WO2020063232A1 - Pet设备、多层晶体pet探测器及其电子读出模块和方法 - Google Patents

Pet设备、多层晶体pet探测器及其电子读出模块和方法 Download PDF

Info

Publication number
WO2020063232A1
WO2020063232A1 PCT/CN2019/102536 CN2019102536W WO2020063232A1 WO 2020063232 A1 WO2020063232 A1 WO 2020063232A1 CN 2019102536 W CN2019102536 W CN 2019102536W WO 2020063232 A1 WO2020063232 A1 WO 2020063232A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
energy
layer
signals
pet detector
Prior art date
Application number
PCT/CN2019/102536
Other languages
English (en)
French (fr)
Inventor
解强强
谢思维
张仁冬
赵指向
杨静梧
黄秋
彭旗宇
Original Assignee
中派科技(深圳)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中派科技(深圳)有限责任公司 filed Critical 中派科技(深圳)有限责任公司
Publication of WO2020063232A1 publication Critical patent/WO2020063232A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of positron emission imaging, in particular to a positron emission imaging (PET) device, a multilayer crystal PET detector, an electronic readout module of a multilayer crystal PET detector, and an electronic readout method.
  • PET positron emission imaging
  • Positron Emission and Computed Tomography uses metabolic activity in living organisms as the detection standard, and has a good effect in the early diagnosis of major diseases.
  • PET Positron Emission and Computed Tomography
  • the detector technology composed of discrete crystals as scintillation crystals is the most mature.
  • Discrete crystal detectors use a two-dimensional array of scintillation crystal arrays to couple with photoelectric converters. A discrete discrete crystal is often coupled to a single photoelectric converter.
  • the center of gravity method and light sharing are used to obtain the photon's reaction position and depth (DOI, Depth of Interaction) information.
  • PET detectors composed of discrete crystals have the advantages of simple decoding algorithms, light edge effects, and high spatial resolution. However, because the photons received by traditional discrete crystal detectors reflect in the crystal multiple times before they reach the photoelectric converter, auxiliary methods are needed. In order to obtain the reaction depth information of ⁇ photons.
  • the model of a multilayer crystal PET detector based on discrete crystals is shown in Figure 1.
  • 1 is the detector readout signal cable
  • 2 is the photoelectric converter array
  • 3 is the discrete scintillation crystal array
  • 4 is the multilayer crystal PET detector
  • 5 is the single layer detector
  • the multilayer crystal PET detector can use Kang
  • the depth-of-reaction information can be obtained using the principle of Patterton scattering.
  • the multilayer crystal PET detector shortens the propagation time of ⁇ photons in the crystal and increases the total length of the crystal. Therefore, the time resolution of the detector is improved, and the interception ability of ⁇ photons is improved.
  • the photoelectric converter array in each layer of the multilayer crystal PET detector the total amount of data in the time channel and energy channel of the detector is large, which reduces the processing efficiency of the detector to a certain extent.
  • a multilayer crystal PET detector with high processing efficiency is provided.
  • the multilayer crystal PET detector of the present invention includes an n-layer discrete scintillation crystal array and an n-layer photoelectric converter array.
  • the discrete scintillation crystal array is spaced from the photoelectric converter array.
  • Each layer of the photoelectric converter array includes m photoelectric converters, which are used to convert the optical signals of visible photons detected by them to obtain energy signals and time signals, and the time signals of m photoelectric converters in each layer are combined together, and in each layer The energy signals of the m photoelectric converters are output separately, but the energy signals of the photoelectric converters between the layers are connected in a one-to-one correspondence, so that the multilayer crystal PET detector has m energy channels and n time channels.
  • the energy signals of the photoelectric converters between the layers are connected in series one-to-one correspondingly from the first layer to the n-th layer.
  • n ⁇ m energy signals in the n-layer photoelectric converter array are connected to a hub board through a cable, and the energy signals of the photoelectric converters between the layers on the hub board are connected in a one-to-one correspondence and combined to Obtain m energy channels.
  • an electronic readout module which is used in the above-mentioned multi-layered crystal PET detector and is connected to the photoelectric sensor array.
  • the electronic readout module includes an energy readout circuit and a time reading A circuit for reading energy signals of m energy channels, and a time reading circuit for reading time signals of n time channels.
  • the electronic readout module further includes:
  • n time amplifying circuits one-to-one corresponding to n time channels
  • n time detection circuits one to one corresponding to n comparators
  • the time amplifying circuit is configured to input a time signal to the comparator; the comparator is configured to compare an input time signal with a threshold voltage to obtain an output value and transmit the output value to the time detecting circuit; the time detecting circuit For inputting an output value to the time readout circuit.
  • an electronic readout method of the above-mentioned multilayer crystal PET detector including:
  • Step S100 determine whether there is cross-layer Compton scattering; if not, proceed to step S200; if so, proceed to step S300;
  • Step S200 judging the number of layers of the detector where the reaction is located according to the time signal, and decoding the position and reaction depth information of the gamma photon based on the m energy channel information of the layer;
  • Step S300 Compare the energy levels of different layers based on the time signal, and then determine the layer where the photon reaction is located according to the result of the energy comparison.
  • the output pulse length of the comparator will be different based on the response of different time signals.
  • the pulse width or trigger time of the time signal confirm The location of the response where Compton scattering occurs.
  • a positron emission imaging apparatus which includes a data processing module, the above-mentioned multilayer crystal PET detector, and the above-mentioned electronic readout module, the data processing The module is connected to the electronic readout module and is configured to perform data processing and image reconstruction on the energy signal and the time signal to obtain a scanned image of an object to be imaged.
  • the present invention has the following advantages because the energy channels are merged and the time channels are not merged.
  • the circuit is simpler. It only needs to provide energy channels with the number of single-layer photoelectric converters and time channels with the number of detector layers, and then sufficient data can be collected.
  • reaction depth can be determined according to the time signal of the n layers.
  • the present invention reduces the readout channel, has high processing efficiency, simple circuit implementation, DOI capability, cross-layer Compton calibration capability, and good time performance.
  • FIG. 1 is a model diagram of a multilayer crystal PET detector of the prior art
  • FIG. 2 is an exploded view of a multilayer crystal PET detector according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an electronic readout module used in a multilayer crystal PET detector according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of comparing the response of different time signals with the output pulse length of the comparator
  • FIG. 5 is a schematic diagram of a positron emission imaging apparatus according to an embodiment of the present invention.
  • the multilayer crystal PET detector 100 includes an n-layer discrete scintillation crystal array 11 and an n-layer photoelectric converter array 12.
  • the 11 and n-layer photoelectric converter arrays 12 are arranged vertically in the height direction, that is, as shown in FIG. 2, in the height direction, a layer of discrete scintillation crystal array, a layer of photoelectric converter array, and a layer of discrete scintillation crystal Array, a layer of photoelectric converter array ...
  • Such an arrangement with a spaced layer is, as shown in FIG. 2, in the height direction, a layer of discrete scintillation crystal array, a layer of photoelectric converter array, and a layer of discrete scintillation crystal Array, a layer of photoelectric converter array ...
  • the multilayer crystal PET detector shown in FIG. 2 includes n-layer detectors, and each single-layer detector includes a layer of discrete scintillation crystal array 11 and a layer of photoelectric converter array 12.
  • each single-layer detector includes a layer of discrete scintillation crystal array 11 and a layer of photoelectric converter array 12.
  • discrete scintillation crystals The array 11 is formed by coupling a plurality of scintillation crystals (the number of rows of the discrete scintillation crystal array 11 is a, the number of columns is b, and the number of the scintillation crystals is a ⁇ b in FIG. 2).
  • the coupled scintillation crystal array has On the upper and lower surfaces, the photoelectric converter array 12 is composed of a plurality of photoelectric sensors (the number of rows of the photoelectric converter array 12 is d, the number of columns is c, and the number of photoelectric sensors is c ⁇ d) in FIG. 2.
  • the photoelectric converter array 12 is coupled to the upper surface of the discrete scintillation crystal array 11.
  • Each photoelectric sensor is coupled to multiple scintillation crystals for detecting visible photons or ultraviolet light generated by the reaction of the gamma photons and the discrete scintillation crystal array 11. , And convert the optical signal of the visible photon it detects to obtain an energy signal and a time signal.
  • the number of layers of the multilayer crystal PET detector is n, where n is greater than 2, the uppermost detector is the top detector, and the lowermost detector is the bottom detector.
  • ⁇ photons can penetrate the first n-1 layer to reach the top detector and be intercepted and converted into ultraviolet or visible light by the scintillation crystal of the top detector. It can also be directly intercepted and converted into ultraviolet or visible light by the scintillation crystal of the bottom detector. Go straight through all discrete scintillation crystal arrays.
  • the energy signals of the photoelectric converters between the layers are connected one-to-one correspondingly in series from the first layer to the n-th layer.
  • Take a 4-layer structure as an example. Assume that each layer has 3 ⁇ 3 9 sensors, output 9 energy signals and 9 time signals. The 9 time signals are directly connected together to form a time signal.
  • the connection method can be as follows:
  • n ⁇ m energy signals in the n-layer photoelectric converter array are connected to a hub board through a cable, and the energy signals of the photoelectric converters between the layers on the hub board are correspondingly connected and combined to obtain m energy channels.
  • the connection method can be as follows: :
  • the present invention provides an electronic readout module 200, which is used in the above-mentioned multilayer crystal PET detector 100 and is connected to the photosensor array 12.
  • the electronic readout module 200 includes an energy readout circuit 21 and Time readout circuit 25, energy readout circuit 21 is connected to m energy channels to read energy signals of m energy channels, time readout circuit 25 and n time channels are used to read time signals of n time channels .
  • the electronic readout module 200 further includes n time amplification circuits 22 1 ..., 22 n , n comparators 23 1 ..., 23 n , and n time detection circuits 24 1 ..., 24 n .
  • the n time amplification circuits 22 1 ??, 22 n are connected to the n time channels T 1 ??, T n in one-to-one correspondence; the n comparators 23 1 ??, 23 n correspond to the n time amplification circuits in one-to-one correspondence Connection; n time detection circuits 24 1 ??, 24 n are connected one-to-one with n comparators.
  • each time amplifying circuit is used to input a time signal to a comparator connected to it; each comparator is used to compare the input time signal with its threshold voltage to obtain an output value and transfer it to a time detection circuit connected to it; A time detection circuit is used to input an output value to the time readout circuit 25.
  • the multilayer crystal PET detector when the multilayer crystal PET detector performs electronic readout, it includes:
  • Step S100 Determine whether there is a cross-layer Compton scattering, if not, go to step S200; if there is, go to step S300, you can judge whether there are cross-layer Compton scattering by the energy of different layers of SiPM, if there is only one layer of SiPM photoelectric
  • the energy signal of the detector indicates that there is no cross-layer Compton scattering phenomenon. If there are energy signals of two or more layers of detectors, it indicates that there is a cross-layer Compton phenomenon;
  • Step S200 judging the number of layers of the detector where the reaction is located according to the time signal, and decoding the position and reaction depth information of the gamma photon based on the m energy channel information of the layer;
  • Step S300 Compare the energy levels of different layers based on the time signal, and then determine the layer where the photon reaction is located according to the result of the energy comparison.
  • the output pulse length of the comparator will be different based on the response of different time signals.
  • the pulse width or trigger time of the time signal confirm The location of the response where Compton scattering occurs.
  • the multilayer crystal PET detector of the present invention performs electronic readout
  • the multilayer detector array receives gamma photons without cross-layer Compton scattering
  • the converter sequence can receive the time signal, so the number of layers of the detector where the reaction is located can be judged according to the time signal.
  • Using the m energy channel information of this layer combined with the positioning algorithm can decode the position and reaction depth information of the gamma photon.
  • the energy depth cannot be directly used to determine the reaction depth, but the n time channels of the photoelectric converters of the n-layer detector are not merged.
  • a positron emission imaging apparatus includes a data processing module 300, the above-mentioned multilayer crystal PET detector 100, and the above-mentioned electronic readout module 200.
  • the data processing module 300 is connected to the electronic readout module 200 and is configured to perform data processing and image reconstruction on the energy information and the time information to obtain a scanned image of the object to be imaged.
  • the data processing module 300 may use a field programmable gate array (FPGA), a digital signal processor (DSP), a complex programmable logic device (CPLD), a micro control unit (MCU), or a central processing unit (CPU).
  • FPGA field programmable gate array
  • DSP digital signal processor
  • CPLD complex programmable logic device
  • MCU micro control unit
  • CPU central processing unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种PET设备、多层晶体PET探测器、多层晶体PET探测器(100)的电子读出模块及电子读出方法,多层晶体PET探测器(100)包括n层离散闪烁晶体阵列(11)和n层光电转换器阵列(12),离散闪烁晶体阵列(11)与光电转换器阵列(12)间隔排列,每层光电转换器阵列(12)包括m个光电转换器,光电转换器对光信号进行转换而获得能量信号和时间信号,每层中的m个光电转换器的时间信号合并一起,每层中的m个光电转换器的能量信号单独输出,但层间的光电转换器的能量信号一一对应连接合并,以使多层晶体PET探测器具有m个能量通道和n个时间通道。

Description

PET设备、多层晶体PET探测器及其电子读出模块和方法 技术领域
本发明涉及正电子放射成像领域,具体地,涉及正电子放射成像(PET)设备、多层晶体PET探测器、多层晶体PET探测器的电子读出模块及电子读出方法。
背景技术
正电子放射成像(Positron Emission Computed Tomography,简称PET)技术以生物体中代谢活跃度作为检测标准,在重大疾病的早期诊断中起到良好的效果。目前在正电子放射成像领域广泛使用的探测器中以离散晶体为闪烁晶体组成的探测器技术最为成熟。离散晶体探测器使用二维排列的闪烁晶体阵列与光电转换器耦合,在一个光电转换器上往往耦合了长条形离散晶体,利用重心法和光共享等方法获取光子的反应位置和深度(DOI,Depth of Interaction)信息。
离散晶体组成的PET探测器具有解码算法简单、边缘效应较轻、空间分辨率高等优点,但是由于传统离散晶体探测器接收到的光子在晶体内反射多次才到达光电转换器,因此需要辅助方法才能获取γ光子的反应深度信息。
而基于离散晶体的多层晶体PET探测器,其模型如图1所示。其中1为探测器读出信号排线,2为光电转换器阵列,3为离散闪烁晶体阵列,4为多层晶体PET探测器,5为单层探测器,多层晶体PET探测器可利用康普顿散射原理可以获取反应深度信息。多层晶体PET探测器缩短了γ光子在晶体中的传播时间并增大了晶体的总长度,因此改善了探测器的时间分辨率,提高了对γ光子的拦截能力。然而,多层晶体PET探测器因每层都有光电转换器阵列,探测器的时间通道和能量通道的总数据量很大,这一定程度上降低了探测器的处理效率。
发明内容
根据本发明的一个方面,提供一种处理效率高的多层晶体PET探测器。
本发明的多层晶体PET探测器,包括n层离散闪烁晶体阵列和n层光电转换器阵列,所述离散闪烁晶体阵列与所述光电转换器阵列间隔排列,每层所述光电转换器阵列包括m个光电转换器,所述光电转换器用于对其检测到的可见光子的光信号进行转换而获得能量信号和时间信号,每层中的m个光电转换器的时间信号合并一起,每层中的m个光电转换器的能量信号单独输出,但层间的光电转换器的能量信号一一对应连接合并,以使所述多层晶体PET探测器具有m个能量通道和n个时间通道。
优选地,层间的光电转换器的能量信号从第一层至第n层一一对应串联连接。
优选地,n层光电转换器阵列中的n×m个能量信号通过排线连到一块集线板,且在所述集线板上层间的光电转换器的能量信号一一对应连接合并以获得m个能量通道。
根据本发明的另一个方面,提供一种电子读出模块,用于上述的多层晶体PET探测器中,与所述光电传感器阵列连接,所述电子读出模块包括能量读出电路和时间读出电路,所述能量读出电路用于读取m个能量通道的能量信号,所述时间读出电路用于读取n个时间通道的时间信号。
优选地,所述电子读出模块还包括:
n个时间放大电路,与n个时间通道一一对应连接;
n个比较器,与n个时间放大电路一一对应连接;以及
n个时间检测电路,与n个比较器一一对应连接;
其中,所述时间放大电路用于将时间信号输入到所述比较器;所述比较器用于将输入的时间信号与阈值电压比较得到输出值并传送至所述时间检测电路;所述时间检测电路用于将输出值输入至所述时间读出电路。
根据本发明的另一个方面,提供一种上述多层晶体PET探测器的电子读出方法,包括:
步骤S100:判断是否有跨层康普顿散射,若无,进行步骤S200;若有,进行步骤S300;
步骤S200:根据时间信号判断反应所在探测器层数,基于该层的m个能量通道信息解码γ光子的位置和反应深度信息;
步骤S300:基于时间信号比较不同层的能量大小,然后根据能量比较 的结果确定光子反应所在的层面。
优选地,在所述步骤S300中,在设定所述比较器的阈值电压之后,基于不同的时间信号响应会使比较器的输出脉冲长度不同,通过比较时间信号的脉宽或者触发时间,确认发生康普顿散射的响应位置。
根据本发明的另一个方面,提供一种正电子放射成像设备,所述正电子发射成像设备包括数据处理模块、上述的多层晶体PET探测器、以及上述的电子读出模块,所述数据处理模块与所述电子读出模块连接,用于对所述能量信号和所述时间信号进行数据处理和图像重建,以获得待成像对象的扫描图像。
本发明由于将能量通道合并、时间通道不合并,从而具有如下优点:
(1)电路更为简单,只需要提供单层光电转换器数量的能量通道和探测器层数数量的时间通道,即可采集足够的数据。
(2)没有跨层康普顿散射的情况下,由于每次事件只有一层的SiPM阵列有时间信号,从而可以根据n层的时间信号来确定反应深度。
(3)具有跨层康普顿校准能力,在有跨层康普顿散射的情况下,每次事件有多于一层的SiPM阵列有时间信号,通过比较时间信号的脉宽或者触发时间,能够确认发生康普顿散射的响应位置。
(4)由于把单层所有SiPM的时间信号连在一起,时间性能相较于不分层的设计并没有下降。
综上可以看出,本发明缩减了读出通道,处理效率高、电路实现简单、具有DOI能力、跨层康普顿校准能力和良好时间性能。
在发明内容中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本发明的优点和特征。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施方式及其描述,用来解释本发明的原理。在附图中,
图1为现有技术的多层晶体PET探测器的模型图;
图2为根据本发明实施例的多层晶体PET探测器的分解图;
图3为根据本发明实施例的电子读出模块用于多层晶体PET探测器的示意图;
图4为不同的时间信号响应与比较器的输出脉冲长度比较示意图;
图5为根据本发明实施例的正电子发射成像设备的示意图。
其中,附图标记为
1-探测器读出信号排线
2-光电转换器阵列
3-离散闪烁晶体阵列
4-多层晶体PET探测器
5-单层探测器
100-探测器
11-离散闪烁晶体阵列
12-光电转换器阵列
200-电子读出模块
21-能量读出电路
22 1、22n-时间放大电路
23 1、23n-比较器
24 1、24n-时间检测电路
25-时间读出电路
300-数据处理模块
具体实施方式
在下文的描述中,提供了大量的细节以便能够彻底地理解本发明。然而,本领域技术人员可以了解,如下描述仅涉及本发明的较佳实施例,本发明可以无需一个或多个这样的细节而得以实施。此外,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
本发明提供一种多层晶体PET探测器,结合参阅图2和图3,多层晶体PET探测器100包括n层离散闪烁晶体阵列11和n层光电转换器阵列12,n层离散闪烁晶体阵列11和n层光电转换器阵列12在高度方向上呈上下间隔排列,即,如图2所示,在高度方向上,一层离散闪烁晶体阵列、一层光电转换器阵列、一层离散闪烁晶体阵列、一层光电转换器阵列…… 这样一层间隔一层的排列。
图2所示的多层晶体PET探测器包括n层探测器,每单层探测器包括一层离散闪烁晶体阵列11和一层光电转换器阵列12,就单层探测器而言,离散闪烁晶体阵列11由多个闪烁晶体(图2中,离散闪烁晶体阵列11的行数为a,列数为b,闪烁晶体的个数为a×b)耦合而成,耦合而成的闪烁晶体阵列具有上表面和下表面,光电转换器阵列12由多个光电传感器(图2中,光电转换器阵列12的行数为d,列数为c,光电传感器的个数为c×d)耦合而成,光电转换器阵列12耦合在离散闪烁晶体阵列11的上表面,每个光电传感器耦合有多个闪烁晶体,用于检测伽玛光子与离散闪烁晶体阵列11发生反应所产生的可见光子或紫外光,并对其检测到的可见光子的光信号进行转换而获得能量信号和时间信号。
再一次参阅图2,多层晶体PET探测器的层数为n,n大于2,其最上层的探测器为顶层探测器,最下层的探测器为底层探测器。γ光子可穿透前n-1层到达顶层探测器然后被顶层探测器的闪烁晶体拦截转化成紫外光或者可见光,也可被底层探测器的闪烁晶体直接拦截转化成紫外光或者可见光,也可直接穿过所有离散闪烁晶体阵列。不考虑康普顿散射时,当γ光子在底层晶体反应,有且仅有底层探测器采集到能量;当γ光子在第m层晶体反应,有且仅有第m层探测器模块采集到能量;通过判断收集到能量的探测器,可以确定γ光子的反应深度。
结合参阅图3,为了提高探测器的处理效率,每层光电转换器阵列包括m个(m=c×d)光电转换器,每层中的m个光电转换器的时间信号合并一起,每层中的m个光电转换器的能量信号单独输出,但层间的光电转换器的能量信号一一对应连接合并,以使多层晶体PET探测器具有m个能量通道和n个时间通道。
示例性地,层间的光电转换器的能量信号从第一层至第n层一一对应串联连接。以4层结构为例,假设每层有3×3=9个传感器,输出9个能量信号和9个时间信号,9个时间信号直接连在一起,形成1个时间信号,连接方式可如下:
(a)第一层的信号(9个能量信号和1个时间信号),通过排线连到第二层,进行能量信号合并(按照一一对应的关系,两两合并直接连接在一起),时间信号不合并;
(b)第二层合并后的信号(9个能量信号和2个时间信号),通过排线连到第三层,进行能量信号合并(按照一一对应的关系,两两合并直接连接在一起),时间信号不合并;
(c)第三层合并后的信号(9个能量信号和3个时间信号),通过排线连到第四层,进行能量信号合并(按照一一对应的关系,两两合并直接连接在一起),时间信号不合并;
(d)第四层合并后的信号(9个能量信号和4个时间信号),送入后继电路进行能量和时间测量。
示例性地,n层光电转换器阵列中的n×m个能量信号通过排线连到一块集线板,且在集线板上层间的光电转换器的能量信号一一对应连接合并以获得m个能量通道。同样以4层结构为例,假设每层有3×3=9个传感器,输出9个能量信号和9个时间信号,9个时间信号直接连在一起,形成1个时间信号,连接方式可如下:
(a)第1,2,3,4层的信号通过排线连到一块集线板。共4×9=36个能量信号,和4×1个时间信号。
(b)在集线板上合并36路能量信号(按照一一对应的关系,4个合并直接连接在一起),时间信号不合并。
(c)9个能量信号和4个时间信号,送入后继电路进行能量和时间测量。
再一次参阅图3,本发明提供一种的电子读出模块200,用于上述的多层晶体PET探测器100中,与光电传感器阵列12连接,电子读出模块200包括能量读出电路21和时间读出电路25,能量读出电路21与m个能量通道连接用于读取m个能量通道的能量信号,时间读出电路25与n个时间通道用于读取n个时间通道的时间信号。
需要说明的是,由于能量读出电路21与时间读出电路25的电路结构除了与多层晶体PET探测器的连接方式不同于现有技术外,其它结构与现有技术基本相同,在此就不对其多做赘述。
示例性地,电子读出模块200还包括n个时间放大电路22 1……、22 n,n个比较器23 1……、23 n,以及n个时间检测电路24 1……、24 n。n个时间放大电路22 1……、22 n与n个时间通道T 1……、T n一一对应连接;n个比较器23 1……、23 n,与n个时间放大电路一一对应连接;n个时间检测电路 24 1……、24 n与n个比较器一一对应连接。其中,每个时间放大电路用于将时间信号输入到与之相连的比较器;每个比较器用于将输入的时间信号与其阈值电压比较得到输出值并传送至与之相连的时间检测电路;每个时间检测电路用于将输出值输入至时间读出电路25。
基于上述结构的电子读出模块200的设置,多层晶体PET探测器在进行电子读出时,包括:
步骤S100:判断是否有跨层康普顿散射,若无,进行步骤S200;若有,进行步骤S300,可以通过不同层SiPM的能量判断是否有跨层康普顿散射,如果只有一层SiPM光电探测器有能量信号说明没有发生跨层康普顿散射现象,如果有两层或者多层探测器有能量信号则说明存在跨层康普顿现象;
步骤S200:根据时间信号判断反应所在探测器层数,基于该层的m个能量通道信息解码γ光子的位置和反应深度信息;
步骤S300:基于时间信号比较不同层的能量大小,然后根据能量比较的结果确定光子反应所在的层面。
优选地,在所述步骤S300中,在设定所述比较器的阈值电压之后,基于不同的时间信号响应会使比较器的输出脉冲长度不同,通过比较时间信号的脉宽或者触发时间,确认发生康普顿散射的响应位置。
具体来说,本发明多层晶体PET探测器在进行电子读出时,多层探测器阵列在接收到γ光子未出现跨层康普顿散射的情况下,每次事件只有一层的SiPM光电转换器序列能接收到时间信号,因此可以根据时间信号判断反应所在探测器层数,使用该层的m个能量通道信息结合定位算法可以解码γ光子的位置和反应深度信息。当γ光子反应发生了跨层康普顿散射的情况下,不能直接用能量信号来确定反应深度,但是n层探测器的光电转换器的n个时间通道没有合并,在发生跨层康普顿散射的情况下可以使用时间信号来比较不同层的能量大小,然后根据能量比较的结果确定光子反应所在的层面,结合参阅图4,在设定比较器阈值电压之后,不同的时间信号响应会使比较器的输出脉冲长度不同,这也就根据时间信号达到了判定层间能量大小的作用。
根据本发明的另一个方面,提供一种正电子放射成像设备,所述正电子发射成像设备包括数据处理模块300、上述的多层晶体PET探测器100、以及上述的电子读出模块200。数据处理模块300与电子读出模块200连 接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。示例性地,数据处理模块300可以采用现场可编程门阵列(FPGA)、数字信号处理器(DSP)、复杂可编程逻辑器件(CPLD)、微控制单元(MCU)或中央处理单元(CPU)等实现。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (8)

  1. 一种多层晶体PET探测器,包括n层离散闪烁晶体阵列及n层光电转换器阵列,所述离散闪烁晶体阵列与所述光电转换器阵列间隔排列,每层所述光电转换器阵列包括m个光电转换器,所述光电转换器用于对其检测到的可见光子的光信号进行转换而获得能量信号和时间信号,其特征在于,每层中的m个光电转换器的时间信号合并一起,每层中的m个光电转换器的能量信号单独输出,但层间的光电转换器的能量信号一一对应连接合并,以使所述多层晶体PET探测器具有m个能量通道和n个时间通道。
  2. 根据权利要求1所述的多层晶体PET探测器,其特征在于,层间的光电转换器的能量信号从第一层至第n层一一对应串联连接。
  3. 根据权利要求1所述的多层晶体PET探测器,其特征在于,n层光电转换器阵列中的n×m个能量信号通过排线连到一块集线板,且在所述集线板上层间的光电转换器的能量信号一一对应连接合并以获得m个能量通道。
  4. 一种电子读出模块,用于权利要求1-3中任意一项所述的多层晶体PET探测器中,与所述光电传感器阵列连接,其特征在于,所述电子读出模块包括能量读出电路和时间读出电路,所述能量读出电路用于读取m个能量通道的能量信号,所述时间读出电路用于读取n个时间通道的时间信号。
  5. 根据权利要求4所述的电子读出模块,其特征在于,还包括:
    n个时间放大电路,与n个时间通道一一对应连接;
    n个比较器,与n个时间放大电路一一对应连接;以及
    n个时间检测电路,与n个比较器一一对应连接;
    其中,所述时间放大电路用于将时间信号输入到所述比较器;所述比较器用于将输入的时间信号与阈值电压比较得到输出值并传送至所述时间检测电路;所述时间检测电路用于将输出值输入至所述时间读出电路。
  6. 一种权利要求1-3中所述多层晶体PET探测器的电子读出方法,其特征在于,包括:
    步骤S100:判断是否有跨层康普顿散射,若无,进行步骤S200;若有,进行步骤S300;
    步骤S200:根据时间信号判断反应所在探测器层数,基于该层的m个 能量通道信息解码γ光子的位置和反应深度信息;
    步骤S300:基于时间信号比较不同层的能量大小,然后根据能量比较的结果确定光子反应所在的层面。
  7. 根据权利要求6所述的电子读出方法,其特征在于,在所述步骤S300中,在设定所述比较器的阈值电压之后,基于不同的时间信号响应会使比较器的输出脉冲长度不同,通过比较时间信号的脉宽或者触发时间,确认发生康普顿散射的响应位置。
  8. 一种正电子放射成像设备,其特征在于,所述正电子发射成像设备包括数据处理模块、如权利要求1-3中任一项所述的多层晶体PET探测器、以及如权利要求4-5中任一项所述的电子读出模块,所述数据处理模块与所述电子读出模块连接,用于对所述能量信号和所述时间信号进行数据处理和图像重建,以获得待成像对象的扫描图像。
PCT/CN2019/102536 2018-09-30 2019-08-26 Pet设备、多层晶体pet探测器及其电子读出模块和方法 WO2020063232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811155545.4A CN109459783B (zh) 2018-09-30 2018-09-30 Pet设备、多层晶体pet探测器及其电子读出模块和方法
CN201811155545.4 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063232A1 true WO2020063232A1 (zh) 2020-04-02

Family

ID=65607302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102536 WO2020063232A1 (zh) 2018-09-30 2019-08-26 Pet设备、多层晶体pet探测器及其电子读出模块和方法

Country Status (2)

Country Link
CN (1) CN109459783B (zh)
WO (1) WO2020063232A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110680368B (zh) * 2019-09-12 2023-03-24 东软医疗***股份有限公司 有效单事件的检测方法及装置、信号读出方法及***
CN110632641B (zh) * 2019-09-26 2024-07-09 南昌华亮光电有限责任公司 一种双读出pet探测器正电子成像方法与***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916660A (zh) * 2005-08-16 2007-02-21 株式会社日立制作所 半导体放射线检测器、放射线检测模块及核医学诊断装置
CN101248370A (zh) * 2005-08-26 2008-08-20 皇家飞利浦电子股份有限公司 高分辨率医疗成像探测器
EP2360493A1 (en) * 2010-02-15 2011-08-24 Bergen Teknologioverføring AS Detector arrangement for a tomographic imaging apparatus, particularly for a positron emission tomograph
WO2013012809A1 (en) * 2011-07-15 2013-01-24 Brookhaven Science Associates, Llc Radiation detector modules based on multi-layer cross strip semiconductor detectors
CN103513266A (zh) * 2012-06-21 2014-01-15 苏州瑞派宁科技有限公司 多层闪烁晶体及pet探测器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049677B3 (de) * 2004-10-12 2006-06-14 Siemens Ag Detektoranordnung zur Verwendung in einem kombinierten Transmissions- / Emissions-Tomographiegerät
CN103592671B (zh) * 2012-08-15 2016-03-30 上海联影医疗科技有限公司 闪烁晶体阵列探测器及采用该探测器的pet-mr***
CN104155673B (zh) * 2014-07-21 2017-04-12 北京永新医疗设备有限公司 伽马射线成像探测器及具有它的***
CN105182396B (zh) * 2015-06-29 2018-04-24 苏州瑞派宁科技有限公司 一种探测器信号读出的通道复用方法
CN105093258B (zh) * 2015-09-30 2018-03-23 中派科技(深圳)有限责任公司 光子测量前端电路
CN107320121B (zh) * 2016-04-29 2021-06-22 上海联影医疗科技股份有限公司 正电子发射断层成像光子探测装置
US10509135B2 (en) * 2016-09-09 2019-12-17 Minnesota Imaging And Engineering Llc Structured detectors and detector systems for radiation imaging
WO2018077681A1 (en) * 2016-10-26 2018-05-03 Koninklijke Philips N.V. Radiation detector scintillator with an integral through-hole interconnect
US11385362B2 (en) * 2016-10-28 2022-07-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Scintillation detector and associated scintillation detector ring and method
CN107450092B (zh) * 2017-08-23 2019-07-26 中派科技(深圳)有限责任公司 用于测量光子信息的装置
CN107894605A (zh) * 2017-12-27 2018-04-10 合肥吾法自然智能科技有限公司 一种新型的高空间分辨率pet探测器模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916660A (zh) * 2005-08-16 2007-02-21 株式会社日立制作所 半导体放射线检测器、放射线检测模块及核医学诊断装置
CN101248370A (zh) * 2005-08-26 2008-08-20 皇家飞利浦电子股份有限公司 高分辨率医疗成像探测器
EP2360493A1 (en) * 2010-02-15 2011-08-24 Bergen Teknologioverføring AS Detector arrangement for a tomographic imaging apparatus, particularly for a positron emission tomograph
WO2013012809A1 (en) * 2011-07-15 2013-01-24 Brookhaven Science Associates, Llc Radiation detector modules based on multi-layer cross strip semiconductor detectors
CN103513266A (zh) * 2012-06-21 2014-01-15 苏州瑞派宁科技有限公司 多层闪烁晶体及pet探测器

Also Published As

Publication number Publication date
CN109459783A (zh) 2019-03-12
CN109459783B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
JP5641930B2 (ja) 画像診断システム、タイムスタンプ計算方法、この方法を実行するプロセッサ、この方法をプログラミングしたコンピュータ読取媒体
WO2018072721A1 (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
EP1627239B1 (en) A detector module for detecting ionizing radiation
WO2019237858A1 (zh) 用于正电子发射成像设备的探测器及正电子发射成像设备
US5532489A (en) Positron imaging apparatus
CN107735694B (zh) 用于使用二分感测的交互深度正电子断层扫描检测器的装置和方法
JPH07146371A (ja) 信号処理方法とシンチレーション・カメラ
US20100038546A1 (en) Crystal identification for high resolution nuclear imaging
WO2018223917A1 (zh) 检测器和具有该检测器的发射成像设备
WO2020063232A1 (zh) Pet设备、多层晶体pet探测器及其电子读出模块和方法
KR102063828B1 (ko) 방사선 영상 기기의 신호 검출 방법 및 그 방사선 영상 기기
KR100917930B1 (ko) 다층 구조의 섬광 검출기 및 이를 이용한 양전자방출단층촬영장치
KR101214828B1 (ko) 다중 섬광결정을 이용한 감마선 검출기 및 이를 이용한 양전자방출단층촬영기
KR101330117B1 (ko) 다채널 광전소자를 이용하는 양전자방출 단층촬영장치
CN106461792A (zh) 在辐射粒子探测器中的闪烁事件定位
US10895651B2 (en) PET device and method of acquiring gamma ray generation position using scattered coincidence with PET device
US20220179106A1 (en) Panel Radiation Detector
GB2484964A (en) Asymmetric crosswire readout for scintillator devices using silicon photomultipliers (SPMs)
KR101587339B1 (ko) 양전자방출 단층촬영장치용 검출기 모듈 및 이를 이용한 양전자방출 단층촬영장치
US20220357467A1 (en) Radiation position detector
Zhao et al. Depth encoding PET detectors using single layer crystal array with different reflector arrangements along depths
David et al. Imaging performance of silicon photomultipliers coupled to BGO and CsI: Na arrays
JP6897775B2 (ja) 放射線検出器および核医学診断装置
Inadama et al. Preliminary evaluation of four-layer BGO DOI-detector for PET
KR20190095875A (ko) 디지털 집적회로 및 검출모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 26.08.21.

122 Ep: pct application non-entry in european phase

Ref document number: 19867291

Country of ref document: EP

Kind code of ref document: A1