WO2020067614A1 - Organic/inorganic polymer electrolyte composite membrane and manufacturing method therefor - Google Patents

Organic/inorganic polymer electrolyte composite membrane and manufacturing method therefor Download PDF

Info

Publication number
WO2020067614A1
WO2020067614A1 PCT/KR2019/001878 KR2019001878W WO2020067614A1 WO 2020067614 A1 WO2020067614 A1 WO 2020067614A1 KR 2019001878 W KR2019001878 W KR 2019001878W WO 2020067614 A1 WO2020067614 A1 WO 2020067614A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
polymer electrolyte
electrolyte composite
composite membrane
inorganic polymer
Prior art date
Application number
PCT/KR2019/001878
Other languages
French (fr)
Korean (ko)
Inventor
정호영
김주영
카르메감다나발란
김보림
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2020067614A1 publication Critical patent/WO2020067614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic / inorganic polymer electrolyte composite membrane and a method for manufacturing the same, more specifically, an organic / inorganic polymer electrolyte composite membrane having a low vanadium permeability characteristic through a structure in which nano-silica particles are uniformly distributed in the membrane and the same It relates to a manufacturing method.
  • the vanadium redox flow battery which is a kind of energy storage device, has been attracting attention as a large-capacity long-term energy storage device because capacity and output can be individually designed to facilitate large-capacity.
  • the polymer electrolyte membrane is a very important core component that determines the output and long-term performance of the battery and the price of the stack, but the currently commercialized polymer membrane has a high manufacturing cost and permeability that inhibits the commercialization of the vanadium redox flow battery. It is acting as a factor. Accordingly, there is a need to develop a low-permeability and low-cost polymer electrolyte membrane capable of increasing the efficiency of an energy storage device.
  • Nafion manufactured by DuPont is commercially available, but it is difficult to operate the redox flow battery for a long time because it is expensive and has high permeability characteristics.
  • hydrocarbon-based polymer membranes are typically sulfonated polyether ketones, sulfonated polyether-ether ketones, sulfonated polyethersulfones, sulfonated polysulfones, sulfonated polyphenylene sulfides, sulfonated polyphenylene oxides, sulfonated polyyis Mead and the like have been proposed, but there is a problem of low flexibility and weak chemical stability.
  • Reinforced composite membranes have been proposed as a method of introducing ionomers having excellent ion conductivity to a porous support having excellent mechanical strength and durability, but have a disadvantage that desorption occurs between the porous support and the ionomer.
  • the present inventors have found that a number of studies have shown a composite membrane having a structure in which nano-silica particles generated from an alkoxy silane functional material are uniformly distributed in a polymer membrane by inducing crosslinking of the functional period of the ionomer based on the alkoxy silane functional material and a method for manufacturing the same. By developing, the present invention was completed.
  • an object of the present invention is to solve the problem of heterogeneous distribution of nanoparticles appearing in a general organic-inorganic nanocomposite polymer membrane, and thus, nano-silica particles, which are inorganic particles, are formed by forming nano-silica particles in the polymer membrane during the manufacturing process. It is to provide an organic / inorganic polymer electrolyte composite film having a low permeability and high ion selectivity through a very uniformly dispersed film structure between organic polymers and a method for manufacturing the same.
  • Another object of the present invention is an organic / inorganic polymer electrolyte membrane capable of effectively reducing the manufacturing cost of a polymer membrane by introducing a certain amount of an alkoxy silane functional material instead of an expensive perfluorinated polymer instead of an expensive perfluorinated polymer. It is to provide the manufacturing method.
  • Another object of the present invention is to provide an organic / inorganic polymer electrolyte composite membrane having low permeability and high ion selectivity, thereby providing a redox flow cell or water treatment device advantageous for long-term driving.
  • the object of the present invention is not limited to the above-mentioned object, and even if not explicitly mentioned, the object of the invention that can be recognized by those skilled in the art from the description of the detailed description of the invention to be described later may also be naturally included. .
  • the present invention is a crosslinking structure of an alkoxysilane functional polymer and a perfluorinated polymer; And nano-silica particles uniformly dispersed in the cross-linking structure; provides an organic / inorganic polymer electrolyte composite membrane comprising a.
  • the alkoxysilane functional polymer is selected from the group consisting of Diol Alkoxysilane- Functionalized Polymer (D-ASFP), Bisphenol Dimethylbenzanthracene ASFP (BD-ASFP), Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP (BDP-ASFP), and combinations thereof. Being any one or more.
  • D-ASFP Diol Alkoxysilane- Functionalized Polymer
  • BD-ASFP Bisphenol Dimethylbenzanthracene ASFP
  • BDP-ASFP Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP
  • the perfluorinated polymer is Nafion (DuPont), 3M Ionomer (3M), Fumion, Archiplex, Aquivion, sulfonated perfluorinated polymer (PFSA) , perfluorinated sulfonic acid), polytetrafluoroethylene, poly (vinylidene fluoride), poly (vinyl fluoride), polyvinylidene fluorine coperfluorinated alkylvinyl ether (poly (vinylidene fluo-co-perfluorinated alkyl vinyl ethers)).
  • the ion permeability is 2 x 10 -7 cm 2 / min or less.
  • the present invention comprises the steps of preparing an alkoxysilane functional polymer solution and a perfluorinated polymer solution; Preparing a membrane precursor solution by mixing the alkoxysilane functional polymer solution with a perfluorinated polymer solution; A casting step of casting the membrane precursor solution to form a casting layer; A film forming step of crosslinking the alkoxysilane functional polymer and perfluorinated polymer contained in the casting layer to form a precursor film; And a pre-treatment step of prototyping the precursor film; an organic / inorganic polymer electrolyte composite film is provided.
  • the alkoxysilane functional polymer solution and the perfluorinated polymer solution each contain 5 to 70 parts by weight of an alkoxysilane functional polymer and perfluorinated polymer per 100 parts by weight of the solvent.
  • the solvent is in the group consisting of distilled water, ethanol, isopropanol, methanol, dimethylsulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrilidinone, N, N-dimethylformamide It is one or more selected.
  • the membrane precursor solution comprises 5 to 95% by weight of the alkoxy silane functional polymer solution and 95 to 5% by weight of the perfluorinated polymer solution.
  • the membrane precursor solution is obtained by stirring the alkoxy silane functional polymer solution and the perfluorinated polymer solution at a temperature of 20-50 degrees.
  • the film forming step includes drying the casting layer in a vacuum of 70 ° C. or less; A primary heat treatment step of treating the dried cast layer at 70 to 90 ° C; And a second heat treatment step of processing at a temperature of 100 ° C or higher.
  • the cross-linking structure of the alkoxysilane functional polymer and the perfluorinated polymer and the nano-silica particles uniformly dispersed in the cross-linking structure are generated through the thermal cross-linking reaction in the film forming step.
  • the protonation is performed by immersing the precursor film in a basic aqueous solution followed by immersion in distilled water, followed by immersion in an acidic aqueous solution, followed by immersion in distilled water.
  • the present invention provides a fuel cell including any one of the organic / inorganic polymer electrolyte composite membranes described above or the organic / inorganic polymer electrolyte composite membrane prepared by the method of manufacturing the composite membrane.
  • the present invention provides an energy storage device including any one of the organic / inorganic polymer electrolyte composite membranes described above or the organic / inorganic polymer electrolyte composite membrane prepared by the method of manufacturing the composite membrane.
  • the energy storage device is a redox flow cell or fuel cell.
  • the present invention provides a water treatment apparatus including any one of the organic / inorganic polymer electrolyte composite membranes described above or the organic / inorganic polymer electrolyte composite membrane prepared by the method of manufacturing the composite membrane.
  • nano-silica particles are generated in the polymer film production process to be included in the polymer film, so that the nano-particles, which are inorganic particles, are highly uniformly dispersed between organic polymers to achieve low permeability and high ion selectivity. Since it has, it is possible to solve the problem of heterogeneous distribution of nanoparticles appearing in the general organic-inorganic nano-composite polymer membrane.
  • the polymer membrane is produced through a method of producing a composite membrane having the characteristics of a partially fluorinated polymer membrane by introducing a certain amount of an alkoxy silane functional material instead of an expensive perfluorinated polymer instead of an expensive perfluorinated polymer.
  • the manufacturing cost can be effectively reduced.
  • a redox flow battery or a water treatment device that is advantageous for long-term driving by including an organic / inorganic polymer electrolyte membrane having low permeability and high ion selectivity.
  • FIG. 1 is a view showing the chemical structure of D-ASFP, an alkoxy silane functional polymer contained in an organic / inorganic polymer electrolyte composite membrane according to an embodiment of the present invention.
  • FIG. 2 is a view showing the chemical structure of BD-ASFP, an alkoxy silane functional polymer contained in an organic / inorganic polymer electrolyte composite membrane according to another embodiment of the present invention.
  • FIG 3 is a view showing the chemical structure of the alkoxy silane functional polymer BDP-ASFP contained in the organic / inorganic polymer electrolyte composite membrane according to another embodiment of the present invention.
  • FIG. 4 is a graph showing the results of Fourier-transform infrared spectroscopy (FT-IR) for confirming whether the alkoxy silane functional polymers shown in FIGS. 1 to 3 are synthesized according to the method for manufacturing an organic / inorganic polymer electrolyte composite membrane of the present invention. to be.
  • FT-IR Fourier-transform infrared spectroscopy
  • FT-IR chemical structure analysis
  • FIG. 7 is a graph showing (a) water content and (b) dimensional change rate of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
  • IEC 8 is a graph showing the ion exchange capacity (IEC) of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
  • FIG. 9 is a graph showing the ionic conductivity of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
  • FIG. 11 is a graph showing the ion conductivity and ion selectivity of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may also be referred to as a first component.
  • the technical feature of the present invention is that organic / inorganic polymer electrolyte composite membranes in which nano-silica particles, which are inorganic particles, are very uniformly dispersed between organic polymers, are formed by generating nano-silica particles in the polymer membrane during the manufacturing process. And its manufacturing method. That is, in the process of mixing the alkoxy silane functional polymer and the perfluorinated polymer, the present invention forms a crosslinked structure of the alkoxy silane functional polymer and the perfluorinated polymer, and at the same time, nanosilica particles are generated from the alkoxy silane functional polymer and uniformly formed in the crosslinked structure.
  • the organic / inorganic polymer electrolyte composite film of the present invention is not only composed of pure perfluorine-based polymers, but is partially fluorine-based polymers, thereby reducing the manufacturing cost of the polymer membrane, and at the same time, low permeability by nano-silica particles uniformly distributed in the composite film. And high ionic selectivity, which can achieve 40% or more improved low permeability and ion selectivity over conventional polymer electrolyte membranes.
  • the organic / inorganic polymer electrolyte composite film of the present invention has a crosslinking structure of an alkoxysilane functional polymer and a perfluorinated polymer; And nano-silica particles uniformly dispersed in the cross-linking structure.
  • the alkoxy silane functional polymer is capable of cationic conduction by introducing functional groups of COOH, OH, NH, and SH, and can produce nano-silica particles in the process of mixing with a perfluorinated polymer material.
  • Silane-based polymers may be used, but as one embodiment, D-ASFP (Diol Alkoxysilane-Functionalized Polymer), BD-ASFP (Bisphenol Dimethylbenzanthracene ASFP), BDP-ASFP (Bisphenol) each having a structural formula shown in FIGS. Dimethylbenzanthracene Polydimethylsiloxane ASFP) and combinations thereof.
  • any known perfluorinated polymer that can be used for the electrolyte polymer membrane can be used, but as one embodiment, Nafion (DuPont), 3M Ionomer (3M), Fumion, Aciplex, Aquivion, perfluorinated sulfonic acid (PFSA), polytetrafluoroethylene, poly (vinylidene fluoride), poly (vinyl fluoride) , Polyvinylidene fluorine-co-perfluorinated alkyl vinyl ethers (poly) can be any one or more selected from the group consisting of.
  • Nafion DuPont
  • 3M Ionomer 3M
  • Fumion Fumion
  • Aciplex Aciplex
  • Aquivion perfluorinated sulfonic acid
  • polytetrafluoroethylene poly (vinylidene fluoride), poly (vinyl fluoride)
  • nano-silica particles generated from a plurality of ion-crosslinked and alkoxy-silane functional polymers formed between the alkoxy silane functional polymer and the perfluorinated polymer are uniformly distributed throughout the composite membrane, and VO 2+
  • the ion permeability is 2 ⁇ 10 ⁇ 6 cm 2 / min or less, preferably 2 ⁇ 10 ⁇ 7 cm 2 / min or less, and exhibits a characteristic that is significantly lowered.
  • the minimum ion permeability is experimentally expected to be 1.26 ⁇ 10 -7 cm 2 / min.
  • the organic / inorganic polymer electrolyte composite membrane production method of the present invention comprises the steps of preparing an alkoxysilane functional polymer solution and a perfluorinated polymer solution; Preparing a membrane precursor solution by mixing the alkoxysilane functional polymer solution with a perfluorinated polymer solution; A casting step of casting the membrane precursor solution to form a casting film; A film forming step of forming a precursor film by crosslinking the alkoxysilane functional polymer and perfluorinated polymer included in the casting film; And a pretreatment step of prototyping the precursor film; a method of manufacturing an organic / inorganic polymer electrolyte composite film.
  • the solvent contained in the membrane precursor solution can serve to induce uniform dispersion of the nano-silica formed in the condensation reaction process in the process of preparing the crosslinked polymer membrane by dissolving two polymers to induce mixing easily.
  • any known solvent can be used as long as it can dissolve the alkoxy silane functional polymer and the perfluorinated polymer, but as one embodiment, distilled water; Alcohol solvents including ethanol, isopropanol, and methanol; Dimethyl sulfoxide; Any one or more selected from the group consisting of solvents including N, N-dimethylacetamide, N-methyl-2-pyrilidinone, and N, N-dimethylformamide can be used.
  • the steps of preparing the alkoxy silane functional polymer solution and the perfluorinated polymer solution can be performed in any order, and the alkoxy silane functional polymer solution and the perfluorinated polymer solution are completely dissolved in the same solvent, respectively, to prepare the alkoxy silane functional polymer solution and the perfluorinated polymer solution.
  • the mixing ratio of the solvent and the alkoxy silane functional polymer or perfluorinated polymer may be 5 to 70 parts by weight of each polymer based on 100 parts by weight of the solvent.
  • the mixing ratio is determined experimentally. If the weight of the polymer is less than 5 parts by weight or exceeds 70 parts by weight, the viscosity is too low or too high, resulting in poor workability and difficulty in controlling the thickness of the polymer film.
  • the solution concentration was set experimentally.
  • the step of preparing the membrane precursor solution may be performed by mixing the prepared alkoxy silane functional polymer solution and perfluorinated polymer solution in a certain ratio to prepare a homogeneous solution.
  • the membrane precursor solution may include 5 to 95 parts by weight and 95 to 5% by weight of an alkoxy silane functional polymer solution and a perfluorinated polymer solution, respectively, and is composed by mixing at various mixing ratios required according to the composition of the finished film. can do.
  • the membrane precursor solution can be performed by stirring for several minutes to several days in a reactor maintained at a temperature of 20-50 degrees for the production of a homogeneous phase.
  • the casting step may be performed by casting a membrane precursor solution on a flat plate such as a glass plate to form a casting layer.
  • the film forming step is a step of forming a precursor film by crosslinking the alkoxysilane functional polymer and the perfluorinated polymer while removing the solvent contained in the casting layer, and forming a crosslinking structure of the alkoxysilane functional polymer and the perfluorinated polymer by heating to a constant temperature.
  • the film forming step can be performed by treating the casting layer at a temperature that can cause a thermal crosslinking reaction between the alkoxysilane functional polymer and the perfluorinated polymer while being able to remove the solvent contained in the casting layer.
  • the casting layer may be maintained in an oven at 60 ° C. under vacuum for 8 hours, and then further processed at 80 ° C. for 8 hours and 100 ° C. for 8 hours to obtain a precursor film.
  • the pre-treatment step is a step in which protonation is performed to increase proton activity while removing organic substances on the surface of the obtained precursor film.
  • the precursor film may be performed by immersing in a basic aqueous solution, followed by dipping in distilled water, and then immersed in an acidic aqueous solution, followed by immersion in distilled water.
  • the basic aqueous solution is hydrogen peroxide water
  • the acidic aqueous solution is Aqueous sulfuric acid solution was used.
  • the immersion treatment may be performed for 0.1 to 2 hours at a temperature range of 20 to 90 ° C.
  • the organic / inorganic polymer electrolyte composite film of the present invention can exhibit an improved permeability and ion selectivity of 40% or more compared to the conventional polymer electrolyte membrane, and excellent thermal stability can be realized due to the introduction of silica particles.
  • the energy storage device and the water treatment device such as a redox flow cell or a fuel cell of the present invention can secure stable performance by including an organic / inorganic polymer electrolyte composite film having low permeability and high ion selectivity.
  • DMBA and 34.8 g of TDI were completely dissolved in 100 mL of DMAC in a reaction flask at 60 ° C. and reacted for 12 hours, followed by adding 22.1 g of APTES and reacting at 50 ° C. for 8 hours to obtain a nanohybrid alkoxy silane functional precursor.
  • the nano-hybrid alkoxy silane functional precursor was obtained through a hydrolysis reaction in an aqueous HCl solution at a concentration of 0.1 M to obtain a sol-gel mixture.
  • 3 g of the sol-gel mixture was dispersed in 7 g DMAC to obtain a solution of nanohybrid alkoxy silane functional polymer (D-ASFP) in a homogeneous phase.
  • D-ASFP nanohybrid alkoxy silane functional polymer
  • Nafion Dispersion (20wt%) was poured into a petri dish and dried in an oven at 60 ° C. under vacuum to obtain a solid Nafion polymer.
  • 2 g Nafion and 8 g DMAC were stirred for 12 hours at 60 ° C. hot-plate to obtain a 20 wt% perfluorinated polymer solution.
  • the prepared alkoxy silane functional polymer (D-ASFP) solution and perfluorinated polymer solution are mixed at a weight ratio of 50:50, 25:75, 20:80, 10:90 based on solid content and stirred for 24 hours at room temperature to homogeneous membrane precursor Solutions 1-1 to 1-4 were prepared.
  • Membrane precursor solution 1-2 (5 g of alkoxy silane functional polymer solution (1.5 g of solid content) and 22.5 g of perfluorinated polymer solution (4.5 g of solid content) mixing ratio) was cast on a glass plate at room temperature to form a casting layer.
  • the formed casting layer was maintained in an oven at 60 ° C. under vacuum for 8 hours, followed by surface drying, and then further dried at 80 ° C. for 8 hours and 100 ° C. for 8 hours to remove the solvent, while removing the solvent, the alkoxy silane functional polymer contained in the casting layer
  • a precursor film 1-2 containing nano silica particles uniformly dispersed in a crosslinked structure and a crosslinked structure of an alkoxy silane functional polymer and a perfluorinated polymer was obtained.
  • the precursor film finally obtained is immersed in a 3% H 2 O 2 aqueous solution, immersed in distilled water, and then immersed in 0.5MH 2 SO 4 aqueous solution and immersed again in distilled water to undergo protonation pretreatment to prepare an organic / inorganic polymer electrolyte composite membrane 1 Got.
  • Each process of the pretreatment step was performed at 50 ° C for 30 minutes.
  • An organic / inorganic polymer electrolyte composite membrane 2 was obtained by performing the same process as in Example 1, except that the step of preparing the alkoxysilane functional polymer solution was performed as follows.
  • An organic / inorganic polymer electrolyte composite membrane 3 was obtained by performing the same process as in Example 1, except that the step of preparing the alkoxysilane functional polymer solution was performed as follows.
  • peaks (1000-1100 cm -1 ) of Si-O-Si and Si-OC groups of PDMS and APTES were found in D-ASFP, BD-ASFP, and BDP-ASFP.
  • the NHC O functional group (1600-1650cm -1 ) peak derived from the Urea group of the crosslinking structure between DMBAs was found to be found in all of D-ASFP, BD-ASFP, and BDP-ASFP.
  • the C O functional group (1700 -1750 cm -1 ) peaks derived from the carboxyl group of DMBA were shown in D-ASFP, BD-ASFP, and BDP-ASFP, confirming that the alkoxy silane functional polymer was successfully prepared. You can.
  • the alkoxysilane functionality is a peak of Si-OC, Si-O- Si group in the polymer 1000 - 1100cm -1 were observed in, in particular, the characteristic peak observed at 1000 cm -1 is a silane-based polymer is combined with a perfluorinated polymer Subtotal It can be seen that it is a characteristic peak forming a film.
  • the peaks (1000-1100 cm -1 ) of the Si-OC and Si-O-Si groups of the alkoxy silane functional polymer overlapped with the peaks of the SO 3 H group of the perfluorinated polymer, but as described above, 1000 cm Through the characteristic peaks observed at -1 , it can be confirmed that the composite film was successfully prepared.
  • thermogravimetric analysis TGA was performed on Nafion 212 and the organic / inorganic polymer electrolyte membrane 1 And the results are shown in FIG. 6.
  • the organic / inorganic polymer electrolyte membranes 1 and Nafion 212 were dried in an oven at 80 ° C. for more than 24 hours under vacuum, the mass was measured, and after being moistened with distilled water for 24 hours, the surface moisture was removed to increase the weight and change the dimensions.
  • the moisture content and the rate of dimensional change were measured through the following equation.
  • FIG. 7 is a result of measuring the water content and dimensional change rate of the organic / inorganic polymer electrolyte membrane 1 and Nafion 212
  • the water content of Nafion 212 was significantly changed to 24% and the dimensional change rate to 14%.
  • the moisture content was 13% and the dimensional change rate was 4%, which was very low compared to Nafion 212, and the dimensional change rate was confirmed. This is considered to be because the hydrophilic channel of the organic / inorganic polymer electrolyte membrane 1 was reduced due to the introduction of the alkoxy silane functional polymer and generation of nano silica particles.
  • the organic / inorganic polymer electrolyte membrane 1 or Nafion212 was impregnated with a 1M NaCl solution for 24 hours, and then titrated with a 0.1M NaOH solution as a phenolphthalein indicator.
  • the ion exchange capacity of Nafion212 was higher than that of the organic / inorganic polymer electrolyte membrane 1. This is considered to be because the hydrophilic channel of the organic / inorganic polymer electrolyte membrane 1 was reduced due to the introduction of the alkoxy silane functional polymer and generation of nano silica particles.
  • the organic / inorganic polymer electrolyte composite membrane 1 (Nafion-ASFP) prepared in Example 1 was immersed in distilled water at room temperature for 24 hours, and then the membrane was placed between the electrodes of the ion conductivity cell, and then AC impedance measurement was performed in distilled water. The ionic conductivity of the membrane was measured and the results are shown in FIG. 9.
  • Nafion 212 has a higher ionic conductivity than the organic / inorganic polymer electrolyte membrane 1, which introduces alkoxy silane functional polymers and nano silica It is judged that the channel for ion transfer of the organic / inorganic polymer electrolyte composite membrane was reduced due to the formation of particles.
  • the organic / inorganic polymer electrolyte composite membrane 1 or Nafion 212 was assembled in a vanadium redox flow cell unit cell, and 1.5M VOSO 4 / 3M H 2 SO 4 solution and 1.5M MgSO 4 / 3M H were placed in both electrolyte containers, respectively.
  • 2 SO 4 solution was added in 50 mL increments, and the sample was collected from the electrolyte container containing the MgSO 4 solution at regular intervals while flowing the electrolyte in the unit cell direction.
  • the collected samples were measured using a UV-vis spectrometer with a blank 1.5M MgSO 4 solution dissolved in 3M H 2 SO 4 solution to measure the amount of vanadium ions permeated.
  • the ionic conductivity of Nafion212 was measured high, but the permeability was high, indicating that the ion selectivity was lower than that of the organic / inorganic polymer electrolyte composite membrane.
  • the ion conductivity was low, but the permeability was measured to be low, so the ion selectivity was higher than 39%. Through this, it was confirmed that the organic / inorganic polymer electrolyte composite membrane 1 had excellent ion selection characteristics.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to an organic/inorganic polymer electrolyte composite membrane and a manufacturing method therefor and, more specifically, to: an organic/inorganic polymer electrolyte composite membrane having low vanadium permeability characteristics through a structure in which silica nanoparticles are uniformly distributed in the membrane; and a manufacturing method therefor.

Description

유/무기고분자전해질 복합막 및 그 제조방법Organic / inorganic polymer electrolyte composite membrane and manufacturing method thereof
본 발명은 유/무기 고분자전해질 복합막 및 그 제조방법에 대한 것으로, 보다 구체적으로는 나노 실리카 입자가 균일하게 막 내에 분포하는 구조를 통해 낮은 바나듐 투과도 특성을 갖는 유/무기고분자전해질복합막 및 그 제조방법에 관한 것이다.The present invention relates to an organic / inorganic polymer electrolyte composite membrane and a method for manufacturing the same, more specifically, an organic / inorganic polymer electrolyte composite membrane having a low vanadium permeability characteristic through a structure in which nano-silica particles are uniformly distributed in the membrane and the same It relates to a manufacturing method.
최근, 전력부하 평준화, 재생에너지 발전 비중의 확대와 더불어, 전력에너지를 저장하고 관리하기 위한 에너지 저장 장치의 개발이 절실히 요구되고 있다. In recent years, the leveling of electric power loads, the expansion of the share of renewable energy generation, and the development of an energy storage device for storing and managing electric power energy are urgently required.
에너지 저장 장치의 일종인 바나듐 레독스 흐름전지는 용량과 출력의 설계가 개별적으로 가능하여 대용량화가 용이하기 때문에 대용량 장주기용 에너지 저장 장치로 주목을 받고 있다. 상기 바나듐 레독스 흐름전지에서 고분자 전해질 막은 전지의 출력 및 장기성능과 스택의 가격을 결정짓는 매우 중요한 핵심부품이나, 현재 상용화된 고분자막은 제조단가와 투과도가 높아 바나듐 레독스 흐름전지의 상용화를 저해하는 요인으로 작용하고 있다. 이에 에너지 저장 장치의 효율을 증가시킬 수 있는 저투과도 및 저비용의 고분자 전해질 막 개발이 요구되고 있다.The vanadium redox flow battery, which is a kind of energy storage device, has been attracting attention as a large-capacity long-term energy storage device because capacity and output can be individually designed to facilitate large-capacity. In the vanadium redox flow battery, the polymer electrolyte membrane is a very important core component that determines the output and long-term performance of the battery and the price of the stack, but the currently commercialized polymer membrane has a high manufacturing cost and permeability that inhibits the commercialization of the vanadium redox flow battery. It is acting as a factor. Accordingly, there is a need to develop a low-permeability and low-cost polymer electrolyte membrane capable of increasing the efficiency of an energy storage device.
바나듐 레독스 흐름전지에 사용되는 분리막은 대표적으로 듀폰(DuPont) 사의 나피온(Nafion)이 상업적으로 판매되고 있으나, 이는 고가이며 높은 투과도 특성을 가지기 때문에 레독스 흐름전지의 장기 구동에 어려움이 있었다.As a separator used in a vanadium redox flow battery, Nafion manufactured by DuPont is commercially available, but it is difficult to operate the redox flow battery for a long time because it is expensive and has high permeability characteristics.
이러한 문제점을 가진 나피온을 대체하기 위해 탄화수소계 고분자막, 강화복합막 등 다양한 형태의 고분자 전해질 막 개발이 진행되어왔다. 구체적으로 탄화수소계 고분자막은 대표적으로 술폰화 폴리에테르케톤, 술폰화 폴리에테르-에테르케톤, 술폰화 폴리에테르술폰, 술폰화 폴리술폰, 술폰화 폴리페닐렌술파이드, 술폰화 폴리페닐렌옥사이드, 술폰화 폴리이미드 등이 제안되어왔으나, 유연성이 낮고 화학적안정성이 취약하다는 문제점이 있다. In order to replace Nafion having such problems, various types of polymer electrolyte membranes such as hydrocarbon-based polymer membranes and reinforced composite membranes have been developed. Specifically, hydrocarbon-based polymer membranes are typically sulfonated polyether ketones, sulfonated polyether-ether ketones, sulfonated polyethersulfones, sulfonated polysulfones, sulfonated polyphenylene sulfides, sulfonated polyphenylene oxides, sulfonated polyyis Mead and the like have been proposed, but there is a problem of low flexibility and weak chemical stability.
강화복합막은 기계적강도와 내구성이 우수한 다공성 지지체에 이온전도성이 우수한 아이오노머를 도입하여 제조하는 방법으로 제안되어왔으나, 다공성 지지체와 아이오노머 간의 탈리가 일어난다는 단점이 있다.Reinforced composite membranes have been proposed as a method of introducing ionomers having excellent ion conductivity to a porous support having excellent mechanical strength and durability, but have a disadvantage that desorption occurs between the porous support and the ionomer.
본 발명자들은 다수의 연구결과 알콕시 실란 기능성 물질을 기반으로 아이오노머의 관능기간 가교를 유도함으로써 알콕시 실란 기능성 물질로부터 생성된 나노 실리카 입자가 고분자 막 내에 균일하게 분포하는 구조의 복합막 및 그 제조방법을 개발함으로써 본 발명을 완성하였다.The present inventors have found that a number of studies have shown a composite membrane having a structure in which nano-silica particles generated from an alkoxy silane functional material are uniformly distributed in a polymer membrane by inducing crosslinking of the functional period of the ionomer based on the alkoxy silane functional material and a method for manufacturing the same. By developing, the present invention was completed.
따라서, 본 발명의 목적은 일반적인 유무기 나노 컴포지트 고분자 막에서 나타나는 나노입자의 불균질 분포 문제를 해결하기 위해 고분자막 제조 과정에서 나노 실리카 입자가 생성되어 고분자막 내에 포함되도록 함으로써, 무기입자인 나노 실리카 입자가 유기고분자 사이에 매우 균일하게 분산된 막 구조를 통해 저투과도 및 고이온선택도를 갖는 유/무기고분자전해질복합막 및 그 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to solve the problem of heterogeneous distribution of nanoparticles appearing in a general organic-inorganic nanocomposite polymer membrane, and thus, nano-silica particles, which are inorganic particles, are formed by forming nano-silica particles in the polymer membrane during the manufacturing process. It is to provide an organic / inorganic polymer electrolyte composite film having a low permeability and high ion selectivity through a very uniformly dispersed film structure between organic polymers and a method for manufacturing the same.
본 발명의 다른 목적은 전해질 고분자 막을 비싼 과불소계고분자만으로 구성하지 않고 알콕시 실란 기능성 물질을 과불계고분자를 대체하여 일정함량 도입함으로써 고분자 막의 제조단가를 효과적으로 절감할 수 있는 유/무기고분자전해질복합막 및 그 제조방법을 제공하는 것이다.Another object of the present invention is an organic / inorganic polymer electrolyte membrane capable of effectively reducing the manufacturing cost of a polymer membrane by introducing a certain amount of an alkoxy silane functional material instead of an expensive perfluorinated polymer instead of an expensive perfluorinated polymer. It is to provide the manufacturing method.
본 발명의 또 다른 목적은 저투과도 및 고이온선택도를 갖는 유/무기고분자전해질복합막을 포함함으로써 장기구동에 유리한 레독스흐름전지 또는 수처리장치를 제공하는 것이다. Another object of the present invention is to provide an organic / inorganic polymer electrolyte composite membrane having low permeability and high ion selectivity, thereby providing a redox flow cell or water treatment device advantageous for long-term driving.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 상세한 설명의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 목적 역시 당연히 포함될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and even if not explicitly mentioned, the object of the invention that can be recognized by those skilled in the art from the description of the detailed description of the invention to be described later may also be naturally included. .
상술된 본 발명의 목적을 달성하기 위해, 본 발명은 알콕시실란 기능성고분자와 과불소계고분자의 가교결합구조; 및 상기 가교결합구조 내부에 균일하게 분산된 나노실리카입자;를 포함하는 유/무기고분자전해질 복합막을 제공한다.In order to achieve the object of the present invention described above, the present invention is a crosslinking structure of an alkoxysilane functional polymer and a perfluorinated polymer; And nano-silica particles uniformly dispersed in the cross-linking structure; provides an organic / inorganic polymer electrolyte composite membrane comprising a.
바람직한 실시예에 있어서, 상기 알콕시실란기능성고분자는 D-ASFP (Diol Alkoxysilane- Functionalized Polymer), BD-ASFP (Bisphenol Dimethylbenzanthracene ASFP), BDP-ASFP (Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the alkoxysilane functional polymer is selected from the group consisting of Diol Alkoxysilane- Functionalized Polymer (D-ASFP), Bisphenol Dimethylbenzanthracene ASFP (BD-ASFP), Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP (BDP-ASFP), and combinations thereof. Being any one or more.
바람직한 실시예에 있어서, 상기 과불소계고분자는 나피온(듀폰), 3M 아이오노머 (3M), 푸미온(Fumion), 아키플렉스(Aciplex), 아퀴비온(Aquivion), 술폰화된 과불소계 고분자(PFSA, perfluorinated sulfonic acid), 폴리테트라플루오로에틸렌, 폴리비닐리덴플로라이드(poly(vinylidene fluoride)), 폴리비닐플로라이드(poly (vinyl fluoride)), 폴리비닐리덴 플루오르 코 퍼플루오르화 알킬비닐에테르(poly (vinylidene fluo-co-perfluorinated alkyl vinyl ethers))의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the perfluorinated polymer is Nafion (DuPont), 3M Ionomer (3M), Fumion, Archiplex, Aquivion, sulfonated perfluorinated polymer (PFSA) , perfluorinated sulfonic acid), polytetrafluoroethylene, poly (vinylidene fluoride), poly (vinyl fluoride), polyvinylidene fluorine coperfluorinated alkylvinyl ether (poly (vinylidene fluo-co-perfluorinated alkyl vinyl ethers)).
바람직한 실시예에 있어서, 이온 투과도가 2×10-7 cm2/min 이하이다. In a preferred embodiment, the ion permeability is 2 x 10 -7 cm 2 / min or less.
또한, 본 발명은 알콕시실란 기능성고분자용액 및 과불소계고분자용액을 준비하는 단계; 상기 알콕시실란 기능성고분자용액과 과불소계 고분자 용액을 혼합하여 막전구체용액을 준비하는 단계; 상기 막전구체용액을 캐스팅하여 캐스팅층을 형성하는 캐스팅단계; 상기 캐스팅층에 포함된 알콕시실란 기능성고분자와 과불소계고분자를 가교시켜 전구체막을 형성하는 제막단계; 및 상기 전구체막을 프로토네이션시키는 전처리단계;를 포함하는 유/무기고분자전해질 복합막 제조방법을 제공한다. In addition, the present invention comprises the steps of preparing an alkoxysilane functional polymer solution and a perfluorinated polymer solution; Preparing a membrane precursor solution by mixing the alkoxysilane functional polymer solution with a perfluorinated polymer solution; A casting step of casting the membrane precursor solution to form a casting layer; A film forming step of crosslinking the alkoxysilane functional polymer and perfluorinated polymer contained in the casting layer to form a precursor film; And a pre-treatment step of prototyping the precursor film; an organic / inorganic polymer electrolyte composite film is provided.
바람직한 실시예에 있어서, 상기 알콕시실란 기능성고분자용액 및 상기 과불소계고분자용액은 각각 용매 100중량부 당 알콕시 실란 기능성 고분자 및 과불소계고분자를 5 내지 70중량부 포함한다. In a preferred embodiment, the alkoxysilane functional polymer solution and the perfluorinated polymer solution each contain 5 to 70 parts by weight of an alkoxysilane functional polymer and perfluorinated polymer per 100 parts by weight of the solvent.
바람직한 실시예에 있어서, 상기 용매는 증류수, 에탄올, 이소프로판올, 메탄올, 디메틸술폭사이드, N,N-디메틸아세트아미드, N-메틸-2-피릴리디논, N,N-디메틸포름아미드로 구성된 군에서 선택되는 하나 이상이다. In a preferred embodiment, the solvent is in the group consisting of distilled water, ethanol, isopropanol, methanol, dimethylsulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrilidinone, N, N-dimethylformamide It is one or more selected.
바람직한 실시예에 있어서, 상기 막전구체용액은 상기 알콕시 실란 기능성 고분자 용액 5 ~ 95 중량% 및 상기 과불소계고분자 용액 95 ~ 5 중량%를 포함한다. In a preferred embodiment, the membrane precursor solution comprises 5 to 95% by weight of the alkoxy silane functional polymer solution and 95 to 5% by weight of the perfluorinated polymer solution.
바람직한 실시예에 있어서, 상기 막전구체용액은 상기 알콕시 실란 기능성 고분자 용액 및 상기 과불소계고분자 용액을 20~50도의 온도에서 교반하여 얻어진다. In a preferred embodiment, the membrane precursor solution is obtained by stirring the alkoxy silane functional polymer solution and the perfluorinated polymer solution at a temperature of 20-50 degrees.
바람직한 실시예에 있어서, 상기 제막단계는 상기 캐스팅층을 70℃ 이하의 진공상태에서 건조시키는 단계; 건조된 캐스팅층을 70 내지 90℃에서 처리하는 1차 열처리 단계; 및 100℃이상의 온도에서 처리하는 2차 열처리 단계;를 포함한다. In a preferred embodiment, the film forming step includes drying the casting layer in a vacuum of 70 ° C. or less; A primary heat treatment step of treating the dried cast layer at 70 to 90 ° C; And a second heat treatment step of processing at a temperature of 100 ° C or higher.
바람직한 실시예에 있어서, 상기 제막단계에서 열가교반응을 통해 상기 알콕시실란 기능성고분자와 과불소계고분자의 가교결합구조 및 상기 가교결합구조 내부에 균일하게 분산된 나노실리카입자가 생성된다. In a preferred embodiment, the cross-linking structure of the alkoxysilane functional polymer and the perfluorinated polymer and the nano-silica particles uniformly dispersed in the cross-linking structure are generated through the thermal cross-linking reaction in the film forming step.
바람직한 실시예에 있어서, 상기 프로토네이션은 상기 전구체막을 염기성수용액에 침지시켜 처리한 후 증류수에 침지시키고, 다시 산성수용액에 침지시켜 처리한 후 증류수에 침지시켜 수행된다. In a preferred embodiment, the protonation is performed by immersing the precursor film in a basic aqueous solution followed by immersion in distilled water, followed by immersion in an acidic aqueous solution, followed by immersion in distilled water.
또한, 본 발명은 상술된 어느 하나의 유/무기고분자전해질 복합막 또는 복합막 제조방법으로 제조된 유/무기고분자전해질 복합막을 포함하는 연료전지를 제공한다. In addition, the present invention provides a fuel cell including any one of the organic / inorganic polymer electrolyte composite membranes described above or the organic / inorganic polymer electrolyte composite membrane prepared by the method of manufacturing the composite membrane.
또한, 본 발명은 상술된 어느 하나의 유/무기고분자전해질 복합막 또는 복합막 제조방법으로 제조된 유/무기고분자전해질 복합막을 포함하는 에너지저장장치를 제공한다. In addition, the present invention provides an energy storage device including any one of the organic / inorganic polymer electrolyte composite membranes described above or the organic / inorganic polymer electrolyte composite membrane prepared by the method of manufacturing the composite membrane.
바람직한 실시예에 있어서, 상기 에너지저장장치는 레독스흐름전지 또는 연료전지이다.In a preferred embodiment, the energy storage device is a redox flow cell or fuel cell.
또한, 본 발명은 상술된 어느 하나의 유/무기고분자전해질 복합막 또는 복합막 제조방법으로 제조된 유/무기고분자전해질 복합막을 포함하는 수처리장치를 제공한다. In addition, the present invention provides a water treatment apparatus including any one of the organic / inorganic polymer electrolyte composite membranes described above or the organic / inorganic polymer electrolyte composite membrane prepared by the method of manufacturing the composite membrane.
상술된 본 발명은 다음과 같은 효과를 갖는다.The present invention described above has the following effects.
먼저, 본 발명에 의하면 고분자막 제조 과정에서 나노 실리카 입자가 생성되어 고분자막 내에 포함되도록 함으로써, 무기입자인 나노 실리카 입자가 유기고분자 사이에 매우 균일하게 분산된 막 구조를 통해 저투과도 및 고이온선택도를 갖게 되므로 일반적인 유무기 나노 컴포지트 고분자 막에서 나타나는 나노입자의 불균질 분포 문제를 해결할 수 있다. First, according to the present invention, nano-silica particles are generated in the polymer film production process to be included in the polymer film, so that the nano-particles, which are inorganic particles, are highly uniformly dispersed between organic polymers to achieve low permeability and high ion selectivity. Since it has, it is possible to solve the problem of heterogeneous distribution of nanoparticles appearing in the general organic-inorganic nano-composite polymer membrane.
또한, 본 발명에 의하면 전해질 고분자 막을 비싼 과불소계고분자만으로 구성하지 않고 알콕시 실란 기능성 물질을 과불계고분자를 대체하여 일정함량 도입함으로써 부분 불소계 고분자 막의 특징을 갖는 복합막 형태로 제조하는 방법을 통해 고분자 막의 제조단가를 효과적으로 절감할 수 있다. In addition, according to the present invention, the polymer membrane is produced through a method of producing a composite membrane having the characteristics of a partially fluorinated polymer membrane by introducing a certain amount of an alkoxy silane functional material instead of an expensive perfluorinated polymer instead of an expensive perfluorinated polymer. The manufacturing cost can be effectively reduced.
또한, 본 발명에 의하면 저투과도 및 고이온선택도를 갖는 유/무기고분자전해질복합막을 포함함으로써 장기구동에 유리한 레독스흐름전지 또는 수처리장치를 제공할 수 있다.In addition, according to the present invention, it is possible to provide a redox flow battery or a water treatment device that is advantageous for long-term driving by including an organic / inorganic polymer electrolyte membrane having low permeability and high ion selectivity.
본 발명의 이러한 기술적 효과들은 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.These technical effects of the present invention are not limited to the above-mentioned ranges, and even if not explicitly mentioned, the effects of the invention that can be recognized by those skilled in the art from the description of specific contents for carrying out the invention described below are also Of course it is included.
도 1은 본 발명의 일 실시예에 따른 유/무기 고분자전해질 복합막에 포함되는 알콕시 실란 기능성 고분자인 D-ASFP의 화학적 구조를 나타낸 도면이다.1 is a view showing the chemical structure of D-ASFP, an alkoxy silane functional polymer contained in an organic / inorganic polymer electrolyte composite membrane according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 유/무기 고분자전해질 복합막에 포함되는 알콕시 실란 기능성 고분자인 BD-ASFP의 화학적 구조를 나타낸 도면이다.2 is a view showing the chemical structure of BD-ASFP, an alkoxy silane functional polymer contained in an organic / inorganic polymer electrolyte composite membrane according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 유/무기 고분자전해질 복합막에 포함되는 알콕시 실란 기능성 고분자인 BDP-ASFP의 화학적 구조를 나타낸 도면이다.3 is a view showing the chemical structure of the alkoxy silane functional polymer BDP-ASFP contained in the organic / inorganic polymer electrolyte composite membrane according to another embodiment of the present invention.
도 4는 본 발명의 유/무기 고분자전해질 복합막 제조방법에 따라 도 1 내지 도 3에 도시된 알콕시 실란 기능성 고분자가 합성되었는지 확인하기 위한 적외선 분광법(Fourier-transform infrared spectroscopy, FT-IR) 결과그래프이다.FIG. 4 is a graph showing the results of Fourier-transform infrared spectroscopy (FT-IR) for confirming whether the alkoxy silane functional polymers shown in FIGS. 1 to 3 are synthesized according to the method for manufacturing an organic / inorganic polymer electrolyte composite membrane of the present invention. to be.
도 5는 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막, 알콕시 실란 기능성 고분자(D-ASFP)의 화학구조 분석(FT-IR) 결과그래프이다.5 is a chemical structure analysis (FT-IR) result graph of the organic / inorganic polymer electrolyte composite membrane of the present invention and a control Nafion membrane, an alkoxy silane functional polymer (D-ASFP).
도 6는 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막의 열중량 분석(TGA) 결과그래프이다.6 is a thermogravimetric analysis (TGA) result graph of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
도 7은 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막의 (a) 함수율 및 (b) 치수변화율을 나타낸 그래프이다.7 is a graph showing (a) water content and (b) dimensional change rate of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
도 8은 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막의 이온교환용량(IEC)을 나타낸 그래프이다.8 is a graph showing the ion exchange capacity (IEC) of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
도 9은 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막의 이온전도도를 나타낸 그래프이다.9 is a graph showing the ionic conductivity of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
도 10는 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막의 (a) UV-vis spectrometer를 이용하여 측정된 VO2+ 이온의 농도 및 (b) 이를 통해 계산한 VO2+ 이온투과도를 나타낸 그래프이다.10 is (a) the concentration of VO 2+ ions measured using the organic / inorganic polymer electrolyte composite membrane of the present invention and the control Nafion membrane (a) UV-vis spectrometer and (b) VO 2+ ion permeability calculated therefrom. It is a graph showing.
도 11은 본 발명의 유/무기 고분자전해질 복합막과 대조군인 나피온막의 이온전도도 및 이온선택도를 나타낸 그래프이다.11 is a graph showing the ion conductivity and ion selectivity of the organic / inorganic polymer electrolyte composite membrane and the control Nafion membrane of the present invention.
본 발명에서 사용하는 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 발명의 설명에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, actions, components, parts or combinations thereof described in the description of the invention, one or more other It should be understood that features or numbers, steps, actions, components, parts or combinations thereof are not excluded in advance.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components. For example, the first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may also be referred to as a first component.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and are not to be interpreted as ideal or excessively formal meanings unless explicitly defined in the present invention. Does not.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다. 특히, 정도의 용어 "약", "실질적으로" 등이 사용되는 경우 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되는 것으로 해석될 수 있다.In analyzing the components, it is interpreted as including the error range even if there is no explicit description. In particular, when the terms "about", "substantially", etc. of degree are used, it can be interpreted as being used in or close to the value when manufacturing and substance tolerances unique to the stated meaning are given. .
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간 적 선후관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함한다.In the case of the description of the time relationship, for example, 'after', 'following', '~ after', '~ before', etc., when the temporal sequential relationship is described, 'right' or 'directly' Also includes cases where 'is not continuous unless used.
이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein, and the same reference numerals in different forms indicate the same components.
본 발명의 기술적 특징은 고분자막 제조 과정에서 나노 실리카 입자가 생성되어 고분자막 내에 포함되도록 함으로써, 무기입자인 나노 실리카 입자가 유기고분자 사이에 매우 균일하게 분산된 막 구조가 구현된 유/무기고분자전해질복합막 및 그 제조방법에 있다. 즉 본 발명은 알콕시 실란 기능성 고분자와 과불소계고분자를 혼합하는 과정에서 알콕시 실란 기능성 고분자와 과불소계고분자의 가교결합구조가 형성되면서 동시에 알콕시 실란 기능성 고분자로부터 나노실리카입자가 생성되어 가교결합구조에 균일하게 분포하게 되므로 일반적인 유무기 나노 컴포지트 고분자 막에서 나타나는 나노입자의 불균질 분포 문제를 해결할 수 있기 때문이다. 이와 같이 본 발명의 유/무기고분자전해질복합막은 순수과불소계고분자만으로 구성되는 것이 아니라 부분불소계고분자 상태이므로 고분자 막의 제조단가를 절감할 수 있으며, 동시에 복합막 내에 균일하게 분포하는 나노실리카입자에 의해 저투과도 및 고이온선택도를 나타내는데, 기존의 고분자 전해질 막보다 40% 이상 향상된 저투과도와 이온선택도를 구현할 수 있다. The technical feature of the present invention is that organic / inorganic polymer electrolyte composite membranes in which nano-silica particles, which are inorganic particles, are very uniformly dispersed between organic polymers, are formed by generating nano-silica particles in the polymer membrane during the manufacturing process. And its manufacturing method. That is, in the process of mixing the alkoxy silane functional polymer and the perfluorinated polymer, the present invention forms a crosslinked structure of the alkoxy silane functional polymer and the perfluorinated polymer, and at the same time, nanosilica particles are generated from the alkoxy silane functional polymer and uniformly formed in the crosslinked structure. This is because it is possible to solve the problem of heterogeneous distribution of nanoparticles appearing in the organic / inorganic nanocomposite polymer membrane. As described above, the organic / inorganic polymer electrolyte composite film of the present invention is not only composed of pure perfluorine-based polymers, but is partially fluorine-based polymers, thereby reducing the manufacturing cost of the polymer membrane, and at the same time, low permeability by nano-silica particles uniformly distributed in the composite film. And high ionic selectivity, which can achieve 40% or more improved low permeability and ion selectivity over conventional polymer electrolyte membranes.
따라서, 본 발명의 유/무기고분자전해질복합막은 알콕시실란 기능성고분자와 과불소계고분자의 가교결합구조; 및 상기 가교결합구조 내부에 균일하게 분산된 나노실리카입자;를 포함한다. Therefore, the organic / inorganic polymer electrolyte composite film of the present invention has a crosslinking structure of an alkoxysilane functional polymer and a perfluorinated polymer; And nano-silica particles uniformly dispersed in the cross-linking structure.
여기서, 알콕시 실란 기능성 고분자는 COOH, OH, NH 및 SH 작용기를 도입하여 양이온 전도가 가능하며, 과불소계 고분자 물질과의 혼합 과정에서 나노 실리카 입자를 생성할 수 있다.알콕시 실란 기능성 고분자는 공지된 모든 실란계열의 고분자가 사용될 수 있지만, 일 구현예로서 각각 도 1 내지 도 3에 도시된 구조식을 갖는 D-ASFP (Diol Alkoxysilane- Functionalized Polymer), BD-ASFP (Bisphenol Dimethylbenzanthracene ASFP), BDP-ASFP (Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다. Here, the alkoxy silane functional polymer is capable of cationic conduction by introducing functional groups of COOH, OH, NH, and SH, and can produce nano-silica particles in the process of mixing with a perfluorinated polymer material. Silane-based polymers may be used, but as one embodiment, D-ASFP (Diol Alkoxysilane-Functionalized Polymer), BD-ASFP (Bisphenol Dimethylbenzanthracene ASFP), BDP-ASFP (Bisphenol) each having a structural formula shown in FIGS. Dimethylbenzanthracene Polydimethylsiloxane ASFP) and combinations thereof.
과불소계고분자는 전해질고분자막에 사용될 수 있는 공지의 모든 과불소계고분자가 사용될 수 있지만, 일 구현예로서 나피온(듀폰), 3M 아이오노머 (3M), 푸미온(Fumion), 아키플렉스(Aciplex), 아퀴비온(Aquivion), 술폰화된 과불소계 고분자(PFSA, perfluorinated sulfonic acid), 폴리테트라플루오로에틸렌, 폴리비닐리덴플로라이드(poly(vinylidene fluoride)), 폴리비닐플로라이드(poly (vinyl fluoride)), 폴리비닐리덴 플루오르 코 퍼플루오르화 알킬비닐에테르(poly (vinylidene fluo-co-perfluorinated alkyl vinyl ethers))의 조합으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다. As the perfluorinated polymer, any known perfluorinated polymer that can be used for the electrolyte polymer membrane can be used, but as one embodiment, Nafion (DuPont), 3M Ionomer (3M), Fumion, Aciplex, Aquivion, perfluorinated sulfonic acid (PFSA), polytetrafluoroethylene, poly (vinylidene fluoride), poly (vinyl fluoride) , Polyvinylidene fluorine-co-perfluorinated alkyl vinyl ethers (poly) can be any one or more selected from the group consisting of.
상술된 특성을 갖는 유/무기고분자전해질복합막은 알콕시 실란 기능성 고분자와 과불소계고분자간에 형성된 다수의 이온가교결합 및 알콕시 실란 기능성 고분자로부터 생성된 나노 실리카 입자가 복합막 내에 전체적으로 균일하게 분포되어 VO2+ 이온 투과도가 2× 10-6 cm2/min 이하, 바람직하게는 2× 10-7 cm2/min 이하로 현저히 낮아지는 특성을 나타낸다. 특히 최소 이온투과도는 실험적으로 1.26× 10-7 cm2/min 일 것으로 예측된다.In the organic / inorganic polymer electrolyte composite film having the above-described properties, nano-silica particles generated from a plurality of ion-crosslinked and alkoxy-silane functional polymers formed between the alkoxy silane functional polymer and the perfluorinated polymer are uniformly distributed throughout the composite membrane, and VO 2+ The ion permeability is 2 × 10 −6 cm 2 / min or less, preferably 2 × 10 −7 cm 2 / min or less, and exhibits a characteristic that is significantly lowered. In particular, the minimum ion permeability is experimentally expected to be 1.26 × 10 -7 cm 2 / min.
또한, 본 발명의 유/무기고분자전해질 복합막 제조방법은 알콕시실란 기능성고분자용액 및 과불소계고분자용액을 준비하는 단계; 상기 알콕시실란 기능성고분자용액과 과불소계 고분자 용액을 혼합하여 막전구체용액을 준비하는 단계; 상기 막전구체용액을 캐스팅하여 캐스팅막을 형성하는 캐스팅단계; 상기 캐스팅막에 포함된 알콕시실란 기능성고분자와 과불소계고분자를 가교시켜 전구체막을 형성하는 제막단계; 및 상기 전구체막을 프로토네이션시키는 전처리단계;를 포함하는 유/무기고분자전해질 복합막 제조방법을 포함한다.In addition, the organic / inorganic polymer electrolyte composite membrane production method of the present invention comprises the steps of preparing an alkoxysilane functional polymer solution and a perfluorinated polymer solution; Preparing a membrane precursor solution by mixing the alkoxysilane functional polymer solution with a perfluorinated polymer solution; A casting step of casting the membrane precursor solution to form a casting film; A film forming step of forming a precursor film by crosslinking the alkoxysilane functional polymer and perfluorinated polymer included in the casting film; And a pretreatment step of prototyping the precursor film; a method of manufacturing an organic / inorganic polymer electrolyte composite film.
여기서, 막전구체용액에 포함된 용매는 두 고분자를 용해시켜 혼합이 쉽게되도록 유도함으로써 가교 고분자 막 제조과정에서 축합 반응과정에서 형성되는 나노 실리카의 균일한 분산을 유도할 수 있는 역할을 수행할 수 있다. 따라서 용매는 알콕시 실란 기능성 고분자 및 과불소계고분자를 용해시킬 수 있기만 하면 공지된 모든 용매가 사용될 수 있으나, 일 구현예로서 증류수; 에탄올, 이소프로판올, 메탄올을 포함하는 알콜계 용매; 디메틸술폭사이드; N,N-디메틸아세트아미드, N-메틸-2-피릴리디논, N,N-디메틸포름아미드를 포함하는 용매로 구성된 군에서 선택되는 어느 하나 이상이 사용될 수 있다. Here, the solvent contained in the membrane precursor solution can serve to induce uniform dispersion of the nano-silica formed in the condensation reaction process in the process of preparing the crosslinked polymer membrane by dissolving two polymers to induce mixing easily. . Therefore, as the solvent, any known solvent can be used as long as it can dissolve the alkoxy silane functional polymer and the perfluorinated polymer, but as one embodiment, distilled water; Alcohol solvents including ethanol, isopropanol, and methanol; Dimethyl sulfoxide; Any one or more selected from the group consisting of solvents including N, N-dimethylacetamide, N-methyl-2-pyrilidinone, and N, N-dimethylformamide can be used.
알콕시 실란 기능성 고분자용액 및 과불소계고분자용액을 준비하는 단계는 순서에 무관하게 수행될 수 있는데, 알콕시 실란 기능성 고분자 및 과불소계고분자를 동일한 용매에 각각 완전히 용해시켜 알콕시 실란 기능성 고분자 용액 및 과불소계 고분자 용액을 개별적으로 준비한다. 여기서, 용매와 알콕시 실란 기능성 고분자 또는 과불소계고분자의 배합비는 용매 100중량부를 기준으로 각각의 고분자는 5 내지 70중량부일 수 있다. 배합비는 실험적으로 결정된 것으로 고분자의 중량이 5중량부 미만이거나 70중량부를 초과하게 되면 점도가 너무 낮거나 높아 작업성이 떨어지고 고분자 막의 두께 제어가 어려운 문제가 발생하여 요구 두께의 고분자 막 생산을 위한 최적 용액 농도를 실험적으로 설정하였다.The steps of preparing the alkoxy silane functional polymer solution and the perfluorinated polymer solution can be performed in any order, and the alkoxy silane functional polymer solution and the perfluorinated polymer solution are completely dissolved in the same solvent, respectively, to prepare the alkoxy silane functional polymer solution and the perfluorinated polymer solution. Prepare individually. Here, the mixing ratio of the solvent and the alkoxy silane functional polymer or perfluorinated polymer may be 5 to 70 parts by weight of each polymer based on 100 parts by weight of the solvent. The mixing ratio is determined experimentally. If the weight of the polymer is less than 5 parts by weight or exceeds 70 parts by weight, the viscosity is too low or too high, resulting in poor workability and difficulty in controlling the thickness of the polymer film. The solution concentration was set experimentally.
막전구체용액을 준비하는 단계는 준비된 알콕시 실란 기능성 고분자 용액 및 과불소계고분자 용액을 일정 비율로 혼합하여 균질상 용액을 제조하여 수행될 수 있다. 일 구현예로서 막전구체용액은 알콕시 실란 기능성 고분자 용액 및 과불소계고분자 용액을 각각 5 내지 95 중량부% 및 95 내지 5 중량% 포함할 수 있는데, 완성막의 조성에 따라 요구되는 다양한 배합비로 혼합하여 구성할 수 있다. 한편 막전구체용액은 균질상 제조를 위해 20~50도의 온도로 유지되는 반응기에서 수 분 내지 수 일간 교반하여 수행할 수 있다. The step of preparing the membrane precursor solution may be performed by mixing the prepared alkoxy silane functional polymer solution and perfluorinated polymer solution in a certain ratio to prepare a homogeneous solution. As an embodiment, the membrane precursor solution may include 5 to 95 parts by weight and 95 to 5% by weight of an alkoxy silane functional polymer solution and a perfluorinated polymer solution, respectively, and is composed by mixing at various mixing ratios required according to the composition of the finished film. can do. On the other hand, the membrane precursor solution can be performed by stirring for several minutes to several days in a reactor maintained at a temperature of 20-50 degrees for the production of a homogeneous phase.
캐스팅단계는 막전구체용액을 유리판 등 평판 상에 캐스팅하여 캐스팅층을 형성함으로써 수행될 수 있다.The casting step may be performed by casting a membrane precursor solution on a flat plate such as a glass plate to form a casting layer.
제막단계는 캐스팅층에 포함된 용매를 제거하면서 알콕시실란 기능성고분자와 과불소계고분자를 가교시켜 전구체막을 형성하는 단계로서, 일정온도로 가열함으로써 알콕시실란 기능성고분자와 과불소계고분자의 가교결합구조를 형성하면서 동시에 축합반응과정에서 가교결합구조 내에 균일하게 분포되도록 나노 실리카 입자의 생성을 유도하는 공정이다. 따라서, 제막단계는 캐스팅층에 포함된 용매를 제거할 수 있으면서도 알콕시실란 기능성고분자와 과불소계고분자의 열가교반응을 일으킬 수 있는 온도로 캐스팅층을 처리하여 수행될 수 있는데, 캐스팅층을 70℃ 이하의 진공상태에서 건조시키는 단계; 건조된 캐스팅층을 70 내지 90℃에서 처리하는 1차 열처리 단계; 및 100℃이상의 온도에서 처리하는 2차 열처리 단계;를 포함할 수 있다. 일 구현예로서 캐스팅층을 진공상태하의 60℃의 오븐에서 8시간동안 유지한 후, 80℃에서 8시간동안, 100℃에서 8시간동안 추가로 처리하여 전구체막을 얻을 수 있다. The film forming step is a step of forming a precursor film by crosslinking the alkoxysilane functional polymer and the perfluorinated polymer while removing the solvent contained in the casting layer, and forming a crosslinking structure of the alkoxysilane functional polymer and the perfluorinated polymer by heating to a constant temperature. At the same time, in the condensation reaction process, it is a process to induce the generation of nano-silica particles to be uniformly distributed in the cross-linking structure. Therefore, the film forming step can be performed by treating the casting layer at a temperature that can cause a thermal crosslinking reaction between the alkoxysilane functional polymer and the perfluorinated polymer while being able to remove the solvent contained in the casting layer. Drying in a vacuum state of the; A primary heat treatment step of treating the dried cast layer at 70 to 90 ° C; And a second heat treatment step of treating at a temperature of 100 ° C. or higher. As an embodiment, the casting layer may be maintained in an oven at 60 ° C. under vacuum for 8 hours, and then further processed at 80 ° C. for 8 hours and 100 ° C. for 8 hours to obtain a precursor film.
전처리단계는 얻어진 전구체막 표면의 유기물을 제거하면서 프로톤 활성도를 증가시키는 프로토네이션이 수행되는 단계이다. 일 구현예로서 전구체막을 염기성수용액에 침지시켜 처리한 후 증류수에 침지시키고, 다시 산성수용액에 침지시켜 처리한 후 증류수에 침지시켜 수행될 수 있는데, 후술하는 실시예에서 염기성수용액은 과산화수소수가 산성수용액은 황산수용액이 사용되었다. 여기서, 침지처리는 20~90℃ 온도범위에서 0.1 ~ 2시간 동안 수행될 수 있다.The pre-treatment step is a step in which protonation is performed to increase proton activity while removing organic substances on the surface of the obtained precursor film. As an embodiment, the precursor film may be performed by immersing in a basic aqueous solution, followed by dipping in distilled water, and then immersed in an acidic aqueous solution, followed by immersion in distilled water. In the examples described below, the basic aqueous solution is hydrogen peroxide water and the acidic aqueous solution is Aqueous sulfuric acid solution was used. Here, the immersion treatment may be performed for 0.1 to 2 hours at a temperature range of 20 to 90 ° C.
이상의 구성을 통해 본 발명의 유/무기 고분자전해질복합막은 기존의 고분자전해질막과 비교해 40%이상 향상된 투과도와 이온선택도를 나타낼 수 있으며, 실리카 입자의 도입으로 인해 우수한 열적안정성을 구현할 수 있다. Through the above configuration, the organic / inorganic polymer electrolyte composite film of the present invention can exhibit an improved permeability and ion selectivity of 40% or more compared to the conventional polymer electrolyte membrane, and excellent thermal stability can be realized due to the introduction of silica particles.
따라서, 본 발명의 레독스흐름전지나 연료전지와 같은 에너지저장장치 및 수처리 장치는 저투과도 및 고이온선택성을 갖는 유/무기 고분자전해질복합막을 포함함으로써 안정적인 성능을 확보할 수 있다.Therefore, the energy storage device and the water treatment device such as a redox flow cell or a fuel cell of the present invention can secure stable performance by including an organic / inorganic polymer electrolyte composite film having low permeability and high ion selectivity.
실시예 1Example 1
1-1. 알콕시실란 기능성고분자용액을 준비하는 단계1-1. Step of preparing an alkoxysilane functional polymer solution
DMBA 14.8g, TDI 34.8g를 60℃의 반응플라스크에서 DMAC 100mL에 완전히 녹여 12시간 동안 반응시킨 후 APTES 22.1g을 추가하여 넣고 50℃에서 8시간동안 반응시켜 나노하이브리드 알콕시 실란 기능성 전구체를 얻었다. 상기 나노하이브리드 알콕시 실란 기능성 전구체를 0.1M 농도의 HCl 수용액에서 Hydrolysis 반응을 통해 sol-gel 혼합물질을 얻었다. 상기 sol-gel 혼합물질 3g을 7g DMAC에 분산시켜 균질한 상의 나노하이브리드 알콕시 실란 기능성 고분자(D-ASFP)용액을 얻었다.14.8 g of DMBA and 34.8 g of TDI were completely dissolved in 100 mL of DMAC in a reaction flask at 60 ° C. and reacted for 12 hours, followed by adding 22.1 g of APTES and reacting at 50 ° C. for 8 hours to obtain a nanohybrid alkoxy silane functional precursor. The nano-hybrid alkoxy silane functional precursor was obtained through a hydrolysis reaction in an aqueous HCl solution at a concentration of 0.1 M to obtain a sol-gel mixture. 3 g of the sol-gel mixture was dispersed in 7 g DMAC to obtain a solution of nanohybrid alkoxy silane functional polymer (D-ASFP) in a homogeneous phase.
1-2. 과불소계 고분자 용액을 준비하는 단계1-2. Step for preparing a perfluorinated polymer solution
Nafion Dispersion (20wt%)을 petri dish에 붓고, 진공상태하의 60℃의 오븐에서 하루 동안 건조하여 고체상의 Nafion 고분자를 얻었다. 얻어진 Nafion을 유기상 과불소계 고분자 용액으로 준비하기 위해 2g Nafion, 8g DMAC를 60℃ hot-plate에서 12시간 동안 교반하여 20wt%의 과불소계 고분자 용액을 얻었다Nafion Dispersion (20wt%) was poured into a petri dish and dried in an oven at 60 ° C. under vacuum to obtain a solid Nafion polymer. In order to prepare the obtained Nafion as an organic phase perfluorinated polymer solution, 2 g Nafion and 8 g DMAC were stirred for 12 hours at 60 ° C. hot-plate to obtain a 20 wt% perfluorinated polymer solution.
2. 막전구체용액 준비단계2. Preparation of membrane precursor solution
준비된 알콕시 실란 기능성 고분자(D-ASFP) 용액과 과불소계 고분자 용액을 고형분 기준으로 50:50, 25:75, 20:80, 10:90의 중량비로 혼합하여 상온에서 24시간 교반하여 균질상 막전구체용액 1-1 내지 1-4를 제조하였다. The prepared alkoxy silane functional polymer (D-ASFP) solution and perfluorinated polymer solution are mixed at a weight ratio of 50:50, 25:75, 20:80, 10:90 based on solid content and stirred for 24 hours at room temperature to homogeneous membrane precursor Solutions 1-1 to 1-4 were prepared.
3. 캐스팅 단계3. Casting stage
막전구체용액 1-2(알콕시 실란 기능성 고분자용액 5g (고형분 1.5g) 및 과불소계고분자용액 22.5g (고형분 4.5g) 배합비)을 상온에서 유리판에 캐스팅하여 캐스팅층을 형성하였다.Membrane precursor solution 1-2 (5 g of alkoxy silane functional polymer solution (1.5 g of solid content) and 22.5 g of perfluorinated polymer solution (4.5 g of solid content) mixing ratio) was cast on a glass plate at room temperature to form a casting layer.
4. 제막단계4. Production stage
형성된 캐스팅층을 진공상태하의 60℃의 오븐에서 8시간동안 유지하여 표면 건조 후, 80℃에서 8시간동안, 100℃에서 8시간동안 추가 건조하여 용매를 제거하면서 캐스팅층에 포함된 알콕시 실란 기능성 고분자와 과불소계 고분자의열가교반응을 수행하여 알콕시 실란 기능성 고분자와 과불소계 고분자의 가교결합구조 및 가교결합구조내에 균일하게 분산된 나노 실리카입자를 포함하는 전구체막1-2를 얻었다.The formed casting layer was maintained in an oven at 60 ° C. under vacuum for 8 hours, followed by surface drying, and then further dried at 80 ° C. for 8 hours and 100 ° C. for 8 hours to remove the solvent, while removing the solvent, the alkoxy silane functional polymer contained in the casting layer By performing a thermal crosslinking reaction of and perfluorinated polymer, a precursor film 1-2 containing nano silica particles uniformly dispersed in a crosslinked structure and a crosslinked structure of an alkoxy silane functional polymer and a perfluorinated polymer was obtained.
5. 전처리단계5. Pre-treatment step
최종적으로 얻어진 전구체막을 3% H2O2 수용액에 침지시키고 증류수에 침지시킨 후, 0.5M H2SO4 수용액에 침지시키고 다시 증류수에 침지시켜 프로토네이션 전처리를 진행하여 유/무기 고분자전해질 복합막1을 얻었다. 상기 전처리단계의 각 과정은 50℃에서 30분씩 진행하였다. The precursor film finally obtained is immersed in a 3% H 2 O 2 aqueous solution, immersed in distilled water, and then immersed in 0.5MH 2 SO 4 aqueous solution and immersed again in distilled water to undergo protonation pretreatment to prepare an organic / inorganic polymer electrolyte composite membrane 1 Got. Each process of the pretreatment step was performed at 50 ° C for 30 minutes.
실시예 2Example 2
알콕시실란 기능성고분자용액을 준비하는 단계를 다음과 같이 수행한 것을 제외하면 실시예 1과 동일한 과정을 수행하여 유/무기 고분자전해질 복합막2를 얻었다.An organic / inorganic polymer electrolyte composite membrane 2 was obtained by performing the same process as in Example 1, except that the step of preparing the alkoxysilane functional polymer solution was performed as follows.
Bisphenol A 22.8g, DMBA 14.6g, TDI 34.8g를 60℃의 반응플라스크에서 DMAC 100mL에 완전히 녹여 12시간 동안 반응시킨 후 APTES 22.1g을 추가하여 넣고 50℃에서 8시간동안 반응시켜 나노하이브리드 알콕시 실란 기능성 전구체를 얻었다. 상기 나노하이브리드 알콕시 실란 기능성 전구체를 0.1M 농도의 HCl 수용액에서 acid hydrolysis 반응을 통해 sol-gel 혼합물질을 얻었다. 상기 sol-gel 혼합물질 1.5g을 8.5g DMAC에 분산시켜 균질한 상의 나노하이브리드 알콕시 실란 기능성 고분자(BD-ASFP) 용액을 얻었다.22.8g of Bisphenol A, 14.6g of DMBA, and 34.8g of TDI were completely dissolved in 100 mL of DMAC in a reaction flask at 60 ° C, reacted for 12 hours, then added 22.1g of APTES and reacted at 50 ° C for 8 hours to perform nanohybrid alkoxy silane functionality The precursor was obtained. The nanohybrid alkoxy silane functional precursor was obtained in a sol-gel mixture through an acid hydrolysis reaction in a 0.1 M HCl solution. 1.5 g of the sol-gel mixture was dispersed in 8.5 g DMAC to obtain a solution of nanohybrid alkoxy silane functional polymer (BD-ASFP) in a homogeneous phase.
실시예 3Example 3
알콕시실란 기능성고분자용액을 준비하는 단계를 다음과 같이 수행한 것을 제외하면 실시예 1과 동일한 과정을 수행하여 유/무기 고분자전해질 복합막3을 얻었다.An organic / inorganic polymer electrolyte composite membrane 3 was obtained by performing the same process as in Example 1, except that the step of preparing the alkoxysilane functional polymer solution was performed as follows.
Bisphenol A 22.8g, DMBA 14.6g, TDI 34.8g, PDMS 55g를 60℃의 반응플라스크에서 DMAC 100mL에 완전히 녹여 12시간 동안 반응시킨 후 APTES 22.1g을 추가하여 넣고 50℃에서 8시간동안 반응시켜 나노하이브리드 알콕시 실란 기능성 전구체를 얻었다. 상기 나노하이브리드 알콕시 실란 기능성 전구체를 0.1M 농도의 HCl 수용액에서 acid hydrolysis 반응을 통해 sol-gel 혼합물질을 얻었다. 상기 sol-gel 혼합물질 1g을 9g DMAC에 분산시켜 균질한 상의 나노하이브리드 알콕시 실란 기능성 고분자(BDP-ASFP) 용액을 얻었다.After dissolving 22.8 g of Bisphenol A, 14.6 g of DMBA, 34.8 g of TDI, and 55 g of PDMS in 100 mL of DMAC in a reaction flask at 60 ° C. for 12 hours, add 22.1 g of APTES and then react for 8 hours at 50 ° C. to nanohybrid An alkoxy silane functional precursor was obtained. The nanohybrid alkoxy silane functional precursor was obtained in a sol-gel mixture through an acid hydrolysis reaction in a 0.1 M HCl solution. 1 g of the sol-gel mixture was dispersed in 9 g DMAC to obtain a solution of nanohybrid alkoxy silane functional polymer (BDP-ASFP) in a homogeneous phase.
실험예 1Experimental Example 1
실시예1 내지 3에서 제조된 D-ASFP, BD-ASFP, BDP-ASFP의 합성여부를 확인하기 위해서 적외선 분광법(Fourier-transform infrared spectroscopy, FT-IR)으로 비교 분석하였으며, 그 결과는 도 4에 나타내었다.In order to confirm the synthesis of D-ASFP, BD-ASFP, and BDP-ASFP prepared in Examples 1 to 3, comparative analysis was performed by Fourier-transform infrared spectroscopy (FT-IR), and the results are shown in FIG. 4. Shown.
도 4에 도시된 바와 같이, PDMS 및 APTES의 Si-O-Si, Si-O-C 그룹의 피크 (1000 - 1100cm-1)가 D-ASFP, BD-ASFP, BDP-ASFP 에서 모두 나타났고, TDI와 DMBA 사이의 가교구조의 Urea 그룹에서 유래한 NHC=O 관능기 (1600 - 1650cm-1) 피크가 D-ASFP, BD-ASFP, BDP-ASFP에서 모두 나타난 것으로 보아 합성이 이루어졌음을 확인할 수 있었다. 또한 DMBA의 카르복실 그룹에서 유래한 C=O 관능기 (1700 -1750 cm-1) 피크가 D-ASFP, BD-ASFP, BDP-ASFP에서 모두 나타난 것으로 보아 상기 알콕시 실란 기능성 고분자가 성공적으로 제조되었음을 확인할 수 있다.As shown in FIG. 4, peaks (1000-1100 cm -1 ) of Si-O-Si and Si-OC groups of PDMS and APTES were found in D-ASFP, BD-ASFP, and BDP-ASFP. The NHC = O functional group (1600-1650cm -1 ) peak derived from the Urea group of the crosslinking structure between DMBAs was found to be found in all of D-ASFP, BD-ASFP, and BDP-ASFP. In addition, the C = O functional group (1700 -1750 cm -1 ) peaks derived from the carboxyl group of DMBA were shown in D-ASFP, BD-ASFP, and BDP-ASFP, confirming that the alkoxy silane functional polymer was successfully prepared. You can.
실험예 2Experimental Example 2
실시예 1에서 제조된 유/무기고분자전해질복합막1(Nafion-ASFP)의 알콕시 실란 기능성 고분자 및 과불소계고분자 사이의 이온결합가교구조를 확인하기 위해서 알콕시 실란 기능성 고분자(ASFP)를 대조군으로 하여 적외선 분광법(Fourier-transform infrared spectroscopy, FT-IR)으로 비교 분석하였으며, 그 결과는 도 5에 나타내었다.In order to confirm the ionic bond crosslinking structure between the alkoxy silane functional polymer and the perfluorinated polymer of the organic / inorganic polymer electrolyte composite membrane 1 (Nafion-ASFP) prepared in Example 1, infrared light was used as a control. Comparative analysis was performed by fluorescence (Fourier-transform infrared spectroscopy, FT-IR), and the results are shown in FIG. 5.
도 5에 도시된 바와 같이, 대조군인 나피온(Nafion), 알콕시 실란 기능성 고분자(ASFP)와 유/무기 고분자전해질복합막1(Nafion-ASFP)의 피크를 비교하면, 나피온 막에서 관찰할 수 없는 ASFP의 카르복실 그룹에서 유래한 C=O 관능기 (1700 - 1750cm-1) 피크가 복합막에서 나타나고, ASFP의 Urea 그룹에서 유래한 NHC=O 관능기 (1600 - 1650cm-1) 피크가 복합막에서 나타난 것으로 보아 복합막내에 ASFP가 도입되었음을 확인할 수 있었다. 또한 알콕시 실란 기능성 고분자의 Si-O-C, Si-O-Si 그룹의 피크가 1000 - 1100cm-1 에서 관찰되었으며, 특히, 1000 cm-1 에서 관찰된 특성피크는 실란계 고분자가 과불소계 고분자와 함께 복합막을 형성하는 특성피크임을 확인할 수 있다. 한편, 상기 알콕시 실란 기능성 고분자의 Si-O-C, Si-O-Si 그룹의 피크 (1000 - 1100cm-1)는 과불소계고분자의 SO3H 그룹의 피크와 겹쳐져 나타났으나, 앞서 설명한 바와 같이 1000 cm-1 에서 관찰된 특성피크를 통해 복합막이 성공적으로 제조되었음을 확인할 수 있다.As shown in FIG. 5, when comparing the peaks of the control groups Nafion, alkoxy silane functional polymer (ASFP) and organic / inorganic polymer electrolyte membrane 1 (Nafion-ASFP), it can be observed in the Nafion membrane. A C = O functional group (1700-1750cm -1 ) peak derived from the carboxyl group of ASFP without appears on the composite membrane, and an NHC = O functional group (1600-1650cm -1 ) peak derived from the Urea group of ASFP appears on the composite membrane. As can be seen, it was confirmed that ASFP was introduced into the composite membrane. In addition, the alkoxysilane functionality is a peak of Si-OC, Si-O- Si group in the polymer 1000 - 1100cm -1 were observed in, in particular, the characteristic peak observed at 1000 cm -1 is a silane-based polymer is combined with a perfluorinated polymer Subtotal It can be seen that it is a characteristic peak forming a film. On the other hand, the peaks (1000-1100 cm -1 ) of the Si-OC and Si-O-Si groups of the alkoxy silane functional polymer overlapped with the peaks of the SO 3 H group of the perfluorinated polymer, but as described above, 1000 cm Through the characteristic peaks observed at -1 , it can be confirmed that the composite film was successfully prepared.
실험예 3Experimental Example 3
실시예 1에서 제조된 유/무기 고분자전해질복합막1(Nafion-ASFP)의 열적안정성을 확인하기 위해서, Nafion 212 및 유/무기 고분자전해질복합막1을 대상으로 열중량 분석(Thermogravimetric analysis, TGA)을 실시하고 그 결과를 도 6에 도시하였다.In order to confirm the thermal stability of the organic / inorganic polymer electrolyte membrane 1 (Nafion-ASFP) prepared in Example 1, thermogravimetric analysis (TGA) was performed on Nafion 212 and the organic / inorganic polymer electrolyte membrane 1 And the results are shown in FIG. 6.
도 6의 TGA 분석 그래프에서 Nafion 212의 SO3H 그룹이 350℃에서 dissociation이 일어나며, 450℃에는 main chain의 degradation이 일어나 500℃에서는 완전 소멸됨을 확인하였다. 유/무기 고분자전해질복합막1은 SO3H 그룹이 350℃에서 dissociation이 일어나며, 450℃에는 main chain의 degradation이 일어나기 시작했지만 500℃ 이후에 잔류물질이 존재함을 확인하였다. 이는 무기 고분자의 도입으로 인해 형성된 실리카 입자가 500℃ 이후에 잔류물질로 존재하는 것으로 판단된다. 이를 통해 유/무기 고분자전해질복합막1에 무기 입자가 도입되었음을 확인하였을 뿐만 아니라 유/무기 고분자 전해질 복합막1이 Nafion 212보다 열적안정성이 우수함을 확인할 수 있다.In the TGA analysis graph of FIG. 6, it was confirmed that the SO 3 H group of Nafion 212 was dissociated at 350 ° C, and degradation of the main chain occurred at 450 ° C, resulting in complete disappearance at 500 ° C. In the organic / inorganic polymer electrolyte composite membrane 1, SO 3 H group dissociation occurred at 350 ° C, and degradation of the main chain began to occur at 450 ° C, but it was confirmed that a residual material was present after 500 ° C. It is believed that the silica particles formed due to the introduction of the inorganic polymer exist as a residual material after 500 ° C. Through this, it was confirmed that inorganic particles were introduced into the organic / inorganic polymer electrolyte composite film 1, and it was confirmed that the organic / inorganic polymer electrolyte composite film 1 had better thermal stability than Nafion 212.
실험예 4Experimental Example 4
실시예 1에서 제조된 유/무기 고분자전해질복합막1(Nafion-ASFP)의 함수율(Water uptake) 및 치수변화율(Dimensional change)을 측정하기 위해, 유/무기 고분자전해질복합막 및 Nafion212를 대상으로 다음과 같이 함수율 및 치수변화율을 다음과 같이 측정하고 그 결과를 도 7에 나타내었다. To measure the water uptake and dimensional change of the organic / inorganic polymer electrolyte composite membrane 1 (Nafion-ASFP) prepared in Example 1, the organic / inorganic polymer electrolyte composite membrane and Nafion212 were subjected to the following. The water content and dimensional change rate were measured as follows and the results are shown in FIG. 7.
구체적으로는 유/무기 고분자전해질복합막1 및 Nafion 212를 진공상태하의 80℃ 오븐에서 24시간 이상 건조한 후 질량을 측정하고, 증류수에 24시간 함습시킨 후 표면의 수분을 제거하여 무게 증가 및 치수 변화를 측정하고 다음 식을 통해 함수율 및 치수변화율을 측정하였다.Specifically, the organic / inorganic polymer electrolyte membranes 1 and Nafion 212 were dried in an oven at 80 ° C. for more than 24 hours under vacuum, the mass was measured, and after being moistened with distilled water for 24 hours, the surface moisture was removed to increase the weight and change the dimensions. Was measured and the moisture content and the rate of dimensional change were measured through the following equation.
Figure PCTKR2019001878-appb-I000001
Figure PCTKR2019001878-appb-I000001
유/무기 고분자전해질복합막1 및 Nafion 212의 함수율 및 치수변화율을 측정한 결과인 도 7에 도시된 바와 같이 Nafion 212의 경우 함수율이 24%, 치수변화율이 14%로 크게 변화하였다. 유/무기 고분자전해질복합막1의 경우 함수율이 13%, 치수변화율은 4%로 Nafion 212 대비 매우 낮은 함수율 및 치수변화율을 확인하였다. 이는 알콕시 실란 기능성 고분자의 도입 및 나노 실리카 입자의 생성으로 인해 유/무기 고분자전해질복합막1의 친수성 채널이 감소되었기 때문으로 판단된다.As shown in FIG. 7, which is a result of measuring the water content and dimensional change rate of the organic / inorganic polymer electrolyte membrane 1 and Nafion 212, the water content of Nafion 212 was significantly changed to 24% and the dimensional change rate to 14%. In the case of the organic / inorganic polymer electrolyte composite membrane 1, the moisture content was 13% and the dimensional change rate was 4%, which was very low compared to Nafion 212, and the dimensional change rate was confirmed. This is considered to be because the hydrophilic channel of the organic / inorganic polymer electrolyte membrane 1 was reduced due to the introduction of the alkoxy silane functional polymer and generation of nano silica particles.
실험예 5Experimental Example 5
실시예 1에서 제조된 유/무기 고분자전해질복합막1(Nafion-ASFP)의 이온교환용량(Ion Exchange Capacity, IEC)을 분석하기 위해, 유/무기 고분자전해질복합막1 및 Nafion212를 대상으로 다음과 같이 이온교환용량을 측정하고 그 결과를 도 8에 나타내었다.To analyze the ion exchange capacity (IEC) of the organic / inorganic polymer electrolyte membrane 1 (Nafion-ASFP) prepared in Example 1, the organic / inorganic polymer electrolyte membrane 1 and Nafion212 were subjected to the following. Similarly, the ion exchange capacity was measured, and the results are shown in FIG. 8.
구체적으로는 유/무기고분자전해질복합막1 또는 Nafion212를 1M NaCl 용액에 24시간 함침 후 페놀프탈레인 지시약으로 하여 0.1M NaOH 용액으로 적정하였다.Specifically, the organic / inorganic polymer electrolyte membrane 1 or Nafion212 was impregnated with a 1M NaCl solution for 24 hours, and then titrated with a 0.1M NaOH solution as a phenolphthalein indicator.
유/무기 고분자전해질복합막1 및 Nafion212의 이온교환용량을 측정한 결과인 도 8에 도시된 바와 같이 Nafion212의 이온교환용량이 유/무기 고분자전해질복합막1에 비해 높게 측정되었다. 이는 알콕시 실란 기능성 고분자의 도입 및 나노 실리카 입자의 생성으로 인해 유/무기 고분자전해질복합막1의 친수성 채널이 감소되었기 때문으로 판단된다.As shown in FIG. 8, which is a result of measuring the ion exchange capacity of the organic / inorganic polymer electrolyte membrane 1 and Nafion212, the ion exchange capacity of Nafion212 was higher than that of the organic / inorganic polymer electrolyte membrane 1. This is considered to be because the hydrophilic channel of the organic / inorganic polymer electrolyte membrane 1 was reduced due to the introduction of the alkoxy silane functional polymer and generation of nano silica particles.
실험예 6Experimental Example 6
실시예 1에서 제조된 유/무기 고분자전해질복합막1(Nafion-ASFP)을 상온의 증류수에 24시간 침지한 다음, 이온전도도 셀의 전극 사이에 막을 넣은 후, 증류수 속에서 교류 임피던스 측정을 실시하여 막의 이온전도도를 측정하고 그 결과를 도 9에 나타내었다.The organic / inorganic polymer electrolyte composite membrane 1 (Nafion-ASFP) prepared in Example 1 was immersed in distilled water at room temperature for 24 hours, and then the membrane was placed between the electrodes of the ion conductivity cell, and then AC impedance measurement was performed in distilled water. The ionic conductivity of the membrane was measured and the results are shown in FIG. 9.
유/무기 고분자전해질복합막1 및 Nafion212의 이온전도도를 측정한 결과인 도 9로부터 Nafion 212가 유/무기 고분자전해질복합막1보다 높은 이온전도도를 가졌는데, 이는 알콕시 실란 기능성 고분자의 도입 및 나노 실리카 입자의 생성으로 인해 유/무기 고분자전해질복합막의 이온전달을 위한 채널이 감소되었기 때문으로 판단된다.From FIG. 9, which is a result of measuring the ionic conductivity of the organic / inorganic polymer electrolyte membrane 1 and Nafion212, Nafion 212 has a higher ionic conductivity than the organic / inorganic polymer electrolyte membrane 1, which introduces alkoxy silane functional polymers and nano silica It is judged that the channel for ion transfer of the organic / inorganic polymer electrolyte composite membrane was reduced due to the formation of particles.
실험예 7Experimental Example 7
실시예 1에서 얻어진 유/무기 고분자전해질복합막1(Nafion-ASFP)의 투과도를 측정하기 위해, 유/무기 고분자전해질복합막 및 Nafion 212를 대상으로 다음과 같이 투과도를 측정하고 그 결과를 도 10에 도시하였다.In order to measure the permeability of the organic / inorganic polymer electrolyte membrane 1 (Nafion-ASFP) obtained in Example 1, the organic / inorganic polymer electrolyte membrane and Nafion 212 were measured for the transmittance as follows and the results are shown in FIG. 10. It was shown in.
구체적으로, 유/무기 고분자전해질복합막1 또는 Nafion 212를 바나듐레독스흐름전지 단위 셀에 조립하고, 양쪽 전해액 용기에 각각 1.5M VOSO4 / 3M H2SO4용액과 1.5M MgSO4 / 3M H2SO4 용액을 50mL씩 넣고, 전해액을 단위 셀 방향으로 흘려보내면서 일정 시간간격으로 MgSO4 용액이 들어간 전해액 용기에서 시료를 채취하였다. 채취된 시료들은 3M H2SO4 용액에 용해된 1.5M MgSO4 용액을 blank로 하여 UV-vis spectrometer를 이용하여 농도를 측정해 투과된 바나듐 이온의 양을 측정하였다.Specifically, the organic / inorganic polymer electrolyte composite membrane 1 or Nafion 212 was assembled in a vanadium redox flow cell unit cell, and 1.5M VOSO 4 / 3M H 2 SO 4 solution and 1.5M MgSO 4 / 3M H were placed in both electrolyte containers, respectively. 2 SO 4 solution was added in 50 mL increments, and the sample was collected from the electrolyte container containing the MgSO 4 solution at regular intervals while flowing the electrolyte in the unit cell direction. The collected samples were measured using a UV-vis spectrometer with a blank 1.5M MgSO 4 solution dissolved in 3M H 2 SO 4 solution to measure the amount of vanadium ions permeated.
유/무기 고분자전해질복합막1 및 Nafion 212의 VO2+ 이온의 투과도와 시간별 VO2+ 이온의 농도변화를 보여주는 도 10으로부터, Nafion 212의 경우 투과도가 2.217× 10-7cm2/min로 나타났고, 유/무기 고분자전해질복합막1의 투과도는 1.259× 10-7cm2/min로 Nafion 212에 비하여 40%이상 낮게 나타났다. 이를 통해 유/무기 고분자전해질복합막은 VO2+ 이온의 투과 특성이 크게 개선되었음을 확인하였다.From FIG. 10 showing the permeability of VO 2+ ions of the organic / inorganic polymer electrolyte membrane 1 and Nafion 212 and the concentration change of VO 2+ ions over time, in the case of Nafion 212, the permeability is 2.217 × 10 -7 cm 2 / min The permeability of the organic / inorganic polymer electrolyte membrane 1 was 1.259 × 10 −7 cm 2 / min, which was lower than Nafion 212 by 40% or more. Through this, it was confirmed that the organic / inorganic polymer electrolyte composite membrane had significantly improved the permeation properties of VO 2+ ions.
실험예 8Experimental Example 8
실시예 1에서 얻어진 유/무기 고분자전해질복합막1(Nafion-ASFP)의 이온선택도를 분석하기 위해, 실험예 5의 이온전도도와 실험예 6의 투과도를 이용하여 다음 식을 통해 유/무기 고분자전해질복합막1 및 Nafion212의 이온선택도를 계산하고 그 결과를 도 11에 도시하였다.To analyze the ion selectivity of the organic / inorganic polymer electrolyte composite membrane 1 (Nafion-ASFP) obtained in Example 1, using the ion conductivity of Experimental Example 5 and the transmittance of Experimental Example 6, the organic / inorganic polymer was The ion selectivity of the electrolyte composite membrane 1 and Nafion212 was calculated and the results are shown in FIG. 11.
Figure PCTKR2019001878-appb-I000002
Figure PCTKR2019001878-appb-I000002
Nafion212의 이온전도도는 높게 측정되었지만 투과도가 높게 측정되어 이온선택도가 유/무기 고분자전해질복합막보다 낮게 나타났다. 반면 유/무기 고분자전해질복합막1의 경우 이온전도도는 낮았지만 투과도가 낮게 측정되어 이온선택도가 39%이상 높게 나타났다. 이를 통해 유/무기 고분자전해질복합막1은 우수한 이온선택 특성을 갖는 것을 확인하였다.The ionic conductivity of Nafion212 was measured high, but the permeability was high, indicating that the ion selectivity was lower than that of the organic / inorganic polymer electrolyte composite membrane. On the other hand, in the case of the organic / inorganic polymer electrolyte composite membrane 1, the ion conductivity was low, but the permeability was measured to be low, so the ion selectivity was higher than 39%. Through this, it was confirmed that the organic / inorganic polymer electrolyte composite membrane 1 had excellent ion selection characteristics.
상술된 실험결과들은 본 발명의 유/무기 고분자전해질복합막이 레독스흐름전지에 사용된 경우만을 예시하였으나, 다른 종류의 이차전지 또는 연료전지와 같은 에너지저장장치에 사용될 경우에도 셀 성능을 향상시킬 뿐만 아니라 장기 운전 성능 역시 향상시킬 수 있음이 예측될 수 있다.The above-described experimental results illustrate only the case where the organic / inorganic polymer electrolyte composite film of the present invention is used in a redox flow cell, but also improves cell performance when used in energy storage devices such as other types of secondary cells or fuel cells. In addition, it can be expected that long-term driving performance can also be improved.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.The present invention has been shown and described with reference to preferred embodiments, as described above, but is not limited to the above-described embodiments and to those skilled in the art to which the present invention pertains without departing from the spirit of the present invention. By this, various changes and modifications will be possible.

Claims (16)

  1. 알콕시실란 기능성고분자와 과불소계고분자의 가교결합구조; 및A crosslinking structure of an alkoxysilane functional polymer and a perfluorinated polymer; And
    상기 가교결합구조 내부에 균일하게 분산된 나노실리카입자;를 포함하는 유/무기고분자전해질 복합막.An organic / inorganic polymer electrolyte composite membrane comprising; nano-silica particles uniformly dispersed in the cross-linking structure.
  2. 제 1 항에 있어서,According to claim 1,
    상기 알콕시실란기능성고분자는 D-ASFP (Diol Alkoxysilane- Functionalized Polymer), BD-ASFP (Bisphenol Dimethylbenzanthracene ASFP), BDP-ASFP (Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 유/무기고분자전해질 복합막.The alkoxysilane functional polymer is characterized in that it is at least one selected from the group consisting of Diol Alkoxysilane- Functionalized Polymer (D-ASFP), Bisphenol Dimethylbenzanthracene ASFP (BD-ASFP), Bisphenol Dimethylbenzanthracene Polydimethylsiloxane ASFP (BDP-ASFP), and combinations thereof. Organic / inorganic polymer electrolyte composite membrane.
  3. 제 1 항에 있어서,According to claim 1,
    상기 과불소계고분자는 나피온(듀폰), 3M 아이오노머 (3M), 푸미온(Fumion), 아키플렉스(Aciplex), 아퀴비온(Aquivion), 술폰화된 과불소계 고분자(PFSA, perfluorinated sulfonic acid), 폴리테트라플루오로에틸렌, 폴리비닐리덴플로라이드(poly(vinylidene fluoride)), 폴리비닐플로라이드(poly (vinyl fluoride)), 폴리비닐리덴 플루오르 코 퍼플루오르화 알킬비닐에테르(poly (vinylidene fluo-co-perfluorinated alkyl vinyl ethers))의 조합으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 유/무기고분자전해질 복합막.The perfluorinated polymers include Nafion (DuPont), 3M Ionomer (3M), Fumion, Aciplex, Aquivion, sulfonated perfluorinated sulfonic acid (PFSA), Polytetrafluoroethylene, poly (vinylidene fluoride), poly (vinyl fluoride), polyvinylidene fluoride coperfluorinated alkylvinyl ether (poly (vinylidene fluo-co-) Perfluorinated alkyl vinyl ethers)) organic / inorganic polymer electrolyte composite membrane, characterized in that at least one selected from the group consisting of a combination.
  4. 제 1 항에 있어서,According to claim 1,
    이온 투과도가 2×10-7 cm2/min 이하인 것을 특징으로 하는 유/무기고분자전해질 복합막.An organic / inorganic polymer electrolyte composite membrane, characterized in that the ion permeability is 2 × 10 −7 cm 2 / min or less.
  5. 알콕시실란 기능성고분자용액 및 과불소계고분자용액을 준비하는 단계; Preparing an alkoxysilane functional polymer solution and a perfluorinated polymer solution;
    상기 알콕시실란 기능성고분자용액과 과불소계 고분자 용액을 혼합하여 막전구체용액을 준비하는 단계; Preparing a membrane precursor solution by mixing the alkoxysilane functional polymer solution with a perfluorinated polymer solution;
    상기 막전구체용액을 캐스팅하여 캐스팅층을 형성하는 캐스팅단계;A casting step of casting the membrane precursor solution to form a casting layer;
    상기 캐스팅층에 포함된 알콕시실란 기능성고분자와 과불소계고분자를 가교시켜 전구체막을 형성하는 제막단계; 및A film forming step of crosslinking the alkoxysilane functional polymer and perfluorinated polymer contained in the casting layer to form a precursor film; And
    상기 전구체막을 프로토네이션시키는 전처리단계;를 포함하는 유/무기고분자전해질 복합막 제조방법.Pre-processing step of prototyping the precursor film; containing organic / inorganic polymer electrolyte composite film manufacturing method.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 알콕시실란 기능성고분자용액 및 상기 과불소계고분자용액은 각각 용매 100중량부 당 알콕시 실란 기능성 고분자 및 과불소계고분자를 5 내지 70중량부 포함하는 것을 특징으로 하는 유/무기고분자전해질 복합막 제조방법.The alkoxysilane functional polymer solution and the perfluorinated polymer solution are organic / inorganic polymer electrolyte composite membranes, each comprising 5 to 70 parts by weight of an alkoxysilane functional polymer and perfluorinated polymer per 100 parts by weight of a solvent.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 용매는 증류수, 에탄올, 이소프로판올, 메탄올, 디메틸술폭사이드, N,N-디메틸아세트아미드, N-메틸-2-피릴리디논, N,N-디메틸포름아미드로 구성된 군에서 선택되는 하나 이상인 것을 특징으로 하는 유/무기고분자전해질 복합막 제조방법.The solvent is at least one selected from the group consisting of distilled water, ethanol, isopropanol, methanol, dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl-2-pyridylinone, N, N-dimethylformamide. Organic / inorganic polymer electrolyte composite membrane manufacturing method.
  8. 제 5 항에 있어서, The method of claim 5,
    상기 막전구체용액은 상기 알콕시 실란 기능성 고분자 용액 5 ~ 95 중량% 및 상기 과불소계고분자 용액 95 ~ 5 중량%를 포함하는 것을 특징으로 하는 유/무기고분자전해질 복합막 제조방법.The membrane precursor solution is a method for producing an organic / inorganic polymer electrolyte composite membrane comprising 5 to 95% by weight of the alkoxy silane functional polymer solution and 95 to 5% by weight of the perfluorinated polymer solution.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 막전구체용액은 상기 알콕시 실란 기능성 고분자 용액 및 상기 과불소계고분자 용액을 20~50도의 온도에서 교반하여 얻어지는 특징으로 하는 유/무기고분자전해질 복합막 제조방법.The membrane precursor solution is a method of manufacturing an organic / inorganic polymer electrolyte composite membrane, which is obtained by stirring the alkoxy silane functional polymer solution and the perfluorinated polymer solution at a temperature of 20 to 50 degrees.
  10. 제 5 항에 있어서,The method of claim 5,
    상기 제막단계는 상기 캐스팅층을 70℃ 이하의 진공상태에서 건조시키는 단계; 건조된 캐스팅층을 70 내지 90℃에서 처리하는 1차 열처리 단계; 및 100℃이상의 온도에서 처리하는 2차 열처리 단계;를 포함하는 것을 특징으로 하는 유/무기고분자전해질 복합막 제조방법.The film forming step includes drying the casting layer in a vacuum of 70 ° C. or less; A primary heat treatment step of treating the dried cast layer at 70 to 90 ° C; And Secondary heat treatment step of processing at a temperature of 100 ℃ or higher; organic / inorganic polymer electrolyte composite membrane production method comprising a.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제막단계에서 열가교반응을 통해 상기 알콕시실란 기능성고분자와 과불소계고분자의 가교결합구조 및 상기 가교결합구조 내부에 균일하게 분산된 나노실리카입자가 생성되는 것을 특징으로 하는 유/무기고분자전해질 복합막 제조방법.Organic / inorganic polymer electrolyte composite membrane characterized in that crosslinking structure of the alkoxysilane functional polymer and perfluorinated polymer and nanosilica particles uniformly dispersed inside the crosslinking structure are generated through the thermal crosslinking reaction in the film forming step Manufacturing method.
  12. 제 5 항에 있어서,The method of claim 5,
    상기 프로토네이션은 상기 전구체막을 염기성수용액에 침지시켜 처리한 후 증류수에 침지시키고, 다시 산성수용액에 침지시켜 처리한 후 증류수에 침지시켜 수행되는 것을 특징으로 하는 유/무기고분자전해질 복합막 제조방법.The protonation is performed by immersing the precursor film in a basic aqueous solution and then immersing it in distilled water, then immersing it in an acidic aqueous solution, and then immersing it in distilled water.
  13. 제 1 항 내지 제 4 항 중 어느 한 항의 유/무기고분자전해질 복합막 또는 제 5 항 내지 제 12 항 중 어느 한 항의 제조방법으로 제조된 유/무기고분자전해질 복합막을 포함하는 연료전지. A fuel cell comprising the organic / inorganic polymer electrolyte composite membrane of any one of claims 1 to 4 or the organic / inorganic polymer electrolyte composite membrane prepared by the method of any one of claims 5 to 12.
  14. 제 1 항 내지 제 4 항 중 어느 한 항의 유/무기고분자전해질 복합막 또는 제 5 항 내지 제 12 항 중 어느 한 항의 제조방법으로 제조된 유/무기고분자전해질 복합막을 포함하는 에너지저장장치. An energy storage device comprising the organic / inorganic polymer electrolyte composite membrane of any one of claims 1 to 4 or the organic / inorganic polymer electrolyte composite membrane prepared by the method of any one of claims 5 to 12.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 에너지저장장치는 레독스흐름전지 또는 연료전지인 것을 특징으로 하는 에너지저장장치. The energy storage device is an energy storage device characterized in that the redox flow cell or a fuel cell.
  16. 제 1 항 내지 제 4 항 중 어느 한 항의 유/무기고분자전해질 복합막 또는 제 5 항 내지 제 12 항 중 어느 한 항의 제조방법으로 제조된 유/무기고분자전해질 복합막을 포함하는 수처리장치. A water treatment device comprising the organic / inorganic polymer electrolyte composite membrane of any one of claims 1 to 4 or the organic / inorganic polymer electrolyte composite membrane prepared by the method of any one of claims 5 to 12.
PCT/KR2019/001878 2018-09-28 2019-02-15 Organic/inorganic polymer electrolyte composite membrane and manufacturing method therefor WO2020067614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180116356A KR102193759B1 (en) 2018-09-28 2018-09-28 Organic/Inorganic Composite Membrane and the same as the Methods
KR10-2018-0116356 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067614A1 true WO2020067614A1 (en) 2020-04-02

Family

ID=69952228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001878 WO2020067614A1 (en) 2018-09-28 2019-02-15 Organic/inorganic polymer electrolyte composite membrane and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102193759B1 (en)
WO (1) WO2020067614A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102656659B1 (en) * 2021-11-05 2024-04-11 한국전력공사 Organic-inorganic nano-polymer composite film introduced with organic precursor and redox flow battery comprising the same and method for manufacturing the same
KR102525782B1 (en) * 2021-12-30 2023-04-26 주식회사 정석케미칼 Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267856A (en) * 2004-03-16 2005-09-29 Mitsubishi Heavy Ind Ltd Nanocomposite polymer electrolyte
KR20070008027A (en) * 2005-07-12 2007-01-17 삼성에스디아이 주식회사 Proton conductive composite membrane using inorganic conductor and method of producing the same
WO2012017348A1 (en) * 2010-08-06 2012-02-09 Breton Spa Hybrid membranes containing titanium dioxide doped with fluorine
US20150340721A1 (en) * 2012-12-21 2015-11-26 Audi Ag Electrolyte membrane, dispersion and method therefor
CN106684414A (en) * 2016-11-23 2017-05-17 长春工业大学 Organic-inorganic composite type high-temperature proton exchange membrane used for fuel cell and preparation method for proton exchange membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142235B1 (en) * 2010-01-28 2012-05-24 금오공과대학교 산학협력단 High molecular nano complexe membrane for DMFC, Membrane electrode assembly containg that, and Direct methanol fuel cell
KR20130050825A (en) * 2011-11-08 2013-05-16 한양대학교 산학협력단 Organic-inorganic composite membrane and fuel cell comprising the same
KR20180003098A (en) 2016-06-30 2018-01-09 한국과학기술원 Method for Manufacturing Membrane Dispersed Reinforcement for Redox Flow Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267856A (en) * 2004-03-16 2005-09-29 Mitsubishi Heavy Ind Ltd Nanocomposite polymer electrolyte
KR20070008027A (en) * 2005-07-12 2007-01-17 삼성에스디아이 주식회사 Proton conductive composite membrane using inorganic conductor and method of producing the same
WO2012017348A1 (en) * 2010-08-06 2012-02-09 Breton Spa Hybrid membranes containing titanium dioxide doped with fluorine
US20150340721A1 (en) * 2012-12-21 2015-11-26 Audi Ag Electrolyte membrane, dispersion and method therefor
CN106684414A (en) * 2016-11-23 2017-05-17 长春工业大学 Organic-inorganic composite type high-temperature proton exchange membrane used for fuel cell and preparation method for proton exchange membrane

Also Published As

Publication number Publication date
KR102193759B1 (en) 2020-12-21
KR20200036563A (en) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2010140733A1 (en) Porous ceramic scaffold, reinforced composite electrolyte membrane using same, and membrane/electrode assembly having same
US7309523B2 (en) Hybrid material, use of said hybrid material and method for making same
CN103408796B (en) Preparation method of polymer composite membrane used for methanol fuel cells
Tang et al. Properties and stability of quaternary ammonium-biphosphate ion-pair poly (sulfone) s high temperature proton exchange membranes for H2/O2 fuel cells
Zhu et al. Hybrid proton conducting membranes based on sulfonated cross-linked polysiloxane network for direct methanol fuel cell
WO2020067614A1 (en) Organic/inorganic polymer electrolyte composite membrane and manufacturing method therefor
CN101735591B (en) Organic-inorganic hybrid cross-linked sulfonated polyaryletherketone polymer electrolyte material and preparation method thereof
WO2018190660A1 (en) Method for hydrophilizing porous membrane and method for manufacturing ion-exchange membrane using same
Thanganathan Effects of imidazole on the thermal and conductivity properties of hybrid membrane based on poly (vinyl alcohol)/SiO 2
US8357817B2 (en) Sulfone hybrid precursor, method of synthesizing same, and uses thereof
KR101085358B1 (en) Hydrocarbon membranes comprising silane compound, method for manufacturing the same, mea and fuel cell using the same
CN103601818B (en) A kind of preparation method of chitosan modification-polymercomposite composite membrane
KR100692759B1 (en) Proton exchange polymer comprising an inorganic polymer and method of its preparation and a membrane preparated by using the same
KR102341369B1 (en) Organic- Inorganic composite solution, procedure for producing the same, organic-inorganic hybrid composite membrane and the application using the same
WO2018190535A1 (en) Expandable porous organic polymer-based hydrogen ion conductive material and method for preparing same
CN103700873B (en) Inorganic nanoparticle in-situ modified polybenzimidazole derivative proton exchange membrane and preparation method thereof
WO2016006869A1 (en) Nanocomposite film comprising polyhedral oligomeric form of silsesquioxane containing sulfonic acid groups and method for manufacturing same
US20200339758A1 (en) Silane-based functionalized polymer, method of preparing same and polymer electrolyte composite membrane including same
KR102332295B1 (en) Organic/Inorganic Composite Membrane and the same as the Methods
Chi et al. Preparation of poly (vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells
Wu et al. SPES‐SiO2 hybrid proton exchange membranes from in situ sol–gel process of negatively charged alkoxysilane
US20110159406A1 (en) Superconducting electrolytic hybrid material, and preparation method and uses thereof
KR102602488B1 (en) Anion organic-inorganic electrolyte membrane based on GO derivatives including zwitterion and process for their preparation
KR20230065756A (en) Nanocomposite polymer electrolyte membrane and redox flow battery comprising the same and method for manufacturing the same
KR102656659B1 (en) Organic-inorganic nano-polymer composite film introduced with organic precursor and redox flow battery comprising the same and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867155

Country of ref document: EP

Kind code of ref document: A1