WO2020073779A1 - 静电卡盘及反应腔室 - Google Patents

静电卡盘及反应腔室 Download PDF

Info

Publication number
WO2020073779A1
WO2020073779A1 PCT/CN2019/106684 CN2019106684W WO2020073779A1 WO 2020073779 A1 WO2020073779 A1 WO 2020073779A1 CN 2019106684 W CN2019106684 W CN 2019106684W WO 2020073779 A1 WO2020073779 A1 WO 2020073779A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating body
electrostatic chuck
heat
cooling pipe
heat transfer
Prior art date
Application number
PCT/CN2019/106684
Other languages
English (en)
French (fr)
Inventor
黄其伟
史全宇
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821648321.2U external-priority patent/CN208923079U/zh
Priority claimed from CN201811183845.3A external-priority patent/CN111048460A/zh
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to SG11202102989RA priority Critical patent/SG11202102989RA/en
Priority to US17/276,748 priority patent/US11837491B2/en
Priority to KR1020217007996A priority patent/KR102434283B1/ko
Priority to JP2021517467A priority patent/JP7279156B2/ja
Publication of WO2020073779A1 publication Critical patent/WO2020073779A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the invention relates to the field of semiconductor manufacturing, in particular, to an electrostatic chuck and a reaction chamber.
  • the existing electrostatic chuck includes a temperature control device for controlling the temperature of the wafer.
  • the temperature control device includes an insulating layer for carrying the wafer, a heating body for providing heat to the insulating layer, and a cooling body for cooling the heating body Cooling line.
  • the existing temperature control device inevitably has the following problems in practical application, that is, because the heating body is directly in contact with the cooling pipeline, the cooling water of the cooling pipeline can only be passed during the non-process time, but not at high temperature. Do this during the process, otherwise the water in the cooling line will boil. However, when the process is performed, the failure of the cooling pipeline will cause the temperature of the heating body to gradually increase due to the inability of the heat generated to be timely and effectively transferred, resulting in increased whisker defects, which seriously affects the product yield.
  • the present invention aims to solve at least one of the technical problems in the prior art, and proposes an electrostatic chuck and a reaction chamber, which can achieve stable temperature control of the heating body during the process, thereby effectively reducing whiskers Defects, in turn, can improve product yield.
  • an electrostatic chuck which includes an insulating layer and a heating body disposed at the bottom of the insulating layer, and further includes:
  • the cooling pipeline is arranged below the heating body, and is spaced apart from the heating body, and is used for conveying cooling liquid;
  • the thin-walled structure is respectively connected to the heating body and the cooling pipe to conduct the heat of the heating body to the cooling pipe.
  • the thin-walled structure includes a thin-walled heat transfer plate.
  • the thin-walled structure further includes a ring-shaped connecting piece, the ring-shaped connecting piece is connected to the bottom of the heating body, and surrounds the cooling pipe;
  • the heat transfer plate has a ring shape, and the inner peripheral wall and the outer peripheral wall of the heat transfer plate are in contact with the cooling pipe and the ring-shaped connecting member, respectively.
  • the contact area controls the heat dissipation efficiency of the heat transfer plate.
  • the heat dissipation efficiency of the heat transfer plate ranges from 10W to 500W.
  • the heat transfer plate and the cooling pipeline are connected by welding.
  • the thin-wall structure further includes:
  • the heat absorption component is in contact with the cooling pipe and opposite to the bottom of the heating body, and is used to absorb the heat radiated from the heating body by means of thermal radiation and transfer it to the cooling pipe.
  • the heat absorbing assembly includes a heat absorbing plate, the heat absorbing plate is fixedly connected to the cooling pipeline; and, a plurality of surfaces of the heat absorbing plate opposite to the heating body are provided Heat sink.
  • the plurality of heat-absorbing sheets are a plurality of ring bodies with different inner diameters, and the plurality of ring bodies are arranged concentrically.
  • the cooling pipe is arranged around the axis of the heat absorption disk.
  • the value of the vertical distance between the cooling pipe and the heating body ranges from 2 to 30 mm.
  • the vertical distance between the cooling pipe and the heating body is 5 mm.
  • the present invention also provides a reaction chamber, including the above electrostatic chuck provided by the present invention.
  • the electrostatic chuck provided by the invention realizes the heat dissipation of the heating body through the cooling pipe and the thin-wall structure at the same time during the process, and by separating the cooling pipe and the heating body at a distance, the cooling pipe can be avoided during the high-temperature process
  • the cooling liquid passing through the road boils which can ensure the normal use of the cooling pipeline during the process, which can effectively reduce whisker defects and thus improve the product yield.
  • the reaction chamber provided by the present invention by adopting the above-mentioned electrostatic chuck provided by the present invention, can achieve stable temperature control of the heating body during the process, thereby effectively reducing whisker defects and thereby improving product yield.
  • FIG. 1 is a structural diagram of a temperature control device of an existing electrostatic chuck
  • FIG. 3 is a structural diagram of a temperature control device for an electrostatic chuck according to a first embodiment of the present invention
  • FIG. 4 is a structural diagram of a temperature control device for an electrostatic chuck according to a second embodiment of the present invention.
  • FIG. 5 is a top view of a heat absorption component used in a second embodiment of the present invention.
  • FIG. 6 is a heat flow diagram of an electrostatic chuck provided by a second embodiment of the invention.
  • FIG. 1 is a structural diagram of a conventional temperature control device of an electrostatic chuck.
  • the temperature control device includes a heating body 1 provided at the bottom of an insulating layer of the electrostatic chuck for providing heat, and a heating body 1 provided in The bottom of the body 1 is used for cooling the cooling pipe 2 of the heating body 1.
  • the process temperature of the Al film deposition process is usually 270 °C
  • the target material sputtered from the target during the process will carry high energy, when it is deposited on the wafer This will cause the temperature of the wafer to rise, and the heat of the wafer is transferred to the heating body 1 at the bottom through the electrostatic chuck, causing the temperature of the heating body 1 to rise.
  • the cooling water of the cooling pipe 2 can only be carried out during non-process time, but cannot be performed during high-temperature processes, otherwise the water in the cooling pipe 2 Will boil.
  • the present invention provides an electrostatic chuck, which includes an insulating layer, the insulating layer is used to carry the workpiece to be processed, and a DC electrode is built in the insulating layer for generating static electricity between the workpiece to be processed Gravity, so as to fix the workpiece to be processed.
  • the insulating layer is made of ceramic material (Al 2 O 3 ).
  • the electrostatic chuck provided in this embodiment includes an insulating layer (not shown in the figure) and a heating body 3 disposed at the bottom of the insulating layer, and further includes a cooling pipe 5 and a thin-walled structure, wherein the cooling pipe
  • the path 5 is provided below the heating body 3 and is spaced apart from the heating body 3, that is, the cooling pipe 5 is not in contact with the heating body 3 at all.
  • the thin-walled structure is connected to the heating body 3 and the cooling pipe 5 respectively, and is used to export the heat of the heating body during the process and transfer the heat to the cooling pipe 5.
  • the thin-wall structure can effectively transfer the heat of the heating body 3 to the cooling pipe 5 in time, and the cooling pipe 5 is passed with cooling water or other cooling liquid that can achieve a cooling function, and finally the heating body 3 Heat export. Since the cooling pipeline 5 is spaced apart from the heating body 3, this can avoid the boiling of the cooling liquid flowing into the cooling pipeline 5 during the high-temperature process, thereby ensuring the normal use of the cooling pipeline 5 during the process, which can effectively reduce the crystal Defects, which in turn can improve product yield.
  • the cooling pipeline 5 may be circumferentially arranged along the circumferential direction of the heating body 3 to improve cooling uniformity.
  • the thin-walled structure includes an annular connector 4 and a thin-walled heat transfer plate 6.
  • the ring-shaped connecting piece 4 is connected to the bottom of the heating body 3 and is arranged around the cooling pipe 5.
  • the heat transfer plate 6 has a ring shape, and the inner peripheral wall and the outer peripheral wall of the heat transfer plate 6 are in contact with the cooling pipe 5 and the ring-shaped connector 4, respectively.
  • the heat in the heating body 1 is transferred to the heat transfer plate 6 through the ring-shaped connecting member 4, and is transferred to the cooling pipe 5 from the heat transfer plate 6.
  • the so-called heat transfer plate is thin-walled, which means that the radial thickness of the heat transfer plate is much smaller than its axial length.
  • the structure and size of the heat transfer plate can be designed according to the formula of the principle of flat plate heat transfer, which can accurately control the heat transfer rate, so that the heating body 3 can be stabilized during the process By controlling the temperature, an optimal heat dissipation efficiency can be obtained.
  • Q is the heat value transferred by the heat transfer plate per second, the unit is J; ⁇ is the thermal conductivity of the heat transfer plate 6, the unit is W / (M ⁇ K); T1-T2 are the ring-shaped connector 4 and the cooling tube
  • the temperature difference between the paths 5 is in K; t is the heat conduction time in s; A is the contact area in m 2 ; ⁇ is the thickness of the heat transfer plate 6 in m.
  • the temperature T1 at the contact point between the heat transfer plate 6 and the ring connector 4 is about 250 ° C; the temperature T2 at the contact point between the heat transfer plate 6 and the cooling pipe 5 is about 40 ° C; the thickness of the heat transfer plate 6 is 0.2 mm; The contact area is 1.256-4m 2 .
  • the heat transfer value Q of the heat transfer plate per second can be calculated to be about 52J, that is, the heat transfer efficiency of the heat transfer plate 6 under this working condition is 52W.
  • the heat dissipation efficiency can be controlled in the range of 10W to 500W.
  • the axial thickness and the radial length of the heat transfer plate 6 and / or the inner and outer peripheral walls of the heat transfer plate 6 can be in contact with the cooling pipe 5 and the annular connecting member 3 To control the heat dissipation efficiency of the heat transfer plate 6.
  • the heat transfer plate 6 and the cooling pipe 5 are connected by welding.
  • the heat transfer plate 6 may also be connected to the ring-shaped connecting member 4 by welding, or may simply be attached to each other.
  • the ring-shaped connecting piece 4 can be connected to the bellows to achieve the vacuum sealing of the chamber.
  • the ring-shaped connecting member 4 may include a heat transfer ring body, the upper end of the heat transfer ring body is connected to the bottom of the heating body 3, and an annular convex portion is provided at the lower end of the heat transfer ring body.
  • the inner peripheral wall of the heat transfer ring body protrudes and is in contact with the heat transfer plate 6.
  • an upper flange is provided on the top of the bellows, which is sealingly connected with the annular convex portion; a lower flange is provided on the bottom of the bellows, which is sealingly connected with the bottom chamber wall of the reaction chamber.
  • the bottom chamber wall is provided with a through hole, which is located in the bellows.
  • the lifting shaft extends vertically upward from the outside of the chamber through the through hole to the inside of the chamber, and the lifting shaft is sleeved inside the bellows, and the upper end of the lifting shaft is connected to the upper flange, and the lower end of the lifting shaft is connected to the driving source .
  • the lifting shaft drives the electrostatic chuck to move up and down. Thereby, the sealing of the chamber can be ensured.
  • annular convex part of the annular connector 4 and the upper flange can be sealed by welding.
  • This sealing method can be used in high-temperature chambers with high vacuum and granularity requirements.
  • the distance between the cooling pipe 5 and the heating body 3 ranges from 2 to 30 mm, preferably 5 mm. Within this range of values, it is possible to avoid boiling of the cooling liquid flowing into the cooling pipe 5 during high-temperature operation, and to transfer the heat of the heating body in a timely and effective manner.
  • the heat transfer plate 6 realizes cooling of the heating body 3 through the ring-shaped connecting member 4, however, the present invention is not limited to this, and in practical applications, the ring-shaped connecting member may also be omitted 4.
  • the heat transfer plate 6 is connected to the heating body 3 and the cooling pipe 5, respectively, which can also transfer the heat of the heating body 3 to the cooling pipe 5, and with the thin wall characteristics of the heat transfer plate 6, even the heat transfer plate 6 Direct contact with the heating body 3 does not cause the cooling liquid in the cooling pipe 5 to boil, so that the heating body 3 can be cooled during the process.
  • the thin-walled structure is a thin-walled heat transfer plate 6, however, the present invention is not limited to this, and in practical applications, the thin-walled structure may also adopt any other structure As long as the heat of the heating body 3 can be conducted out, and at the same time, it is ensured that the cooling liquid in the cooling pipe 5 will not boil.
  • the electrostatic chuck provided in this embodiment is an improvement based on the first embodiment described above.
  • the electrostatic chuck also includes an insulating layer, a heating body 3 provided at the bottom of the insulating layer, and a cooling pipe 5, an annular connecting member 4, and a heat transfer plate 6. Since the structures and functions of these components have been described in detail in the above-mentioned first embodiment, they will not be described here.
  • the electrostatic chuck further includes a heat absorption component, which is in contact with the cooling pipe 5 and opposite to the bottom of the heating body 3, and is used to absorb the heat radiated by the heating body 3 by means of thermal radiation , And passed to the cooling line 5.
  • a heat absorption component which is in contact with the cooling pipe 5 and opposite to the bottom of the heating body 3, and is used to absorb the heat radiated by the heating body 3 by means of thermal radiation , And passed to the cooling line 5.
  • the heat dissipation of the heating body 3 can be further increased, especially the heat dissipation of the central area of the heating body 3 can be increased, so that the heat dissipation rate of the central area is higher than the heat dissipation rate of the edge area, so that the heating body 3 can be compensated
  • the temperature difference between the center area and the edge area (the temperature rise of the center area is more serious during the process), so that the temperature uniformity of the heating body 3 can be improved, and thus the temperature uniformity of the workpiece to be processed can be improved.
  • the heat absorbing assembly includes a heat absorbing plate 7 that is fixedly connected to the cooling pipe 5; and, on the surface of the heat absorbing plate 7 opposite to the heating body 3, a plurality of heat absorbing elements are provided ⁇ 8.
  • the heat in the heating body 3 can be transferred to each heat-absorbing sheet 8 via air heat radiation and heat convection, and transferred to the cooling pipe 5 via the heat-absorbing disk 7.
  • the plurality of heat-absorbing sheets 8 are a plurality of ring bodies with different inner diameters, and the plurality of ring bodies are arranged concentrically. In this way, the uniformity of cooling the heating body 3 can be improved, and the temperature uniformity of the heating body 3 can be further improved.
  • the size (including height, thickness, spacing and distribution position, etc.) of the heat sink can be designed according to specific needs.
  • the cooling pipe 5 is arranged around the axis of the heat absorption disk 7.
  • a center hole 71 is provided on the heat absorbing disk 7 for the wiring such as a DC electrode or a heating electrode to be introduced into or drawn out of the electrostatic chuck.
  • the heat flow distribution of the electrostatic chuck provided in this embodiment will be described in detail.
  • the plasma bombards the target 9 to generate metal ions.
  • the metal ions move from the target 9 to the surface of the wafer 11 with a certain amount of energy.
  • the energy It is converted into heat and transferred to the wafer 11.
  • the center region of the wafer 11 receives more energy, while the edge region receives less energy.
  • the wafer 11 transfers heat to the insulating layer 12 of the electrostatic chuck, and the insulating layer 12 transfers the heat to the heating body 3.
  • the heat in the heating body 3 can be transferred to the cooling pipe 5 through two ways at the same time, and the heat is discharged through the cooling liquid in the cooling pipe 5, the first path is: conduction to the heat transfer plate 6 through the ring connection 4 , And then transferred to the cooling pipe 5; the second path is: through the air heat radiation and heat convection to the heat sink 8 and the heat sink 7, and then to the cooling pipe 5.
  • the temperature of the heating body 3 remains basically unchanged, achieving thermal balance, thereby effectively reducing whisker defects.
  • the present invention also provides a reaction chamber, which includes the electrostatic chuck provided by the foregoing embodiments of the present invention.
  • the reaction chamber 10 is a PVD chamber
  • a target 9 is provided in the reaction chamber 10
  • an electrostatic chuck is provided below the target 9.
  • the electrostatic chuck includes an insulating layer 12 for carrying the wafer 11.
  • the insulating layer 12 is fixed to the heating body 3 by the pressing ring 13.
  • the ring-shaped connecting piece 4 is connected to the bottom of the heating body 3 and is arranged around the cooling pipe 5.
  • the ring-shaped connecting piece 4 is connected to the bellows 15 to realize the vacuum sealing of the chamber.
  • the ring-shaped connecting piece 4 may include a heat transfer ring body, the upper end of the heat transfer ring body is connected to the bottom of the heating body 3, and an annular convex portion is provided at the lower end of the heat transfer ring body, the annular convex portion The inner peripheral wall of the thermal ring body protrudes and is in contact with the heat transfer plate 6.
  • an upper flange is provided on the top of the bellows 15 which is sealingly connected with the annular convex portion; a lower flange is provided on the bottom of the bellows 15 which is connected to the bottom chamber wall of the reaction chamber or extends to the reaction chamber 10 outside, and sealed connection with the lifting shaft (not shown).
  • the bottom chamber wall is provided with a through hole (not shown in the figure), the through hole is located in the bellows.
  • the lifting shaft extends vertically upward from the outside of the chamber through the through hole to the inside of the chamber, and the lifting shaft is sleeved inside the bellows 15, and the upper end of the lifting shaft is connected to the upper flange, and the lower end of the lifting shaft is connected to the driving source connection. Driven by the driving source, the lifting shaft drives the electrostatic chuck to move up and down. Thereby, the sealing of the chamber can be ensured.
  • the reaction chamber provided by the present invention by using the above-mentioned electrostatic chuck provided by the present invention, can achieve stable temperature control of the heating body during the process, thereby not only effectively reducing whisker defects, but also obtaining an optimal Thermal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种静电卡盘及反应腔室,该静电卡盘包括绝缘层和设置在绝缘层底部的加热体(3),还包括:冷却管路(5),设置在加热体(3)的下方,且与加热体(3)间隔分离设置,用于通过输送冷却液体,来吸收加热体(3)辐射出的热量;薄壁结构,分别与加热体(3)和冷却管路(5)连接,用以降低加热体(3)和冷却管路(5)之间的散热效率。所述静电卡盘可以在工艺过程中实现对加热体(3)的稳定控温,从而可以有效减少晶须缺陷,进而可以提高产品良率。

Description

静电卡盘及反应腔室 技术领域
本发明涉及半导体制造领域,具体地,涉及一种静电卡盘及反应腔室。
背景技术
目前,采用物理气相沉积(Physical Vapor Deposition,以下简称PVD)技术制备Al薄膜被广泛应用于半导体制备领域中,而在制备Al薄膜的工艺过程中,由于腔体内存在杂质而引起薄膜材料异常生长,导致产生刺形或角形的晶须缺陷是目前普遍存在的问题。晶须缺陷的尺寸足够大时会影响产品良率。因此,控制Al薄膜沉积过程中杂质的产生是控制晶须缺陷产生的重要手段和措施。
在使用PVD设备进行Al薄膜的沉积工艺时,为了固定、支撑及传送晶片(Wafer)并实现温度控制,往往使用高温静电卡盘(High Temperature Electrostatic chuck)作为承载晶片的基座。现有的静电卡盘包括用于对晶片进行温度控制的温控装置,该温控装置包括用于承载晶片的绝缘层、用于向绝缘层提供热量的加热体以及用于冷却该加热体的冷却管路。
现有的温控装置在实际应用中不可避免地存在以下问题,即:由于加热体与冷却管路直接接触,只能在非工艺时间进行冷却管路的冷却水通入工作,而无法在高温工艺时进行该工作,否则冷却管路中的水会沸腾。但是,在进行工艺时,冷却管路无法工作会导致加热体的温度因产生的热量无法及时有效的传递出去而逐渐升高,从而造成晶须缺陷增加,严重影响了产品良率。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种静电 卡盘及反应腔室,其可以在工艺过程中实现对加热体的稳定控温,从而可以有效减少晶须缺陷,进而可以提高产品良率。
为实现本发明的目的而提供一种静电卡盘,包括绝缘层和设置在所述绝缘层底部的加热体,还包括:
冷却管路,设置在所述加热体的下方,且与所述加热体间隔分离设置,用于输送冷却液体;
薄壁结构,分别与所述加热体和所述冷却管路连接,用以将所述加热体的热量传导至所述冷却管路。
可选的,所述薄壁结构包括呈薄壁状的传热板。
可选的,所述薄壁结构还包括环形连接件,所述环形连接件与所述加热体的底部连接,且环绕在所述冷却管路的周围;
所述传热板呈环状,且所述传热板的内周壁和外周壁分别与所述冷却管路和所述环形连接件相接触。
可选的,通过设定所述传热板的轴向厚度、径向长度和/或所述传热板的内周壁和外周壁分别与所述冷却管路和所述环形连接件相接触的接触面积,来控制所述传热板的散热效率。
可选的,所述传热板的散热效率的取值范围在10W~500W。
可选的,所述传热板与所述冷却管路采用焊接的方式连接。
可选的,所述薄壁结构还包括:
吸热组件,与所述冷却管路接触,且与所述加热体的底部相对,用以采用热辐射的方式吸收所述加热体辐射出的热量,并传递至所述冷却管路。
可选的,所述吸热组件包括吸热盘,所述吸热盘与所述冷却管路固定连接;并且,在所述吸热盘的与所述加热体相对的表面上设置有多个吸热片。
可选的,多个所述吸热片为内径不同的多个环体,且多个所述环体同心设置。
可选的,所述冷却管路围绕所述吸热盘的轴线环绕设置。
可选的,所述冷却管路与所述加热体之间的竖直间距的取值范围在2~30mm。
可选的,所述冷却管路与所述加热体之间的竖直间距为5mm。
作为另一个技术方案,本发明还提供一种反应腔室,包括本发明提供的上述静电卡盘。
本发明具有以下有益效果:
本发明提供的静电卡盘,其在工艺时同时借助冷却管路和薄壁结构来实现加热体的热量导出,并且通过使冷却管路与加热体间隔分离设置,可以避免高温工艺时向冷却管路中通入的冷却液体沸腾,从而可以确保在工艺时正常使用冷却管路,进而可以有效减少晶须缺陷,进而可以提高产品良率。
本发明提供的反应腔室,其通过采用本发明提供的上述静电卡盘,可以在工艺过程中实现对加热体的稳定控温,从而可以有效减少晶须缺陷,进而可以提高产品良率。
附图说明
图1为为现有的静电卡盘的温控装置的结构图;
图2为现有技术中加热体升温与晶须缺陷的趋势图;
图3为本发明第一实施例提供的静电卡盘的温控装置的结构图;
图4为本发明第二实施例提供的静电卡盘的温控装置的结构图;
图5为本发明第二实施例采用的吸热组件的俯视图;
图6为本发明第二实施例提供的静电卡盘的热流图;
图7为本发明第二实施例中加热体升温与晶须缺陷的趋势图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来 对本发明提供的静电卡盘及反应腔室进行详细描述。
图1为现有的静电卡盘的温控装置的结构图,如图1所示,温控装置包括设置在静电卡盘的绝缘层底部,用于提供热量的加热体1,及设置在加热体1的底部,用于冷却加热体1的冷却管路2。
在使用PVD设备进行Al薄膜的沉积工艺时,Al薄膜的沉积工艺的工艺温度通常为270℃,工艺时从靶材溅射下来的靶材材料会携带很高的能量,当其沉积在晶片上时会造成晶片的温度升高,晶片的热量通过静电卡盘传递至其底部的加热体1,导致加热体1的温度升高。但是,由于加热体1与冷却管路2直接接触,只能在非工艺时间进行冷却管路2的冷却水通入工作,而无法在高温工艺时进行该工作,否则冷却管路2中的水会沸腾。但是,在进行工艺时,冷却管路2无法工作会导致加热体1的温度因产生的热量无法及时有效的传递出去而逐渐升高。如图2所示,为加热体升温与晶须缺陷的趋势图,由图2可以看出,随着加热体1的温度升高,晶须缺陷也呈上升趋势,严重影响了产品良率。
为了解决上述问题,本发明提供了一种静电卡盘,其包括绝缘层,该绝缘层用于承载被加工工件,且在绝缘层中内置有直流电极,用于与被加工工件之间产生静电引力,从而实现对被加工工件的固定。可选的,绝缘层采用陶瓷材料(Al 2O 3)制作。
第一实施例
请参阅图3,本实施例提供的静电卡盘包括绝缘层(图中未示出)和设置在该绝缘层底部的加热体3,还包括冷却管路5和薄壁结构,其中,冷却管路5设置在加热体3的下方,且与加热体3间隔分离设置,即,冷却管路5与加热体3完全不接触。薄壁结构分别与加热体3和冷却管路5连接,用于在工艺时将加热体热量导出,并将热量传递至冷却管路5。在进行工艺时,薄壁结构能够将加热体3的热量及时有效的传递至冷却管路5,且冷却管路5 中通入诸如冷却水或者其他可实现冷却功能的冷却液体,最终实现加热体3热量导出。由于冷却管路5与加热体3间隔分离设置,这可以避免高温工艺时向冷却管路5中通入的冷却液体沸腾,从而可以确保在工艺时正常使用冷却管路5,进而可以有效减少晶须缺陷,进而可以提高产品良率。
可选的,冷却管路5可以沿加热体3的周向环绕设置,以提高冷却均匀性。
在本实施例中,薄壁结构包括环形连接件4和呈薄壁状的传热板6。其中,环形连接件4与加热体3的底部连接,且环绕设置在冷却管路5的周围。
传热板6呈环状,且传热板6的内周壁和外周壁分别与冷却管路5和环形连接件4相接触。加热体1中的热量通过环形连接件4传递至传热板6,并由该传热板6传递至冷却管路5。所谓传热板呈薄壁状,是指该传热板的径向厚度远远小于其轴向长度。
利用传热板6的薄壁特性,即使传热板6通过与环形连接件4与加热体3接触,传热板6的散热效率也不会过大,从而进一步避免冷却管路5中的冷却液体沸腾。此外,利用传热板6的薄壁特性,可以根据平板传热原理公式设计传热板的结构和尺寸,这样能够精确地控制热量传递速度,从而可以在工艺过程中实现对加热体3的稳定控温,进而可以获得一个最优的散热效率。
具体地,上述平板传热原理公式为:
Q=λ(T1-T2)tA/δ
其中,Q为每秒钟传热板传递的热量值,单位为J;λ为传热板6的导热系数,单位为W/(M·K);T1-T2为环形连接件4与冷却管路5之间的温度差,单位为K;t为导热时间,单位为s;A为接触面积,单位为m 2;δ为传热板6的厚度,单位为m。
例如,传热板6与环形连接件4接触处的温度T1约为250℃;传热板6 与冷却管路5接触处的温度T2约为40℃;传热板6的厚度为0.2mm;接触面积为1.256-4m 2。通过将上述参数代入平板传热原理公式,可以计算获得每秒钟传热板传递的热量值Q约为52J,即,传热板6在此工况下的散热效率为52W。
基于上述原理,通过改变传热板6的尺寸和接触面积,可以将散热效率控制在10W~500W的范围内。
根据上述平板传热原理公式,可以通过设定传热板6的轴向厚度、径向长度和/或传热板6的内周壁和外周壁分别与冷却管路5和环形连接件3相接触的接触面积,来控制传热板6的散热效率。
可选的,传热板6与冷却管路5采用焊接的方式连接。另外,传热板6也可以与环形连接件4采用焊接的方式连接,或者也可以仅仅是相互贴合。
可选的,环形连接件4可通过与波纹管连接,来实现腔室的真空密封。具体来说,环形连接件4可以包括传热环体,该传热环体的上端与加热体3的底部连接,且在传热环体的下端设置有环形凸部,该环形凸部相对于传热环体的内周壁凸出,并与传热板6相接触。并且,在波纹管的顶部设置有上法兰,其与环形凸部密封连接;在波纹管的底部设置有下法兰,其与反应腔室的底部腔室壁密封连接。并且,底部腔室壁设置有通孔,该通孔位于波纹管内。升降轴自腔室的外部经由该通孔竖直向上延伸至腔室内部,并且升降轴套设在波纹管的内部,并且升降轴的上端与上法兰连接,升降轴的下端与驱动源连接。在驱动源的驱动下,升降轴带动静电卡盘作升降运动。由此,可以保证腔室的密封。
可选的,环形连接件4的环形凸部与上述上法兰之间可以采用焊接的方式密封连接,这种密封方式能够给适用真空度和颗粒度要求较高的高温腔室中。
可选的,冷却管路5与加热体3之间的间距的取值范围在2~30mm,优 选为5mm。在该取值范围内,既可以避免高温工作时向冷却管路5中通入的冷却液体沸腾,又可以将加热体的热量及时有效的传递出去。
需要说明的是,在本实施例中,传热板6通过环形连接件4实现对加热体3的冷却,但是,本发明并不局限于此,在实际应用中,也可以省去环形连接件4,使传热板6分别与加热体3和冷却管路5连接,这同样可以将加热体3的热量传递至冷却管路5,而且借助传热板6的薄壁特性,即使传热板6与加热体3直接接触,也不会使冷却管路5中的冷却液体沸腾,从而可以实现在工艺过程中对加热体3进行冷却。
还需要说明的是,在本实施例中,薄壁结构为呈薄壁状的传热板6,但是,本发明并不局限于此,在实际应用中,薄壁结构还可以采用其他任意结构,只要能够实现加热体3的热量导出,同时保证冷却管路5中的冷却液体不会沸腾。
第二实施例
请参阅图4,本实施例提供的静电卡盘,其是在上述第一实施例的基础上所作的改进。具体地,静电卡盘同样包括绝缘层、设置在该绝缘层底部的加热体3,以及冷却管路5、环形连接件4和传热板6。由于这些部件的结构和功能在上述第一实施例中已有了详细描述,在此不再描述。
在本实施例中,静电卡盘还包括吸热组件,该吸热组件与冷却管路5接触,且与加热体3的底部相对,用于采用热辐射的方式吸收加热体3辐射出的热量,并传递至冷却管路5。
借助上述吸热组件,可以进一步增大加热体3的散热量,尤其可以增大加热体3中心区域的散热量,使中心区域的散热速率高于边缘区域的散热速率,从而可以补偿加热体3中心区域与边缘区域之间的温度差(在工艺时中心区域的温升较为严重),从而可以提高加热体3的温度均匀性,进而可以提高被加工工件的温度均匀性。
在本实施例中,吸热组件包括吸热盘7,该吸热盘7与冷却管路5固定连接;并且,在吸热盘7的与加热体3相对的表面上设置有多个吸热片8。加热体3中的热量能够经由空气热辐射以及热对流传递至各个吸热片8,并经由吸热盘7传递至冷却管路5。
在本实施例中,如图5所示,多个吸热片8为内径不同的多个环体,且多个环体同心设置。这样,可以提高对加热体3的冷却均匀性,从而可以进一步提高加热体3的温度均匀性。
当然,在实际应用中,可以根据具体需要设计吸热片的尺寸(包括高度、厚度、间距和分布位置等等)。
可选的,为了提高热量传递的均匀性,冷却管路5围绕吸热盘7的轴线环绕设置。
另外,在吸热盘7上设置有中心孔71,用于供诸如直流电极或者加热电极等的接线引入或者引出静电卡盘。
下面以进行PVD工艺为例,对本实施例提供的静电卡盘的热流分布进行详细描述。请参阅图6,在进行PVD工艺时,等离子体轰击靶材9产生金属离子,金属离子从靶材9向晶片11的表面移动且带有一定的能量,金属离子在与晶片11接触后将能量转化为热量并传递给晶片11。此时,晶片11的中心区域获得的能量较多,而边缘区域获得的能量较少。晶片11将热量传递给静电卡盘的绝缘层12,该绝缘层12将热量传递至加热体3。加热体3中热量可以同时通过两种途径传递至冷却管路5,并经由冷却管路5中的冷却液体将热量导出,第一种路径为:经由环形连接件4传导至传热板6中,进而传递至冷却管路5;第二种路径为:经由空气热辐射以及热对流传递至吸热片8和吸热盘7,进而传递至冷却管路5。
如图7所示,通过采用本实施例提供的静电卡盘,在进行工艺的过程中,加热体3的温度基本保持不变,实现了热平衡,从而有效减少晶须缺陷。
作为另一个技术方案,本发明还提供一种反应腔室,其包括本发明上述各个实施例提供的静电卡盘。
具体地,在本实施例中,如图6所示,反应腔室10为PVD腔室,在反应腔室10中设置有靶材9,且在靶材9的下方设置有静电卡盘,该静电卡盘包括绝缘层12,用于承载晶片11。并且,绝缘层12通过压环13固定在加热体3上。
环形连接件4与加热体3的底部连接,且环绕设置在冷却管路5的周围。可选的,环形连接件4与波纹管15连接,用于实现腔室的真空密封。具体地,环形连接件4可以包括传热环体,该传热环体的上端与加热体3的底部连接,且在传热环体的下端设置有环形凸部,该环形凸部相对于传热环体的内周壁凸出,并与传热板6相接触。并且,在波纹管15的顶部设置有上法兰,其与环形凸部密封连接;在波纹管15的底部设置有下法兰,其与反应腔室的底部腔室壁或者延伸至反应腔室10的外部,并与升降轴(图中未示出)密封连接。并且,底部腔室壁设置有通孔(图中未示出),该通孔位于波纹管内。升降轴自腔室的外部经由该通孔竖直向上延伸至腔室内部,并且升降轴套设在波纹管15的内部,并且升降轴的上端与上法兰连接,升降轴的下端与驱动源连接。在驱动源的驱动下,升降轴带动静电卡盘作升降运动。由此,可以保证腔室的密封。
本发明提供的反应腔室,其通过采用本发明提供的上述静电卡盘,可以在工艺过程中实现对加热体的稳定控温,从而不仅可以有效减少晶须缺陷,而且还可以获得一个最优的导热效率。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种静电卡盘,包括绝缘层和设置在所述绝缘层底部的加热体,其特征在于,还包括:
    冷却管路,设置在所述加热体的下方,且与所述加热体间隔分离设置,用于输送冷却液体;
    薄壁结构,分别与所述加热体和所述冷却管路连接,用以将所述加热体的热量传导至所述冷却管路。
  2. 根据权利要求1所述的静电卡盘,其特征在于,所述薄壁结构包括呈薄壁状的传热板。
  3. 根据权利要求2所述的静电卡盘,其特征在于,所述薄壁结构还包括环形连接件,所述环形连接件与所述加热体的底部连接,且环绕在所述冷却管路的周围;
    所述传热板呈环状,且所述传热板的内周壁和外周壁分别与所述冷却管路和所述环形连接件相接触。
  4. 根据权利要求3所述的静电卡盘,其特征在于,通过设定所述传热板的轴向厚度、径向长度和/或所述传热板的内周壁和外周壁分别与所述冷却管路和所述环形连接件相接触的接触面积,来控制所述传热板的散热效率。
  5. 根据权利要求4所述的静电卡盘,其特征在于,所述传热板的散热效率的取值范围在10W~500W。
  6. 根据权利要求2所述的静电卡盘,其特征在于,所述传热板与所述冷却管路采用焊接的方式连接。
  7. 根据权利要求1-6任意一项所述的静电卡盘,其特征在于,所述薄壁结构还包括:
    吸热组件,与所述冷却管路接触,且与所述加热体的底部相对,用以采用热辐射的方式吸收所述加热体辐射出的热量,并传递至所述冷却管路。
  8. 根据权利要求7所述的静电卡盘,其特征在于,所述吸热组件包括吸热盘,所述吸热盘与所述冷却管路固定连接;并且,在所述吸热盘的与所述加热体相对的表面上设置有多个吸热片。
  9. 根据权利要求8所述的静电卡盘,其特征在于,多个所述吸热片为内径不同的多个环体,且多个所述环体同心设置。
  10. 根据权利要求8所述的静电卡盘,其特征在于,所述冷却管路围绕所述吸热盘的轴线环绕设置。
  11. 根据权利要求1所述的静电卡盘,其特征在于,所述冷却管路与所述加热体之间的竖直间距的取值范围在2~30mm。
  12. 根据权利要求11所述的静电卡盘,其特征在于,所述冷却管路与所述加热体之间的竖直间距为5mm。
  13. 一种反应腔室,其特征在于,包括权利要求1-12任意一项所述的静电卡盘。
PCT/CN2019/106684 2018-10-11 2019-09-19 静电卡盘及反应腔室 WO2020073779A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202102989RA SG11202102989RA (en) 2018-10-11 2019-09-19 Electrostatic chuck and reaction chamber
US17/276,748 US11837491B2 (en) 2018-10-11 2019-09-19 Electrostatic chuck and reaction chamber
KR1020217007996A KR102434283B1 (ko) 2018-10-11 2019-09-19 정전 척 및 반응 챔버
JP2021517467A JP7279156B2 (ja) 2018-10-11 2019-09-19 静電チャックおよび反応チャンバ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821648321.2 2018-10-11
CN201821648321.2U CN208923079U (zh) 2018-10-11 2018-10-11 静电卡盘及反应腔室
CN201811183845.3 2018-10-11
CN201811183845.3A CN111048460A (zh) 2018-10-11 2018-10-11 静电卡盘及反应腔室

Publications (1)

Publication Number Publication Date
WO2020073779A1 true WO2020073779A1 (zh) 2020-04-16

Family

ID=70164227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106684 WO2020073779A1 (zh) 2018-10-11 2019-09-19 静电卡盘及反应腔室

Country Status (6)

Country Link
US (1) US11837491B2 (zh)
JP (1) JP7279156B2 (zh)
KR (1) KR102434283B1 (zh)
SG (1) SG11202102989RA (zh)
TW (1) TWI725549B (zh)
WO (1) WO2020073779A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234757A4 (en) * 2020-10-26 2024-04-17 Beijing NAURA Microelectronics Equipment Co., Ltd. WAFER SUPPORT MECHANISM AND SEMICONDUCTOR PROCESSING APPARATUS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331607B (zh) * 2020-10-28 2024-03-26 北京北方华创微电子装备有限公司 静电卡盘及半导体工艺设备
CN115142045B (zh) * 2021-03-29 2023-12-19 鑫天虹(厦门)科技有限公司 可准确调整温度的承载盘及薄膜沉积装置
WO2024091389A1 (en) * 2022-10-24 2024-05-02 Lam Research Corporation Heat flow control in a processing tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299371A (ja) * 1999-04-12 2000-10-24 Taiheiyo Cement Corp 静電チャックデバイス
TW454264B (en) * 1999-04-15 2001-09-11 Tokyo Electron Ltd Plasma processing apparatus
CN103325714A (zh) * 2012-03-21 2013-09-25 日本碍子株式会社 加热装置及半导体制造装置
CN104377155A (zh) * 2013-08-14 2015-02-25 北京北方微电子基地设备工艺研究中心有限责任公司 静电卡盘以及等离子体加工设备
CN208923079U (zh) * 2018-10-11 2019-05-31 北京北方华创微电子装备有限公司 静电卡盘及反应腔室

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297771B2 (ja) * 1993-11-05 2002-07-02 ソニー株式会社 半導体製造装置
JPH09213781A (ja) * 1996-02-01 1997-08-15 Tokyo Electron Ltd 載置台構造及びそれを用いた処理装置
US6138745A (en) * 1997-09-26 2000-10-31 Cvc Products, Inc. Two-stage sealing system for thermally conductive chuck
JP2001068538A (ja) * 1999-06-21 2001-03-16 Tokyo Electron Ltd 電極構造、載置台構造、プラズマ処理装置及び処理装置
US7161121B1 (en) * 2001-04-30 2007-01-09 Lam Research Corporation Electrostatic chuck having radial temperature control capability
JP2006165475A (ja) 2004-12-10 2006-06-22 Nippon Dennetsu Co Ltd 被処理基板の加熱冷却構造
US8194384B2 (en) * 2008-07-23 2012-06-05 Tokyo Electron Limited High temperature electrostatic chuck and method of using
JP5237151B2 (ja) 2009-02-23 2013-07-17 三菱重工業株式会社 プラズマ処理装置の基板支持台
JP6223983B2 (ja) 2011-09-30 2017-11-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 温度制御付き静電チャック
US9847240B2 (en) * 2014-02-12 2017-12-19 Axcelis Technologies, Inc. Constant mass flow multi-level coolant path electrostatic chuck
JP2016082216A (ja) * 2014-10-09 2016-05-16 東京エレクトロン株式会社 被処理体の温度制御機構、及び多層膜から窒化膜を選択的にエッチングする方法
US9728430B2 (en) 2015-06-29 2017-08-08 Varian Semiconductor Equipment Associates, Inc. Electrostatic chuck with LED heating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299371A (ja) * 1999-04-12 2000-10-24 Taiheiyo Cement Corp 静電チャックデバイス
TW454264B (en) * 1999-04-15 2001-09-11 Tokyo Electron Ltd Plasma processing apparatus
CN103325714A (zh) * 2012-03-21 2013-09-25 日本碍子株式会社 加热装置及半导体制造装置
CN104377155A (zh) * 2013-08-14 2015-02-25 北京北方微电子基地设备工艺研究中心有限责任公司 静电卡盘以及等离子体加工设备
CN208923079U (zh) * 2018-10-11 2019-05-31 北京北方华创微电子装备有限公司 静电卡盘及反应腔室

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234757A4 (en) * 2020-10-26 2024-04-17 Beijing NAURA Microelectronics Equipment Co., Ltd. WAFER SUPPORT MECHANISM AND SEMICONDUCTOR PROCESSING APPARATUS

Also Published As

Publication number Publication date
KR102434283B1 (ko) 2022-08-19
TWI725549B (zh) 2021-04-21
US20220051923A1 (en) 2022-02-17
SG11202102989RA (en) 2021-04-29
KR20210041080A (ko) 2021-04-14
TW202015173A (zh) 2020-04-16
JP7279156B2 (ja) 2023-05-22
US11837491B2 (en) 2023-12-05
JP2022502861A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2020073779A1 (zh) 静电卡盘及反应腔室
JP6594960B2 (ja) ペデスタルの流体による熱制御
US11417561B2 (en) Edge ring for a substrate processing chamber
US8183502B2 (en) Mounting table structure and heat treatment apparatus
JP7480233B2 (ja) 物理的気相堆積処理システムのターゲットの冷却
TWI622089B (zh) 具有區域依賴性熱效率之溫度受控電漿製程腔室部件
TWI533399B (zh) Electrostatic chuck and plasma processing equipment
CN104377155B (zh) 静电卡盘以及等离子体加工设备
KR20220110831A (ko) 스퍼터링 반응 챔버의 공정 어셈블리 및 스퍼터링 반응 챔버
US20210351016A1 (en) Shield cooling assembly, reaction chamber and semiconductor processing apparatus
CN105514016B (zh) 承载装置及半导体加工设备
CN113604786B (zh) 半导体设备的加热器及半导体设备
CN208923079U (zh) 静电卡盘及反应腔室
JP2009149964A (ja) 載置台構造及び熱処理装置
US20100240154A1 (en) Temperature control device, temperature control method, and substrate processing apparatus
CN111048460A (zh) 静电卡盘及反应腔室
TWI747104B (zh) 能提高控溫精度的基板安裝台及電漿處理設備
CN104934345A (zh) 一种等离子体装置
JP5376023B2 (ja) 載置台構造及び熱処理装置
TW202129790A (zh) 用於使用微波能量來處理基板的方法和設備
TW202025380A (zh) 電漿處理裝置及用於處理裝置的基片支座
CN105575873A (zh) 压环机构及半导体加工设备
KR20080076432A (ko) 플라즈마 처리 장치
TW202419665A (zh) 托盤及化學氣相沉積設備
JPH01259525A (ja) 薄膜形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870508

Country of ref document: EP

Kind code of ref document: A1