WO2020071040A1 - 交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム - Google Patents

交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム

Info

Publication number
WO2020071040A1
WO2020071040A1 PCT/JP2019/034737 JP2019034737W WO2020071040A1 WO 2020071040 A1 WO2020071040 A1 WO 2020071040A1 JP 2019034737 W JP2019034737 W JP 2019034737W WO 2020071040 A1 WO2020071040 A1 WO 2020071040A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
intersection
normalized
calculating
vehicle
Prior art date
Application number
PCT/JP2019/034737
Other languages
English (en)
French (fr)
Inventor
肇 榊原
Original Assignee
住友電工システムソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工システムソリューション株式会社 filed Critical 住友電工システムソリューション株式会社
Priority to CN201980060337.2A priority Critical patent/CN112740292A/zh
Priority to JP2020550222A priority patent/JP7276964B2/ja
Priority to US17/270,291 priority patent/US11263900B2/en
Publication of WO2020071040A1 publication Critical patent/WO2020071040A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the present invention relates to a traffic index calculation device, a calculation method, a traffic signal control system, and a computer program.
  • This application claims the priority based on Japanese Patent Application No. 2018-90437 filed on Oct. 5, 2018, and incorporates all the contents described in the Japanese application.
  • MODERATO, SCOOT, SCATS, and the like are known as remote control methods performed by a central device of a traffic control center.
  • An apparatus is an apparatus that calculates a traffic index required for calculating a signal control parameter, and expresses a traffic variable of an inflow channel of a target intersection by a ratio to a saturated traffic flow rate.
  • a first calculation unit that calculates normalized data; and using the normalized data, the traffic index defined by an expression in which a traffic variable of the inflow channel is included in a numerator and the saturated traffic flow rate is included in a denominator.
  • a second calculator for calculating for calculating.
  • the traffic signal control system includes a central device that performs remote control for operating a traffic signal controller at the target intersection based on the calculation device and the signal control parameter obtained from the traffic index. And a device.
  • a method is a method of calculating a traffic index required for calculating a signal control parameter, in which a traffic variable of an inflow channel of a target intersection is represented by a ratio to a saturated traffic flow rate.
  • a program according to an embodiment of the present disclosure is a computer program for causing a computer to function as a device for calculating a traffic index required for calculating a signal control parameter, and the computer is configured to execute A first calculation unit for calculating normalized data representing a traffic variable of a road as a ratio to a saturated traffic flow rate; and using the normalized data, the traffic variable of the inflow road is included in a numerator and the saturated traffic flow is calculated.
  • a second calculation unit that calculates the traffic index defined by a formula whose rate is included in the denominator.
  • FIG. 1 is an overall configuration diagram of a traffic signal control system.
  • FIG. 2 is a block diagram of an information processing device, a vehicle-mounted device of a probe vehicle, and a central device included in the traffic signal control system.
  • 9 is a flowchart showing an outline of conventional remote control. It is a flowchart which shows the outline
  • FIG. 8 is an explanatory diagram showing an example of a method for determining a saturated state in consideration of a delay time error and a formula for calculating a traffic amount;
  • the traffic volume and the number of queues in the inflow channel are measured from the sensing signals of the vehicle detectors installed in the inflow channel. Therefore, remote control such as MODERATO is not executed at an intersection where no vehicle sensor is installed in the inflow path.
  • remote control such as MODERATO is not executed at an intersection where no vehicle sensor is installed in the inflow path.
  • vehicle detectors are not installed at two-thirds of the intersections in Japan, and in some countries, vehicle detectors are not installed at a higher rate. Therefore, it is desired that remote control can be performed even at an intersection where a vehicle sensor is not installed.
  • the present disclosure has been made in view of such a conventional problem, and has as its object to enable remote control to be performed even at an intersection where a vehicle sensor is not installed.
  • remote control can be performed even for an intersection where a vehicle sensor is not installed.
  • the device of the present embodiment is a device for calculating a traffic index required for calculating a signal control parameter, and is a normalized data in which a traffic variable of an inflow road of a target intersection is represented by a ratio to a saturated traffic flow rate.
  • a first calculating unit that calculates the traffic index defined by an equation in which a traffic variable of the inflow channel is included in a numerator and the saturated traffic flow rate is included in a denominator, using the normalized data. 2 calculation unit.
  • the first calculation unit calculates the normalized data representing the traffic variable of the inflow road at the target intersection as a ratio to the saturated traffic flow rate
  • the second calculation unit calculates the normalized data. Is used to calculate the traffic index defined by the formula in which the traffic variable of the inflow channel is included in the numerator and the saturated traffic flow rate is included in the denominator, so the traffic index is calculated using normalized data that can be estimated from probe information etc. it can. Therefore, by calculating the signal control parameters using the traffic index based on the normalized data, remote control can be performed even at an intersection where a vehicle sensor is not installed.
  • the first calculation unit calculates the normalized data using a delay time due to a signal waiting obtained from probe information of the vehicle.
  • the first calculator calculates the normalized data using the delay time, the cycle length of the target intersection, and the red time.
  • the first calculation unit calculates the average travel time of the probe vehicle. Using the delay time per vehicle due to signal waiting obtained from the above, the cycle length and the red time of the single intersection, the normalized traffic volume in which the traffic volume of the inflow channel is expressed as a ratio to the saturated traffic flow rate. Preferably, it is calculated. In this way, the normalized traffic volume can be calculated using the probe information and the signal information as the original data.
  • the first calculation unit waits for a signal obtained from an average travel time of the probe vehicle. Using a delay time per vehicle, a cycle length and a red time of the single intersection, a normalized queue in which the normalized traffic volume and the number of queues in the inflow path are expressed as a ratio to a saturated traffic flow rate. It is preferable to calculate the number. In this way, the normalized traffic volume and the number of normalized queues can be calculated using the probe information and the signal information as the original data.
  • the first calculation unit when the target intersection is a system intersection, the first calculation unit further uses a traffic flow simulation result of a system section executed by a traffic simulator, It is preferable that the normalized traffic volume is calculated for each intersection included in the system section. In this way, it is possible to accurately calculate the normalized traffic volume even at a system intersection where it is difficult to model the vehicle behavior on the inflow road.
  • the first calculation unit determines a threshold value obtained from the simulation result with respect to the delay time; It is preferable to calculate a normalized number of queues in which the normalized traffic volume and the number of queues in the inflow path are expressed as a ratio to a saturated traffic flow rate using the cycle length and the red time of the target intersection. In this manner, the normalized traffic volume and the number of normalized queues can be calculated using the simulation result and the signal information as the original data.
  • the traffic variable of the inflow channel is the inflow traffic volume and the number of queues of the inflow channel, or the inflow traffic volume of the inflow channel.
  • load factor which is a kind of traffic index required for calculating the signal control parameters
  • the definition formula of “present saturation”, which is another traffic index necessary for calculating the signal control parameter includes the inflow traffic volume in the numerator and the saturation traffic flow rate in the denominator.
  • the traffic signal control system includes a remote control for operating the traffic signal controller at the target intersection based on the above-described calculation device of (1) to (8) and the signal control parameter obtained from the traffic index.
  • a central device for performing control According to the traffic signal control system of the present embodiment, the central device operates the traffic signal controller at the target intersection based on the signal control parameter obtained from the traffic index calculated by the calculation device. Even so, the traffic signal controller can be remotely controlled.
  • the calculation method according to the present embodiment is a determination method executed by the above-described calculation devices (1) to (8). Therefore, the calculation method of the present embodiment has the same operation and effects as those of the calculation devices (1) to (8) described above.
  • the computer program of the present embodiment is a computer program for causing a computer to function as the calculation device of (1) to (8) described above. Therefore, the computer program according to the present embodiment has the same functions and effects as those of the calculation devices (1) to (8) described above.
  • Vehicle Refers to all vehicles traveling on the road. Therefore, in addition to automobiles, light vehicles and trolley buses, motorcycles also correspond to vehicles.
  • vehicle includes both a probe vehicle having an in-vehicle device capable of transmitting probe information and a normal vehicle having no in-vehicle device.
  • Probe information Various types of information about a vehicle that is sensed by a probe vehicle traveling on a road.
  • the probe information is also called probe data or floating car data.
  • the probe information can include various types of vehicle data such as identification information of the probe vehicle, vehicle position, vehicle speed, vehicle direction, and the time of occurrence thereof.
  • vehicle data such as identification information of the probe vehicle, vehicle position, vehicle speed, vehicle direction, and the time of occurrence thereof.
  • information such as a position and an acceleration acquired by a smartphone or a tablet in the vehicle may be used.
  • Probe vehicle A vehicle that senses probe information and transmits it to the outside. Vehicles traveling on the road include both probe vehicles and other vehicles. However, even a normal vehicle that does not have an in-vehicle device capable of transmitting probe information, a vehicle having the above-described smartphone, tablet PC, or the like that can transmit probe information such as vehicle position information to the outside is Include in probe vehicle.
  • Signal control parameters The cycle length, split, and offset, which are the temporal elements of signal display, are collectively referred to as signal control parameters or signal control constants.
  • Cycle length refers to the time of one cycle from the blue (or red) start time of a traffic light to the next blue (or red) start time. In Japan, laws and regulations stipulate that the green signal lamp color be called blue.
  • “Split” The ratio of the length of time allocated to each announcement to the cycle length. Generally expressed as a percentage or a percentage. Strictly speaking, it is a value obtained by dividing the effective green time by the cycle length.
  • “Offset” In system control or regional control, a certain point of signal display, for example, a start point of a main road green signal is shifted from a reference point common to the traffic signal group, or a shift of the same display start point between adjacent intersections. Means The former is called an absolute offset, and the latter is called a relative offset, and is expressed as a percentage of time (seconds) or period.
  • Blue time A time zone in which a vehicle has a right of way at an intersection.
  • the end time of the blue time may be set at the earliest time when the blue light is turned off, and at the latest time when the yellow light is turned off. In the case of an intersection with an arrow light, the right turn arrow may be terminated.
  • Red time A time zone in which a vehicle has no right of traffic at an intersection. The start time of the red time may be set at the earliest time when the blue light is turned off, and at the latest time when the yellow light is turned off. In the case of an intersection with an arrow light, the right turn arrow may be terminated.
  • “Queue” A queue of vehicles that are stopped just before an intersection due to a signal waiting at a red light.
  • Link A road section having an up or down direction connecting nodes such as an intersection. When viewed from a certain intersection, a link flowing in the direction toward the intersection is called an inflow link, and when viewed from a certain intersection, a link in a direction flowing out from the intersection is called an outflow link.
  • Traffic time Time required for a vehicle to travel in a section.
  • the travel time includes a stop time and a delay time on the way.
  • Link travel time Travel time when the road section of the travel time calculation unit is “link”, that is, travel time required for a vehicle to travel from the beginning to the end of one link. .
  • Traffic capacity The traffic capacity of a road is determined by a predetermined one-way road or one lane within a certain period of time under road conditions such as road shape, width, gradient, and traffic conditions such as vehicle type configuration and speed limit. The maximum number of vehicles that can pass through the section without difficulty. However, both traffic volumes are taken on a two-lane or three-lane road.
  • Traffic volume The number of vehicles passing within a unit time. Unless otherwise specified, it is expressed by the number of vehicles passing for one hour, but for control and evaluation, a short-time traffic volume such as, for example, seconds, five minutes or fifteen minutes may be used. Generally, the traffic volume increases according to the traffic demand, but decreases when the traffic demand exceeds the traffic capacity.
  • Load factor In a supersaturated state, it is necessary to consider “load traffic volume” as the control target variable, which is obtained by adding the number of remaining queues to the stop line passing traffic volume. The ratio of the load traffic volume per unit time (traffic flow rate) to the saturated traffic flow rate is called a load rate. When the number of unsold vehicles due to supersaturation is small, the load factor is equivalent to the demand factor. “Traffic demand”: The traffic volume or traffic flow rate arriving at the stop line of the inflow road within a certain period of time for each intersection or inflow road, or for each traffic direction.
  • Traffic flow rate A value obtained by converting the number of vehicles passing through a certain section of a lane or a road at a certain time (usually less than one hour) per unit time (usually one hour) is referred to as a traffic flow rate. For example, if the traffic volume for 15 minutes is 90 vehicles, the traffic flow rate for 15 minutes is 360 (vehicles / hour) or 6 (vehicles / minute). The traffic flow rate is the reciprocal of the average headway time of vehicles that have passed during a certain period of interest.
  • Supersaturated / unsaturated / near-saturated If the signal queue remains unfinished at the end of the blue display, the traffic demand exceeds the traffic capacity. This state is called “supersaturated state”. Conversely, a state where the traffic demand is equal to or less than the traffic capacity and the signal queue is canceled at the end of the blue display is referred to as an “unsaturated state”. A state that is not supersaturated but has a high demand rate (for example, a state of 0.85 or more) is called near saturation. Note that the demand rate is less than 1.
  • “Saturated traffic flow rate” The maximum number of vehicles that can pass through a stop line per unit time (for example, one second) and one lane at the inflow of an intersection when traffic demand is sufficient. That. The value of the saturated traffic flow rate differs when the traffic flow line is different, such as when there is a right turn dedicated lane or a left turn dedicated lane in addition to the straight lane. The value of the saturated traffic flow rate also differs depending on the road or traffic conditions such as the lane width and the mixing ratio of large vehicles.
  • Point control When traffic signal control is classified based on the number of intersections and the spatial configuration, it can be classified into three types: point control, system control, and surface control. Among them, the point control is a method of controlling a signalized intersection independently.
  • System control A method of controlling a series of adjacent intersections in conjunction with each other. The feature of this method is that a common cycle length (common cycle length of the system) and an offset are determined for a plurality of signals to be system controlled.
  • Surface control A method for controlling a large number of traffic lights installed on a road network that spreads in a plane. Route system control is expanded in area.
  • Periodic control When the traffic signal control is classified according to the method of setting the signal control parameters, it can be classified into three types: fixed period control, traffic sensitive control, and traffic adaptive control.
  • the fixed period control is a method in which signal control parameters are set in advance according to a time zone.
  • One of a combination of signal control parameters (referred to as a program) set in advance according to a time zone or a day of the week (weekdays, Saturdays, Sundays, and holidays) is selected and executed.
  • Traffic-sensitive control A method executed for each signal controller in traffic signal control using a vehicle detector. Also called terminal sensitive control. In the traffic-sensitive control, the start and end of the blue display are determined in response to a short-term change in traffic demand, and as a result, the green time length and the cycle length are changed.
  • Traffic adaptation control the central device of the traffic control center changes the signal control parameters for the traffic signal controller at an important intersection or the traffic signal controllers at a plurality of intersections that are system-controlled or plane-controlled. This is a control method. Since the central device remotely controls one or a plurality of traffic signal controllers, it is also referred to as “remote control” in this embodiment. Since the traffic adaptation control can perform advanced system control corresponding to the fluctuation of the traffic flow, the traffic adaptation control is applied to a road where the traffic volume and its time fluctuation are large and high traffic processing efficiency is required.
  • Traffic adaptation control is classified into two types, “program selection control” and “program formation control”.
  • the program selection control is a method of selecting, from a plurality of combinations (programs) prepared in advance, a combination suitable for the current traffic situation from information of a vehicle sensor or the like.
  • the program forming control is a method in which a combination of a finite number of signal control parameters is not prepared, and a signal control parameter or a signal light color switching timing is immediately determined based on information of a vehicle sensor or the like.
  • MONETO Management by Origin-Destination Related Adaptation for Traffic Optimization: This is the name of program formation control in UTMS (Universal Traffic Management System) in Japan.
  • SCOOT Split Cycle Offset Optimization Technique
  • SCATS Sand Coordinated Adaptive Traffic System: A program selection control method developed in Australia. It is used at about 42,000 intersections in more than 1,800 cities in roughly 40 countries. SCATS finds the best signal control parameters (cycle length, split and offset) for current traffic by selecting an automatic plan from a library in response to data obtained from a loop detector or the like installed on the road. System.
  • FIG. 1 is an overall configuration diagram of a traffic signal control system 1 according to the present embodiment.
  • FIG. 2 is a block diagram of the information processing device 2, the vehicle-mounted device 4 of the probe vehicle 3, and the central device 5 included in the traffic signal control system 1.
  • the traffic signal control system 1 includes an information processing device 2 installed in a data center or the like, an in-vehicle device 4 installed in a probe vehicle 3, and a central device 5 installed in a traffic control center. And a traffic signal controller 6 installed at each intersection.
  • the information processing device 2 collects probe information including a vehicle position and a passing time from the probe vehicle 3, acquires signal information of an intersection from the central device 5, And a traffic index such as a load factor necessary for generating a signal control parameter of an intersection using the traffic information and the signal information.
  • the information processing device 2 of the present embodiment functions as a “traffic index calculation device” required for generating the signal control parameters.
  • the operation entity of the information processing device 2 is not particularly limited.
  • the operating entity of the information processing device 2 may be a manufacturer of the vehicle 3 or an IT company that performs various information providing businesses, or a public company that is in charge of traffic control that operates the central device 5.
  • the operation format of the server of the information processing device 2 may be either an on-premises server or a cloud server.
  • the in-vehicle device 4 of the probe vehicle 3 is capable of wireless communication with wireless base stations 7 (for example, mobile base stations) in various places.
  • the wireless base station 7 can communicate with the information processing device 2 via a public communication network 8 such as the Internet. Therefore, the vehicle-mounted device 4 can wirelessly transmit the uplink information S1 addressed to the information processing device 2 to the wireless base station 7. Further, the information processing device 2 can transmit the downlink information S2 addressed to the specific in-vehicle device 4 to the public communication network 8.
  • the information processing apparatus 2 includes a server computer 10 composed of a workstation, and various databases 21 to 24 connected to the server computer 10.
  • the server computer 10 includes a processing unit 11, a storage unit 12, and a communication unit 13.
  • the storage unit 12 includes a storage including at least one nonvolatile memory (recording medium) of a hard disk drive (HDD) and a solid state drive (SSD), and a volatile memory (recording medium) such as a random access memory. Device.
  • the non-volatile memory may be removable.
  • the processing unit 11 includes an arithmetic processing device including a CPU (Central Processing Unit) that reads a computer program 14 stored in a non-volatile memory of the storage unit 12 and performs information processing according to the program 14.
  • the computer program 14 of the information processing device 2 causes the CPU of the processing unit 11 to execute predetermined traffic index calculation processing such as calculation of a delay time due to a signal waiting of the probe vehicle 3 and calculation of a load factor based on the delay time. Includes programs.
  • the communication unit 13 includes a communication interface that communicates with the central device 5 and the wireless base station 7 via the public communication network 8.
  • the communication unit 13 is capable of receiving the uplink information S1 transmitted by the wireless base station 7 to the own device, and capable of transmitting the downlink information S2 generated by the own device to the wireless base station 7.
  • the uplink information S1 includes probe information of the transmission source of the vehicle-mounted device 4.
  • the downlink information S2 includes the link travel time calculated by the processing unit 11, and the like.
  • the communication unit 13 can receive the signal information of the intersection included in the traffic control area, transmitted by the central device 5 to the own device.
  • the signal information of the intersection includes at least the cycle length and the red time length of the intersection.
  • the communication unit 13 may be connected to the central device 5 of the traffic control center via the dedicated communication line 9 instead of the public communication network 8.
  • Each of the databases 21 to 24 is composed of a large-capacity storage including an HDD or an SSD. These databases 21 to 24 are connected to the server computer 10 so that data can be transferred.
  • the databases 21 to 24 include a map database 21, a probe database 22, a member database 23, and a signal information database 24.
  • the map database 21 records road map data 25 covering the entire country.
  • the road map data 25 includes “intersection data” and “link data”.
  • Intersection data is data in which an intersection ID assigned to an intersection in Japan is associated with the position information of the intersection.
  • the “link data” is data in which the following information 1) to 4) are associated with the link ID of a specific link assigned to a domestic road.
  • the road map data 25 forms a network corresponding to the actual road alignment and the traveling direction of the road. Therefore, the road map data 25 is a network in which road sections between nodes representing intersections are connected by a directional link 1 (lowercase ell). Specifically, the road map data 25 includes a directed graph in which a node n is set for each intersection and each node n is connected by a pair of directional links l in opposite directions. Therefore, in the case of a one-way road, the node n is connected only to the directional link 1 in one direction.
  • the road map data 25 includes road type information indicating whether a specific directional link l corresponding to each road on the map is a general road or a toll road, and a tollgate included in the directional link l Or, facility information indicating the type of facility such as a parking area is also included.
  • Probe information received from the probe vehicle 3 registered in the information processing device 2 in advance is stored in the probe database 22 for each identification information of the vehicle 3.
  • the stored probe information includes at least the vehicle position and the passing time.
  • the probe information may include vehicle data such as vehicle speed, vehicle direction, and vehicle status information (stop / run event).
  • the sensing cycle of the probe information is a granularity capable of accurately specifying the traveling history of the probe vehicle 3, and is, for example, 0.5 to 1.0 second.
  • the member database 23 stores personal information such as the address and name of the owner (registered member) of the probe vehicle 3, a vehicle identification number (VIN), and identification information of the vehicle-mounted device 4 (for example, a MAC address, a mail address, and a telephone number). Etc.) are recorded.
  • VIN vehicle identification number
  • identification information of the vehicle-mounted device 4 for example, a MAC address, a mail address, and a telephone number.
  • the traffic signal controllers 6 installed at each intersection in the traffic control area include the following two types of traffic signal controllers, a first controller 6A and a second controller 6B.
  • First controller 6A Traffic signal controller that performs point control (fixed-period control, etc.) that is not the object of remote control (system control, surface control, etc.) by central device 5, but determines signal light color independently.
  • 6B Traffic signal controller that is the target of remote control (system control, surface control, etc.) by central device 5
  • the central device 5 transmits the signal information of the first controller 6A to the information processing device 2 only when the operation is changed.
  • the processing unit 11 updates the signal information of the first controller 6A included in the signal information database 24 to the received signal information.
  • the central device 5 transmits the signal information of the second controller 6B to the information processing device 2 at a predetermined control cycle (for example, 1.0 to 2.5 minutes).
  • the processing unit 11 updates the signal information of the second controller 6B included in the signal information database 24 to the received signal information.
  • the in-vehicle device 4 includes a computer device including a processing unit 31, a storage unit 32, a communication unit 33, and the like.
  • the processing unit 31 includes an arithmetic processing device including a CPU that reads a computer program 34 stored in a nonvolatile memory of the storage unit 32 and performs various types of information processing according to the program 34.
  • the storage unit 32 is a storage device including at least one nonvolatile memory (recording medium) of the HDD and the SSD, and a volatile memory (recording medium) such as a random access memory.
  • the computer program 34 of the in-vehicle device 4 includes a program that causes the CPU of the processing unit 31 to execute sensing and generation of probe information, route search processing of the probe vehicle 3, image processing for displaying a search result on a display of the navigation device, and the like. And so on.
  • the communication unit 33 includes a wireless communication device that is permanently mounted on the probe vehicle 3 or a data communication terminal (for example, a smartphone, a tablet computer, or a node personal computer) that is temporarily mounted on the probe vehicle 3. .
  • the communication unit 33 has, for example, a GPS (Global Positioning System) receiver.
  • the processing unit 31 monitors the current position of the own vehicle almost in real time based on the GPS position information received by the communication unit 33. Positioning preferably utilizes a global navigation satellite system such as GPS, but other methods are also possible.
  • the processing unit 31 measures the vehicle data such as the vehicle position, the vehicle speed, the vehicle direction, and the CAN information of the own vehicle every predetermined sensing cycle (for example, 0.5 to 1.0 second), and stores the measured data together with the measurement time. Record at 12.
  • vehicle data is stored in the storage unit 12 for a predetermined recording time (for example, 5 minutes)
  • the communication unit 33 generates probe information including the stored vehicle data and the identification information of the own vehicle, and generates the probe information.
  • the probe information is transmitted uplink to the information processing device 2.
  • the in-vehicle device 4 includes an input interface (not shown) for receiving a driver's operation input.
  • the input interface includes, for example, an input device attached to the navigation device or an input device of a data communication terminal mounted on the probe vehicle 3.
  • the central device 5 includes a server computer that controls the traffic signal controllers 6 at a plurality of intersections included in the traffic control area.
  • the central device 5 includes a processing unit 51, a storage unit 52, a communication unit 53, and the like.
  • the traffic signal controller 6 in the traffic control area includes a first controller 6A of a point control system that operates independently (stand-alone) and a second control that is controlled by a remote control (traffic adaptation control) by the central device 5. 6B.
  • the processing unit 51 includes an arithmetic processing device including a CPU that reads a computer program 54 stored in a non-volatile memory of the storage unit 52 and performs various types of information processing according to the program 54.
  • the storage unit 52 is a storage device including at least one nonvolatile memory (recording medium) of the HDD and the SSD, and a volatile memory (recording medium) such as a random access memory.
  • the computer program 54 of the central device 5 includes a program for performing remote control (traffic adaptation control) of at least one of MODERATO, SCOOT, and SCATS.
  • the processing unit 51 When generating the signal control parameter by the remote control, the processing unit 51 generates a signal control command to be executed by the second controller 6B to be controlled by the remote control.
  • the signal control command is information on the lamp color switching timing of the signal lamp corresponding to the newly generated signal control parameter, and is generated every remote control control cycle (for example, 1.0 to 2.5 minutes).
  • the communication unit 53 includes a communication interface that communicates with the information processing device 2 via the public communication network 8 and communicates with the second controller 6B via the dedicated communication line 9.
  • the communication unit 53 may be connected to the information processing device 2 via the dedicated communication line 9.
  • the communication unit 53 transmits the signal control command generated by the processing unit 51 for each control cycle of the signal control parameter to the second controller 6B to be remotely controlled.
  • the communication unit 53 transmits to the information processing device 2 signal information including the cycle length and the red time length that are being operated by the first and second controllers 6A and 6B.
  • the signal information of the second controller 6B is transmitted to the information processing device 2 at every control cycle of remote control (for example, 1.0 to 2.5 minutes).
  • FIG. 3 is a flowchart showing an outline of conventional remote control (traffic adaptation control).
  • the conventional remote control includes "measurement of traffic flow” (step S1), “calculation of traffic index” (step S2), “calculation of signal control parameter” (step S3), and " Reflection of signal control parameter "(step S4).
  • the processing unit 51 of the central device 5 repeatedly executes each processing of steps S1 to S4 at a predetermined control cycle (for example, 1.0 to 2.5 minutes).
  • the measurement of the traffic flow (Step S1) is a process of measuring the traffic flow for each inflow channel at the target intersection.
  • Conventional traffic flow measurement is a process of calculating actual measurement data based on a sensing signal (such as a pulse signal) of a vehicle sensor.
  • the measured data includes measured values of the traffic volume Vin, the number of queues Qin, and the saturated traffic flow rate Sf. Note that Sf may be a set value based on the road structure.
  • the calculation of the traffic index is a process of calculating a traffic index for each inflow channel necessary for calculating the signal control parameters using the measurement result of Step S1.
  • the traffic index used in MODERATO is the load factor Lr.
  • the load factor Lr is a ratio of the traffic demand to the maximum traffic volume that can be processed in one cycle.
  • the traffic index used in SCOOT and SCATS is the present saturation Ds.
  • the present saturation Ds is the ratio of the arriving traffic to the maximum traffic that can be processed during the green hour.
  • the calculation formula of the load factor Lr is as the following formula (1).
  • the equation for calculating the present saturation Ds is as the following equation (2).
  • Lr (Vin + k ⁇ Qin) / Sf (1)
  • Ds Vin ⁇ C / (Sf ⁇ G) (2)
  • Vin inflow traffic volume to the intersection (vehicles / second)
  • k weighting factor (for example, 1.0 is used)
  • Qin Traffic volume conversion value of the number of queues (vehicles / second)
  • Sf Saturated traffic flow rate (vehicles / second)
  • G Effective blue time (second)
  • C cycle length (second)
  • the calculation formula of the load factor Lr includes the inflow traffic volume Vin and the number of queues Qin as the traffic variables of the inflow channel.
  • the calculation formula of the present saturation Ds includes the inflow traffic volume Vin as the traffic variable of the inflow channel.
  • the processing unit 51 of the central device 5 substitutes the measured values of Vin, Qin, and Sf obtained in step S1 into the equation (1) or (2), and calculates at least one of the load factor Lr and the present saturation Ds. Calculate two traffic indicators.
  • the calculation of the signal control parameter is a process of calculating a signal control parameter such as a split and a cycle length of an intersection to be controlled using the traffic index calculated in step S2.
  • a signal control parameter such as a split and a cycle length of an intersection to be controlled using the traffic index calculated in step S2.
  • the central device 5 adopts MODERERATO and calculates the split and the cycle length of the crossroads intersection including only two indications.
  • the load factor of each inflow channel j of the present indication i is “Lij”
  • the traffic volume in the inflow channel j is “Vij”
  • the number of queues in the inflow channel j is “Qij”
  • the saturated traffic flow rate in the inflow channel j is “Sij”.
  • the processing unit 51 of the central device 5 calculates the load factor Lri of the present indication i by the following equation (4), and calculates the load factor Lrt of the entire intersection by the following equation (5).
  • “maxj” means the maximum value of the j load factors Lij included in the current indication i.
  • Lri maxj (Lij) (4)
  • Lrt Lr1 + Lr2 (5)
  • the processing unit 51 of the central device 5 calculates the split ⁇ i and the cycle length C of the present indication i by the following equations (6) and (7).
  • K represents a loss time
  • a1 to a3 are coefficients.
  • ⁇ i Lri / Lrt (6)
  • C (a1 ⁇ K + a2) / (1-a3 ⁇ Lrt) (7)
  • the reflection of the signal control parameters is processing for causing the second controller 6B of the target intersection to execute the signal control parameters calculated in Step S3.
  • the processing unit 51 of the central device 5 calculates a signal control command including the lamp color switching timing from the new signal control parameter, and transmits the calculated signal control command to the second controller 6B.
  • the signal control parameter may be transmitted to the second controller 6B as it is.
  • the conventional remote control As described above, in the conventional remote control, the measured values of Vin, Qin, and Sf obtained from the detection signals of the vehicle detectors are substituted into the definition formulas (formula (1) or (2)) of the traffic indexes Lr and Ds. Thereby, the traffic indexes Lr and Ds are calculated. Therefore, the conventional remote control has a problem that the control target is limited to the traffic signal controller 6 at the intersection where the vehicle detector is installed. Further, as long as the load factor of MODRERATO and the current saturation of SCOOT and SCATS are used, there is a stereotype that remote control requires a vehicle sensor.
  • Sf is canceled by the numerator / denominator on the right side.
  • a generic term of “normalized traffic volume” and “normalized queue number” is referred to as “normalized data”.
  • the saturated traffic flow rate Sf here can take an arbitrary value.
  • the inventor of the present application can determine the above ⁇ and ⁇ by using the probe information and the calculation result of the traffic simulator. Contrary to the fixed viewpoint, the load factor Lr and the present saturation level can be obtained without the vehicle detector. It has been found that a signal control parameter can be calculated from Ds.
  • the traffic index used for calculating the signal control parameters is calculated using the normalized data obtained from the probe information or the like, remote control can be performed even when the vehicle detector is not installed.
  • an outline of the remote control according to the present embodiment will be described with reference to FIG.
  • FIG. 4 is a flowchart showing an outline of the remote control (traffic adaptation control) of the present embodiment.
  • the remote control according to the present embodiment includes “measurement of traffic flow” (step S11), “calculation of traffic index” (step S12), “calculation of signal control parameter” (step S13), And “Reflection of signal control parameters” (step S14).
  • the processing unit 11 of the information processing device 2 repeatedly executes the processing of steps S11 to S12 at a predetermined control cycle (for example, 1.0 to 2.5 minutes).
  • the processing unit 51 of the central device 5 repeatedly executes the processing of steps S13 to S14 at the same control cycle (for example, 1.0 to 2.5 minutes).
  • ⁇ ⁇ Traffic flow measurement is a process of measuring the traffic flow for each inflow channel at the target intersection.
  • the traffic flow measurement according to the present embodiment is a process of calculating normalized data using probe information and a simulation result of the traffic simulator 15 (see FIG. 8) as original data.
  • the calculation of the traffic index is a process of calculating a traffic index for each inflow path necessary for calculating the signal control parameter using the measurement result of step S11.
  • the calculation formula of the load factor Lr is as the above-mentioned formula (1).
  • the calculation formula of the present saturation Ds is as the above-mentioned formula (2).
  • Sf is canceled by the numerator / denominator on the right side, so that even if the values of Vin, Qin and Sf themselves are unknown, the load factor Lr and The present saturation Ds can be calculated.
  • the processing unit 11 of the information processing device 2 transmits the calculation result of the load factor Lr or the present saturation Ds obtained in step S13 to the central device 5.
  • the processing unit 51 of the central device 5 executes the calculation processing of steps S13 and S14 using the received calculation result.
  • the calculation of the signal control parameter is a process of calculating a signal control parameter such as a split and a cycle length of a control target using the traffic index received from the information processing device 2.
  • the processing content of step 13 is the same as that of step S3 in FIG.
  • the reflection of the signal control parameters is processing for causing the second controller 6B of the target intersection to execute the signal control parameters calculated in step S13.
  • the processing content of step 14 is the same as that of step S4 in FIG.
  • FIG. 5 is an explanatory diagram showing an example of a method of calculating normalized data when the target intersection for remote control is a single intersection.
  • the meanings of the variables and the like included in FIG. 5 are as follows.
  • the “single intersection” is an intersection to be remotely controlled and is an intersection that is independently controlled independently of other intersections.
  • the normalized traffic volume Vin is calculated by the following equation (10) or (11) according to the saturation state (unsaturated / supersaturated) of the intersection. And a normalized queue Qin.
  • Equations (10) and (11) “R” is a red time (second).
  • the lower graph in FIG. 5 is a graph representing a traveling locus when a plurality of vehicles pass through a link between the intersections J1 and J2.
  • the horizontal axis of the graph is the distance from the intersection J1
  • the vertical axis of the graph is the travel time.
  • the delay time dav per vehicle due to signal waiting is the total delay time (area of a triangle) of all vehicles passing through the intersection J2 after signal waiting. Divided by the number of vehicles. It can be considered that the average travel time Tt of the plurality of probe vehicles 3 includes the above-described delay time dav per vehicle.
  • the processing unit 11 of the information processing device 2 extracts a plurality of pieces of probe information that have passed through the link between the intersections J1 and J2 in the current control cycle from the position and time of the probe information included in the probe database 22. Then, the processing unit 11 calculates the average travel time Tt of the probe vehicle 3 based on the extracted positions and times of the plurality of pieces of probe information, and substitutes the calculated Tt into Expression (12) to obtain the delay time dav. .
  • probe information for example, probe information with a parking flag
  • the average travel time Tt is excluded from calculation.
  • probe information for example, probe information including parking time
  • FIG. 6 is an explanatory diagram showing a traffic condition at the intersection J2 at the time of non-saturation and a relational expression necessary for deriving the traffic volume Vin normalized by Sf.
  • D is the total delay time (sec) in one cycle
  • Gc is the time (sec) with the blue start time as the origin, and the last vehicle moves along the stop line of the intersection J2. Indicates the passing time.
  • FIG. 7 is an explanatory diagram illustrating an example of the traffic situation at the intersection J2 at the time of supersaturation.
  • a model representing a supersaturated state that includes a vehicle that has waited twice or more at a signal
  • a simple model of only running and stopping is assumed. In this case, the stop time per signal becomes equal to the red time R in the second and subsequent signal wait stops.
  • Pattern 1 in FIG. 7 shows a traffic situation when the queue is cleared in this cycle (0 cycle wait), that is, when the intersection J2 is just saturated.
  • Pattern 2 in FIG. 7 shows the traffic situation when the queue is cleared in the next cycle (waiting for one cycle), and Pattern 3 in FIG. 7 is when the queue is cleared in the next cycle (waiting for two cycles). Shows the traffic situation of.
  • FIG. 8 is an explanatory diagram showing an example of a method of calculating normalized data when the target intersection for remote control is a system intersection.
  • the meanings of the variables and the like included in FIG. 8 are as follows.
  • dav delay time (seconds) per vehicle due to signal waiting. However, dav in the case of a system intersection is a total value of delay times occurring at the intersections J1 to J4 included in the system section. dsat: a threshold for determining the saturation / unsaturation of the intersection of the system section.
  • Ri red time of intersection i Li: link length (m) between intersection i and intersection i + 1 Offi: Offset of Ri and Ri + 1 (seconds)
  • Ve assumed speed (for example, regulated speed) (km / h)
  • the computer program 14 of the information processing device 2 also includes a program that causes the processing unit 11 to function as the traffic simulator 15 described above.
  • the traffic simulator 15 generates virtual vehicles of different numbers of vehicles on the inflow path at the first intersection J1 of the system section, and calculates the delay time dav for each of the generated numbers.
  • the traffic simulator 15 generates a correspondence table 16 summarizing the calculation results, and causes the storage unit 12 to temporarily store the generated table 16.
  • the processing unit 11 of the information processing device 2 calculates an average delay time Tr of the plurality of probe vehicles 3 that have actually traveled in the system section (J1 to J4).
  • the determination threshold dsat for determining the saturation state (non-saturation / saturation) of the system section is Tr when the saturation state is assumed (0.4 Sf in the table).
  • FIG. 9 is a flowchart illustrating an example of a process of calculating normalized data, which is performed by the processing unit 11 of the information processing device 2.
  • the processing unit 11 of the information processing device 2 executes the processing of FIG. 9 for each inflow path included in the target intersection. As illustrated in FIG. 9, the processing unit 11 of the information processing device 2 first obtains the delay time dav per vehicle, the cycle length C of the target intersection, and the red time R (step ST1).
  • the processing unit 11 calculates the delay time dav using Expression (12), and receives the cycle length C and the red time R of the target intersection at the current time from the central device 5. Next, the processing unit 11 determines whether or not the target intersection is a system intersection (step ST2). If the determination result in step ST2 is negative (in the case of a single intersection), the processing unit 11 determines whether dav ⁇ R / 2 (step ST3).
  • step ST3 If the determination result in step ST3 is affirmative (in the case of non-saturation), the processing unit 11 calculates the traffic volume Vin normalized by Sf using the above-described equation (10) (step ST4). When the determination result of step ST3 is negative (in the case of supersaturation), the processing unit 11 calculates the traffic volume Vin normalized by Sf and the number of queues Qin normalized by Sf according to the above-described equation (11). It is calculated (step ST5).
  • step 2 If the determination result in step 2 is affirmative (in the case of a system intersection), the processing unit 11 acquires Ri, Li, Ofi, and Ve of a plurality of intersections Ji included in the system section (step ST6). Specifically, the processing unit 11 receives Ri, Li, and Ofi of the current intersection Ji from the central device 5 and reads the set value of Ve from the storage unit 12.
  • each parameter regarding the intersection Ji of the system section is as follows.
  • Ri Red time at upstream intersection i (seconds)
  • Li Link length between each intersection (m) Offi: Offset (seconds or%) representing the difference in blue start time between intersections
  • Ve running speed of the vehicle (regulated or designed value) (km / h)
  • dsat Judgment threshold (s) for saturation / unsaturation of system intersection group
  • the processing unit 11 activates the traffic simulator 15 using the obtained Ri, Li, Ofi, and Ve as input data, and calculates the traffic volume Vin normalized by Sf, the delay time dav, and the determination threshold dsat (step ST7). ). Next, the processing unit 11 determines whether dav ⁇ dsat using the determination threshold dsat calculated by the traffic simulator 15 (step ST8).
  • step 8 If the determination result of step 8 is affirmative (unsaturated), the processing unit 11 normalizes with Sf based on the correspondence table 16 (see FIG. 8) in which the calculation results of the traffic simulator 15 are summarized.
  • the traffic Vin is determined (step ST9). If the determination result in step 8 is negative (in the case of supersaturation), the processing unit 11 calculates the traffic volume Vin and the number of queues Qin normalized by Sf by the above-described equation (16) (step ST10). ).
  • the processing unit 11 of the information processing device 2 calculates the traffic volume Vin and the number of queues Qin normalized by Sf, and uses the calculation results to use the traffic for remote control (traffic adaptation control). Since the index (the load factor Lr or the present saturation Ds) is calculated, the traffic index used for remote control can be calculated without the actual measurement of the traffic volume Vin and the number of queues Qin.
  • the sensing signal of the vehicle sensor for actually measuring the traffic volume Vin and the number of queues Qin becomes unnecessary, and the remote control can be performed even at the intersection where the vehicle sensor is not installed.
  • the traffic volume Vin and the number of queues Qin are adopted as the normalized data representing the ratio to Sf.
  • the traffic demand Dm (vehicles / second) is adopted as the Sf normalized data. It may be.
  • FIG. 10 is an explanatory diagram illustrating an example of a method for estimating the normalized traffic demand Dm.
  • the equation for estimating the traffic demand Dm at the time of non-saturation is represented by the following equation (17)
  • the equation for estimating the traffic demand Dm at the time of supersaturation is represented by the following equation (18).
  • Dm ⁇ Qin (t) ⁇ Qin (t ⁇ 1) + (1 ⁇ R / C) ⁇ Sf ⁇ / C (18)
  • Equations (17) and (18) the reason for dividing by the cycle length C is to convert Vin and Qin calculated every cycle to values every second.
  • the effect of improving the traffic demand Dm when the signal control parameter is changed can be predicted by a conventional method.
  • the predictable physical quantity is not the absolute quantity (vehicle / second) of the traffic demand Dm but a relative quantity (ratio) to Sf.
  • FIG. 11 is an explanatory diagram showing an example of a method for determining a saturated state in consideration of an error in the delay time dav and a formula for calculating a traffic amount.
  • the margin e since the margin e is added to dav, signal control parameters such as split are calculated to be relatively large, so that occurrence of traffic jam can be prevented.
  • the split in the direction with a small assumed error (high accuracy) may be cut and disadvantageous, for example, the margin e may be set in a specific direction, such as adopting the maximum value of all the inflow directions. It is preferred that no advantages or disadvantages occur.
  • the information processing device 2 executes the processes up to the measurement of the traffic flow (step S11 in FIG. 4), and the central device 5 performs the processing after the calculation of the traffic index (steps S12 to S14 in FIG. 4). May be performed.
  • the central device 5 When the central device 5 can collect and analyze the probe information, the central device 5 performs all the processes from the measurement of the traffic flow to the reflection of the signal control parameters (steps S11 to S14 in FIG. 4). It may be.
  • dav Tt- ⁇ L / (Ve / 3.6) ⁇ -dex
  • traffic signal control system information processing device (traffic index calculation device) Reference Signs List 3 probe vehicle 4 in-vehicle device 5 central device 6 traffic signal controller 6A first controller 6B second controller 3 probe vehicle 7 wireless base station 8 public communication network 9 communication line 10 server computer 11 processing unit (first calculation unit, (Second calculation unit) 12 storage unit 13 communication unit 14 computer program 15 traffic simulator 16 correspondence table 21 map database 22 probe database 23 member database 24 signal information database 25 road map data 31 processing unit 32 storage unit 33 communication unit 34 computer program 51 processing unit 52 storage unit 53 communication unit 54 computer program

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Abstract

本開示の一態様に係る装置は、信号制御パラメータの算出に必要となる交通指標を算出する装置であって、対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1算出部と、前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2算出部と、を備える。

Description

交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム
 本発明は、交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラムに関する。
 本出願は、2018年10月5日出願の日本出願第2018-190437号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 交通管制センターの中央装置が行う遠隔制御の方式として、MODERATO、SCOOT及びSCATSなどが知られている。
 このうち、日本で採用されているMODERATOは、交差点の流入路ごとの負荷率(=(流入交通量+待ち行列台数)/飽和交通流率)に基づいて、スプリット及びサイクル長などの信号制御パラメータを自動生成するシステムである(特許文献1参照)。
国際公開第2016/147350号
 (1) 本開示の一態様に係る装置は、信号制御パラメータの算出に必要となる交通指標を算出する装置であって、対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1算出部と、前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2算出部と、を備える。
 (9) 本開示の一態様に係る交通信号制御システムは、上記の算出装置と、前記交通指標から求めた前記信号制御パラメータにより、前記対象交差点の交通信号制御機を動作させる遠隔制御を行う中央装置と、を備える。
 (10) 本開示の一態様に係る方法は、信号制御パラメータの算出に必要となる交通指標を算出する方法であって、対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1ステップと、前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2ステップと、を含む。
 (11) 本開示の一態様に係るプログラムは、信号制御パラメータの算出に必要となる交通指標を算出する装置として、コンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータを、対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1算出部、及び、前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2算出部、として機能させる。
交通信号制御システムの全体構成図である。 交通信号制御システムに含まれる情報処理装置、プローブ車両の車載装置及び中央装置のブロック図である。 従来の遠隔制御の概要を示すフローチャートである。 本実施形態の遠隔制御の概要を示すフローチャートである。 遠隔制御の対象交差点が単独交差点である場合の、正規化データの算出方法の一例を示す説明図である。 非飽和時における交差点の交通状況と、Sfで正規化された交通量Vinの導出に必要な関係式を示す説明図である。 過飽和時における交差点の交通状況の一例を示す説明図である。 遠隔制御の対象交差点が系統交差点である場合の、正規化データの算出方法の一例を示す説明図である。 正規化データの算出処理の一例を示すフローチャートである。 正規化された交通需要Dmの推定方法の一例を示す説明図である。 遅れ時間の誤差を考慮した飽和状態の判定方法と、交通量の算出式を示の一例を示す説明図である。
<本開示が解決しようとする課題>
 流入路の交通量及び待ち行列台数は、通常、当該流入路に設置された車両感知器の感知信号から計測される。従って、流入路に車両感知器が設置されていない交差点では、MODERATOなどの遠隔制御が実行されない。
 しかし、日本国内では、全体の2/3の交差点で車両感知器が設置されていないのが現状であり、更に多くの割合で車両感知器が設置されていない国もある。従って、車両感知器が未設置の交差点についても、遠隔制御を実行できることが望まれる。
 本開示は、かかる従来の問題点に鑑み、車両感知器が未設置の交差点についても、遠隔制御を実行できるようにすることを目的とする。
<本開示の効果>
 本開示によれば、車両感知器が未設置の交差点についても、遠隔制御を実行することができる。
<本発明の実施形態の概要> 
 以下、本発明の実施形態の概要を列記して説明する。
 (1) 本実施形態の装置は、信号制御パラメータの算出に必要となる交通指標を算出する装置であって、対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1算出部と、前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2算出部と、を備える。
 本実施形態の算出装置によれば、第1算出部が、対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出し、第2算出部が、正規化データを用いて、流入路の交通変数が分子に含まれ飽和交通流率が分母に含まれる式で定義される交通指標を算出するので、プローブ情報などから推定可能な正規化データによって交通指標を算出できる。
 従って、正規化データに基づく交通指標を用いて信号制御パラメータを算出することにより、車両感知器が未設置の交差点であっても、遠隔制御を実行できるようになる。
 (2) 本実施形態の算出装置において、前記第1算出部は、車両のプローブ情報から求めた信号待ちによる遅れ時間を用いて、前記正規化データを算出することが好ましい。
 (3) また、前記第1算出部は、前記遅れ時間と、前記対象交差点のサイクル長及び赤時間を用いて、前記正規化データを算出することが好ましい。
 このようにすれば、プローブ情報と信号情報を元データとして、正規化データを算出するので、車両感知器の感知信号がなくても、正規化データを算出できるようになる。
 (4) 具体的には、本実施形態の算出装置において、前記対象交差点が単独交差点であり、前記流入路が非飽和である場合には、前記第1算出部は、プローブ車両の平均旅行時間から求めた信号待ちによる車両1台当たりの遅れ時間と、前記単独交差点のサイクル長及び赤時間とを用いて、前記流入路の交通量を飽和交通流率に対する比率で表した正規化交通量を算出することが好ましい。
 このようにすれば、プローブ情報と信号情報を元データとして、正規化交通量を算出することができる。
 (5) 本実施形態の算出装置において、前記対象交差点が単独交差点であり、前記流入路が過飽和である場合には、前記第1算出部は、プローブ車両の平均旅行時間から求めた信号待ちによる車両1台当たりの遅れ時間と、前記単独交差点のサイクル長及び赤時間とを用いて、前記正規化交通量と前記流入路の待ち行列台数を飽和交通流率に対する比率で表した正規化待ち行列台数を算出することが好ましい。
 このようにすれば、プローブ情報と信号情報を元データとして、正規化交通量と正規化待ち行列台数を算出することができる。
 (6) 本実施形態の算出装置において、前記対象交差点が系統交差点である場合には、前記第1算出部は、交通シミュレータに実行させた系統区間の交通流のシミュレート結果をさらに用いて、前記系統区間に含まれる交差点ごとに、前記正規化交通量を算出することが好ましい。
 このようにすれば、流入路における車両挙動のモデル化が困難である系統交差点についても、正規化交通量を正確に算出することができる。
 (7) 本実施形態の算出装置において、前記対象交差点の前記流入路が過飽和である場合には、前記第1算出部は、前記遅れ時間に対して前記シミュレート結果から求めた閾値と、前記対象交差点のサイクル長及び赤時間とを用いて、前記正規化交通量と前記流入路の待ち行列台数を飽和交通流率に対する比率で表した正規化待ち行列台数を算出することが好ましい。
 このようにすれば、シミュレート結果と信号情報を元データとして、正規化交通量と正規化待ち行列台数を算出することができる。
 (8) 本実施形態の算出装置において、前記流入路の交通変数は、当該流入路の流入交通量及び待ち行列台数、或いは、当該流入路の流入交通量であることが好ましい。
 その理由は、信号制御パラメータの算出に必要な交通指標の一種である、「負荷率」の定義式には、分子に流入交通量及び待ち行列台数が含まれ、分母に飽和交通流率が含まれるからである。また、信号制御パラメータの算出に必要な他の交通指標である、「現示飽和度」の定義式には、分子に流入交通量が含まれ、分母に飽和交通流率が含まれるからである。
 (9) 本実施形態の交通信号制御システムは、上述の(1)~(8)の算出装置と、前記交通指標から求めた前記信号制御パラメータにより前記対象交差点の交通信号制御機を動作させる遠隔制御を行う中央装置と、を備える。
 本実施形態の交通信号制御システムによれば、中央装置が、算出装置が算出した交通指標から求めた前記信号制御パラメータにより、対象交差点の交通信号制御機を動作させるので、車両感知器が未設置であっても交通信号制御機を遠隔制御できるようになる。
 (10) 本実施形態の算出方法は、上述の(1)~(8)の算出装置が実行する判定方法である。従って、本実施形態の算出方法は、上述の(1)~(8)の算出装置と同様の作用効果を奏する。
 (11) 本実施形態のコンピュータプログラムは、上述の(1)~(8)の算出装置として、コンピュータを機能させるためのコンピュータプログラムである。従って、本実施形態のコンピュータプログラムは、上述の(1)~(8)の算出装置と同様の作用効果を奏する。
<本発明の実施形態の詳細> 
 以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 〔用語の定義〕
 本実施形態の詳細を説明するに当たり、まず、本明細書で用いる用語の定義を行う。
 「車両」:道路を通行する車両全般のことをいう。従って、自動車、軽車両及びトロリーバスのほか、自動二輪車も車両に該当する。
 本実施形態では、単に「車両」というときは、プローブ情報を送信可能な車載装置を有するプローブ車両と、その車載装置を有しない通常の車両の双方を含む。
 「プローブ情報」:道路を走行中のプローブ車両がセンシングした当該車両に関する各種の情報のことをいう。プローブ情報は、プローブデータ或いはフローティングカーデータとも称される。プローブ情報には、プローブ車両の識別情報、車両位置、車両速度、車両方位及びこれらの発生時刻などの各種の車両データを含めることができる。プローブ情報には、車内のスマートフォンやタブレット等で取得された位置や加速度などの情報を利用するようにしてもよい。
 「プローブ車両」:プローブ情報をセンシングして外部に送信する車両のことをいう。道路を通行する車両には、プローブ車両とこれ以外の車両の双方が含まれる。ただし、プローブ情報を送信可能な車載装置を有していない通常の車両であっても、車両の位置情報等のプローブ情報を外部に送信できる、上述のようなスマートフォン、タブレットPC等を有する車両はプローブ車両に含める。
 「信号制御パラメータ」:信号表示の時間的要素であるサイクル長、スプリット及びオフセットを総称して信号制御パラメータ又は信号制御定数という。
 「サイクル長」:交通信号機の青(又は赤)開始時刻から次の青(又は赤)開始時刻までの1サイクルの時間のことをいう。なお、日本では、緑色の信号灯色を青と呼ぶことが法令で定められている。
 「スプリット」:各現示に割り当てられる時間の長さのサイクル長に対する割合のことをいう。一般に、百分率あるいは割合で表す。厳密には、有効青時間をサイクル長で割った値である。
 「オフセット」:系統制御又は地域制御において、信号表示のある時点、例えば、主道路青信号の開始時点の当該信号機群に共通な基準時点からのずれ、或いは、隣接交差点間の同一表示開始点のずれのことをいう。前者を絶対オフセット、後者を相対オフセットといい、時間(秒)又は周期の百分率で表す。
 「青時間」:交差点において車両に通行権がある時間帯のことをいう。青時間の終了時点は、最も早い場合で青灯器の消灯時点、最も遅い場合で黄灯器の消灯時点に設定すればよい。矢印灯器のある交差点の場合は、右折矢印の終了時点であってもよい。
 「赤時間」:交差点において車両に通行権がない時間帯のことをいう。赤時間の開始時点は、最も早い場合で青灯器の消灯時点、最も遅い場合で黄灯器の消灯時点に設定すればよい。矢印灯器のある交差点の場合は、右折矢印の終了時点であってもよい。
 上記の通り、本実施形態では、1サイクルに含まれる時間帯を、通行権ありの青時間と通行権なしの赤時間とに大別する。従って、青時間をG、赤時間をR、サイクル長をCとすると、C=G+Rの関係がある。
 このため、Rが含まれる算出式(例えば、後述の式(10)及び式(11)など)については、Rの代わりに(C-G)を用いてもよい。すなわち、本実施形態の赤時間Rは、サイクル長Cと青時間Gから間接的に算出した値であってもよい。
 「待ち行列」:赤信号による信号待ちなどのために、交差点の手前で停止している車両の行列のことをいう。
 「リンク」:交差点などのノード間を繋ぐ、上り又は下りの方向を有する道路区間のことをいう。ある交差点から見て、当該交差点に向かって流入する方向のリンクのことを流入リンクといい、ある交差点から見て、当該交差点から流出する方向のリンクのことを流出リンクという。
 「旅行時間」:車両がある区間を旅行するのに要した時間のことをいう。旅行時間には、途中の停止時間及び遅れ時間が含まれる。
 「リンク旅行時間」:旅行時間の算出単位の道路区間が「リンク」である場合の旅行時間、すなわち、車両が1つのリンクの始端から終端までを通行するのに必要な旅行時間のことをいう。
 「交通容量」:道路の交通容量は、道路の形状、幅員、勾配等の道路条件及び車種構成、速度制限等の交通条件の下で、一定時間内に一方向の道路、又は1車線の所定区間を無理なく通過できる車両の最大数をいう。ただし、2車線又は3車線の道路では両方の交通量をとる。
 「交通量」:単位時間内の通過台数のことである。特に断らないときは、1時間の通過台数で表すが、制御や評価のためには、例えば秒単位、5分又は15分単位などの短時間の交通量を用いることがある。一般に交通量は、交通需要に応じて増加するが、交通需要が交通容量を超えると逆に減少する。
 「負荷率」:過飽和状態においては、制御対象変量として、停止線通過交通量に捌け残り待ち行列台数を加えた「負荷交通量」を考える必要がある。
 単位時間当たりの負荷交通量(交通流率)の飽和交通流率に対する比率を、負荷率という。過飽和状態による捌け残り台数が少ないときには、負荷率は需要率と等価である。
 「交通需要」:ある交差点又は流入路ごと、或いは交通の方路別を対象として、一定時間内に流入路の停止線へ到着する交通量又は交通流率を交通需要という。
 「交通流率」:車線又は車道のある断面をある時間(通常は1時間未満)に通過する台数を単位時間(通常は1時間)当たりに換算した値のことを、交通流率という。
 例えば、15分間の交通量が90台の場合、この15分間の交通流率は360(台/時間)又は6(台/分)となる。交通流率は、対象としたある期間に通過した車両の平均車頭時間の逆数である。
 「過飽和・非飽和・近飽和」:青表示終了時に信号待ち行列の捌け残りが生じる時は、交通需要は交通容量を超過している。この状態を「過飽和状態」という。
 逆に、交通需要が交通容量以下の状態で、青表示終了時には信号待ち行列が解消する状態を「非飽和状態」という。過飽和ではないが、需要率が高い状態(例えば0.85以上の状態)を近飽和という。なお、需要率は1未満である。
 「飽和交通流率」:交通需要が十分に存在する状態で、交差点の流入部において単位時間(例えば1秒)かつ一車線当たりに停止線を通過しうる、最大の車両数を飽和交通流率という。
 直進車線の他に右折専用車線又は左折専用車線がある場合など、交通流の動線が異なると飽和交通流率の値は異なる。飽和交通流率の値は、車線幅員や大型車混入率など道路又は交通条件によっても異なる。
 「地点制御」:交通信号制御を交差点数及び空間的な構成から分類すると、地点制御、系統制御、及び面制御の3つに分類できる。このうち、地点制御は、信号交差点を単独で制御する方式のことである。
 「系統制御」:一連の隣接する交差点を相互に連動させて制御する方式のことをいう。この方式の特徴は,系統制御する複数の信号に対して共通のサイクル長(系統の共通サイクル長)とオフセットを定める点にある。
 「面制御」:面的に広がる道路網に設置された多数の信号機を一括して制御する方式である。路線系統制御を面的に拡大したものである。
 「定周期制御」:交通信号制御を信号制御パラメータの設定方式により分類すると、定周期制御、交通感応制御及び交通順応制御の3つに分類できる。
 このうち、定周期制御は、時間帯に応じて予め信号制御パラメータが設定される方式である。時間帯や曜日(平日、土曜日、日曜日及び祝日)などに応じて予め設定された信号制御パラメータの組み合せ(プログラムと呼ぶ。)の中から1つを選んで実施される。
 「交通感応制御」:車両感知器を用いる交通信号制御のうち、信号制御機ごとに実行される方式である。端末感応制御ともいう。
 交通感応制御では、短時間の交通需要の変化に対応して青表示の開始や終了時点を決定し、その結果、青時間長及びサイクル長を変化させる。
 「交通順応制御」:交通管制センターの中央装置が、重要交差点の交通信号制御機、或いは、系統制御又は面制御される複数の交差点の交通信号制御機を制御対象として、信号制御パラメータを変化させる制御方式である。中央装置が1又は複数の交通信号制御機を遠隔で制御するため、本実施形態では「遠隔制御」ともいう。
 交通順応制御は、交通流の変動に対応した高度な系統制御が可能であるため、交通量やその時間変動が大きく、高い交通処理効率が要求される道路に適用される。
 交通順応制御は、「プログラム選択制御」と「プログラム形成制御」の2種類に分類される。プログラム選択制御は,予め用意された複数の組合せ(プログラム)の中から、車両感知器の情報などから現時点の交通状況に適したものを選択する方式である。
 プログラム形成制御は、有限個の信号制御パラメータの組み合せを用意せず、車両感知器の情報などに基づいて、即時に信号制御パラメータ又は信号灯色の切り替えタイミングを決定する方式である。
 「MODERATO」(Management by Origin-DEstination Related Adaptation for Traffic Optimization):日本のUTMS(Universal Traffic Management System)におけるプログラム形成制御の名称である。
 MORERATOは、交差点の流入路ごとの負荷率(=(流入交通量+待ち行列台数)/飽和交通流率)から信号制御パラメータを自動生成するシステムである。
 「SCOOT」(Split Cycle Offset Optimisation Technique):英国で開発されたプログラム形成制御の方式である。特に欧州の国々で広く採用されている。
 SCOOTは、道路に設置した車両感知器からのデータを使用して、現時点の交通状況にほぼリアルタイムに適応するように、交通信号機の信号灯色を自動的に調整するシステムである。
 「SCATS」(Sydney Coordinated Adaptive Traffic System):オーストラリアで開発されたプログラム選択制御の方式である。概ね40カ国の1800以上の都市の約42,000の交差点に採用されている。
 SCATSは、道路に設置したループ検出器などから得られたデータに応答して、ライブラリから自動計画を選択することにより、現状のトラフィックに最良の信号制御パラメータ(サイクル長、スプリット及びオフセット)を見いだすシステムである。
 〔システムの全体構成〕
 図1は、本実施形態に係る交通信号制御システム1の全体構成図である。
 図2は、交通信号制御システム1に含まれる情報処理装置2、プローブ車両3の車載装置4及び中央装置5のブロック図である。
 図1及び図2に示すように、交通信号制御システム1は、データセンタなどに設置された情報処理装置2、プローブ車両3に搭載された車載装置4、交通管制センターに設置された中央装置5、及び、各交差点に設置された交通信号制御機6などを備える。
 本実施形態の交通信号制御システム1は、情報処理装置2が、車両位置とその通過時刻を含むプローブ情報をプローブ車両3から収集するとともに、交差点の信号情報を中央装置5から取得し、プローブ情報及び信号情報を用いて、交差点の信号制御パラメータを生成するのに必要な負荷率などの交通指標を算出するシステムである。
 このように、本実施形態の情報処理装置2は、信号制御パラメータの生成に必要な「交通指標の算出装置」として機能する。
 情報処理装置2の運用主体は、特に限定されない。例えば、情報処理装置2の運用主体は、車両3の製造メーカ又は各種の情報提供事業を行うIT企業などであってもよいし、中央装置5を運用する交通管制を担う公的な事業者であってもよい。
 情報処理装置2のサーバの運用形式は、オンプレミスサーバ及びクラウドサーバのいずれであってもよい。
 プローブ車両3の車載装置4は、各地の無線基地局7(例えば、携帯基地局)との無線通信が可能である。無線基地局7は、インターネットなどの公衆通信網8を介して情報処理装置2と通信可能である。
 従って、車載装置4は、情報処理装置2宛てのアップリンク情報S1を無線基地局7に無線送信することができる。また、情報処理装置2は、特定の車載装置4宛てのダウンリンク情報S2を公衆通信網8に送信することができる。
 〔情報処理装置の構成〕
 図2に示すように、情報処理装置2は、ワークステーションよりなるサーバコンピュータ10と、サーバコンピュータ10に繋がる各種のデータベース21~24とを備える。サーバコンピュータ10は、処理部11、記憶部12及び通信部13を備える。
 記憶部12は、HDD(Hard Disk Drive)及びSSD(Solid State Drive)のうちの少なくとも1つの不揮発性メモリ(記録媒体)と、ランダムアクセスメモリ等よりなる揮発性メモリ(記録媒体)とを含む記憶装置である。不揮発性メモリは、リムーバブルであってもよい。
 処理部11は、記憶部12の不揮発性メモリに格納されたコンピュータプログラム14を読み出し、当該プログラム14に従って情報処理を行うCPU(Central Processing Unit)を含む演算処理装置よりなる。
 情報処理装置2のコンピュータプログラム14には、プローブ車両3の信号待ちによる遅れ時間の算出、及び遅れ時間に基づく負荷率の算出など、所定の交通指標の算出処理を処理部11のCPUに実行させるプログラムなどが含まれる。
 通信部13は、公衆通信網8を介して中央装置5及び無線基地局7と通信する通信インタフェースよりなる。
 通信部13は、無線基地局7が自装置に送信したアップリンク情報S1を受信可能であり、自装置で生成されたダウンリンク情報S2を無線基地局7に送信可能である。アップリンク情報S1には、車載装置4が送信元のプローブ情報が含まれる。ダウンリンク情報S2には、処理部11が算出したリンク旅行時間などが含まれる。
 通信部13は、中央装置5が自装置に送信した、交通管制エリアに含まれる交差点の信号情報を受信可能である。交差点の信号情報には、少なくとも交差点のサイクル長及び赤時間長が含まれる。
 なお、通信部13は、公衆通信網8ではなく、専用の通信回線9を介して交通管制センターの中央装置5と接続されていてもよい。
 各種のデータベース21~24は、HDD又はSSDなどを含む大容量ストレージよりなる。これらのデータベース21~24は、サーバコンピュータ10にそれぞれデータ転送可能に接続されている。
 データベース21~24には、地図データベース21、プローブデータベース22、会員データベース23、及び信号情報データベース24が含まれる。
 地図データベース21には、国内を網羅する道路地図データ25が記録されている。道路地図データ25には、「交差点データ」と「リンクデータ」が含まれる。
 「交差点データ」は、国内の交差点に付与された交差点IDと、交差点の位置情報とを対応付けたデータである。「リンクデータ」は、国内の道路に対応して付与された特定リンクのリンクIDに対して、次の情報1)~4)を対応付けたデータよりなる。
 情報1)特定リンクの始点・終点・補間点の位置情報
 情報2)特定リンクの始点に接続するリンクID
 情報3)特定リンクの終点に接続するリンクID
 情報4)特定リンクのリンクコスト
 道路地図データ25は、実際の道路線形と道路の走行方向に対応したネットワークを構成する。このため、道路地図データ25は、交差点を表すノード間の道路区間を有向リンクl(小文字のエル)で繋いだネットワークになっている。
 具体的には、道路地図データ25は、交差点ごとにノードnが設定され、各ノードn間が逆向きの一対の有向リンクlで繋がった有向グラフよりなる。従って、一方通行の道路の場合は、一方向の有向リンクlのみノードnが接続される。
 道路地図データ25には、地図上の各道路に対応する特定の有向リンクlが、一般道路であるか有料道路であるかを表す道路種別情報、及び、有向リンクlに含まれる料金所又はパーキングエリアなど施設の種別を表す施設情報なども含まれる。
 プローブデータベース22には、情報処理装置2に予め登録されたプローブ車両3から受信したプローブ情報が、当該車両3の識別情報ごとに蓄積される。
 蓄積されるプローブ情報には、少なくとも車両位置とその通過時刻が含まれる。プローブ情報には、車両速度、車両方位、車両の状態情報(停止/走行イベント)などの車両データが含まれていてもよい。プローブ情報のセンシング周期は、プローブ車両3の走行履歴を正確に特定可能な粒度であり、例えば0.5~1.0秒である。
 会員データベース23には、プローブ車両3の所有者(登録会員)の住所及び氏名などの個人情報、車両識別番号(VIN)、及び車載装置4の識別情報(例えば、MACアドレス、メールアドレス及び電話番号などのうちの少なくとも1つ)が記録される。
 信号情報データベース24には、各交差点の流入路のサイクル長及び赤時間長を含む信号情報が、交差点ID及びリンクIDごとに蓄積される。
 交通管制エリアの各交差点に設置された交通信号制御機6には、次の第1制御機6A及び第2制御機6Bの2種類の交通信号制御機が含まれる。
 第1制御機6A:中央装置5による遠隔制御(系統制御及び面制御など)の対象ではなく、単独で信号灯色を決定する地点制御(定周期制御など)を行う交通信号制御機
 第2制御機6B:中央装置5による遠隔制御(系統制御及び面制御など)の対象である交通信号制御機
 中央装置5は、第1制御機6Aの信号情報については、運用が変更された場合にのみ情報処理装置2に送信する。処理部11は、信号情報データベース24に含まれる第1制御機6Aの信号情報を、受信した信号情報に更新する。
 中央装置5は、第2制御機6Bの信号情報については、所定の制御周期(例えば1.0~2.5分)ごとに情報処理装置2に送信する。処理部11は、信号情報データベース24に含まれる第2制御機6Bの信号情報を、受信した信号情報に更新する。
 〔車載装置の構成〕
 図2に示すように、車載装置4は、処理部31、記憶部32及び通信部33などを備えるコンピュータ装置よりなる。
 処理部31は、記憶部32の不揮発性メモリに格納されたコンピュータプログラム34を読み出し、当該プログラム34に従って各種の情報処理を行うCPUを含む演算処理装置よりなる。
 記憶部32は、HDD及びSSDのうちの少なくとも1つの不揮発性メモリ(記録媒体)と、ランダムアクセスメモリ等よりなる揮発性メモリ(記録媒体)とを含む記憶装置である。
 車載装置4のコンピュータプログラム34には、プローブ情報のセンシング及び生成、プローブ車両3の経路探索処理、ナビゲーション装置のディスプレイに探索結果を表示するための画像処理などを処理部31のCPUに実行させるプログラムなどが含まれる。
 通信部33は、プローブ車両3に恒常的に搭載された無線通信機、或いは、プローブ車両3に一時的に搭載されたデータ通信端末(例えば、スマートフォン、タブレット型コンピュータ又はノード型パソコンなど)よりなる。
 通信部33は、例えばGPS(Global Positioning System )受信機を有する。処理部31は、通信部33が受信するGPSの位置情報に基づいて、自車両の現在位置をほぼリアルタイムにモニタリングしている。測位は、GPSのような全地球航法衛星システムを利用するのが好ましいが、他の方法であってもよい。
 処理部31は、自車両の車両位置、車両速度、車両方位、及びCAN情報などの車両データを所定のセンシング周期(例えば0.5~1.0秒)ごとに計測し、計測時刻とともに記憶部12に記録する。
 記憶部12に所定の記録時間(例えば5分)の分だけ車両データが蓄積されると、通信部33は、蓄積された車両データと自車両の識別情報を含むプローブ情報を生成し、生成したプローブ情報を情報処理装置2宛てにアップリンク送信する。
 車載装置4には、運転者の操作入力を受け付ける入力インタフェース(図示せず)が含まれる。入力インタフェースは、例えばナビゲーション装置に付随する入力機器、或いは、プローブ車両3に搭載されたデータ通信端末の入力機器などよりなる。
 〔中央装置の構成〕
 図2に示すように、中央装置5は、交通管制エリアに含まれる複数の交差点の交通信号制御機6を統括的に制御するサーバコンピュータよりなる。中央装置5は、処理部51、記憶部52及び通信部53などを備える。
 交通管制エリア内の交通信号制御機6には、単独(スタンドアロン)で動作する地点制御方式の第1制御機6Aと、中央装置5による遠隔制御(交通順応制御)の制御対象である第2制御機6Bとが含まれる。
 処理部51は、記憶部52の不揮発性メモリに格納されたコンピュータプログラム54を読み出し、当該プログラム54に従って各種の情報処理を行うCPUを含む演算処理装置よりなる。
 記憶部52は、HDD及びSSDのうちの少なくとも1つの不揮発性メモリ(記録媒体)と、ランダムアクセスメモリ等よりなる揮発性メモリ(記録媒体)とを含む記憶装置である。
 中央装置5のコンピュータプログラム54には、MODERATO、SCOOT及びSCATSのうちの少なくとも1つの遠隔制御(交通順応制御)を行うためのプログラムが含まれる。
 処理部51は、遠隔制御により信号制御パラメータを生成すると、遠隔制御の制御対象である第2制御機6Bに実行させる信号制御指令を生成する。
 信号制御指令は、新たに生成した信号制御パラメータに対応する信号灯器の灯色切り替えタイミングに関する情報であり、遠隔制御の制御周期(例えば1.0~2.5分)ごとに生成される。
 通信部53は、公衆通信網8を介して情報処理装置2と通信し、専用の通信回線9を介して第2制御機6Bと通信する通信インタフェースよりなる。通信部53は、専用の通信回線9を介して情報処理装置2と接続されていてもよい。
 通信部53は、処理部51が信号制御パラメータの制御周期ごとに生成した信号制御指令を、遠隔制御の対象である第2制御機6Bに送信する。
 通信部53は、第1及び第2制御機6A,6Bで運用中のサイクル長及び赤時間長を含む信号情報を、情報処理装置2に送信する。第2制御機6Bの信号情報については、遠隔制御の制御周期(例えば1.0~2.5分)ごとに情報処理装置2に送信される。
 〔従来の遠隔制御の概要と問題点〕
 図3は、従来の遠隔制御(交通順応制御)の概要を示すフローチャートである。
 図3に示すように、従来の遠隔制御には、「交通流の計測」(ステップS1)、「交通指標の算出」(ステップS2)、「信号制御パラメータの算出」(ステップS3)、及び「信号制御パラメータの反映」(ステップS4)が含まれる。
 中央装置5の処理部51は、ステップS1~S4の各処理を、所定の制御周期(例えば1.0~2.5分)ごとに繰り返し実行する。
 交通流の計測(ステップS1)は、対象交差点の流入路ごとの交通流を計測する処理である。従来の交通流の計測は、車両感知器の感知信号(パルス信号など)に基づいて実測データを算出する処理である。実測データには、交通量Vin、待ち行列台数Qin及び飽和交通流率Sfの実測値が含まれる。なお、Sfは道路構造に基づく設定値でもよい。
 交通指標の算出(ステップS2)は、ステップS1の計測結果を用いて、信号制御パラメータの算出に必要な流入路ごとの交通指標を算出する処理である。
 MODERATOで用いる交通指標は、負荷率Lrである。負荷率Lrは、1サイクル中に処理できる最大交通量に対する交通需要の比である。SCOOT及びSCATSで用いる交通指標は、現示飽和度Dsである。現示飽和度Dsは、青時間中に処理できる最大交通量に対する到着交通量の比である。
 負荷率Lrの計算式は、次の式(1)の通りである。現示飽和度Dsの計算式は、次の式(2)の通りである。
 Lr=(Vin+k×Qin)/Sf ……(1)
 Ds=Vin×C/(Sf×G)     ……(2)
 ただし、Vin:交差点への流入交通量(台/秒)
     k  :重み係数(例えば1.0を用いる)
     Qin:待ち行列台数の交通量換算値(台/秒)
     Sf :飽和交通流率(台/秒)
     G  :有効青時間(秒)
     C  :サイクル長(秒)
 式(1)に示すように、負荷率Lrの計算式には、流入路の交通変数として、流入交通量Vinと待ち行列台数Qinが含まれる。式(2)に示すように、現示飽和度Dsの計算式には、流入路の交通変数として、流入交通量Vinが含まれる。
 中央装置5の処理部51は、ステップS1で得られたVin,Qin,Sfの実測値を式(1)又は(2)に代入し、負荷率Lr及び現示飽和度Dsのうちの少なくとも1つの交通指標を算出する。
 信号制御パラメータの算出(ステップS3)は、ステップS2で算出した交通指標を用いて、制御対象の交差点のスプリット及びサイクル長などの信号制御パラメータを算出する処理である。
 ここでは、中央装置5がMODRERATOを採用し、2つの現示のみを含む十字路交差点のスプリット及びサイクル長を算出する場合を想定する。また、現示の番号を「i」(i=1,2)で表し、各現示iの流入路の方向を「j」(j=1,2)で表す。
 現示iの各流入路jの負荷率を「Lij」、流入路jにおける交通量を「Vij」、流入路jにおける待ち行列台数を「Qij」、流入路jにおける飽和交通流率を「Sij」とすると、負荷率Lijは、次の式(3)の通りである。
 Lij=(Vij+Qij)/Sij ……(3)
 中央装置5の処理部51は、現示iの負荷率Lriを次の式(4)により算出し、交差点全体の負荷率Lrtを次の式(5)により算出する。式(4)において、「maxj」は、現示iに含まれるj個の負荷率Lijのうちの最大値を意味する。
 Lri=maxj(Lij) ……(4)
 Lrt=Lr1+Lr2  ……(5)
 そして、中央装置5の処理部51は、現示iのスプリットλi及びサイクル長Cを、次の式(6)及び(7)により算出する。なお、式(6)において、Kは損失時間を表し、a1~a3は係数である。
 λi=Lri/Lrt ……(6)
 C=(a1×K+a2)/(1-a3×Lrt) ……(7)
 信号制御パラメータの反映(ステップS4)は、ステップS3で算出した信号制御パラメータを対象交差点の第2制御機6Bに実行させる処理である。
 具体的には、中央装置5の処理部51は、新たな信号制御パラメータから灯色切り替えタイミングを含む信号制御指令を算出し、算出した信号制御指令を第2制御機6Bに送信する。なお、信号制御パラメータから灯色切り替えタイミングを演算可能な第2制御機6Bの場合には、信号制御パラメータをそのまま第2制御機6Bに送信してもよい。
 以上の通り、従来の遠隔制御では、車両感知器の感知信号から得られるVin,Qin,Sfの実測値を、交通指標Lr,Dsの定義式(式(1)又は(2))に代入することにより、交通指標Lr,Dsを算出する。
 従って、従来の遠隔制御では、制御対象が、車両感知器が設置された交差点の交通信号制御機6に限られるという問題点がある。また、MODRERATOの負荷率や、SCOOT及びSCATSの現示飽和度を用いる限り、遠隔制御には車両感知器が必要であるとの固定観念があった。
 ところで、式(1)及び(2)に示す通り、負荷率Lr及び現示飽和度Dsの定義式には、分子にVin及びQinが含まれ、分母に飽和交通流率Sfが含まれる。
 従って、式(1)及び(2)に入力する交通量Vin及び待ち行列台数Qinを、飽和交通流率Sfに対する比率を表す変数として定義すれば、Vin,Qin及びSfの真値が不明であっても、負荷率Lr及び現示飽和度Dsを算出可能となる。
 すなわち、流入路の交通量をVin=α×Sfとして定義し、待ち行列台数をQin=β×Sfとして定義し、これらを式(1)及び(2)に代入すると、次の算出式(8)及び(9)に示す通り、右辺の分子/分母でSfが相殺される。これは、αやβさえ定めることができれば、計算処理上では飽和交通流率Sfに任意の値を用いても、負荷率Lr及び現示飽和度Dsを計算できることを意味する。
 Sfで正規化した交通量Vin(=α×Sf)と、Sfで正規化した待ち行列台数Qin(=β×Sf)を採用すれば、Vin,Qin及びSfのそのものの値を決定しなくても、負荷率Lr及び現示飽和度Dsを算出できる。
 Lr=(Vin+k×Qin)/Sf
   =(α×Sf+k×β×Sf)/Sf
   =α+k×β             ……(8)
 Ds=Vin×C/(Sf×G)
   =α×Sf×C/(Sf×G)
   =α×C/G             ……(9)
 以下、Sfに対する比率で表す交通量Vin(=α×Sf)及び待ち行列台数Qin(=β×Sf)を、それぞれ「正規化交通量」及び「正規化待ち行列台数」という。また、「正規化交通量」及び「正規化待ち行列台数」の総称を、「正規化データ」という。上述のように、ここでの飽和交通流率Sfは任意の値を取り得る。
 さらに本願発明者は、プローブ情報や交通シミュレータの算出結果を用いれば、上述のαやβを定めることができ、固定観点に反して、車両感知器がなくても負荷率Lr及び現示飽和度Dsから信号制御パラメータを算出し得ることを見出した。
 かかる知見に基づき、本実施形態では、交通指標の算出に用いる流入路の交通変数を、プローブ情報又は交通シミュレータ15の算出結果に基づいて、正規化交通量Vin(=α×Sf)と正規化待ち行列台数Qin(=β×Sf)として算出する手法(決定する手法を含む)を提案する(図5及び図8参照)。
 このように、プローブ情報等から求まる正規化データを用いて、信号制御パラメータの算出に用いる交通指標を算出すれば、車両感知器が未設置であっても遠隔制御を実行可能となる。以下、図4を参照して、本実施形態の遠隔制御の概要を説明する。
 〔本実施形態の遠隔制御の概要〕
 図4は、本実施形態の遠隔制御(交通順応制御)の概要を示すフローチャートである。
 図4に示すように、本実施形態の遠隔制御には、「交通流の計測」(ステップS11)、「交通指標の算出」(ステップS12)、「信号制御パラメータの算出」(ステップS13)、及び「信号制御パラメータの反映」(ステップS14)が含まれる。
 情報処理装置2の処理部11は、ステップS11~S12の各処理を、所定の制御周期(例えば1.0~2.5分)ごとに繰り返し実行する。
 中央装置5の処理部51は、ステップS13~S14の各処理を、同じ制御周期(例えば1.0~2.5分)ごとに繰り返し実行する。
 交通流の計測(ステップS11)は、対象交差点の流入路ごとの交通流を計測する処理である。本実施形態の交通流の計測は、プローブ情報や交通シミュレータ15(図8参照)のシミュレート結果を元データとして、正規化データを算出する処理である。正規化データには、Sfに対する比率を表す正規化交通量Vin(=α×Sf)と、Sfに対する比率を表す正規化待ち行列台数Qin(=β×Sf)が含まれる。
 交通指標の算出(ステップS12)は、ステップS11の計測結果を用いて、信号制御パラメータの算出に必要な流入路ごとの交通指標を算出する処理である。
 負荷率Lrの計算式は、前述の式(1)の通りである。現示飽和度Dsの計算式は、前述の式(2)の通りである。
 情報処理装置2の処理部11は、ステップ11で得られた正規化データVin(=α×Sf),Qin(=β×Sf)を式(1)又は(2)に代入し、負荷率Lr及び現示飽和度Dsのうちの少なくとも1つの交通指標を算出する。
 この場合、前述の式(8)及び(9)から明らかな通り、右辺の分子/分母でSfが相殺されるので、Vin,Qin及びSfの値そのものが不明であっても、負荷率Lr及び現示飽和度Dsを算出可能となる。
 情報処理装置2の処理部11は、ステップS13により得られた負荷率Lr又は現示飽和度Dsの算出結果を中央装置5に送信する。
 中央装置5の処理部51は、情報処理装置2から負荷率Lr又は現示飽和度Dsの算出結果を受信すると、受信した算出結果を用いてステップS13,S14の算出処理を実行する。
 信号制御パラメータの算出(ステップS13)は、情報処理装置2から受信した交通指標を用いて、制御対象のスプリット及びサイクル長などの信号制御パラメータを算出する処理である。ステップ13の処理内容は、図3のステップS3と同様である。
 信号制御パラメータの反映(ステップS14)は、ステップS13で算出した信号制御パラメータを対象交差点の第2制御機6Bに実行させる処理である。ステップ14の処理内容は、図3のステップS4と同様である。
 〔単独交差点に関する正規化データの算出方法〕
 図5は、遠隔制御の対象交差点が単独交差点である場合の、正規化データの算出方法の一例を示す説明図である。図5に含まれる変数等の意味は、次の通りである。
 なお、「単独交差点」とは、遠隔制御の対象交差点であって、他の交差点とは独立して単独で制御対象とされる交差点のことである。
 dav:信号待ちによる車両1台当たりの遅れ時間(平均値)(秒)
 L  :リンク長(m)
 Tt :プローブ車両の平均旅行時間(秒)
 Ve :想定速度(例えば規制速度)(km/時)
 J1 :対象交差点の上流側の交差点
 J2 :遠隔制御の対象交差点(単独交差点)
 図5に示すように、単独交差点の遠隔制御の場合には、当該交差点の飽和状態(非飽和/過飽和)に応じて、次の式(10)又は式(11)により、正規化交通量Vin及び正規化待ち行列Qinを算出する。なお、式(10)及び式(11)において、「R」は赤時間(秒)である。
 If dav≦R/2 (非飽和の場合)
   Vin={1-R/(2×dav×C)}×Sf ……(10)
 If R/2<dav (過飽和の場合)
   Vin=(1-R/C)×Sf
   Qin={(dav-R/2)/R}×(1-R/C)×Sf ……(11)
 以下、図5~図7を参照しつつ、式(10)及び式(11)の成立根拠を説明する。
 (リンク旅行時間と遅れ時間との関係)
 図5下段のグラフは、複数の車両が交差点J1,J2間のリンクを通行した場合の走行軌跡を表すグラフである。グラフの横軸は交差点J1からの距離であり、グラフの縦軸は旅行時間である。
 交差点J1,J2間のリンクを複数の車両が通行した場合に、信号待ちによる車両1台当たりの遅れ時間davは、信号待ちの後に交差点J2を通過する全車両の総遅れ時間(三角形の面積)を車両台数で割った値である。
 複数のプローブ車両3の平均旅行時間Ttには、上記の車両1台当たりの遅れ時間davが含まれると見なすことができる。
 従って、信号待ちによる車両1台当たりの遅れ時間davは、複数のプローブ車両3の平均旅行時間Ttから、信号待ちなしでリンクを想定速度Veで走行した場合の旅行時間(=L/(Ve/3.6))を減算した値となる。すなわち、遅れ時間davは、次の式(12)で定義することができる。
 dav=Tt-{L/(Ve/3.6)} ……(12)
 情報処理装置2の処理部11は、プローブデータベース22に含まれるプローブ情報の位置及び時刻から、今回の制御周期に交差点J1,J2間のリンクを通過した複数のプローブ情報を抽出する。
 そして、処理部11は、抽出した複数のプローブ情報の位置及び時刻に基づいて、プローブ車両3の平均旅行時間Ttを算出し、算出したTtを式(12)に代入して遅れ時間davを求める。
 なお、信号待ち以外の停止が明らかなプローブ情報(例えば、駐車フラグ付きのプローブ情報)が含まれる場合には、平均旅行時間Ttの算出対象から外すことが好ましい。
 また、信号待ち以外の停止時間が特定可能なプローブ情報(例えば、駐車時間を含むプローブ情報)の場合には、その停止時間を考慮して平均旅行時間Ttを算出することが好ましい。
 (単独交差点が非飽和である場合)
 図6は、非飽和時における交差点J2の交通状況と、Sfで正規化された交通量Vinの導出に必要な関係式を示す説明図である。
 図6の例では、交差点J2手前の停止車両は、停止線の直前の同じ位置に重なって停止すると仮定する(垂直車列イメージ)。また、図6において、「D」は1サイクル中の総遅れ時間(秒)、「Gc」は、青開始時点を原点とする時刻(秒)であり、最後尾車両が交差点J2の停止線を通過する時刻を表す。
 交差点J2の流入路が非飽和(dav≦R/2)の場合は、赤開始後に流入した車両台数(=(R+Gc)×Vin)は、時刻Gcまでに流入した車両台数(=Gc×Sf)と等しい。従って、最後尾車両の停止線通過時刻Gcは、次の式(13)のようになる。
 Gc=Vin×R/(Sf-Vin)    ……(13)
 また、1サイクルにおける車列の総遅れ時間D、及び、車両1台当りの遅れ時間davの算出式は、それぞれ次の式(14)及び(15)のようになる。
 D=0.5×{(R+Gc)×R×Vin} ……(14)
 dav=D/(C×Vin)=0.5×{(R+Gc)×R}/C ……(15)
 式(13)のGcを式(15)に代入してVinについて解けば、交差点J2が非飽和である場合の、正規化交通量Vinの算出式は、前述の式(10)となる。
 (単独交差点が過飽和である場合)
 図7は、過飽和時における交差点J2の交通状況の一例を示す説明図である。
 図7に示すように、信号2回待ち以上の車両が含まれる過飽和状態を表すモデルとして、走行と停止のみの単純なモデルを想定する。この場合、2回目以降の信号待ち停止において、1回当たりの停止時間は赤時間Rと等しくなる。
 図7のパターン1は、今回のサイクルで待ち行列が捌けた場合(0サイクル待ち)、すなわち、交差点J2がちょうど飽和状態の場合の交通状況を示す。
 図7のパターン2は、次回のサイクルで待ち行列が捌けた場合(1サイクル待ち)の交通状況を示し、図7のパターン3は、次々回のサイクルで待ち行列が捌けた場合(2サイクル待ち)の交通状況を示す。
 パターン1では、dav=0.5R、Qin=0となる。
 パターン2では、dav=1.5R、Qin=(1-R/C)×Sfとなる。
 パターン3では、dav=2.5R、Qin=2×(1-R/C)×Sfとなる。
 従って、交差点J2が過飽和である場合の、正規化交通量Vin及び正規化待ち行列Qinの算出式は、前述の式(11)となる。
 〔系統交差点に関する正規化データの算出方法〕
 図8は、遠隔制御の対象交差点が系統交差点である場合の、正規化データの算出方法の一例を示す説明図である。図8に含まれる変数等の意味は、次の通りである。
 なお、「系統交差点」とは、系統制御が行われる道路区間に含まれる複数の交差点のことである。図8の例では、4つの交差点Ji(i=1~4)を系統交差点とする。
 dav:信号待ちによる車両1台当たりの遅れ時間(秒)。ただし、系統交差点の場合のdavは、系統区間に含まれる交差点J1~J4で発生する遅れ時間の合計値とする。
dsat:系統区間の交差点の飽和/非飽和を判定するための閾値である。
 Ri :交差点iの赤時間
 Li :交差点iと交差点i+1の間のリンク長(m)
 Ofi:RiとRi+1のオフセット(秒)
 Ve :想定速度(例えば規制速度)(km/時)
 J1 :系統区間の最上流の交差点
 J2 :系統区間の中間交差点
 J3 :系統区間の中間交差点
 J4 :系統区間の最下流の交差点
 複数の車両が系統区間を通行する場合の信号待ちによる遅れ時間は、図5下段のグラフに示すような、単純な三角形でモデル化することは困難である。
 そこで、系統区間の正規化データについては、系統区間のオフセット調整ツールを有する交通シミュレータ15を用いて、系統区間における正規化交通量Vinと遅れ時間davとの関係をシミュレートする。情報処理装置2のコンピュータプログラム14には、処理部11を上記の交通シミュレータ15として機能させるプログラムも含まれる。
 具体的には、交通シミュレータ15は、系統区間の最初の交差点J1の流入路に異なる車両台数の仮想車両を発生させ、発生台数ごとの遅れ時間davを算出する。仮想車両の発生台数は、Sfで正規化した台数とし、例えば、Vin=0.1Sf→0.2Sf→0.3Sf……のように増加させるものとする。
 また、交通シミュレータ15は、算出結果を纏めた対応テーブル16を生成し、生成したテーブル16を記憶部12に一時的に記憶させる。
 次に、情報処理装置2の処理部11は、実際に系統区間(J1~J4)を走行した複数のプローブ車両3の平均遅れ時間Trを算出する。Trのなかで、系統区間の飽和状態(非飽和/飽和)を判定するための判定閾値dsatは、飽和状態を想定(表では0.4Sf)したときのTrである。この場合の遅れ時間Tr(=dsat)の算出式は次の通りである。
 Tr=系統区間の平均旅行時間-{ΣLi/(Ve/3.6)}
 例えば、プローブ情報から求めた遅れ時間Tr(<dsat)が114秒であるとすると、これに対応する正規化交通量Vinは、0.3×Sfと0.4×Sfとの間の約3.5×Sfとなる。
 情報処理装置2の処理部11は、対象交差点J1~J4のうち、非飽和(dav≦dsat)の対象交差点については、対応テーブル16において実際の遅れ時間Tr(<dsat)に対応する交通量(=3.5×Sf)を正規化交通量とする。
 If dav≦dsat (非飽和の場合)
   Vin=対応テーブル相当の交通量(例えば3.5×Sf)
 情報処理装置2の処理部11は、過飽和の対象交差点(ここでは交差点J4)、すなわち、dsat<davの場合は、次の式(16)により、Sfに対する比率を表す交通量Vin及び待ち行列台数Qinを算出する。
 If dsat<dav (過飽和の場合)
   Vin=(1-R/C)×Sf
   Qin={(dav-dsat)/R}×(1-R/C)×Sf ……(16)
 〔正規化データの算出処理〕
 図9は、情報処理装置2の処理部11が実行する、正規化データの算出処理の一例を示すフローチャートである。情報処理装置2の処理部11は、図9の処理を対象交差点に含まれる流入路ごとに実行する。
 図9に示すように、情報処理装置2の処理部11は、まず、車両1台当たりの遅れ時間davと、対象交差点のサイクル長C及び赤時間Rを取得する(ステップST1)。
 具体的には、処理部11は、式(12)を用いて遅れ時間davを算出し、現時点の対象交差点のサイクル長C及び赤時間Rを中央装置5から受信する。
 次に、処理部11は、対象交差点が系統交差点であるか否かを判定する(ステップST2)。ステップST2の判定結果が否定的である場合(単独交差点の場合)は、処理部11は、dav≦R/2であるか否かを判定する(ステップST3)。
 ステップST3の判定結果が肯定的である場合(非飽和の場合)は、処理部11は、前述の式(10)により、Sfで正規化した交通量Vinを算出する(ステップST4)。
 ステップST3の判定結果が否定的である場合(過飽和の場合)は、処理部11は、前述の式(11)により、Sfで正規化した交通量VinとSfで正規化した待ち行列台数Qinを算出する(ステップST5)。
 ステップ2の判定結果が肯定的である場合(系統交差点の場合)は、処理部11は、系統区間に含まれる複数の交差点JiのRi,Li、Ofi及びVeを取得する(ステップST6)。
 具体的には、処理部11は、現時点の交差点JiのRi,Li及びOfiを中央装置5から受信し、Veの設定値を記憶部12から読み出す。
 なお、系統区間の交差点Jiに関する各パラメータの意味は次の通りである。
 Ri :上流交差点iの赤時間(秒)
 Li :各交差点間のリンク長(m)
 Ofi:交差点間の青開始時間の差を表すオフセット(秒又は%)
 Ve :車両の走行速度(規制又は設計値)(km/時)
dsat:系統交差点群の飽和/非飽和の判定閾値(秒)
 次に、処理部11は、取得したRi,Li、Ofi及びVeを入力データとして交通シミュレータ15を起動し、Sfで正規化した交通量Vinと遅れ時間dav及び判定閾値dsatを計算させる(ステップST7)。
 次に、処理部11は、交通シミュレータ15が計算した判定閾値dsatを用いて、dav≦dsatであるか否かを判定する(ステップST8)。
 ステップ8の判定結果が肯定的である場合(非飽和の場合)は、処理部11は、交通シミュレータ15の算出結果を纏めた対応テーブル16(図8参照)に基づいて、Sfで正規化した交通量Vinを決定する(ステップST9)。
 ステップ8の判定結果が否定的である場合(過飽和の場合)は、処理部11は、前述の式(16)により、Sfで正規化した交通量Vinと待ち行列台数Qinを算出する(ステップST10)。
 〔本実施形態の効果〕
 本実施形態によれば、情報処理装置2の処理部11が、Sfで正規化した交通量Vin及び待ち行列台数Qinを算出し、その算出結果を用いて遠隔制御(交通順応制御)に用いる交通指標(負荷率Lr又は現示飽和度Ds)を算出するので、交通量Vinと待ち行列台数Qinの実測値がなくても、遠隔制御に用いる交通指標を算出することができる。
 従って、交通量Vin及び待ち行列台数Qinを実測するための車両感知器の感知信号が不要となり、車両感知器が設置されていない交差点についても、遠隔制御を実行できるようになる。
 〔第1の変形例〕
 上述の実施形態では、Sfに対する比率を表す正規化データとして、交通量Vin及び待ち行列台数Qinを採用しているが、Sfの正規化データとして、交通需要Dm(台/秒)を採用することにしてもよい。
 図10は、正規化された交通需要Dmの推定方法の一例を示す説明図である。
 図10に示すように、非飽和時の交通需要Dmの推定式は、次の式(17)よりなり、過飽和時の交通需要Dmの推定式は、次の式(18)よりなる。
 Dm=Vin/C={1-R/(2×dav×C)}×Sf/C ……(17)
 Dm={Qin(t)-Qin(t-1)+(1-R/C)×Sf}/C  ……(18)
 式(17)及び(18)において、サイクル長Cで除算する理由は、1サイクルごとに計算されるVin及びQinを1秒ごとの値に変換するためである。
 式(17)及び(18)に基づく交通需要Dmを算出することにより、信号制御パラメータを変更した場合の交通需要Dmの改善効果を、従来通りの手法で予想できるようになる。ただし、予想可能な物理量は、交通需要Dmの絶対量(台/秒)ではなく、Sfに対する相対量(比率)である。
 〔第2の変形例〕
 上述の実施形態において、プローブ車両3の台数が少ないと、プローブ車両3の平均旅行時間Ttが余り正確でなく、信号待ちによる車両1台当たりの遅れ時間dav(式(12))の算出結果が不正確になる可能性がある。
 そこで、プローブ車両3の平均旅行時間Ttがそれほど正確でないことが想定される場合、遅れ時間davの標準偏差などよりなるマージン量eを設定し、当該マージンeを車両1台当たりの遅れ時間davに加算してもよい。
 図11は、遅れ時間davの誤差を考慮した飽和状態の判定方法と、交通量の算出式を示の一例を示す説明図である。
 図11の判定方法及び算出式によれば、davにマージンeが加算されているので、スプリットなどの信号制御パラメータが大きめに計算され、渋滞の発生を防止できるようになる。
 もっとも、想定誤差の小さい(精度の高い)方向のスプリットが削られ、不利になる可能性があるので、例えば、マージンeはすべての流入方向のうちの最大値を採用するなど、特定の方向に有利又は不利が生じないようにすることが好ましい。
 上述の実施形態(変形例を含む。)は、すべての点で例示であって制限的なものではない。本発明の権利範囲は、請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
 例えば、上述の実施形態において、情報処理装置2が交通流の計測(図4のステップS11)までを実行し、交通指標の算出以降の処理(図4のステップS12~S14)を中央装置5が実行してもよい。
 また、中央装置5がプローブ情報の収集及び解析を実行可能である場合は、交通流の計測から信号制御パラメータの反映までのすべての処理(図4のステップS11~S14)を中央装置5が行うことにしてもよい。
 上述の第2の変形例ではdavにマージンeを加算したが、例えば信号待ち以外の理由で発生した遅れ時間dexを設定または取得できる場合には、次式に従ってdavを計算するようにしてもよい。
 dav=Tt-{L/(Ve/3.6)}-dex
 1 交通信号制御システム
 2 情報処理装置(交通指標の算出装置)
 3 プローブ車両
 4 車載装置
 5 中央装置
 6 交通信号制御機
 6A 第1制御機
 6B 第2制御機
 3 プローブ車両
 7 無線基地局
 8 公衆通信網
 9 通信回線
 10 サーバコンピュータ
 11 処理部(第1算出部、第2算出部)
 12 記憶部
 13 通信部
 14 コンピュータプログラム
 15 交通シミュレータ
 16 対応テーブル
 21 地図データベース
 22 プローブデータベース
 23 会員データベース
 24 信号情報データベース
 25 道路地図データ
 31 処理部
 32 記憶部
 33 通信部
 34 コンピュータプログラム
 51 処理部
 52 記憶部
 53 通信部
 54 コンピュータプログラム

Claims (11)

  1.  信号制御パラメータの算出に必要となる交通指標を算出する装置であって、
     対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1算出部と、
     前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2算出部と、を備える交通指標の算出装置。
  2.  前記第1算出部は、
     車両のプローブ情報から求めた信号待ちによる遅れ時間を用いて、前記正規化データを算出する請求項1に記載の交通指標の算出装置。
  3.  前記第1算出部は、
     前記遅れ時間と、前記対象交差点のサイクル長及び赤時間を用いて、前記正規化データを算出する請求項2に記載の交通指標の算出装置。
  4.  前記対象交差点が単独交差点であり、前記流入路が非飽和である場合には、
     前記第1算出部は、
     プローブ車両の平均旅行時間から求めた信号待ちによる車両1台当たりの遅れ時間と、前記単独交差点のサイクル長及び赤時間とを用いて、前記流入路の交通量を飽和交通流率に対する比率で表した正規化交通量を算出する請求項1から請求項3のいずれか1項に記載の交通指標の算出装置。
  5.  前記対象交差点が単独交差点であり、前記流入路が過飽和である場合には、
     前記第1算出部は、
     プローブ車両の平均旅行時間から求めた信号待ちによる車両1台当たりの遅れ時間と、前記単独交差点のサイクル長及び赤時間とを用いて、前記正規化交通量と前記流入路の待ち行列台数を飽和交通流率に対する比率で表した正規化待ち行列台数を算出する請求項4に記載の交通指標の算出装置。
  6.  前記対象交差点が系統交差点である場合には、
     前記第1算出部は、
     交通シミュレータに実行させた系統区間の交通流のシミュレート結果をさらに用いて、前記系統区間に含まれる交差点ごとに、前記正規化交通量を算出する請求項4又は請求項5に記載の交通指標の算出装置。
  7.  前記対象交差点の前記流入路が過飽和である場合には、
     前記第1算出部は、
     前記遅れ時間に対して前記シミュレート結果から求めた閾値と、前記対象交差点のサイクル長及び赤時間とを用いて、前記正規化交通量と前記流入路の待ち行列台数を飽和交通流率に対する比率で表した正規化待ち行列台数を算出する請求項6に記載の交通指標の算出装置。
  8.  前記流入路の交通変数は、
     当該流入路の流入交通量及び待ち行列台数、或いは、当該流入路の流入交通量である請求項1から請求項7のいずれか1項に記載の交通指標の算出装置。
  9.  請求項1から請求項8のいずれか1項に記載の算出装置と、
     前記交通指標から求めた前記信号制御パラメータにより、前記対象交差点の交通信号制御機を動作させる遠隔制御を行う中央装置と、を備える交通信号制御システム。
  10.  信号制御パラメータの算出に必要となる交通指標を算出する方法であって、
     対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1ステップと、
     前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2ステップと、を含む交通指標の算出方法。
  11.  信号制御パラメータの算出に必要となる交通指標を算出する装置として、コンピュータを機能させるためのコンピュータプログラムであって、
     前記コンピュータを、
     対象交差点の流入路の交通変数を飽和交通流率に対する比率で表した正規化データを算出する第1算出部、及び、
     前記正規化データを用いて、前記流入路の交通変数が分子に含まれ前記飽和交通流率が分母に含まれる式で定義される前記交通指標を算出する第2算出部、として機能させるためのコンピュータプログラム。
PCT/JP2019/034737 2018-10-05 2019-09-04 交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム WO2020071040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980060337.2A CN112740292A (zh) 2018-10-05 2019-09-04 交通指标计算装置、计算方法、交通信号控制***和计算机程序
JP2020550222A JP7276964B2 (ja) 2018-10-05 2019-09-04 交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム
US17/270,291 US11263900B2 (en) 2018-10-05 2019-09-04 Traffic index computation device, computation method, traffic signal control system, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018190437 2018-10-05
JP2018-190437 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071040A1 true WO2020071040A1 (ja) 2020-04-09

Family

ID=70055496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034737 WO2020071040A1 (ja) 2018-10-05 2019-09-04 交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム

Country Status (4)

Country Link
US (1) US11263900B2 (ja)
JP (1) JP7276964B2 (ja)
CN (1) CN112740292A (ja)
WO (1) WO2020071040A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365714A (zh) * 2020-11-11 2021-02-12 武汉工程大学 一种智轨通行主支路交叉***通信号控制方法
CN113257012A (zh) * 2021-06-10 2021-08-13 长沙理工大学 一种自动驾驶混行交叉口车道功能与绿灯时间设置方法
WO2023188666A1 (ja) * 2022-03-28 2023-10-05 住友電気工業株式会社 情報処理装置、制御端末、情報処理方法、及びコンピュータプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113487884B (zh) * 2021-06-15 2023-11-24 阿波罗智联(北京)科技有限公司 交通量的获取方法、装置及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237921A (ja) * 2010-05-07 2011-11-24 Sumitomo Electric Ind Ltd 信号制御装置及びコンピュータプログラム
JP2017016554A (ja) * 2015-07-06 2017-01-19 株式会社日立製作所 信号機制御システム及び信号機制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104729B2 (ja) * 2008-11-12 2012-12-19 住友電気工業株式会社 交通信号制御システム、信号制御装置
CN101702262B (zh) * 2009-11-06 2011-08-17 北京交通大学 一种城市交通流畅通性指标的数据融合方法
CN101976510A (zh) * 2010-10-26 2011-02-16 隋亚刚 高清视频检测条件下的交叉口机动车信号优化控制方法
CN102289937B (zh) * 2011-08-08 2013-06-12 上海电科智能***股份有限公司 基于停车线检测器的城市地面道路交通状态自动判别方法
CN105788236B (zh) * 2014-12-26 2018-09-28 浙江大华技术股份有限公司 一种交通控制方法及装置
JP6460223B2 (ja) 2015-03-18 2019-01-30 住友電気工業株式会社 信号制御装置、コンピュータプログラム、記録媒体及び信号制御方法
CN106297285B (zh) * 2016-08-17 2018-09-21 重庆大学 基于动态权重的高速公路交通运行状态模糊综合评价方法
AU2017382174A1 (en) * 2016-12-19 2019-06-27 ThruGreen, LLC Connected and adaptive vehicle traffic management system with digital prioritization
US20180292224A1 (en) * 2017-04-05 2018-10-11 Gregory Brodski System and method for traffic volume estimation
CN107945517A (zh) * 2017-12-29 2018-04-20 迈锐数据(北京)有限公司 一种交通数据处理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237921A (ja) * 2010-05-07 2011-11-24 Sumitomo Electric Ind Ltd 信号制御装置及びコンピュータプログラム
JP2017016554A (ja) * 2015-07-06 2017-01-19 株式会社日立製作所 信号機制御システム及び信号機制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAMORU HISAI: "Traffic Flow Control System of Urban Road Networks", JOURNAL OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 41, 10 March 2002 (2002-03-10), pages 193 - 198 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365714A (zh) * 2020-11-11 2021-02-12 武汉工程大学 一种智轨通行主支路交叉***通信号控制方法
CN112365714B (zh) * 2020-11-11 2022-05-10 武汉工程大学 一种智轨通行主支路交叉***通信号控制方法
CN113257012A (zh) * 2021-06-10 2021-08-13 长沙理工大学 一种自动驾驶混行交叉口车道功能与绿灯时间设置方法
CN113257012B (zh) * 2021-06-10 2022-07-26 长沙理工大学 一种自动驾驶混行交叉口车道功能与绿灯时间设置方法
WO2023188666A1 (ja) * 2022-03-28 2023-10-05 住友電気工業株式会社 情報処理装置、制御端末、情報処理方法、及びコンピュータプログラム

Also Published As

Publication number Publication date
JP7276964B2 (ja) 2023-05-18
US20210174672A1 (en) 2021-06-10
JPWO2020071040A1 (ja) 2021-09-02
US11263900B2 (en) 2022-03-01
CN112740292A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020071040A1 (ja) 交通指標の算出装置、算出方法、交通信号制御システム、及びコンピュータプログラム
JP4753084B2 (ja) 交差点における交通量算出システム
JP5471212B2 (ja) 交通信号制御装置及びコンピュータプログラム
JP5625953B2 (ja) 信号制御装置、コンピュータプログラム及び信号制御方法
CN110379164B (zh) 一种动态调控的公交准点控制方法及***
JP2012155769A (ja) 停止位置判定装置、方法及びコンピュータプログラム、並びに、交通指標算出装置、方法及びコンピュータプログラム
CN107111938B (zh) 用于确定拥堵末端位置的服务器、***和方法
JP2013088888A (ja) 情報処理装置、交通指標推定装置及びコンピュータプログラム
JP2014170290A (ja) 情報生成装置、交通シミュレータ及びコンピュータプログラム
JP2016133942A (ja) 交通指標算出装置、交通指標算出方法及びコンピュータプログラム
JP4998504B2 (ja) プローブ情報生成装置及び方法
JP4415278B2 (ja) 交差点における交通流挙動推定システム
JP5857389B2 (ja) 交通指標推定装置及びコンピュータプログラム
JP7396169B2 (ja) 待ち行列台数の算出装置及び算出方法
JP5110125B2 (ja) 情報処理装置及びコンピュータプログラム
JP5381808B2 (ja) 交通情報処理装置とこれを用いた渋滞情報の検出方法
JP2011128680A (ja) 交通流計測システム、車載器及び路側通信装置
JP5104916B2 (ja) 情報処理装置及びコンピュータプログラム
US20230316905A1 (en) Apparatus, method, and computer program for calculating delay time
JP5716312B2 (ja) 情報処理装置及びコンピュータプログラム
JP5593939B2 (ja) プローブ情報の有効性判定装置及びコンピュータプログラム
JP5621393B2 (ja) 交通指標推定装置及びコンピュータプログラム
JP5994375B2 (ja) 旅行時間算出装置及び方法、コンピュータプログラム
WO2023188666A1 (ja) 情報処理装置、制御端末、情報処理方法、及びコンピュータプログラム
JP2012155383A (ja) 交通指標算出装置、交通指標算出方法および交通指標算出プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550222

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868421

Country of ref document: EP

Kind code of ref document: A1