WO2020071356A1 - 電磁波シールドシート、および電子部品搭載基板 - Google Patents

電磁波シールドシート、および電子部品搭載基板

Info

Publication number
WO2020071356A1
WO2020071356A1 PCT/JP2019/038726 JP2019038726W WO2020071356A1 WO 2020071356 A1 WO2020071356 A1 WO 2020071356A1 JP 2019038726 W JP2019038726 W JP 2019038726W WO 2020071356 A1 WO2020071356 A1 WO 2020071356A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
layer
wave shielding
conductive filler
electronic component
Prior art date
Application number
PCT/JP2019/038726
Other languages
English (en)
French (fr)
Inventor
祥太 森
和規 松戸
健次 安東
努 早坂
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to CN201980061579.3A priority Critical patent/CN112772011B/zh
Priority to KR1020217007272A priority patent/KR102477543B1/ko
Priority to US17/267,919 priority patent/US11172599B2/en
Publication of WO2020071356A1 publication Critical patent/WO2020071356A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0071Active shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0092Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive pigments, e.g. paint, ink, tampon printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15158Shape the die mounting substrate being other than a cuboid
    • H01L2924/15159Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to an electromagnetic wave shield sheet suitably used to cover a step formed on a substrate by mounting an electronic component and at least a part of an exposed surface of the substrate, and an electromagnetic wave shield layer formed by the electromagnetic wave shield sheet
  • the present invention relates to an electronic component mounting board having:
  • Patent Literature 1 proposes an electromagnetic wave shielding sheet that achieves a reduction in weight and thickness and that blocks electromagnetic waves in a high-frequency band by absorption.
  • Patent Document 2 describes a conductive adhesive sheet that can suppress the occurrence of a problem of a decrease in shielding performance due to an increase in electric resistance even when an electronic component is covered using a simple method called press working. Have been.
  • Patent Document 3 in order to prevent malfunction due to an external magnetic field or radio wave, and to reduce unnecessary radiation of an electric signal generated from inside the electronic substrate, an electromagnetic wave shielding sheet is formed by heat pressing an electronic component. A method for forming on a surface is disclosed.
  • Patent Literature 1 discloses that an electromagnetic wave shielding layer is formed on the surface of an electronic component by hot pressing an electromagnetic wave shielding sheet.
  • the electromagnetic wave shielding sheet has an electromagnetic wave shielding layer (conductive layer) containing a conductive material.
  • the content of the conductive material is inclined so that the opposite side of the electronic component is higher and the electronic component side is lower.
  • Patent Literature 2 discloses an electromagnetic wave shielding sheet including an anisotropic conductive layer and an isotropic conductive layer, and the anisotropic conductive layer is bonded to an electronic component.
  • a cushion material is used to embed the electromagnetic wave shielding sheet in the concave and convex portions formed on the substrate on which the electronic component is mounted.
  • Patent Document 3 describes an electromagnetic wave shielding film that is used to cover a convex portion on a substrate and has a cushion layer and an electromagnetic wave shielding layer (conductive layer).
  • the present invention has been made in view of the above background, has good cushion adhesion, and reliably deforms to follow a step formed by mounting an electronic component and is formed on a substrate in the step. It is an object of the present invention to provide an electromagnetic wave shielding sheet that is reliably connected to a ground pattern and exhibits a long-term high electromagnetic wave shielding effect with high connection reliability. It is another object of the present invention to provide an electronic component mounting board having a high electromagnetic wave shielding effect, which covers at least a part of a step formed by mounting an electronic component and an exposed surface of the substrate using the electromagnetic wave shielding sheet.
  • the present invention provides a substrate, an electronic component mounted on at least one surface of the substrate, and an electromagnetic wave shielding layer covering at least a part of a step formed by mounting the electronic component and an exposed surface of the substrate.
  • An electromagnetic wave shielding sheet used to form the electromagnetic wave shielding layer constituting the electronic component mounting board comprising: the electromagnetic wave shielding sheet is a laminate having a cushion layer and a conductive layer, and the conductive layer is An isotropic conductive layer containing a binder resin and a conductive filler, the thickness of the conductive layer is 8 to 70 ⁇ m, and the content of the conductive filler in a region on the side opposite to the cushion layer is in the region on the cushion layer side. It is characterized in that the content is larger than the content of the conductive filler.
  • the electromagnetic wave shielding sheet of this invention has favorable adhesiveness of a cushion layer and a conductive layer, and hardly generate
  • the shape of the step portion can be reliably deformed to follow the shape of the step portion during hot pressing, and the embedding into the step portion can be performed accurately.
  • the electromagnetic wave shielding sheet of the present invention can cover the step portion and at least a part of the exposed surface of the substrate, and the formed electromagnetic wave shielding layer is connected to a ground pattern formed on the substrate to be grounded. can do.
  • the electronic component mounting board on which the electromagnetic wave shielding layer of the present invention is formed can suppress cracking. As a result, there is an excellent effect that a highly reliable electronic component mounting board without malfunction can be provided at a high yield.
  • FIG. 2 is a schematic perspective view illustrating an example of an electronic component mounting board according to the embodiment.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1.
  • FIG. 4 is a schematic cross-sectional view showing another example of the electronic component mounting board according to the embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of the electromagnetic wave shielding sheet according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view showing another example of the electromagnetic wave shielding sheet according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view showing another example of the electromagnetic wave shielding sheet according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view showing another example of the electronic component mounting board according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view illustrating an evaluation method of the electronic component mounting board according to the embodiment.
  • the numerical values specified in the present specification are values obtained by the method disclosed in the embodiment or the example. Further, the numerical values “A to B” specified in the present specification refer to a range that satisfies the numerical value A, a value larger than the numerical value A, and the numerical value B and a value smaller than the numerical value B.
  • the term “sheet” in this specification includes not only “sheet” defined in JIS but also “film”. To make the description clear, the following description and drawings are simplified as appropriate. Further, the same element members are denoted by the same reference numerals in different embodiments. Various components appearing in the present specification may be each independently used alone or in combination of two or more, unless otherwise specified.
  • Mw is a weight average molecular weight in terms of polystyrene obtained by gel permeation chromatography (GPC) measurement, and the average particle diameter D 50 of the conductive filler, the electromagnetic wave absorbing filler, and the inorganic filler is determined by laser diffraction.
  • -It can be determined by measuring by the scattering method.
  • the electronic component mounting substrate of the present embodiment includes a substrate, an electronic component mounted on at least one surface of the substrate, and an electromagnetic wave shielding layer that covers a step formed by mounting the electronic component and an exposed surface of the substrate. And.
  • This electromagnetic wave shield layer is for covering the uneven step portion (also called a step portion) on the substrate, and covers at least a part of the side surface and the top surface of the electronic component and the exposed surface of the substrate.
  • This electromagnetic wave shielding layer more preferably covers the entire surface, and preferably has no gap.
  • the groove at the step formed by mounting the electronic component is in a grid pattern, and when the width (a) of the groove is 1, the depth (b) of the groove is obtained.
  • the width (a) of the groove is 50 to 500 ⁇ m, the step on the substrate can be uniformly covered with the electromagnetic wave shielding layer, and the embedding into the groove is improved. It has an excellent effect of being good.
  • FIG. 1 is a schematic perspective view of the electronic component mounting board according to the present embodiment
  • FIG. 2 is a sectional view taken along the line II-II of FIG.
  • the electronic component mounting substrate 101 has a substrate 20, an electronic component 30, an electromagnetic wave shielding layer 1, and the like.
  • the electronic component mounting substrate 101 may further be laminated with another layer such as a film exhibiting abrasion resistance, water vapor barrier properties, and oxygen barrier properties, and a film enhancing a magnetic field cut.
  • the substrate 20 may be any substrate on which the electronic component 30 can be mounted and which can withstand a hot pressing step described later, and can be arbitrarily selected.
  • a work board, a mounting module board, a printed wiring board, or a build-up board formed by a build-up method or the like on which a conductive pattern made of copper foil or the like is formed on the surface or inside is exemplified.
  • a rigid substrate not also a film or sheet-like flexible substrate may be used.
  • the conductive pattern is, for example, an electrode / wiring pattern (not shown) for electrically connecting to the electronic component 30 and a ground pattern 22 for electrically connecting to the electromagnetic wave shielding layer 1.
  • the ground pattern 22 is disposed on the surface of the substrate where no electronic component is mounted or inside the substrate, and is exposed on the side surface of the substrate. In the case of exposing on the side surface of the substrate, it is also preferable to expose the ground pattern on the side surface of the groove obtained by partially cutting the substrate by half dicing. It is also preferable that the substrate is fully cut by dicing to expose the ground pattern. By covering the side surface of the ground pattern with the electromagnetic wave shielding layer and grounding the ground, the electromagnetic wave shielding property can be further improved. Electrodes and wiring patterns, vias (not shown), and the like can be arbitrarily provided inside the substrate 20.
  • the electromagnetic wave shield layer 1 is provided so as to cover the exposed surfaces of the substrate 20 and the electronic component 30. That is, the electromagnetic wave shielding layer 1 is coated so as to follow the unevenness which is a step formed by the electronic component 30.
  • the number, arrangement, shape and type of the electronic components 30 are arbitrary. Instead of arranging the electronic components 30 in an array, the electronic components 30 may be arranged at arbitrary positions.
  • the electronic component mounting substrate 101 is divided into unit modules, as shown in FIG. 2, it is preferable to provide the half dicing grooves 25 so as to divide the unit modules in the thickness direction of the substrate from the upper surface of the substrate.
  • the electronic component mounting board according to the present embodiment includes both a board before being divided into unit modules and a board after being divided into unit modules. That is, in addition to the electronic component mounting substrate 101 on which a plurality of unit modules (electronic components 30) are mounted as shown in FIG. 2, the electronic component mounting substrate 102 after being divided into unit modules as shown in FIG.
  • an electronic component mounting substrate in which one electronic component 30 is mounted on the substrate 20 without being subjected to the singulation step and covered with an electromagnetic wave shielding layer is also included. That is, the electronic component mounting board according to the present embodiment has a structure in which at least one electronic component is mounted on the substrate, and at least a part of the step formed by mounting the electronic component is covered with the electromagnetic wave shielding layer. Inclusive.
  • Electronic components 30 include all components in which electronic elements such as semiconductor integrated circuits are integrally covered with a sealing resin.
  • a semiconductor chip 31 (see FIG. 3) on which an integrated circuit (not shown) is formed is molded with a sealing resin 32.
  • the substrate 20 and the semiconductor chip 31 are electrically connected to wirings or electrodes 21 formed on the substrate 20 via these contact areas or via bonding wires 33, solder balls (not shown), or the like.
  • the electronic component include a semiconductor chip, an inductor, a thermistor, a capacitor, and a resistor.
  • R at the edge of the step portion of the electronic component is 50 ⁇ m or less. Unless a special treatment is performed, the edge of the groove formed by the half dicing has an acute angle and R is 50 ⁇ m or less. Although there is a means to make the R of the edge portion more obtuse in order to reduce the crack of the electromagnetic wave shielding layer, the number of steps is increased and the cost is increased. On the other hand, when the electromagnetic wave shielding sheet of the present embodiment is used, there is an excellent effect that the coating layer can be formed uniformly without cracking of the electromagnetic wave shielding layer even when the edge has an acute angle.
  • the electronic component 30 and the substrate 20 according to the present embodiment can be widely applied to known modes.
  • the semiconductor chip 31 is connected to the solder ball 24 on the back surface of the substrate 20 via the inner via 23.
  • a ground pattern 22 for electrically connecting to the electromagnetic wave shielding layer is formed in the substrate 20, a ground pattern 22 for electrically connecting to the electromagnetic wave shielding layer is formed. This ground pattern 22 is arranged so as to be exposed on the side surface of the substrate 20. Further, one or more electronic elements or the like can be mounted in the electronic component 30.
  • the electromagnetic wave shielding layer is formed by the electromagnetic wave shielding sheet of the present embodiment.
  • the electromagnetic wave shielding layer 1 is obtained by placing an electromagnetic wave shielding sheet on a substrate 20 on which an electronic component 30 is mounted and hot pressing.
  • the electromagnetic wave shield layer 1 is obtained by curing the conductive layer of the electromagnetic wave shield sheet after deformation, and the conductive layer contains a binder resin and a conductive filler.
  • the conductive filler is in continuous contact with the electromagnetic wave shielding layer, and is an isotropic conductive layer exhibiting isotropic conductivity.
  • the electromagnetic wave shielding layer 1 shields unnecessary radiation generated from signal wiring or the like built in the electronic component 30 and / or the substrate 20, and can prevent malfunction due to external magnetic fields and radio waves.
  • the covering region of the electromagnetic wave shielding layer covers the entire region of the step (uneven portion) formed by mounting the electronic component 30.
  • the electromagnetic wave shielding layer is preferably connected to a ground pattern 22 exposed on the side surface or upper surface of the substrate 20 and / or a ground pattern (not shown) such as a wiring for connecting electronic components.
  • the thickness of the electromagnetic wave shielding layer can be appropriately designed depending on the application.
  • the thickness of the electromagnetic wave shielding layer covering the top and side surfaces of the electronic component is preferably from 8 to 70 ⁇ m, more preferably from 15 to 65 ⁇ m, and even more preferably from 20 to 60 ⁇ m. With the above thickness, the size of the component mounting board can be reduced and high shielding performance can be secured.
  • a place where the electromagnetic wave shield layer is easily cracked is a place where the edge of the electronic component 30 is covered. If the electromagnetic wave shielding layer is cracked at the edge of the electronic component, the electromagnetic wave shielding effect is reduced, so that the step coverage is particularly important.
  • the electromagnetic wave shielding sheet of the present embodiment is a laminate having a cushion layer and a conductive layer.
  • the method of laminating these layers includes a method of laminating each layer, a method of coating and printing a conductive resin composition on a cushion layer, and a method of laminating each layer via an adhesive layer or an adhesive layer.
  • the conductive layer is an isotropic conductive layer containing a binder resin and a conductive filler, has a thickness of 8 to 70 ⁇ m, and has a content of the conductive filler in a region along a surface opposite to the cushion layer. Is larger than the content of the conductive filler in a region along the surface side in contact with the cushion layer.
  • the content of the conductive filler is larger on the surface a than on the surface b.
  • the conductive filler occupation area ratio (A) in a region up to 30% of the thickness from the side opposite to the cushion layer is 25 to 55%.
  • the conductive filler occupied area ratio (B) in the region from the cushion layer side to 30% of the thickness is 15 to 40%, and the conductive filler occupied area ratio (A) is occupied by the conductive filler. It is preferably larger than the area ratio (B). This makes it possible to form an electromagnetic wave shielding layer having excellent cushion adhesion and ground connection.
  • the cushion adhesion is good, and it is surely deformed to follow the step formed by the mounting of the electronic component and to be connected to the ground pattern formed on the substrate in the step. Is reliably performed, and it is possible to form an electromagnetic wave shielding layer exhibiting a long-term high electromagnetic wave shielding effect with high connection reliability.
  • the peel strength of the cushion layer from the conductive layer is preferably from 0.2 to 3 N / 25 mm, more preferably from 0.5 to 2.5 N / 25 mm.
  • the peel strength can be controlled by the conductive filler occupied area ratio (B) of the conductive layer described later.
  • pressure and temperature during lamination and surface activation by corona treatment of the cushion layer can be controlled.
  • the electromagnetic wave shielding sheet according to the present embodiment includes the conductive layer 2 and the cushion layer 7 formed on one main surface of the conductive layer 2 as shown in FIG.
  • a release substrate (not shown) may be laminated on the other main surface of the conductive layer.
  • the cushion layer 7 is a layer that is melted at the time of hot pressing, and functions as a cushion material that promotes the ability of the conductive layer 2 to follow a step formed by mounting the electronic component 30. In addition, it is a layer that is releasable and can be separated from the conductive layer 2 after the hot pressing step without being joined to the conductive layer 2.
  • the cushion layer 7 may have a release layer. In this case, the cushion layer 7 has a configuration in which a member having cushioning properties and a release layer are combined.
  • the cushion layer can be formed of a thermoplastic resin composition containing at least a thermoplastic resin.
  • the thermoplastic resin composition may include a plasticizer, a thermosetting agent, an inorganic filler, and the like, in addition to the thermoplastic resin.
  • thermoplastic resin polyolefin resin, acid-modified polyolefin resin grafted with acid, copolymer resin of polyolefin and unsaturated ester, vinyl resin, styrene / acrylic resin, diene resin, cellulose resin
  • examples include polyamide resin, polyurethane resin, polyester resin, polycarbonate resin, polyimide resin, and fluorine resin.
  • a polyolefin resin, an acid-modified polyolefin resin grafted with an acid, a copolymer resin of a polyolefin and an unsaturated ester, and a vinyl resin are preferable.
  • the thermoplastic resins can be used alone or as a mixture of two or more at an optional ratio as needed.
  • the polyolefin resin is preferably a homopolymer or a copolymer of ethylene, propylene, an ⁇ -olefin compound and the like.
  • Specific examples include low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene homopolymer, and polypropylene copolymer.
  • a polyethylene resin and a polypropylene resin are preferable, and a polyethylene resin is more preferable.
  • the acid-modified polyolefin resin is preferably a polyolefin resin on which maleic acid, acrylic acid, methacrylic acid, itaconic acid, or the like is grafted.
  • a maleic acid-modified polyolefin resin is preferred.
  • Examples of the unsaturated ester in the copolymer resin of the polyolefin and the unsaturated ester include methyl acrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methyl methacrylate, isobutyl methacrylate, dimethyl maleate, And diethyl maleate and glycidyl methacrylate.
  • an ethylene-glycidyl methacrylate copolymer resin comprising ethylene as a polyolefin and glycidyl methacrylate as an unsaturated ester is preferred.
  • the vinyl resin is preferably a polymer obtained by polymerization of a vinyl ester such as vinyl acetate or a copolymer of a vinyl ester and an olefin compound such as ethylene.
  • a vinyl ester such as vinyl acetate or a copolymer of a vinyl ester and an olefin compound such as ethylene.
  • Specific examples include ethylene-vinyl acetate copolymer, ethylene-vinyl propionate copolymer, and partially saponified polyvinyl alcohol. Among these, an ethylene-vinyl acetate copolymer is preferred.
  • the styrene / acrylic resin is preferably a homopolymer or copolymer composed of styrene, (meth) acrylonitrile, acrylamides, maleimides, and the like. Specific examples include syndiotactic polystyrene, polyacrylonitrile, and acrylic copolymer.
  • the diene resin is preferably a homopolymer or copolymer of a conjugated diene compound such as butadiene or isoprene, and a hydrogenated product thereof.
  • a conjugated diene compound such as butadiene or isoprene
  • a hydrogenated product thereof e.g., styrene-butadiene rubber, styrene-isoprene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-butylene.
  • the cellulose resin is preferably a cellulose acetate butyrate resin.
  • the polycarbonate resin is preferably bisphenol A polycarbonate.
  • the polyimide resin is preferably a thermoplastic polyimide, a polyamide imide resin, or a polyamic acid type polyimide resin.
  • the cushion layer 7 may include a release layer 8 in addition to the cushioning member 6 in order to facilitate separation of the cushion layer and the electromagnetic wave shielding layer after hot pressing.
  • a release layer 8 it is preferable to form a layer made of polypropylene, polymethylpentene, cyclic olefin polymer, silicone, and fluororesin. Among them, polypropylene, polymethylpentene, silicone, and fluorine resin are more preferable.
  • a release agent such as alkyd or silicone is coated on the cushioning member 6 is also preferable.
  • the thickness of the release layer is preferably from 0.001 to 70 ⁇ m, more preferably from 0.01 to 50 ⁇ m.
  • cushion layer As a commercially available cushion layer, “CR1012”, “CR1012MT4”, “CR1031”, “CR1033”, “CR1040”, “CR2031MT4”, etc., manufactured by Mitsui Tohro Co., Ltd. can be used. These commercially available cushion layers have a layer structure in which both surfaces of the cushion layer are sandwiched between polymethylpentenes as release layers, and in the present specification, these integrated structures are referred to as cushion layers.
  • the thickness of the cushion layer is preferably 50 to 300 ⁇ m, more preferably 75 to 250 ⁇ m, and further preferably 100 to 200 ⁇ m.
  • the thickness is 50 ⁇ m or more, the embedding property can be improved.
  • the thickness is 300 ⁇ m or less, the handling properties of the electromagnetic wave shielding sheet can be improved.
  • the cushion layer 7 has a release layer, the thickness is a value including the release layer.
  • the conductive layer is a layer for forming an electromagnetic wave shielding layer, and contains at least a binder resin and a conductive filler.
  • the conductive layer functions as an electromagnetic wave shielding layer after hot pressing.
  • the conductive layer has a thickness of 8 to 70 ⁇ m, and the conductive filler occupation area ratio (A) in the region up to 30% of the thickness from the interface opposite to the cushion layer is 25 to 55%.
  • the area occupied by the conductive filler (B) in the region up to 30% of the thickness from the interface of the cushion layer is 15 to 40%, and the area occupied by the conductive filler (A) is the area occupied by the conductive filler. It is larger than (B).
  • the thickness of the conductive layer is 8 to 70 ⁇ m, preferably 15 to 65 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the thickness of the conductive layer and the thickness of the cushion layer described above can be measured by a contact-type film thickness meter, a cross-sectional observation measurement, or the like.
  • the conductive filler occupied area ratio (A) in the present specification refers to the conductive area in the region from the side opposite to the cushion layer up to 30% of the thickness on the cut surface obtained by cutting the electromagnetic wave shielding sheet in the thickness direction as shown in FIG. It shows the content ratio of the conductive filler in the layer.
  • the electromagnetic wave shield sheet is cut by ion beam irradiation using a cross section polisher (SM-09010, manufactured by JEOL Ltd.) to form a cut surface in the thickness direction of the electromagnetic wave shield sheet.
  • a cross section polisher (SM-09010, manufactured by JEOL Ltd.) to form a cut surface in the thickness direction of the electromagnetic wave shield sheet.
  • the conductive filler occupied area ratio (A) can be determined by a method described in Examples described later.
  • the region up to 30% of the thickness from the interface on the side opposite to the cushion layer refers to the region of up to 30% from the interface of the conductive layer on the side opposite to the cushion layer in the thickness of the electromagnetic wave shielding sheet.
  • the thickness of the conductive layer is 100 ⁇ m
  • a region having a thickness of 30 ⁇ m from the conductive layer interface opposite to the cushion layer on the cut surface in the thickness direction is shown.
  • the conductive filler occupied area ratio (A) is 25 to 55%, preferably 30 to 52%, more preferably 35 to 48%.
  • ground connectivity can be improved.
  • the conductive filler occupation area ratio (A) is set to 55% or less, the embedding property can be improved.
  • the conductive filler occupied area ratio (B) in the present specification refers to a conductive layer in a region from the cushion layer side to 30% of the thickness on the cut surface obtained by cutting the electromagnetic wave shielding sheet 10 in the thickness direction as shown in FIG. 2 shows the content ratio of the conductive filler 3 in the sample No. 2.
  • the conductive filler occupied area ratio (B) can be determined in the same manner as the conductive filler occupied area ratio (A), except that the designated area of the cut surface of the conductive layer 2 is limited to 30% of the cushion layer side. .
  • the conductive filler occupied area ratio (B) is 15 to 40%, preferably 18 to 37%, and more preferably 22 to 34%.
  • the conductive filler occupied area ratio (B) is 15 to 40%, preferably 18 to 37%, and more preferably 22 to 34%.
  • the exclusive area ratio between the conductive filler exclusive area ratio (A) and the conductive filler exclusive area ratio (B) represented by the following formula (1) is preferably 1 to 31%, more preferably 3 to 28%. Preferably, it is more preferably from 8 to 25%.
  • Exclusive area ratio difference (%) conductive filler exclusive area ratio (A)-conductive filler exclusive area ratio (B)
  • the conductive layer of the electromagnetic wave shielding sheet is characterized in that the occupied area ratio (A) of the conductive filler is larger than the occupied area ratio (B) of the conductive filler. Thereby, the connection reliability to the ground pattern is improved.
  • the surface in contact with the cushion layer contains a relatively large amount of the binder component, and has good adhesion to the cushion layer, so that delamination hardly occurs when the electromagnetic wave shielding sheet is conveyed or cut, thereby improving the yield.
  • conductive layer As shown in FIG. 5, at least two kinds of conductive layers having different conductive filler 3 contents, such as the conductive layer 5 on the side opposite to the cushion layer 7 and the conductive layer 4 on the cushion layer side, as shown in FIG. It can be formed by forming one conductive layer and laminating them. Each isotropic conductive layer can be formed by applying a conductive resin composition containing a binder resin and a conductive filler on a release substrate, and then drying it. It is not limited as long as it is conductive and the content of the conductive filler 3 in the region opposite to the cushion layer 7 is larger than the content of the conductive filler 3 in the region on the cushion layer 7 side.
  • the conductive layer 2 is formed of two layers, the conductive layer 5 and the conductive layer 4, the conductive layer 2 is stacked in the order of the conductive layer 5 and the conductive layer 4, and the conductive layer 4 is stacked with the cushion layer.
  • the content of the conductive filler is set high.
  • the content of the conductive filler in the conductive layer 5 is preferably 61 to 78% by mass, more preferably 64 to 76% by mass.
  • the content of the conductive filler in the conductive layer 4 is preferably 51 to 67% by mass, and more preferably 53 to 65% by mass.
  • the electromagnetic wave shielding sheet can be formed by laminating the conductive layer 4 and the cushion layer.
  • the conductive layer 4 can be formed by directly applying the conductive resin composition on the cushion layer 7 and bonding the conductive layer 4 to the conductive layer 5 in the form of a release substrate.
  • the conductive layer preferably has holes.
  • a pore is an air pocket or a plurality of bubbles inside the conductive layer in cross-sectional observation of the conductive layer cut in the thickness direction, and an example is shown in FIG.
  • the holes 9 preferably exist in the center of the conductive layer in a cross section cut in the thickness direction.
  • the conductive filler is settled and the concentration of the conductive filler is varied. Is formed and then dried.
  • the sedimentation of the conductive filler can be controlled by controlling the viscosity, thixotropy and sedimentation time of the conductive resin composition.
  • the electromagnetic wave shielding sheet can be formed by bonding the cushion layer to the surface of the conductive layer on the release substrate, which has a low concentration of conductive filler.
  • Examples of the method of applying the conductive resin composition include a gravure coating method, a kiss coating method, a die coating method, a lip coating method, a comma coating method, a blade method, a roll coating method, a knife coating method, a spray coating method, and a bar coating method.
  • System, spy coat system, dip coat system can be used.
  • thermosetting resin a curable compound reaction type can be used. Further, the thermosetting resin may self-crosslink. When a thermosetting resin is used, it preferably has a reactive functional group capable of reacting with the curable compound.
  • thermosetting resin examples include polyurethane resin, polyurethane urea resin, acrylic resin, polyester resin, polyamide resin, epoxy resin, polystyrene, polycarbonate resin, polyamide imide resin, polyester amide resin, polyether ester resin, and A polyimide resin is used.
  • the thermosetting resin may have a self-crosslinkable functional group.
  • a thermosetting resin when used under severe conditions during reflow, at least one of an epoxy resin, an epoxy ester resin, a urethane resin, a urethane urea resin, a polycarbonate resin, and a polyamide It is preferable to include.
  • a thermosetting resin and a thermoplastic resin can be used together as long as they can withstand the heating step.
  • the reactive functional group of the thermosetting resin includes a carboxyl group, a hydroxyl group, an epoxy group and the like.
  • the acid value of the thermosetting resin is preferably from 3 to 30.
  • the more preferable range of the acid value is 4 to 20, and the more preferable range is 5 to 10.
  • the weight average molecular weight Mw of the thermosetting resin is preferably from 20,000 to 150,000. When it is 20,000 or more, scratch resistance can be effectively improved. Further, when the content is 150,000 or less, an effect that the step followability is improved can be obtained.
  • the curable compound has a functional group capable of crosslinking with the reactive functional group of the thermosetting resin.
  • Curable compounds include epoxy compounds, isocyanate compounds, polycarbodiimide compounds, aziridine compounds, acid anhydride group-containing compounds, dicyandiamide compounds, amine compounds such as aromatic diamine compounds, phenol compounds such as phenol novolak resins, and organic metal compounds.
  • the curable compound may be a resin. In this case, the thermosetting resin and the curable compound are distinguished from each other in such a manner that a higher content is a thermosetting resin and a lower content is a curable compound.
  • the structure and molecular weight of the curable compound can be appropriately designed depending on the application.
  • the curable compound is preferably contained in an amount of 1 to 70 parts by mass, more preferably 3 to 65 parts by mass, and still more preferably 3 to 60 parts by mass, per 100 parts by mass of the thermosetting resin.
  • the epoxy compound is not particularly limited as long as it has an epoxy group, but is preferably a polyfunctional epoxy compound.
  • a crosslinked structure can be obtained by thermally crosslinking an epoxy group of an epoxy compound with a carboxyl group or a hydroxyl group of a thermosetting resin.
  • an epoxy compound which is liquid at normal temperature and normal pressure is also suitable.
  • a tackifier resin or a thermoplastic resin may be used as the binder resin.
  • the thermoplastic resin include polyolefin resin, vinyl resin, styrene / acrylic resin, diene resin, terpene resin, petroleum resin, cellulose resin, polyamide resin, polyurethane resin, and polyester resin. , Polycarbonate-based resins and fluorine-based resins.
  • the tackifying resin include a rosin resin, a terpene resin, an alicyclic petroleum resin, and an aromatic petroleum resin.
  • a conductive polymer can be used. Examples of the conductive polymer include polyethylene dioxythiophene, polyacetylene, polypyrrole, polythiophene, and polyaniline.
  • Examples of the conductive filler include a metal filler, a conductive ceramic filler, and a mixture thereof.
  • the metal filler include core-shell fillers such as metal powders such as gold, silver, copper, and nickel, alloy powders such as solder, silver-coated copper powder, gold-coated copper powder, silver-coated nickel powder, and gold-coated nickel powder. From the viewpoint of obtaining excellent conductive properties, a conductive filler containing silver is preferable. From the viewpoint of cost, silver-coated copper powder is particularly preferable.
  • the silver content in the silver-coated copper is preferably 6 to 20% by mass, more preferably 8 to 17% by mass, and still more preferably 10 to 15% by mass based on 100% by mass of the conductive filler.
  • the coating ratio of the coat layer to the core portion is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more based on 100% by mass of the entire surface.
  • the core portion may be non-metal, but from the viewpoint of conductivity, a conductive substance is preferable, and a metal filler is more preferable.
  • the shape of the conductive filler is preferably flake-like (scale-like). Also, a flake-shaped and other-shaped conductive filler may be used in combination.
  • the shape of the conductive filler used in combination is not particularly limited, but a dendritic, fibrous, acicular or spherical conductive filler is preferable.
  • the conductive filler used in combination is used alone or in combination.
  • a combination of a flake-like conductive filler and a dendritic filler When used in combination, a combination of a flake-like conductive filler and a dendritic filler, a combination of a flake-like conductive filler, a dendritic conductive filler and a spherical conductive filler, and a combination of a flake-like conductive filler and a spherical conductive filler can be exemplified. .
  • a flake-like conductive filler alone or a combination of a flake-like conductive filler and a dendritic conductive filler is more preferable.
  • the average particle diameter D 50 of the flaky conductive filler is preferably 2 ⁇ 100 ⁇ m, 2 ⁇ 80 ⁇ m is more preferable. More preferably, it is 3 to 50 ⁇ m, particularly preferably 5 to 20 ⁇ m.
  • a preferred range of the average particle diameter D 50 of the dendritic conductive filler is preferably 2 ⁇ 100 ⁇ m, 2 ⁇ 80 ⁇ m is more preferable. More preferably, it is 3 to 50 ⁇ m, particularly preferably 5 to 20 ⁇ m.
  • the conductive resin composition constituting the conductive layer may contain a coloring agent, a flame retardant, an inorganic additive, a lubricant, an anti-blocking agent, and the like, in addition to the binder resin, in addition to the conductive filler.
  • the coloring agent include organic pigments, carbon black, ultramarine, red iron oxide, zinc white, titanium oxide, and graphite. Among them, the printing visibility of the shield layer is improved by including the black colorant.
  • the flame retardant include a halogen-containing flame retardant, a phosphorus-containing flame retardant, a nitrogen-containing flame retardant, and an inorganic flame retardant.
  • the inorganic additive include glass fiber, silica, talc, and ceramic.
  • Examples of the lubricant include fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, fatty acid amide, aliphatic alcohol, metal soap, and modified silicone.
  • Examples of the antiblocking agent include calcium carbonate, silica, polymethylsilsesquiosan, and aluminum silicate.
  • the electronic component mounting board includes: (A) mounting an electronic component on a substrate; (B) placing an electromagnetic wave shielding sheet formed by laminating a cushion layer and a conductive layer in this order on a substrate on which an electronic component is mounted, such that the conductive layer is opposed to the electronic component; A step (c) of joining by a heat press to obtain an electromagnetic wave shielding layer so that the conductive layer follows the stepped portion formed by mounting the electronic component and the exposed surface of the substrate; Step (d) of removing the cushion layer.
  • Step (a) is a step of mounting an electronic component on a substrate.
  • FIG. 7 is an example of a substrate obtained at the step (a) in a manufacturing process stage of the electronic component mounting board according to the present embodiment.
  • a semiconductor chip (not shown) is mounted on a substrate 20
  • the substrate 20 on which the semiconductor chip is formed is molded with a sealing resin, and from above between electronic components to the inside of the substrate 20.
  • the mold resin and the substrate 20 are half-cut by dicing or the like so as to reach.
  • a method in which electronic components 30 are arranged in an array on a substrate that has been cut in advance may be used. Note that, in the example of FIG.
  • the electronic component 30 refers to an integrated product obtained by molding a semiconductor chip, and refers to all electronic devices protected by an insulator.
  • the half-cutting there is a mode of cutting to the substrate surface in addition to a mode of reaching the inside of the substrate. Further, the entire substrate may be cut at this stage. In this case, it is preferable that the substrate is placed on the base with the adhesive tape so that no displacement occurs.
  • the grooves between the electronic components are preferably in a grid pattern from the viewpoint of eliminating unevenness in embedding. It is preferable that the depth (b) of the groove is 1 to 6 times the width (a) of the groove, and the width (a) of the groove is 50 to 500 ⁇ m from the viewpoint of eliminating substrate cracks.
  • the material of the sealing resin for molding is not particularly limited, but a thermosetting resin is usually used.
  • the method for forming the sealing resin is not particularly limited, and examples thereof include printing, laminating, transfer molding, compression, and casting.
  • the molding is optional, and the mounting method of the electronic component can be arbitrarily changed.
  • Step (b) The step (b) is a step of, after the step (a), placing the electromagnetic wave shielding sheet on the substrate on which the electronic components are mounted so that the conductive layer 2 side is opposed to the conductive layer.
  • the electromagnetic wave shielding sheet is set on the substrate 20 on which the electronic components 30 are mounted.
  • the electromagnetic wave shielding sheet is placed on the joint area between the substrate 20 and the electronic component 30 so that the conductive layer 2 side is opposed to the conductive layer 2. After placement, it may be temporarily attached.
  • Temporary bonding refers to temporarily bonding the electronic component 30 so as to contact at least a part of the upper surface of the electronic component 30, and refers to a state in which the conductive layer 2 is fixed to the adherend at the B stage.
  • a plurality of electromagnetic shielding sheets may be used for each region of the substrate 20, or an electromagnetic shielding sheet may be used for each electronic component 30, but from the viewpoint of simplifying the manufacturing process.
  • one electromagnetic wave shielding sheet is used for the entire plurality of electronic components 30 mounted on the substrate 20.
  • Step (c) is a step of obtaining an electromagnetic wave shielding layer by performing hot pressing so that the conductive layer follows the step formed by mounting the electronic component and the exposed surface of the substrate after the step (b). .
  • the production substrate obtained in the step (b) is sandwiched between a pair of press substrates 40 and hot-pressed.
  • the conductive layer is stretched along the half dicing groove 25 provided on the production substrate by the pressing of the cushion layer 7 by melting, and is coated following the electronic component 30 and the substrate 20 to form the electromagnetic wave shielding layer 1.
  • You. By releasing the press substrate 40, a production substrate as shown in FIG. 10 is obtained.
  • the pressure in the hot pressing step can be arbitrarily set within a range where the coverability of the conductive layer can be ensured according to the durability of the electronic component 30, the manufacturing equipment, or needs.
  • the pressure range is not limited, it is preferably about 0.5 to 15.0 MPa, more preferably 1 to 13.0 MPa, and still more preferably 2 to 10.0 MPa.
  • the difference in film thickness before and after the heating press is preferably in a range of 1% or more and less than 20%, more preferably in a range of 2% or more and less than 15%. By setting it to less than 20%, the amount of cracking of the electromagnetic wave shielding layer can be reduced. When the content is 1% or more, the step followability is improved.
  • the hot pressing time can be set according to the heat resistance of the electronic component, the binder resin used for the conductive layer, the production process, and the like.
  • the hot pressing time is preferably in the range of about 1 minute to 2 hours.
  • the hot pressing time is more preferably about 1 minute to 1 hour.
  • a thermosetting resin as the binder resin, it is preferable that the curing of the thermosetting resin be completed by this hot pressing. However, if an uncured portion remains, a baking step using an oven or an IR heater is provided separately. Is also good.
  • the thermosetting resin may be partially cured before hot pressing as long as it can flow, or may be substantially completely cured.
  • heat press device a press-type heat press device, a transfer mold device, a compression mold device, a vacuum press forming device, or the like can be used.
  • the arrow indicating the direction of the press shown in FIG. 9 is an example, and is not limited to the vertical direction.
  • Step (d) is a step of removing the cushion layer after step (c).
  • step (d) dicing is performed from the electromagnetic wave shielding layer 1 side in the XY directions at a position corresponding to the product area of the individual component of the electronic component mounting substrate 101 on the substrate 20 using a dicing blade or the like. Thereby, an electronic component mounting board in which the electronic component 30 is covered with the electromagnetic wave shielding layer 1 is obtained.
  • the electromagnetic wave shielding layer 1 an electronic component mounting substrate in which the ground pattern 22 formed on the substrate 20 is electrically connected to the electromagnetic wave shielding layer is obtained.
  • the individualization by dicing may be performed by dicing from the substrate 20 side of the production substrate obtained in the step (c). This method is preferable from the viewpoint of suppressing burrs on the electromagnetic wave shielding layer and improving the releasability of the cushion layer 7.
  • the manufacturing method according to the present embodiment by forming the electromagnetic wave shielding layer 1 through the steps (a) to (d) using the electromagnetic wave shielding sheet, cracks at the edge of the electronic component 30 are suppressed,
  • the electronic component mounting board 101 having the electromagnetic wave shielding layer 1 which is uniformly embedded in the groove and has high ground connection reliability can be manufactured. Also, since a plurality of uneven electronic components can be covered at once, the productivity is excellent. Further, since the electromagnetic wave shielding layer can be formed irrespective of the arrangement position and shape of the components, the versatility is high. It is also easy to cut to an optimal size according to the size of the manufacturing substrate.
  • the electromagnetic wave shielding sheet according to the present embodiment it is possible to provide the electronic component mounting board 101 having the electromagnetic wave shielding layer 1 having excellent shape followability.
  • the electromagnetic wave shielding sheet is pressed and pressed in the surface direction of the substrate, the electromagnetic wave shielding layer on the top surface of the electronic component is excellent in smoothness. Therefore, when a product name or a lot number is printed by an inkjet method or a laser marking method, a high-quality electronic component mounting board with improved character visibility can be provided. Further, by controlling the conditions at the time of hot pressing, there is an advantage that the thickness can be easily controlled and the thickness can be easily reduced.
  • the electronic component mounting board according to the present embodiment can be mounted on a mounting board via, for example, solder balls 24 formed on the back surface of the board 20, and can be mounted on an electronic device.
  • the electronic component mounting board according to the present embodiment can be used for various electronic devices including a personal computer, a doublet terminal, a smartphone, a drone, and the like.
  • test board A substrate was prepared in which electronic components sealed in a mold were mounted in an array on a substrate made of glass epoxy.
  • the thickness of the substrate is 0.3 mm, and the mold sealing thickness, that is, the height (part height) H from the upper surface of the substrate to the top surface of the mold sealing material is 0.7 mm.
  • a ground pattern is formed inside the substrate.
  • half dicing was performed along the groove, which is a gap between the components, to obtain a test substrate (see FIG. 12).
  • the half cut groove depth was 0.8 mm (the cut groove depth of the substrate 20 was 0.1 mm), and the half cut groove width was 200 ⁇ m.
  • the half-cut causes the ground pattern inside the substrate to be exposed on the side surface.
  • Binder resin 1 polyurethane resin, acid value 10 [mgKOH / g] (manufactured by Toyochem)
  • Binder resin 2 polycarbonate resin Acid value 5 [mgKOH / g] (manufactured by Toyochem)
  • Curable compound 2 Nagase ChemteX Co., Ltd.
  • the average particle diameter D 50 is to use a laser diffraction scattering method particle size distribution measuring apparatus LS13320 (manufactured by Beckman Coulter, Inc.) at Tornado Dry Powder sample modules, a conductive filler, wave absorbing filler or an inorganic filler, measured is a number having an average particle diameter D 50 obtained were in a particle size of the cumulative value of 50% at a particle ⁇ integral fabric.
  • the distribution was a volume distribution, and the setting of the refractive index was 1.6. Any primary particle or secondary particle may be used as long as the particle diameter is the same.
  • ⁇ Thickness of conductive filler> Approximately 10 to 20 different particles were measured on the basis of an image obtained by enlarging a cut surface image of the thickness of the electromagnetic wave shield layer about 1,000 to 50,000 times with an electron microscope, and an average value thereof was used.
  • the thickness of the electromagnetic wave shielding layer was determined by a polishing method, and the thickness of the thickest portion in the upper surface region of the electronic component was measured with a laser microscope. The same measurement was performed on five samples of different electronic component mounting boards whose cross sections were obtained, and the average value was defined as the thickness.
  • the electromagnetic wave shielding sheet was cut by ion beam irradiation using a cross section polisher (SM-09010, manufactured by JEOL Ltd.) to form a cut surface in the thickness direction of the electromagnetic wave shielding sheet. Then, a cross section of the obtained electromagnetic wave shielding sheet was subjected to platinum vapor deposition, and an enlarged image of FIG. 15 was observed using a field emission electron microscope (S-4700, manufactured by Hitachi, Ltd.). The observation conditions were as follows: acceleration voltage: 5 kV, emission current: 8 mA, and magnification: 1300 times.
  • the obtained electromagnetic wave shielding sheet was prepared as a sample having a width of 25 mm and a length of 70 mm.
  • the release substrate of the conductive layer is peeled off from the sample, and an adhesive tape (an adhesive tape in which a 25 ⁇ m acrylic film is coated on a 25 ⁇ m PET film (“LE301-25K” manufactured by Toyochem)) is adhered to the conductive layer.
  • an adhesive tape an adhesive tape in which a 25 ⁇ m acrylic film is coated on a 25 ⁇ m PET film (“LE301-25K” manufactured by Toyochem)
  • the conductive layer and the adhesive tape were separated from the cushion layer at a peeling speed of 50 mm / min and a peeling angle of 180 ° under an atmosphere of 23 ° C. and 50% RH using a tensile tester. Peeling strength was measured by peeling.
  • Example 1 50 parts of the binder resin 1 (solid content), 50 parts of the binder resin 2 (solid content), 10 parts of the curable compound 1, 20 parts of the curable compound 2, 10 parts of the curable compound 3, and 1 part of the accelerator and 149 parts of the conductive filler 1 were charged into a container, and a mixed solvent of toluene: isopropyl alcohol (mass ratio 2: 1) was added thereto so that the non-volatile content became 45% by mass. By stirring for minutes, a conductive resin composition was obtained. This conductive resin composition was applied to a release substrate using a doctor blade so that the dry thickness became 25 ⁇ m. And it dried at 100 degreeC for 2 minute (s), and obtained the sheet
  • a mixed solvent of toluene: isopropyl alcohol mass ratio 2: 1
  • binder resin 1 solid content
  • binder resin 2 solid content
  • 10 parts of curable compound 1, 20 parts of curable compound 2, and 10 parts of curable compound 3 , 1 part of a curing accelerator and 376 parts of a conductive filler 1 were charged into a container, and a mixed solvent of toluene: isopropyl alcohol (mass ratio 2: 1) was added thereto so that the concentration of nonvolatile components became 45% by mass.
  • a conductive resin composition was applied to a release substrate using a doctor blade so that the dry thickness became 25 ⁇ m. And it dried at 100 degreeC for 2 minute (s), and obtained the sheet
  • the conductive layer 4 and the conductive layer 5 were attached to the sheet B and the sheet A by a hot roll laminator.
  • the release base material of the sheet B is peeled off, and the sheet B is bonded to one surface of the cushion layer by a hot roll laminator, so that the cushion layer / the conductive layer 4 / the conductive layer 5 / the release base material are laminated in this order.
  • An electromagnetic wave shielding sheet was obtained.
  • the bonding condition was 70 ° C. and 3 kgf / cm 2 .
  • the obtained electromagnetic wave shielding sheet was cut into a size of 10 cm ⁇ 10 cm, the releasable substrate was peeled off, and the conductive layer 5 was placed on the test substrate. Thereafter, the substrate was hot-pressed from above the cushion layer of the electromagnetic wave shielding sheet under the conditions of 5 MPa and 160 ° C. for 20 minutes. After the hot pressing, the substrate was cooled and the cushion layer was peeled off to obtain an electronic component mounting substrate on which the electromagnetic wave shielding layer was formed.
  • Examples 2 to 22, Comparative Examples 1 to 3 Same as Example 1 except that the thickness and various physical properties of each layer, each component and its compounding amount (parts by mass), and the groove width and groove depth of the electronic component of the test board were changed as shown in Tables 1 to 3. Thus, an electronic component mounting substrate was produced.
  • the blending amounts of the binder resin and the curable compound shown in Tables 1 to 3 are masses of solid contents.
  • Example 23 An electromagnetic wave shielding sheet was prepared in the same manner as in Example 1 except that the conditions for bonding the sheet B and the sheet A were 90 ° C. and 3 kgf / cm 2 in vacuum, and an electronic component mounting board was obtained.
  • the obtained electromagnetic wave shielding sheet was cut into a width of 10 mm and a length of 10 mm to obtain a sample.
  • Twenty samples were placed in a 90 mL mayobin (a glass bottle with a cylindrical lid having a diameter of 45 mm and a height of 80 mm), and the lid was closed. Then, the mayobin was set on a paint conditioner and stirred for 30 minutes. Thereafter, delamination between the cushion layer and the conductive layer of the sample was visually confirmed, and the adhesion of the cushion layer was evaluated.
  • +++ No peeling in all samples. Very good results. ++: No peeling was observed in all the samples, but the edges were lifted. Good results. +: Less than 5 peeled samples. No problem in practical use. NG: 5 or less peeled samples are not practical.
  • the obtained electromagnetic wave shielding sheet was prepared in a size of 50 mm in length and 50 mm in width, and was used as a sample. The sample was subjected to thermocompression bonding at 150 ° C. and 2 MPa for 30 minutes to be fully cured. Next, the peelable sheet of the conductive layer was peeled off, and the surface resistance value of the conductive layer was measured using a four-probe “Lorester GP” manufactured by Mitsubishi Chemical Analytech.
  • the evaluation criteria are as follows. +++: Less than 0.2 [ ⁇ / ⁇ ]. Very good results. ++: 0.2 [ ⁇ / ⁇ ] or more and less than 0.6 [ ⁇ / ⁇ ]. Good results. +: 0.6 [ ⁇ / ⁇ ] or more and less than 1.2 [ ⁇ / ⁇ ]. No problem in practical use. NG: 1.2 [ ⁇ / ⁇ ] or more. Not practical.
  • the ground connection was evaluated by measuring the connection resistance value between the ground terminals a and b at the bottom shown in the cross-sectional view of FIG. 13 using an RM3544 manufactured by HIOKI and a pin-type lead probe. did. That is, it was confirmed whether the electromagnetic wave shielding layer was in ground contact with the ground pattern exposed on the side surface side.
  • the evaluation criteria are as follows. +++: Connection resistance value is less than 200 m ⁇ . Very good results. ++: Connection resistance value is 200 m ⁇ or more and less than 500 m ⁇ . Good results. +: The connection resistance value is 500 m ⁇ or more and less than 1000 m ⁇ . No problem in practical use. NG: Connection resistance value is 1000 m ⁇ or more. Not practical.
  • Tables 1 to 3 show the evaluation results of the electronic component mounting board and the electromagnetic wave shielding sheet according to the examples and comparative examples.
  • electromagnetic wave shielding layer 2 conductive layer 3 conductive filler 4 conductive layer 5 conductive layer 6 cushioning member 7 cushion layer 8 release layer 9 hole 10 electromagnetic wave shielding sheet 20 substrate 21 wiring or electrode 22 ground pattern 23 inner via 24 solder Ball 25 Half dicing groove 30 Electronic component 31 Semiconductor chip 32 Sealing resin 33 Bonding wire 40 Press substrate 101 to 102 Electronic component mounting substrate

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本発明の電磁波シールドシート(10)は、電子部品(30)の搭載により形成された段差部および基板(20)の露出面の少なくとも一部を被覆する電磁波シールド層(1)を備える電子部品搭載基板(101)を構成するための電磁波シールドシートであって、クッション層(7)と導電層(2)を有する積層体であり、導電層(2)は、バインダー樹脂および導電性フィラー(3)を含む等方導電層であって、厚みが8~70μmであり、且つクッション層(7)と反対側の領域における導電性フィラー(3)の含有量は、クッション層(7)側の領域における導電性フィラー(3)の含有量よりも多い。

Description

電磁波シールドシート、および電子部品搭載基板
 本発明は、電子部品の搭載により基板上に形成される段差部および基板の露出面の少なくとも一部を被覆するために好適に用いられる電磁波シールドシート、この電磁波シールドシートによって形成される電磁波シールド層を有する電子部品搭載基板に関する。
 ICチップ等の電子部品を搭載した電子部品搭載基板は、性能向上や高い信頼性の要求に伴い、電子部品の表面に様々な機能を有する被覆層が形成されている。これら被覆層の形成は、工程簡略化のためにシート状の材料を用いて熱プレスすることで、電子部品が搭載された基板の凹凸に追従して被覆層を形成する方法がある。
 特許文献1では、軽量化、薄型化を図るとともに、高周波帯域の電磁波を吸収により遮断する電磁波シールドシートが提案されている。また、特許文献2には、プレス加工という簡易な方法を用いて、電子部品を覆っても電気抵抗の増加によるシールド性能の低下という不具合の発生を起こり難くすることができる導電性接着シートが記載されている。
 一方、特許文献3には、外部からの磁場や電波による誤動作を防止するため、また、電子基板内部から発生する電気信号の不要輻射を低減するために、電磁波シールドシートを熱プレスによって電子部品の表面に形成する方法が開示されている。
特開2017-45946号公報 国際公開第2015/186624号 国際公開第2014/027673号
 特許文献1は、電磁波シールドシートを熱プレスすることにより、電子部品の表面に電磁波シールド層を形成するものである。この電磁波シールドシートは導電性材料を含有する電磁波遮断層(導電層)を備えている。この導電層において、導電性材料の含有量は電子部品の反対側が高く電子部品側が低くなるように傾斜させている。また、特許文献2においては異方導電層および等方導電層からなり、異方導電層が電子部品に接合する電磁波シールドシートが開示されている。
 いずれの電磁波シールドシートにおいても、電子部品が搭載された基板に形成された凹凸部に電磁波シールドシートを埋め込むためにクッション材を用いる。しかし、上記電磁波シールドシートにおいては、導電層とクッション材との密着性を充分にもたせることが困難であり、搬送時等に剥がれ、歩留まりが悪化するという問題がおこる(以下、クッション密着性)。
 加えて、電子部品の天面と側面の間のエッジ部において、熱プレス時に電磁波シールドシートに引張応力がかかり、導電層に亀裂が生じて接続信頼性が低下することが問題となっている(以下、グランド接続性)。
 特許文献3には、基板上の凸部を被覆するために用いられ、クッション層と電磁波遮蔽層(導電層)を有する電磁波シールド用フィルムが記載されている。しかし、このような積層体でもクッション層と導電層の密着性は充分ではなく、搬送中、或いは所定のサイズに裁断する際にクッション層と導電層が剥がれ、歩留まりが悪化する問題がある。
 さらに、このような電磁波シールドシートでは、図14に示すように熱プレス後、電磁波シールド層の熱収縮によって電子部品搭載基板に割れが生じる問題がある(以下、基板割れ)。
 本発明は、上記背景に鑑みて成されたものであり、クッション密着性が良好であり、電子部品の搭載により形成された段差部に確実に追従変形するとともに該段差部内において基板に形成されたグランドパターンとの接続が確実に行われ、高い接続信頼性によって長期的に高い電磁波シールド効果を発揮する電磁波シールドシートを提供することを目的とする。
 また、この電磁波シールドシートを用いて、電子部品の搭載により形成された段差部および基板の露出面の少なくとも一部を被覆した電磁波シールド効果の高い電子部品搭載基板を提供することを目的とする。
 本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。
即ち、本発明は、基板と、前記基板の少なくとも一方の面に搭載された電子部品と、前記電子部品の搭載により形成された段差部および基板の露出面の少なくとも一部を被覆する電磁波シールド層と、を備える電子部品搭載基板を構成する前記電磁波シールド層を形成するために用いられる電磁波シールドシートであって、前記電磁波シールドシートはクッション層と導電層を有する積層体であり、前記導電層は、バインダー樹脂および導電性フィラーを含む等方導電層であって、厚みが8~70μmであり、前記クッション層と反対側の領域における前記導電性フィラーの含有量は、前記クッション層側の領域における前記導電性フィラーの含有量よりも多いことを特徴とする。
 本発明の電磁波シールドシートは、クッション層と導電層との密着性が良好であり搬送時および電子部品搭載基板の製造時のロスが発生しにくい。加えて、熱プレス時に段差部の形状に確実に追従変形することができ、段差部への埋め込み性が精度よく行われる。この結果、本発明の電磁波シールドシートは、段差部および基板の露出面の少なくとも一部を被覆することもできるとともに、形成した電磁波シールド層は、基板に形成されたグランドパターンに接続してアースコンタクトすることができる。更に、電子部品や基板に内蔵された信号配線等から発生する不要輻射を漏れなく遮蔽し、また、外部からの磁場や電波による誤動作を防止する電磁波シールド効果を確実に発揮する。加えて、本発明の電磁波シールド層を形成した電子部品搭載基板は割れを抑制できる。
 これにより誤作動がなく信頼性の高い電子部品搭載基板を高い歩留まりで提供できるという優れた効果を奏する。
本実施形態に係る電子部品搭載基板の一例を示す模式的斜視図。 図1のII-II切断部断面図。 本実施形態に係る電子部品搭載基板の別の一例を示す模式的断面図。 本実施形態に係る電磁波シールドシートの一例を示す模式的断面図。 本実施形態に係る電磁波シールドシートの他の一例を示す模式的断面図。 本実施形態に係る電磁波シールドシートの他の一例を示す模式的断面図。 本実施形態に係る電子部品搭載基板の製造工程断面図。 本実施形態に係る電子部品搭載基板の製造工程断面図。 本実施形態に係る電子部品搭載基板の製造工程断面図。 本実施形態に係る電子部品搭載基板の製造工程断面図。 本実施形態に係る電子部品搭載基板の製造工程断面図。 本実施例に係る電子部品搭載基板の別の一例を示す模式的断面図。 本実施例に係る電子部品搭載基板の評価方法を示す模式的断面図。 基板割れの一例を示す図。 導電性フィラー専有面積率(A)と、導電性フィラー専有面積率(B)の測定用画面例を示す図。
 以下、本発明を適用した実施形態の一例について説明する。なお、本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。また、本明細書で特定する数値「A~B」は、数値Aと数値Aより大きい値および数値Bと数値Bより小さい値を満たす範囲をいう。また、本明細書における「シート」とは、JISにおいて定義される「シート」のみならず、「フィルム」も含むものとする。説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。また、同一の要素部材は、異なる実施形態においても同一符号で示す。本明細書中に出てくる各種成分は特に注釈しない限り、それぞれ独立に一種単独でも二種以上を併用してもよい。
 また、本発明における「Mw」はゲルパーミエーションクロマトグラフィ(GPC)測定によって求めたポリスチレン換算の重量平均分子量であり、導電性フィラー、電磁波吸収フィラー、および無機フィラーの平均粒子径D50は、レーザー回折・散乱法により測定することにより求めることができる。
<<電子部品搭載基板>>
 本実施形態の電子部品搭載基板は、基板と、前記基板の少なくとも一方の面に搭載された電子部品と、前記電子部品の搭載により形成された段差部および基板の露出面を被覆する電磁波シールド層と、を備える。
 この電磁波シールド層は基板上の凹凸段差部(段差部ともいう)を被覆するためのものであって、電子部品の側面および天面と、基板の露出した面との少なくとも一部を被覆する。
 この電磁波シールド層は全面を被覆することがより好ましく、隙間のないことが好ましい。
 本実施形態の電子部品搭載基板は、例えば、電子部品の搭載により形成された段差部の溝が碁盤目状であり、溝の幅(a)を1としたときに溝の深さ(b)が1~6倍であり、溝の幅(a)が50~500μmである場合にも、基板上の段差部を均一に電磁波シールド層により被覆することが可能であり、溝への埋め込み性が良好である、という優れた効果を有している。
 図1に本実施形態に係る電子部品搭載基板の模式的斜視図を、図2に図1のII-II切断部断面図を示す。電子部品搭載基板101は、基板20、電子部品30および電磁波シールド層1等を有する。
 電子部品搭載基板101には、耐擦傷性、水蒸気バリア性、酸素バリア性を示すフィルム等の他の層や、磁界カットを強化するフィルム等がさらに積層されていてもよい。
<基板と電子部品>
 基板20は、電子部品30を搭載可能であり、且つ後述する熱プレス工程に耐え得る基板であればよく、任意に選択できる。例えば銅箔等からなる導電パターンが表面又は内部に形成されたワークボード、実装モジュール基板、プリント配線板またはビルドアップ法等により形成されたビルドアップ基板が挙げられる。また、リジッド基板のみならず、フィルムやシート状のフレキシブル基板を用いてもよい。前記導電パターンは、例えば、電子部品30と電気的に接続するための電極・配線パターン(不図示)、電磁波シールド層1と電気的に接続するためのグランドパターン22である。グランドパターン22は、電子部品が搭載されていない領域の基板表面または、基板の内部に配置され、基板の側面に露出させる態様が好ましい。基板の側面に露出させる場合は、ハーフダイシングによって基板を部分的に切削した溝の側面にグランドパターンを露出させることも好ましい。また、ダイシングで基板をフルカットしてグランドパターンを露出させることも好ましい。グランドパターンの側面に電磁波シールド層を被覆してグランド接地することにより、電磁波シールド性をより向上させることができる。基板20内部には、電極・配線パターン、ビア(不図示)等を任意に設けることができる。
 電子部品30は、図1の例においては基板20上に5×4個アレイ状に配置されている。そして、基板20および電子部品30の露出面を被覆するように電磁波シールド層1が設けられている。即ち、電磁波シールド層1は、電子部品30により形成される段差部である凹凸に追従するように被覆されている。
 電子部品30の個数、配置、形状および種類は任意である。アレイ状に電子部品30を配置する態様に代えて、電子部品30を任意の位置に配置してもよい。電子部品搭載基板101を単位モジュールに個片化する場合、図2に示すように、基板上面から基板の厚み方向に単位モジュールを区画するようにハーフダイシング溝25を設けることが好ましい。なお、本実施形態に係る電子部品搭載基板は、単位モジュールに個片化する前の基板、および単位モジュールに個片化した後の基板の両方を含む。即ち、図2のような複数の単位モジュール(電子部品30)が搭載された電子部品搭載基板101の他、図3のような単位モジュールに個片化した後の電子部品搭載基板102も含む。無論、個片化工程を経ずに、基板20上に1つの電子部品30を搭載し、電磁波シールド層で被覆した電子部品搭載基板も含まれる。即ち、本実施形態に係る電子部品搭載基板は、基板上に少なくとも1つの電子部品が搭載されており、電子部品の搭載により形成された段差部の少なくとも一部に電磁波シールド層が被覆された構造を包括する。
 電子部品30は、半導体集積回路等の電子素子が封止樹脂により一体的に被覆された部品全般を含む。例えば、集積回路(不図示)が形成された半導体チップ31(図3参照)が封止樹脂32によりモールド成型されている態様がある。基板20と半導体チップ31は、これらの当接領域を介して、又はボンディングワイヤ33、はんだボール(不図示)等を介して基板20に形成された配線又は電極21と電気的に接続される。電子部品は、半導体チップの他、インダクタ、サーミスタ、キャパシタおよび抵抗等が例示できる。
 電子部品の段差部におけるエッジはRが50μm以下であることが好ましい。特別に処理を行わない限りハーフダイシングによって形成された溝のエッジ部は鋭角となりRが50μm以下となる。電磁波シールド層の割れを低減する為にエッジ部のRをより鈍角にする手段はあるものの、工数が増えコストが高くなってしまう。これに対し、本実施形態の電磁波シールドシートを用いる場合、エッジが鋭角であっても電磁波シールド層が割れることなく均一に被覆層を形成できることができる、という優れた効果を有する。
 本実施形態に係る電子部品30および基板20は、公知の態様に対して広く適用できる。図3の例においては、半導体チップ31は、インナービア23を介して基板20の裏面のはんだボール24に接続されている。また、基板20内には、この電磁波シールド層と電気的に接続するためのグランドパターン22が形成されている。このグランドパターン22は基板20の側面に露出するように配置されている。また、電子部品30内には、単数又は複数の電子素子等を搭載できる。
<電磁波シールド層>
 電磁波シールド層は、本実施形態の電磁波シールドシートにより形成されてなる。
 図2を用いて一例を説明すると、電磁波シールド層1は、電子部品30が搭載された基板20上に、電磁波シールドシートを載置して熱プレスすることにより得られる。電磁波シールド層1は、電磁波シールドシートの導電層が変形後、硬化したものであって、導電層はバインダー樹脂および導電性フィラーを含有する。電磁波シールド層において導電性フィラーは連続的に接触されており、等方導電性を示す等方導電層である。
 電磁波シールド層1は、電子部品30および/または基板20に内蔵された信号配線等から発生する不要輻射を遮蔽し、また、外部からの磁場や電波による誤動作を防止できる。
 電磁波シールド層の被覆領域は、電子部品30の搭載により形成された段差部(凹凸部)の全域を被覆していることが好ましい。電磁波シールド層はシールド効果を充分に発揮させるために、基板20の側面または上面に露出するグランドパターン22または/および電子部品の接続用配線等のグランドパターン(不図示)に接続する構成が好ましい。
 電磁波シールド層の厚みは、用途により適宜設計し得る。薄型化が求められている用途には、電子部品の上面および側面を被覆する電磁波シールド層の厚みは、8~70μmが好ましく、15~65μmの範囲がより好ましく、20~60μmがさらに好ましい。上記厚みとすることで部品搭載基板の小型化と高いシールド性を担保できる。
 電磁波シールド層の割れが生じやすい場所は、電子部品30のエッジ部を被覆する箇所である。電子部品のエッジ部において電磁波シールド層の割れが生じると、電磁波遮蔽効果の低下を招来するので、段差部の被覆性は特に重要となる。
[電磁波シールドシート]
 本実施形態の電磁波シールドシートは、クッション層と導電層を有する積層体である。これらの層の積層方法は、各層をラミネートする方法、クッション層上に導電性樹脂組成物を塗工、印刷する方法、また粘着剤層や接着剤層を介して各層を貼り合わせる方法等が挙げられる。
 また、前記導電層は、バインダー樹脂および導電性フィラーを含む等方導電層であって、厚みが8~70μmであり、前記クッション層と反対側の面に沿った領域における導電性フィラーの含有量は、前記クッション層と接する面側に沿った領域における導電性フィラーの含有量よりも多い。言い換えると、クッション層と接する面をb面、その反対側の面をa面と定義したときに、導電性フィラーの含有量はb面側よりもa面側の方が大きい。
 また、前記電磁波シールドシートは、積層方向に対して垂直である断面において、前記クッション層と反対側から、厚みの30%迄の領域における導電性フィラー専有面積率(A)が25~55%であって、前記クッション層側から厚みの30%迄の領域における導電性フィラー専有面積率(B)が15~40%であって、かつ、導電性フィラー専有面積率(A)が導電性フィラー専有面積率(B)よりも大きいことが好ましい。
 これにより、クッション密着性およびグランド接続性に優れた電磁波シールド層の形成が可能となる。
 このような電磁波シールドシートを用いることで、クッション密着性が良好であり、電子部品の搭載により形成された段差部に確実に追従変形するとともに該段差部内において基板に形成されたグランドパターンとの接続が確実に行われ、高い接続信頼性によって長期的に高い電磁波シールド効果を発揮する電磁波シールド層の形成が可能となる。
 クッション層および導電層は熱プレスするまでは密着していることが必須である。導電層に対するクッション層の剥離強度は0.2~3N/25mmであることが好ましく、0.5~2.5N/25mmがより好ましい。剥離強度を0.2N/25mm以上とすることで、運送時や裁断時の層間剥離を抑制し、歩留まりが向上する。一方、剥離強度を3N/25mm以下とすることで、熱プレス後にクッション層をシールド層の損傷無く容易に剥離することができる。上記の剥離強度は後述する導電層の導電性フィラー専有面積率(B)によってコントロールすることができる。加えて、ラミネート時の圧力や温度、クッション層のコロナ処理による表面活性化によってもコントロールすることができる。
 本実施形態に係る電磁波シールドシートは、図4に示すように、導電層2と、導電層2の一主面上に形成されたクッション層7を備える。導電層の他主面上には、離型性基材(不図示)を積層してもよい。
 (クッション層)
 クッション層7は、熱プレス時に溶融する層であり、電子部品30の搭載により形成された段差部への導電層2の追従性を促すクッション材として機能する。加えて、離型性があり導電層2と接合することなく、熱プレス工程後に導電層2から剥離可能な層である。
 なお、クッション層7は、離型層を有していてもよく、この場合にはクッション性を有する部材と、離型層とをあわせた構成を指す。
 クッション層は、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物により形成することができる。また、熱可塑性樹脂組成物は、熱可塑性樹脂に加えて、可塑剤や熱硬化剤、無機フィラー等を含んでいてもよい。
 熱可塑性樹脂としては、ポリオレフィン系樹脂、酸をグラフトさせた酸変性ポリオレフィン系樹脂、ポリオレフィンと不飽和エステルとの共重合樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド系樹脂、またはフッ素樹脂などが挙げられる。
 これらの中でも、ポリオレフィン系樹脂、酸をグラフトさせた酸変性ポリオレフィン系樹脂、ポリオレフィンと不飽和エステルとの共重合樹脂、ビニル系樹脂が好ましい。
 熱可塑性樹脂は、1種を単独で、または必要に応じて任意の比率で2種以上混合して用いることができる。
 ポリオレフィン系樹脂は、エチレン、プロピレン、α-オレフィン化合物などのホモポリマーまたはコポリマーが好ましい。具体的には、例えば、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンホモポリマー、ポリプロピレンコポリマーが挙げられる。
 これらの中でもポリエチレン樹脂およびポリプロピレン樹脂が好ましく、より好ましくは、ポリエチレン樹脂である。
 酸変性ポリオレフィン系樹脂は、マレイン酸やアクリル酸、メタクリル酸、イタコン酸等がグラフトされたポリオレフィン樹脂が好ましい。
 これらの中でも、マレイン酸変性ポリオレフィン樹脂が好ましい。
 ポリオレフィンと不飽和エステルとの共重合樹脂における不飽和エステルとしてはアクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸イソブチル、マレイン酸ジメチル、マレイン酸ジエチルおよびメタクリル酸グリシジルなどが挙げられる。
 これらの中でもポリオレフィンとしてエチレン、不飽和エステルとしてメタクリル酸グリシジルからなる、エチレン-メタクリル酸グリシジル共重合樹脂が好ましい。
 ビニル系樹脂は、酢酸ビニルなどのビニルエステルの重合により得られるポリマーおよびビニルエステルとエチレンなどのオレフィン化合物とのコポリマーが好ましい。具体的には、例えば、エチレン-酢酸ビニル共重合体、エチレン-プロピオン酸ビニル共重合体、部分ケン化ポリビニルアルコールが挙げられる。
 これらの中でもエチレン-酢酸ビニル共重合体が好ましい。
 スチレン・アクリル系樹脂は、スチレン、(メタ)アクリロニトリル、アクリルアミド類、マレイミド類などからなるホモポリマーまたはコポリマーが好ましい。具体的には、例えば、シンジオタクチックポリスチレン、ポリアクリロニトリル、アクリルコポリマーが挙げられる。
 ジエン系樹脂は、ブタジエン、イソプレン等の共役ジエン化合物のホモポリマーまたはコポリマー、およびそれらの水素添加物が好ましい。具体的には、例えば、スチレン-ブタジエンゴム、スチレン-イソプレンブロックコポリマー、スチレン-エチレン・ブチレン-スチレンブロックコポリマー、スチレン-エチレン・プロピレン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブチレン・ブタジエン-スチレンブロックコポリマー、スチレン-エチレン・ブチレン-スチレンブロックコポリマーとスチレン-エチレン・ブチレンブロックコポリマーとの混合物が挙げられる。
 セルロース系樹脂は、セルロースアセテートブチレート樹脂が好ましい。ポリカーボネート樹脂は、ビスフェノールAポリカーボネートが好ましい。
 ポリイミド系樹脂は、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリアミック酸型ポリイミド樹脂が好ましい。
 クッション層7は、図6に示すように、熱プレス後にクッション層と電磁波シールド層との剥離を容易にするため、クッション性の部材6に加え、離形層8を含む形態とすることができる。離形層8としては、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、シリコーン、フッ素樹脂からなる層を形成することが好ましい。この中でもポリプロピレン、ポリメチルペンテン、シリコーン、フッ素樹脂がさらに好ましい。上記形態の他、アルキッド、シリコーンの等の離型剤をクッション性の部材6にコーティングする形態も好ましい。
 離形層の厚みは0.001~70μmが好ましく、0.01~50μmがより好ましい。
 市販のクッション層としては、三井東セロ社製「CR1012」、「CR1012MT4」、「CR1031」、「CR1033」、「CR1040」、「CR2031MT4」等を用いることができる。これら市販のクッション層はクッション層の両面を離形層としてポリメチルペンテンで挟み込んだ層構成となっており、本明細書ではこれらの一体構成をクッション層と呼ぶ。
 クッション層の厚みは、50~300μmが好ましく、75~250μmがより好ましく、100~200μmがさらに好ましい。50μm以上とすることで埋め込み性を向上できる。300μm以下とすることで電磁波シールドシートのハンドリング性を良好なものとすることができる。なお上記厚みは、クッション層7が離形層を有する場合、離形層を含んだ値である。
 (導電層)
 導電層は、電磁波シールド層を形成するための層であり、少なくともバインダー樹脂および導電性フィラーを含有する。導電層は熱プレス後に電磁波シールド層として機能する。前記導電層は、厚みが8~70μmであり、前記クッション層と反対側の界面から、厚みの30%迄の領域における導電性フィラー専有面積率(A)が25~55%であって、前記クッション層の界面から、厚みの30%迄の領域における導電性フィラー専有面積率(B)が15~40%であって、且つ、導電性フィラー専有面積率(A)が導電性フィラー専有面積率(B)よりも大きいことを特徴とする。
 導電層の厚みは、8~70μmであり、15~65μmの範囲が好ましく、20~60μmがより好ましい。これにより、シールド性、埋め込み性およびグランド接続性を効果的に発揮し、電子部品搭載基板の割れを低減することができる。
 導電層並びに上述したクッション層の厚みの測定方法は、接触式の膜厚計および断面観察による計測などで測定することができる。
≪導電性フィラー専有面積率(A)≫
 本明細書における導電性フィラー専有面積率(A)とは、図4に示すように電磁波シールドシートを厚み方向に切断した切断面において、クッション層と反対側から厚みの30%迄の領域における導電層中の導電性フィラーの含有比率を示すものである。
 より詳細に説明すると、電磁波シールドシートをクロスセクションポリッシャー(日本電子社製、SM-09010)を用いてイオンビーム照射により切断加工して電磁波シールドシートの厚み方向の切断面を形成する。
 導電性フィラー専有面積率(A)は、後述する実施例で説明する方法により求めることができる。
 ここで、クッション層と反対側界面から厚みの30%迄の領域とは、電磁波シールドシートの厚みにおける、クッション層と反対側の導電層の界面から30%迄の領域である。例えば導電層の厚みが100μmの場合、厚み方向の切断面の、クッション層の反対側の導電層界面から厚み30μmの領域を示す。
 導電性フィラー専有面積率(A)は25~55%であり、30~52%の範囲が好ましく、35~48%がより好ましい。導電性フィラー専有面積率(A)を25%以上とすることで、グランド接続性を向上できる。一方、導電性フィラー専有面積率(A)を55%以下とすることにより、埋め込み性を向上することができる。
≪導電性フィラー専有面積率(B)≫
 本明細書における導電性フィラー専有面積率(B)とは、図4に示すように電磁波シールドシート10を厚み方向に切断した切断面において、クッション層側から厚みの30%迄の領域における導電層2中の導電性フィラー3の含有比率を示すものである。
 導電性フィラー専有面積率(B)は導電層2切断面の範囲指定領域をクッション層側の30%迄とする以外は、導電性フィラー専有面積率(A)と同様の方法で求めることができる。
 導電性フィラー専有面積率(B)は、15~40%であり、18~37%の範囲が好ましく、22~34%がより好ましい。導電性フィラー専有面積率(B)を15%以上とすることで、シールド性を向上し基板割れを抑制できる。一方、導電性フィラー専有面積率(B)を40%以下とすることにより、クッション層との剥離強度を高めクッション層との密着性を向上することができる。
 下記式(1)で表される前記導電性フィラー専有面積率(A)と前記導電性フィラー専有面積率(B)の専有面積率差は、1~31%が好ましく、3~28%がより好ましく、8~25%がさらに好ましい。上記範囲にすることでシールド性とグランド接続性を向上した上で、基板割れをより抑制できる。
式(1) 
専有面積率差(%)=導電性フィラー専有面積率(A)-導電性フィラー専有面積率(B)
 導電性フィラー専有面積率(A)と導電性フィラー専有面積率(B)の間における領域、すなわち残りの40%の領域については特に制限はないが、これらの領域の導電性フィラー専有面積率は(A)と(B)の中間の値をとることが好ましい。
 電磁波シールドシートの導電層は導電性フィラー専有面積率(A)が導電性フィラー専有面積率(B)よりも大きいことを特徴とする。これにより、グランドパターンへの接続信頼性が向上する。一方、クッション層と接する面は相対的にバインダー成分が多くなりクッション層との密着性が良好となり電磁波シールドシートを搬送や裁断する際に層間剥離が起こりにくくなるため歩留まりが向上する。
≪導電層の製造方法≫
 このような導電層は、図5に示すように、クッション層7とは反対側に導電層5、クッション層側に導電層4となる、導電性フィラー3の含有量の異なる少なくとも2種類の等方導電層を形成し、これらを積層することで形成できる。夫々の等方導電層はバインダー樹脂と導電性フィラーを含有する導電性樹脂組成物を離型性基材上に塗工した後、乾燥させることで形成することができ、導電層全体として等方導電性であり、クッション層7と反対側の領域における導電性フィラー3の含有量が、クッション層7側の領域における導電性フィラー3の含有量よりも多くなっていれば、制限されない。
 導電層2を、導電層5、導電層4の二層で形成する場合、導電層2は導電層5、導電層4の順に積層し、導電層4はクッション層と積層するため、導電層5の導電性フィラーの含有量を高く設定する。導電層5の導電性フィラーの含有量は、61~78質量%が好ましく、64~76質量%がより好ましい。導電層4の導電性フィラーの含有量は、51~67質量%が好ましく、53~65質量%がより好ましい。
 しかる後、導電層4とクッション層を貼り合わせることで電磁波シールドシートを形成することができる。一方、クッション層7上に導電性樹脂組成物を直接塗工することで導電層4を形成し、離型性基材状の導電層5と貼り合わせることで形成することもできる。
 導電層は空孔を有することが好ましい。空孔とは、導電層を厚み方向に切断した断面観察において、導電層の内部に有する空気溜まり、もしくは複数の気泡であって、図15に一例を示す。図15に示すように空孔9は厚み方向に切断した断面において導電層の中央部に存在することが好ましい。導電層に空孔を有することで、電磁波シールドシートの熱プレス時に、電子部品による凸部へのプレスの圧力が適度に緩和されより均一に電磁波シールド層を形成することができる。これにより段差部への埋め込み性が良好となりグランド接続性が向上する。空孔は熱プレス後、電磁波シールド層内から消滅しても残存していてもよい。
 また、上記製法の他に、バインダー樹脂と導電性フィラーおよび溶剤を含有する導電性樹脂組成物を離型性基材上に塗工した後、導電性フィラーを沈降させて導電性フィラー濃度の濃淡を形成した後に乾燥させることにより得ることができる。導電性フィラーの沈降は、導電性樹脂組成物の粘度、チキソ性および沈降時間をコントロールすることで制御できる。
 しかる後、離型性基材上の導電層の導電性フィラーの濃度が低い面とクッション層を貼り合わせることで電磁波シールドシートを形成することができる。
 導電性樹脂組成物を塗工する方法としては、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレード方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピコート方式、ディップコート方式を使用することができる。
≪バインダー樹脂≫
 導電層を形成するバインダー樹脂について説明する。
 バインダー樹脂としては、熱硬化性樹脂を用いることが好ましい。熱硬化性樹脂は、硬化性化合物反応タイプが使用できる。更に、熱硬化性樹脂が自己架橋してもよい。熱硬化性樹脂を用いる場合、硬化性化合物と反応可能な反応性官能基を有することが好ましい。
 熱硬化性樹脂の好適な例は、ポリウレタン樹脂、ポリウレタンウレア樹脂、アクリル系樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ系樹脂、ポリスチレン、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリエステルアミド樹脂、ポリエーテルエステル樹脂、およびポリイミド樹脂が挙げられる。熱硬化性樹脂は、自己架橋可能な官能基を有していてもよい。例えば、リフロー時における過酷な条件で使用する場合の熱硬化性樹脂としては、エポキシ系樹脂、エポキシエステル系樹脂、ウレタン系樹脂、ウレタンウレア系樹脂、ポリカーボネート系樹脂およびポリアミドのうちの少なくとも1つを含んでいることが好ましい。また、加熱工程に耐え得る範囲であれば、熱硬化性樹脂と熱可塑性樹脂を併用できる。
 熱硬化性樹脂の反応性官能基としては、カルボキシル基、水酸基、エポキシ基等がある。カルボキシル基を有する場合、熱硬化性樹脂の酸価は、3~30であることが好ましい。酸価を前記範囲とすることにより、エッジ部破れ耐性が向上するという効果が得られる。酸価のより好ましい範囲は、4~20であり、更に好ましい範囲は5~10である。
 熱硬化性樹脂の重量平均分子量Mwは、20,000~150,000であることが好ましい。20,000以上とすることにより、耐スクラッチ性を効果的に高めることができる。また、150,000以下とすることにより段差追従性が向上するという効果が得られる。
 硬化性化合物は、熱硬化性樹脂の反応性官能基と架橋可能な官能基を有している。硬化性化合物は、エポキシ化合物、イソシアネート化合物、ポリカルボジイミド化合物、アジリジン化合物、酸無水物基含有化合物、ジシアンジアミド化合物、芳香族ジアミン化合物等のアミン化合物、フェノールノボラック樹脂等のフェノール化合物、有機金属化合物等が好ましい。硬化性化合物は、樹脂であってもよい。この場合、熱硬化性樹脂と硬化性化合物の区別は、含有量の多い方を熱硬化性樹脂とし、含有量の少ない方を硬化性化合物として区別する。
 硬化性化合物の構造、分子量は用途に応じて適宜設計できる。
 硬化性化合物は、熱硬化性樹脂100質量部に対して1~70質量部含むことが好ましく、3~65質量部がより好ましく、3~60質量部が更に好ましい。
 前記エポキシ化合物は、エポキシ基を有していれば特に制限はないが、多官能のエポキシ化合物であることが好ましい。熱プレス等において、エポキシ化合物のエポキシ基が、熱硬化性樹脂のカルボキシル基や水酸基と熱架橋することにより、架橋構造を得ることができる。エポキシ化合物として、常温・常圧で液状を示すエポキシ化合物も好適である。
 バインダー樹脂として、上記以外に粘着付与樹脂や熱可塑性樹脂を用いてもよい。熱可塑性樹脂の好適な例は、ポリオレフィン系樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、テルペン系樹脂、石油系樹脂、セルロース系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、フッ素系樹脂が挙げられる。粘着付与樹脂としては、ロジン系樹脂、テルペン系樹脂、脂環式系石油樹脂、および芳香族系石油樹脂等が例示できる。また、導電性ポリマーを用いることができる。導電性ポリマーとしては、ポリエチレンジオキシチオフェン、ポリアセチレン、ポリピロール、ポリチオフェン、ポリアニリンが例示できる。
≪導電性フィラー≫
 導電性フィラーは、金属フィラー、導電性セラミックスフィラーおよびそれらの混合物が例示できる。金属フィラーは、金、銀、銅、ニッケル等の金属粉、ハンダ等の合金粉、銀コート銅粉、金コート銅粉、銀コートニッケル粉、金コートニッケル粉のコアシェル型フィラーが例示できる。優れた導電特性を得る観点から、銀を含有する導電性フィラーが好ましい。コストの観点からは、銀コート銅粉が特に好ましい。銀コート銅における銀の含有量は、導電性フィラー100質量%中、6~20質量%が好ましく、より好ましくは8~17質量%であり、更に好ましくは10~15質量%である。コアシェル型フィラーの場合、コア部に対するコート層の被覆率は、表面全体100質量%中、平均で60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。コア部は非金属でもよいが、導電性の観点からは導電性物質が好ましく、金属フィラーがより好ましい。
 導電性フィラーの形状は、フレーク状(鱗片状)が好ましい。またフレーク状と他の形状の導電性フィラーを併用してもよい。併用する導電性フィラーの形状は、特に限定されないが、樹枝(デンドライト)状、繊維状、針状または球状の導電性フィラーが好ましい。併用する導電性フィラーは、単独または混合して用いられる。併用する場合、フレーク状導電性フィラーおよび樹枝状フィラーの組み合わせ、フレーク状導電性フィラー、樹枝状導電性フィラーおよび球状導電性フィラーの組み合わせ、フレーク状導電性フィラーおよび球状導電性フィラーの組み合わせが例示できる。これらのうち、電磁波シールド層のシールド性およびグランド接続性を高める観点から、フレーク状導電性フィラー単独またはフレーク状導電性フィラーと樹枝状導電性フィラーとの組み合わせがより好ましい。
 フレーク状導電性フィラーの平均粒子径D50は、2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。樹枝状導電性フィラーの平均粒子径D50の好ましい範囲は、2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。
 また、導電層を構成する導電性樹脂組成物は、バインダー樹脂に加え、導電性フィラー以外に、着色剤、難燃剤、無機添加剤、滑剤、ブロッキング防止剤等を含んでいてもよい。
 着色剤としては、例えば、有機顔料、カーボンブラック、群青、弁柄、亜鉛華、酸化チタン、黒鉛が挙げられる。この中でも黒色系の着色剤を含むことでシールド層の印字視認性が向上する。
 難燃剤としては、例えば、ハロゲン含有難燃剤、りん含有難燃剤、窒素含有難燃剤、無機難燃剤が挙げられる。
 無機添加剤としては、例えば、ガラス繊維、シリカ、タルク、セラミックが挙げられる。
 滑剤としては、例えば、脂肪酸エステル、炭化水素樹脂、パラフィン、高級脂肪酸、脂肪酸アミド、脂肪族アルコール、金属石鹸、変性シリコーンが挙げられる。
 ブロッキング防止剤としては、例えば、炭酸カルシウム、シリカ、ポリメチルシルセスキオサン、ケイ酸アルミニウム塩が挙げられる。
<電子部品搭載基板の製造方法>
 本実施形態に係る電子部品搭載基板は、
 基板に電子部品を搭載する工程(a)と、
 クッション層および導電層の順で積層されてなる電磁波シールドシートを、電子部品が搭載された基板上に前記導電層を対向配置するように載置する工程(b)と、
 電子部品の搭載により形成された段差部および基板の露出面に導電層が追従するように、熱プレスによって接合して電磁波シールド層を得る工程(c)と、
 クッション層を取り除く工程(d)とにより製造できる。
 以下、本実施形態に係る電子部品搭載基板の製造方法の一例について図7~図11を用いて説明する。但し、これに限定されるものではない。
「工程(a)」
 工程(a)は、基板に電子部品を搭載する工程である。
 まず、基板20に電子部品30を搭載する。図7は、工程(a)により得られる、本実施形態に係る電子部品搭載基板の製造工程段階の基板の一例である。同図に示すように、基板20上に半導体チップ(不図示)を搭載し、半導体チップが形成されている基板20上を封止樹脂によりモールド成形し、電子部品間の上方から基板20内部まで到達するように、モールド樹脂および基板20をダイシング等によりハーフカットする。予めハーフカットされた基板上に電子部品30をアレイ状に配置する方法でもよい。なお、電子部品30とは、図7の例においては半導体チップをモールド成形した一体物をいい、絶縁体により保護された電子素子全般をいう。ハーフカットは、基板内部まで到達させる態様の他、基板面までカットする態様がある。また、基板全体をこの段階でカットしてもよい。この場合には、粘着テープ付き基体上に基板を載置して位置ずれが生じないようにしておくことが好ましい。
 前記電子部品間の溝は埋め込み性のムラを解消する観点から、碁盤目状であることが好ましい。また、前記溝の幅(a)に対し溝の深さ(b)は1~6倍の関係とし、溝の幅(a)を50~500μmとすることが基板割れを解消する点から好ましい。
 モールド成形する場合の封止樹脂の材料は特に限定されないが、熱硬化性樹脂が通常用いられる。封止樹脂の形成方法は特に限定されず、印刷、ラミネート、トランスファー成形、コンプレッション、注型等が挙げられる。モールド成形は任意であり、電子部品の搭載方法も任意に変更できる。
「工程(b)」
 工程(b)は、工程(a)の後、電磁波シールドシートを、電子部品が搭載された基板上に前記導電層2側が対向配置するように載置する工程である。
 図8に示すように、工程(a)の後、電磁波シールドシートを電子部品30が搭載された基板20上に設置する。電磁波シールドシートは基板20および電子部品30との接合領域に導電層2側が対向配置するように載置する。載置後、仮貼付してもよい。
 仮貼付とは、電子部品30の少なくとも一部の上面と接触するように仮接合するものであり、導電層2がBステージで被着体に固定されている状態をいう。製造設備あるいは基板20のサイズ等に応じて、基板20の領域毎に複数の電磁波シールドシートを用いたり、電子部品30毎に電磁波シールドシートを用いてもよいが、製造工程の簡略化の観点からは、基板20上に搭載された複数の電子部品30全体に1枚の電磁波シールドシートを用いることが好ましい。
「工程(c)」
 工程(c)は、工程(b)後、電子部品の搭載により形成された段差部および基板の露出面に導電層が追従するように、熱プレスによって接合して電磁波シールド層を得る工程である。
 図9に示すように、工程(b)により得られた製造基板を、一対のプレス基板40間に挟持し、熱プレスする。導電層は、クッション層7の溶融による押圧により、製造基板に設けられたハーフダイシング溝25に沿うように延伸され、電子部品30および基板20に追従して被覆され、電磁波シールド層1が形成される。プレス基板40をリリースすることにより図10に示すような製造基板が得られる。
 熱プレス工程の圧力は、電子部品30の耐久性、製造設備あるいはニーズに応じて、導電層の被覆性が確保できる範囲において任意に設定できる。圧力範囲としては限定されないが、0.5~15.0MPa程度が好ましく、1~13.0MPaの範囲がより好ましく、2~10.0MPaの範囲がさらに好ましい。なお、必要に応じて電磁波シールド層上に保護層等を設けてもよい。加熱プレス前後の膜厚の差は、1%以上、20%未満の範囲が好ましく、2%以上、15%未満の範囲がより好ましい。20%未満とすることで電磁波シールド層の割れ量を低減できる。1%以上とすることで段差追従性が良好となる。
 熱プレス時間は、電子部品の耐熱性、導電層に用いるバインダー樹脂、および生産工程等に応じて設定できる。熱プレス時間は1分~2時間程度の範囲が好適である。なお熱プレス時間は、1分~1時間程度がより好ましい。バインダー樹脂として熱硬化性樹脂を用いる場合は、この熱プレスにより熱硬化性樹脂の硬化が完了することが好ましいが、未硬化部が残存する場合は別途オーブンやIRヒーターなどによるベーキング工程を設けてもよい。但し、熱硬化性樹脂は、流動が可能であれば熱プレス前に部分的に硬化していてもよく、あるいは実質的に硬化が完了していてもよい。
 熱プレス装置は、押圧式熱プレス装置、トランスファーモールド装置、コンプレッションモールド装置、真空圧空成形装置等を使用できる。
 なお、図9に示すプレスの方向を意味する矢印は一例であって、上下に限るものではない。
「工程(d)」
 工程(d)は、工程(c)後、クッション層を取り除く工程である。
 次いで、図11に示すように電磁波シールド層1より上層に被覆されているクッション層7を剥離する。これにより、電子部品30を被覆する電磁波シールド層1を有する電子部品搭載基板101を得る(図1、2参照)。
 工程(d)の後、ダイシングブレード等を用いて、基板20における電子部品搭載基板101の個品の製品エリアに対応する位置でXY方向に電磁波シールド層1側からダイシングする。これにより、電子部品30が電磁波シールド層1で被覆された電子部品搭載基板が得られる。電磁波シールド層1は、基板20に形成されたグランドパターン22と電磁波シールド層が電気的に接続された電子部品搭載基板が得られる。
 なお、ダイシングによる個片化は、工程(c)で得られる製造基板の基板20面側からダイシングしてもよい。この方法は、電磁波シールド層のバリを抑制し、クッション層7の剥離性を向上する観点から好ましい。
 本実施形態に係る製造方法によれば、電磁波シールドシートを用いて工程(a)~工程(d)を経て電磁波シールド層1を形成することにより、電子部品30のエッジ部で割れを抑制し、溝に均一に埋め込まれ、グランド接続信頼性の高い電磁波シールド層1を有する電子部品搭載基板101を製造できる。また、凹凸のある複数の電子部品を一括して被覆できるので、生産性に優れる。さらに、部品の配置位置や形状等によらずに電磁波シールド層を形成できるので、汎用性が高い。製造基板のサイズに応じて、最適なサイズに裁断することも容易である。また、本実施形態に係る電磁波シールドシートを用いることにより、形状追従性の優れた電磁波シールド層1を有する電子部品搭載基板101を提供できる。
 また、電磁波遮蔽シートを基板の面方向に押圧して圧着させているので、電子部品の天面の電磁波シールド層の平滑性に優れる。このため、製品名あるいはロット番号をインクジェット方式やレーザーマーキング方式で印字した際、文字の視認性が向上した高品質な電子部品搭載基板を提供できる。また、熱プレス時の条件を制御することにより厚みを制御しやすく、薄型化も容易であるというメリットを有する。
<<電子機器>>
 本実施形態に係る電子部品搭載基板は、例えば、基板20の裏面に形成されたはんだボール24等を介して実装基板に実装することができ、電子機器に搭載できる。例えば、本実施形態に係る電子部品搭載基板は、パソコン、ダブレット端末、スマートフォン、ドローン等をはじめとする種々の電子機器に用いることができる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。また、実施例中の「部」とあるのは「質量部」を、「%」とあるのは「質量%」をそれぞれ表すものとする。また、本発明に記載の値は、以下の方法により求めた。
(1)試験基板の作製 
 ガラスエポキシからなる基板上に、モールド封止された電子部品をアレイ状に搭載した基板を用意した。基板の厚みは0.3mmであり、モールド封止厚、即ち基板上面からモールド封止材の頂面までの高さ(部品高さ)Hは0.7mmである。基板の内部にはグランドパターンが形成されている。その後、部品同士の間隙である溝に添ってハーフダイシングを行い、試験基板を得た(図12参照)。ハーフカット溝深さは0.8mm(基板20のカット溝深さは0.1mm)、ハーフカット溝幅は200μmとした。ハーフカットによって基板内部のグランドパターンが側面側に露出した状態となる。
 以下、実施例で使用した材料を示す。
導電性フィラー1:「銀からなる鱗片状粒子、平均粒子径D50=6.0μm、厚み0.8μm」
バインダー樹脂1:ポリウレタン系樹脂 酸価10[mgKOH/g](トーヨーケム社製)
バインダー樹脂2:ポリカーボネート系樹脂 酸価5[mgKOH/g](トーヨーケム社製)
硬化性化合物1:エポキシ樹脂、「デナコールEX830」(2官能エポキシ樹脂 エポキシ当量=268g/eq)ナガセケムテックス社製
硬化性化合物2:エポキシ樹脂、「YX8000」(水添ビスフェノールエポキシ樹脂 エポキシ当量=210g/eq)三菱ケミカル社製
硬化性化合物3:エポキシ樹脂、「jER157S70」(ビスフェノールAノボラック型エポキシ樹脂 エポキシ当量=208g/eq)三菱ケミカル社製
硬化促進剤:アジリジン化合物、「ケミタイト PZ-33」(日本触媒社製)
離型性基材:表面にシリコーン離型剤をコーティングした厚みが50μmのPETフィルム
クッション層:3層TPX「CR1040」(三井化学東セロ社製)
<平均粒子径D50
 平均粒子径D50は、レーザー回折・散乱法粒度分布測定装置LS13320(ベックマン・コールター社製)を使用し、トルネードドライパウダーサンプルモジュールにて、導電性フィラー、電波吸収フィラー、または無機フィラーを測定して得た平均粒子径D50の数値であり、粒子径累積分布における累積値が50%の粒子径である。分布は体積分布、屈折率の設定は1.6とした。当該粒子径であればよく、一次粒子でも二次粒子でもよい。
<導電性フィラーの厚み>
 電磁波シールド層の厚みを測定した切断面画像を、電子顕微鏡で千倍~5万倍程度に拡大した画像を元に、異なる粒子を約10~20個を測定し、その平均値を使用した。
<厚み測定>
 電磁波シールド層の厚みは、研磨法によって電子部品搭載基板の断面出しを行い、レーザー顕微鏡で電子部品の上面領域における最も厚みのある箇所の膜厚を測定した。異なる電子部品搭載基板の断面出しのサンプル5つについて同様に測定し、その平均値を厚みとした。
<導電性フィラー専有面積率(A)、(B)の測定>
 図15を例に説明する。まず電磁波シールドシートをクロスセクションポリッシャー(日本電子社製、SM-09010)を用いてイオンビーム照射により切断加工して電磁波シールドシートの厚み方向の切断面を形成した。次いで得られた電磁波シールドシートの断面を白金蒸着し、電界放出形電子顕微鏡(日立製作所社製、S-4700)を使用して図15の拡大画像を観察した。観察条件は、加速電圧:5kV、エミッション電流:8mA、倍率:1300倍とした。
 得られた拡大画像についてフリーソフトの「GIMP2.8.18」を使用してデータを読み込み、図15に示すように、しきい値を自動調整して導電性フィラーを白、導電性フィラー以外の成分を黒に変換した。その後、導電層のクッション層の反対側から厚み30%迄の領域を範囲指定し、ヒストグラムで白領域(0~254)を選択することで白色のピクセル数のパーセンテージ、即ち導電層の厚み30%迄の領域の断面積を100%としたときの導電性フィラーの成分が占める面積率を求めた。そして、それぞれ異なる5サンプルを評価し平均値を算出することで、導電性フィラー専有面積率(A)を求めた。導電性フィラー専有面積率(B)もクッション層側の導電層の断面範囲を選択した以外は導電性フィラー専有面積率(A)と同様の方法で測定した。
<酸価の測定>
 共栓付き三角フラスコ中に熱硬化性樹脂を約1g精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液50mLを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡紅色を呈するまで0.1mol/Lアルコール性水酸化カリウム溶液で滴定する。酸価は次式により求めた。酸価は樹脂の乾燥状態の数値とした。
酸価(mgKOH/g)=(a×F×56.1×0.1)/S
S:試料の採取量×(試料の固形分/100)(g)
a:0.1mol/Lアルコール性水酸化カリウム溶液の滴定量(mL)
F:0.1mol/Lアルコール性水酸化カリウム溶液の力価
<重量平均分子量(Mw)の測定>
 重量平均分子量(Mw)の測定は東ソ-社製GPC(ゲルパーミエーションクロマトグラフィ)「HPC-8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィ-である。測定は、カラムに「LF-604」(昭和電工社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6mL/min、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
<剥離強度の測定>
 得られた電磁波シールドシートを幅25mm・長さ70mmに準備し試料とした。試料から導電層の離型性基材を剥がし、導電層に粘着テープ(25μmのPETフィルムに25μmのアクリル系粘着剤が塗布された粘着テープ(トーヨーケム社製「LE301-25K」))を貼り合わせた。次いで、この積層体を、引張試験機(島津製作所社製)を使用して23℃50%RHの雰囲気下、剥離速度50mm/min、剥離角度180°で、クッション層から導電層と粘着テープを剥離することで剥離強度を測定した。
[実施例1]
 バインダー樹脂1(固形分)50部と、バインダー樹脂2(固形分)50部と、硬化性化合物1を10部と、硬化性化合物2を20部と、硬化性化合物3を10部と、硬化促進剤を1部と、導電性フィラー1を149部と、を容器に仕込み、不揮発分濃度が45質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えディスパーで10分攪拌することで導電性樹脂組成物を得た。この導電性樹脂組成物を乾燥厚みが25μmになるようにドクターブレードを使用して離型性基材に塗工した。そして、100℃で2分間乾燥することで離型性基材と導電層4(導電層b)とが積層されたシートBを得た。
 別途、バインダー樹脂1(固形分)50部と、バインダー樹脂2(固形分)50部と、硬化性化合物1を10部と、硬化性化合物2を20部と、硬化性化合物3を10部と、硬化促進剤を1部と、導電性フィラー1を376部と、を容器に仕込み、不揮発分濃度が45質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えディスパーで10分攪拌することで導電性樹脂組成物を得た。この導電性樹脂組成物を乾燥厚みが25μmになるようにドクターブレードを使用して離型性基材に塗工した。そして、100℃で2分間乾燥することで離型性基材と導電層5(導電層a)とが積層されたシートAを得た。
 シートBおよびシートAを熱ロールラミネーターによって導電層4と導電層5を貼り合わせた。次いでシートBの離形性基材を剥がし、クッション層の片面に、熱ロールラミネーターによってシートBを貼り合わせることで、クッション層/導電層4/導電層5/離形性基材の順に積層してなる電磁波シールドシートを得た。貼り合わせる条件は70℃、3kgf/cmとした。
 得られた電磁波シールドシートを10cm×10cmにカットし、離形性基材を剥離して、導電層5を前述の試験基板に載置した。その後、電磁波シールドシートのクッション層の上方から基板面に対し5MPa、160℃の条件で20分熱プレスした。熱プレス後、冷却し、クッション層を剥離することで、電磁波シールド層が形成された電子部品搭載基板を得た。
[実施例2~22、比較例1~3]
 各層の厚みと諸物性、各成分とその配合量(質量部)、試験基板の電子部品の溝幅、溝深さ、を表1~3に示すように変更した以外は、実施例1と同様にして、電子部品搭載基板を作製した。表1~3に示すバインダー樹脂および硬化性化合物の配合量は固形分質量である。
[実施例23]
 シートBおよびシートAを貼り合わせる条件を真空中、90℃、3kgf/cmとした以外は、実施例1と同様に電磁波シールドシートを作製し、電子部品搭載基板を得た。
 上記実施例および比較例について、以下の測定方法および評価基準にて評価した。
<クッション密着性評価>
 得られた電磁波シールドシートを幅10mm・長さ10mmにカットし試料とした。試料20個を90mLマヨビン(直径45mm高さ80mmの円柱状の蓋付きのガラス瓶)に入れた後、蓋をした。そしてマヨビンをペイントコンディショナーにセットし、30分撹拌した。その後試料のクッション層と導電層の層間剥離を目視で確認し、クッション層の密着性を評価した。
+++:すべての試料で剥離なし。 非常に良好な結果である。
++:すべての試料で剥離はないが、端部に浮きが生じている。 良好な結果である。
+:剥離した試料が5つ未満。 実用上問題ない。
NG:剥離した試料が5以下 実用不可。
<シールド性評価>
 得られた電磁波シールドシートを縦50mm・横50mmの大きさに準備し、試料とした。前記試料を150℃、2MPaの条件で30分間熱圧着を行い、本硬化させた。次いで導電層の剥離性シートを剥がし、導電層の表面抵抗値を三菱化学アナリテック社製「ロレスターGP」の四探針プローブを用いて測定した。評価基準は以下の通りである。
+++:0.2[Ω/□]未満。非常に良好な結果である。
++:0.2[Ω/□]以上、0.6[Ω/□]未満。良好な結果である。
+:0.6[Ω/□]以上、1.2[Ω/□]未満。実用上問題ない。
NG:1.2[Ω/□]以上。実用不可。
<グランド接続性評価>
 得られた部品搭載基板を、図13の断面図に示す底部のグランド端子a‐b間の接続抵抗値をHIOKI社製RM3544とピン型リードプローブを用いて測定することにより、グランド接続性を評価した。すなわち側面側に露出したグランドパターンに電磁波遮蔽層がアースコンタクトしているか否かを確認した。
評価基準は以下の通りである。
+++:接続抵抗値が200mΩ未満。非常に良好な結果である。
++:接続抵抗値が200mΩ以上、500mΩ未満。良好な結果である。
+:接続抵抗値が500mΩ以上、1000mΩ未満。実用上問題ない。
NG:接続抵抗値が1000mΩ以上。実用不可。
<基板割れ評価>
 図13に示す電子部品搭載基板の溝部の裏側にあたる部分の割れをレーザー顕微鏡によって観察し評価した。観察は異なる溝20カ所を評価した。
評価基準は以下の通りである。
+++:割れ無し。非常に良好な結果である。
++:割れの発生個所が5未満。良好な結果である。
+:割れの発生個所が5以上、10未満。実用上問題ない。
NG:割れの発生個所が10以上。実用不可。
 実施例および比較例に係る電子部品搭載基板および電磁波シールドシートの評価結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 この出願は、2018年10月3日に出願された日本出願特願2018-188338を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   電磁波シールド層
2   導電層
3   導電性フィラー
4   導電層
5   導電層
6   クッション性の部材
7   クッション層
8   離形層
9   空孔
10  電磁波シールドシート
20  基板
21  配線または電極
22  グランドパターン
23  インナービア
24  はんだボール
25  ハーフダイシング溝
30  電子部品
31  半導体チップ
32  封止樹脂
33  ボンディングワイヤ
40  プレス基板
101~102 電子部品搭載基板

Claims (6)

  1.  基板と、
     前記基板の少なくとも一方の面に搭載された電子部品と、
     前記電子部品の搭載により形成された段差部および前記基板の露出面の少なくとも一部を被覆する電磁波シールド層と、
    を備える電子部品搭載基板を構成する前記電磁波シールド層を形成するために用いられる電磁波シールドシートであって、
     前記電磁波シールドシートはクッション層と導電層を有する積層体であり、
     前記導電層は、
     バインダー樹脂および導電性フィラーを含む等方導電層であって、
     厚みが8~70μmであり、
     前記クッション層と反対側の領域における前記導電性フィラーの含有量は、
     前記クッション層側の領域における前記導電性フィラーの含有量よりも多いことを特徴とする電磁波シールドシート。
  2.  前記導電層は、前記導電性フィラーの含有量が異なる2層以上の等方導電層の積層体である、請求項1記載の電磁波シールドシート。
  3.  前記導電層は、厚み方向に対する切断面において、
     前記クッション層と反対側から、厚みの30%迄の領域における前記導電性フィラーの導電性フィラー専有面積率(A)が25~55%であって、
     前記クッション層側から、厚みの30%迄の領域における前記導電性フィラーの導電性フィラー専有面積率(B)が15~40%であって、
     かつ、前記導電性フィラー専有面積率(A)が前記導電性フィラー専有面積率(B)よりも大きい、請求項1または2記載の電磁波シールドシート。
  4.  下記式(1)で表される前記導電性フィラー専有面積率(A)と前記導電性フィラー専有面積率(B)の専有面積率差が、1~31%である、請求項3記載の電磁波シールドシート。
    式(1)
    専有面積率差(%)=導電性フィラー専有面積率(A)-導電性フィラー専有面積率(B)
  5.  前記導電層は、空孔を有する、請求項1~4いずれか1項記載の電磁波シールドシート。
  6.  基板と、
     前記基板の少なくとも一方の面に搭載された電子部品と、
     請求項1~5いずれか1項記載の電磁波シールドシートによって形成される電磁波シールド層とを有し、
     前記電磁波シールド層が、前記電子部品の搭載により形成された段差部および前記基板の露出面の少なくとも一部を被覆してなる、電子部品搭載基板。
PCT/JP2019/038726 2018-10-03 2019-10-01 電磁波シールドシート、および電子部品搭載基板 WO2020071356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980061579.3A CN112772011B (zh) 2018-10-03 2019-10-01 电磁波遮蔽片以及电子零件搭载基板
KR1020217007272A KR102477543B1 (ko) 2018-10-03 2019-10-01 전자파 차폐 시트 및 전자부품 탑재 기판
US17/267,919 US11172599B2 (en) 2018-10-03 2019-10-01 Electromagnetic-wave shielding sheet and electronic component-mounted substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018188338A JP6497477B1 (ja) 2018-10-03 2018-10-03 電磁波シールドシート、および電子部品搭載基板
JP2018-188338 2018-10-03

Publications (1)

Publication Number Publication Date
WO2020071356A1 true WO2020071356A1 (ja) 2020-04-09

Family

ID=66092593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038726 WO2020071356A1 (ja) 2018-10-03 2019-10-01 電磁波シールドシート、および電子部品搭載基板

Country Status (6)

Country Link
US (1) US11172599B2 (ja)
JP (1) JP6497477B1 (ja)
KR (1) KR102477543B1 (ja)
CN (1) CN112772011B (ja)
TW (1) TWI802757B (ja)
WO (1) WO2020071356A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236326B2 (ja) * 2019-05-30 2023-03-09 東洋紡株式会社 電子部品の封止体、及び電子部品の封止体の製造方法
KR102447684B1 (ko) * 2019-06-27 2022-09-27 주식회사 노바텍 단독 자석 부품을 포함하는 회로기판 및 smt 장비를 이용한 자석 장착 방법
KR20220005922A (ko) * 2020-07-07 2022-01-14 삼성전자주식회사 디스플레이 모듈 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307209A (ja) * 2005-03-31 2006-11-09 Nitta Ind Corp シート体、積層体、シート体が装着された製品およびシート体の製造方法
JP2017045946A (ja) * 2015-08-28 2017-03-02 住友ベークライト株式会社 電磁波シールド用フィルム、および電子部品搭載基板

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258513A (ja) * 1985-09-06 1987-03-14 住友ベークライト株式会社 導電性複合プラスチツクフイルム
JPH01258496A (ja) * 1988-04-08 1989-10-16 Kawasaki Heavy Ind Ltd 電波吸収体
US6936763B2 (en) * 2002-06-28 2005-08-30 Freescale Semiconductor, Inc. Magnetic shielding for electronic circuits which include magnetic materials
JP5182863B2 (ja) * 2008-02-08 2013-04-17 公益財団法人新産業創造研究機構 電波吸収体とその製造方法
JP5712095B2 (ja) * 2011-09-16 2015-05-07 藤森工業株式会社 Fpc用電磁波シールド材
JP6263847B2 (ja) * 2012-08-16 2018-01-24 住友ベークライト株式会社 電磁波シールド用フィルム、および電子部品の被覆方法
WO2014084357A1 (ja) * 2012-11-30 2014-06-05 リンテック株式会社 硬化性樹脂膜形成層付シートおよび該シートを用いた半導体装置の製造方法
WO2014137151A1 (ko) * 2013-03-05 2014-09-12 주식회사 아모센스 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
TW201524284A (zh) * 2013-12-03 2015-06-16 Toyo Ink Sc Holdings Co Ltd 電子元件以及片材
WO2015129546A1 (ja) * 2014-02-25 2015-09-03 住友ベークライト株式会社 電磁波シールドフィルム、フレキシブルプリント基板、電子部品搭載基板、及び電子部品の被覆方法
KR101850809B1 (ko) * 2014-06-02 2018-04-20 다츠다 덴센 가부시키가이샤 도전성 접착 필름, 프린트 회로 기판, 및 전자 기기
JP6184025B2 (ja) * 2014-09-04 2017-08-23 信越ポリマー株式会社 電磁波シールドフィルムおよび電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法
JP5861790B1 (ja) * 2015-02-25 2016-02-16 東洋インキScホールディングス株式会社 電磁波シールドシート、電磁波シールド性配線回路基板および電子機器
JP5854248B1 (ja) * 2015-05-27 2016-02-09 東洋インキScホールディングス株式会社 導電性接着剤、ならびにそれを用いた導電性接着シートおよび電磁波シールドシート
KR101884052B1 (ko) 2015-12-21 2018-07-31 주식회사 두산 전자파 차폐 필름 및 이의 제조방법
JP5988003B1 (ja) * 2016-03-23 2016-09-07 Tdk株式会社 電子回路パッケージ
JP2017228598A (ja) * 2016-06-20 2017-12-28 住友ベークライト株式会社 電磁波シールド用フィルム、および電子部品搭載基板
KR101896435B1 (ko) * 2016-11-09 2018-09-07 엔트리움 주식회사 전자파차폐용 전자부품 패키지 및 그의 제조방법
JP6388064B2 (ja) * 2017-02-10 2018-09-12 東洋インキScホールディングス株式会社 電子部品搭載基板、積層体、電磁波遮蔽シートおよび電子機器
US10388611B2 (en) * 2017-03-13 2019-08-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming magnetic field shielding with ferromagnetic material
KR102197471B1 (ko) * 2017-12-18 2021-01-04 주식회사 잉크테크 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법
JP6504302B1 (ja) * 2018-06-12 2019-04-24 東洋インキScホールディングス株式会社 電磁波シールドシート、部品搭載基板、および電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307209A (ja) * 2005-03-31 2006-11-09 Nitta Ind Corp シート体、積層体、シート体が装着された製品およびシート体の製造方法
JP2017045946A (ja) * 2015-08-28 2017-03-02 住友ベークライト株式会社 電磁波シールド用フィルム、および電子部品搭載基板

Also Published As

Publication number Publication date
US11172599B2 (en) 2021-11-09
KR20210066802A (ko) 2021-06-07
TWI802757B (zh) 2023-05-21
US20210251111A1 (en) 2021-08-12
CN112772011B (zh) 2022-03-08
JP6497477B1 (ja) 2019-04-10
TW202031117A (zh) 2020-08-16
KR102477543B1 (ko) 2022-12-15
CN112772011A (zh) 2021-05-07
JP2020057711A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
TWI807011B (zh) 電磁波屏蔽片
JP6388064B2 (ja) 電子部品搭載基板、積層体、電磁波遮蔽シートおよび電子機器
WO2020071356A1 (ja) 電磁波シールドシート、および電子部品搭載基板
KR20090069315A (ko) 복합형 반도체 장치용 스페이서 시트, 그것을 이용한 반도체 패키지 및 복합형 반도체 장치의 제조 방법, 및 복합형 반도체 장치
JP6468389B1 (ja) 積層体、部品搭載基板、および部品搭載基板の製造方法
WO2020129985A1 (ja) 電子部品搭載基板および電子機器
JP7232996B2 (ja) 電子部品搭載基板および電子機器
JP2018006536A (ja) 部品搭載基板およびその製造方法、積層体、電磁波遮蔽シート並びに電子機器
JP6607331B1 (ja) 電子部品搭載基板および電子機器
JP6183568B1 (ja) 部品搭載基板の製造方法
WO2018147355A1 (ja) 部品搭載基板およびその製造方法、積層体、電磁波遮蔽シートおよび電子機器
JP2020057759A (ja) 電磁波シールドシート、および電子部品搭載基板
JP2022040177A (ja) 電子部品搭載基板および電子機器
JP6451801B1 (ja) 電磁波シールド電子機器の製造方法、および前記電磁波シールド電子機器の製造方法に用いられる電磁波シールドフィルム
JP7099365B2 (ja) 電磁波シールドシート、部品搭載基板、および電子機器
JP2018129495A (ja) 部品搭載基板の製造方法
KR20230163499A (ko) 금속 보강판 부착 프린트 배선판의 제조 방법, 부재 세트, 및 금속 보강판 부착 프린트 배선판
CN105379431A (zh) 电子部件以及电子部件的制造方法
JP2021086912A (ja) 電子部品搭載基板および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869782

Country of ref document: EP

Kind code of ref document: A1