WO2020061788A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020061788A1
WO2020061788A1 PCT/CN2018/107467 CN2018107467W WO2020061788A1 WO 2020061788 A1 WO2020061788 A1 WO 2020061788A1 CN 2018107467 W CN2018107467 W CN 2018107467W WO 2020061788 A1 WO2020061788 A1 WO 2020061788A1
Authority
WO
WIPO (PCT)
Prior art keywords
spdsch
subslot
dci
resource
rate matching
Prior art date
Application number
PCT/CN2018/107467
Other languages
English (en)
French (fr)
Inventor
苏立焱
李超君
夏金环
朱伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/107467 priority Critical patent/WO2020061788A1/zh
Priority to CN201880097565.2A priority patent/CN112703804B/zh
Publication of WO2020061788A1 publication Critical patent/WO2020061788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communication, and more particularly, to a communication method and a communication device.
  • LTE long term evolution
  • 5G 5th-generation
  • LTE introduced short transmission
  • the time interval shortened transmission time interval, subslot
  • the physical downlink shared channel physical downlink shared channel (PDSCH)) repeated transmission (repetition) technology.
  • PDSCH physical downlink shared channel
  • Subslot technology can introduce shorter time scheduling units for LTE.
  • the subslot technology can introduce one time slot, two time domain symbols, or three time domain symbols as a time scheduling unit for LTE.
  • the PDSCH repetition technology can enable a base station to use a downlink control information (DCI) to schedule multiple PDSCHs in multiple subslots.
  • DCI downlink control information
  • a downlink subframe may include 6 subslots, and the numbers of the 6 subslots are subslot # 0 to # 5.
  • the base station may serve each user equipment ( User equipment (UE) configures 1 or 2 resource block (resource block, RB) sets.
  • the UE detects short downlink control information (sDCI) on the RB set configured by the base station; and the UE detects DCI on the physical downlink control channel (PDCCH) domain on subslot # 0, so There is no RB set on subslot # 0.
  • sDCI short downlink control information
  • the subslot allows short physical downlink shared channels (sPDSCH) to reuse resources not occupied by sDCI in the RB set.
  • the base station can indicate whether the overlapping part of the two RB sets and the sPDSCH can be used to send the sPDSCH through physical layer signaling. Generally, this indication process can also be called rate matching.
  • instruction information may be added to the sDCI to indicate whether the sPDSCH can occupy RB set resources. Since there is no RB set on subslot # 0, the DCI in the PDCCH domain does not contain the indication information. After PDSCH repetition is enabled, except for the first subslot, other subslots that are repeatedly transmitted do not contain sDCI. All other subslots that are repeatedly transmitted follow the rate matching scheme on the first subslot.
  • the DCI in the PDCCH domain does not contain the indication information.
  • the DCI indicating the PDSCH resource is sent in the PDCCH domain, other repeated transmission subslots cannot learn the rate matching scheme.
  • the present application provides a communication method and a communication device, which can enable other subslots of repeated transmissions to obtain a rate matching scheme when DCI is transmitted in the PDCCH domain.
  • a communication method includes: receiving first configuration information from a network device, where the first configuration information includes a physical layer reuse instruction, and the physical layer reuse instruction is used to indicate the first
  • the rate matching scheme of the short physical downlink shared channel sPDSCH is indicated by physical layer signaling.
  • the first type of sPDSCH is the sPDSCH carried in the subslot subslot with a number other than 0.
  • the downlink control information DCI is received from the network device.
  • the DCI is carried in a physical downlink control channel PDCCH domain, and the DCI is used to schedule a single sPDSCH carried in a subslot numbered 0, or the DCI is used to schedule multiple sPDSCH including a subslot carried in a numbered 0 subslot.
  • SPDSCH when the DCI is used to schedule the multiple sPDSCHs including the sPDSCH carried in the subslot numbered 0, determine the sPDSCH of the first type of sPDSCH according to the multiplexing indication information in the DCI A rate matching scheme, or determining the rate matching scheme of the first type of sPDSCH according to high-level signaling.
  • the DCI when the DCI is used to schedule the multiple sPDSCHs including the sPDSCH carried in the subslot with the number 0, according to the multiplexing indication information in the DCI or
  • the higher-layer signaling determines the rate matching scheme of the first type of sPDSCH, which can enable other subslots of repeated transmission to obtain the rate matching scheme when DCI is sent in the PDCCH domain.
  • the subslot with the number 0 is the first subslot of each subframe, and the PDCCH domain starts with the first symbol of each subframe.
  • the method further includes: receiving second configuration information from a network device, the second configuration information is used to configure a resource block set, and the resource block set is used to carry a short physical downlink control channel sPDCCH
  • the DCI includes resource allocation information, the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs, and the multiplexing indication information or the high-level signaling is used to indicate the Whether the overlapping part of the initial sPDSCH resource and the set of resource blocks can be used to transmit sPDSCH; determining the sPDSCH according to the multiplexing indication information and the initial sPDSCH resource, or according to the high-level signaling and the initial sPDSCH resource The first type of sPDSCH rate matching mode.
  • the PDSCH resource used on the subslot with the number 0 is the initial PDSCH resource.
  • the sPDSCH resource used on the subslot with the number 0 is the initial sPDSCH resource
  • the downlink resources in the subslot with the number 0 can be fully used to transmit the sPDSCH, thereby improving the resource utilization rate.
  • the sPDSCH resource used on the subslot numbered 0 is the initial sPDSCH resource, the complexity of network device scheduling can be reduced.
  • the rate matching scheme of the PDSCH transmitted on the subslot numbered 0 is the same as the rate matching scheme of the first type of sPDSCH.
  • the terminal device can combine the K transmission sPDSCHs and demodulate, which can reduce the processing complexity of the terminal device.
  • the multiplexing indication information is located in the DCI.
  • the multiplexing indication information is pre- Define the value.
  • the reliability of the DCI estimation can be improved.
  • a communication method includes: sending first configuration information to a terminal device, where the first configuration information includes a physical layer reuse instruction, and the physical layer reuse instruction is used to indicate the first The rate matching mode of the short-type physical downlink shared channel sPDSCH resource is indicated by physical layer signaling.
  • the first type of sPDSCH resource is an sPDSCH resource carried in a sub-slot subslot with a number other than 0; generating multiplexing indication information or a higher layer Signaling, the multiplexing indication information or the high-level signaling for determining a rate matching scheme for the first type of sPDSCH resources scheduled by downlink control information DCI, wherein the DCI is carried in a physical downlink control channel PDCCH domain, and The DCI is used to schedule a single sPDSCH carried in the subslot with the number 0, or the DCI is used to schedule multiple sPDSCH including the sPDSCH carried in the subslot with the number 0;
  • the DCI or high-level signaling, the DCI includes the multiplexing indication information.
  • the DCI when the DCI is used to schedule the multiple sPDSCHs including the sPDSCH carried in the subslot with the number 0, according to the multiplexing indication information in the DCI or
  • the higher-layer signaling determines the rate matching scheme of the first type of sPDSCH, which can enable other subslots of repeated transmission to obtain the rate matching scheme when DCI is sent in the PDCCH domain.
  • the subslot with the number 0 is the first subslot of each subframe, and the PDCCH domain starts with the first symbol of each subframe.
  • the method further includes: sending second configuration information to the terminal device, where the second configuration information is used to configure a resource block set, and the resource block set is used to bear Short physical downlink control channel sPDCCH, the DCI includes resource allocation information, the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs, and the indication information is used to indicate the initial sPDSCH Whether the overlapping part of the resource and the set of resource blocks can be used for transmitting the sPDSCH.
  • the second configuration information is used to configure a resource block set
  • the resource block set is used to bear Short physical downlink control channel sPDCCH
  • the DCI includes resource allocation information
  • the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs
  • the indication information is used to indicate the initial sPDSCH Whether the overlapping part of the resource and the set of resource blocks can be used for transmitting the sPDSCH.
  • the PDSCH resource used on the subslot with the number 0 is the initial PDSCH resource.
  • the sPDSCH resource used on the subslot with the number 0 is the initial sPDSCH resource
  • the downlink resources in the subslot with the number 0 can be fully used to transmit the sPDSCH, thereby improving the resource utilization rate.
  • the sPDSCH resource used on the subslot numbered 0 is the initial sPDSCH resource, the complexity of network device scheduling can be reduced.
  • the rate matching scheme of the PDSCH transmitted on the subslot numbered 0 is the same as the rate matching scheme of the first type of sPDSCH.
  • the terminal device can combine the K transmission sPDSCHs and demodulate, which can reduce the processing complexity of the terminal device.
  • the indication information is located in the DCI.
  • the indication information is a predefined value.
  • the reliability of the DCI estimation can be improved.
  • a communication device configured to include a receiving module configured to receive first configuration information from a network device, where the first configuration information includes a physical layer reuse instruction, and the physical layer reuse instruction.
  • the rate matching scheme for indicating the first type of short physical downlink shared channel sPDSCH is indicated by physical layer signaling.
  • the first type of sPDSCH is an sPDSCH carried in a subslot subslot with a number other than 0.
  • the receiving module also uses For receiving downlink control information DCI from a network device, the DCI is carried in a physical downlink control channel PDCCH domain, the DCI is used to schedule a single sPDSCH carried in a subslot numbered 0, or the DCI is used to schedule a A plurality of sPDSCHs including the sPDSCH of the subslot numbered 0; a processing module configured to: when the DCI is used to schedule the plurality of sPDSCHs including the sPDSCH carried in the subslot of the number 0, according to The multiplexing indication information in the DCI determines the rate matching scheme of the first type of sPDSCH, or determines the rate matching scheme of the first type of sPDSCH according to higher layer signaling.
  • the DCI when the DCI is used to schedule the multiple sPDSCHs including the sPDSCH carried in the subslot with the number 0, according to the multiplexing indication information in the DCI or
  • the higher-layer signaling determines the rate matching scheme of the first type of sPDSCH, which can enable other subslots of repeated transmission to obtain the rate matching scheme when DCI is sent in the PDCCH domain.
  • the subslot with the number 0 is the first subslot of each subframe, and the PDCCH domain starts with the first symbol of each subframe.
  • the receiving module is further configured to receive second configuration information from a network device, where the second configuration information is used to configure a resource block set, and the resource block set is used to carry short physical downlink control.
  • Channel sPDCCH the DCI includes resource allocation information, the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs, and the multiplexing indication information or the high-level signaling is used to indicate Whether the overlapping part of the initial sPDSCH resource and the set of resource blocks can be used to transmit sPDSCH; the processing module is specifically configured to: according to the multiplexing indication information and the initial sPDSCH resource, or according to the higher-layer signaling And the initial sPDSCH resource to determine a rate matching mode of the first type of sPDSCH.
  • the PDSCH resource used on the subslot with the number 0 is the initial PDSCH resource.
  • the sPDSCH resource used on the subslot with the number 0 is the initial sPDSCH resource
  • the downlink resources in the subslot with the number 0 can be fully used to transmit the sPDSCH, thereby improving the resource utilization rate.
  • the sPDSCH resource used on the subslot numbered 0 is the initial sPDSCH resource, the complexity of network device scheduling can be reduced.
  • the rate matching scheme of the PDSCH transmitted on the subslot numbered 0 is the same as the rate matching scheme of the first type of sPDSCH.
  • the terminal device can combine the K transmission sPDSCHs and demodulate, which can reduce the processing complexity of the terminal device.
  • the multiplexing indication information is located in the DCI.
  • the multiplexing indication information is pre- Define the value.
  • the reliability of the DCI estimation can be improved.
  • a communication device includes a sending module configured to send first configuration information to a terminal device, where the first configuration information includes a physical layer reuse instruction, and the physical layer reuse instruction.
  • the rate matching mode used to indicate the first type of short physical downlink shared channel sPDSCH resource is indicated by physical layer signaling.
  • the first type of sPDSCH resource is an sPDSCH resource carried in a sub-slot subslot with a number other than 0; a processing module For generating multiplexing indication information or high-level signaling, where the multiplexing indication information or high-level signaling is used to determine a rate matching scheme for the first type of sPDSCH resources scheduled by downlink control information DCI scheduling, wherein the DCI bearer In the physical downlink control channel PDCCH domain, and the DCI is used to schedule a single sPDSCH carried in the subslot numbered 0, or the DCI is used to schedule the sPDSCH including the subslot numbered 0 Multiple sPDSCH; a sending module, further configured to send the DCI or high-level signaling to a terminal device, where the DCI includes the multiplexing indication information.
  • the DCI when the DCI is used to schedule the multiple sPDSCHs including the sPDSCH carried in the subslot with the number 0, according to the multiplexing indication information in the DCI or
  • the higher-layer signaling determines the rate matching scheme of the first type of sPDSCH, which can enable other subslots of repeated transmission to obtain the rate matching scheme when DCI is sent in the PDCCH domain.
  • the subslot with the number 0 is the first subslot of each subframe, and the PDCCH domain starts with the first symbol of each subframe.
  • the sending module is further configured to send second configuration information to the terminal device, where the second configuration information is used to configure a resource block set, and the resource block set is used for For carrying a short physical downlink control channel sPDCCH, the DCI includes resource allocation information, where the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs, and the indication information is used to indicate the Whether the overlapping part of the initial sPDSCH resource and the set of resource blocks can be used for transmitting the sPDSCH.
  • the PDSCH resource used on the subslot with the number 0 is the initial PDSCH resource.
  • the sPDSCH resource used on the subslot with the number 0 is the initial sPDSCH resource
  • the downlink resources in the subslot with the number 0 can be fully used to transmit the sPDSCH, thereby improving the resource utilization rate.
  • the sPDSCH resource used on the subslot numbered 0 is the initial sPDSCH resource, the complexity of network device scheduling can be reduced.
  • the rate matching scheme of the PDSCH transmitted on the subslot numbered 0 is the same as the rate matching scheme of the first type of sPDSCH.
  • the terminal device can combine the K transmission sPDSCHs and demodulate, which can reduce the processing complexity of the terminal device.
  • the indication information is located in the DCI.
  • the indication information is a predefined value.
  • the reliability of the DCI estimation can be improved.
  • a communication device includes a receiver and a processor.
  • the processor is configured to execute a program.
  • the processor executes the program, the receiver and the processor implement the first aspect or any one of the first aspect. Communication method in one possible implementation.
  • the communication device may further include a memory.
  • the memory is used to store programs executed by the processor.
  • a communication device includes a transmitter and a processor.
  • the processor is configured to execute a program.
  • the processor executes the program, the transmitter and the processor implement the second aspect or any one of the second aspect. Communication method in one possible implementation.
  • the communication device may further include a memory.
  • the memory is used to store programs executed by the processor.
  • a computer-readable storage medium stores program code for execution by a communication device, where the program code includes the first aspect or any one of the first aspect. Instructions for implementing a communication method.
  • a computer-readable storage medium stores program code for execution by a communication device, and the program code includes a second aspect or any one of the second aspect. Instructions for implementing a communication method.
  • a chip includes a processor and a communication interface, where the communication interface is used to communicate with an external device, and the processor is used to implement the first aspect or any possible implementation manner of the first aspect. Communication method.
  • the chip may further include a memory, and the memory stores instructions.
  • the processor is configured to execute the instructions stored in the memory.
  • the processor is configured to implement the first aspect or any one of the first aspect. Communication methods in possible implementations.
  • a chip includes a processor and a communication interface, where the communication interface is used to communicate with an external device, and the processor is used to implement the second aspect or any possible implementation manner of the second aspect. Communication method.
  • the chip may further include a memory, and the memory stores instructions.
  • the processor is configured to execute the instructions stored in the memory.
  • the processor is configured to implement the second aspect or any one of the second aspect. Communication methods in possible implementations.
  • a computer program product includes instructions that, when run on a communication device, cause the communication device to execute the communication method in the first aspect or any possible implementation manner of the first aspect. .
  • a computer program product including instructions that, when running on a communication device, cause the communication device to execute the communication method in the second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a communication system including the communication device according to one or more of the third aspect to the sixth aspect.
  • the communication system further includes other equipment that interacts with any one of the communication devices in one or more of the third aspect to the sixth aspect in the solutions provided in the embodiments of the present application.
  • FIG. 1 is a schematic architecture diagram of a communication system to which a communication method according to an embodiment of the present application can be applied.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Global Interoperability for Microwave Access
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), and wireless communications Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment and the like are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System for Mobile Communication (GSM) system or a Code Division Multiple Access (CDMA) system.
  • the base station (Base Transceiver Station (BTS)) can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolved) in an LTE system.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • the base station can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolved) in an LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolved evolved base station
  • NodeB can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, in-vehicle device, wearable device, and future
  • CRAN cloud radio access network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network is not limited in the embodiments of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • This application layer contains applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the application can be run to provide the program according to the embodiment of the application.
  • the communication may be performed by using the method described above.
  • the method execution subject provided in the embodiments of the present application may be a terminal device or a network device, or a function module in the terminal device or the network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and / or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media used to store information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and / or carrying instruction (s) and / or data.
  • the communication method of the present application can be used for transmission of multiple types of services.
  • the multiple types of services may include, but are not limited to: a. Ultra high reliability and low latency communication (URLLC) business.
  • the application scenarios can include eMBB and URLLC, and can be used from throughput, delay, and connection density.
  • the 8 dimensions including the improvement of spectrum efficiency and the definition of the capacity requirements for 5G networks.
  • eMBB services mainly require large rates, wide coverage, transmission delay, and mobility.
  • the main requirements of the URLLC service are extremely high reliability, extremely low mobility, and transmission delay.
  • the wireless air interface is required to achieve 99.999% transmission reliability within 1 millisecond (ms).
  • FIG. 1 is an exemplary architecture diagram of a communication system 100 according to an embodiment of the present application.
  • the method in the embodiment of the present application can be applied to the communication system 100 shown in FIG. 1.
  • the communication system 100 to which the methods of the embodiments of the present application can be applied may include more or fewer network devices or terminal devices.
  • the network device or terminal device in FIG. 1 may be hardware, software divided by functions, or a combination of the two.
  • the network equipment or terminal equipment in FIG. 1 can communicate with each other through other equipment or network elements.
  • the network device 110 and the terminal devices 101 to 106 form a communication system 100.
  • the network device 110 may send downlink data to the terminal device 101 to the terminal device 106.
  • the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110.
  • the terminal devices 101 to 106 may be, for example, a cellular phone, a smart phone, a portable computer, a handheld communication device, a handheld computing device, a satellite radio, a global positioning system, a PDA, and / or a wireless communication system 100. Any other suitable device for communication.
  • the communication system 100 may be a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an IoT network, or other networks.
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT IoT network
  • the terminal devices 104 to 106 may also constitute a communication system.
  • the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106.
  • the transmission of services can be based on network device scheduling.
  • the upper-layer data packets can be divided into small data packets in units of transmission blocks when scheduling at the physical layer.
  • a basic time unit can be a slot or a subframe.
  • the duration of a subframe in the time domain can be 1 millisecond (ms).
  • a subframe can include 14 time domain symbols.
  • a time slot can include 7 or 14 time domain symbols.
  • the transmission time interval transmission time interval, TTI
  • TTI transmission time interval
  • CFI control format indicator
  • a network device can send DCI in the PDCCH domain, and the DCI can be used to instruct the terminal device to receive time-frequency domain resources of the PDSCH, and the necessary information required by the terminal device to demodulate the PDSCH.
  • the network device may also perform scheduling based on a shorter time scheduling unit.
  • a network device can schedule a time slot or 2 to 3 time domain symbols as a basic time unit.
  • a time scheduling unit shorter than 1 ms can be referred to as a subslot or a short transmission time interval (sTTI).
  • sTTI short transmission time interval
  • this application uniformly uses a subslot to represent a time scheduling unit shorter than 1 ms. .
  • a downlink subframe can include 14 time-domain symbols, which are numbered 0 to 13 respectively. According to different values of the CFI, the downlink subframe can be divided into 6 lengths of 2 or 3. A subslot of time domain symbols.
  • subslot in the embodiments of the present application may also be referred to as a subslot.
  • CFI> 1 subslot # 0 is completely occupied by the PDCCH domain, so it cannot be used. Transmission of PDSCH.
  • subslot numbers subslot # 0 ⁇ # 5 in FIG. 2 are physical numbers, not logical numbers, that is, when CFI takes a certain value, the position of each subslot, the corresponding number, and its included
  • Subslot # 1 includes three time-domain symbols numbered 2, 3, and 4. As shown in FIG. 2, the positions of subslots # 2 to # 5 and the number of time-domain symbols included in them will not change due to different CFI values.
  • the subslot may further include a resource block (resource block, RB) set, and the RB set may be a time-frequency domain resource in the subslot.
  • a network device can configure one or two RB sets for a terminal device through high-level signaling.
  • one subslot may include two RB sets, and the two RB sets may overlap in the time-frequency domain.
  • the RB set in a subslot can start with the first time domain symbol in the time domain included in the subslot and end with the first or second time domain symbol in the time domain included in the subslot.
  • the union of these two RB sets can be referred to as the sPDCCH domain of the subslot.
  • RB set 1 in subslot # 1 may start with the time domain symbol numbered 3, and may end with the time domain symbol numbered 4.
  • RB set 2 can start with the time domain symbol numbered 3 and can end with the time domain symbol numbered 3.
  • subslot # 0 may not include the RB set.
  • the terminal device may detect the DCI on the RB set configured for the network device, where the DCI may be called sDCI. If subslot # 0 does not include the RB set, then on subslot # 0, the terminal device can detect DCI on the PDCCH domain.
  • the subslot # 1 includes three time-domain symbols with the number 2, the 3, and the number 4. If the subslot # 1 includes two RB set, then RB set 1 in subslot # 1 can start with the time-domain symbol numbered 2 and end with time-domain symbol with the number 3, and RB set2 in subslot # 1 can start with the number 2 The time domain symbol ends with the number 2 time domain symbol.
  • the DCI detected by the terminal device in the PDCCH domain is referred to as sDCI.
  • resources not occupied by sDCI in the RB sets of subslots # 1 to # 5 may be used to transmit sPDSCH.
  • sPDSCH overlaps with RB1, RB1, and RB2 in the time-frequency domain.
  • the overlapped portion of sPDSCH and RB1 in the time-frequency domain does not send sDCI.
  • the overlapping part with RB set 2 in the domain is used to send sDCI. Therefore, the sPDSCH can be transmitted with the overlapping part with RB set 1 in the time-frequency domain.
  • the sPDSCH may be scheduled through the sDCI in the RB set 1.
  • the network device and the terminal device receiving the PDSCH can align the coding rate used for this downlink transmission.
  • the process of aligning the coding rate used for downlink transmission here can be called rate matching.
  • rate matching can be achieved through the following processes:
  • the network device can configure the rate matching scheme to the terminal device through high-level signaling, which is indicated by high-level signaling or physical layer signaling;
  • the subsequent network equipment may indicate the rate matching scheme to the terminal device through high-level signaling. For example, it may indicate to the terminal device through high-level signaling. Whether the sPDSCH can be transmitted in the time-frequency domain overlapping with the RB set;
  • the sDCI can be used to indicate the rate matching scheme, and subsequent network devices can use the instruction information to the terminal device. Indicates the rate matching scheme.
  • 2-bit instruction information may be added to the sDCI of subslots # 1 to # 5.
  • the 2-bit instruction information may correspond to two RB sets in the subslot in which the sDCI is located, respectively, and are used to indicate whether the sPDSCH overlaps with the RB set 1 in the time-frequency domain, and The part that overlaps with RB 2 in the frequency domain is transmitted.
  • the 2-bit indication information introduced in the sDCI of subslots # 1 to # 5 can be referred to as the Available / Unused sPDCCH resource indication bit field, which can be simply referred to as Available / Unused. area.
  • the DCI in the PDCCH domain does not include the 2-bit indication information.
  • the network device may indicate the rate matching scheme to the terminal device through physical layer signaling.
  • the DCI sent on subslot # 0 can be Nbit, and accordingly, the sDCI sent on subslot # 1 to # 5 can be N + 2bit, where Is a positive integer.
  • one DCI can only schedule PDSCH in one TTI or subslot.
  • a PDSCH repetition (PDSCH) repetition technology may be introduced, that is, a network device may activate a PDSCH repetition to a terminal device through high-level signaling. Thereafter, the network device can use one DCI to schedule multiple PDs in multiple TTIs or subslots for the terminal device.
  • 2-bit instruction information may be added to the DCI, and the instruction information is used to indicate the number of TTIs or subslots scheduled by the DCI. Or it can also be said that the indication information is used to indicate the number of repeated transmissions of the PDSCH scheduled by the DCI.
  • the number of repeated PDSCH transmissions indicated by the indication information includes the first transmission of the PDSCH.
  • the terminal device may obtain the rate matching scheme from high-level signaling. Further, other subslots that repeatedly transmit PDSCH may perform rate matching according to the rate matching scheme.
  • the network device when a network device configures a rate matching scheme to a terminal device through high-level signaling and is indicated by physical layer signaling, the network device may indicate the sPDSCH to the terminal device through the 2-bit instruction information in the sDCI. Whether it can occupy RB set resources.
  • the terminal device can enable PDSCH repetition, and if the PDSCH is transmitted K times repeatedly, the first subslot transmitting the PDSCH can be matched by the sDCI in the subslot, while all other K-1 subslots Without DCI.
  • other K-1 subslots may all perform rate matching according to the rate matching scheme of the sDCI in the first subslot.
  • the DCI in the PDCCH domain does not include the 2-bit indication information, as shown in FIG. 5, when the DCI indicating the number of repeated PDSCH transmissions is sent in the PDCCH domain, the other K-1 subslots mentioned above cannot obtain a rate matching scheme.
  • this application proposes a communication method.
  • a rate matching scheme is indicated to a terminal device by physical layer signaling
  • the DCI indicating the PDSCH resource is sent in the PDCCH domain
  • other subslots of repeated transmission can obtain rate matching.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application. It should be understood that FIG. 6 shows the steps or operations of the communication method, but these steps or operations are merely examples. Embodiments of the present application may also perform other operations or variations of the operations in FIG. 6, or not all steps Need to be performed, or these steps can be performed in another order.
  • the network device sends first configuration information, where the first configuration information includes a physical layer multiplexing instruction.
  • the physical layer multiplexing instruction is used to indicate that a rate matching scheme of the first type of short physical downlink shared channel sPDSCH is indicated by physical layer signaling.
  • One type of sPDSCH is an sPDSCH carried in a subslot subslot whose number is not zero. Accordingly, the terminal device receives the first configuration information.
  • the physical layer reuse indication (L1-based reuse indication) may be used to indicate that the rate matching scheme of the sPDSCH carried in the sub-slot subslot with a number other than 0 is indicated by higher layer signaling or physical layer signaling.
  • the physical layer multiplexing indication is used to indicate that the rate matching scheme of the sPDSCH carried in the sub-slot subslot whose number is not 0 is indicated by the physical layer signaling.
  • the first configuration information may be sent through high-level signaling.
  • the first configuration information may be carried in RRC signaling.
  • the above-mentioned first type of sPDSCH may refer to an sPDSCH carried in a subslot whose number is not 0.
  • the subslot number other than 0 here can include subslot # 1 ⁇ # 5.
  • the network device may further send second configuration information, where the second configuration information is used to configure a resource block set, and the resource block set is used to carry a short physical downlink control channel sPDCCH. Accordingly, the terminal device can receive the second configuration information.
  • the terminal device may configure the resource block set according to the second configuration information.
  • the physical layer signaling may be DCI.
  • the DCI may include resource allocation information, and the resource allocation information may be used to indicate a single sPDSCH or multiple sPDSCH initial sPDSCH resources. It should be understood that the initial sPDSCH resource may be the sPDSCH resource indicated in the DCI, and the sPDSCH resource here is not subjected to rate matching.
  • the network device sends downlink control information DCI.
  • the DCI is carried in the physical downlink control channel PDCCH domain.
  • the DCI is used to schedule a single sPDSCH carried in the subslot numbered 0, or the DCI is used to schedule the information including the bearer in the numbered 0.
  • the numbered subslot may be the first subslot of each subframe, and the subslot may also be called a subslot.
  • one downlink subframe may be divided into six subslots with a length of two or three time domain symbols.
  • subslots # 0 to # 5 can be used to number each subslot.
  • the numbers subslot # 0 ⁇ # 5 here are physical numbers, not logical numbers, that is, when CFI takes a certain value, the position of each subslot, the corresponding number, and the time domain symbols included in it The number can be fixed.
  • the PDCCH domain may start at the first symbol of each subframe and end at the first, second, or third symbol of each subframe.
  • the symbol here may be a time domain symbol in a subframe. That is, the PDCCH domain may include resources included in the first 1 to 3 time domain symbols in the time domain among the 14 time domain symbols included in one subframe.
  • the network device may further send third configuration information, where the third configuration information may be used to indicate a transmission time interval and activate repeated transmission of the PDSCH.
  • the third configuration information may indicate that the transmission time interval is N subslots, and repeated transmission of PDSCH is activated, and wherein N is a positive integer and 1 subslot may be 2 or 3 time domain symbols. Accordingly, the terminal device can receive the third configuration information.
  • the terminal device may determine the number of repeated transmissions of PDSCH according to physical layer signaling. At this time, if the physical layer signaling indicates the PDSCH If the number of repeated transmissions is once, DCI can schedule a single sPDSCH carried in subslot # 0; if physical layer signaling indicates that the number of repeated transmissions of PDSCH is multiple, DCI can schedule multiple transmissions, including the sPDSCH carried in subslot # 0. SPDSCH.
  • the terminal device may determine the number of times the PDSCH is repeatedly transmitted through the DCI.
  • the third configuration information may indicate that the transmission time interval of the PDSCH is N slots, where 1 slot may be 7 time domain symbols.
  • a subslot can include two RB sets, which are RB set 1 and RB set 2.
  • the terminal device may determine the rate matching scheme of the first type of sPDSCH according to the multiplexing indication information in the DCI.
  • the multiplexing indication information in the DCI can indicate whether the first type of sPDSCH can overlap with RB set 1 in the time-frequency domain and the portion overlapped with RB set 2 in the time-frequency domain, respectively.
  • the multiplexing instruction information may be 2 bits, and the 2-bit multiplexing instruction information may be corresponding to RB set 1 and RB set 2 respectively. These 2 bits are used to indicate whether the first type of sPDSCH can be transmitted in the time-frequency domain overlapping with RB set 1 and the time-frequency domain overlapping with RB set 2.
  • the above-mentioned first type of sPDSCH may refer to the sPDSCH actually carried in subslot # 1 to # 5, and the initial sPDSCH resource may be the sPDSCH resource indicated in DCI, that is, the first type of sPDSCH may be the initial sPDSCH resource after rate matching , SPDSCH resources used in actual transmission in subslot # 1 ⁇ # 5.
  • the multiplexing indication information can indicate whether the overlapping part of the initial sPDSCH resource and the RB set can be used to transmit the sPDSCH.
  • the terminal device may determine the rate matching method of the first type of sPDSCH according to the multiplexing indication information and the initial sPDSCH resource.
  • the terminal device may determine a rate matching scheme of the first type of sPDSCH according to high-level signaling.
  • the high-level signaling can indicate whether the first type of sPDSCH can overlap with the RB set 1 in the time-frequency domain and the part that overlaps with the RB set 2 in the time-frequency domain.
  • the high-level signaling may include 2-bit indication information.
  • the 2-bit instruction information can be corresponding to RB set1 and RB set2 respectively. This 2-bit instruction information is used to indicate whether the first type of sPDSCH can be transmitted in the time-frequency domain overlapping with RB1 and the time-frequency domain overlapping with RB2.
  • higher layer signaling may indicate whether the overlapping part of the initial sPDSCH resource and the RB set can be used to transmit the sPDSCH.
  • the terminal device may determine the rate matching method of the first type of sPDSCH according to the high-level signaling and the initial sPDSCH resource.
  • the above embodiment describes in detail how the first type of sPDSCH performs rate matching when the DCI is used to schedule the plurality of sPDSCH including the sPDSCH carried in the subslot numbered 0. Next, the subslot # will be described. 0 How to transfer at this time.
  • the PDSCH resource used on subslot # 0 may be the initial PDSCH resource.
  • DCI is carried in the PDCCH domain.
  • the DCI can schedule sPDSCH in subslot # 0 and subslot # 1, and repeats the sPDSCH transmission twice as an example.
  • the sPDSCH in subslot # 1 can be based on the DCI.
  • the multiplexing indication information or high-level signaling performs rate matching.
  • the sPDSCH resource used on subslot # 0 may be the initial sPDSCH resource, that is, the sPDSCH transmitted on subslot # 0 may be the sPDSCH resource indicated by the DCI (the initial sPDSCH resource). ) For transmission.
  • the number of repeated transmissions of the sPDSCH may be greater than or equal to two times, and the two times herein are merely examples and are not limited.
  • the sPDSCH resource used on subslot # 0 is the initial sPDSCH resource
  • the downlink resources in subslot # 0 can be fully used to transmit the sPDSCH, thereby improving the resource utilization rate.
  • the sPDSCH resource used on subslot # 0 is the initial sPDSCH resource, the complexity of network device scheduling can be reduced.
  • the rate matching scheme of the sPDSCH transmitted on subslot # 0 may be the same as the rate matching scheme of the first type of sPDSCH.
  • DCI is carried in the PDCCH domain, and the DCI can schedule sPDSCH in subslot # 0 and subslot # 1.
  • the sPDSCH in subslot # 1 can perform rate matching according to the multiplexing instruction information or high-level signaling in the DCI.
  • the rate matching scheme of the sPDSCH transmitted on subslot # 0 can be the same as the rate matching scheme of the sPDSCH transmitted on subslot # 1, that is, the subslot
  • the sPDSCH in # 0 can be transmitted on the same resource as the sPDSCH in subslot # 1.
  • the number of repeated transmissions of the sPDSCH may be greater than or equal to two times, and the two times herein are merely examples and are not limited.
  • the terminal device can receive After all the sPDSCHs transmitted K times are combined, the K transmissions sPDSCH are combined and then demodulated, which can reduce the processing complexity of the terminal equipment.
  • the multiplexing indication information may be a predefined value.
  • the multiplexing indication information may be a predefined value.
  • the multiplexing indication information may become a virtual cyclic redundancy check code ( cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the multiplexing indication information may be a predefined value of 2 bits.
  • the multiplexing indication information may be predefined as "00”, “01”, “10”, or "11".
  • the multiplexing indication information may be located in the DCI.
  • the DCI may include 2 bits of known information.
  • the terminal device as the receiving end, can determine the 2-bit known information in advance, and verify the DCI based on the 2-bit known information.
  • the network device may determine the multiplexing instruction information as "00" in advance, and send the multiplexing instruction information to the terminal device. Due to noise and other reasons, when the terminal device estimates the DCI, it may be concluded that the DCI has a 50% probability of 10XXXX and a 40% probability of 00YYYY. It is assumed that the positions of "10" and "00" are multiplexing instruction information. Location. At this time, if there is no predefined multiplexing indication information, DCI may be misjudged as 10XXXX, and since the known multiplexing indication information is "00", DCI can be correctly judged as 00YYYY.
  • the multiplexing indication information in the DCI is a predefined value (known information)
  • the reliability of the DCI estimation can be improved.
  • a network device indicates a rate matching scheme to a terminal device through high-level signaling
  • different rate matching schemes can be configured for multiple subslots through high-level signaling.
  • multiple subslots can be regarded as a subslot set, that is, a subslot set is configured through high-level signaling.
  • a downlink subframe including 6 subslots can be regarded as a set, and different rate matching schemes can be configured for each subslot in the subslot set through high-level signaling.
  • a downlink subframe may include 6 subslots, and the 6 subslots in the downlink sub-frame are regarded as a subslot set. At this time, different rates may be configured for the 6 subslots in the subslot set through high-level signaling. Matching scheme.
  • high-level signaling may use a 2-bit instruction to indicate a rate matching scheme for a subslot.
  • the high-level signaling can configure the rate matching scheme of the six subslots in the subslot set as ⁇ "10", “00”, “10”, “00”, “10”, “00” ⁇ , where ⁇ " "10", “00”, “10”, “00”, “10”, “00” ⁇ corresponds to the 6 subslots in a downlink subframe, and is used to indicate the 6 subslots in the downlink subframe.
  • Rate matching scheme may use a 2-bit instruction to indicate a rate matching scheme for a subslot.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the present application. It should be understood that the communication device 900 is only an example. The communication device in the embodiment of the present application may further include other modules or units, or include modules similar in function to each module in FIG. 9, or not all modules in FIG. 9.
  • the receiving module 910 is configured to receive first configuration information from a network device, where the first configuration information includes a physical layer multiplexing instruction, and the physical layer multiplexing instruction is used to indicate a rate match of the first type of short physical downlink shared channel sPDSCH.
  • the solution is indicated by physical layer signaling, and the first type of sPDSCH is an sPDSCH carried in a subslot subslot whose number is not 0;
  • the receiving module 910 is further configured to receive downlink control information DCI from a network device, where the DCI is carried in a physical downlink control channel PDCCH domain, and the DCI is used to schedule a single sPDSCH carried in a subslot numbered 0, or the DCI For scheduling multiple sPDSCH including sPDSCH carried in subslot numbered 0;
  • a processing module 920 configured to: when the DCI is used to schedule the multiple sPDSCHs including the sPDSCH carried in the subslot with the number 0, determine the first sPDSCH according to the multiplexing indication information in the DCI A rate matching scheme for a type of sPDSCH, or a rate matching scheme for the first type of sPDSCH according to high-level signaling.
  • the numbered subslot is the first subslot of each subframe, and the PDCCH domain starts at the first symbol of each subframe.
  • the receiving module 910 is further configured to receive second configuration information from a network device, where the second configuration information is used to configure a resource block set, and the resource block set is used to carry a short physical downlink control channel sPDCCH,
  • the DCI includes resource allocation information, the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs, and the multiplexing indication information or the high-level signaling is used to indicate the initial sPDSCH whether the overlapping part of the sPDSCH resource and the set of resource blocks can be used for transmitting the sPDSCH;
  • the processing module 920 is specifically configured to determine a rate matching method of the first type of sPDSCH according to the multiplexing indication information and the initial sPDSCH resource, or according to the high-level signaling and the initial sPDSCH resource.
  • the PDSCH resource used on the subslot with the number 0 is the initial PDSCH resource.
  • the rate matching scheme of the PDSCH transmitted on the subslot numbered 0 is the same as the rate matching scheme of the first type of sPDSCH.
  • the multiplexing indication information is located in the DCI.
  • the multiplexing indication information is a predefined value.
  • the communication device 900 may be configured to perform the steps performed by the terminal device in the method described in FIG. 6, and for brevity, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application. It should be understood that the communication device 1000 is only an example. The communication device according to the embodiment of the present application may further include other modules or units, or include modules similar in function to each module in FIG. 10, or may not include all modules in FIG. 10.
  • the sending module 1010 is configured to send the first configuration information to the terminal device, where the first configuration information includes a physical layer multiplexing indication, and the physical layer multiplexing indication is used to indicate a rate of a first type of short physical downlink shared channel sPDSCH resource.
  • the matching mode is indicated by physical layer signaling, and the first type of sPDSCH resource is an sPDSCH resource carried in a subslot subslot whose number is not 0;
  • the processing module 1020 is configured to generate multiplexing indication information or high-level signaling, where the multiplexing indication information or the high-level signaling is used to determine a rate matching scheme for the first type of sPDSCH resources scheduled by the DCI scheduling of the downlink control information.
  • the DCI is carried in a physical downlink control channel PDCCH domain, and the DCI is used to schedule a single sPDSCH carried in the subslot numbered 0, or the DCI is used to schedule a subslot including the subslot numbered 0. multiple sPDSCH including sPDSCH;
  • the sending module 1010 is further configured to send the DCI or high-level signaling to a terminal device, where the DCI includes the multiplexing indication information.
  • the numbered subslot is the first subslot of each subframe, and the PDCCH domain starts at the first symbol of each subframe.
  • the sending module 1010 is further configured to send second configuration information to the terminal device, where the second configuration information is used to configure a resource block set, and the resource block set is used to bear short Physical downlink control channel sPDCCH, the DCI includes resource allocation information, the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs, and the indication information is used to indicate the initial sPDSCH resource Whether the overlapping part with the resource block set can be used for transmitting sPDSCH.
  • the second configuration information is used to configure a resource block set
  • the resource block set is used to bear short Physical downlink control channel sPDCCH
  • the DCI includes resource allocation information
  • the resource allocation information is used to indicate an initial sPDSCH resource of the single sPDSCH or the multiple sPDSCHs
  • the indication information is used to indicate the initial sPDSCH resource Whether the overlapping part with the resource block set can be used for transmitting sPDSCH.
  • the PDSCH resource used on the subslot with the number 0 is the initial PDSCH resource.
  • the rate matching scheme of the PDSCH transmitted on the subslot numbered 0 is the same as the rate matching scheme of the first type of sPDSCH.
  • the indication information is located in the DCI.
  • the indication information is a predefined value.
  • the communication device 1000 may be configured to perform the steps performed by the network device in the method described in FIG. 6. For brevity, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application. It should be understood that the communication device 1100 shown in FIG. 11 is merely an example, and the communication device in the embodiment of the present application may further include other modules or units, or include modules similar in function to each module in FIG. 11.
  • the communication device 1100 may include one or more processors 1110, one or more memories 1120, a receiver 1130, and a transmitter 1140.
  • the receiver 1130 and the transmitter 1140 may be integrated together and called a transceiver.
  • the memory 1120 is configured to store a program code executed by the processor 1110.
  • the processor 1110 may have a memory 1120 integrated therein, or the processor 1110 may be coupled to one or more memories 1120 to retrieve instructions in the memory 1120.
  • the processor 1110 may be used to implement operations or steps that can be implemented by the processing module 920 in FIG. 9, and the receiver 1130 may be used to implement operations or steps that can be implemented by the receiving module 910 in FIG. 9.
  • the processor 1110 may be used to implement operations or steps that can be implemented by the processing module 1020 in FIG. 10 and the transmitter 1140 may be used to implement operations or steps that can be implemented by the sending module 1010 in FIG. 10.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits. (application specific integrated circuit (ASIC)), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like, including one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,包括:从网络设备接收第一配置信息,第一配置信息包括物理层复用指示,物理层复用指示用于指示第一类短物理下行共享信道sPDSCH的速率匹配方案由物理层信令指示,第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH;从网络设备接收下行控制信息DCI,DCI承载于物理下行控制信道PDCCH域中,DCI用于调度承载在编号为0的subslot的单个sPDSCH,或DCI用于调度包括承载在编号为0的subslot的sPDSCH在内的多个sPDSCH;当DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH时,根据DCI中的复用指示信息确定第一类sPDSCH的速率匹配方案,或根据高层信令确定第一类sPDSCH的速率匹配方案,该通信方法能够在DCI发送在PDCCH域时,使其他重复传输的subslot获得速率匹配方案。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,尤其涉及通信方法和通信装置。
背景技术
随着长期演进(long term evolution,LTE)***的持续演进和第五代(5th-generation,5G)通信***的发展,为了满足低时延传输和高可靠性的需求,LTE中引入了短传输时间间隔(shortened transmission time interval,subslot)技术和物理下行共享信道(physical downlink shared channel,PDSCH)重复传输(repetition)技术。
subslot技术可以为LTE引入更短的时间调度单位。例如,subslot技术可以为LTE引入一个时隙、2个时域符号或3个时域符号作为时间调度单位。PDSCH repetition技术可以使得基站使用一个下行控制信息(downlink control information,DCI)调度多个subslot内的多个PDSCH。
例如,一个下行子帧可以包括6个subslot,这6个subslot的编号分别为subslot#0~#5,在subslot#1~subslot#5中的每个subslot上,基站可以为每个用户设备(user equipment,UE)配置1~2个资源块(resource block,RB)集合(set)。UE在基站为其配置的RB set上检测短下行控制信息(shortened downlink control information,sDCI);而UE在subslot#0上的物理下行控制信道(physical downlink control channel,PDCCH)域上检测DCI,因此subslot#0上没有RB set。
为了有效利用资源,subslot允许短物理下行共享信道(shortened physical downlink shared channel,sPDSCH)重复使用RB set中未被sDCI占用的资源。基站可以通过物理层信令指示两个RB set与sPDSCH重叠的部分是否可以用来发送sPDSCH。通常,这个指示过程也可以称为速率匹配。
比如,可以在sDCI中加入指示信息,指示sPDSCH是否可以占用RB set资源。由于subslot#0上没有RB set,所以PDCCH域中的DCI不包含该指示信息。在使能PDSCH repetition后,除第一个subslot以外,其他重复传输的subslot上均不含sDCI,其他重复传输的subslot都遵照第一个subslot上的速率匹配方案。
但PDCCH域中的DCI不包含该指示信息,当指示PDSCH资源的DCI发送在PDCCH域时,其他重复传输的subslot无法获知速率匹配方案。
发明内容
本申请提供一种通信方法和通信装置,能够在DCI发送在PDCCH域时,使其他重复传输的subslot获得速率匹配方案。
第一方面,提供了一种通信方法,该通信方法包括:从网络设备接收第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行 共享信道sPDSCH的速率匹配方案由物理层信令指示,所述第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH;从网络设备接收下行控制信息DCI,所述DCI承载于物理下行控制信道PDCCH域中,所述DCI用于调度承载在编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在编号为0的subslot的sPDSCH在内的多个sPDSCH;当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息确定所述第一类sPDSCH的速率匹配方案,或根据高层信令确定所述第一类sPDSCH的速率匹配方案。
根据本申请实施例提供的通信方法,当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息或高层信令确定所述第一类sPDSCH的速率匹配方案,能够在DCI发送在PDCCH域时,使其他重复传输的subslot获得速率匹配方案。
在一些可能的实现方式中,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
在一些可能的实现方式中,所述方法还包括:从网络设备接收第二配置信息,所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述复用指示信息或所述高层信令用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH;根据所述复用指示信息和所述初始sPDSCH资源,或根据所述高层信令和所述初始sPDSCH资源,确定所述第一类sPDSCH的速率匹配方式。
在一些可能的实现方式中,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
根据本申请实施例提供的通信方法,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以充分利用编号为0的subslot中的下行资源传输sPDSCH,提高资源的利用率。同时,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以降低网络设备调度的复杂度。
在一些可能的实现方式中,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
根据本申请实施例提供的通信方法,由于编号为0的subslot上传输的sPDSCH的速率匹配方案与第一类sPDSCH的速率匹配方案相同,即编号为0的subslot上传输的sPDSCH的码率与第一类sPDSCH的码率相同,因此终端设备可以在接收到所有K次传输的sPDSCH后,将该K次传输的sPDSCH合并后再进行解调,可以降低终端设备处理的复杂度。
在一些可能的实现方式中,所述复用指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述复用指示信息为预定义值。
根据本申请实施例提供的通信方法,由于DCI中的复用指示信息为预定义值(已知信息),因此可以提升DCI估计的可靠性。
第二方面,提供了一种通信方法,该通信方法包括:向终端设备发送第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行 共享信道sPDSCH资源的速率匹配方式由物理层信令指示,所述第一类sPDSCH资源为承载在编号不为0的子时隙subslot中的sPDSCH资源;生成复用指示信息或高层信令,所述复用指示信息或所述高层信令用于确定下行控制信息DCI调度的第一类sPDSCH资源的速率匹配方案,其中,所述DCI承载于物理下行控制信道PDCCH域中,且所述DCI用于调度承载在所述编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH;向终端设备发送所述DCI或高层信令,所述DCI包含所述复用指示信息。
根据本申请实施例提供的通信方法,当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息或高层信令确定所述第一类sPDSCH的速率匹配方案,能够在DCI发送在PDCCH域时,使其他重复传输的subslot获得速率匹配方案。
在一些可能的实现方式中,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
在一些可能的实现方式中,所述方法还包括:向终端设备发送第二配置信息,所述第二配置信息所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述指示信息用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH。
在一些可能的实现方式中,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
根据本申请实施例提供的通信方法,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以充分利用编号为0的subslot中的下行资源传输sPDSCH,提高资源的利用率。同时,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以降低网络设备调度的复杂度。
在一些可能的实现方式中,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
根据本申请实施例提供的通信方法,由于编号为0的subslot上传输的sPDSCH的速率匹配方案与第一类sPDSCH的速率匹配方案相同,即编号为0的subslot上传输的sPDSCH的码率与第一类sPDSCH的码率相同,因此终端设备可以在接收到所有K次传输的sPDSCH后,将该K次传输的sPDSCH合并后再进行解调,可以降低终端设备处理的复杂度。
在一些可能的实现方式中,所述指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述指示信息为预定义值。
根据本申请实施例提供的通信方法,由于DCI中的复用指示信息为预定义值(已知信息),因此可以提升DCI估计的可靠性。
第三方面,提出了一种通信装置,该通信装置包括:接收模块,用于从网络设备接收第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH的速率匹配方案由物理层信令指示,所述第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH;接收模块,还用于从网络设 备接收下行控制信息DCI,所述DCI承载于物理下行控制信道PDCCH域中,所述DCI用于调度承载在编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在编号为0的subslot的sPDSCH在内的多个sPDSCH;处理模块,用于:当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息确定所述第一类sPDSCH的速率匹配方案,或根据高层信令确定所述第一类sPDSCH的速率匹配方案。
根据本申请实施例提供的通信方法,当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息或高层信令确定所述第一类sPDSCH的速率匹配方案,能够在DCI发送在PDCCH域时,使其他重复传输的subslot获得速率匹配方案。
在一些可能的实现方式中,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
在一些可能的实现方式中,所述接收模块还用于:从网络设备接收第二配置信息,所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述复用指示信息或所述高层信令用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH;所述处理模块具体用于:根据所述复用指示信息和所述初始sPDSCH资源,或根据所述高层信令和所述初始sPDSCH资源,确定所述第一类sPDSCH的速率匹配方式。
在一些可能的实现方式中,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
根据本申请实施例提供的通信方法,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以充分利用编号为0的subslot中的下行资源传输sPDSCH,提高资源的利用率。同时,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以降低网络设备调度的复杂度。
在一些可能的实现方式中,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
根据本申请实施例提供的通信方法,由于编号为0的subslot上传输的sPDSCH的速率匹配方案与第一类sPDSCH的速率匹配方案相同,即编号为0的subslot上传输的sPDSCH的码率与第一类sPDSCH的码率相同,因此终端设备可以在接收到所有K次传输的sPDSCH后,将该K次传输的sPDSCH合并后再进行解调,可以降低终端设备处理的复杂度。
在一些可能的实现方式中,所述复用指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述复用指示信息为预定义值。
根据本申请实施例提供的通信方法,由于DCI中的复用指示信息为预定义值(已知信息),因此可以提升DCI估计的可靠性。
第四方面,提出了一种通信装置,该通信装置包括:发送模块,用于向终端设备发送第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH资源的速率匹配方式由物理层信令指示,所述第一类 sPDSCH资源为承载在编号不为0的子时隙subslot中的sPDSCH资源;处理模块,用于生成复用指示信息或高层信令,所述复用指示信息或所述高层信令用于确定下行控制信息DCI调度的第一类sPDSCH资源的速率匹配方案,其中,所述DCI承载于物理下行控制信道PDCCH域中,且所述DCI用于调度承载在所述编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH;发送模块,还用于向终端设备发送所述DCI或高层信令,所述DCI包含所述复用指示信息。
根据本申请实施例提供的通信方法,当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息或高层信令确定所述第一类sPDSCH的速率匹配方案,能够在DCI发送在PDCCH域时,使其他重复传输的subslot获得速率匹配方案。
在一些可能的实现方式中,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
在一些可能的实现方式中,所述发送模块还用于:向终端设备发送第二配置信息,所述第二配置信息所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述指示信息用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH。
在一些可能的实现方式中,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
根据本申请实施例提供的通信方法,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以充分利用编号为0的subslot中的下行资源传输sPDSCH,提高资源的利用率。同时,由于编号为0的subslot上使用的sPDSCH资源为所述初始sPDSCH资源,可以降低网络设备调度的复杂度。
在一些可能的实现方式中,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
根据本申请实施例提供的通信方法,由于编号为0的subslot上传输的sPDSCH的速率匹配方案与第一类sPDSCH的速率匹配方案相同,即编号为0的subslot上传输的sPDSCH的码率与第一类sPDSCH的码率相同,因此终端设备可以在接收到所有K次传输的sPDSCH后,将该K次传输的sPDSCH合并后再进行解调,可以降低终端设备处理的复杂度。
在一些可能的实现方式中,所述指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述指示信息为预定义值。
根据本申请实施例提供的通信方法,由于DCI中的复用指示信息为预定义值(已知信息),因此可以提升DCI估计的可靠性。
第五方面,提供了一种通信装置,该通信装置包括接收器和处理器,处理器用于执行程序,当处理器执行程序时,接收器和处理器实现第一方面或第一方面的任意一种可能的实现方式中的通信方法。
可选地,该通信装置还可以包括存储器。存储器用于存储处理器执行的程序。
第六方面,提供了一种通信装置,该通信装置包括发送器和处理器,处理器用于执行程序,当处理器执行程序时,发送器和处理器实现第二方面或第二方面的任意一种可能的实现方式中的通信方法。
可选地,该通信装置还可以包括存储器。存储器用于存储处理器执行的程序。
第七方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储用于通信装置执行的程序代码,该程序代码包括用于实现第一方面或第一方面的任意一种可能的实现方式中的通信方法的指令。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储用于通信装置执行的程序代码,该程序代码包括用于实现第二方面或第二方面的任意一种可能的实现方式中的通信方法的指令。
第九方面,提供一种芯片,该芯片包括处理器和通信接口,该通信接口用于与外部器件进行通信,该处理器用于实现第一方面或第一方面的任意一种可能的实现方式中的通信方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令,当该指令被执行时,处理器用于实现第一方面或第一方面的任意一种可能的实现方式中的通信方法。
第十方面,提供一种芯片,该芯片包括处理器和通信接口,该通信接口用于与外部器件进行通信,该处理器用于实现第二方面或第二方面的任意一种可能的实现方式中的通信方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令,当该指令被执行时,处理器用于实现第二方面或第二方面的任意一种可能的实现方式中的通信方法。
第十一方面,提供了一种计算机程序产品,包括指令,当其在通信装置上运行时,使得所述通信装置执行第一方面或第一方面中任一项可能的实现方式中的通信方法。
第十二方面,提供了一种计算机程序产品,包括指令,当其在通信装置上运行时,使得所述通信装置执行第二方面或第二方面中任一项可能的实现方式中的通信方法。
第十三方面,本申请实施例提供一种通信***,该通信***包括第三方面至第六方面中一个或多个所述的通信装置。
一种可能的设计中,该通信***还包括本申请实施例提供的方案中与第三方面至第六方面中一个或多个所述的通信装置中的任一通信装置进行交互的其他设备。
附图说明
图1是可以应用本申请实施例的通信方法的通信***的示意性架构图。
图2是本申请实施例的通信方法的示意性流程图。
图3是本申请一个实施例的通信方法的示意性流程图。
图4是本申请另一个实施例的通信方法的示意性流程图。
图5是本申请一个实施例的通信方法的示意性流程图。
图6是本申请一个实施例的通信方法的示意性流程图。
图7是本申请一个实施例的通信方法的示意性流程图。
图8是本申请另一个实施例的通信方法的示意性流程图。
图9是本申请一个实施例的通信装置的示意性结构图。
图10是本申请一个实施例的通信装置的示意性结构图。
图11是本申请另一个实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请的通信方法可以用于多种类型的业务的传输,该多种类型的业务例如,可以包括但不限于:a.超高可靠性与超低时延业务(ultra reliable&low latency communication,URLLC)业务。b.增强型移动互联网业务(enhanced mobile broadband,eMBB)业务。具体地说,国际电信联盟无线通信委员会(international telecommunications union-radio communications sector,ITU-R)定义了未来5G的应用场景,该应用场景可以包括eMBB和URLLC,并从吞吐率、时延、连接密度和频谱效率提升等8个维度定义了对5G网络的能力要求。其中,eMBB业务主要要求大速率,广覆盖、传输时延以及移动性。URLLC业务的主要需求为极高可靠性、极低移动性和传输时延,一般要求无线空口在1毫秒(ms)内达到99.999%的传输可靠性。
图1是本申请一个实施例的通信***100的示例性架构图。本申请实施例中的方法可以应用于图1所示的通信***100中。应理解,可以应用本申请实施例的方法的通信***100中可以包括更多或更少的网络设备或终端设备。
图1中的网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。图1中的网络设备或终端设备之间可以通过其他设备或网元通信。
图1所示的通信***100中,网络设备110和终端设备101~终端设备106组成一个通信***100。在该通信***100中,网络设备110可以向终端设备101~终端设备106发送下行数据,当然,终端设备101~终端设备106也可以发送上行数据给网络设备110。应理解终端设备101~终端设备106可以是,例如,蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位***、PDA和/或用于在无线通信***100上通信的任意其它适合设备。
通信***100可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络。
此外,终端设备104~终端设备106也可以组成一个通信***。在该通信***中,终端设备105可以发送下行数据给终端设备104或终端设备106。
在无线通信***中,业务的传输可以是基于网络设备调度的,上层的数据包在物理层进行调度时可以被划分成以传输块为单位的小数据包。一个基本时间单位可以为一个时隙(slot),或者一个子帧(subframe),一个子帧在时域上的持续时间可以是1毫秒(ms),一个子帧可以包括14个时域符号,一个时隙可以包括7个或者14个时域符号。此外,传输时间间隔(transmission time interval,TTI)与子帧的物理意义基本一致,所以也可以用 TTI表示调度的基本时间单位。
其中,一个子帧包括的14个时域符号中在时域上最前面的1~3个时域符号的所有资源可以称为PDCCH域,用于传输PDCCH。该子帧的其余部分用于传输PDSCH。PDCCH域包括的具体的时域号个数可以称为控制格式指示(control format indicator,CFI),即PDCCH域包括的时域号个数可以用CFI表示。
一般情况下,网络设备可以在PDCCH域发送DCI,该DCI可以用于指示终端设备接收PDSCH的时频域资源,以及终端设备解调该PDSCH所需要的必要信息。
在本申请实施例中,网络设备还可以基于更短的时间调度单位进行调度。例如,网络设备可以一个时隙、或2~3个时域符号为基本时间单位进行调度。一般可以将短于1ms的时间调度单位称为子时隙(subslot)或短传输时间间隔(shortened transmission time interval,sTTI),为便于描述,本申请统一地用subslot表示短于1ms的时间调度单位。
如图2所示,一个下行子帧可以包括14个时域符号,分别以0~13对其编号,根据CFI的不同取值,该下行子帧可以被分为6个长度为2个或3个时域符号的subslot。
应理解,本申请实施例中的subslot也可以称为子时隙(subslot)。
由图2可知,一个下行子帧中subslot的图样(pattern)取决于CFI。当且仅当CFI=2时,6个subslot分别具有{2,3,2,2,2,3}个时域符号;CFI=1或3时,6个subslot分别具有{3,2,2,2,2,3}个时域符号。当CFI=1时,subslot#0中只有一个时域符号被PDCCH域占用,其余两个时域符号仍可用于传输PDSCH,但当CFI>1时,subslot#0完全被PDCCH域占用,故不能传输PDSCH。
应理解,图2中的subslot的编号subslot#0~#5是物理上的编号,而非逻辑上的编号,即当CFI取某一值时,各subslot的位置、对应的编号及其包括的时域符号的个数可以是固定的。例如,当CFI=1时,subslot#0包括编号为0、编号为1和编号为2的三个时域符号,subslot#1包括编号为3和编号为4的两个时域符号;当CFI=2时,subslot#0包括编号为0和编号为1的两个时域符号,subslot#1包括编号为2、编号为3和编号为4的三个时域符号。如图2所示,subslot#2~#5的位置及其包括的时域符号的个数,并不会因为CFI取值的不同而改变。
在本申请实施例中,subslot中还可以包括资源块(resource block,RB)集合(set),所述RB set可以是subslot中的时频域资源。网络设备可以通过高层信令为一个终端设备配置1~2个RB set。
可选地,一个subslot中可以包括两个RB set,这两个RB set在时频域上可以重叠。subslot中的RB set可以起始于该subslot所包括的在时域上的第一个时域符号,结束于该subslot所包括的在时域上的第一个或第二个时域符号。这两个RB set的并集可以称为该subslot的sPDCCH域。
例如,如图3所示,当CFI=1时,subslot#1中的RB set 1可以起始于编号为3的时域符号,可以结束于编号为4的时域符号,subslot#1中的RB set 2可以起始于编号为3的时域符号,可以结束于该编号为3的时域符号。此外,由图3可知,subslot#0可以不包括RB set。
在本申请实施例中,在subslot#1~#5上,终端设备可以在网络设备为其配置的RB set上检测DCI,其中,该DCI可以称为sDCI。若subslot#0不包括RB set,则在subslot#0 上,终端设备可以在PDCCH域上检测DCI。
特别地,由于subslot的编号是物理上的编号,因此,当CFI=2时,subslot#1包括编号为2、编号为3和编号为4的三个时域符号,若subslot#1包括两个RB set,则subslot#1中的RB set 1可以起始于编号为2的时域符号且结束于编号为3的时域符号,subslot#1中的RB set 2可以起始于编号为2的时域符号且结束于该编号为2的时域符号。
为了区别终端设备在PDCCH域中检测的DCI,在本申请的后续描述中,将终端设备在sPDCCH域(即RB set)中检测的DCI称为sDCI。
为了提高资源的利用率,在本申请实施例中,subslot#1~#5的RB set中未被sDCI占用的资源,可以用于传输sPDSCH。
如图4中的左图所示,sPDSCH在时频域上与RB set 1、RB set 2均有部分重叠,sPDSCH在时频域上与RB set 1的重叠部分未发送sDCI,sPDSCH在时频域上与RB set 2的重叠部分用于发送sDCI,因此,sPDSCH可以在时频域上与RB set 1重叠的部分进行传输。可选地,该sPDSCH可以通过RB set 1中的sDCI进行调度。
一般情况下,在网络设备确定发送PDSCH所使用的资源之后,网络设备和接收该PDSCH的终端设备可以对齐此次下行传输所使用的编码速率。这里的对齐下行传输所使用的编码速率的过程可以称为速率匹配。
具体地,可以通过以下流程实现速率匹配:
1、网络设备可以通过高层信令向终端设备配置速率匹配方案由高层信令指示、或物理层信令指示;
2、若网络设备通过高层信令向终端设备配置速率匹配方案由高层信令指示,则后续网络设备可以通过高层信令向终端设备指示速率匹配方案,例如,可以通过高层信令向终端设备指示sPDSCH能否在时频域上与RB set重叠的部分进行传输;
3、若网络设备通过高层信令向终端设备配置速率匹配方案由物理层信令指示,则可以在sDCI中加入用于指示速率匹配方案的指示信息,后续网络设备可以通过该指示信息向终端设备指示速率匹配方案。
例如,可以在subslot#1~#5的sDCI中加入2比特(bit)的指示信息。如图4所示,该2bit的指示信息可以分别与该sDCI所在的subslot中的两个RB set对应,分别用于指示sPDSCH能否在时频域上与RB set 1重叠的部分、及在时频域上与RB set 2重叠的部分进行传输。
在subslot#1~#5的sDCI中引入的2bit的指示信息可以称为可用/不可用sPDCCH资源指示(Used/Unused sPDCCH resource indication)比特域,其可以简称为可用/不可用(Used/Unused)域。
此外,由于subslot#0上不包括RB set,且调度subslot#0中sPDSCH的DCI位于PDCCH域,因此,PDCCH域中的DCI不包括该2bit的指示信息。
应理解,在本申请实施例中,网络设备可以通过物理层信令向终端设备指示速率匹配方案。此时,若subslot#0上不包括RB set,则发送在subslot#0上的DCI可以为N bit,相应地,发送在subslot#1~#5上的sDCI可以为N+2bit,其中,N为正整数。
在下行传输过程中,一个DCI只能调度一个TTI或subslot中的PDSCH。而为了提高传输的可靠性,在本申请实施例中,可以引入PDSCH重复传输(PDSCH repetition)技术, 即网络设备可以通过高层信令向终端设备激活PDSCH repetition。此后,网络设备可以使用一个DCI为终端设备调度多个TTI或subslot中的多个PDSCH。
可选地,可以在DCI中增加2bit的指示信息,该指示信息用于指示该DCI调度的TTI或subslot的个数。或者也可以说,该指示信息用于指示该DCI所调度的PDSCH重复传输的次数。可选地,该指示信息指示的PDSCH重复传输的次数包括该PDSCH的第一次传输。
作为本申请实施例一种可能的实现方式,当网络设备通过高层信令向终端设备配置速率匹配方案由高层信令指示时,终端设备可以从高层信令中获得速率匹配方案。进一步地,其他重复传输PDSCH的subslot可以都按照该速率匹配方案进行速率匹配。
但由于高层信令更改周期较长,且网络设备会大概率地将速率匹配方案设定为sPDSCH不占用sPDCCH资源,但并不是每个subslot都有sDCI要使用这些预留资源,因此,这种由高层信令向终端设备指示速率匹配方案的方式,会导致下行传输的可用资源减少,造成资源的浪费。
作为本申请实施例另一种可能的实现方式,当网络设备通过高层信令向终端设备配置速率匹配方案由物理层信令指示时,网络设备可以通过sDCI中2bit的指示信息向终端设备指示sPDSCH能否占用RB set资源。与此同时,终端设备可以使能PDSCH repetition,并且,若PDSCH重复传输K次,则传输该PDSCH的第一个subslot可以通过该subslot中的sDCI进行速率匹配,而其他K-1个subslot上均不含DCI。在这种可能的实现方式中,其他K-1个subslot可以都按照第一个subslot中的sDCI的速率匹配方案进行速率匹配。
由于PDCCH域中的DCI不包括该2bit的指示信息,所以如图5所示,当指示PDSCH重复传输次数的DCI发送在PDCCH域时,上述其他K-1个subslot无法获得速率匹配方案。
针对上述问题,本申请提出一种通信方法,在由物理层信令向终端设备指示速率匹配方案的情况下,当指示PDSCH资源的DCI发送在PDCCH域时,其他重复传输的subslot可以获得速率匹配方案。
图6是本申请实施例的通信方法的一个示意性流程图。应理解,图6示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图6中的各个操作的变形,或者,并不是所有步骤都需要执行,或者,这些步骤可以按照其他顺序执行。
S601,网络设备发送第一配置信息,第一配置信息包括物理层复用指示,物理层复用指示用于指示第一类短物理下行共享信道sPDSCH的速率匹配方案由物理层信令指示,第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH。相应地,终端设备接收该第一配置信息。
其中,物理层复用指示(L1-based reuse indication)可以用于指示承载在编号不为0的子时隙subslot中的sPDSCH的速率匹配方案由高层信令或物理层信令指示。在本申请实施例中,物理层复用指示用于指示承载在编号不为0的子时隙subslot中的sPDSCH的速率匹配方案由物理层信令指示。
可选地,第一配置信息可以通过高层信令发送。例如,第一配置信息可以携带在RRC信令中。
上述第一类sPDSCH可以指承载在编号不为0的subslot中的sPDSCH。这里的编号不为0的subslot可以包括subslot#1~#5。
可选地,网络设备还可以发送第二配置信息,所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH。相应地,终端设备可以接收第二配置信息。
可选地,终端设备可以根据该第二配置信息配置资源块集合。
在本申请实施例中,物理层信令可以为DCI,该DCI中可以包括资源分配信息,资源分配信息可以用于指示单个sPDSCH或多个sPDSCH的初始sPDSCH资源。应理解,初始sPDSCH资源可以是DCI中指示的sPDSCH资源,这里的sPDSCH资源未进行速率匹配。
S602,网络设备发送下行控制信息DCI,DCI承载于物理下行控制信道PDCCH域中,DCI用于调度承载在编号为0的subslot的单个sPDSCH,或DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH。相应地,终端设备接收该DCI。
在本申请实施例中,编号为0的subslot可以为每个子帧的第一个subslot,其中,subslot也可以称为subslot。
在本申请实施例中,一个下行子帧可以被分为6个长度为2个或3个时域符号的subslot。
可选地,可以用subslot#0~#5对各subslot进行编号。应理解,这里的编号subslot#0~#5是物理上的编号,而非逻辑上的编号,即当CFI取某一值时,各subslot的位置、对应的编号及其包括的时域符号的个数可以是固定的。
通常,PDCCH域可以起始于每个子帧的第一个符号,结束于每个子帧的第一个、第二个或第三个符号。这里的符号可以为子帧中的时域符号。也就是说,PDCCH域可以包括一个子帧包括的14个时域符号中在时域上最前面的1~3个时域符号所包括的资源。
可选地,在S602之前,网络设备还可以发送第三配置信息,所述第三配置信息可以用于指示传输时间间隔及激活PDSCH的重复传输。例如,第三配置信息可以指示传输时间间隔为N个subslot、并激活PDSCH的重复传输,及,其中,N为正整数,1个subslot可以为2或3个时域符号。相应地,终端设备可以接收第三配置信息。
例如,当第三配置信息指示传输时间间隔为1个subslot、并激活PDSCH的重复传输时,终端设备可以根据物理层信令确定PDSCH重复传输的次数,此时,若物理层信令指示PDSCH的重复传输次数为一次,则DCI可以调度承载在subslot#0的单个sPDSCH;若物理层信令指示PDSCH的重复传输次数为多次,则DCI可以调度包括承载在subslot#0的sPDSCH在内的多个sPDSCH。
可选地,终端设备可以通过DCI确定PDSCH重复传输的次数。
可选地,第三配置信息可以指示PDSCH的传输时间间隔为N个时隙(slot),其中,1个slot可以为7个时域符号。
S603,当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息确定所述第一类sPDSCH的速率匹配方案,或根据高层信令确定所述第一类sPDSCH的速率匹配方案。
通常,一个subslot中可以包括两个RB set,分别为RB set 1和RB set 2。
在本申请实施例中,终端设备可以根据DCI中的复用指示信息确定第一类sPDSCH的速率匹配方案。此时,DCI中的复用指示信息可以分别指示第一类sPDSCH能否在时频域上与RB set 1重叠的部分、及在时频域上与RB set 2重叠的部分进行传输。
例如,该复用指示信息可以为2bit,并且,可以将这2bit的复用指示信息与RB set 1和RB set 2分别对应。这2bit分别用于指示第一类sPDSCH能否在时频域上与RB set 1重叠的部分和在时频域上与RB set 2重叠的部分进行传输。
应理解,上述第一类sPDSCH可以指实际承载在subslot#1~#5中的sPDSCH,而初始sPDSCH资源可以是DCI中指示的sPDSCH资源,即第一类sPDSCH可以是初始sPDSCH资源进行速率匹配后,subslot#1~#5中实际传输时使用的sPDSCH资源。
换句话说,复用指示信息可以指示初始sPDSCH资源与RB set的重叠部分能否用于传输sPDSCH。
相应地,也可以说,终端设备可以根据复用指示信息和初始sPDSCH资源,确定第一类sPDSCH的速率匹配方式。
在本申请实施例中,终端设备可以根据高层信令确定第一类sPDSCH的速率匹配方案。此时,高层信令可以分别指示第一类sPDSCH能否在时频域上与RB set 1重叠的部分、及在时频域上与RB set 2重叠的部分进行传输。
例如,该高层信令可以包括2bit的指示信息。同时,可以将这2bit的指示信息与RB set1和RB set 2分别对应。这2bit的指示信息分别用于指示第一类sPDSCH能否在时频域上与RB set 1重叠的部分和在时频域上与RB set 2重叠的部分进行传输。
应理解,高层信令可以指示初始sPDSCH资源与RB set的重叠部分能否用于传输sPDSCH。
相应地,也可以说,终端设备可以根据高层信令和初始sPDSCH资源,确定第一类sPDSCH的速率匹配方式。
上面的实施例详细描述了当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,第一类sPDSCH如何进行速率匹配,接下来说明subslot#0此时如何进行传输。
作为本申请实施例一种可能的实现方式,subslot#0上使用的PDSCH资源可以为所述初始PDSCH资源。
可选地,如图7所示,DCI承载于PDCCH域,该DCI可以调度subslot#0和subslot#1中的sPDSCH,以sPDSCH重复传输2次为例,subslot#1中的sPDSCH可以根据DCI中的复用指示信息或高层信令进行速率匹配,此时subslot#0上使用的sPDSCH资源可以为所述初始sPDSCH资源,即subslot#0上传输的sPDSCH可以在DCI指示的sPDSCH资源(初始sPDSCH资源)上进行传输。
应理解,在本申请实施例中,sPDSCH的重复传输次数可以大于或等于2次,这里的2次仅为示例而非限定。
由于subslot#0上使用的sPDSCH资源为所述初始sPDSCH资源,可以充分利用subslot#0中的下行资源传输sPDSCH,提高资源的利用率。同时,由于subslot#0上使用的sPDSCH资源为所述初始sPDSCH资源,可以降低网络设备调度的复杂度。
作为本申请实施例一种可能的实现方式,subslot#0上传输的sPDSCH的速率匹配方案 可以与所述第一类sPDSCH的速率匹配方案相同。
可选地,如图8所示,DCI承载于PDCCH域,该DCI可以调度subslot#0和subslot#1中的sPDSCH。以sPDSCH重复传输2次为例,subslot#1中的sPDSCH可以根据DCI中的复用指示信息或高层信令进行速率匹配。此时虽然subslot#0中不存在RB set,不需要进行速率匹配,但可以使subslot#0上传输的sPDSCH的速率匹配方案与所述subslot#1上传输的sPDSCH的速率匹配方案相同,即subslot#0中的sPDSCH可以在与subslot#1中的sPDSCH相同的资源上进行传输。
应理解,在本申请实施例中,sPDSCH的重复传输次数可以大于或等于2次,这里的2次仅为示例而非限定。
在本申请实施例中,虽然subslot#0中不存在RB set,但仍然可以假设subslot#0中存在与subslot#1~#5相同的RB set,以使得subslot#0中的sPDSCH进行传输的时候,可以采用与subslot#1~#5上传输的sPDSCH相同的速率匹配方案。
由于subslot#0上传输的sPDSCH的速率匹配方案与第一类sPDSCH的速率匹配方案相同,即subslot#0上传输的sPDSCH的码率与第一类sPDSCH的码率相同,因此终端设备可以在接收到所有K次传输的sPDSCH后,将该K次传输的sPDSCH合并后再进行解调,可以降低终端设备处理的复杂度。
作为本申请实施例一种可能的实现方式,当DCI仅调度承载在subslot#0的单个sPDSCH时,复用指示信息可以为预定义值。
例如,subslot#0中不存在RB set,DCI仅调度承载在subslot#0的单个sPDSCH时,DCI中的复用指示信息不需要指示第一类sPDSCH的速率匹配方案,此时,可以预设复用指示信息为某一预定义值。
可选地,当所述DCI仅用于调度编号为0的subslot中的PDSCH时,复用指示信息可以为预定义值,此时,复用指示信息可以变为虚拟循环冗余校验码(cyclic redundancy check,CRC)。终端设备可以根据DCI中的复用指示信息,对所述DCI进行校验。
可选地,复用指示信息可以为2bit的预定义值,例如,可以将复用指示信息预定义为“00”、“01”、“10”或“11”。
可选地,复用指示信息可以位于DCI中,此时,DCI可以包括2bit的已知信息。同样地,终端设备作为接收端,可以预先确定该2bit的已知信息,并根据2bit的已知信息对DCI进行校验。
例如,网络设备可以预先确定复用指示信息为“00”,并将该复用指示信息发送至终端设备。由于噪声等原因,终端设备在对DCI进行估计时,可能会得出该DCI有50%的概率为10XXXX,有40%概率为00YYYY,假设“10”和“00”所在位置为复用指示信息所在的位置。此时,若没有预定义的复用指示信息,DCI可能会被误判为10XXXX,而由于已知复用指示信息为“00”,则DCI可以被正确判断为00YYYY。
在上述实施例中,由于DCI中的复用指示信息为预定义值(已知信息),因此可以提升DCI估计的可靠性。
作为一种可能的实现方式,当网络设备通过高层信令向终端设备指示速率匹配方案时,可以通过高层信令为多个subslot配置不同的速率匹配方案。
可选地,可以将多个subslot看作一个subslot集合,即通过高层信令配置一个subslot 集合。
可选地,可以将一个下行子帧包括6个subslot看作一个集合,通过高层信令可以为subslot集合中的各subslot配置不同的速率匹配方案。
可选地,一个下行子帧可以包括6个subslot,将该下行子帧中的6个subslot看作一个subslot集合,此时,可以通过高层信令为subslot集合中的6个subslot配置不同的速率匹配方案。
例如,高层信令可以用2bit的指示信息指示一个subslot的速率匹配方案。此时,高层信令可以配置subslot集合中的6个subslot的速率匹配方案为{“10”、“00”、“10”、“00”、“10”、“00”},这里的{“10”、“00”、“10”、“00”、“10”、“00”}与一个下行子帧中的6个subslot一一对应,用于指示该下行子帧中的6个subslot的速率匹配方案。
图9是本申请实施例的通信装置900的示意性框图。应理解,通信装置900仅是一种示例。本申请实施例的通信装置还可包括其他模块或单元,或者包括与图9中的各个模块的功能相似的模块,或者并非要包括图9中的所有模块。
接收模块910,用于从网络设备接收第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH的速率匹配方案由物理层信令指示,所述第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH;
接收模块910,还用于从网络设备接收下行控制信息DCI,所述DCI承载于物理下行控制信道PDCCH域中,所述DCI用于调度承载在编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在编号为0的subslot的sPDSCH在内的多个sPDSCH;
处理模块920,用于:当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息确定所述第一类sPDSCH的速率匹配方案,或根据高层信令确定所述第一类sPDSCH的速率匹配方案。
可选地,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
可选地,所述接收模块910还用于:从网络设备接收第二配置信息,所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述复用指示信息或所述高层信令用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH;
所述处理模块920具体用于:根据所述复用指示信息和所述初始sPDSCH资源,或根据所述高层信令和所述初始sPDSCH资源,确定所述第一类sPDSCH的速率匹配方式。
可选地,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
可选地,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
可选地,所述复用指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述复用指示信息为预定义值。
通信装置900可以用于执行图6描述的方法中由终端设备执行的步骤,为了简洁,此处不再赘述。
图10是本申请实施例的通信装置1000的示意性框图。应理解,通信装置1000仅是一种示例。本申请实施例的通信装置还可包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块,或者并非要包括图10中的所有模块。
发送模块1010,用于向终端设备发送第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH资源的速率匹配方式由物理层信令指示,所述第一类sPDSCH资源为承载在编号不为0的子时隙subslot中的sPDSCH资源;
处理模块1020,用于生成复用指示信息或高层信令,所述复用指示信息或所述高层信令用于确定下行控制信息DCI调度的第一类sPDSCH资源的速率匹配方案,其中,所述DCI承载于物理下行控制信道PDCCH域中,且所述DCI用于调度承载在所述编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH;
发送模块1010,还用于向终端设备发送所述DCI或高层信令,所述DCI包含所述复用指示信息。
可选地,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
可选地,所述发送模块1010还用于:向终端设备发送第二配置信息,所述第二配置信息所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述指示信息用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH。
可选地,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
可选地,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
可选地,所述指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述指示信息为预定义值。
通信装置1000可以用于执行图6描述的方法中由网络设备执行的步骤,为了简洁,此处不再赘述。
图11是本申请一个实施例的通信装置1100的示意性结构图。应理解,图11示出的通信装置1100仅是示例,本申请实施例的通信装置还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块。
通信装置1100可以包括一个或多个处理器1110、一个或多个存储器1120、接收器1130和发送器1140。接收器1130和发送器1140可以集成在一起,称为收发器。存储器1120用于存储处理器1110执行的程序代码。其中,处理器1110中可以集成有存储器1120,或者处理器1110耦合到一个或多个存储器1120,用于调取存储器1120中的指令。
在一个实施例中,处理器1110可以用于实现图9中的处理模块920能够实现的操作或步骤,接收器1130可以用于实现图9中的接收模块910能够实现的操作或步骤。
在另一个实施例中,处理器1110可以用于实现图10中的处理模块1020能够实现的操作或步骤,发送器1140可以用于实现图10中的发送模块1010能够实现的操作或步骤。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    从网络设备接收第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH的速率匹配方案由物理层信令指示,所述第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH;
    从所述网络设备接收下行控制信息DCI,所述DCI承载于物理下行控制信道PDCCH域中,所述DCI用于调度承载在编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在编号为0的subslot的sPDSCH在内的多个sPDSCH;
    当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息确定所述第一类sPDSCH的速率匹配方案,或
    根据高层信令确定所述第一类sPDSCH的速率匹配方案。
  2. 根据权利要求1所述的方法,其特征在于,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第二配置信息,所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述复用指示信息或所述高层信令用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH;
    根据所述复用指示信息和所述初始sPDSCH资源,或根据所述高层信令和所述初始sPDSCH资源,确定所述第一类sPDSCH的速率匹配方式。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述复用指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述复用指示信息为预定义值。
  7. 一种通信方法,其特征在于,包括:
    向终端设备发送第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH资源的速率匹配方式由物理层信令指示,所述第一类sPDSCH资源为承载在编号不为0的子时隙subslot中的sPDSCH资源;
    生成复用指示信息或高层信令,所述复用指示信息或所述高层信令用于确定下行控制信息DCI调度的第一类sPDSCH资源的速率匹配方案,其中,所述DCI承载于物理下行控制信道PDCCH域中,且所述DCI用于调度承载在所述编号为0的subslot的单个 sPDSCH,或所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH;
    向所述终端设备发送所述DCI或所述高层信令,所述DCI包含所述复用指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述指示信息用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述指示信息为预定义值。
  13. 一种通信装置,其特征在于,包括:
    接收模块,用于从网络设备接收第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH的速率匹配方案由物理层信令指示,所述第一类sPDSCH为承载在编号不为0的子时隙subslot中的sPDSCH;
    所述接收模块,还用于从所述网络设备接收下行控制信息DCI,所述DCI承载于物理下行控制信道PDCCH域中,所述DCI用于调度承载在编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在编号为0的subslot的sPDSCH在内的多个sPDSCH;
    处理模块,用于:当所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的所述多个sPDSCH时,根据所述DCI中的复用指示信息确定所述第一类sPDSCH的速率匹配方案,或根据高层信令确定所述第一类sPDSCH的速率匹配方案。
  14. 根据权利要求13所述的通信装置,其特征在于,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述接收模块还用于:
    从所述网络设备接收第二配置信息,所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述复用指示信息或所述高层信令用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH;
    所述处理模块具体用于:根据所述复用指示信息和所述初始sPDSCH资源,或根据所述高层信令和所述初始sPDSCH资源,确定所述第一类sPDSCH的速率匹配方式。
  16. 根据权利要求13至15中任一项所述的通信装置,其特征在于,所述编号为0的 subslot上使用的PDSCH资源为所述初始PDSCH资源。
  17. 根据权利要求13至16中任一项所述的通信装置,其特征在于,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
  18. 根据权利要求13至17中任一项所述的通信装置,其特征在于,所述复用指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述复用指示信息为预定义值。
  19. 一种通信装置,其特征在于,包括:
    发送模块,用于向终端设备发送第一配置信息,所述第一配置信息包括物理层复用指示,所述物理层复用指示用于指示第一类短物理下行共享信道sPDSCH资源的速率匹配方式由物理层信令指示,所述第一类sPDSCH资源为承载在编号不为0的子时隙subslot中的sPDSCH资源;
    处理模块,用于生成复用指示信息或高层信令,所述复用指示信息或所述高层信令用于确定下行控制信息DCI调度的第一类sPDSCH资源的速率匹配方案,其中,所述DCI承载于物理下行控制信道PDCCH域中,且所述DCI用于调度承载在所述编号为0的subslot的单个sPDSCH,或所述DCI用于调度包括承载在所述编号为0的subslot的sPDSCH在内的多个sPDSCH;
    所述发送模块,还用于向所述终端设备发送所述DCI或所述高层信令,所述DCI包含所述复用指示信息。
  20. 根据权利要求19所述的通信装置,其特征在于,所述编号为0的subslot为每个子帧的第一个subslot,所述PDCCH域起始于每个子帧的第一个符号。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述发送模块还用于:
    向所述终端设备发送第二配置信息,所述第二配置信息所述第二配置信息用于配置资源块集合,所述资源块集合用于承载短物理下行控制信道sPDCCH,所述DCI中包括资源分配信息,所述资源分配信息用于指示所述单个sPDSCH或所述多个sPDSCH的初始sPDSCH资源,所述指示信息用于指示所述初始sPDSCH资源与所述资源块集合的重叠部分能否用于传输sPDSCH。
  22. 根据权利要求19至21中任一项所述的通信装置,其特征在于,所述编号为0的subslot上使用的PDSCH资源为所述初始PDSCH资源。
  23. 根据权利要求19至22中任一项所述的通信装置,其特征在于,所述编号为0的subslot上传输的PDSCH的速率匹配方案与所述第一类sPDSCH的速率匹配方案相同。
  24. 根据权利要求19至23中任一项所述的通信装置,其特征在于,所述指示信息位于所述DCI中,当所述DCI仅用于调度承载在所述编号为0的subslot的单个sPDSCH时,所述指示信息为预定义值。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储用于通信装置执行的程序代码,所述程序代码包括用于执行权利要求1至12中任一项所述的通信方法的指令。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行权利要求1至12中任一项所述的通信方法的指令。
PCT/CN2018/107467 2018-09-26 2018-09-26 通信方法和通信装置 WO2020061788A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/107467 WO2020061788A1 (zh) 2018-09-26 2018-09-26 通信方法和通信装置
CN201880097565.2A CN112703804B (zh) 2018-09-26 2018-09-26 通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107467 WO2020061788A1 (zh) 2018-09-26 2018-09-26 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2020061788A1 true WO2020061788A1 (zh) 2020-04-02

Family

ID=69949220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107467 WO2020061788A1 (zh) 2018-09-26 2018-09-26 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN112703804B (zh)
WO (1) WO2020061788A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703706A (zh) * 2011-07-14 2014-04-02 Lg电子株式会社 无线通信***中分配资源的方法及其设备
US20150373668A1 (en) * 2012-09-16 2015-12-24 Lg Electronics Inc. Method for receiving or transmitting broadcast signal in wireless communication system and apparatus therefor
CN108271430A (zh) * 2016-01-29 2018-07-10 韩国电子通信研究院 用于在非授权频带通信***中发送信号的方法和装置、用于上行链路调度的方法和装置以及用于发送关于信道状态测量间隔的信息的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496198B (en) * 2011-11-07 2014-03-19 Broadcom Corp Apparatus, methods and computer programs for coordinated multipoint transmission
US9307521B2 (en) * 2012-11-01 2016-04-05 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for PDSCH of transmission mode 10 for LTE advanced
CN104185962A (zh) * 2013-03-27 2014-12-03 华为技术有限公司 物理层信令发送方法、用户设备和基站
US20140321370A1 (en) * 2013-04-29 2014-10-30 Qualcomm Incorporated Rate matching under irregular, sparse, or narrowband signals
US10243707B2 (en) * 2013-05-10 2019-03-26 Qualcomm Incorporated Efficient downlink operation for eIMTA
US10084577B2 (en) * 2015-01-30 2018-09-25 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
CN114024805B (zh) * 2015-07-20 2024-05-21 北京三星通信技术研究有限公司 一种多用户数据传输方法和设备
CN107347002B (zh) * 2016-05-06 2021-11-12 北京三星通信技术研究有限公司 一种harq-ack反馈信息的传输方法和设备
CN107371272B (zh) * 2016-05-13 2022-04-29 中兴通讯股份有限公司 下行控制信息的传输方法、装置及***
US10499416B2 (en) * 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703706A (zh) * 2011-07-14 2014-04-02 Lg电子株式会社 无线通信***中分配资源的方法及其设备
US20150373668A1 (en) * 2012-09-16 2015-12-24 Lg Electronics Inc. Method for receiving or transmitting broadcast signal in wireless communication system and apparatus therefor
CN108271430A (zh) * 2016-01-29 2018-07-10 韩国电子通信研究院 用于在非授权频带通信***中发送信号的方法和装置、用于上行链路调度的方法和装置以及用于发送关于信道状态测量间隔的信息的方法和装置

Also Published As

Publication number Publication date
CN112703804B (zh) 2022-08-09
CN112703804A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
TWI713403B (zh) 業務傳輸的方法和裝置
AU2016244719B2 (en) Physical resource block allocation of physical downlink control and data channels
EP2893649B1 (en) Method and apparatus for communicating downlink control information in an asymmetric multicarrier communication network environment
CN111770572B (zh) 确定反馈信息的方法和通信装置
WO2019096082A1 (zh) 下行控制信息确定方法和通信装置
WO2018219353A1 (zh) 一种数据传输的方法和装置
CN111294960B (zh) 识别下行控制信息的方法及设备
TWI718240B (zh) 用於傳輸業務的方法、移動台和網絡設備
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2018141291A1 (zh) 一种数据传输的方法和装置
WO2019029579A1 (zh) 无线通信的方法、芯片和***
US20200178233A1 (en) Communication method, terminal device, and network device
WO2020020315A1 (zh) 一种上下行时间资源配置的方法和装置
WO2018228495A1 (zh) 一种传输信息的方法和装置
US20200186299A1 (en) Method and apparatus
CN113677014A (zh) 一种确定反馈信息传输位置的方法及设备
CN113678532A (zh) 上行控制信息的传输方法及设备
WO2020061788A1 (zh) 通信方法和通信装置
WO2021147112A1 (zh) 通信方法和通信装置
WO2020156002A1 (zh) 通信方法及通信装置
WO2020155181A1 (zh) 信道传输的方法和设备
WO2018228506A1 (zh) 一种传输信息的方法、终端设备和网络设备
WO2020187217A1 (zh) 一种传输信息的方法和装置
WO2022134987A1 (zh) 序列传输方法、接收方法、终端、网络设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935180

Country of ref document: EP

Kind code of ref document: A1