WO2020063794A1 - 聚合物分散体及其制备方法、固态电解电容器 - Google Patents

聚合物分散体及其制备方法、固态电解电容器 Download PDF

Info

Publication number
WO2020063794A1
WO2020063794A1 PCT/CN2019/108332 CN2019108332W WO2020063794A1 WO 2020063794 A1 WO2020063794 A1 WO 2020063794A1 CN 2019108332 W CN2019108332 W CN 2019108332W WO 2020063794 A1 WO2020063794 A1 WO 2020063794A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
optionally substituted
electrolytic capacitor
solid electrolytic
polymer
Prior art date
Application number
PCT/CN2019/108332
Other languages
English (en)
French (fr)
Inventor
赵大成
燕民翔
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811145160.XA external-priority patent/CN110003496B/zh
Priority claimed from CN201811151153.0A external-priority patent/CN110010353B/zh
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2020063794A1 publication Critical patent/WO2020063794A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass

Definitions

  • the invention belongs to the field of conductive polymer materials, and particularly relates to a polymer dispersion, a preparation method thereof, and a solid electrolytic capacitor.
  • Solid electrolytic capacitors use solid conductive materials with high conductivity and good thermal stability as the electrolyte. Compared with ordinary electrolytic capacitors, they not only have all the characteristics of ordinary electrolytic capacitors, but also have good reliability, long service life, high frequency and low impedance, The characteristics of ultra-high ripple current can overcome the disadvantages of liquid electrolytic capacitors that are easy to leak and have a short life. With the rapid development of the domestic electronic information industry, from the development trend in recent years, solid electrolytic capacitors will gradually replace ordinary low-voltage electrolytic capacitors and will become one of the pillar products of the electronic information industry in the 21st century.
  • Doping is an effective way to improve the conductivity of polymers.
  • Polymer materials with conjugated chemical double bonds can be oxidized or reduced by adding dopants to obtain better electrochemical activity.
  • doping the purpose of reducing the energy band gap and reducing the resistance of free charge migration is achieved, thereby significantly improving the conductivity of the conjugated polymer, and its conductivity can be improved by several to ten orders of magnitude.
  • the conjugated structure of the polymer allows large ⁇ electrons to have high electron mobility and high degree of electron delocalization.
  • the current doping method usually introduces a certain dopant (such as elemental iodine, ferric chloride, etc.) into the polymer system. Due to its low electron dissociation, it can be oxidized by losing or partially losing electrons, and P-type occurs. Doping; because of its good electron affinity, it can be obtained or partially obtained by electrons and reduced, n-type doping occurs, resulting in an increase in the conductivity of the polymer. For example, in the prior art, dopants such as polystyrenesulfonic acid are mostly used to dope conductive polymer materials, thereby improving electrical conductivity.
  • a certain dopant such as elemental iodine, ferric chloride, etc.
  • the technical problem to be solved by the present invention is to solve the problems that the polymer dispersion doped with conventional dopants in the prior art is liable to cause the solid electrolytic capacitor capacity extraction rate to decrease rapidly and the ESR value to increase rapidly during the cycle charge and discharge process Provide a polymer dispersion, a preparation method thereof, and a solid electrolytic capacitor.
  • the invention provides a polymer dispersion including a solvent, and a first conductive polymer and a second conductive polymer dispersed in the solvent;
  • the first conductive polymer is obtained by polymerizing one or more selected from the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • Y represents one of NH and S
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • Z is hydrogen or Na
  • the second conductive polymer is selected from one or more of polythiophene, polypyrrole, and polyaniline.
  • the molar ratio of the first conductive polymer to the second conductive polymer is 1: 0.5-1: 6.
  • the solvent is selected from one or more of water and ethanol.
  • the average particle diameter of the second conductive polymer in the polymer dispersion is 10-100 nm.
  • the first conductive polymer is obtained by polymerizing one or more selected from the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • Y represents one of NH and S
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • Z is hydrogen or Na
  • the second conductive polymer is selected from one or more of polythiophene, polypyrrole, and polyaniline.
  • the average particle diameter of the first conductive polymer in the conductive polymer layer is 20-150 nm.
  • the average particle diameter of the second conductive polymer in the conductive polymer layer is 10-100 nm.
  • the molar ratio of the first conductive polymer to the second conductive polymer in the conductive polymer layer is 1: 0.5-1: 6.
  • the solid electrolytic capacitor is a solid aluminum electrolytic capacitor or a solid tantalum electrolytic capacitor.
  • the invention also provides a method for preparing a polymer dispersion, comprising the following steps:
  • the monomer in step S1 is selected from one or more of the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • Y represents one of NH and S
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • step S1 the method further includes dissolving the monomer in a solvent to obtain a monomer solution; the solvent is water.
  • the oxidant is selected from one or more of potassium persulfate, sodium persulfate, ammonium persulfate, iron sulfate, hydrogen peroxide, and potassium permanganate.
  • step S1 the monomer and the oxidant are contacted and reacted in a solvent environment; the solvent is water.
  • the molar ratio of the monomer to the oxidant is 1: 0.1-1: 8.
  • reaction temperature in the step S1 is 10-40 ° C.
  • the inert atmosphere is a nitrogen atmosphere.
  • the second conductive polymer is selected from one or more of polythiophene, polypyrrole, and polyaniline.
  • the molar ratio of the first conductive polymer to the second conductive polymer is 1: 0.5-1: 6.
  • step S2 is water.
  • the polymer dispersion provided by the present invention includes a first conductive polymer and a second conductive polymer.
  • the first conductive polymer is selected from one of the foregoing specific compounds containing a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group. It is obtained by polymerization or multiple types.
  • the first conductive polymer and a second conductive polymer selected from the group consisting of polythiophene, polypyrrole, and polyaniline are dispersed in a solvent at the same time.
  • the first conductive polymer and the second conductive polymer are combined by a chemical bond.
  • the two are not only compatible and dispersible, but also can effectively improve the charge migration efficiency at the interface, thereby improving the electrical conductivity; it is important that the compounds that make the first conductive polymer contain carboxylic acid groups, sulfonic acid groups, or Phosphate group, after the first conductive polymer and the second conductive polymer are in contact with each other, the functional groups that play a major role in the polymer dispersion are bonded by chemical bonds, which is more firm. It can be effectively used to prepare solid electrolytic capacitors from the polymer dispersion. Improve cycle charge and discharge performance, will not cause the rapid decline of the capacity extraction rate and ESR of solid electrolytic capacitors due to the dedoping phenomenon The problem of rapidly increasing values.
  • the polymer dispersion provided by the present invention includes a solvent, and a first conductive polymer and a second conductive polymer dispersed in the solvent;
  • the first conductive polymer is obtained by polymerizing one or more selected from the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • Z is hydrogen or Na
  • the second conductive polymer is selected from one or more of polythiophene, polypyrrole, and polyaniline.
  • the method for preparing the first conductive polymer may be: contacting a monomer with an oxidant under an inert atmosphere, and reacting to obtain the first conductive polymer.
  • the monomer in the above step is selected from one or more of the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • Y represents one of NH and S
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • the monomer used in the present invention is at least an aniline monomer containing a carboxylic acid group, a sulfonic acid group, or a phosphate group or a thiophene monomer containing CO 2 and SO 3 .
  • aniline monomer containing a carboxylic acid group, a sulfonic acid group, or a phosphate group or a thiophene monomer containing CO 2 and SO 3 .
  • the monomer is brought into contact with the oxidant under an inert atmosphere, and reacted to obtain a first conductive polymer.
  • the inert atmosphere is a well-known atmosphere in the field of chemical reactions, and for example, a nitrogen atmosphere can be used.
  • the oxidant is selected from one or more of potassium persulfate, sodium persulfate, ammonium persulfate, iron sulfate, hydrogen peroxide, and potassium permanganate.
  • the molar ratio of the monomer to the oxidant is determined according to the specific monomers and oxidants used, and the relative content of the two can be determined by those skilled in the art based on common knowledge. In the present invention, preferably, the molar ratio of the monomer to the oxidant is 1: 0.1 to 1: 5.
  • the above reaction can be performed at normal temperature, for example, the reaction temperature is 10-40 ° C.
  • the first conductive polymer having a specific structure can be obtained by the reaction.
  • the solution containing the first conductive polymer and the solution containing the second conductive polymer need to be mixed, so that the first conductive polymer and the second conductive polymer react to obtain the polymerization according to the present invention. ⁇ dispersion.
  • the relative content between the first conductive polymer and the second conductive polymer can be varied within a relatively large range.
  • the molar ratio of the first conductive polymer to the second conductive polymer is 1: 0.5- 1: 4.
  • the solvent is selected from one or more of water and ethanol.
  • the present invention also provides a solid electrolytic capacitor, including a core package, the core package including an anode, a first separator, a cathode, and a second separator which are arranged in a spaced order; a surface of the anode is provided with a dielectric layer; A conductive polymer layer is attached to the surface of the layer, and the conductive polymer layer contains a first conductive polymer and a second conductive polymer;
  • the first conductive polymer is obtained by polymerizing one or more selected from the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • Y represents one of NH and S
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • Z is hydrogen or Na
  • the second conductive polymer is selected from one or more of polythiophene, polypyrrole, and polyaniline.
  • the thickness of the conductive polymer layer is preferably 120-160 ⁇ m.
  • the average particle diameter of the first conductive polymer in the conductive polymer layer is 30-100 nm.
  • the average particle diameter of the second conductive polymer is 20-80 nm.
  • the molar ratio of the first conductive polymer to the second conductive polymer in the conductive polymer layer is 1: 0.5-1: 3.
  • the polymer dispersion provided by the present invention is suitable for various solid electrolytic capacitors, such as solid aluminum electrolytic capacitors, solid tantalum electrolytic capacitors, and the like.
  • the preparation method of the polymer dispersion provided by the present invention includes the following steps:
  • the monomer in step S1 is selected from one or more of the compounds having the following general formula:
  • R represents H or optionally substituted straight or branched C1-C18 alkyl, optionally substituted C5-C12 cycloalkyl, optionally substituted C6-C14 aryl, optionally substituted C7-C18 aromatic At least one of an alkyl group, an optionally substituted C1-C4 hydroxyalkyl group, or a hydroxy group;
  • A represents one of a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
  • Y represents one of NH and S
  • n is an integer from 1 to 8;
  • X is selected from one of CO 2 and SO 3 ;
  • Z is hydrogen or Na.
  • the monomer in step S1 can be first dissolved in a solvent to obtain a monomer solution, which is convenient for operation and control of the reaction process.
  • a solvent for operation and control of the reaction process.
  • the solvent used in each step may be water.
  • the monomer used in the present invention is at least an aniline monomer containing a carboxylic acid group, a sulfonic acid group, or a phosphate group or a thiophene monomer containing CO 2 and SO 3 .
  • aniline monomer containing a carboxylic acid group, a sulfonic acid group, or a phosphate group or a thiophene monomer containing CO 2 and SO 3 .
  • step S1 the monomer is brought into contact with the oxidant under an inert atmosphere to perform a reaction to obtain a first conductive polymer.
  • the inert atmosphere is a well-known atmosphere in the field of chemical reactions, and for example, a nitrogen atmosphere can be used.
  • the reaction between the monomer and the oxidant may be performed in a solvent environment.
  • the aforementioned monomer solution may be mixed with an oxidant solution containing an oxidant (the solvent may be water) to react the monomer and the oxidant.
  • the oxidant is selected from one or more of potassium persulfate, sodium persulfate, ammonium persulfate, iron sulfate, hydrogen peroxide, and potassium permanganate.
  • the molar ratio of the monomer to the oxidant is determined according to the specific types of monomers and oxidants used, and the relative content of the two can be determined by those skilled in the art based on common knowledge.
  • the molar ratio of the monomer to the oxidant is 1: 0.1-1: 5.
  • the reaction in step S1 can be performed at normal temperature, for example, the reaction temperature in step S1 is 10-40 ° C.
  • the first conductive polymer having a specific structure can be obtained by the reaction.
  • the solution containing the first conductive polymer and the solution containing the second conductive polymer need to be mixed, so that the first conductive polymer and the second conductive polymer react to obtain the polymerization according to the present invention. ⁇ dispersion.
  • the second conductive polymer is selected from one or more of polythiophene, polypyrrole, and polyaniline.
  • the relative content between the first conductive polymer and the second conductive polymer can be varied within a relatively large range.
  • the molar ratio of the first conductive polymer and the second conductive polymer The ratio is 1: 0.5-1: 4.
  • step S2 is water.
  • This embodiment is used to explain the preparation method of the polymer dispersion disclosed in the present invention, and the solid electrolytic capacitor prepared by using the dispersion.
  • the solid electrolytic capacitor was immersed in the polymer dispersion for 30 min under a negative pressure condition and dried. The above steps were repeated 3 times, and then the solid electrolytic capacitor was assembled by sealing.
  • the thickness of the conductive polymer layer was 130 ⁇ m.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the process and measurement method of this example are basically the same as those of Example 1, except that: 160 g of pure water, 2.73 g of anthranilic acid, and 2.53 g of potassium persulfate as an oxidant, the reaction temperature is 25 ° C, the reaction time is 23 hours, and the product ( After the blending reaction with the polythiophene (average particle size: 60 nm) aqueous dispersion, the mixture was homogenized and the molar ratio of the product to the polythiophene aqueous dispersion was 1: 1.
  • the solid electrolytic capacitor was immersed in the polymer dispersion for 30 minutes under the condition of negative pressure and dried, and the above steps were repeated 3 times. Then, the solid electrolytic capacitor was assembled by sealing, and the thickness of the conductive polymer layer was 140 ⁇ m.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the solid electrolytic capacitor is charged for 3 seconds and then discharged for 3 seconds, and the cycle is repeated 1000 times.
  • the electrostatic capacity, loss value and equivalent series resistance of the solid electrolytic capacitor are tested again.
  • This embodiment is used to explain the preparation method of the polymer dispersion disclosed in the present invention, and the solid electrolytic capacitor prepared by using the dispersion.
  • the process and measurement method of this example are basically the same as those of Example 1, except that 168 g of pure water, 2.41 g of sodium meta-aminobenzenesulfonate, and 2.33 g of sodium persulfate are used as the oxidant.
  • the reaction temperature is 18 ° C
  • the reaction time is 26 hours
  • the product is (The average particle diameter is 60 nm) and the polyaniline (average particle diameter is 40 nm) are mixed and reacted with the aqueous dispersion after homogeneous treatment.
  • the molar ratio of the product to the polyaniline aqueous dispersion is 1: 3.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the solid electrolytic capacitor is charged for 3 seconds and then discharged for 3 seconds, and the cycle is repeated 1000 times.
  • the electrostatic capacity, loss value and equivalent series resistance of the solid electrolytic capacitor are tested again.
  • This embodiment is used to explain the preparation method of the polymer dispersion disclosed in the present invention, and the solid electrolytic capacitor prepared by using the dispersion.
  • the process and measurement method of this example are basically the same as those of Example 1, except that 180 g of pure water and 3.61 g of 3-amino-4-methoxybenzenesulfonic acid are used. 2.51 g of ammonium persulfate is used as the oxidant.
  • the reaction temperature is 26 ° C.
  • the reaction time is 21h. After the product (average particle diameter is 30nm) and polypyrrole (average particle diameter is 80nm) powder are mixed and reacted, the mixture is homogenized and the molar ratio of the product to the polypyrrole powder is 1: 0.5.
  • the solid electrolytic capacitor was immersed in the polymer dispersion for 30 minutes under a negative pressure condition and dried. The above steps were repeated 3 times, and then the solid electrolytic capacitor was assembled by sealing.
  • the thickness of the conductive polymer layer was 160 ⁇ m.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the process and measurement method of this example are basically the same as those of Example 1, except that 143 g of pure water, 1.63 g of sodium m-aminobenzenesulfonate, and 5.04 g of ferric sulfate are used as the oxidant.
  • the reaction temperature is 15 ° C
  • the reaction time is 10 hours
  • the product After the blending reaction with the polythiophene (average particle size: 50nem) aqueous dispersion, the mixture was homogenized and the molar ratio of the product to the polythiophene aqueous dispersion was 1: 4.
  • the solid electrolytic capacitor was immersed in the polymer dispersion under negative pressure for 30 minutes and dried. The above steps were repeated 3 times, and then the solid electrolytic capacitor was assembled by sealing.
  • the thickness of the conductive polymer layer was 140 ⁇ m.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the solid electrolytic capacitor is charged for 3 seconds and then discharged for 3 seconds, and the cycle is repeated 1000 times.
  • the electrostatic capacity, loss value and equivalent series resistance of the solid electrolytic capacitor are tested again.
  • This embodiment is used to explain the preparation method of the polymer dispersion disclosed in the present invention, and the solid electrolytic capacitor prepared by using the dispersion.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the solid electrolytic capacitor was immersed in the polymer dispersion for 30 min under a negative pressure condition and dried. The above steps were repeated 3 times, and then the solid electrolytic capacitor was assembled by sealing.
  • the thickness of the conductive polymer layer was 130 ⁇ m.
  • the solid electrolytic capacitor is charged for 3 seconds and then discharged for 3 seconds, and the cycle is repeated 1000 times.
  • the electrostatic capacity, loss value and equivalent series resistance of the solid electrolytic capacitor are tested again.
  • This embodiment is used to explain the preparation method of the polymer dispersion disclosed in the present invention, and the solid electrolytic capacitor prepared by using the dispersion.
  • the process and measurement method of this example are basically the same as those of Example 1, except that: 180 g of pure water, 3.15 g of p-aminobenzenesulfonic acid, and 2.57 g of sodium persulfate as the oxidant, the reaction temperature is 40 ° C, the reaction time is 20 hours, and the product ( After the blending reaction with the polyaniline (average particle size: 50nm) aqueous dispersion, the mixture was homogenized and the molar ratio of the product to the polyaniline aqueous dispersion was 1: 4.
  • the solid electrolytic capacitor was immersed in the polymer dispersion for 30 minutes under the condition of negative pressure and dried, and the above steps were repeated 3 times, and then the solid electrolytic capacitor was assembled by sealing, and the thickness of the conductive polymer layer was 120 ⁇ m.
  • An automatic electronic parts analyzer is used to test the capacitance, loss value and equivalent series resistance of the capacitor.
  • the test method refers to the measurement of conventional solid electrolytic capacitors, which will not be repeated here.
  • the solid electrolytic capacitor is charged for 3 seconds and then discharged for 3 seconds, and the cycle is repeated 1000 times.
  • the electrostatic capacity, loss value and equivalent series resistance of the solid electrolytic capacitor are tested again.
  • This comparative example is used to comparatively explain the preparation method of the polymer dispersion disclosed in the present invention, and the solid electrolytic capacitor prepared by using the dispersion.
  • the solid electrolytic capacitor core was impregnated with a conventional PEDOT / PSS aqueous dispersion under vacuum conditions, the impregnation time was 30 minutes, and then the baking was performed in a 125 ° C oven for 30 minutes, and the above steps were repeated 3 times. After sealing assembly, a solid electrolytic capacitor is obtained.

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

聚合物分散体,包括溶剂以及分散于溶剂中的第一导电高分子和第二导电高分子;所述第一导电高分子由特定化合物聚合得到,所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。还提供了该聚合物分散体的制备方法以及由该聚合物分散体制备得到的固态电解电容器。该聚合物分散体电导率高,由此制备的固态电解电容器稳定性好,使用寿命长,不会出现容量引出率迅速下降及ESR值迅速增大的问题。

Description

一种聚合物分散体及其制备方法、固态电解电容器 技术领域
本发明属于导电高分子材料领域,特别是涉及一种聚合物分散体及其制备方法、固态电解电容器。
背景技术
固体电解电容器采用电导率高、热稳定性好的固体导电材料作为电解质,与普通电解电容器相比,它不但具有普通电解电容器所有特性,而且具有可靠性好、使用寿命长、高频低阻抗、耐特大纹波电流等特性,并可以克服液态电解电容器容易漏液、寿命短的弊端。随着国内电子信息产业的飞速发展,从近几年的发展趋势来看,固体电解电容器将逐步替代普通低压电解电容器,并将成为21世纪电子信息产业的支柱产品之一。
随着人们对固态电解电容器性能要求的提高,进一步提高导电高分子聚合物电解质电导率,从而降低电容器ESR值成为研究者共同追求的目标。掺杂是提高聚合物导电性的一种有效途径,具有共轭化学双键的高分子材料可以通过加入掺杂剂被氧化或被还原以获得更好的电化学活性。通过掺杂达到减小能带隙和降低自由电荷的迁移阻力的目的,从而显著提高共轭高分子的导电性,其电导率可提高几到十几个数量级。聚合物的共轭结构,使得大π电子具有较高的电子流动性,电子离域程度高。目前的掺杂方法通常是将某种掺杂剂(如单质碘、氯化铁等)引入聚合物体系中,由于其电子离解性较低,可失去或部分失去电子而被氧化,发生P型掺杂;又因为其自身良好的电子亲和力,可得到或部分得到电子而被还原,发生n型掺杂,致使聚合物的电导率提高。例如,现有技术中大多采用聚苯乙烯磺酸等掺杂剂对导电高分子材料进行掺杂,从而提高电导率。
但是,目前常用的掺杂剂与共轭高分子存在相容性差、分散性不好等问题,阻碍了电荷的传输以及电导率的提高。并且,尤为重要的是,通过目前常用的掺杂剂掺杂后的聚合物分散体用于固态电解电容器之后,在充放电过程中,固态电解电容器容量引出率会迅速下降,ESR值迅速增大,从而导致固态电解电 容器性能迅速劣化而失效。
发明内容
本发明所要解决的技术问题是针对现有技术中采用常规掺杂剂掺杂得到的聚合物分散体在循环充放电过程中易导致固态电解电容器容量引出率迅速下降,ESR值迅速增大的问题,提供一种聚合物分散体及其制备方法、固态电解电容器。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种聚合物分散体,包括溶剂以及分散于溶剂中的第一导电高分子和第二导电高分子;
所述第一导电高分子由选自具有如下通式所示的化合物中的一种或多种聚合得到:
Figure PCTCN2019108332-appb-000001
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na;
所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
进一步的,所述第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:6。
进一步的,所述溶剂选自水、乙醇中的一种或多种。
进一步的,所述聚合物分散体中第一导电高分子的平均粒径为20-150nm。
进一步的,所述聚合物分散体中第二导电高分子的平均粒径为10-100nm。
本发明还提供了一种固态电解电容器,包括芯包,所述芯包包括依次间隔设置的阳极、第一隔膜、阴极、第二隔膜;所述阳极表面附着有电介质层,所述电介质层表面附着有导电聚合物层,所述导电聚合物层中含有第一导电高分 子和第二导电高分子;
所述第一导电高分子由选自具有如下通式所示的化合物中的一种或多种聚合得到:
Figure PCTCN2019108332-appb-000002
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na;
所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
进一步的,所述导电聚合物层的厚度为100-200μm。
进一步的,所述导电聚合物层中第一导电高分子的平均粒径为20-150nm。
进一步的,所述导电聚合物层中第二导电高分子的平均粒径为10-100nm。
进一步的,所述导电聚合物层中第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:6。
进一步的,所述固态电解电容器为固态铝电解电容器或固态钽电解电容器。
本发明还提供了一种聚合物分散体的制备方法,包括如下步骤:
S1、在惰性气氛下,使单体与氧化剂接触,进行反应,得到第一导电高分子;
S2、在溶剂中使第一导电高分子与第二导电高分子接触,得到聚合物分散体;
所述的S1步骤中的单体选自具有如下通式的化合物中的一种或多种:
Figure PCTCN2019108332-appb-000003
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na。
进一步的,所述步骤S1之前还包括将单体溶解于溶剂中,得到单体溶液;所述溶剂为水。
进一步的,所述步骤S1中,所述的氧化剂选自过硫酸钾、过硫酸钠、过硫酸铵、硫酸铁、双氧水、高锰酸钾中的一种或多种。
进一步的,所述步骤S1中,所述单体与氧化剂在溶剂环境中接触反应;所述溶剂为水。
进一步的,所述步骤S1中,单体与氧化剂的摩尔比为1:0.1-1:8。
进一步的,所述步骤S1中反应温度为10-40℃。
进一步的,所述步骤S1中,惰性气氛为氮气气氛。
进一步的,所述步骤S2中,所述的第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
进一步的,所述步骤S2中,第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:6。
进一步的,所述步骤S2中的溶剂为水。
本发明提供的聚合物分散体包括第一导电高分子和第二导电高分子,尤其是第一导电高分子由选自前述含有羧酸基、磺酸基或磷酸基的特定化合物中的一种或多种聚合得到,该第一导电高分子与选自聚噻吩、聚吡咯、聚苯胺的第二导电高分子同时分散于溶剂中,第一导电高分子和第二导电高分子通过化学键形式结合,二者不仅相容性和分散性好,并且可以有效提高电荷在界面迁移效率,从而提高电导率;重要的是,由于制备第一导电高分子的化合物中含有羧酸基、磺酸基或磷酸基,第一导电高分子与第二导电高分子相互接触后,聚合物分散体内各发挥主要作用的官能团之间通过化学键结合,更加牢固,通过该聚合物分散体制备固态电解电容器后可有效改善循环充放电性能,不会因为 出现脱掺杂现象而导致固态电解电容器的容量引出率迅速下降及ESR值迅速增大的问题。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的聚合物分散体包括溶剂以及分散于溶剂中的第一导电高分子和第二导电高分子;
所述第一导电高分子由选自具有如下通式所示的化合物中的一种或多种聚合得到:
Figure PCTCN2019108332-appb-000004
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na;
所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
由上述化合物聚合制备第一导电高分子的方法是化学领域技术人员根据公知常识容易知晓的。本发明中,优选情况下,所述第一导电高分子的制备方法可以为:在惰性气氛下,使单体与氧化剂接触,进行反应,得到第一导电高分子。
上述步骤中的单体选自具有如下通式的化合物中的一种或多种:
Figure PCTCN2019108332-appb-000005
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na。
具体的,所述步骤中的单体可先溶解于溶剂中,得到单体溶液,便于操作及对反应过程的控制。作为本领域技术人员所知晓的,本发明中,各步骤中所用到的溶剂均可以为水。
本发明中所采用的单体如前所述,至少为含有羧酸基、磺酸基或磷酸基的苯胺单体或者含有CO 2、SO 3的噻吩单体。本领域技术人员可根据需要对单体的具体种类进行选择。
如前所述,在惰性气氛下,使单体与氧化剂接触,进行反应,得到第一导电高分子。
惰性气氛为化学反应领域所公知的气氛,例如可以采用氮气气氛。
单体与氧化剂的反应可以在溶剂环境中进行,例如,可将前述的单体溶液与含有氧化剂的氧化剂溶液(溶剂可以为水)进行混合,使单体与氧化剂进行反应。
本发明中,所述的氧化剂选自过硫酸钾、过硫酸钠、过硫酸铵、硫酸铁、双氧水、高锰酸钾中的一种或多种。
所述单体与氧化剂的摩尔比根据具体所采用的单体和氧化剂种类而确定,二者相对含量是本领域技术人员根据公知常识可以确定的。本发明中,优选情况下,单体与氧化剂的摩尔比为1:0.1-1:5。
上述反应可在常温下进行,例如反应温度为10-40℃。
通过上述步骤即可反应得到具有特定结构的第一导电高分子。根据本发明,还需将含有所述第一导电高分子的溶液与含有第二导电高分子的溶液混合,使第一导电高分子与第二导电高分子反应,从而得到本发明所述的聚合物分散体。
所述的第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
进一步的,第一导电高分子与第二导电高分子之间的相对含量可以在较大 范围内变动,优选情况下,第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:4。
进一步的,所述溶剂选自水、乙醇中的一种或多种。
优选情况下,本发明提供的聚合物分散体中第一导电高分子的平均粒径为30-100nm。所述聚合物分散体中第二导电高分子的平均粒径为20-80nm。
同时,本发明还提供了一种固态电解电容器,包括芯包,所述芯包包括依次间隔设置的阳极、第一隔膜、阴极、第二隔膜;所述阳极表面附着有电介质层,所述电介质层表面附着有导电聚合物层,所述导电聚合物层中含有第一导电高分子和第二导电高分子;
所述第一导电高分子由选自具有如下通式所示的化合物中的一种或多种聚合得到:
Figure PCTCN2019108332-appb-000006
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na;
所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
上述固态电解电容器中,导电聚合物层的厚度优选为120-160μm。
优选情况下,所述导电聚合物层中第一导电高分子的平均粒径为30-100nm。第二导电高分子的平均粒径为20-80nm。
更优选的,所述导电聚合物层中第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:3。
本发明提供的聚合物分散体适用于各类固态电解电容器,例如固态铝电解电容器、固态钽电解电容器等。
本发明提供的聚合物分散体的制备方法包括如下步骤:
S1、在惰性气氛下,使单体与氧化剂接触,进行反应,得到第一导电高分子;
S2、在溶剂中使第一导电高分子与第二导电高分子接触,得到聚合物分散体;
所述的S1步骤中的单体选自具有如下通式的化合物中的一种或多种:
Figure PCTCN2019108332-appb-000007
其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
A表示羧酸基、磺酸基或磷酸基中的一种;
Y表示NH、S中的一种;
n为1-8的整数;
X选自CO 2、SO 3中的一种;
Z为氢或Na。
具体的,所述步骤S1中的单体可先溶解于溶剂中,得到单体溶液,便于操作及对反应过程的控制。作为本领域技术人员所知晓的,本发明中,各步骤中所用到的溶剂均可以为水。
本发明中所采用的单体如前所述,至少为含有羧酸基、磺酸基或磷酸基的苯胺单体或者含有CO 2、SO 3的噻吩单体。本领域技术人员可根据需要对单体的具体种类进行选择。
如前所述,步骤S1中,在惰性气氛下,使单体与氧化剂接触,进行反应,得到第一导电高分子。
惰性气氛为化学反应领域所公知的气氛,例如可以采用氮气气氛。
单体与氧化剂的反应可以在溶剂环境中进行,例如,可将前述的单体溶液与含有氧化剂的氧化剂溶液(溶剂可以为水)进行混合,使单体与氧化剂进行反应。
本发明中,所述的氧化剂选自过硫酸钾、过硫酸钠、过硫酸铵、硫酸铁、双氧水、高锰酸钾中的一种或多种。
所述步骤S1中,单体与氧化剂的摩尔比根据具体所采用的单体和氧化剂种类而确定,二者相对含量是本领域技术人员根据公知常识可以确定的。本发明中,优选情况下,所述步骤S1中,单体与氧化剂的摩尔比为1:0.1-1:5。
步骤S1中的反应可在常温下进行,例如所述步骤S1中反应温度为10-40℃。
通过上述步骤S1即可反应得到具有特定结构的第一导电高分子。根据本发明,还需将含有所述第一导电高分子的溶液与含有第二导电高分子的溶液混合,使第一导电高分子与第二导电高分子反应,从而得到本发明所述的聚合物分散体。
上述步骤S2中,所述的第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
进一步的,所述步骤S2中,第一导电高分子与第二导电高分子之间的相对含量可以在较大范围内变动,优选情况下,第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:4。
进一步的,所述步骤S2中的溶剂为水。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的各配方组分按如下份量分别加入:纯水150g,对氨基苯磺酸2.56g,采用2.04g双氧水做氧化剂,反应温度为20℃,反应时间20h,产物(平均粒径为40nm)与聚噻吩(平均粒径为30nm)水分散体共混反应后均质处理,产物与聚噻吩的摩尔比例为1:2。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为130μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例2
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水160g,邻氨基苯磺酸2.73g,采用2.53g过硫酸钾做氧化剂,反应温度为25℃,反应时间23h,产物(平均粒径为30nm)与聚噻吩(平均粒径为60nm)水分散体共混反应后均质处理,产物与聚噻吩水分散体的摩尔比例为1:1。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为140μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例3
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水168g,间氨基苯磺酸钠2.41g,采用2.33g过硫酸钠做氧化剂,反应温度为18℃,反应时间26h,产物(平均粒径为60nm)与聚苯胺(平均粒径为40nm)水分散体共混反应后均质处理,产物与聚苯胺水分散体的摩尔比例为1:3。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为120μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例4
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水180g,3-氨基-4-甲氧基苯磺酸3.61g,采用2.51g过硫酸铵做氧化剂,反应温度为26℃,反应时间21h,产物(平均粒径为30nm)与聚吡咯(平均粒径为80nm)粉末共混反应后均质处理,产物与聚吡咯粉末的摩尔比例为1:0.5。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为160μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例5
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水143g,间氨基苯磺酸钠1.63g,采用5.04g硫酸铁做氧化剂,反应温度为15℃,反应时间10h,产物(平均粒径为80nm)与聚噻吩(平均粒径为50nem)水分散体共混反应后均质处理,产物与聚噻吩水分散体的摩尔比例为1:4。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层 厚度为140μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例6
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水170g,2-氨基-5-甲氧基苯磺酸钠2.32g,采用1.51g高锰酸钾做氧化剂,反应温度为35℃,反应时间30h,产物(平均粒径为100nm)与聚苯胺(平均粒径为20nm)水分散体共混反应后均质处理,产物与聚苯胺水分散体的摩尔比例为1:1。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为150μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例7
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水190g,邻氨基苯磺酸2.63g,采用4.12g过硫酸铵做氧化剂,反应温度为10℃,反应时间24h,产物(平均粒径为50nm)与聚噻吩(平均粒径为30nm)水分散体共混反应后 均质处理,产物与聚噻吩水分散体的摩尔比例为1:3。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为130μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
实施例8
本实施例用于说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
本例的工艺和测量方式与实施例1基本相同,区别在于:纯水180g,对氨基苯磺酸3.15g,采用2.57g过硫酸钠做氧化剂,反应温度为40℃,反应时间20h,产物(平均粒径为40nm)与聚苯胺(平均粒径为50nm)水分散体共混反应后均质处理,产物与聚苯胺水分散体的摩尔比例为1:4。
然后将固态电解电容器芯包负压条件下浸没于该聚合物分散体中30min并干燥,重复上述步骤3次,再经过封口装配成固态电解电容器,导电聚合物层厚度为120μm。
使用自动电子零件分析仪对电容器的静电容量、损耗值和等效串联电阻进行测试,测试方式参考常规的固态电解电容器的测量,在此不累述。
然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
测试结果如表1所示。
对比例1
本对比例用于对比说明本发明公开的聚合物分散体的制备方法,以及采用该分散体制备的固态电解电容器。
将固态电解电容器芯包在真空条件下含浸常规的PEDOT/PSS水分散体,含浸时间为30min,后在125℃烘箱中烘烤30min,重复上述步骤3次。后经过封口装配得到固态电解电容器。
使用自动电子零件分析仪对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。然后在1.15倍额定电压条件下,对固态电解电容器进行3秒充电后3秒放电,反复循环1000次,再次对固态电解电容器的静电容量、损耗值和等效串联电阻进行测试。
以上实施例和对比例的测试结果如下表1所示:
表1固体铝电解电容器各项性能测试结果(16V1000μF芯包)
Figure PCTCN2019108332-appb-000008
根据表1中数据可以看出,通过本发明提供的聚合物分散体制备得到的固态电解电容器在经过循环充放电后容量衰减率均较低,衰减率最大的也仅为-2.5%;而对比例中采用常规的PEDOT/PSS水分散体制备得到的固态电解电容器在经过循环充放电后容量衰减率较大,为-21.0%,说明本发明的聚合物分散体在经过反复充放电后基本不会出现脱掺杂的现象,聚合物分散体的稳定性极佳,从而确保了固态电解电容器性能的稳定性,极大地提升了固态电解电容器的使 用寿命。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种聚合物分散体,其特征在于,包括溶剂以及分散于溶剂中的第一导电高分子和第二导电高分子;
    所述第一导电高分子由选自具有如下通式所示的化合物中的一种或多种聚合得到:
    Figure PCTCN2019108332-appb-100001
    其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
    A表示羧酸基、磺酸基或磷酸基中的一种;
    Y表示NH、S中的一种;
    n为1-8的整数;
    X选自CO 2、SO 3中的一种;
    Z为氢或Na;
    所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
  2. 根据权利要求1所述的聚合物分散体,其特征在于,所述第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:6。
  3. 根据权利要求1所述的聚合物分散体,其特征在于,所述溶剂选自水、乙醇中的一种或多种。
  4. 根据权利要求1所述的聚合物分散体,其特征在于,所述聚合物分散体中第一导电高分子的平均粒径为20-150nm。
  5. 根据权利要求1所述的聚合物分散体,其特征在于,所述聚合物分散体中第二导电高分子的平均粒径为10-100nm。
  6. 一种固态电解电容器,其特征在于,包括芯包,所述芯包包括依次间隔设置的阳极、第一隔膜、阴极、第二隔膜;
    所述阳极表面附着有电介质层,所述电介质层表面附着有导电聚合物层,所述导电聚合物层中含有第一导电高分子和第二导电高分子;
    所述第一导电高分子由选自具有如下通式所示的化合物中的一种或多种聚合得到:
    Figure PCTCN2019108332-appb-100002
    其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
    A表示羧酸基、磺酸基或磷酸基中的一种;
    Y表示NH、S中的一种;
    n为1-8的整数;
    X选自CO 2、SO 3中的一种;
    Z为氢或Na;
    所述第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
  7. 根据权利要求6所述的固态电解电容器,其特征在于,所述导电聚合物层的厚度为100-200μm。
  8. 根据权利要求6或7所述的固态电解电容器,其特征在于,所述导电聚合物层中第一导电高分子的平均粒径为20-150nm,所述导电聚合物层中第二导电高分子的平均粒径为10-100nm。
  9. 根据权利要求6所述的固态电解电容器,其特征在于,所述导电聚合物层中第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:6。
  10. 根据权利要求6所述的固态电解电容器,其特征在于,所述固态电解 电容器为固态铝电解电容器或固态钽电解电容器。
  11. 一种聚合物分散体的制备方法,其特征在于,包括如下步骤:
    S1、在惰性气氛下,使单体与氧化剂接触,进行反应,得到第一导电高分子;
    S2、在溶剂中使第一导电高分子与第二导电高分子接触,得到聚合物分散体;
    所述的S1步骤中的单体选自具有如下通式的化合物中的一种或多种:
    Figure PCTCN2019108332-appb-100003
    其中,R表示H或任选取代的直链或支链C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基中的至少一种;
    A表示羧酸基、磺酸基或磷酸基中的一种;
    Y表示NH、S中的一种;
    n为1-8的整数;
    X选自CO 2、SO 3中的一种;
    Z为氢或Na。
  12. 根据权利要求11所述的制备方法,其特征在于,所述步骤S1之前还包括将单体溶解于溶剂中,得到单体溶液;
    所述溶剂为水。
  13. 根据权利要求11所述的制备方法,其特征在于,所述步骤S1中,所述的氧化剂选自过硫酸钾、过硫酸钠、过硫酸铵、硫酸铁、双氧水、高锰酸钾中的一种或多种。
  14. 根据权利要求11所述的制备方法,其特征在于,所述步骤S1中,所述单体与氧化剂在溶剂环境中接触反应;
    所述溶剂为水。
  15. 根据权利要求11所述的制备方法,其特征在于,所述步骤S1中,单体与氧化剂的摩尔比为1:0.1-1:8。
  16. 根据权利要求11所述的制备方法,其特征在于,所述步骤S1中反应温度为10-40℃。
  17. 根据权利要求11所述的制备方法,其特征在于,所述步骤S1中,惰性气氛为氮气气氛。
  18. 根据权利要求11所述的制备方法,其特征在于,所述步骤S2中,所述的第二导电高分子选自聚噻吩、聚吡咯、聚苯胺中的一种或多种。
  19. 根据权利要求11所述的制备方法,其特征在于,所述步骤S2中,第一导电高分子与第二导电高分子的摩尔比为1:0.5-1:6。
PCT/CN2019/108332 2018-09-29 2019-09-27 聚合物分散体及其制备方法、固态电解电容器 WO2020063794A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811145160.XA CN110003496B (zh) 2018-09-29 2018-09-29 一种聚合物分散体的制备方法及聚合物分散体
CN201811145160.X 2018-09-29
CN201811151153.0A CN110010353B (zh) 2018-09-29 2018-09-29 一种聚合物分散体及固态电解电容器
CN201811151153.0 2018-09-29

Publications (1)

Publication Number Publication Date
WO2020063794A1 true WO2020063794A1 (zh) 2020-04-02

Family

ID=69953398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108332 WO2020063794A1 (zh) 2018-09-29 2019-09-27 聚合物分散体及其制备方法、固态电解电容器

Country Status (1)

Country Link
WO (1) WO2020063794A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245688A (zh) * 2008-10-20 2011-11-16 3M创新有限公司 导电复合材料以及包含该材料的热电装置
CN102558771A (zh) * 2010-12-30 2012-07-11 天津都创科技有限公司 聚3,4-二氧乙撑噻吩复合材料及其制备方法
CN107794600A (zh) * 2017-11-15 2018-03-13 惠州市永耐宝新材料有限公司 一种聚苯胺/聚噻吩复合纳米管的制备方法
CN110010353A (zh) * 2018-09-29 2019-07-12 深圳新宙邦科技股份有限公司 一种聚合物分散体及固态电解电容器
CN110003496A (zh) * 2018-09-29 2019-07-12 深圳新宙邦科技股份有限公司 一种聚合物分散体的制备方法及聚合物分散体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245688A (zh) * 2008-10-20 2011-11-16 3M创新有限公司 导电复合材料以及包含该材料的热电装置
CN102558771A (zh) * 2010-12-30 2012-07-11 天津都创科技有限公司 聚3,4-二氧乙撑噻吩复合材料及其制备方法
CN107794600A (zh) * 2017-11-15 2018-03-13 惠州市永耐宝新材料有限公司 一种聚苯胺/聚噻吩复合纳米管的制备方法
CN110010353A (zh) * 2018-09-29 2019-07-12 深圳新宙邦科技股份有限公司 一种聚合物分散体及固态电解电容器
CN110003496A (zh) * 2018-09-29 2019-07-12 深圳新宙邦科技股份有限公司 一种聚合物分散体的制备方法及聚合物分散体

Similar Documents

Publication Publication Date Title
US7035084B2 (en) Secondary battery and capacitor using indole polymeric compound
KR101999092B1 (ko) 비수전해액 이차 전지와 그것을 위한 정극 시트
US8804312B2 (en) Electroconductive polymer composition, method for producing the same, and solid electrolytic capacitor using electroconductive polymer composition
KR100812063B1 (ko) 고전자 전도성 고분자 및 이를 이용한 고용량/고출력 전기에너지 저장 소자
JP4315038B2 (ja) 固体電解コンデンサ
WO2014155420A1 (ja) 導電性高分子微粒子分散体とそれを用いた電解コンデンサ、およびそれらの製造方法
US6686089B1 (en) Battery electrode, secondary battery, and method of manufacturing same
JP2002151141A (ja) プロトン伝導型ポリマー2次電池
CN105531778B (zh) 电解电容器及其制造方法
KR101687588B1 (ko) 폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자를 함유하는 바인더
JP2974012B1 (ja) ポリマー二次電池およびその製造方法
CN110010353B (zh) 一种聚合物分散体及固态电解电容器
CN110003496B (zh) 一种聚合物分散体的制备方法及聚合物分散体
WO2020063794A1 (zh) 聚合物分散体及其制备方法、固态电解电容器
WO2020224630A1 (zh) 一种导电聚合物、电容器及其制备方法
CN107017087B (zh) 电容结构
JP4397117B2 (ja) 燃料電池
WO2021121174A1 (zh) 一种组合物、电容器用聚合物及电容器
CN105355922A (zh) 一种聚吲哚交联聚偏氟乙烯粘结剂以及应用该粘结剂的锂离子电池
CN102723201B (zh) 电解质材料调配物、由其形成的电解质材料组合物及其用途
CN114005971B (zh) 一种具有p-型掺杂导电高分子涂层的正极材料及其制备方法
US20230317379A1 (en) Supercapacitor with gel electrolyte for electrochemical double-layer energy storage
JPWO2019188760A1 (ja) 電気化学デバイス
JP7082737B1 (ja) 非水電解質二次電池用正極材及びその製造方法
CN111276339B (zh) 一种超级电容器赝电容型电解液及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864113

Country of ref document: EP

Kind code of ref document: A1