JP4178728B2 - Power supply equipment for electric vehicles - Google Patents

Power supply equipment for electric vehicles Download PDF

Info

Publication number
JP4178728B2
JP4178728B2 JP2000236756A JP2000236756A JP4178728B2 JP 4178728 B2 JP4178728 B2 JP 4178728B2 JP 2000236756 A JP2000236756 A JP 2000236756A JP 2000236756 A JP2000236756 A JP 2000236756A JP 4178728 B2 JP4178728 B2 JP 4178728B2
Authority
JP
Japan
Prior art keywords
power
electric
vehicle
power supply
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000236756A
Other languages
Japanese (ja)
Other versions
JP2002058110A (en
Inventor
秀夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2000236756A priority Critical patent/JP4178728B2/en
Publication of JP2002058110A publication Critical patent/JP2002058110A/en
Application granted granted Critical
Publication of JP4178728B2 publication Critical patent/JP4178728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
本発明は、新幹線(登録商標)車両などの電気車に電力を供給する電気車用の電源設備に係り、特に電気車が異電源を分離するデッドセクションを通過するときに電源を確保するための電源設備に関する。
【0002】
【従来の技術】
図3に電鉄用電源設備とセクション構成の例を示す。電源設備は、同図の(a)に示すように、異電源になる変電所11、12からき電用しゃ断器21、22やき電線、区分開閉器を介してデッドセクションで分離されたトロリー線3を加圧する。複数台車両で一編成とする電気車4は、トロリー線から1つまたは複数のパンタグラフを通して受電し、電気車内の電源回路から走行用電動機・照明・空調機器等に電力供給を行う。
【0003】
このような電鉄用電源設備において、デッドセクションは異電源区間を分離するものであり、新幹線用の電源設備では、図3の(b)に示すように、異電源の突き合わせ箇所に切替セクションを設備している。新幹線車両では先頭側車両と後尾側車両のパンタグラフ間をブス引き通し(ケーブル)で接続しており、切替セクションは、車両の最大パンタグラフ間隔以上になる距離(一般に1000m)で設けられるエアセクションD1,D2間を中セクションとし、エアセクションD1,D2の両端と中セクション間に開閉制御される開閉器SW1,SW2を設けた構成とする。
【0004】
この構成により、全車両が中セクション範囲内に到達するまでは、開閉器SW1を閉、開閉器SW2を開としておくことで開閉器SW1側の電源から中セクションに電力を供給し続け、全車両が中セクションを走行中に開閉器SW1を開、開閉器SW2を閉と切り替えることで開閉器SW2側の電源から中セクションに電力の供給を開始する。これにより、開閉器の切換時に瞬時停電はあるが連続した電力供給がなされ、新幹線車両の運転者は、異電源区間の通過を意識することなく、ノッチオン状態のままエアセクションの走行運転ができる。
【0005】
【発明が解決しようとする課題】
従来の電気車用の電源設備は、変電所およびき電区分所に切替設備を設ける必要があり、設備費がかさむ。また、車両の走行に合わせて、電源の切替えを行うため、中セクションの長さは1000m以上必要となり、切替設備費がかさむ。また、車両の走行速度を向上させる場合、中セクションの距離を変更するなどの対策が必要となる。また、中セクションの電源切替えは、250ms〜350msの瞬時停電が発生するし、開閉器が自動的にオン・オフを繰り返しており、設備の寿命に影響する。また、切替設備は、車両の通過の度に入り・切りが繰り返され、多頻度開閉が行われるため、設備を定期的に保守する必要があり、ランニングコストが大きくなる。また、切替設備は、多頻度開閉設備であるため、故障も多く、車両の運行計画の支障原因となる場合が多い。
【0006】
本発明の目的は、上記の各課題などを解決した電気車用の電源設備を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、中セクションは車両の最大パンタグラフ間隔に少しの余裕度を持たせた距離で、両端にデッドセクションのみを設けた無加圧区間に構成し、電気車には電気二重層キャパシタ等の急速充放電可能なエネルギー蓄積装置を搭載し、電気車が中セクションを通過するときにはエネルギー蓄積装置から電気車の走行等に必要な電力を供給できるようにすることで、電源設備としては切替設備を簡略化でき、しかもエネルギー蓄積装置に必要な電力容量を最小限にするもので、以下の構成を特徴とする。
【0008】
デッドセクションによって異電源を分離したトロリー線から電気車に給電し、前記デッドセクションは、一対のデッドセクションと、この一対のデッドセクション間で無加圧にした中セクションとによって構成し、前記電気車は、先頭側車両と後尾側車両のパンタグラフ間がケーブルで接続され、トロリー線からの受電で走行用電動機等に電力を供給する電源回路と、この電源回路との間で直流電力の充放電ができるエネルギー蓄積装置とを搭載し、前記デッドセクション以外の範囲を走行する電気車にはトロリー線から給電し、前記中セクションを走行する電気車には、該電気車に搭載するエネルギー蓄積装置から該電気車に必要な電力を供給する電気車用の電源設備において、
前記中セクションの距離は、電気車の先頭側車両と後尾側車両の最大パンタグラフ間隔以上で、かつ該中セクションを走行する電気車に前記エネルギー蓄積装置から電力供給する時間が必要最小限となる距離にしたことを特徴とする。
【0009】
【発明の実施の形態】
図1は、本発明の実施形態を示す交流電鉄用電気車の電源回路構成図である。トロリー線からパンタグラフ11を通して真空しゃ断器12や避雷器13を介して主変圧器14の一次側に電源引き込みを行う。
【0010】
主変圧器14の二次側には、コンバータ151と駆動用インバータ152および回生用インバータ153からなる主変換装置が設けられ、インバータ152から誘導電動機16に周波数制御した駆動電流を供給、および回生電力を主変圧器14側に回生する。主変圧器14の二次側には、しゃ断器を介して隣接車両の主変換装置171〜173に接続され、その誘導電動機18の駆動及び回生制動を行う。19は、照明機器や空調機器や機械ブレーキ用コンプレッサなどの電源を得るための補助回路である。
【0011】
ここで、本実施形態では、駆動用の各車両には、直流電源とする電気二重層キャパシタと、その充放電を制御できる電流制御回路をもつエネルギー蓄積装置20、21を搭載する。このエネルギー蓄積装置20、21は、主変換装置の直流回路、すなわちコンバータ151、171とインバータ152、172の接続点に並列に設け、電気車の電源回路との間で直流電力の充放電ができるようにする。
【0012】
エネルギー蓄積装置20、21の電気二重層キャパシタは、急速充放電が可能で、しかも充放電の繰り返し可能回数が一般の蓄電池設備に比して格段に高いものである。電流制御回路は、パンタグラフからの受電電圧を検出しておき、この電圧が設定値以下に低下したときに電気二重層キャパシタからインバータ等の直流回路への放電路を形成、さらには昇圧して放電する回路(回路接続スイッチや昇降圧チョッパ回路)を設ける。
【0013】
以上の構成により、パンタグラフ11を通して受電できる通常時には、エネルギー蓄積装置20、21は主変圧器14、コンバータ151、171を通した直流電力で定格電圧まで充電しておく。そして、トロリー線などの電源設備の停電やトロリー線とパンタグラフの接触が切れた(離線現象)場合、また電気車がデッドセクションを通過する走行状態になったとき、電動機16、18の駆動に必要な電源をエネルギー蓄積装置20、21を直流電源とし、インバータ152、172で交流電力に変換して電動機16、18に必要な電力を供給する。
【0014】
また、エネルギー蓄積装置20、21を直流電源とし、回生用インバータ153、173で交流電力に変換して補助回路19等への給電を可能にする。
【0015】
図2は、新幹線車両がデッドセクションを通過する場合を示し、従来の切替設備における開閉器SW1,SW2とその開閉制御装置を省き、車両の最大パンタグラフ間隔(約300m)に少しの余裕度α(20メートル程度)を加えた距離(図示では400m)で一対のエアセクションのみを設けた構成とし、その間の中セクションを無加圧区間とする。
【0016】
この構成において、新幹線車両はブス引き通しで先頭側車両と後尾車両間のパンタグラフがケーブルで接続されており、一部のパンタグラフが中セクション位置になる走行状態では加圧状態になるトロリー線に接触するパンタグラフから受電して力行することができる。そして、全部のパンタグラフが中セクション内になる電源遮断状態では、車両に搭載するエネルギー蓄積装置から主変換装置等に電源を供給し、力行運転を継続することができる。
【0017】
特に、中セクションの距離は、新幹線車両の最大パンタグラフ間隔に少しの余裕度を持たせたものにするため、中セクションを走行中にエネルギー蓄積装置20、21から電力供給する時間を必要最小限にすることができる。例えば、中セクションの距離を400mとし、最大パンタグラフ間隔が300mとし、走行速度が250km/hとすると、100mを通過する時間は約1.44秒となり、この時間だけエネルギー蓄積装置が電力供給できればよい。
【0018】
したがって、エネルギー蓄積装置は、その必要電力容量を最小限にすることができ、経済的であるし、既設の車両の基本構造に大幅な変更を伴うことのない小型化を図ることができる。また、中セクションの距離が最小限になるため、その設置場所の選択肢が増え、設備箇所の制約が緩和される。
【0019】
さらに、従来の方式に比べて、切替設備は開閉器とその制御装置が不要になって大幅に簡略化され、その信頼性の向上、コストダウン、保守費低減、設備寿命を延ばすことができる。また、車両の走行速度を高める場合にも、中セクションの距離を変更する必要がなくなる。
【0020】
また、エネルギー蓄積装置を搭載した電気車は、電気車が力行開始や回生開始する場合にトロリー線の電圧変化をエネルギー蓄積装置で抑制することができ、トロリー線や変電所などの電源設備から見て電気車自体が負荷変動要因となることが少なくなり、該電源設備の責務を軽減してその簡略化、コストダウン等を図ることができる。
【0021】
さらにまた、エネルギー蓄積装置を搭載した電気車は、夜間やトンネル、地下の走行中での変電所等の停電に際して電気車の非常用直流電源として利用することができる。
【0022】
以上の実施形態において、電気二重層キャパシタに代えて、蓄電池等を直流電源とするエネルギー蓄積装置を電気車に搭載して同等の作用効果を得ることができる。
【0023】
【発明の効果】
以上のとおり、本発明によれば、電気車には電気二重層キャパシタ等の急速充放電可能なエネルギー蓄積装置を搭載し、電気車が中セクションを通過するときにはエネルギー蓄積装置から電気車の走行等に必要な電力を供給できるようにしたため、電源設備としては切替設備を簡略化できる。
【0024】
特に、中セクションの距離を、ブス引き通しで先頭側車両と後尾車両間のパンタグラフがケーブルで接続された電気車の最大パンタグラフ間隔に少しの余裕度を持たせたものにするため、エネルギー蓄積装置の小型化など、電気車および電源設備の設備効率を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す電気車の電源回路構成図。
【図2】実施形態におけるデッドセクションの通過態様図。
【図3】電鉄用の電源設備とデッドセクションの構成例。
【符号の説明】
11…パンタグラフ
14…主変圧器
151、171…コンバータ
152、172…駆動用インバータ
153、173…回生用インバータ
16、18…誘導電動機
19…補助回路
20、21…エネルギー蓄積装置
[0001]
The present invention relates to a power supply facility for an electric vehicle that supplies electric power to an electric vehicle such as a Shinkansen (registered trademark) vehicle, and in particular, for securing a power source when the electric vehicle passes through a dead section that separates different power sources. It relates to power supply equipment.
[0002]
[Prior art]
FIG. 3 shows an example of a power supply facility for railways and a section configuration. As shown in (a) of the figure, the power supply equipment is separated at the dead section through substations 1 1 , 1 2, feeder circuit breakers 2 1 , 2 2 fired wires, and section switches, which become different power sources. The trolley wire 3 is pressurized. The electric vehicle 4 which is composed of a plurality of vehicles receives power from the trolley line through one or a plurality of pantographs, and supplies electric power from a power circuit in the electric vehicle to a driving motor, lighting, air-conditioning equipment, and the like.
[0003]
In such a power supply facility for electric railways, the dead section separates different power supply sections. In the power supply facility for the Shinkansen, as shown in FIG. is doing. In Shinkansen vehicles , the pantographs of the leading vehicle and the trailing vehicle are connected by a bus (cable), and the switching section is an air section D1, which is provided at a distance (generally 1000 m) that is greater than the maximum pantograph interval of the vehicle. A section between D2 is a middle section, and switches SW1 and SW2 that are controlled to be opened and closed between both ends of the air sections D1 and D2 and the middle section are provided.
[0004]
With this configuration, until all the vehicles reach the middle section range, the switch SW1 is closed and the switch SW2 is kept open so that power is continuously supplied from the power source on the switch SW1 side to the middle section. However, when the middle section is traveling, the switch SW1 is opened and the switch SW2 is closed to start supplying power from the power source on the switch SW2 side to the middle section. Thereby, although there is an instantaneous power failure at the time of switching of the switch, continuous power supply is made, and the driver of the Shinkansen can run the air section while notching on without being aware of passing through the different power source section.
[0005]
[Problems to be solved by the invention]
Conventional power supply equipment for electric vehicles needs to be provided with switching equipment at the substation and feeder section, which increases the equipment cost. In addition, since the power source is switched in accordance with the traveling of the vehicle, the length of the middle section is required to be 1000 m or more, which increases the switching equipment cost. Moreover, when improving the running speed of a vehicle, measures, such as changing the distance of a middle section, are needed. In addition, when the power source of the middle section is switched, an instantaneous power failure of 250 ms to 350 ms occurs, and the switch is automatically turned on and off, which affects the life of the equipment. In addition, since the switching equipment is repeatedly entered and cut every time the vehicle passes, and frequently opened and closed, it is necessary to maintain the equipment regularly, and the running cost increases. In addition, since the switching facility is a frequently opened / closed facility, there are many failures, which often cause troubles in vehicle operation plans.
[0006]
The objective of this invention is providing the power supply equipment for electric vehicles which solved said each subject.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is configured so that the middle section is a non-pressurized section provided with only a dead section at both ends at a distance that gives a slight margin to the maximum pantograph interval of the vehicle. Is equipped with an energy storage device that can be charged and discharged quickly, such as an electric double layer capacitor, so that when the electric vehicle passes through the middle section, the energy storage device can supply the power necessary for running the electric vehicle, etc. As the power supply equipment, the switching equipment can be simplified, and the power capacity necessary for the energy storage device can be minimized. The power supply equipment is characterized by the following configuration.
[0008]
The electric vehicle is fed from a trolley wire separated from a different power source by a dead section, and the dead section is composed of a pair of dead sections and a middle section in which no pressure is applied between the pair of dead sections. The pantograph of the leading vehicle and the trailing vehicle is connected by a cable, and charging / discharging of DC power is performed between the power supply circuit that supplies power to the electric motor for traveling by receiving power from the trolley wire, and this power supply circuit. can be equipped with an energy storage device, the power is supplied from the trolley wire for electric vehicle traveling range other than dead section, to an electric vehicle traveling the in section, the from the energy storage device to be mounted on electric cars In electric vehicle power supply equipment that supplies electric power necessary for electric vehicles ,
The distance of the middle section is equal to or greater than the maximum pantograph interval between the leading vehicle and the trailing vehicle of the electric vehicle, and the distance for supplying the electric power from the energy storage device to the electric vehicle traveling through the middle section is the minimum necessary distance. It is characterized by that.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram of a power supply circuit of an electric vehicle for an AC railway showing an embodiment of the present invention. Power is drawn from the trolley wire through the pantograph 11 to the primary side of the main transformer 14 via the vacuum circuit breaker 12 and the lightning arrester 13.
[0010]
On the secondary side of the main transformer 14, a main converter comprising a converter 15 1 , a drive inverter 15 2 and a regenerative inverter 15 3 is provided, and a frequency-controlled drive current is supplied from the inverter 15 2 to the induction motor 16. , And regenerative power is regenerated to the main transformer 14 side. The secondary side of the main transformer 14 is connected to main converters 17 1 to 17 3 of adjacent vehicles via a circuit breaker, and drives the induction motor 18 and performs regenerative braking. Reference numeral 19 denotes an auxiliary circuit for obtaining a power source for lighting equipment, air conditioning equipment, a mechanical brake compressor, and the like.
[0011]
Here, in this embodiment, the energy storage devices 20 and 21 having an electric double layer capacitor serving as a DC power source and a current control circuit capable of controlling charging / discharging are mounted on each driving vehicle. The energy storage devices 20 and 21 are provided in parallel at the connection points of the DC circuits of the main converter, that is, the converters 15 1 and 17 1 and the inverters 15 2 and 17 2 . Enable charging / discharging.
[0012]
The electric double layer capacitors of the energy storage devices 20 and 21 can be rapidly charged / discharged, and the number of times that charge / discharge can be repeated is much higher than that of general storage battery equipment. The current control circuit detects the voltage received from the pantograph, and when this voltage drops below the set value, forms a discharge path from the electric double layer capacitor to the DC circuit such as an inverter, and further boosts and discharges. Circuits (circuit connection switches and step-up / down chopper circuits) are provided.
[0013]
With the above configuration, during normal times when power can be received through the pantograph 11, the energy storage devices 20, 21 are charged to the rated voltage with DC power through the main transformer 14 and the converters 15 1 , 17 1 . And it is necessary to drive the motors 16 and 18 when the power supply equipment such as the trolley line is cut off, the contact between the trolley line and the pantograph is cut off (separation phenomenon), or when the electric vehicle enters a running state that passes through the dead section. The energy storage devices 20 and 21 are direct current power sources, and the inverters 15 2 and 17 2 convert the power into alternating current power to supply necessary power to the motors 16 and 18.
[0014]
Further, the energy storage devices 20 and 21 are used as a DC power source, and are converted into AC power by the regenerative inverters 15 3 and 17 3 so that power can be supplied to the auxiliary circuit 19 and the like.
[0015]
FIG. 2 shows a case where a Shinkansen vehicle passes through a dead section, omits the switches SW1 and SW2 and the switching control device thereof in the conventional switching equipment, and provides a slight allowance α (the maximum pantograph interval (about 300 m) of the vehicle. It is set as the structure which provided only a pair of air section in the distance (400 m in the illustration) which added about 20 meters, and let the intermediate | middle section between them be a no-pressurization area.
[0016]
In this configuration, the Shinkansen vehicle passes through the bus and the pantograph between the leading vehicle and the rear vehicle is connected with a cable, and a part of the pantograph contacts the trolley wire that is in a pressurized state in the traveling state where it is in the middle section position. Power can be received from the pantograph. And in the power-off state where all pantographs are in the middle section, power can be supplied from the energy storage device mounted on the vehicle to the main converter and the power running operation can be continued.
[0017]
In particular, the distance of the middle section is set so that the maximum pantograph interval of the Shinkansen has a slight margin, so that the time for supplying power from the energy storage devices 20 and 21 while traveling the middle section is minimized. can do. For example, if the distance of the middle section is 400 m, the maximum pantograph interval is 300 m, and the traveling speed is 250 km / h, the time to pass 100 m is about 1.44 seconds, and it is sufficient that the energy storage device can supply power for this time. .
[0018]
Therefore, the energy storage device can minimize the required power capacity, is economical, and can be reduced in size without significantly changing the basic structure of an existing vehicle. In addition, since the distance of the middle section is minimized, the choice of the installation location is increased, and the restrictions on the equipment location are eased.
[0019]
Furthermore, compared with the conventional system, the switching equipment is greatly simplified by eliminating the need for a switch and its control device, thereby improving its reliability, reducing costs, reducing maintenance costs, and extending the equipment life. Also, it is not necessary to change the distance of the middle section when increasing the traveling speed of the vehicle.
[0020]
In addition, an electric vehicle equipped with an energy storage device can suppress voltage changes in the trolley wire with the energy storage device when the electric vehicle starts power running or regeneration, and is viewed from the power supply equipment such as the trolley wire and substation. As a result, the electric vehicle itself is less likely to become a load fluctuation factor, and the duty of the power supply equipment can be reduced, thereby simplifying and reducing the cost.
[0021]
Furthermore, an electric vehicle equipped with an energy storage device can be used as an emergency DC power source for an electric vehicle in the event of a power failure at a substation or the like during traveling at night, in a tunnel, or underground.
[0022]
In the above embodiment, instead of the electric double layer capacitor, an energy storage device using a storage battery or the like as a DC power source can be mounted on the electric vehicle to obtain the same effect.
[0023]
【The invention's effect】
As described above, according to the present invention, an electric vehicle is equipped with an energy storage device capable of rapid charge / discharge, such as an electric double layer capacitor, and the electric vehicle travels from the energy storage device when the electric vehicle passes through the middle section. Therefore, the switching equipment can be simplified as the power supply equipment.
[0024]
In particular, the energy storage device is used to make the distance of the middle section a little margin in the maximum pantograph interval of the electric vehicle where the pantograph between the leading vehicle and the trailing vehicle is connected with a cable by passing the bus. The facility efficiency of electric vehicles and power supply facilities can be increased, such as downsizing of the vehicle.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power circuit of an electric vehicle showing an embodiment of the present invention.
FIG. 2 is a view showing how a dead section passes in the embodiment.
FIG. 3 shows a configuration example of power supply equipment for electric railways and a dead section.
[Explanation of symbols]
11 ... pantograph 14 ... main transformer 15 1, 17 1 ... converter 15 2, 17 2 ... driving inverter 15 3, 17 3 ... regenerative inverter 16, 18 ... induction motor 19 ... auxiliary circuits 20 and 21 ... energy storage device

Claims (1)

デッドセクションによって異電源を分離したトロリー線から電気車に給電し、前記デッドセクションは、一対のデッドセクションと、この一対のデッドセクション間で無加圧にした中セクションとによって構成し、前記電気車は、先頭側車両と後尾側車両のパンタグラフ間がケーブルで接続され、トロリー線からの受電で走行用電動機等に電力を供給する電源回路と、この電源回路との間で直流電力の充放電ができるエネルギー蓄積装置とを搭載し、前記デッドセクション以外の範囲を走行する電気車にはトロリー線から給電し、前記中セクションを走行する電気車には、該電気車に搭載するエネルギー蓄積装置から該電気車に必要な電力を供給する電気車用の電源設備において、
前記中セクションの距離は、電気車の先頭側車両と後尾側車両の最大パンタグラフ間隔以上で、かつ該中セクションを走行する電気車に前記エネルギー蓄積装置から電力供給する時間が必要最小限となる距離にしたことを特徴とする電気車用の電源設備。
The electric vehicle is fed from a trolley wire separated from a different power source by a dead section, and the dead section is composed of a pair of dead sections and a middle section in which no pressure is applied between the pair of dead sections. The pantograph of the leading vehicle and the trailing vehicle is connected by a cable, and charging / discharging of DC power is performed between the power supply circuit that supplies power to the electric motor for traveling by receiving power from the trolley wire, and this power supply circuit. can be equipped with an energy storage device, the power is supplied from the trolley wire for electric vehicle traveling range other than dead section, to an electric vehicle traveling the in section, the from the energy storage device to be mounted on electric cars In electric vehicle power supply equipment that supplies electric power necessary for electric vehicles ,
The distance of the middle section is equal to or greater than the maximum pantograph interval between the leading vehicle and the trailing vehicle of the electric vehicle, and the distance for supplying the electric power from the energy storage device to the electric vehicle traveling through the middle section is the minimum necessary distance. Power supply equipment for electric vehicles characterized by
JP2000236756A 2000-08-04 2000-08-04 Power supply equipment for electric vehicles Expired - Fee Related JP4178728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000236756A JP4178728B2 (en) 2000-08-04 2000-08-04 Power supply equipment for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000236756A JP4178728B2 (en) 2000-08-04 2000-08-04 Power supply equipment for electric vehicles

Publications (2)

Publication Number Publication Date
JP2002058110A JP2002058110A (en) 2002-02-22
JP4178728B2 true JP4178728B2 (en) 2008-11-12

Family

ID=18728754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000236756A Expired - Fee Related JP4178728B2 (en) 2000-08-04 2000-08-04 Power supply equipment for electric vehicles

Country Status (1)

Country Link
JP (1) JP4178728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588451A (en) * 2019-09-25 2019-12-20 中车大连机车车辆有限公司 Passing phase control method for electric multiple unit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121766B2 (en) * 2002-04-22 2008-07-23 小田急電鉄株式会社 Railway vehicle pantograph protection method and apparatus
JP5161816B2 (en) * 2009-03-13 2013-03-13 株式会社東芝 Railway vehicle system
BRPI1009186A2 (en) 2009-03-13 2020-11-17 Kabushiki Kaisha Toshiba railroad vehicle system and method of controlling it
JP5100690B2 (en) * 2009-03-13 2012-12-19 株式会社東芝 Railway vehicle system
DE102011080887A1 (en) * 2011-08-12 2013-02-14 Siemens Aktiengesellschaft System for operating an electric traction vehicle
JP5947176B2 (en) * 2012-09-21 2016-07-06 九州旅客鉄道株式会社 Electric vehicle power supply system and power supply control method
CN103818271B (en) * 2014-01-26 2016-05-18 西南交通大学 A kind of ground surface over-current neutral section based on cascade connection multi-level
CN105835727A (en) * 2015-01-15 2016-08-10 哈尔滨帕特尔科技股份有限公司 Ground type non-contact automatic neutral-section passing device
DE102015122622A1 (en) * 2015-12-22 2017-06-22 Bombardier Transportation Gmbh Rail vehicle and transport system
JP6818442B2 (en) * 2016-06-17 2021-01-20 東海旅客鉄道株式会社 Power conversion system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965507A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Ac-dc switching circuit of ac-dc dual system electric car
JP3628090B2 (en) * 1995-12-28 2005-03-09 東海旅客鉄道株式会社 Switching switchgear
JP3513327B2 (en) * 1996-07-15 2004-03-31 三菱電機株式会社 Reactive power compensator
JP3232007B2 (en) * 1996-09-06 2001-11-26 株式会社東芝 Power supply for vehicles
JP2000203316A (en) * 1999-01-11 2000-07-25 Central Japan Railway Co Feeder switching control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588451A (en) * 2019-09-25 2019-12-20 中车大连机车车辆有限公司 Passing phase control method for electric multiple unit
CN110588451B (en) * 2019-09-25 2021-05-07 中车大连机车车辆有限公司 Passing phase control method for electric multiple unit

Also Published As

Publication number Publication date
JP2002058110A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
JP5558022B2 (en) Electric vehicle storage control device and storage control method
EP3038854B1 (en) Electric power conversion device, emergency traveling system and railway vehicle
JP4558096B2 (en) Electric vehicle propulsion control device
JP3911621B2 (en) Railway system for battery-powered trains
US8924051B2 (en) Drive device for railway vehicle
JP5048384B2 (en) Battery charger for railway vehicles
JP2007523589A (en) Special low voltage electric energy supply system for electric tow vehicle with onboard energy storage
JP2008263741A5 (en)
KR20120069645A (en) Railway system installing power supply facility on railroads between stations
JP2012039867A (en) Device for control of electric rolling stock
JP4178728B2 (en) Power supply equipment for electric vehicles
JP4304827B2 (en) Power supply facilities and electric vehicles
JP2014075864A (en) Railway vehicle
JP5777669B2 (en) Electric vehicle control device
JP4200512B2 (en) Power unit for electric vehicle
JP2001320831A (en) Electric rolling stock for railway
JP7094381B2 (en) How to charge a railroad vehicle drive system and a power storage device in a railroad vehicle
JP7301686B2 (en) power conversion system
JP2024068930A (en) Electric Vehicles and Railway Systems
JPH0755633B2 (en) Substation control method for electric railway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees