより、主電動機115及び延長給電回路113の何れか一方と接続される。
(2-1) Schematic Configuration of Railway Vehicle Drive System of Second Embodiment FIG. 6 is a block diagram showing an example of the configuration of the railway vehicle drive system of the second embodiment. As shown in FIG. 6, the railway vehicle drive system 1B of the second embodiment is different from the railway vehicle drive system 1 of the first embodiment in that an inverter control device is provided on the output side of the inverter device 106 instead of the auxiliary power supply control device 116. 501 is connected. Further, in the railcar drive system 1B, the extension power supply circuit 113 does not connect between the auxiliary power supply devices 103 and 105, but connects between the auxiliary power supply device 103 and the inverter device 106. The inverter device 106 is connected to one of the main motor 115 and the extension power supply circuit 113 by switching the switch 502 for connecting the extension power supply circuit.
 次に補助電源装置103とインバータ装置106を利用して、蓄電装置107を充電する際の動作を説明する。補助電源装置103は、本来の動作であるインバータ運転を行って、集電装置101を介して電車線から供給された直流電力を交流電力に変換する。またインバータ装置106は、インバータ制御装置501からの指令により本来のインバータ運転からコンバータ運転に動作が切り替わる。インバータ装置106は、延長給電回路113と主電動機115との接続を切替える延長給電回路接続用切替器502を介して、補助電源装置103から供給された3相の交流電力を直流電力に変換し、蓄電装置107へ充電電流を供給することで、蓄電装置107の充電を行う。この際、インバータ装置106は、蓄電装置107の充電電圧を所定の範囲に制御するための半導体スイッチング装置等の装置を介さず蓄電装置107に接続される。 Next, the operation of charging the power storage device 107 using the auxiliary power supply device 103 and the inverter device 106 will be described. The auxiliary power supply device 103 performs an inverter operation, which is the original operation, to convert the DC power supplied from the power line via the current collector 101 into AC power. Further, the operation of the inverter device 106 is switched from the original inverter operation to the converter operation according to a command from the inverter control device 501. The inverter device 106 converts three-phase AC power supplied from the auxiliary power supply device 103 into DC power via the extension power supply circuit connection switch 502 that switches the connection between the extension power supply circuit 113 and the main motor 115, The power storage device 107 is charged by supplying a charging current to the power storage device 107. At this time, the inverter device 106 is connected to the power storage device 107 without a device such as a semiconductor switching device for controlling the charging voltage of the power storage device 107 within a predetermined range.
(2-2)実施形態2の蓄電装置の充電に関する構成例
 図7は、実施形態2の蓄電装置の充電に関する構成例を示すブロック図である。図7に示すように、鉄道車両駆動システム1Bは、インバータ装置106の3相の交流電力出力側に、1つの制御単位を構成する4つの主電動機115a~115dと、3相の延長給電回路113(113a、113b、及び113c)との接続をそれぞれ切替える延長給電回路接続用切替器502a、502b、及び502cを備える。
(2-2) Configuration Example of Charging Power Storage Device of Second Embodiment FIG. 7 is a block diagram showing a configuration example of charging the power storage device of the second embodiment. As shown in FIG. 7, the railway vehicle drive system 1B includes four main motors 115a to 115d, which constitute one control unit, and a three-phase extension power supply circuit 113 on the three-phase AC power output side of the inverter device 106. Extension power supply circuit connection switches 502a, 502b, and 502c that switch connections with (113a, 113b, and 113c), respectively.
 また鉄道車両駆動システム1Bは、高速回路遮断器110と補助電源装置105との間に、フィルタリアクトル204及び断流器207が接続される。また鉄道車両駆動システム1Bは、高速回路遮断器111とインバータ装置106との間に、フィルタリアクトル203と短絡機能付きダイオード208Bと断流器206とが接続される。 Further, in the railway vehicle drive system 1B, the filter reactor 204 and the disconnector 207 are connected between the high-speed circuit breaker 110 and the auxiliary power supply device 105. Further, in the railcar drive system 1B, the filter reactor 203, the diode 208B with a short-circuit function, and the breaker 206 are connected between the high-speed circuit breaker 111 and the inverter device 106.
 なお補助電源装置103が第1の電力変換手段の一例であり、インバータ装置106が第2の電力変換手段の一例である。また延長給電回路113が第1の接続手段の一例であり、短絡機能付きダイオード208Bを含むインバータ装置106と蓄電装置107とを接続する接続線が第2の接続手段の一例である。なお延長給電回路接続用切替器502のみで、補助電源装置103とインバータ装置106との接続及び切断を制御してもよい。 The auxiliary power supply device 103 is an example of a first power conversion unit, and the inverter device 106 is an example of a second power conversion unit. Further, the extension power supply circuit 113 is an example of the first connecting unit, and the connection line connecting the inverter device 106 including the diode 208B with a short circuit function and the power storage device 107 is an example of the second connecting unit. The extension power supply circuit connection switch 502 alone may control connection and disconnection between the auxiliary power supply device 103 and the inverter device 106.
 鉄道車両駆動システム1Bは、蓄電装置107への充電時の動作の際には、インバータ制御装置501内のCPU等の処理装置は、車両用制御装置210が出力する充電要求を認識すると、次の処理を行う。 When the railway vehicle drive system 1B operates during charging of the power storage device 107, when a processing device such as a CPU in the inverter control device 501 recognizes a charging request output from the vehicle control device 210, Perform processing.
(B1)延長給電回路接続用切替器502a、502b、502c、及び119を閉状態にする指令を出力し、補助電源装置103から延長給電回路113を介してインバータ装置106に交流電力が供給される給電経路が形成されているかを確認する。
(B2)集電装置102と電車線との接続及び切り離しを制御する制御装置に、集電装置102を電車線から切り離す制御指令を出力する。
(B3)短絡機能付きダイオード208Bに短絡指令を出力し、通常時に行う集電装置102側からインバータ装置106への整流動作を切替えて、インバータ装置106側から蓄電装置107への逆流動作が可能な状態に移行させる。
(B4)インバータ装置106にインバータ運転からコンバータ運転に切り換える切替指令を出力する。
(B1) An instruction to close the extension power supply circuit connection switches 502a, 502b, 502c, and 119 is output, and AC power is supplied from the auxiliary power supply device 103 to the inverter device 106 via the extension power supply circuit 113. Check if the power supply path is formed.
(B2) A control command for disconnecting the current collector 102 from the train line is output to a control device that controls connection and disconnection of the current collector 102 and the train line.
(B3) A short-circuit command is output to the diode 208B with a short-circuit function to switch the rectifying operation from the current collector 102 side to the inverter device 106, which is normally performed, so that the backflow operation from the inverter device 106 side to the power storage device 107 is possible. Shift to the state.
(B4) A switching command for switching from inverter operation to converter operation is output to the inverter device 106.
 蓄電制御装置117は、蓄電装置107の充電量を監視して、その情報をインバータ制御装置501に出力することで、蓄電装置107が過不足なく適正な電力を蓄えることを可能にする。 The power storage control device 117 monitors the charge amount of the power storage device 107 and outputs the information to the inverter control device 501, so that the power storage device 107 can store appropriate power without excess or deficiency.
(3)実施形態3
 実施形態3の鉄道車両駆動システム1Cは、実施形態1とは異なり、インバータ装置104を延長給電回路113を介して補助電源装置105に接続し、補助電源装置105をコンバータ運転させることにより、充電装置107を充電するシステムである。以下、実施形態1との相違点を中心に説明する。
(3) Embodiment 3
The railway vehicle drive system 1C of the third embodiment differs from the first embodiment in that the inverter device 104 is connected to the auxiliary power supply device 105 via the extension power supply circuit 113 and the auxiliary power supply device 105 is operated by the converter to charge the charging device. This is a system for charging 107. The differences from the first embodiment will be mainly described below.
(3-1)実施形態3の鉄道車両駆動システムの概略構成
 図8は、実施形態3の鉄道車両駆動システムの構成例を示すブロック図である。図8に示すように、実施形態3の鉄道車両駆動システム1Cは、実施形態1の鉄道車両駆動システム1と比較して、延長給電回路113は補助電源装置103及び105間を接続するのではなく、インバータ装置104及び補助電源装置105間を接続する。インバータ装置104は、延長給電回路接続用切替器601が切り替わることにより、主電動機114及び延長給電回路113の何れか一方と接続される。なお延長給電回路接続用切替器601のみで、インバータ装置104と補助電源装置105との接続及び切断を制御してもよい。
(3-1) Schematic Configuration of Railway Vehicle Drive System of Third Embodiment FIG. 8 is a block diagram showing a configuration example of the railway vehicle drive system of the third embodiment. As shown in FIG. 8, the railway vehicle drive system 1C of the third embodiment is different from the railway vehicle drive system 1 of the first embodiment in that the extension power supply circuit 113 does not connect between the auxiliary power supply devices 103 and 105. The inverter device 104 and the auxiliary power supply device 105 are connected to each other. The inverter device 104 is connected to either the main motor 114 or the extension power supply circuit 113 by switching the extension power supply circuit connection switch 601. In addition, the connection and disconnection between the inverter device 104 and the auxiliary power supply device 105 may be controlled only by the switch 601 for connecting the extension power supply circuit.
 次にインバータ装置104と補助電源装置105を利用して、蓄電装置107に充電を行う動作を説明する。インバータ装置104は、本来の動作であるインバータ運転を行って、集電装置101を介して電車線から供給された直流電力を交流電力に変換する。また補助電源装置105は、補助電源制御装置116からの指令により本来のインバータ運転からコンバータ運転に動作が切り替わる。補助電源装置105は、延長給電回路113と主電動機114との接続を切替えるスイッチである延長給電回路接続用切替器118を介してインバータ装置104から供給された3相の交流電力を直流電力に変換し、蓄電装置107へ充電電流を供給することで、蓄電装置107の充電を行う。 Next, the operation of charging the power storage device 107 using the inverter device 104 and the auxiliary power supply device 105 will be described. The inverter device 104 performs an inverter operation, which is the original operation, to convert the DC power supplied from the power line via the current collector 101 into AC power. Further, the operation of the auxiliary power supply device 105 is switched from the original inverter operation to the converter operation according to a command from the auxiliary power supply control device 116. The auxiliary power supply device 105 converts three-phase AC power supplied from the inverter device 104 into DC power via the extension power supply circuit connection switch 118 that is a switch that switches the connection between the extension power supply circuit 113 and the main motor 114. Then, the power storage device 107 is charged by supplying a charging current to the power storage device 107.
 なおインバータ装置104が第1の電力変換手段の一例であり、補助電源装置105が第2の電力変換手段の一例である。また延長給電回路113が第1の接続手段の一例であり、短絡機能付きダイオード208を含む補助電源装置105と蓄電装置107とを接続する接続線が第2の接続手段の一例である。 The inverter device 104 is an example of the first power conversion unit, and the auxiliary power supply device 105 is an example of the second power conversion unit. Further, the extension power supply circuit 113 is an example of the first connecting means, and a connection line connecting the auxiliary power supply device 105 including the diode 208 with a short-circuit function and the power storage device 107 is an example of the second connecting means.
(4)実施形態4
 実施形態4は、実施形態1とは異なり、インバータ装置104を延長給電回路113を介してインバータ装置106に接続し、インバータ装置106をコンバータ運転させることにより、蓄電装置107を充電するシステムである。以下、実施形態1との相違点を中心に説明する。
(4) Embodiment 4
Different from the first embodiment, the fourth embodiment is a system in which the inverter device 104 is connected to the inverter device 106 via the extension power feeding circuit 113 and the inverter device 106 is operated in a converter to charge the power storage device 107. The differences from the first embodiment will be mainly described below.
(4-1)実施形態4の鉄道車両駆動システムの概略構成
 図9は、実施形態4の鉄道車両駆動システムの構成例を示すブロック図である。図9に示すように、実施形態4の鉄道車両駆動システム1Dは、実施形態1の鉄道車両駆動システム1と比較して、補助電源制御装置116の代わりにインバータ装置106の出力側にインバータ制御装置501が接続される。また鉄道車両駆動システム1Dは、延長給電回路113Dが、リアクトル701を含み、インバータ装置104及び106間を接続する。インバータ装置104は、延長給電回路接続用切替器601が切り替わることにより、主電動機114及び延長給電回路113Dの何れか一方と接続される。またインバータ装置106は、延長給電回路接続用切替器502が切り替わることにより、主電動機115及び延長給電回路113Dの何れか一方と接続される。なお延長給電回路接続用切替器502のみで、インバータ装置104とインバータ装置106との接続及び切断を制御してもよい。
(4-1) Schematic Configuration of Railway Vehicle Drive System of Fourth Embodiment FIG. 9 is a block diagram showing a configuration example of the railway vehicle drive system of the fourth embodiment. As shown in FIG. 9, the railway vehicle drive system 1D of the fourth embodiment is different from the railway vehicle drive system 1 of the first embodiment in that an inverter control device is provided on the output side of the inverter device 106 instead of the auxiliary power supply control device 116. 501 is connected. Further, in the railway vehicle drive system 1D, the extension power supply circuit 113D includes the reactor 701 and connects the inverter devices 104 and 106. The inverter device 104 is connected to either the main motor 114 or the extension power supply circuit 113D by switching the switch 601 for connecting the extension power supply circuit. In addition, the inverter device 106 is connected to either the main motor 115 or the extension power supply circuit 113D by switching the switch 502 for connecting the extension power supply circuit. It should be noted that the connection and disconnection between the inverter device 104 and the inverter device 106 may be controlled only by the switch 502 for connecting the extension power supply circuit.
 次にインバータ装置104とインバータ装置106を利用して、蓄電装置107を充電する際の動作を説明する。インバータ装置104は、本来の動作であるインバータ運転を行って、集電装置101を介して電車線から供給された直流電力を交流電力に変換する。またインバータ装置106は、インバータ制御装置501からの指令により本来のインバータ運転からコンバータ運転に動作が切り替わる。インバータ装置106は、延長給電回路113Dと主電動機115との接続を切替える延長給電回路接続用切替器502を介して、インバータ装置104から供給された3相の交流電力を直流電力に変換し、蓄電装置107へ充電電流を供給することで、蓄電装置107の充電を行う。 Next, the operation of charging the power storage device 107 using the inverter device 104 and the inverter device 106 will be described. The inverter device 104 performs an inverter operation, which is the original operation, to convert the DC power supplied from the power line via the current collector 101 into AC power. Further, the operation of the inverter device 106 is switched from the original inverter operation to the converter operation according to a command from the inverter control device 501. The inverter device 106 converts the three-phase AC power supplied from the inverter device 104 into DC power via the extension power supply circuit connection switch 502 that switches the connection between the extension power supply circuit 113D and the main motor 115, and stores the power. The power storage device 107 is charged by supplying a charging current to the device 107.
 なおインバータ装置104が第1の電力変換手段の一例であり、インバータ装置106が第2の電力変換手段の一例である。また延長給電回路113Dが第1の接続手段の一例であり、短絡機能付きダイオード208Bを含むインバータ装置106と蓄電装置107とを接続する接続線が第2の接続手段の一例である。 The inverter device 104 is an example of the first power conversion unit, and the inverter device 106 is an example of the second power conversion unit. The extension power supply circuit 113D is an example of the first connecting unit, and the connection line connecting the inverter device 106 including the diode 208B with a short-circuit function and the power storage device 107 is an example of the second connecting unit.
 なお上述の実施形態1~4では、電車線から供給される電力は直流電力であるとしたが、本発明は、電車線から供給される電力が交流電力であり集電装置を介して取り込んだ電力を交流電力から直流電力に変換後に分配し、インバータ及び補助電源装置で交流電力にさらに変換する構成であっても適用可能である。 In the first to fourth embodiments described above, the electric power supplied from the electric power line is DC power, but in the present invention, the electric power supplied from the electric power line is AC power and is taken in via the current collector. The present invention is also applicable to a configuration in which electric power is distributed after being converted from AC power to DC power, and is further converted into AC power by an inverter and an auxiliary power supply device.
 なお、本発明は上述の実施形態に限定されるものではなく、様々な変形例を含む。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加又は他の構成との置換、もしくは削除をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, with respect to a part of the configuration of each embodiment, it is possible to add another configuration, replace it with another configuration, or delete it.
 1,1B,1C,1D…鉄道車両駆動システム、100…編成車両、100-1…制御付随車、100-2,100-3,100-5,100-6…動力車、100-4,100-7…付随車、101,102…集電装置、103,105…補助電源装置、104,104-1,106,106-1…インバータ装置、107…蓄電装置、108,109,110,111,112…高速回路遮断器、113、113a、113b、113c、113d、113D…延長給電回路、114,115,115a,115b,115c,115d…主電動機、116…補助電源制御装置、117…蓄電制御装置、118,119…延長給電回路接続用切替器、201,202,203,204,205…フィルタリアクトル、206,207…断流器、208,208B…逆流機能付きダイオード、208a…ダイオード短落用コンタクタ、208b…ダイオード、209…接地、210…車両用制御装置、501…インバータ制御装置、502,502a,5002b,601…延長給電回路接続用切替器、701…リアクトル。 1, 1B, 1C, 1D ... Railway vehicle drive system, 100 ... Train set, 100-1 ... Control vehicle, 100-2, 100-3, 100-5, 100-6 ... Motor vehicle, 100-4, 100 -7 ... Accompanying vehicle, 101, 102 ... Current collecting device, 103, 105 ... Auxiliary power supply device, 104, 104-1, 106, 106-1 ... Inverter device, 107 ... Power storage device, 108, 109, 110, 111, 112 ... High-speed circuit breaker, 113, 113a, 113b, 113c, 113d, 113D ... Extension feeding circuit, 114, 115, 115a, 115b, 115c, 115d ... Main electric motor, 116 ... Auxiliary power supply control device, 117 ... Storage control device , 118, 119 ... Switch for connecting extension power feeding circuit, 201, 202, 203, 204, 205 ... Filter reactor, 206, 207 ... Sink, 208, 208B ... Diode with reverse current function, 208a ... Contact for short-circuiting diode, 208b ... Diode, 209 ... Ground, 210 ... Vehicle controller, 501 ... Inverter controller, 502, 502a, 5002b, 601 ... Extension Switch for connecting power supply circuit, 701 ... Reactor.

Claims (14)

  1.  架線と接続可能な第1の電力変換手段及び第2の電力変換手段を有する鉄道駆動システムにおいて、
     前記第2の電力変換手段と接続可能に設けられた蓄電装置と、
     前記第1の電力変換手段と前記第2の電力変換手段との間に設けられた開閉器と、
     前記第2の電力手段と前記架線との間に設けられた接触制御器と、
     前記第2の電力変換手段と前記接触制御器との間に設けられた電流の通電方向切換手段と、
     前記開閉器、前記接触制御器及び前記通電方向切換手段を制御する制御装置と、
     を備えたことを特徴とする鉄道車両駆動システム。
    In a railway drive system having a first power conversion means and a second power conversion means connectable to an overhead wire,
    A power storage device that is connectable to the second power conversion means;
    A switch provided between the first power conversion means and the second power conversion means;
    A contact controller provided between the second power means and the overhead wire;
    A current-carrying direction switching means provided between the second power conversion means and the contact controller;
    A controller for controlling the switch, the contact controller, and the energization direction switching means;
    A railway vehicle drive system characterized by comprising:
  2.  前記制御装置は、
     前記開閉器及び前記接触制御器を開状態としてから自身の電源を停止する
     ことを特徴とする請求項1に記載の鉄道車両駆動システム。
    The control device is
    The railway vehicle drive system according to claim 1, wherein the power source of the railway vehicle is stopped after the switch and the contact controller are opened.
  3.  前記制御装置は、
     前記開閉器を開状態とし、かつ前記接触制御器を閉状態とする第一状態と、
     前記開閉器を閉状態とし、かつ前記接触制御器を開状態とする第二状態と、
     を切り替える指令を出力する
     ことを特徴とする請求項1又は2に記載の鉄道車両駆動システム。
    The control device is
    A first state in which the switch is opened and the contact controller is closed,
    A second state in which the switch is closed and the contact controller is opened,
    The railway vehicle drive system according to claim 1 or 2, wherein a command to switch between is output.
  4.  前記制御装置は、
     前記通電方向切換手段から前記第2の電力変換手段に向かう電流を通電させる第一制御と、
     前記第2の電力変換手段から前記通電方向切換手段に向かう電流を通電させる第二制御と、
     を切り替える指令を出力し、
     前記第一制御と前記第二制御との切り替えにおいて、前記第2の電力変換手段に対して運転を逆転させる指令を出力する
     ことを特徴とする請求項1~3の何れか1項に記載の鉄道車両駆動システム。
    The control device is
    A first control for energizing a current flowing from the energization direction switching means to the second power conversion means;
    A second control for energizing a current flowing from the second power conversion means to the energization direction switching means;
    Output the command to switch
    4. When switching between the first control and the second control, a command to reverse the operation is output to the second power conversion means. Railway vehicle drive system.
  5.  前記制御装置は、
     前記第1の電力変換手段及び前記第2の電力変換手段と前記架線との接続の解消が検知されると前記第一制御を実行し、
     前記第1の電力変換手段と前記架線との接続が確立されている期間において前記第二制御を実行する
     ことを特徴とする請求項4に記載の鉄道車両駆動システム。
    The control device is
    When the disconnection of the connection between the first power conversion means and the second power conversion means and the overhead wire is detected, the first control is executed,
    The railway vehicle drive system according to claim 4, wherein the second control is executed during a period in which the connection between the first power conversion means and the overhead wire is established.
  6.  前記第1の電力変換手段及び前記第2の電力変換手段が、車上補助機器に電力を供給する補助電源装置である
     ことを特徴とする請求項1~5の何れか1項に記載の鉄道車両駆動システム。
    The railway according to any one of claims 1 to 5, wherein the first power conversion means and the second power conversion means are auxiliary power supply devices that supply electric power to on-board auxiliary equipment. Vehicle drive system.
  7.  前記第1の電力変換手段が、車上補助機器に電力を供給する補助電源装置であり、
     前記第2の電力変換手段が、駆動用モータに電力を供給するインバータ装置である
     ことを特徴とする請求項1~5の何れか1項に記載の鉄道車両駆動システム。
    The first power conversion means is an auxiliary power supply device that supplies electric power to an on-board auxiliary device,
    The railway vehicle drive system according to any one of claims 1 to 5, wherein the second power conversion means is an inverter device that supplies power to a drive motor.
  8.  前記第1の電力変換手段が、駆動用モータに電力を供給するインバータ装置であり、
     前記第2の電力変換手段が、車上補助機器に電力を供給する補助電源装置である
     ことを特徴とする請求項1~5の何れか1項に記載の鉄道車両駆動システム。
    The first power conversion means is an inverter device that supplies power to a drive motor,
    The railway vehicle drive system according to any one of claims 1 to 5, wherein the second power conversion means is an auxiliary power supply device that supplies electric power to an on-board auxiliary device.
  9.  前記第1の電力変換手段及び前記第2の電力変換手段が、駆動用モータに電力を供給するインバータ装置である
     ことを特徴とする請求項1~5の何れか1項に記載の鉄道車両駆動システム。
    The rail car drive according to any one of claims 1 to 5, wherein the first power conversion means and the second power conversion means are inverter devices that supply power to a drive motor. system.
  10.  前記開閉器と直列に接続されるリアクトルを有する
     ことを特徴とする請求項9に記載の鉄道車両駆動システム。
    The railway vehicle drive system according to claim 9, further comprising a reactor connected in series with the switch.
  11.  ダイオードと該ダイオードに並列接続された前記ダイオードの入出力を短絡させるためのスイッチとを少なくとも構成に含み、
     前記制御装置は、
     前記架線から前記第2の電力変換手段へ電流を流すときには前記スイッチをオフにし、
     前記蓄電装置を充電するときには前記スイッチをオンにする
     ことを特徴とする請求項1~10の何れか1項に記載の鉄道車両駆動システム。
    At least the configuration includes a diode and a switch for short-circuiting the input and output of the diode connected in parallel to the diode,
    The control device is
    When a current is passed from the overhead wire to the second power conversion means, the switch is turned off,
    The railway vehicle drive system according to any one of claims 1 to 10, wherein the switch is turned on when the power storage device is charged.
  12.  前記第1の電力変換手段及び前記第2の電力変換手段の出力側に、車上補助機器に電力を給電するための接続手段との接続を開閉するスイッチを有する
     ことを特徴とする請求項7~10の何れか1項に記載の鉄道車両駆動システム。
    8. A switch for opening and closing a connection with a connecting means for supplying electric power to an on-board auxiliary device is provided on an output side of the first power converting means and the second power converting means. The railway vehicle drive system according to any one of 1 to 10.
  13.  前記第2の電力変換手段は、前記蓄電装置の充電電圧を所定の範囲に制御するための装置を介さず前記蓄電装置に接続される
     ことを特徴とする請求項1~12の何れか1項に記載の鉄道車両駆動システム。
    13. The second power conversion means is connected to the power storage device without a device for controlling the charging voltage of the power storage device within a predetermined range. The railway vehicle drive system described in.
  14.  架線と接続可能な第1の電力変換手段及び第2の電力変換手段を備えた鉄道駆動システムにおける蓄電装置の蓄電方法において、
     前記鉄道車両駆動システムは、
     前記第2の電力変換手段と接続可能に設けられた蓄電装置と、
     前記第1の電力変換手段と前記第2の電力変換手段との間に設けられた開閉器と、
     前記第2の電力手段と前記架線との間に設けられた接触制御器と、
     前記第2の電力変換手段と前記接触制御器との間に設けられた電流の通電方向切換手段と、
     前記開閉器、前記接触制御器及び前記通電方向切換手段を制御する制御装置と、
     を備え、
     前記制御装置が、
     前記開閉器を閉状態にして前記第1の電力変換手段と前記第2の電力変換手段とを接続し、
     前記接触制御器を開状態にして前記第2の電力手段と前記架線との接続を解消し、
     前記通電方向切換手段を制御して前記第2の電力変換手段から前記通電方向切換手段に向かう電流を通電させ、
     前記第2の電力変換手段に対して運転を逆転させる指令を出力する、
     各処理を含んだことを特徴とする蓄電方法。
    In a power storage method of a power storage device in a railway drive system including a first power conversion unit and a second power conversion unit connectable to an overhead wire,
    The railway vehicle drive system,
    A power storage device that is connectable to the second power conversion means;
    A switch provided between the first power conversion means and the second power conversion means;
    A contact controller provided between the second power means and the overhead wire;
    A current-carrying direction switching means provided between the second power conversion means and the contact controller;
    A controller for controlling the switch, the contact controller, and the energization direction switching means;
    With
    The control device,
    The switch is closed to connect the first power conversion means and the second power conversion means,
    The contact controller is opened to disconnect the second electric power means from the overhead wire,
    Controlling the energization direction switching means to energize a current flowing from the second power conversion means to the energization direction switching means,
    Outputting a command to reverse the operation to the second power conversion means,
    A power storage method including each process.
PCT/JP2019/037713 2018-10-11 2019-09-25 Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle WO2020075504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550340A JP7094381B2 (en) 2018-10-11 2019-09-25 How to charge a railroad vehicle drive system and a power storage device in a railroad vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-192956 2018-10-11
JP2018192956 2018-10-11

Publications (1)

Publication Number Publication Date
WO2020075504A1 true WO2020075504A1 (en) 2020-04-16

Family

ID=70163794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037713 WO2020075504A1 (en) 2018-10-11 2019-09-25 Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle

Country Status (2)

Country Link
JP (1) JP7094381B2 (en)
WO (1) WO2020075504A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193405A (en) * 2018-04-23 2019-10-31 株式会社東芝 Electric vehicle power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014540A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Electric vehicle propulsion control device, and railway vehicle system
WO2013018167A1 (en) * 2011-07-29 2013-02-07 三菱電機株式会社 Electric vehicle propulsion control device
WO2013114546A1 (en) * 2012-01-30 2013-08-08 三菱電機株式会社 Propulsion control device of electric vehicle and control method thereof
JP2014030343A (en) * 2013-08-09 2014-02-13 Toshiba Corp Electric-vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014540A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Electric vehicle propulsion control device, and railway vehicle system
WO2013018167A1 (en) * 2011-07-29 2013-02-07 三菱電機株式会社 Electric vehicle propulsion control device
WO2013114546A1 (en) * 2012-01-30 2013-08-08 三菱電機株式会社 Propulsion control device of electric vehicle and control method thereof
JP2014030343A (en) * 2013-08-09 2014-02-13 Toshiba Corp Electric-vehicle control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193405A (en) * 2018-04-23 2019-10-31 株式会社東芝 Electric vehicle power supply system
JP7182898B2 (en) 2018-04-23 2022-12-05 株式会社東芝 Electric vehicle power supply system

Also Published As

Publication number Publication date
JPWO2020075504A1 (en) 2021-12-02
JP7094381B2 (en) 2022-07-01

Similar Documents

Publication Publication Date Title
AU2011284036B9 (en) Electric vehicle propulsion control device, and railway vehicle system
EP3038854B1 (en) Electric power conversion device, emergency traveling system and railway vehicle
US9873335B2 (en) Electric railcar power feeding system, power feeding device, and power storage device
EP2570292B1 (en) Alternating-current electric vehicle
US9145060B2 (en) Propulsion control apparatus for electric motor car
WO2019119495A1 (en) Train traction rescue method and system
JP2012039867A (en) Device for control of electric rolling stock
CN212579619U (en) Energy supply device for a rail vehicle and rail vehicle
CN113043868A (en) Train traction control system and operation mode switching method
CN109861367B (en) Power supply system of electric locomotive
JP5851925B2 (en) Electric railway vehicle drive system
JP4178728B2 (en) Power supply equipment for electric vehicles
WO2020075504A1 (en) Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle
JP5777669B2 (en) Electric vehicle control device
JP2018152979A (en) Electric power source system for electric motor vehicle, electric power supply control method and additional electric power source system
RU2726820C1 (en) Transporting device operating on cable working and method of its operation
US20230057202A1 (en) Vehicle with electrical traction including an energy management system, and method for managing the energy in such a vehicle with electrical traction
JP4166618B2 (en) Induction motor drive system for railway vehicles
CN221408678U (en) Rail vehicle fuses power supply system
CN115503510A (en) Electric locomotive and power supply device and method thereof
CN117155085A (en) Rail vehicle fuses power supply system
JP2019186985A (en) Storage battery system and electric vehicle control system
JP2014039474A (en) Control device of electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871872

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020550340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871872

Country of ref document: EP

Kind code of ref document: A1