WO2020059070A1 - Substrate treatment device, method for manufacturing semiconductor device and program - Google Patents

Substrate treatment device, method for manufacturing semiconductor device and program Download PDF

Info

Publication number
WO2020059070A1
WO2020059070A1 PCT/JP2018/034764 JP2018034764W WO2020059070A1 WO 2020059070 A1 WO2020059070 A1 WO 2020059070A1 JP 2018034764 W JP2018034764 W JP 2018034764W WO 2020059070 A1 WO2020059070 A1 WO 2020059070A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
control unit
gas
outliers
outlier
Prior art date
Application number
PCT/JP2018/034764
Other languages
French (fr)
Japanese (ja)
Inventor
一良 山本
秀元 林原
佳代子 屋敷
満 福田
嘉一郎 南
昭仁 吉野
一秀 浅井
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2018/034764 priority Critical patent/WO2020059070A1/en
Priority to JP2020547536A priority patent/JP6961834B2/en
Publication of WO2020059070A1 publication Critical patent/WO2020059070A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
  • Patent Literature 1 discloses an apparatus in which a piping heater is provided between a vaporizer (tank) and a processing chamber (or a processing furnace) to vaporize a raw material.
  • Patent Literature 2 discloses an apparatus that evaporates a raw material by providing a mist filter between a vaporizer (tank) and a processing chamber (or a processing furnace).
  • a gas vaporized as described above for example, when the inside of the pipe is pressurized in a pipe portion serving as a flow path of the gas, a transition to a liquefied state side of a vapor pressure curve corresponding to a material of the gas occurs. And the vaporized gas may be reliquefied. Thus, if the vaporized gas is again liquefied, there is a possibility that a trouble such as a film formation abnormality due to the generation of particles or a stop of the apparatus may be caused.
  • the present disclosure has an object to provide a technique capable of quickly and accurately detecting gas liquefaction in a pipe and avoiding occurrence of trouble due to gas liquefaction.
  • a main control unit that processes a substrate by executing a process recipe including at least a procedure of supplying a gas and a procedure of purging a gas, and a control unit that collects device data transmitted from the main control unit, Then, the control unit, during the execution of the process recipe, while collecting the pipe temperature and the pipe pressure of the monitoring target portion of the pipe serving as the gas flow path from the apparatus data, while controlling the pipe temperature or the pipe pressure.
  • calculate the saturation temperature with respect to the pipe pressure calculate the difference between the saturation temperature and the pipe temperature as an outlier, and determine the liquefaction region of the vapor pressure curve determined according to the gas source.
  • the main control unit extracts the outliers corresponding to, and within a predetermined period, the number of outliers that is the number of outliers corresponding to the liquefaction region of the vapor pressure curve, and the maximum outlier that is the maximum value of the outliers. Is configured to output, Technology is provided.
  • FIG. 1 is a side sectional view showing a substrate processing apparatus suitably used in one embodiment. It is a figure showing the functional composition of the control system used suitably for one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a main controller suitably used in one embodiment.
  • FIG. 2 is a diagram illustrating a functional configuration of an apparatus management controller suitably used in one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a device state monitoring unit suitably used in one embodiment.
  • FIG. 1 is a side sectional view showing a substrate processing apparatus suitably used in one embodiment. It is a figure showing the functional composition of the control system used suitably for one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a main controller suitably used in one embodiment.
  • FIG. 2 is a diagram illustrating a functional configuration of an apparatus management controller suitably used in one embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration of a device state monitoring unit suitably used in one embodiment.
  • FIG. 2 is a diagram illustrating a functional configuration of a substrate processing unit (including a part to be monitored) suitably used in an embodiment; It is a flowchart which shows the procedure of the soft sensor value calculation process suitably used for one Embodiment.
  • FIG. 3 is an explanatory diagram showing a specific example of a vapor pressure curve suitably used in one embodiment. It is an explanatory view showing the Antoine constant management table suitably used for one embodiment, and the condition setting table for every part to be monitored.
  • FIG. 3 is an explanatory diagram (part 1) illustrating an action definition table suitably used in one embodiment;
  • FIG. 11 is an explanatory diagram (part 2) illustrating an action definition table suitably used in one embodiment.
  • a substrate processing apparatus (hereinafter, also simply referred to as an apparatus) 1 to which the present disclosure is applied includes a housing 2, and a lower part of a front wall 3 of the housing 2 can be maintained. Is provided, and the opening 4 is opened and closed by a front maintenance door 5.
  • a pod loading / unloading port 6 is opened on the front wall 3 of the casing 2 so as to communicate between the inside and the outside of the casing 2, and the pod loading / unloading port 6 is opened and closed by a front shutter 7.
  • a load port 8 is installed on the front side, and the load port 8 is configured to position the mounted pod 9.
  • the pod 9 is a hermetically sealed substrate transfer container, which is carried into and out of the load port 8 by an in-process transfer device (not shown).
  • a rotatable pod shelf 11 is provided at an upper portion in a substantially central portion in the front-rear direction in the housing 2, and the rotatable pod shelf 11 is configured to store a plurality of pods 9. .
  • the rotary pod shelf 11 includes a column 12 that is vertically erected and is intermittently rotated, and a plurality of stages of shelves 13 radially supported by the column 12 at respective positions of upper, middle, and lower stages.
  • the shelf 13 is configured to store the pod 9 in a state where a plurality of the pods 9 are placed.
  • a pod opener 14 is provided below the rotary pod shelf 11, and the pod opener 14 has a configuration on which the pod 9 can be placed and a lid of the pod 9 can be opened and closed.
  • a pod transport mechanism 15 is provided between the load port 8 and the rotary pod shelf 11 and the pod opener 14.
  • the pod transport mechanism 15 can hold the pod 9 and can move up and down, and can move forward and backward in the horizontal direction.
  • the pod 9 is transported between the load port 8, the rotary pod shelf 11, and the pod opener 14.
  • a sub-housing 16 is provided at a lower portion in a substantially central portion in the front-rear direction in the housing 2 over the rear end.
  • a pair of wafer loading / unloading ports 19 for loading / unloading a wafer (hereinafter, also referred to as a substrate) 18 into / from the sub-casing 16 is vertically arranged on the front wall 17 of the sub-casing 16 in two vertical stages.
  • the pod openers 14 are respectively provided for the upper and lower wafer loading / unloading ports 19.
  • the pod opener 14 includes a mounting table 21 on which the pod 9 is mounted, and an opening / closing mechanism 22 for opening and closing the lid of the pod 9.
  • the pod opener 14 is configured to open and close a wafer entrance of the pod 9 by opening and closing a lid of the pod 9 mounted on the mounting table 21 by an opening and closing mechanism 22.
  • the sub-housing 16 constitutes a transfer chamber 23 which is airtight from a space (pod transfer space) in which the pod transfer mechanism 15 and the rotary pod shelf 11 are provided.
  • a wafer transfer mechanism 24 is provided in the front area of the transfer chamber 23.
  • the substrate transfer mechanism 24 holds a required number (five in the drawing) of the wafer mounting plates 25 on which the substrates 18 are mounted.
  • the wafer mounting plate 25 is capable of linearly moving in the horizontal direction, rotatable in the horizontal direction, and being vertically movable.
  • the substrate transfer mechanism 24 is configured to load and unload the substrate 18 from and to the boat 26.
  • a standby unit 27 that accommodates and stands by the boat 26 is configured.
  • a vertical processing furnace 28 is provided above the standby unit 27, a vertical processing furnace 28 is provided.
  • the processing furnace 28 has a processing chamber (reaction chamber) 29 formed therein.
  • the lower end of the processing chamber 29 is a furnace port, and the furnace port is opened and closed by a furnace port shutter 31. ing.
  • a boat elevator 32 as an elevating mechanism for elevating the boat 26 is installed between the right end of the housing 2 and the right end of the standby section 27 of the sub-housing 16.
  • a seal cap 34 as a cover is horizontally mounted on an arm 33 connected to the elevator of the boat elevator 32.
  • the cover 34 vertically supports the boat 26, and transfers the boat 26 to the processing chamber 29.
  • the furnace port can be hermetically closed in a state where the furnace is charged.
  • the boat 26 is configured so that a plurality of (for example, about 50 to 125) substrates 18 are aligned in the center thereof and held in multiple stages in a horizontal posture.
  • a clean unit 35 is disposed at a position facing the boat elevator 32 side.
  • the clean unit 35 is configured by a supply fan and a dustproof filter for supplying a clean atmosphere or clean air 36 that is an inert gas. I have.
  • the pod 9 When the pod 9 is supplied to the load port 8, the pod loading / unloading port 6 is opened by the front shutter 7.
  • the pod 9 on the load port 8 is carried into the housing 2 through the pod carry-in / out port 6 by the pod transport device 15 and is placed on the designated shelf 13 of the rotary pod shelf 11.
  • the pod 9 After the pod 9 is temporarily stored on the rotary pod shelf 11, the pod 9 is transferred from the shelf 13 to one of the pod openers 14 by the pod transfer device 15 and transferred to the mounting table 21, or 8 and transferred directly to the mounting table 21.
  • the wafer loading / unloading port 19 is closed by the opening / closing mechanism 22, and the transfer chamber 23 is filled with the clean air 36 flowing therethrough. Since the transfer chamber 23 is filled with nitrogen gas as clean air 36, the oxygen concentration in the transfer chamber 23 is lower than the oxygen concentration inside the housing 2.
  • the pod 9 placed on the mounting table 21 has its opening-side end face pressed against the edge of the opening of the wafer loading / unloading port 19 on the front wall 17 of the sub-housing 16, and the lid is removed by the opening / closing mechanism 22. , The wafer entrance is opened.
  • the substrate 18 is taken out of the pod 9 by the substrate transfer mechanism 24, transferred to a notch aligning device (not shown), and aligned with the notch aligning device. Thereafter, the substrate transfer mechanism 24 carries the substrate 18 into the standby section 27 located behind the transfer chamber 23 and charges (charges) the boat 26.
  • the substrate transfer mechanism 24 that has transferred the substrate 18 to the boat 26 returns to the pod 9, and loads the next substrate 18 into the boat 26. While the substrate transfer mechanism 24 in one (upper or lower) pod opener 14 is loading the substrate 18 into the boat 26, the other (lower or upper) pod opener 14 is separated from the rotary pod shelf 11 by another. The pod 9 is transported and transferred by the pod transport device 15, and the opening of the pod 9 by the other pod opener 14 proceeds simultaneously.
  • a purge step in which the processing chamber 29 is replaced with an inert gas at this timing (after loading) is provided.
  • the processing chamber 29 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown) such as a vacuum pump. Further, the processing chamber 29 is heated to a predetermined temperature by a heater driving unit (not shown) so as to have a desired temperature distribution.
  • a processing gas controlled at a predetermined flow rate is supplied by a gas supply mechanism (not shown), and the processing gas contacts the surface of the substrate 18 in the process of flowing through the processing chamber 29, and A predetermined process is performed. Further, the processing gas after the reaction is exhausted from the processing chamber 29 by the gas exhaust mechanism.
  • an inert gas is supplied from an inert gas supply source (not shown) by a gas supply mechanism, and the processing chamber 29 is replaced with the inert gas. Is returned to normal pressure (after-purge step). Then, the boat 26 is lowered by the boat elevator 32 via the seal cap 34.
  • the substrate 18 and the pod 9 are discharged to the outside of the housing 2 in a procedure reverse to the above description.
  • the unprocessed substrate 18 is further loaded into the boat 26, and the processing of the substrate 18 is repeated.
  • the control system 200 includes a main controller 201 as a main controller, a transport controller 211 as a transport controller, a process controller 212 as a processing controller, and a controller that monitors data. And a device management controller 215.
  • the device management controller 215 has a function of monitoring the state of the device 1 by monitoring the device data DD.
  • the control system 200 is housed in the device 1.
  • the apparatus data DD refers to data (hereinafter, also referred to as control parameters) relating to substrate processing such as a processing temperature, a processing pressure, and a flow rate of a processing gas when the apparatus 1 processes the substrate 18, and the quality of a manufactured product substrate.
  • control parameters data relating to substrate processing such as a processing temperature, a processing pressure, and a flow rate of a processing gas when the apparatus 1 processes the substrate 18, and the quality of a manufactured product substrate.
  • MFC mass flow controller
  • the apparatus data DD also includes raw waveform data as data at a specific interval (for example, one second) from the start to the end of the recipe, and process data such as statistic data of each step in the recipe.
  • the statistic data includes a maximum value, a minimum value, an average value, and the like.
  • event data for example, data indicating a maintenance history
  • indicating various device events when a recipe is not executed for example, when the substrate is not loaded in the device
  • the main controller 201 Since the main controller 201 is electrically connected to the transport controller 211 and the process controller 212, the main controller 201 can transmit and receive each device data DD, download and upload each file, and the like.
  • the main controller 201 is provided with a port through which a recording medium (for example, a USB key) as an external storage device is inserted and removed.
  • the OS corresponding to this port is installed in the main controller 201.
  • an external host computer 300 and management device 310 are connected to the main controller 201 via the communication network LAN2. Therefore, even when the substrate processing apparatus 1 is installed in a clean room, the host computer 300 and the management device 310 can be arranged in an office or the like outside the clean room.
  • the device management controller 215 is connected to the main controller 201 via a LAN line, and is configured to collect at least device data DD from the main controller 201.
  • the device management controller 215 will be described later in detail.
  • the transport system controller 211 is connected to a substrate transport system 211A mainly including the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). ing.
  • the transport system controller 211 is configured to control transport operations of the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). .
  • the transport system controller 211 is configured to control the transport operations of the boat elevator 32, the pod transport device 15, and the substrate transfer mechanism 24, respectively.
  • the process controller 212 includes a temperature controller 212a, a pressure controller 212b, a gas flow controller 212c, and a sequencer 212d.
  • the temperature controller 212a, the pressure controller 212b, the gas flow controller 212c, and the sequencer 212d constitute a sub-controller and are electrically connected to the process system controller 212. Uploading is possible. Although the process controller 212 and the sub-controller are shown separately, they may be integrated.
  • a heating mechanism 212A mainly composed of a heater, a temperature sensor, and the like is connected to the temperature controller 212a.
  • the temperature controller 212a is configured to control the temperature inside the processing furnace 28 by controlling the temperature of the heater of the processing furnace 28.
  • the temperature controller 212a is configured to perform switching (on / off) control of the thyristor, and to control electric power supplied to the heater element wire.
  • a gas exhaust mechanism 212B mainly composed of a pressure sensor, an APC valve as a pressure valve, and a vacuum pump is connected to the pressure controller 212b.
  • the pressure controller 212b controls the opening degree of the APC valve and the switching (on / off) of the vacuum pump based on the pressure value detected by the pressure sensor so that the pressure in the processing chamber 29 becomes a desired pressure at a desired timing. It is configured to control.
  • the gas flow controller 212c is configured by an MFC as a flow controller.
  • the sequencer 212d is configured to control the supply and stop of the gas from the processing gas supply pipe and the purge gas supply pipe by opening and closing the valve 212D.
  • the process controller 212 having such a configuration is configured to control the MFC 212c and the valve 212D so that the flow rate of the gas supplied to the processing chamber 29 becomes a desired flow rate at a desired timing.
  • the main controller 201, the transport system controller 211, the process system controller 212, and the device management controller 215 according to the present embodiment can be realized using an ordinary computer system without using a dedicated system. For example, by installing the program from a recording medium (such as a USB key) that stores the program for executing the above-described process in a general-purpose computer, each controller that executes a predetermined process can be configured.
  • a recording medium such as a USB key
  • the main controller 201 includes an operation display unit 227 including a main controller control unit 220, a hard disk 222 as a main control storage unit, a display unit for displaying various information, and an input unit for receiving various instructions from an operator. It is configured to include a transmission / reception module 228 as a main controller communication unit that communicates with inside and outside.
  • the main controller 220 includes a CPU (Central Processing Unit) 224 as a processing unit and a memory (RAM, ROM, etc.) 226 as a temporary storage unit, and is configured as a computer having a clock function (not shown). ing.
  • CPU Central Processing Unit
  • the hard disk 222 includes recipe files such as recipes in which processing conditions and processing procedures of the substrate are defined, a control program file for executing these recipe files, a parameter file in which parameters for executing the recipes are defined, Further, in addition to an error processing program file and an error processing parameter file, various screen files including an input screen for inputting process parameters, various icon files, and the like (all not shown) are stored.
  • the operation display unit 227 is configured to display an operation screen for operating the device 1.
  • the operation display unit 227 displays information based on device data DD generated in the substrate processing apparatus 1 via the operation screen on the operation screen.
  • the operation screen of the operation display unit 227 is, for example, a touch panel using liquid crystal.
  • the operation display unit 227 receives input data (input instruction) of the operator from the operation screen and transmits the input data to the main controller 201. Further, the operation display unit 227 provides an instruction to execute an arbitrary substrate processing recipe (hereinafter, also referred to as a process recipe) among a plurality of recipes stored in the hard disk 222 or a recipe developed in the memory (RAM) 226 or the like. Control instruction) and transmits it to the main controller 220.
  • a switching hub or the like is connected to the main controller communication unit 228, and the main controller 201 communicates with the external computer 300 and other controllers (211 212, and 215) in the apparatus 1 and the like via a network. Is configured to perform transmission and reception.
  • the main controller 201 also transmits device data DD such as the status of the device 1 to an external host computer 300, for example, a host computer via a network (not shown).
  • device data DD such as the status of the device 1
  • an external host computer 300 for example, a host computer via a network (not shown).
  • the substrate processing operation of the apparatus 1 is controlled by the control system 200 based on each recipe file, each parameter file, and the like stored in the main controller storage unit 222.
  • the hardware configuration of the device management controller 215 is similar to that of the main controller 201 described above.
  • the device management controller 215 can be realized by using a normal computer system without using a dedicated system like the main controller 201.
  • the device management controller 215 is connected to the main controller 201 via a LAN line, collects device data DD from the main controller 201, processes the stored device data DD, graphs the processed device data DD, and can display the processed data on the operation display unit 227. is there. Further, the device management controller 215 has a device state monitoring function, is configured to diagnose the operating state of the device 1 by using device data DD collected from inside and outside the device 1 and output the diagnosis result. I have.
  • the device management controller 215 includes a communication unit 215a for transmitting and receiving device data DD to and from the main controller 201, a screen display unit 215b, a screen display control unit 215c, and a storage unit 215d for storing various data. , And a device state monitoring unit 215e.
  • the screen display unit 215b is configured to display the function of the device management controller 215. Further, instead of the screen display unit 215b, the display may be performed by using the operation display unit 227 of the main controller 201, or may be replaced by an operation terminal or the like.
  • the screen display control unit 215c controls various data (for example, device data DD) into data for screen display, and displays the data on the screen display unit 215b or the operation display unit 227.
  • the display is configured to be displayed on the operation display unit 227 instead of the screen display unit 215b.
  • the storage unit 215d stores all device data DD from the main controller 201 while the process recipe is being executed, and also stores device data DD such as event data while the process recipe is not being executed. Acts as a database.
  • Various programs executed by the device management controller 215 are stored in the storage unit 215d. For example, the device status monitoring program, the data analysis program, and the like are executed when the device management controller 215 is activated. Note that the monitoring content or the diagnostic condition definition data used for the program may also be stored in the storage unit 215d.
  • the device status monitoring unit 215e has a device status monitoring program in a memory (for example, the storage unit 215d) and executes a device status monitoring function. As shown in FIG. 6, the device state monitoring unit 215e includes a condition determination unit 311, a storage unit 313, a search unit 314, and a diagnosis unit 315.
  • the condition determination unit 311 performs control to determine whether or not it is time for the diagnosis unit 315 to perform processing. Specifically, when a predetermined condition is satisfied, the condition determination unit 311 determines that the timing at which the diagnosis unit 315 should perform processing has come. Details of the predetermined condition will be described later.
  • the storage unit 313 performs control to store all device data DD supplied via the communication unit 215a in the storage unit 215d.
  • the device data DD stored in the storage unit 215d includes at least data of a pipe temperature and a pipe pressure of a monitoring target portion, which will be described in detail later.
  • the storage unit 313 controls to store various data (for example, outliers described in detail later) generated by the diagnosis unit 315 in the storage unit 215d.
  • the search unit 314 searches the various device data DD stored in the storage unit 215d for device data DD (particularly, data of a pipe temperature and a pipe pressure) to be processed by the diagnosis unit 315, and searches for the diagnosis unit 315. Control to supply to. Also, the search unit 314 searches various data (for example, outliers described in detail later) generated by the diagnosis unit 315 as necessary, and performs control to supply the data to the diagnosis unit 315.
  • the diagnosis unit 315 starts the diagnosis when the condition determination unit 311 notifies that the processing should be performed. Then, the diagnosis unit 315 notifies the main controller 201 of the diagnosis data as a result of the diagnosis via the communication unit 215a.
  • the diagnostic unit 315 receives piping temperature and piping pressure data as processing target device data DD from the search unit 314, and based on the piping pressure. It is configured to calculate a saturation temperature and calculate a difference between the received pipe temperature and the calculated saturation temperature as an outlier. Then, the diagnosis unit 315 accumulates the calculated outlier in the storage unit 215d, acquires the maximum value of the outlier within the predetermined period as the maximum outlier, and liquefies the vapor pressure curve within the predetermined period. The number of outliers corresponding to the area is obtained as an outlier. The maximum outlier and the number of outliers are output as soft sensor values and notified to the main controller 201.
  • diagnosis unit 315 obtains the maximum outlier and the number of outliers, compares at least one of them with a predetermined threshold, generates an alarm when the threshold is exceeded, and notifies the main controller 201. May be configured.
  • the vapor pressure curve represented by temperature on the vertical axis and pressure on the horizontal axis is a curve determined in advance by the material of the vaporized gas.
  • the left side of this curve is the liquefaction region, and the right side of the curve is the vaporization region.
  • the temperature and the pressure on the vapor pressure curve are referred to as a saturation temperature and a saturation pressure, respectively.
  • the saturation temperature in the present embodiment is defined as a temperature determined by the pressure (the pipe pressure in the present embodiment). I do.
  • the predetermined processing step is a substrate processing step (here, a film forming step), which is one of the semiconductor device manufacturing steps.
  • the substrate processing step includes at least a carry-in step, a film-forming step, and a carry-out step.
  • the main controller 201 issues an instruction to drive the substrate transfer mechanism 24 to the transport system controller 211. Then, while following instructions from the transport system controller 211, the substrate transfer mechanism 24 starts transfer processing of the substrate 18 from the pod 9 on the transfer stage 21 as the mounting table to the boat 26. This transfer processing is performed until the loading (wafer charging) of all the planned substrates 18 into the boat 26 is completed.
  • the processing chamber 29 is evacuated by a vacuum exhaust device such as a vacuum pump so as to have a predetermined film forming pressure (degree of vacuum) while following instructions from the pressure control unit 212b.
  • the processing chamber 29 is heated by a heater to a predetermined temperature while following instructions from the temperature control unit 212a.
  • the rotation of the boat 26 and the substrate 18 by the rotation mechanism is started while following instructions from the transport system controller 211.
  • a predetermined gas for example, a source gas obtained by vaporizing a liquid source
  • a predetermined process for example, a film forming process
  • the boat 26 holding the processed substrate 18 is cooled very effectively by the clean air 36 blown out from the clean unit 35.
  • the processed substrate 18 is removed from the boat 26 (wafer discharge) and transferred to the pod 9, and then the new unprocessed substrate 18 is transferred to the boat 26. Is performed.
  • a predetermined type of gas is flow-adjusted by the MFC 212c, and is passed through a pipe 212E serving as a gas flow path.
  • the substrate 18 is supplied to a processing chamber (reaction chamber) 29 into which the substrate 18 has been carried.
  • the supplied gas for example, there is a first element-containing gas which is a raw material gas obtained by vaporizing a liquid raw material.
  • a second element-containing gas that is a reaction gas or a reforming gas
  • an inert gas that acts as a purge gas, or the like can be supplied to the reaction chamber 29.
  • a detector that detects a change in device data in the part to be monitored is set in advance on the pipe 212E as the part to be monitored, and in FIG. 7, a detector (piping 212E) is set to the part set as the monitoring target.
  • a temperature sensor TG1 and a pressure sensor PG1 are provided. When a plurality of locations are set as the monitoring target, a temperature sensor TG1 and a pressure sensor PG1 are respectively disposed.
  • the site to be monitored may be either upstream or downstream of the valve 212D. Therefore, the valve 212D is located before and after the part to be monitored (that is, at least one of the front side and the rear side).
  • the temperature sensor TG1 is configured to detect an actual measured value of the temperature of the gas flowing in the pipe 212E as the pipe temperature of the monitoring target portion.
  • the pressure sensor PG1 is configured to detect an actual measured value of the gas pressure in the pipe 212E as a pipe pressure for a monitoring target portion. Therefore, in the part to be monitored, the pipe temperature and the pipe pressure for the same gas can be detected at the same timing.
  • the piping temperature, which is the detection result of the temperature sensor TG1, and the piping pressure, which is the detection result of the pressure sensor PG1, are output to the main controller 201 as device data DD.
  • a gas obtained by heating and vaporizing a liquid material such as HCD (hexachlorodisilane) may be sent into the reaction chamber 29 as a raw material gas flowing in the pipe 212E.
  • HCD hexachlorodisilane
  • the temperature of the vaporized gas changes to the liquefied state side of the vapor pressure curve determined by the raw material (HCD) of the gas, and this vaporization occurs.
  • the gas may be re-liquefied. It is known that when the liquefied gas is sent into the reaction chamber 29 and adheres to the substrate 18, it forms ball-shaped particles. That is, if the vaporized gas is again liquefied, there is a possibility that a trouble such as a film formation abnormality due to the generation of particles or a stop of the apparatus may be caused.
  • the device management controller 215 uses the device data DD from the temperature sensor TG1 and the pressure sensor PG1 disposed on the pipe 212E (that is, the pipe temperature and the pipe pressure for the monitoring target part), and Perform the process described.
  • the device management controller 215 performs a process of calculating a soft sensor value as shown in FIG. First, the diagnosis unit 315 sets the maximum outlier T Out and the number of outliers F Count as soft sensor values to “0” as initial values, respectively (S101).
  • the storage unit 313 causes the storage unit 215d to store the device data DD supplied from the main controller 201 via the communication unit 215a during the execution of the process recipe.
  • the device data DD stored in the storage unit 215d includes a pipe temperature that is a detection result of the temperature sensor TG1 and a pipe pressure that is a detection result of the pressure sensor PG1.
  • the collection of the pipe temperature and the pipe pressure by the device management controller 215 is performed at a predetermined cycle (for example, every 0.1 second).
  • the condition determination unit 311 monitors the collected pipe temperature and pipe pressure.
  • the monitoring target is the pipe temperature and the pipe pressure of the pipe 212E (for each part when a plurality of parts are set).
  • the monitoring timing is a certain period after the valves 212D provided before and after the pipe 212E are opened.
  • the condition determination unit 311 determines that the collection condition is satisfied when the valve 212D is in the open state and any one of the pipe temperature and the pipe pressure changes during a certain period after the valve 212D is opened. (S102). If there is no change in the piping temperature and the piping pressure to be monitored (if it is determined that there is no change), the condition determining unit 311 waits until the next cycle (S103).
  • condition determination unit 311 determines that the collection conditions are satisfied in S102
  • diagnosis unit 315 of the device management controller 215 performs the following processing (S104).
  • the diagnosis unit 315 calculates the saturation temperature T TH of the gas flowing through the pipe 212E when the collection condition is satisfied, that is, when either the pipe temperature or the pipe pressure changes.
  • A, B, and C are constants determined for each substance (Antoine constant), P is the vapor pressure, and T is the temperature.
  • the above equation is modified and used from the following viewpoints.
  • (1) In order to reduce the processing cost of index calculation, the input is pressure and the saturation temperature is obtained.
  • (2) A constant D for adjustment is prepared because it is necessary to make the pressure deviate from the theoretical value and to wear a getter for converting the absolute pressure and the vapor pressure.
  • T TH is the saturation temperature
  • a and B are the Antoine constants
  • C is the sum of the Antoine constant and the adjusted value of the temperature
  • D is the adjusted value of the pressure
  • P is the piping pressure of the monitored part.
  • the diagnosis unit 315 calculates the saturation temperature T TH of the gas flowing through the monitoring target using the above equation based on the pipe pressure at that time. calculate.
  • the diagnosis unit 315 After calculating the saturation temperature T TH , the diagnosis unit 315 then calculates the difference between the calculated saturation temperature T TH and the pipe temperature when any of the pipe temperature or the pipe pressure changes from the saturation temperature T TH. Is calculated as an outlier T Diff .
  • the diagnosis unit 315 determines whether or not the outlier T Diff is negative, that is, whether or not the outlier T Diff matches the gas liquefaction condition (S105). Specifically, it is determined whether or not the acquired outlier T Diff corresponds to the liquefaction region in the vapor pressure curve (FIG. 9). Then, it is determined that the outlier T Diff corresponding to the liquefaction region meets the liquefaction condition. If the liquefaction condition is not met, the pipe temperature and pipe pressure to be monitored are waited for the next cycle (S103).
  • the diagnosis unit 315 determines the outlier number F Count which is the result of counting the number of outliers T Diff corresponding to the liquefaction region of the vapor pressure curve. "+1" is added. The diagnosis unit 315 extracts and counts the pipe temperature that has changed on the liquefaction side of the vapor pressure curve.
  • the diagnosis unit 315 determines whether or not the acquired outlier T Diff is larger than the set maximum outlier T Out , that is, whether or not the outlier exceeding the maximum outlier T Out has occurred (S107). . If the maximum outlier T Out is exceeded, the maximum outlier T Out is updated with the acquired outlier T Diff (S108). That is, the maximum value of the acquired outlier T Diff is set as the maximum outlier T Out . If it does not exceed the maximum outlier T Out , the process waits for the pipe temperature and pipe pressure to be monitored until the next cycle (S103).
  • the diagnostic unit 315 performs the above arithmetic processing until the pipe temperature and pipe pressure obtained in each cycle until a certain period (that is, a predetermined period) after the valve 212D is opened (S109). It is repeated every time (S110).
  • the diagnosis unit 315 determines that the outlier T Diff corresponding to the liquefaction region of the vapor pressure curve within the predetermined period (that is, the vapor The outlier number F Count that is the number of outliers T Diff ) that satisfies the liquefaction conditions defined by the pressure curve and the maximum outlier T Out that is the maximum of the outliers T Diff are output as soft sensor values ( S111).
  • the output destination of the soft sensor value is the main controller 201.
  • FIG. 9 a specific monitoring example is shown in FIG.
  • out of a plurality of outliers T Diff acquired within a predetermined period see a black circle in the figure
  • three outliers T Diff enter the liquefaction region of the vapor pressure curve. I have.
  • These three outliers T Diff have a difference from the vapor pressure curve (saturation temperature) at a predetermined pressure of 10 ° C., 50 ° C., and 30 ° C., respectively.
  • the maximum outlier T Out since the distance from the vapor pressure curve to the measured temperature is used as an index, it is possible to capture a sudden change in the state of liquefaction. Further, even if the gas flowing through the monitoring target portion instantaneously becomes a theoretical liquefied state, it often does not actually appear as ball particles immediately. Therefore, for example, by using the accumulated value of the out-of-order number F Count as a management index, it is possible to capture a state of reliquefaction that is likely to appear as particles.
  • the number of consecutive outliers T Diff corresponding to the liquefaction region can be added to one of the soft sensor values as the number of consecutive outliers.
  • the difference between the measured value of any device data and the saturation temperature Tth becomes negative, and the re-liquefaction phenomenon of the vaporized gas occurs clearly, the accumulated value Even before the threshold value, the occurrence of an abnormality (a pipe temperature drop error) can be detected.
  • the calculation of the saturation temperature T TH required for outputting the soft sensor value uses the parameters (constants) of A, B, C, and D as described above.
  • A, B, and C are constants depending on the substance, and when the liquid material used for film formation is different, it is necessary to change the value to a value corresponding to the material.
  • A, B, C, and D it may be necessary to make corrections as necessary due to differences in conditions such as the temperature difference and pressure between the pipe surface and the pipe, and whether the pressure is gauge pressure or absolute pressure. possible.
  • the device management controller 215 can select at least the constants A, B, and C, and preferably all of the constants A, B, C, and D, according to the raw material of the gas flowing through the monitoring target portion. Is configured. Further, the device management controller 215 may be capable of selecting the constants A, B, C, and D according to the setting position of the monitoring target part.
  • constants A, B, C, and D can be selected for each part to be monitored.
  • the device management controller 215 prepares an Antoine constant management table and a condition setting table for each part to be monitored as shown in FIG.
  • the Antoine constant management table holds the Antoine constant values for each raw material in a table format, and is stored and held in the storage unit 215d in advance, for example.
  • the device management controller 215 displays the Antoine constant management table and the condition setting table for each part to be monitored on a screen, and sets the constants A, B, and C to be applied to each part to be monitored.
  • And D are selected from the Antoine constant management table, and the selected constants A, B, C, and D are set in corresponding locations in the condition setting table for each monitoring target part.
  • the device management controller 215 calculates the soft sensor value while referring to the conditions on the table set as described above.
  • the constants A, B, C, and D can be appropriately selected for each monitoring target portion according to the raw material of the gas flowing through the portion.
  • the Antoine constant is taken as an example, but the temperature correction itself or the pressure correction itself may be determined based on another theoretical chemical formula.
  • the device management controller 215 calculates and outputs the soft sensor value
  • the monitoring action process described below can be performed using the soft sensor value.
  • the monitoring action processing is roughly classified into an alarm notification processing and an automatic maintenance recipe execution processing.
  • the device management controller 215 After calculating the soft sensor value, the device management controller 215 compares any one of the outliers F Count and the maximum outlier T Out that constitute the soft sensor value with a predetermined threshold value, and The liquefaction state of the gas in the pipe that has become is determined. Then, when the threshold value is exceeded, an alarm is generated to notify the fact that the gas in the pipe may be liquefied.
  • the device management controller 215 For example, if the device management controller 215, the maximum outliers T Out capable of capturing a change in the state as catastrophically liquefied threshold management, was the largest outliers T Out exceeding the threshold, the pipe It is determined that there is a possibility that the gas of the above is liquefied. Then, the device management controller 215 generates an alarm for the main controller 201. In response to this, the main controller 201 outputs an alarm through the operation display unit 227, so that the operator or the like can check the status of the apparatus 1 and perform predetermined error processing such as performing maintenance as necessary. Can be performed.
  • the specific mode of the alarm is not particularly limited.
  • the threshold management may be performed on the out-of-range number F Count .
  • the cumulative value of the out-of-order number F Count is managed, and when the cumulative value exceeds a threshold value (a certain amount), an alarm is output. It is possible to appropriately cope with the situation of high reliquefaction.
  • the main controller 201 When receiving the soft sensor value output from the device management controller 215, the main controller 201 performs the following processing using the out-of-order number F Count included in the soft sensor value.
  • the main controller 201 previously stores, for example, an action definition table as shown in FIG. 11 and FIG.
  • the action definition table links (associates) a monitoring target part, a soft sensor value (particularly, the number of outliers F Count ) of the part, and a recipe specifying an action to be performed on the part with each other. is there.
  • the main controller 201 When the main controller 201 receives a soft sensor value including the number of deviations F Count for each monitoring target from the device management controller 215, the main controller 201 adds the notified number of deviations F Count to the cumulative value of the number of deviations F Count in the action definition table. Add Count . After updating the cumulative value, the main controller 201 compares the updated cumulative value with a threshold registered in the action definition table.
  • the main controller 201 sends an action definition table to the part after the end of the currently executing process recipe. Execute the maintenance recipe registered in.
  • the main controller 201 determines that liquefaction has been detected, and to execute a cleaning recipe registered in the action definition table as a maintenance recipe that defines an action to be performed in that case. Then, by executing the cleaning recipe, the main controller 201 causes an inert gas such as N 2 gas to flow to the tank outlet, which is one of the monitoring target parts, to remove the liquefied raw material (HCD or the like). Configured to remove.
  • the maintenance recipe that defines the action to be performed is not limited to the above-described cleaning recipe. For example, parts (pump) replacement, maintenance recipe execution Maintenance (other actions) such as the above may be performed.
  • the maintenance recipe registered in the action definition table is automatically registered so that ball particles do not adhere to the substrate 18. It can be executed.
  • the main controller 201 After performing the action, the main controller 201 resets the accumulated value of the action definition table for the part where the action was performed to zero. That is, after executing the maintenance recipe, the main controller 201 initializes the corresponding accumulated value in the action definition table. This makes it possible to appropriately cope with the situation where the gas can be liquefied again.
  • the action defined in the action definition table may be executed when the number of out-of-orders F Count occurs even once.
  • the number of consecutive outliers T Diff corresponding to the liquefaction region is held in the action definition table as a continuous count, and when only the cumulative value of the continuous count continues to increase, the action definition The action specified in the table may be executed.
  • the main controller 201 determines that the device data DD (Including the pipe temperature and the pipe pressure of the monitoring target portion) may be output to the device management controller 215.
  • an abnormality in the pipe which is a factor that generates particles such as ball particles, is quantitatively expressed, and a sudden change or a cumulative value of the numerical value is monitored, so that an eye in the substrate processing apparatus can observe the change. Enables detection of invisible abnormal conditions.
  • the present embodiment it is possible to quickly and accurately detect the liquefied state of the gas in the pipe, and to avoid the occurrence of a trouble due to the liquefied gas.
  • the substrate processing apparatus and the semiconductor device manufacturing method used in the semiconductor manufacturing process have been mainly described.
  • the present invention is not limited to these.
  • a liquid crystal display (LCD) The present invention is also applicable to a substrate processing apparatus for processing a glass substrate, such as an apparatus, and a method of manufacturing the same.
  • any method may be used as long as the liquid material is vaporized and supplied to a processing chamber (reaction chamber) 29 in a processing furnace 28 to form a film on the surface of the substrate (wafer) 18.
  • the type of film to be formed is not particularly limited.
  • the film forming process performed in the film forming step includes, for example, a process for forming a CVD (chemical vapor deposition), a PVD (Physical Vapor Deposition), an oxide film, a nitride film, a process for forming a metal-containing film, and the like.
  • CVD chemical vapor deposition
  • PVD Physical Vapor Deposition
  • oxide film oxide film
  • nitride film oxide film
  • metal-containing film a metal-containing film
  • the substrate processing apparatus for performing the film forming process and the method for manufacturing the semiconductor device have been described.
  • the present invention is not limited to these.
  • another substrate processing apparatus Exposure apparatus, lithography apparatus, coating apparatus, CVD apparatus using plasma, etc.
  • Exposure apparatus, lithography apparatus, coating apparatus, CVD apparatus using plasma, etc. can also be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The present invention is configured with: a main control unit which executes a process recipe including at least a step for providing a gas and a step for purging the gas, and treats a substrate; and a control unit which collects device data transmitted from the main control unit, wherein, during the execution of the process recipe, the control unit is configured to calculate a saturation temperature for a pipe pressure when a value of any one among a pipe temperature or the pipe pressure changes, while collecting, from among the device data, the pipe temperature and the pipe pressure for a part to be monitored in a pipe that becomes a flow passage of the gas, calculate, as an outlier, the difference between the saturation temperature and the pipe temperature, extract an outlier corresponding to a liquefied area of a vapor pressure curve determined according to a raw material of the gas, and output, to the main control unit, an outlier number that is the number of outliers corresponding to the liquefied area of the vapor pressure curve and a maximum outlier that is a maximum value of the outlier in a prescribed period.

Description

基板処理装置、半導体装置の製造方法およびプログラムSubstrate processing apparatus, semiconductor device manufacturing method and program
 本開示は、基板処理装置、半導体装置の製造方法およびプログラムに関する。 The present disclosure relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
 半導体装置の製造工程で用いられる基板処理装置として、液体原料を気化させた原料ガスを用いて、半導体ウエハ等の基板に成膜処理等の所定処理を行うものがある。例えば、特許文献1には、気化器(タンク)と処理室(もしくは処理炉)の間に配管ヒータを設け、原料を気化する装置が記載されている。また、例えば、特許文献2には、気化器(タンク)と処理室(もしくは処理炉)の間にミストフィルタを設け、原料を気化する装置が記載されている。 (2) As a substrate processing apparatus used in a semiconductor device manufacturing process, there is a substrate processing apparatus that performs a predetermined process such as a film forming process on a substrate such as a semiconductor wafer using a source gas obtained by evaporating a liquid source. For example, Patent Literature 1 discloses an apparatus in which a piping heater is provided between a vaporizer (tank) and a processing chamber (or a processing furnace) to vaporize a raw material. Further, for example, Patent Literature 2 discloses an apparatus that evaporates a raw material by providing a mist filter between a vaporizer (tank) and a processing chamber (or a processing furnace).
特開2017-076781号公報JP-A-2017-0766781 特開2013-232624号公報JP 2013-232624 A
 上述のように気化させたガスを用いる場合、そのガスの流路となる配管部分において、例えば、配管内が加圧状態になると、該ガスの原料に応じた蒸気圧曲線の液化状態側に遷移してしまい、気化させたガスが再液化してしまう可能性がある。このように、気化させたガスが再び液化してしまうと、パーティクル発生による成膜異常や装置停止等のトラブルを招くおそれがある。 In the case of using a gas vaporized as described above, for example, when the inside of the pipe is pressurized in a pipe portion serving as a flow path of the gas, a transition to a liquefied state side of a vapor pressure curve corresponding to a material of the gas occurs. And the vaporized gas may be reliquefied. Thus, if the vaporized gas is again liquefied, there is a possibility that a trouble such as a film formation abnormality due to the generation of particles or a stop of the apparatus may be caused.
 本開示は、配管内におけるガスの液化を迅速かつ的確に察知して、ガスの液化に起因するトラブル発生を未然に回避し得るようにする技術の提供を目的とする。 The present disclosure has an object to provide a technique capable of quickly and accurately detecting gas liquefaction in a pipe and avoiding occurrence of trouble due to gas liquefaction.
 本開示の一態様によれば、
 ガスを供給する手順とガスをパージする手順とを少なくとも含むプロセスレシピを実行して基板を処理する主制御部と、主制御部から送信される装置データを収集する制御部と、を備える構成であって、制御部は、プロセスレシピの実行中に、該装置データのうち、ガスの流路となる配管における監視対象の部位についての配管温度および配管圧力を収集しつつ、配管温度または配管圧力のいずれかの値が変化したときに、配管圧力に対する飽和温度を算出し、飽和温度と配管温度との差分を外れ値として計算し、ガスの原料に応じて決められている蒸気圧曲線の液化領域に該当する外れ値を抽出し、所定の期間内における、蒸気圧曲線の液化領域に該当する外れ値の個数である外れ個数と、外れ値の最大値である最大外れ値と、を主制御部に出力するように構成されている、
 技術が提供される。
According to one aspect of the present disclosure,
A main control unit that processes a substrate by executing a process recipe including at least a procedure of supplying a gas and a procedure of purging a gas, and a control unit that collects device data transmitted from the main control unit, Then, the control unit, during the execution of the process recipe, while collecting the pipe temperature and the pipe pressure of the monitoring target portion of the pipe serving as the gas flow path from the apparatus data, while controlling the pipe temperature or the pipe pressure. When any value changes, calculate the saturation temperature with respect to the pipe pressure, calculate the difference between the saturation temperature and the pipe temperature as an outlier, and determine the liquefaction region of the vapor pressure curve determined according to the gas source. The main control unit extracts the outliers corresponding to, and within a predetermined period, the number of outliers that is the number of outliers corresponding to the liquefaction region of the vapor pressure curve, and the maximum outlier that is the maximum value of the outliers. Is configured to output,
Technology is provided.
 本開示に係る技術によれば、配管内におけるガスの液化を迅速かつ的確に察知して、ガスの液化に起因するトラブル発生を未然に回避することが可能になる。 According to the technology according to the present disclosure, it is possible to quickly and accurately detect the gas liquefaction in the pipe, and to avoid the occurrence of a trouble due to the gas liquefaction.
一実施形態に好適に用いられる基板処理装置を示す斜視図である。It is a perspective view showing the substrate processing device used suitably for one embodiment. 一実施形態に好適に用いられる基板処理装置を示す側断面図である。FIG. 1 is a side sectional view showing a substrate processing apparatus suitably used in one embodiment. 一実施形態に好適に用いられる制御システムの機能構成を示す図である。It is a figure showing the functional composition of the control system used suitably for one embodiment. 一実施形態に好適に用いられる主コントローラの機能構成を示す図である。FIG. 3 is a diagram illustrating a functional configuration of a main controller suitably used in one embodiment. 一実施形態に好適に用いられる装置管理コントローラの機能構成を示す図である。FIG. 2 is a diagram illustrating a functional configuration of an apparatus management controller suitably used in one embodiment. 一実施形態に好適に用いられる装置状態監視部の機能構成を示す図である。FIG. 3 is a diagram illustrating a functional configuration of a device state monitoring unit suitably used in one embodiment. 一実施形態に好適に用いられる基板処理部(監視対象となる部位を含む)の機能構成を示す図である。FIG. 2 is a diagram illustrating a functional configuration of a substrate processing unit (including a part to be monitored) suitably used in an embodiment; 一実施形態に好適に用いられるソフトセンサ値算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the soft sensor value calculation process suitably used for one Embodiment. 一実施形態に好適に用いられる蒸気圧曲線の一具体例を示す説明図である。FIG. 3 is an explanatory diagram showing a specific example of a vapor pressure curve suitably used in one embodiment. 一実施形態に好適に用いられるアントワン定数管理テーブルおよび監視対象の部位毎の条件設定テーブルを示す説明図である。It is an explanatory view showing the Antoine constant management table suitably used for one embodiment, and the condition setting table for every part to be monitored. 一実施形態に好適に用いられるアクション定義テーブルを示す説明図(その1)である。FIG. 3 is an explanatory diagram (part 1) illustrating an action definition table suitably used in one embodiment; 一実施形態に好適に用いられるアクション定義テーブルを示す説明図(その2)である。FIG. 11 is an explanatory diagram (part 2) illustrating an action definition table suitably used in one embodiment.
<一実施形態>
 以下、本開示の一実施形態について図1から図12を参照しながら説明する。
<One embodiment>
Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. 1 to 12.
(1)基板処理装置の構成
 まず、一実施形態に係る基板処理装置の構成例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
(1) Configuration of Substrate Processing Apparatus First, a configuration example of a substrate processing apparatus according to an embodiment will be described with reference to the drawings. However, in the following description, the same components will be denoted by the same reference symbols, and repeated description may be omitted. In addition, in order to make the description clearer, the width, thickness, shape, and the like of each part may be schematically illustrated in comparison with an actual embodiment, but this is merely an example, and the interpretation of the present invention is not described. It is not limited.
(基板処理装置の概要)
 図1および図2に示すように、本開示が適用される基板処理装置(以後、単に装置ともいう)1は筐体2を備え、該筐体2の正面壁3の下部にはメンテナンス可能な様に設けられた開口部4が開設され、該開口部4は正面メンテナンス扉5によって開閉される。
(Overview of substrate processing equipment)
As shown in FIGS. 1 and 2, a substrate processing apparatus (hereinafter, also simply referred to as an apparatus) 1 to which the present disclosure is applied includes a housing 2, and a lower part of a front wall 3 of the housing 2 can be maintained. Is provided, and the opening 4 is opened and closed by a front maintenance door 5.
 筐体2の正面壁3にはポッド搬入搬出口6が筐体2の内外を連通する様に開設されており、ポッド搬入搬出口6はフロントシャッタ7によって開閉され、ポッド搬入搬出口6の正面前方側にはロードポート8が設置されており、該ロードポート8は載置されたポッド9を位置合せする様に構成されている。該ポッド9は密閉式の基板搬送容器であり、図示しない工程内搬送装置によってロードポート8上に搬入され、また、該ロードポート8上から搬出される様になっている。 A pod loading / unloading port 6 is opened on the front wall 3 of the casing 2 so as to communicate between the inside and the outside of the casing 2, and the pod loading / unloading port 6 is opened and closed by a front shutter 7. A load port 8 is installed on the front side, and the load port 8 is configured to position the mounted pod 9. The pod 9 is a hermetically sealed substrate transfer container, which is carried into and out of the load port 8 by an in-process transfer device (not shown).
 筐体2内の前後方向の略中央部に於ける上部には、回転式ポッド棚11が設置されており、該回転式ポッド棚11は複数個のポッド9を格納する様に構成されている。回転式ポッド棚11は垂直に立設されて間欠回転される支柱12と、該支柱12に上中下段の各位置に於いて放射状に支持された複数段の棚板13とを備えており、該棚板13は前記ポッド9を複数個宛載置した状態で格納する様に構成されている。回転式ポッド棚11の下方には、ポッドオープナ14が設けられ、該ポッドオープナ14はポッド9を載置し、又該ポッド9の蓋を開閉可能な構成を有している。 A rotatable pod shelf 11 is provided at an upper portion in a substantially central portion in the front-rear direction in the housing 2, and the rotatable pod shelf 11 is configured to store a plurality of pods 9. . The rotary pod shelf 11 includes a column 12 that is vertically erected and is intermittently rotated, and a plurality of stages of shelves 13 radially supported by the column 12 at respective positions of upper, middle, and lower stages. The shelf 13 is configured to store the pod 9 in a state where a plurality of the pods 9 are placed. A pod opener 14 is provided below the rotary pod shelf 11, and the pod opener 14 has a configuration on which the pod 9 can be placed and a lid of the pod 9 can be opened and closed.
 ロードポート8と回転式ポッド棚11、ポッドオープナ14との間には、ポッド搬送機構15が設置されており、該ポッド搬送機構15は、ポッド9を保持して昇降可能、水平方向に進退可能となっており、ロードポート8、回転式ポッド棚11、ポッドオープナ14との間でポッド9を搬送する様に構成されている。 A pod transport mechanism 15 is provided between the load port 8 and the rotary pod shelf 11 and the pod opener 14. The pod transport mechanism 15 can hold the pod 9 and can move up and down, and can move forward and backward in the horizontal direction. The pod 9 is transported between the load port 8, the rotary pod shelf 11, and the pod opener 14.
 筐体2内の前後方向の略中央部に於ける下部には、サブ筐体16が後端に亘って設けられている。該サブ筐体16の正面壁17にはウエハ(以後、基板ともいう)18をサブ筐体16内に対して搬入搬出する為のウエハ搬入搬出口19が一対、垂直方向に上下2段に並べられて開設されており、上下段のウエハ搬入搬出口19に対してポッドオープナ14がそれぞれ設けられている。 サ ブ A sub-housing 16 is provided at a lower portion in a substantially central portion in the front-rear direction in the housing 2 over the rear end. A pair of wafer loading / unloading ports 19 for loading / unloading a wafer (hereinafter, also referred to as a substrate) 18 into / from the sub-casing 16 is vertically arranged on the front wall 17 of the sub-casing 16 in two vertical stages. The pod openers 14 are respectively provided for the upper and lower wafer loading / unloading ports 19.
 ポッドオープナ14はポッド9を載置する載置台21と、ポッド9の蓋を開閉する開閉機構22とを備えている。ポッドオープナ14は載置台21に載置されたポッド9の蓋を開閉機構22によって開閉することにより、ポッド9のウエハ出入口を開閉する様に構成されている。 The pod opener 14 includes a mounting table 21 on which the pod 9 is mounted, and an opening / closing mechanism 22 for opening and closing the lid of the pod 9. The pod opener 14 is configured to open and close a wafer entrance of the pod 9 by opening and closing a lid of the pod 9 mounted on the mounting table 21 by an opening and closing mechanism 22.
 サブ筐体16はポッド搬送機構15や回転式ポッド棚11が配設されている空間(ポッド搬送空間)から気密となっている移載室23を構成している。該移載室23の前側領域にはウエハ移載機構24が設置されており、該基板移載機構24は、基板18を載置する所要枚数(図示では5枚)のウエハ載置プレート25を具備し、該ウエハ載置プレート25は水平方向に直動可能、水平方向に回転可能、又昇降可能となっている。基板移載機構24はボート26に対して基板18を装填および払出しする様に構成されている。 The sub-housing 16 constitutes a transfer chamber 23 which is airtight from a space (pod transfer space) in which the pod transfer mechanism 15 and the rotary pod shelf 11 are provided. A wafer transfer mechanism 24 is provided in the front area of the transfer chamber 23. The substrate transfer mechanism 24 holds a required number (five in the drawing) of the wafer mounting plates 25 on which the substrates 18 are mounted. The wafer mounting plate 25 is capable of linearly moving in the horizontal direction, rotatable in the horizontal direction, and being vertically movable. The substrate transfer mechanism 24 is configured to load and unload the substrate 18 from and to the boat 26.
 移載室23の後側領域には、ボート26を収容して待機させる待機部27が構成され、該待機部27の上方には縦型の処理炉28が設けられている。該処理炉28は内部に処理室(反応室)29を形成し、該処理室29の下端部は炉口部となっており、該炉口部は炉口シャッタ31により開閉される様になっている。 (4) In the rear area of the transfer chamber 23, a standby unit 27 that accommodates and stands by the boat 26 is configured. Above the standby unit 27, a vertical processing furnace 28 is provided. The processing furnace 28 has a processing chamber (reaction chamber) 29 formed therein. The lower end of the processing chamber 29 is a furnace port, and the furnace port is opened and closed by a furnace port shutter 31. ing.
 筐体2の右側端部とサブ筐体16の待機部27の右側端部との間にはボート26を昇降させる為の昇降機構としてのボートエレベータ32が設置されている。該ボートエレベータ32の昇降台に連結されたアーム33には蓋体としてのシールキャップ34が水平に取付けられており、該蓋体34はボート26を垂直に支持し、該ボート26を処理室29に装入した状態で炉口部を気密に閉塞可能となっている。 ボ ー ト A boat elevator 32 as an elevating mechanism for elevating the boat 26 is installed between the right end of the housing 2 and the right end of the standby section 27 of the sub-housing 16. A seal cap 34 as a cover is horizontally mounted on an arm 33 connected to the elevator of the boat elevator 32. The cover 34 vertically supports the boat 26, and transfers the boat 26 to the processing chamber 29. The furnace port can be hermetically closed in a state where the furnace is charged.
 ボート26は、複数枚(例えば、50枚~125枚程度)の基板18をその中心に揃えて水平姿勢で多段に保持する様に構成されている。 The boat 26 is configured so that a plurality of (for example, about 50 to 125) substrates 18 are aligned in the center thereof and held in multiple stages in a horizontal posture.
 ボートエレベータ32側と対向した位置にはクリーンユニット35が配設され、該クリーンユニット35は、清浄化した雰囲気若しくは不活性ガスであるクリーンエア36を供給する様供給ファンおよび防塵フィルタで構成されている。 A clean unit 35 is disposed at a position facing the boat elevator 32 side. The clean unit 35 is configured by a supply fan and a dustproof filter for supplying a clean atmosphere or clean air 36 that is an inert gas. I have.
 次に、基板処理装置1の作動について説明する。
 ポッド9がロードポート8に供給されると、ポッド搬入搬出口6がフロントシャッタ7によって開放される。ロードポート8上のポッド9はポッド搬送装置15によって筐体2の内部へポッド搬入搬出口6を通して搬入され、回転式ポッド棚11の指定された棚板13へ載置される。ポッド9は回転式ポッド棚11で一時的に保管された後、ポッド搬送装置15により棚板13からいずれか一方のポッドオープナ14に搬送されて載置台21に移載されるか、若しくはロードポート8から直接載置台21に移載される。
Next, the operation of the substrate processing apparatus 1 will be described.
When the pod 9 is supplied to the load port 8, the pod loading / unloading port 6 is opened by the front shutter 7. The pod 9 on the load port 8 is carried into the housing 2 through the pod carry-in / out port 6 by the pod transport device 15 and is placed on the designated shelf 13 of the rotary pod shelf 11. After the pod 9 is temporarily stored on the rotary pod shelf 11, the pod 9 is transferred from the shelf 13 to one of the pod openers 14 by the pod transfer device 15 and transferred to the mounting table 21, or 8 and transferred directly to the mounting table 21.
 この際、ウエハ搬入搬出口19は開閉機構22によって閉じられ、移載室23はクリーンエア36が流通され、充満している。移載室23にはクリーンエア36として窒素ガスが充満されるため、移載室23の酸素濃度は、筐体2の内部の酸素濃度よりも低い。 At this time, the wafer loading / unloading port 19 is closed by the opening / closing mechanism 22, and the transfer chamber 23 is filled with the clean air 36 flowing therethrough. Since the transfer chamber 23 is filled with nitrogen gas as clean air 36, the oxygen concentration in the transfer chamber 23 is lower than the oxygen concentration inside the housing 2.
 載置台21に載置されたポッド9はその開口側端面がサブ筐体16の正面壁17に於けるウエハ搬入搬出口19の開口縁辺部に押付けられると共に、蓋が開閉機構22によって取外され、ウエハ出入口が開放される。 The pod 9 placed on the mounting table 21 has its opening-side end face pressed against the edge of the opening of the wafer loading / unloading port 19 on the front wall 17 of the sub-housing 16, and the lid is removed by the opening / closing mechanism 22. , The wafer entrance is opened.
 ポッド9がポッドオープナ14によって開放されると、基板18はポッド9から基板移載機構24によって取出され、ノッチ合せ装置(図示せず)に移送され、該ノッチ合せ装置にて基板18を整合した後、基板移載機構24は基板18を移載室23の後方にある待機部27へ搬入し、ボート26に装填(チャージング)する。 When the pod 9 is opened by the pod opener 14, the substrate 18 is taken out of the pod 9 by the substrate transfer mechanism 24, transferred to a notch aligning device (not shown), and aligned with the notch aligning device. Thereafter, the substrate transfer mechanism 24 carries the substrate 18 into the standby section 27 located behind the transfer chamber 23 and charges (charges) the boat 26.
 ボート26に基板18を受渡した基板移載機構24はポッド9に戻り、次の基板18をボート26に装填する。一方(上端又は下段)のポッドオープナ14に於ける基板移載機構24により基板18のボート26への装填作業中に、他方(下段又は上段)のポッドオープナ14には回転式ポッド棚11から別のポッド9がポッド搬送装置15によって搬送されて移載され、他方のポッドオープナ14によるポッド9の開放作業が同時進行される。 (4) The substrate transfer mechanism 24 that has transferred the substrate 18 to the boat 26 returns to the pod 9, and loads the next substrate 18 into the boat 26. While the substrate transfer mechanism 24 in one (upper or lower) pod opener 14 is loading the substrate 18 into the boat 26, the other (lower or upper) pod opener 14 is separated from the rotary pod shelf 11 by another. The pod 9 is transported and transferred by the pod transport device 15, and the opening of the pod 9 by the other pod opener 14 proceeds simultaneously.
 予め指定された枚数の基板18がボート26に装填されると炉口シャッタ31によって閉じられていた処理炉28の炉口部が炉口シャッタ31によって開放される。続いて、ボート26はボートエレベータ32によって上昇され、処理室29に搬入(ローディング)される。 (4) When a predetermined number of substrates 18 are loaded into the boat 26, the furnace port of the processing furnace 28 that has been closed by the furnace port shutter 31 is opened by the furnace port shutter 31. Subsequently, the boat 26 is lifted by the boat elevator 32 and is loaded (loaded) into the processing chamber 29.
 ローディング後は、シールキャップ34によって炉口部が気密に閉塞される。なお、本実施の形態において、このタイミングで(ローディング後)、処理室29が不活性ガスに置換されるパージ工程(プリパージ工程)を有する。 After loading, the furnace opening is hermetically closed by the seal cap 34. In this embodiment, a purge step (pre-purge step) in which the processing chamber 29 is replaced with an inert gas at this timing (after loading) is provided.
 処理室29が所望の圧力(真空度)となる様に、真空ポンプなどのガス排気機構(図示せず)によって真空排気される。また、処理室29が所望の温度分布となる様にヒータ駆動部(図示せず)によって所定温度迄加熱される。また、ガス供給機構(図示せず)により、所定の流量に制御された処理ガスが供給され、処理ガスが処理室29を流通する過程で、基板18の表面と接触し、基板18の表面上に所定の処理が実施される。更に、反応後の処理ガスは、ガス排気機構により処理室29から排気される。 (4) The processing chamber 29 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown) such as a vacuum pump. Further, the processing chamber 29 is heated to a predetermined temperature by a heater driving unit (not shown) so as to have a desired temperature distribution. In addition, a processing gas controlled at a predetermined flow rate is supplied by a gas supply mechanism (not shown), and the processing gas contacts the surface of the substrate 18 in the process of flowing through the processing chamber 29, and A predetermined process is performed. Further, the processing gas after the reaction is exhausted from the processing chamber 29 by the gas exhaust mechanism.
 予め設定された処理時間が経過すると、ガス供給機構により不活性ガス供給源(図示せず)から不活性ガスが供給され、処理室29が不活性ガスに置換されると共に、処理室29の圧力が常圧に復帰される(アフターパージ工程)。そして、ボートエレベータ32によりシールキャップ34を介してボート26が降下される。 When a preset processing time has elapsed, an inert gas is supplied from an inert gas supply source (not shown) by a gas supply mechanism, and the processing chamber 29 is replaced with the inert gas. Is returned to normal pressure (after-purge step). Then, the boat 26 is lowered by the boat elevator 32 via the seal cap 34.
 処理後の基板18の搬出については、上記説明と逆の手順で、基板18およびポッド9は筐体2の外部へ払出される。未処理の基板18が、更に前記ボート26に装填され、基板18の処理が繰返される。 (4) Regarding unloading of the substrate 18 after the processing, the substrate 18 and the pod 9 are discharged to the outside of the housing 2 in a procedure reverse to the above description. The unprocessed substrate 18 is further loaded into the boat 26, and the processing of the substrate 18 is repeated.
(制御システムの機能構成)
 図3に示すように、制御システム200は、主制御部としての主コントローラ201と、搬送制御部としての搬送系コントローラ211と、処理制御部としてのプロセス系コントローラ212と、データ監視を行う制御部としての装置管理コントローラ215と、を備えている。装置管理コントローラ215は、装置データDDの監視により、装置1の状態を監視する機能を有している。本実施形態では、制御システム200は、装置1内に収容されている。
(Functional configuration of control system)
As shown in FIG. 3, the control system 200 includes a main controller 201 as a main controller, a transport controller 211 as a transport controller, a process controller 212 as a processing controller, and a controller that monitors data. And a device management controller 215. The device management controller 215 has a function of monitoring the state of the device 1 by monitoring the device data DD. In the present embodiment, the control system 200 is housed in the device 1.
 ここで、装置データDDとは、装置1が基板18を処理するときの処理温度、処理圧力、処理ガスの流量など基板処理に関するデータ(以後、制御パラメータともいう)や、製造した製品基板の品質(例えば、成膜した膜厚、および該膜厚の累積値など)に関するデータや、装置1の構成部品(石英反応管、ヒータ、バルブ、マスフローコントローラ(以後、MFCと略す)等)に関する部品データ(例えば、設定値、実測値)など、基板処理装置1が基板18を処理する際に各構成部品を動作させることにより発生するデータである。 Here, the apparatus data DD refers to data (hereinafter, also referred to as control parameters) relating to substrate processing such as a processing temperature, a processing pressure, and a flow rate of a processing gas when the apparatus 1 processes the substrate 18, and the quality of a manufactured product substrate. (For example, the film thickness of the formed film and the accumulated value of the film thickness) and the component data of the components of the apparatus 1 (such as a quartz reaction tube, a heater, a valve, and a mass flow controller (hereinafter abbreviated as MFC)). This is data generated by operating each component when the substrate processing apparatus 1 processes the substrate 18, such as a set value or an actually measured value.
 なお、レシピ実行中に収集されるデータは、プロセスデータと称することがある。例えば、レシピ開始から終了までの特定間隔(例えば、1秒など)データとしての生波形データやレシピ内の各ステップの統計量データ等のプロセスデータも装置データDDに含む。統計量データには、最大値、最小値、平均値等が含まれる。また、レシピが実行されていない時(例えば、装置に基板が投入されていないアイドル時)の色々な装置イベントを示すイベントデータ(例えば、メンテナンス履歴を示すデータ)も装置データDDに含まれる。 デ ー タ Note that data collected during the execution of a recipe may be referred to as process data. For example, the apparatus data DD also includes raw waveform data as data at a specific interval (for example, one second) from the start to the end of the recipe, and process data such as statistic data of each step in the recipe. The statistic data includes a maximum value, a minimum value, an average value, and the like. In addition, event data (for example, data indicating a maintenance history) indicating various device events when a recipe is not executed (for example, when the substrate is not loaded in the device) is also included in the device data DD.
 主コントローラ201は、搬送系コントローラ211およびプロセス系コントローラ212と電気的に接続されているため、各装置データDDの送受信や各ファイルのダウンロードおよびアップロード等が可能な構成となっている。 (4) Since the main controller 201 is electrically connected to the transport controller 211 and the process controller 212, the main controller 201 can transmit and receive each device data DD, download and upload each file, and the like.
 主コントローラ201には、外部記憶装置としての記録媒体(例えばUSBキー等)が挿脱されるポートが設けられている。主コントローラ201には、このポートに対応するOSがインストールされている。また、主コントローラ201には、外部の上位コンピュータ300や管理装置310が、通信ネットワークLAN2を介して接続される。このため、基板処理装置1がクリーンルーム内に設置されている場合であっても、上位コンピュータ300や管理装置310がクリーンルーム外の事務所等に配置されることが可能である。 (4) The main controller 201 is provided with a port through which a recording medium (for example, a USB key) as an external storage device is inserted and removed. The OS corresponding to this port is installed in the main controller 201. Further, an external host computer 300 and management device 310 are connected to the main controller 201 via the communication network LAN2. Therefore, even when the substrate processing apparatus 1 is installed in a clean room, the host computer 300 and the management device 310 can be arranged in an office or the like outside the clean room.
 装置管理コントローラ215は、主コントローラ201とLAN回線で接続され、少なくとも主コントローラ201から装置データDDを収集するように構成されている。なお、装置管理コントローラ215については、後で詳しく説明する。 The device management controller 215 is connected to the main controller 201 via a LAN line, and is configured to collect at least device data DD from the main controller 201. The device management controller 215 will be described later in detail.
 搬送系コントローラ211は、主に回転式ポッド棚11、ボートエレベータ32、ポッド搬送装置15、基板移載機構24、ボート26および回転機構(図示せず)により構成される基板搬送系211Aに接続されている。搬送系コントローラ211は、回転式ポッド棚11、ボートエレベータ32、ポッド搬送装置15、基板移載機構24、ボート26および回転機構(図示せず)の搬送動作をそれぞれ制御するように構成されている。特に、搬送系コントローラ211は、ボートエレベータ32、ポッド搬送装置15、基板移載機構24の搬送動作をそれぞれ制御するように構成されている。 The transport system controller 211 is connected to a substrate transport system 211A mainly including the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). ing. The transport system controller 211 is configured to control transport operations of the rotary pod shelf 11, the boat elevator 32, the pod transport device 15, the substrate transfer mechanism 24, the boat 26, and a rotation mechanism (not shown). . In particular, the transport system controller 211 is configured to control the transport operations of the boat elevator 32, the pod transport device 15, and the substrate transfer mechanism 24, respectively.
 プロセス系コントローラ212は、温度コントローラ212a、圧力コントローラ212b、ガス流量コントローラ212c、シーケンサ212dを備えている。これら温度コントローラ212a、圧力コントローラ212b、ガス流量コントローラ212c、シーケンサ212dは、サブコントローラを構成し、プロセス系コントローラ212と電気的に接続されているため、各装置データDDの送受信や各ファイルのダウンロードおよびアップロード等が可能となっている。なお、プロセス系コントローラ212とサブコントローラは、別体で図示されているが、一体構成でも構わない。 The process controller 212 includes a temperature controller 212a, a pressure controller 212b, a gas flow controller 212c, and a sequencer 212d. The temperature controller 212a, the pressure controller 212b, the gas flow controller 212c, and the sequencer 212d constitute a sub-controller and are electrically connected to the process system controller 212. Uploading is possible. Although the process controller 212 and the sub-controller are shown separately, they may be integrated.
 温度コントローラ212aには、主にヒータおよび温度センサ等により構成される加熱機構212Aが接続されている。温度コントローラ212aは、処理炉28のヒータの温度を制御することで処理炉28内の温度を調節するように構成されている。なお、温度コントローラ212aは、サイリスタのスイッチング(オンオフ)制御を行い、ヒータ素線に供給する電力を制御するように構成されている。
 圧力コントローラ212bには、主に圧力センサ、圧力バルブとしてのAPCバルブおよび真空ポンプにより構成されるガス排気機構212Bが接続されている。圧力コントローラ212bは、圧力センサにより検知された圧力値に基づいて、処理室29の圧力が所望のタイミングにて所望の圧力となるように、APCバルブの開度および真空ポンプのスイッチング(オンオフ)を制御するように構成されている。
 ガス流量コントローラ212cは、流量制御器としてMFCにより構成される。
 シーケンサ212dは、処理ガス供給管やパージガス供給管からのガスの供給や停止を、バルブ212Dを開閉させることにより制御するように構成されている。
A heating mechanism 212A mainly composed of a heater, a temperature sensor, and the like is connected to the temperature controller 212a. The temperature controller 212a is configured to control the temperature inside the processing furnace 28 by controlling the temperature of the heater of the processing furnace 28. The temperature controller 212a is configured to perform switching (on / off) control of the thyristor, and to control electric power supplied to the heater element wire.
A gas exhaust mechanism 212B mainly composed of a pressure sensor, an APC valve as a pressure valve, and a vacuum pump is connected to the pressure controller 212b. The pressure controller 212b controls the opening degree of the APC valve and the switching (on / off) of the vacuum pump based on the pressure value detected by the pressure sensor so that the pressure in the processing chamber 29 becomes a desired pressure at a desired timing. It is configured to control.
The gas flow controller 212c is configured by an MFC as a flow controller.
The sequencer 212d is configured to control the supply and stop of the gas from the processing gas supply pipe and the purge gas supply pipe by opening and closing the valve 212D.
 このような構成のプロセス系コントローラ212は、処理室29に供給するガスの流量が所望のタイミングにて所望の流量となるように、MFC212c、バルブ212Dを制御するように構成されている。 The process controller 212 having such a configuration is configured to control the MFC 212c and the valve 212D so that the flow rate of the gas supplied to the processing chamber 29 becomes a desired flow rate at a desired timing.
 なお、本実施形態にかかる主コントローラ201、搬送系コントローラ211、プロセス系コントローラ212、装置管理コントローラ215は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、汎用コンピュータに、上述の処理を実行するためのプログラムを格納した記録媒体(USBキーなど)から当該プログラムをインストールすることにより、所定の処理を実行する各コントローラを構成することができる。 Note that the main controller 201, the transport system controller 211, the process system controller 212, and the device management controller 215 according to the present embodiment can be realized using an ordinary computer system without using a dedicated system. For example, by installing the program from a recording medium (such as a USB key) that stores the program for executing the above-described process in a general-purpose computer, each controller that executes a predetermined process can be configured.
(主コントローラの構成)
 次に、主制御部としての主コントローラ201の構成を、図4を参照しながら説明する。
 主コントローラ201は、主コント制御部220、主コント記憶部としてのハードディスク222、各種情報を表示する表示部と、操作者からの各種指示を受け付ける入力部と、を含む操作表示部227、装置1内外と通信する主コント通信部としての送受信モジュール228とを含むように構成される。主コント制御部220は、処理部としてのCPU(中央処理装置)224や、一時記憶部としてのメモリ(RAM、ROM等)226を含み、時計機能(図示せず)を備えたコンピュータとして構成されている。
(Configuration of main controller)
Next, the configuration of the main controller 201 as a main control unit will be described with reference to FIG.
The main controller 201 includes an operation display unit 227 including a main controller control unit 220, a hard disk 222 as a main control storage unit, a display unit for displaying various information, and an input unit for receiving various instructions from an operator. It is configured to include a transmission / reception module 228 as a main controller communication unit that communicates with inside and outside. The main controller 220 includes a CPU (Central Processing Unit) 224 as a processing unit and a memory (RAM, ROM, etc.) 226 as a temporary storage unit, and is configured as a computer having a clock function (not shown). ing.
 ハードディスク222には、基板の処理条件および処理手順が定義されたレシピ等の各レシピファイル、これら各レシピファイルを実行させるための制御プログラムファイル、レシピを実行するためのパラメータが定義されたパラメータファイル、また、エラー処理プログラムファイルおよびエラー処理のパラメータファイルの他、プロセスパラメータを入力する入力画面を含む各種画面ファイル、各種アイコンファイル等(いずれも図示せず)が格納されている。 The hard disk 222 includes recipe files such as recipes in which processing conditions and processing procedures of the substrate are defined, a control program file for executing these recipe files, a parameter file in which parameters for executing the recipes are defined, Further, in addition to an error processing program file and an error processing parameter file, various screen files including an input screen for inputting process parameters, various icon files, and the like (all not shown) are stored.
 また、操作表示部227の操作画面には、図3に示す、基板搬送系211Aや基板処理系(加熱機構212A、ガス排気機構212Bおよびガス供給系212C)への動作指示を入力したりする入力部としての各操作ボタンを設けることも可能である。 Further, on the operation screen of the operation display unit 227, an input for inputting operation instructions to the substrate transfer system 211A and the substrate processing system (heating mechanism 212A, gas exhaust mechanism 212B, and gas supply system 212C) shown in FIG. It is also possible to provide each operation button as a unit.
 操作表示部227には、装置1を操作するための操作画面が表示されるように構成されている。操作表示部227は、操作画面を介して基板処理装置1内で生成される装置データDDに基づいた情報を操作画面に表示する。操作表示部227の操作画面は、例えば液晶を用いたタッチパネルである。操作表示部227は、操作画面からの作業者の入力データ(入力指示)を受け付け、入力データを主コントローラ201に送信する。また、操作表示部227は、メモリ(RAM)226等に展開されたレシピ、若しくはハードディスク222に格納された複数のレシピのうち任意の基板処理レシピ(以後、プロセスレシピともいう)を実行させる指示(制御指示)を受け付け、主コント制御部220に送信する。 The operation display unit 227 is configured to display an operation screen for operating the device 1. The operation display unit 227 displays information based on device data DD generated in the substrate processing apparatus 1 via the operation screen on the operation screen. The operation screen of the operation display unit 227 is, for example, a touch panel using liquid crystal. The operation display unit 227 receives input data (input instruction) of the operator from the operation screen and transmits the input data to the main controller 201. Further, the operation display unit 227 provides an instruction to execute an arbitrary substrate processing recipe (hereinafter, also referred to as a process recipe) among a plurality of recipes stored in the hard disk 222 or a recipe developed in the memory (RAM) 226 or the like. Control instruction) and transmits it to the main controller 220.
 主コント通信部228には、スイッチングハブ等が接続されており、主コントローラ201が、ネットワークを介して、外部のコンピュータ300や装置1内の他のコントローラ(211、212、215)等と、データの送信および受信を行うように構成されている。 A switching hub or the like is connected to the main controller communication unit 228, and the main controller 201 communicates with the external computer 300 and other controllers (211 212, and 215) in the apparatus 1 and the like via a network. Is configured to perform transmission and reception.
 また、主コントローラ201は、図示しないネットワークを介して外部の上位コンピュータ300、例えば、ホストコンピュータに対して装置1の状態など装置データDDを送信する。なお、装置1の基板処理動作は、主コント記憶部222に記憶されている各レシピファイル、各パラメータファイル等に基づいて、制御システム200により制御される。 The main controller 201 also transmits device data DD such as the status of the device 1 to an external host computer 300, for example, a host computer via a network (not shown). The substrate processing operation of the apparatus 1 is controlled by the control system 200 based on each recipe file, each parameter file, and the like stored in the main controller storage unit 222.
 なお、装置管理コントローラ215のハードウエア構成は、上述の主コントローラ201と同様な構成である。また、装置管理コントローラ215は、主コントローラ201と同様に専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。 The hardware configuration of the device management controller 215 is similar to that of the main controller 201 described above. The device management controller 215 can be realized by using a normal computer system without using a dedicated system like the main controller 201.
(装置管理コントローラの構成)
 次に、制御部としての装置管理コントローラ215の構成を、図5および図6を参照しながら説明する。
(Configuration of device management controller)
Next, the configuration of the device management controller 215 as a control unit will be described with reference to FIGS.
 装置管理コントローラ215は、主コントローラ201とLAN回線で接続され、主コントローラ201から装置データDDを収集し、蓄積した装置データDDを加工しグラフ化して、操作表示部227に表示することが可能である。また、装置管理コントローラ215は、装置状態監視機能を有し、装置1内外から収集した装置データDDを利用して、装置1の稼働状態を診断し、その診断結果を出力するように構成されている。 The device management controller 215 is connected to the main controller 201 via a LAN line, collects device data DD from the main controller 201, processes the stored device data DD, graphs the processed device data DD, and can display the processed data on the operation display unit 227. is there. Further, the device management controller 215 has a device state monitoring function, is configured to diagnose the operating state of the device 1 by using device data DD collected from inside and outside the device 1 and output the diagnosis result. I have.
 図5に示すように、装置管理コントローラ215は、主コントローラ201との間で装置データDDの送受信を行う通信部215a、画面表示部215b、画面表示制御部215c、各種データを記憶する記憶部215d、および、装置状態監視部215eを備えている。 As shown in FIG. 5, the device management controller 215 includes a communication unit 215a for transmitting and receiving device data DD to and from the main controller 201, a screen display unit 215b, a screen display control unit 215c, and a storage unit 215d for storing various data. , And a device state monitoring unit 215e.
 画面表示部215bは、装置管理コントローラ215の機能を表示するように構成されている。また、画面表示部215bの代わりに、主コントローラ201の操作表示部227を用いて表示するよう構成してもよく、あるいは、操作端末等で代替してもよい。 The screen display unit 215b is configured to display the function of the device management controller 215. Further, instead of the screen display unit 215b, the display may be performed by using the operation display unit 227 of the main controller 201, or may be replaced by an operation terminal or the like.
 画面表示制御部215cは、各種データ(例えば装置データDD)を画面表示用のデータに加工して、画面表示部215bまたは操作表示部227に表示させるよう制御する。なお、本実施形態では、画面表示部215bではなく、操作表示部227に表示させるよう構成されている。 The screen display control unit 215c controls various data (for example, device data DD) into data for screen display, and displays the data on the screen display unit 215b or the operation display unit 227. In the present embodiment, the display is configured to be displayed on the operation display unit 227 instead of the screen display unit 215b.
 記憶部215dは、プロセスレシピが実行されている間、主コントローラ201からあらゆる装置データDDが蓄積され、かつ、プロセスレシピが実行されていない間もイベントデータ等の装置データDDが蓄積され、装置1のデータベースとして機能する。また、装置管理コントローラ215で実行される各種プログラムが記憶部215dに格納されており、例えば、装置管理コントローラ215の起動とともに装置状態監視プログラムやデータ解析プログラム等が実行される。なお、該プログラムに利用される監視コンテンツないし診断条件定義データも、記憶部215dに格納してもよい。 The storage unit 215d stores all device data DD from the main controller 201 while the process recipe is being executed, and also stores device data DD such as event data while the process recipe is not being executed. Acts as a database. Various programs executed by the device management controller 215 are stored in the storage unit 215d. For example, the device status monitoring program, the data analysis program, and the like are executed when the device management controller 215 is activated. Note that the monitoring content or the diagnostic condition definition data used for the program may also be stored in the storage unit 215d.
 装置状態監視部215eは、装置状態監視プログラムをメモリ(例えば記憶部215d)内に有し、装置状態監視機能を実行する。図6に示すように、装置状態監視部215eは、条件判定部311、蓄積部313、検索部314および診断部315を備えている。 The device status monitoring unit 215e has a device status monitoring program in a memory (for example, the storage unit 215d) and executes a device status monitoring function. As shown in FIG. 6, the device state monitoring unit 215e includes a condition determination unit 311, a storage unit 313, a search unit 314, and a diagnosis unit 315.
 条件判定部311は、診断部315が処理を行うべきタイミングとなったか否かを判定する制御を行う。具体的には、条件判定部311は、所定の条件を満足したときに、診断部315が処理を行うべきタイミングになったと判定する。所定の条件については、詳細を後述する。 (4) The condition determination unit 311 performs control to determine whether or not it is time for the diagnosis unit 315 to perform processing. Specifically, when a predetermined condition is satisfied, the condition determination unit 311 determines that the timing at which the diagnosis unit 315 should perform processing has come. Details of the predetermined condition will be described later.
 蓄積部313は、通信部215aを介して供給されるあらゆる装置データDDを、記憶部215dへ蓄積する制御を行う。記憶部215dに蓄積させる装置データDDには、少なくとも、詳細を後述する監視対象の部位についての配管温度および配管圧力のデータが含まれている。また、蓄積部313は、診断部315が生成する各種データ(例えば詳細を後述する外れ値等)を、記憶部215dへ蓄積する制御を行う。 (4) The storage unit 313 performs control to store all device data DD supplied via the communication unit 215a in the storage unit 215d. The device data DD stored in the storage unit 215d includes at least data of a pipe temperature and a pipe pressure of a monitoring target portion, which will be described in detail later. The storage unit 313 controls to store various data (for example, outliers described in detail later) generated by the diagnosis unit 315 in the storage unit 215d.
 検索部314は、記憶部215dに格納された種々の装置データDDの内、診断部315での処理対象となる装置データDD(特に、配管温度および配管圧力のデータ)を検索し、診断部315へ供給する制御を行う。また、検索部314は、必要に応じて診断部315が生成した各種データ(例えば詳細を後述する外れ値等)を検索し、診断部315へ供給する制御を行う。 The search unit 314 searches the various device data DD stored in the storage unit 215d for device data DD (particularly, data of a pipe temperature and a pipe pressure) to be processed by the diagnosis unit 315, and searches for the diagnosis unit 315. Control to supply to. Also, the search unit 314 searches various data (for example, outliers described in detail later) generated by the diagnosis unit 315 as necessary, and performs control to supply the data to the diagnosis unit 315.
 診断部315は、条件判定部311から処理を行うべき旨が通知されると、診断を開始する。そして、診断部315は、診断の結果である診断データを、通信部215aを介して主コントローラ201へ通知する。 The diagnosis unit 315 starts the diagnosis when the condition determination unit 311 notifies that the processing should be performed. Then, the diagnosis unit 315 notifies the main controller 201 of the diagnosis data as a result of the diagnosis via the communication unit 215a.
 具体的には、主コントローラ201へ通知する診断データを生成するために、診断部315は、検索部314から処理対象の装置データDDとして配管温度および配管圧力のデータを受け取り、その配管圧力に基づき飽和温度を算出して、受け取った配管温度と算出した飽和温度との差分を外れ値として計算するように構成されている。そして、診断部315は、計算した外れ値を記憶部215dに蓄積させつつ、所定の期間内における外れ値の最大値を最大外れ値として取得するとともに、その所定の期間内で蒸気圧曲線の液化領域に該当する外れ値の個数を外れ個数として取得するように構成されている。これら最大外れ値および外れ個数は、ソフトセンサ値として出力されて主コントローラ201に通知される。 Specifically, in order to generate diagnostic data to be notified to the main controller 201, the diagnostic unit 315 receives piping temperature and piping pressure data as processing target device data DD from the search unit 314, and based on the piping pressure. It is configured to calculate a saturation temperature and calculate a difference between the received pipe temperature and the calculated saturation temperature as an outlier. Then, the diagnosis unit 315 accumulates the calculated outlier in the storage unit 215d, acquires the maximum value of the outlier within the predetermined period as the maximum outlier, and liquefies the vapor pressure curve within the predetermined period. The number of outliers corresponding to the area is obtained as an outlier. The maximum outlier and the number of outliers are output as soft sensor values and notified to the main controller 201.
 また、診断部315は、最大外れ値および外れ個数を取得し、これらのうち少なくとも一つを所定の閾値と比較して、閾値を超えた場合にアラームを発生させて主コントローラ201に通知するように構成してもよい。 Further, the diagnosis unit 315 obtains the maximum outlier and the number of outliers, compares at least one of them with a predetermined threshold, generates an alarm when the threshold is exceeded, and notifies the main controller 201. May be configured.
 ここで、縦軸を温度、横軸を圧力で示される蒸気圧曲線は、気化されたガスの原料により予め決められている曲線である。この曲線の左側が液化領域であり、曲線の右側が気化領域である。本明細書では、この蒸気圧曲線上にある温度や圧力は、それぞれ飽和温度、飽和圧力と称し、本実施形態における飽和温度は、圧力(本実施形態では配管圧力)により決定される温度と定義する。 蒸 気 Here, the vapor pressure curve represented by temperature on the vertical axis and pressure on the horizontal axis is a curve determined in advance by the material of the vaporized gas. The left side of this curve is the liquefaction region, and the right side of the curve is the vaporization region. In this specification, the temperature and the pressure on the vapor pressure curve are referred to as a saturation temperature and a saturation pressure, respectively. The saturation temperature in the present embodiment is defined as a temperature determined by the pressure (the pipe pressure in the present embodiment). I do.
(2)基板処理方法の手順
 次に、所定の処理工程を有する基板処理方法について説明する。ここで、所定の処理工程は、半導体デバイスの製造工程の一工程である基板処理工程(ここでは成膜工程)である。
(2) Procedure of Substrate Processing Method Next, a substrate processing method having a predetermined processing step will be described. Here, the predetermined processing step is a substrate processing step (here, a film forming step), which is one of the semiconductor device manufacturing steps.
 基板処理工程の実施にあたって、まず、プロセスレシピが、プロセス系コントローラ212内のRAM等のメモリに展開される。そして、主コントローラ201からプロセス系コントローラ212や搬送系コントローラ211へ動作指示が与えられる。また、基板処理工程は、搬入工程と、成膜工程と、搬出工程と、を少なくとも有する。 (4) In performing the substrate processing step, first, a process recipe is developed in a memory such as a RAM in the process controller 212. Then, an operation instruction is given from the main controller 201 to the process controller 212 and the transport controller 211. Further, the substrate processing step includes at least a carry-in step, a film-forming step, and a carry-out step.
(移載工程)
 主コントローラ201からは、搬送系コントローラ211に対して、基板移載機構24の駆動指示が発せられる。そして、搬送系コントローラ211からの指示に従いつつ、基板移載機構24は載置台としての授受ステージ21上のポッド9からボート26への基板18の移載処理を開始する。この移載処理は、予定された全ての基板18のボート26への装填(ウエハチャージ)が完了するまで行われる。
(Transfer process)
The main controller 201 issues an instruction to drive the substrate transfer mechanism 24 to the transport system controller 211. Then, while following instructions from the transport system controller 211, the substrate transfer mechanism 24 starts transfer processing of the substrate 18 from the pod 9 on the transfer stage 21 as the mounting table to the boat 26. This transfer processing is performed until the loading (wafer charging) of all the planned substrates 18 into the boat 26 is completed.
(搬入工程)
 所定枚数の基板18がボート26に装填されると、ボート26は、搬送系コントローラ211からの指示に従って動作するボートエレベータ32によって上昇されて、処理炉28内に形成される処理室29に装入(ボートロード)される。ボート26が完全に装入されると、ボートエレベータ32のシールキャップ34は、処理炉28のマニホールドの下端を気密に閉塞する。
(Loading process)
When a predetermined number of substrates 18 are loaded in the boat 26, the boat 26 is lifted by the boat elevator 32 that operates according to an instruction from the transfer system controller 211, and is loaded into the processing chamber 29 formed in the processing furnace 28. (Boat road). When the boat 26 is completely loaded, the seal cap 34 of the boat elevator 32 hermetically closes the lower end of the manifold of the processing furnace 28.
(成膜工程)
 次に、処理室29は、圧力制御部212bからの指示に従いつつ、所定の成膜圧力(真空度)となるように、真空ポンプなどの真空排気装置によって真空排気される。また処理室29は、温度制御部212aからの指示に従いつつ、所定の温度となるようにヒータによって加熱される。続いて、搬送系コントローラ211からの指示に従いつつ、回転機構によるボート26および基板18の回転を開始する。そして、所定の圧力、所定の温度に維持された状態で、ボート26に保持された複数枚の基板18に所定のガス(例えば、液体原料を気化させた原料ガス)を供給して、基板18に所定の処理(例えば成膜処理)がなされる。なお、次の搬出工程前に、処理温度(所定の温度)から温度を降下させる場合がある。
(Deposition process)
Next, the processing chamber 29 is evacuated by a vacuum exhaust device such as a vacuum pump so as to have a predetermined film forming pressure (degree of vacuum) while following instructions from the pressure control unit 212b. The processing chamber 29 is heated by a heater to a predetermined temperature while following instructions from the temperature control unit 212a. Subsequently, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is started while following instructions from the transport system controller 211. Then, while maintaining a predetermined pressure and a predetermined temperature, a predetermined gas (for example, a source gas obtained by vaporizing a liquid source) is supplied to the plurality of substrates 18 held by the boat 26, and the Then, a predetermined process (for example, a film forming process) is performed. Before the next unloading step, the temperature may be lowered from the processing temperature (predetermined temperature).
(搬出工程)
 ボート26に載置された基板18に対する成膜工程が完了すると、搬送系コントローラ211からの指示に従いつつ、その後、回転機構によるボート26および基板18の回転を停止させ、ボートエレベータ32によりシールキャップ34を下降させてマニホールドの下端を開口させるとともに、処理済の基板18を保持したボート26を処理炉28の外部に搬出(ボートアンロード)する。
(Unloading process)
When the film forming process on the substrate 18 placed on the boat 26 is completed, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is stopped, and the seal cap 34 is Is lowered to open the lower end of the manifold, and the boat 26 holding the processed substrate 18 is carried out of the processing furnace 28 (boat unloading).
(回収工程)
 そして、処理済の基板18を保持したボート26は、クリーンユニット35から吹出されるクリーンエア36によって極めて効果的に冷却される。そして、例えば150℃以下に冷却されると、ボート26から処理済の基板18を脱装(ウエハディスチャージ)してポッド9に移載した後に、新たな未処理基板18のボート26への移載が行われる。
(Recovery process)
Then, the boat 26 holding the processed substrate 18 is cooled very effectively by the clean air 36 blown out from the clean unit 35. When the substrate 18 is cooled to, for example, 150 ° C. or lower, the processed substrate 18 is removed from the boat 26 (wafer discharge) and transferred to the pod 9, and then the new unprocessed substrate 18 is transferred to the boat 26. Is performed.
(3)装置状態の監視処理
 次に、基板処理工程を実施する過程で装置管理コントローラ215が行う装置状態の監視処理について説明する。
(3) Monitoring Process of Apparatus State Next, monitoring processing of the apparatus state performed by the apparatus management controller 215 in the process of performing the substrate processing step will be described.
(監視処理の概要)
 成膜工程においては、図7に示すように、プロセス系コントローラ212がバルブ212Dを開状態にすると、所定種類のガスがMFC212cによって流量調整された状態で、そのガスの流路となる配管212Eを通じて、基板18が搬入された処理室(反応室)29に供給される。供給されるガスとしては、例えば、液体原料を気化させた原料ガスである第一元素含有ガスがある。ただし、その他にも、例えば、反応ガスまたは改質ガスである第二元素含有ガス、パージガスとして作用する不活性ガス等が、反応室29に供給され得る。
(Overview of monitoring processing)
In the film forming process, as shown in FIG. 7, when the process system controller 212 opens the valve 212D, a predetermined type of gas is flow-adjusted by the MFC 212c, and is passed through a pipe 212E serving as a gas flow path. The substrate 18 is supplied to a processing chamber (reaction chamber) 29 into which the substrate 18 has been carried. As the supplied gas, for example, there is a first element-containing gas which is a raw material gas obtained by vaporizing a liquid raw material. However, besides, for example, a second element-containing gas that is a reaction gas or a reforming gas, an inert gas that acts as a purge gas, or the like can be supplied to the reaction chamber 29.
 監視対象となる部位としての配管212Eには、予め監視対象となる部位における装置データの変動を検出する検出器が設定されており、図7では、監視対象に設定された部位(配管212E)に温度センサTG1および圧力センサPG1が配されている。なお、監視対象の部位として複数箇所が設定されている場合には、それぞれに温度センサTG1および圧力センサPG1が配置される。監視対象の部位は、バルブ212Dの上流側または下流側のいずれであってもよい。したがって、監視対象の部位の前後(すなわち、前側または後側の少なくとも一方)には、バルブ212Dが位置することになる。 A detector that detects a change in device data in the part to be monitored is set in advance on the pipe 212E as the part to be monitored, and in FIG. 7, a detector (piping 212E) is set to the part set as the monitoring target. A temperature sensor TG1 and a pressure sensor PG1 are provided. When a plurality of locations are set as the monitoring target, a temperature sensor TG1 and a pressure sensor PG1 are respectively disposed. The site to be monitored may be either upstream or downstream of the valve 212D. Therefore, the valve 212D is located before and after the part to be monitored (that is, at least one of the front side and the rear side).
 温度センサTG1は、配管212E内を流れるガスの温度の実測値を監視対象の部位についての配管温度として検出するように構成されている。圧力センサPG1は、配管212E内におけるガスの圧力の実測値を監視対象の部位についての配管圧力として検出するように構成されている。したがって、監視対象の部位においては、同一のガスについての配管温度および配管圧力を同一タイミングで検出することが可能となる。温度センサTG1による検出結果である配管温度および圧力センサPG1による検出結果である配管圧力は、装置データDDとして主コントローラ201に出力される。 The temperature sensor TG1 is configured to detect an actual measured value of the temperature of the gas flowing in the pipe 212E as the pipe temperature of the monitoring target portion. The pressure sensor PG1 is configured to detect an actual measured value of the gas pressure in the pipe 212E as a pipe pressure for a monitoring target portion. Therefore, in the part to be monitored, the pipe temperature and the pipe pressure for the same gas can be detected at the same timing. The piping temperature, which is the detection result of the temperature sensor TG1, and the piping pressure, which is the detection result of the pressure sensor PG1, are output to the main controller 201 as device data DD.
 ところで、配管212E内を流れる原料ガスとして、HCD(ヘキサクロロジシラン)等の液体材料を加熱して気化させたガスを、反応室29へと送り込むことがある。その場合に、例えば、配管212E内が加圧状態になると、この気化させたガスの温度が該ガスの原料(HCD)により決められている蒸気圧曲線の液化状態側に遷移して、この気化させたガスが再液化してしまう可能性がある。この液化したガスが反応室29に送り込まれ基板18上に付着すると、ボール状のパーティクルを形成してしまうことが知られている。つまり、気化させたガスが再び液化してしまうと、パーティクル発生による成膜異常や装置停止等のトラブルを招くおそれがある。 By the way, a gas obtained by heating and vaporizing a liquid material such as HCD (hexachlorodisilane) may be sent into the reaction chamber 29 as a raw material gas flowing in the pipe 212E. In this case, for example, when the inside of the pipe 212E is pressurized, the temperature of the vaporized gas changes to the liquefied state side of the vapor pressure curve determined by the raw material (HCD) of the gas, and this vaporization occurs. The gas may be re-liquefied. It is known that when the liquefied gas is sent into the reaction chamber 29 and adheres to the substrate 18, it forms ball-shaped particles. That is, if the vaporized gas is again liquefied, there is a possibility that a trouble such as a film formation abnormality due to the generation of particles or a stop of the apparatus may be caused.
 このようなガスの液化に起因するトラブル発生を未然に回避するためには、配管212E内におけるガスの液化状態を迅速かつ的確に察知することが重要である。ガスの液化状態を迅速かつ的確に察知できれば、ガスの液化に起因する装置異常状態について早めに対処することが可能となり、その結果として、成膜異常や装置停止等のトラブル発生による保守の負担を軽減させることが可能となる。 、 In order to avoid such troubles caused by gas liquefaction, it is important to quickly and accurately detect the gas liquefaction state in the pipe 212E. If the gas liquefaction state can be quickly and accurately detected, it is possible to promptly deal with equipment abnormalities caused by gas liquefaction, and as a result, the burden of maintenance due to troubles such as film formation abnormalities and equipment stoppages will be reduced. It is possible to reduce it.
 本実施形態においては、配管212Eに配置された温度センサTG1および圧力センサPG1からの装置データDD(すなわち、監視対象の部位についての配管温度および配管圧力)を用いつつ、装置管理コントローラ215が以下に説明する処理を行う。 In the present embodiment, the device management controller 215 uses the device data DD from the temperature sensor TG1 and the pressure sensor PG1 disposed on the pipe 212E (that is, the pipe temperature and the pipe pressure for the monitoring target part), and Perform the process described.
(ソフトセンサ値の算出処理)
 装置管理コントローラ215は、図8に示すように、ソフトセンサ値を算出する処理を行う。まず、ソフトセンサ値としての最大外れ値TOutおよび外れ個数FCountについて、診断部315がそれぞれを初期値としての「0」に設定する(S101)。
(Calculation processing of soft sensor value)
The device management controller 215 performs a process of calculating a soft sensor value as shown in FIG. First, the diagnosis unit 315 sets the maximum outlier T Out and the number of outliers F Count as soft sensor values to “0” as initial values, respectively (S101).
 その一方で、装置管理コントローラ215では、プロセスレシピの実行中に通信部215aを介して主コントローラ201から供給される装置データDDを、蓄積部313が記憶部215dに蓄積させる。記憶部215dが蓄積する装置データDDには、温度センサTG1の検出結果である配管温度および圧力センサPG1の検出結果である配管圧力が含まれる。装置管理コントローラ215による配管温度および配管圧力の収集は、所定の周期(例えば0.1秒毎)で行う。 On the other hand, in the device management controller 215, the storage unit 313 causes the storage unit 215d to store the device data DD supplied from the main controller 201 via the communication unit 215a during the execution of the process recipe. The device data DD stored in the storage unit 215d includes a pipe temperature that is a detection result of the temperature sensor TG1 and a pipe pressure that is a detection result of the pressure sensor PG1. The collection of the pipe temperature and the pipe pressure by the device management controller 215 is performed at a predetermined cycle (for example, every 0.1 second).
 そして、装置管理コントローラ215では、収集される配管温度および配管圧力について、条件判定部311が監視を行う。監視対象となるのは、配管212E(複数の部位が設定されている場合はそれぞれの部位毎)の配管温度および配管圧力である。監視タイミングは、配管212Eの前後に設けられるバルブ212Dが開状態となった後の一定期間である。条件判定部311は、バルブ212Dが開状態であり、かつ、開状態となった後の一定期間で配管温度または配管圧力のいずれかの値が変化したときに、収集条件を満足したと判定する(S102)。条件判定部311は、監視対象となる配管温度および配管圧力に変化がなければ(変化がないと判定すると)、次の周期まで待つ(S103)。 (5) In the device management controller 215, the condition determination unit 311 monitors the collected pipe temperature and pipe pressure. The monitoring target is the pipe temperature and the pipe pressure of the pipe 212E (for each part when a plurality of parts are set). The monitoring timing is a certain period after the valves 212D provided before and after the pipe 212E are opened. The condition determination unit 311 determines that the collection condition is satisfied when the valve 212D is in the open state and any one of the pipe temperature and the pipe pressure changes during a certain period after the valve 212D is opened. (S102). If there is no change in the piping temperature and the piping pressure to be monitored (if it is determined that there is no change), the condition determining unit 311 waits until the next cycle (S103).
 S102において収集条件を満足したと条件判定部311が判定したら、装置管理コントローラ215では、診断部315が(S104)以下に説明する演算処理を行う。 If the condition determination unit 311 determines that the collection conditions are satisfied in S102, the diagnosis unit 315 of the device management controller 215 performs the following processing (S104).
 (S104)診断部315は、まず、収集条件を満足した、すなわち配管温度または配管圧力のいずれかの値が変化したときの、配管212Eを流れるガスの飽和温度TTHを算出する。 (S104) First, the diagnosis unit 315 calculates the saturation temperature T TH of the gas flowing through the pipe 212E when the collection condition is satisfied, that is, when either the pipe temperature or the pipe pressure changes.
 温度と蒸気圧との関係は、以下のアントワン式によって規定される。 関係 The relationship between temperature and vapor pressure is defined by the following Antoine equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、A,B,Cは物質毎に決まる定数(アントワン定数)、Pは蒸気圧、Tは温度である。 Here, A, B, and C are constants determined for each substance (Antoine constant), P is the vapor pressure, and T is the temperature.
 本実施形態においては、下記の観点で、上記の式を変形して使用する。
(1)指数計算の処理コストを低減するため、入力を圧力とし、飽和温度求める。
(2)圧力は、理論値との乖離調整や絶対圧・蒸気圧変換のためのゲタを履かせる必要があるため、調整用の定数Dを用意する。
 このような観点に基づく変形によって、下記のような飽和温度TTHを導出する式が得られる。
In the present embodiment, the above equation is modified and used from the following viewpoints.
(1) In order to reduce the processing cost of index calculation, the input is pressure and the saturation temperature is obtained.
(2) A constant D for adjustment is prepared because it is necessary to make the pressure deviate from the theoretical value and to wear a getter for converting the absolute pressure and the vapor pressure.
By the modification based on such a viewpoint, the following equation for deriving the saturation temperature T TH is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、TTHは飽和温度、A,Bはアントワン定数、Cはアントワン定数と温度の調整値の和、Dは圧力の調整値、Pは監視対象の部位の配管圧力である。 Here, T TH is the saturation temperature, A and B are the Antoine constants, C is the sum of the Antoine constant and the adjusted value of the temperature, D is the adjusted value of the pressure, and P is the piping pressure of the monitored part.
 つまり、診断部315は、配管温度または配管圧力のいずれかの値が変化したときに、そのときの配管圧力に基づき、上記の式を用いて監視対象の部位を流れるガスの飽和温度TTHを算出する。 That is, when any one of the pipe temperature and the pipe pressure changes, the diagnosis unit 315 calculates the saturation temperature T TH of the gas flowing through the monitoring target using the above equation based on the pipe pressure at that time. calculate.
 飽和温度TTHを算出したら、続いて、診断部315は、算出した飽和温度TTHと、配管温度または配管圧力のいずれかの値が変化したとき配管温度との差分を、飽和温度TTHからの外れ値TDiffとして計算する。 After calculating the saturation temperature T TH , the diagnosis unit 315 then calculates the difference between the calculated saturation temperature T TH and the pipe temperature when any of the pipe temperature or the pipe pressure changes from the saturation temperature T TH. Is calculated as an outlier T Diff .
 診断部315は、その外れ値TDiffがマイナスであるか否か、すなわち外れ値TDiffがガスの液化条件に合致するものであるか否かを判断する(S105)。具体的には、取得した外れ値TDiffが蒸気圧曲線(図9)における液化領域に該当するか否かを判断する。そして、液化領域に該当する外れ値TDiffについては、液化条件に合致していると判断する。なお、液化条件に合致していなければ、監視対象となる配管温度および配管圧力を、次の周期まで待つ(S103)。 The diagnosis unit 315 determines whether or not the outlier T Diff is negative, that is, whether or not the outlier T Diff matches the gas liquefaction condition (S105). Specifically, it is determined whether or not the acquired outlier T Diff corresponds to the liquefaction region in the vapor pressure curve (FIG. 9). Then, it is determined that the outlier T Diff corresponding to the liquefaction region meets the liquefaction condition. If the liquefaction condition is not met, the pipe temperature and pipe pressure to be monitored are waited for the next cycle (S103).
 (S106)取得した外れ値TDiffが液化条件に合致していると、診断部315は、蒸気圧曲線の液化領域に該当する外れ値TDiffの個数の計数結果である外れ個数FCountについて、「+1」の加算を行う。診断部315は、蒸気圧曲線の液化側に変化のあった配管温度を抽出し、カウントする。 (S106) If the acquired outlier T Diff matches the liquefaction condition, the diagnosis unit 315 determines the outlier number F Count which is the result of counting the number of outliers T Diff corresponding to the liquefaction region of the vapor pressure curve. "+1" is added. The diagnosis unit 315 extracts and counts the pipe temperature that has changed on the liquefaction side of the vapor pressure curve.
 また、診断部315は、取得した外れ値TDiffが設定済の最大外れ値TOutよりも大きいか否か、すなわち最大外れ値TOutを超える外れが生じているか否かを判断する(S107)。そして、最大外れ値TOutを超えていれば、その最大外れ値TOutを取得した外れ値TDiffで更新する(S108)。つまり、取得した外れ値TDiffの最大値を最大外れ値TOutとする。なお、最大外れ値TOutを超えていなければ、監視対象となる配管温度および配管圧力を、次の周期まで待つ(S103)。 Further, the diagnosis unit 315 determines whether or not the acquired outlier T Diff is larger than the set maximum outlier T Out , that is, whether or not the outlier exceeding the maximum outlier T Out has occurred (S107). . If the maximum outlier T Out is exceeded, the maximum outlier T Out is updated with the acquired outlier T Diff (S108). That is, the maximum value of the acquired outlier T Diff is set as the maximum outlier T Out . If it does not exceed the maximum outlier T Out , the process waits for the pipe temperature and pipe pressure to be monitored until the next cycle (S103).
 以上のような演算処理を、診断部315は、バルブ212Dが開状態となった後の一定期間(すなわち、所定の期間)が経過するまで(S109)、各周期で得た配管温度および配管圧力毎に(S110)、繰り返し行う。 The diagnostic unit 315 performs the above arithmetic processing until the pipe temperature and pipe pressure obtained in each cycle until a certain period (that is, a predetermined period) after the valve 212D is opened (S109). It is repeated every time (S110).
 そして、バルブ212Dの開状態後の一定期間(所定の期間)が経過したら、診断部315は、その所定の期間内における、蒸気圧曲線の液化領域に該当する外れ値TDiff(すなわち、該蒸気圧曲線によって規定される液化条件に合致する外れ値TDiff)の個数である外れ個数FCountと、外れ値TDiffの最大値である最大外れ値TOutとを、ソフトセンサ値として出力する(S111)。ソフトセンサ値の出力先は、主コントローラ201である。 Then, after a lapse of a predetermined period (predetermined period) after the valve 212D is opened, the diagnosis unit 315 determines that the outlier T Diff corresponding to the liquefaction region of the vapor pressure curve within the predetermined period (that is, the vapor The outlier number F Count that is the number of outliers T Diff ) that satisfies the liquefaction conditions defined by the pressure curve and the maximum outlier T Out that is the maximum of the outliers T Diff are output as soft sensor values ( S111). The output destination of the soft sensor value is the main controller 201.
 ここで、具体的な監視例を図9に示す。図9に示す監視例では、所定の期間内に取得した複数の外れ値TDiffのうち(図中における黒丸印参照)、3回分の外れ値TDiffが蒸気圧曲線の液化領域に突入している。これら3回分の外れ値TDiffは、所定圧力における蒸気圧曲線(飽和温度)からの差分が、それぞれ10℃、50℃、30℃となっている。このような場合に、診断部315は、最大外れ値TOut=50℃、外れ個数FCount=3として、ソフトセンサ値の出力を行う。 Here, a specific monitoring example is shown in FIG. In the monitoring example shown in FIG. 9, out of a plurality of outliers T Diff acquired within a predetermined period (see a black circle in the figure), three outliers T Diff enter the liquefaction region of the vapor pressure curve. I have. These three outliers T Diff have a difference from the vapor pressure curve (saturation temperature) at a predetermined pressure of 10 ° C., 50 ° C., and 30 ° C., respectively. In such a case, the diagnosis unit 315 outputs the soft sensor value on the assumption that the maximum outlier T Out = 50 ° C. and the number of outliers F Count = 3.
(ソフトセンサ値の運用)
 このように、最大外れ値TOutおよび外れ個数FCountをソフトセンサ値として出力すれば、そのソフトセンサ値について、以下に説明するように、目的に応じて使い分けて運用することが可能となる。
(Operation of soft sensor values)
As described above, if the maximum outlier T Out and the number of outliers F Count are output as soft sensor values, the soft sensor values can be used properly according to purposes as described below.
 例えば、最大外れ値TOutによれば、蒸気圧曲線からの実測温度の離れ距離を指標として数値化しているため、突発的に液化したような状態の変化を捉えることが可能である。また、監視対象の部位を流れるガスは、瞬間的に理論的な液化状態となっても、実際には直ちにボールパーティクルとして現れないことが多い。そこで、外れ個数FCountについて、例えば、その累積値を管理指標とすることで、パーティクルとして現れる可能性が高い再液化の状況を捉えることが可能である。 For example, according to the maximum outlier T Out , since the distance from the vapor pressure curve to the measured temperature is used as an index, it is possible to capture a sudden change in the state of liquefaction. Further, even if the gas flowing through the monitoring target portion instantaneously becomes a theoretical liquefied state, it often does not actually appear as ball particles immediately. Therefore, for example, by using the accumulated value of the out-of-order number F Count as a management index, it is possible to capture a state of reliquefaction that is likely to appear as particles.
 また、例えば、液化領域に該当する外れ値TDiffが連続して発生した回数を外れ連続回数としてソフトセンサ値の一つに加えることができる。監視対象の装置データが連続して変化し、いずれの装置データの実測値と飽和温度Tthの差がマイナスになり、明らかに気化されたガスの再液化現象が起きている場合に、累積値の閾値よりも前であっても異常(配管温度の低下エラー)の発生を検知することができる。 Further, for example, the number of consecutive outliers T Diff corresponding to the liquefaction region can be added to one of the soft sensor values as the number of consecutive outliers. When the device data to be monitored changes continuously, the difference between the measured value of any device data and the saturation temperature Tth becomes negative, and the re-liquefaction phenomenon of the vaporized gas occurs clearly, the accumulated value Even before the threshold value, the occurrence of an abnormality (a pipe temperature drop error) can be detected.
(アントワン定数の選定)
 ところで、ソフトセンサ値の出力に必要となる飽和温度TTHの算出は、上述したように、A,B,C,Dのパラメータ(定数)を用いる。これらのうち、少なくともA,B,Cは、物質による定数であり、成膜に用いる液体原料が異なる場合は原料に応じた値に変更する必要がある。また、A,B,C,Dについては、配管表面と配管内の温度差や圧力、ゲージ圧か絶対圧であるか等の条件の違いにより、必要に応じて修正を行わなければならないこともあり得る。
(Selection of Antoine constant)
Incidentally, the calculation of the saturation temperature T TH required for outputting the soft sensor value uses the parameters (constants) of A, B, C, and D as described above. Of these, at least A, B, and C are constants depending on the substance, and when the liquid material used for film formation is different, it is necessary to change the value to a value corresponding to the material. Also, for A, B, C, and D, it may be necessary to make corrections as necessary due to differences in conditions such as the temperature difference and pressure between the pipe surface and the pipe, and whether the pressure is gauge pressure or absolute pressure. possible.
 このことから、装置管理コントローラ215は、監視対象の部位を流れるガスの原料に応じて、少なくとも定数A,B,Cについて、好ましくは定数A,B,C,Dの全てについて、選定し得るように構成されている。また、装置管理コントローラ215は、監視対象の部位の設定箇所に応じて、定数A,B,C,Dを選定し得るものであってもよい。 From this, the device management controller 215 can select at least the constants A, B, and C, and preferably all of the constants A, B, C, and D, according to the raw material of the gas flowing through the monitoring target portion. Is configured. Further, the device management controller 215 may be capable of selecting the constants A, B, C, and D according to the setting position of the monitoring target part.
 具体的には、定数A,B,C,Dについて、監視対象の部位毎に選定し得るようにする。これを実現するために、装置管理コントローラ215は、図10に示すように、アントワン定数管理テーブルと、監視対象の部位毎の条件設定テーブルと、を用意しておく。アントワン定数管理テーブルは、原料毎のアントワン定数値をテーブル形式で保持するもので、例えば、予め記憶部215dに記憶保持させておく。 Specifically, constants A, B, C, and D can be selected for each part to be monitored. To realize this, the device management controller 215 prepares an Antoine constant management table and a condition setting table for each part to be monitored as shown in FIG. The Antoine constant management table holds the Antoine constant values for each raw material in a table format, and is stored and held in the storage unit 215d in advance, for example.
 そして、ソフトセンサ値の算出開始に際して、装置管理コントローラ215は、アントワン定数管理テーブルおよび監視対象の部位毎の条件設定テーブルを画面表示して、監視対象の部位毎に適用する定数A,B,C,Dをアントワン定数管理テーブルの中から選定させ、選定された定数A,B,C,Dを監視対象の部位毎の条件設定テーブルにおける該当箇所に設定する。このようにして設定されたテーブル上の条件を参照しつつ、装置管理コントローラ215は、ソフトセンサ値の算出を行うことになる。 Then, at the start of the calculation of the soft sensor value, the device management controller 215 displays the Antoine constant management table and the condition setting table for each part to be monitored on a screen, and sets the constants A, B, and C to be applied to each part to be monitored. , And D are selected from the Antoine constant management table, and the selected constants A, B, C, and D are set in corresponding locations in the condition setting table for each monitoring target part. The device management controller 215 calculates the soft sensor value while referring to the conditions on the table set as described above.
 このようにすれば、監視対象の部位毎に、その部位を流れるガスの原料に応じて、定数A,B,C,Dを適切に選定することが可能となる。 With this configuration, the constants A, B, C, and D can be appropriately selected for each monitoring target portion according to the raw material of the gas flowing through the portion.
 なお、ここでは、アントワン定数を例に挙げたが、温度補正自体または圧力補正自体を別の理論化学式に基づいて決定することができるようにしてもよい。 Here, the Antoine constant is taken as an example, but the temperature correction itself or the pressure correction itself may be determined based on another theoretical chemical formula.
(監視アクション処理)
 装置管理コントローラ215がソフトセンサ値を算出して出力すると、そのソフトセンサ値を利用して、以下に説明する監視アクション処理を行うことが可能となる。
(Monitoring action processing)
When the device management controller 215 calculates and outputs the soft sensor value, the monitoring action process described below can be performed using the soft sensor value.
 監視アクション処理としては、大別すると、アラーム通知処理と、自動メンテナンスレシピ実行処理と、がある。 The monitoring action processing is roughly classified into an alarm notification processing and an automatic maintenance recipe execution processing.
(アラーム通知処理)
 装置管理コントローラ215は、ソフトセンサ値を算出すると、そのソフトセンサ値を構成する外れ個数FCountと最大外れ値TOutのうちのいずれか一つを所定の閾値と比較して、監視対象の部位となった配管内におけるガスの液化状態を判定する。そして、閾値を超えた場合、配管内のガスが液化しているおそれがあることから、アラームを発生させて、そのことを報知する。
(Alarm notification processing)
After calculating the soft sensor value, the device management controller 215 compares any one of the outliers F Count and the maximum outlier T Out that constitute the soft sensor value with a predetermined threshold value, and The liquefaction state of the gas in the pipe that has become is determined. Then, when the threshold value is exceeded, an alarm is generated to notify the fact that the gas in the pipe may be liquefied.
 例えば、装置管理コントローラ215は、突発的に液化したような状態の変化を捉えることが可能な最大外れ値TOutを閾値管理し、閾値を超える最大外れ値TOutとなった場合に、配管内のガスが液化しているおそれがあると判定する。そして、装置管理コントローラ215は、主コントローラ201に対するアラーム発生を行う。これを受けて、主コントローラ201が操作表示部227を通じてアラーム出力を行うことで、操作者等は、装置1の状況確認を行うことができ、必要に応じてメンテナンスを行う等の所定のエラー処理を行うことが可能となる。なお、アラームの具体的な態様については、特に限定されるものではない。 For example, if the device management controller 215, the maximum outliers T Out capable of capturing a change in the state as catastrophically liquefied threshold management, was the largest outliers T Out exceeding the threshold, the pipe It is determined that there is a possibility that the gas of the above is liquefied. Then, the device management controller 215 generates an alarm for the main controller 201. In response to this, the main controller 201 outputs an alarm through the operation display unit 227, so that the operator or the like can check the status of the apparatus 1 and perform predetermined error processing such as performing maintenance as necessary. Can be performed. The specific mode of the alarm is not particularly limited.
 閾値管理は、外れ個数FCountについて行ってもよい。その場合には、例えば、外れ個数FCountの累積値を管理し、その累積値が閾値(一定量)を超えたら、アラーム出力を行うようにする、このようにすれば、パーティクルとして現れる可能性が高い再液化の状況に関して、適切に対応することが可能となる。 The threshold management may be performed on the out-of-range number F Count . In such a case, for example, the cumulative value of the out-of-order number F Count is managed, and when the cumulative value exceeds a threshold value (a certain amount), an alarm is output. It is possible to appropriately cope with the situation of high reliquefaction.
(自動メンテナンスレシピ実行処理)
 装置管理コントローラ215から出力されるソフトセンサ値を受け取ると、主コントローラ201は、そのソフトセンサ値に含まれる外れ個数FCountを用いて、以下のような処理を行う。
(Automatic maintenance recipe execution processing)
When receiving the soft sensor value output from the device management controller 215, the main controller 201 performs the following processing using the out-of-order number F Count included in the soft sensor value.
 主コントローラ201では、例えば、図11および図12に示すようなアクション定義テーブルを予め記憶保持している。アクション定義テーブルは、監視対象の部位と、その部位についてのソフトセンサ値(特に外れ個数FCount)と、その部位に対して行うべきアクションを指定するレシピと、を互いにリンク(関連付け)させるものである。 The main controller 201 previously stores, for example, an action definition table as shown in FIG. 11 and FIG. The action definition table links (associates) a monitoring target part, a soft sensor value (particularly, the number of outliers F Count ) of the part, and a recipe specifying an action to be performed on the part with each other. is there.
 そして、装置管理コントローラ215から監視対象の部位毎の外れ個数FCountを含むソフトセンサ値を受け取ると、主コントローラ201は、アクション定義テーブルにおける外れ個数FCountの累積値に、通知された外れ個数FCountを加算する。累積値を更新したら、主コントローラ201は、その更新後の累積値を、アクション定義テーブルに登録された閾値と比較する。 When the main controller 201 receives a soft sensor value including the number of deviations F Count for each monitoring target from the device management controller 215, the main controller 201 adds the notified number of deviations F Count to the cumulative value of the number of deviations F Count in the action definition table. Add Count . After updating the cumulative value, the main controller 201 compares the updated cumulative value with a threshold registered in the action definition table.
 図11に示す例では、累積値が998個だったところ、その状態で該当箇所につき新たに外れ個数FCountが3個である旨が通知されたので、その+3個分を加算して、累積値に3を加算して、外れ個数を1001個に更新した状態を表している。また、累積値が増えたことにより、アクション定義テーブルに登録された閾値である1000個を超えてしまった状態を表している。 In the example shown in FIG. 11, when the cumulative value is 998, the fact that the number of misses F Count is 3 newly for the corresponding part is notified in that state. This shows a state in which 3 is added to the value and the number of outliers is updated to 1001. In addition, it indicates a state where the threshold value registered in the action definition table has exceeded 1000 due to an increase in the accumulated value.
 このように、ある監視対象の部位について、外れ個数FCountの累積値が閾値を上回ったときに、主コントローラ201は、現在実行中のプロセスレシピの終了後に、その部位に対して、アクション定義テーブルに登録されたメンテナンスレシピを実行させる。 As described above, when the cumulative value of the deviated number F Count exceeds a threshold value for a certain monitoring target part, the main controller 201 sends an action definition table to the part after the end of the currently executing process recipe. Execute the maintenance recipe registered in.
 具体的には、図12に示すように、例えば、監視対象の部位の一つであるタンク出口において、外れ個数FCountの累積値が閾値を上回ると、主コントローラ201は、その部位におけるガスの液化が検出されたと判定し、その場合に行うべきアクションを規定するメンテナンスレシピとして、アクション定義テーブルに登録されたクリーニングレシピを実行するように構成されている。そして、主コントローラ201は、クリーニングレシピの実行により、監視対象の部位の一つであるタンク出口に対して、例えば、Nガス等の不活性ガスを流し、液化状態の原料(HCD等)を除去するように構成されている。なお、行うべきアクションを規定するメンテナンスレシピは、上述したようなクリーニングレシピに限定されるものではなく、予めアクション定義テーブルに登録されているものであれば、例えば部品(ポンプ)交換、保守レシピ実行等といったメンテナンス(他のアクション)を行わせるものであってもよい。 Specifically, as shown in FIG. 12, for example, at the tank outlet which is one of the sites to be monitored, when the cumulative value of the number of out of cuts F Count exceeds a threshold value, the main controller 201 It is configured to determine that liquefaction has been detected, and to execute a cleaning recipe registered in the action definition table as a maintenance recipe that defines an action to be performed in that case. Then, by executing the cleaning recipe, the main controller 201 causes an inert gas such as N 2 gas to flow to the tank outlet, which is one of the monitoring target parts, to remove the liquefied raw material (HCD or the like). Configured to remove. The maintenance recipe that defines the action to be performed is not limited to the above-described cleaning recipe. For example, parts (pump) replacement, maintenance recipe execution Maintenance (other actions) such as the above may be performed.
 このようなアクションを行えば、外れ個数FCountの累積値が閾値を超えた場合であっても、基板18にボールパーティクルを付着させないように、自動的にアクション定義テーブルに登録されたメンテナンスレシピを実行させることが可能となる。 If such an action is performed, even if the accumulated value of the number of pieces F Count exceeds the threshold value, the maintenance recipe registered in the action definition table is automatically registered so that ball particles do not adhere to the substrate 18. It can be executed.
 アクションを行った後、主コントローラ201は、そのアクションを行った部位についてのアクション定義テーブルの累積値をゼロリセットする。つまり、主コントローラ201は、メンテナンスレシピの実行後、アクション定義テーブルにおける該当の累積値を初期化する。これにより、再びガスが液化し得る状況になった場合であっても、これに適切に対応することが可能となる。 After performing the action, the main controller 201 resets the accumulated value of the action definition table for the part where the action was performed to zero. That is, after executing the maintenance recipe, the main controller 201 initializes the corresponding accumulated value in the action definition table. This makes it possible to appropriately cope with the situation where the gas can be liquefied again.
 なお、ここでは、外れ個数FCountについての管理の具体例として累積値を利用する場合を説明したが、これに限定されることはなく、以下のような態様の管理を行ってもよい。例えば、上述したように累積値で管理するのではなく、1回でも外れ個数FCountが発生した場合に、アクション定義テーブルで規定されるアクションを実行するようにしてもよい。また、例えば、液化領域に該当する外れ値TDiffが連続して発生した回数を連続回数としてアクション定義テーブルに保持しておき、その連続回数の累積値のみが増加し続けた場合に、アクション定義テーブルで規定されるアクションを実行するようにしてもよい。 Here, the case where the accumulated value is used has been described as a specific example of the management of the out-of-order number F Count , but the present invention is not limited to this, and the following mode of management may be performed. For example, instead of managing with the accumulated value as described above, the action defined in the action definition table may be executed when the number of out-of-orders F Count occurs even once. Further, for example, the number of consecutive outliers T Diff corresponding to the liquefaction region is held in the action definition table as a continuous count, and when only the cumulative value of the continuous count continues to increase, the action definition The action specified in the table may be executed.
 また、外れ個数FCountの累積値が閾値(一定量)を超えるとメンテナンスレシピを実行させる場合を説明したが、例えば、主コントローラ201は、累積値が一定量を超えた場合に装置データDD(監視対象の部位についての配管温度および配管圧力を含む)の装置管理コントローラ215への出力を行うようにしてもよい。 Also, a case has been described in which the maintenance recipe is executed when the cumulative value of the out-of-order number F Count exceeds a threshold value (a fixed amount). For example, the main controller 201 determines that the device data DD ( (Including the pipe temperature and the pipe pressure of the monitoring target portion) may be output to the device management controller 215.
(4)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(4) Effects of the present embodiment According to the present embodiment, one or more effects described below can be obtained.
 本実施形態によれば、ボールパーティクル等のパーティクルを発生させる要因である配管内の異常を定量的に表現し、その数値の急激な変化や累積値を監視することで、基板処理装置における目に見えない異常状態を検出することを可能にする。 According to the present embodiment, an abnormality in the pipe, which is a factor that generates particles such as ball particles, is quantitatively expressed, and a sudden change or a cumulative value of the numerical value is monitored, so that an eye in the substrate processing apparatus can observe the change. Enables detection of invisible abnormal conditions.
 そのため、配管内が液化することにより、反応室29内に液化した原料が流れ込むことによるパーティクルの発生を捉えることができ、パーティクルが多く付着した基板18を後工程に流出させてしまうのを未然に防ぐことができる。 Therefore, it is possible to capture the generation of particles due to the liquefied raw material flowing into the reaction chamber 29 due to the liquefaction of the piping, and to prevent the substrate 18 with many particles from flowing out to the subsequent process. Can be prevented.
 つまり、本実施形態によれば、配管内におけるガスの液化状態を迅速かつ的確に察知して、ガスの液化に起因するトラブル発生を未然に回避することが可能になる。 That is, according to the present embodiment, it is possible to quickly and accurately detect the liquefied state of the gas in the pipe, and to avoid the occurrence of a trouble due to the liquefied gas.
<他の実施形態>
 以上、本発明の一実施形態およびその変形例について具体的に説明したが、本発明は上述の実施形態または変形例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
As mentioned above, although one Embodiment of this invention and its modification were specifically described, this invention is not limited to said Embodiment or modification, and can be variously changed in the range which does not deviate from the summary. .
 上述の実施形態または変形例では、主に、半導体製造工程で用いられる基板処理装置および半導体装置の製造方法について説明したが、本発明がこれらに限定されることはなく、例えば、液晶表示(LCD)装置のようなガラス基板を処理する基板処理装置およびその製造方法にも適用可能である。 In the above-described embodiment or modification, the substrate processing apparatus and the semiconductor device manufacturing method used in the semiconductor manufacturing process have been mainly described. However, the present invention is not limited to these. For example, a liquid crystal display (LCD) The present invention is also applicable to a substrate processing apparatus for processing a glass substrate, such as an apparatus, and a method of manufacturing the same.
 また、成膜工程については、液体原料を気化した状態で処理炉28内の処理室(反応室)29に供給して基板(ウエハ)18の面上への成膜を行うものであればよく、成膜する膜種が特に限定されることはない。 In the film forming process, any method may be used as long as the liquid material is vaporized and supplied to a processing chamber (reaction chamber) 29 in a processing furnace 28 to form a film on the surface of the substrate (wafer) 18. The type of film to be formed is not particularly limited.
 また、成膜工程で行う成膜処理には、例えば、CVD(chemical vapordeposition)、PVD(Physical Vapor Deposition)、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理等を含む。 成膜 In addition, the film forming process performed in the film forming step includes, for example, a process for forming a CVD (chemical vapor deposition), a PVD (Physical Vapor Deposition), an oxide film, a nitride film, a process for forming a metal-containing film, and the like.
 また、上述の実施形態または変形例では、成膜処理を行う基板処理装置および半導体装置の製造方法について説明したが、本発明がこれらに限定されることはなく、例えば、他の基板処理装置(露光装置、リソグラフィ装置、塗布装置、プラズマを利用したCVD装置等)にも適用できる。 Further, in the above-described embodiment or the modified example, the substrate processing apparatus for performing the film forming process and the method for manufacturing the semiconductor device have been described. However, the present invention is not limited to these. For example, another substrate processing apparatus ( Exposure apparatus, lithography apparatus, coating apparatus, CVD apparatus using plasma, etc.) can also be applied.
 1…基板処理装置、18…基板(ウエハ)、29…処理室(反応室)、200…制御システム、201…主コントローラ、212c…ガス流量コントローラ(MFC)、212D…バルブ、215…装置管理コントローラ、DD…装置データ、PG1…圧力センサ、TG1…温度センサ DESCRIPTION OF SYMBOLS 1 ... Substrate processing apparatus, 18 ... Substrate (wafer), 29 ... Processing chamber (reaction chamber), 200 ... Control system, 201 ... Main controller, 212c ... Gas flow controller (MFC), 212D ... Valve, 215 ... Device management controller , DD: device data, PG1: pressure sensor, TG1: temperature sensor

Claims (14)

  1.  ガスを供給する手順と前記ガスをパージする手順とを少なくとも含むプロセスレシピを実行して基板を処理する主制御部と、
     前記主制御部から送信される装置データを収集する制御部と、
     を備える基板処理装置であって、
     前記制御部は、
     前記プロセスレシピの実行中に、前記装置データのうち、前記ガスの流路となる配管における監視対象の部位についての配管温度および配管圧力を収集しつつ、前記配管温度または前記配管圧力のいずれかの値が変化したときに、
     前記配管圧力に対する飽和温度を算出し、前記飽和温度と前記配管温度との差分を外れ値として計算し、
     前記ガスの原料に応じて決められている蒸気圧曲線の液化領域に該当する前記外れ値を抽出し、
     所定の期間内における、前記蒸気圧曲線の液化領域に該当する前記外れ値の個数である外れ個数と、前記外れ値の最大値である最大外れ値と、を前記主制御部に出力するように構成されている、
     基板処理装置。
    A main control unit that processes the substrate by executing a process recipe including at least a procedure of supplying a gas and a procedure of purging the gas,
    A control unit that collects device data transmitted from the main control unit,
    A substrate processing apparatus comprising:
    The control unit includes:
    During the execution of the process recipe, while collecting the pipe temperature and the pipe pressure of the monitoring target portion in the pipe serving as the gas flow path from the apparatus data, any one of the pipe temperature or the pipe pressure is collected. When the value changes,
    Calculate the saturation temperature for the pipe pressure, calculate the difference between the saturation temperature and the pipe temperature as an outlier,
    Extracting the outlier corresponding to the liquefaction region of the vapor pressure curve determined according to the raw material of the gas,
    In a predetermined period, the number of outliers, which is the number of outliers corresponding to the liquefaction region of the vapor pressure curve, and the maximum outlier, which is the maximum value of the outliers, are output to the main control unit. It is configured,
    Substrate processing equipment.
  2.  前記制御部は、前記外れ個数および前記最大外れ値のうち少なくとも一つを所定の閾値と比較して、前記閾値を超えた場合にアラームを発生させて所定のエラー処理を行うように構成されている、
     請求項1に記載の基板処理装置。
    The control unit is configured to compare at least one of the number of outliers and the maximum outlier with a predetermined threshold, perform an error processing by generating an alarm when the threshold is exceeded, Yes,
    The substrate processing apparatus according to claim 1.
  3.  前記制御部は、前記監視対象の部位の前後に設けられるバルブが開状態であれば、前記外れ値の計算を行うように構成されている、
     請求項1に記載の基板処理装置。
    The control unit is configured to perform the calculation of the outlier if the valves provided before and after the monitoring target portion are in an open state,
    The substrate processing apparatus according to claim 1.
  4.  前記制御部は、前記飽和温度の算出を、以下の式により行うように構成されている、
     請求項1に記載の基板処理装置。
    Figure JPOXMLDOC01-appb-M000001
     ここで、TTHは前記飽和温度、A,Bはアントワン定数、Cはアントワン定数と温度の調整値の和、Dは圧力の調整値、Pは前記配管圧力である。
    The control unit is configured to calculate the saturation temperature by the following equation:
    The substrate processing apparatus according to claim 1.
    Figure JPOXMLDOC01-appb-M000001
    Here, T TH is the saturation temperature, A and B are Antoine constants, C is the sum of the Antoine constant and the adjusted value of temperature, D is the adjusted value of pressure, and P is the pipe pressure.
  5.  前記制御部は、前記最大外れ値と、前記外れ個数とを、ソフトセンサ値として前記主制御部に出力するよう構成されている、
     請求項1に記載の基板処理装置。
    The control unit is configured to output the maximum outlier and the number of outliers to the main control unit as a soft sensor value.
    The substrate processing apparatus according to claim 1.
  6.  前記主制御部は、前記最大外れ値および前記外れ個数を含む前記ソフトセンサ値を前記制御部から取得して、前記外れ個数の累積値を管理し、前記累積値が一定量を超えた場合に前記配管温度および前記配管圧力の前記制御部への出力を行うように構成されている、
     請求項5に記載の基板処理装置。
    The main control unit acquires the soft sensor value including the maximum outlier and the number of outliers from the controller, manages a cumulative value of the number of outliers, and when the cumulative value exceeds a certain amount. It is configured to output the pipe temperature and the pipe pressure to the control unit,
    The substrate processing apparatus according to claim 5.
  7.  前記主制御部は、予め記憶保持されているアクション定義テーブルに従い、前記外れ個数の累積値が一定量を超えた場合に、メンテナンスレシピを実行するように構成されている、
     請求項6に記載の基板処理装置。
    The main control unit is configured to execute a maintenance recipe according to an action definition table stored and held in advance, when the accumulated value of the number of outliers exceeds a certain amount,
    The substrate processing apparatus according to claim 6.
  8.  前記制御部は、前記監視対象の部位毎に、前記外れ個数を前記主制御部に通知するように構成されており、
     前記主制御部は、予め記憶保持されているアクション定義テーブルにおける前記外れ個数の累積値に、通知された前記外れ個数を加算するように構成されている、
     請求項1に記載の基板処理装置。
    The control unit is configured to notify the number of deviations to the main control unit for each of the monitoring target parts,
    The main control unit is configured to add the notified number of outliers to a cumulative value of the number of outliers in an action definition table stored and held in advance,
    The substrate processing apparatus according to claim 1.
  9.  前記主制御部は、前記アクション定義テーブルに予め登録された閾値と前記外れ個数の累積値を比較し、前記閾値よりも前記累積値が上回ったときに、現在実行中のレシピの終了後に前記アクション定義テーブルに登録されたメンテナンスレシピを実行するよう構成されている、
     請求項8に記載の基板処理装置。
    The main control unit compares a threshold value registered in advance in the action definition table with the cumulative value of the number of outliers, and when the cumulative value exceeds the threshold value, the action after the end of the currently executing recipe. Configured to execute the maintenance recipe registered in the definition table,
    A substrate processing apparatus according to claim 8.
  10.  前記主制御部は、前記メンテナンスレシピの実行後、前記累積値を初期化するように構成されている、
     請求項9に記載の基板処理装置。
    The main control unit is configured to initialize the accumulated value after the execution of the maintenance recipe.
    The substrate processing apparatus according to claim 9.
  11.  前記制御部は、前記配管温度と前記飽和温度の差がマイナスになる条件を抽出するように構成されている
     請求項1に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the control unit is configured to extract a condition under which a difference between the pipe temperature and the saturation temperature becomes negative.
  12.  前記制御部は、前記ガスの原料に応じて、定数A,B,Cを設定するように構成されている、
     請求項4に記載の基板処理装置。
    The control unit is configured to set constants A, B, and C according to the raw material of the gas.
    The substrate processing apparatus according to claim 4.
  13.  ガスを供給する手順と前記ガスをパージする手順とを少なくとも含むプロセスレシピを実行して基板を処理する基板処理工程を有する半導体装置の製造方法であって、
     前記基板処理工程では、
     前記プロセスレシピを実行中に、前記ガスの流路となる配管における監視対象の部位についての配管温度および配管圧力を収集しつつ、前記配管温度または前記配管圧力のいずれかの値が変化したときに、前記配管圧力に対する飽和温度を算出する工程と、
     前記飽和温度と前記配管温度との差分を外れ値として計算する工程と、
     前記前記ガスの原料に応じて決められている蒸気圧曲線の液化領域に該当する前記外れ値を抽出する工程と、
     所定の期間内における、前記蒸気圧曲線の液化領域に該当する前記外れ値の個数である外れ個数と、前記外れ値の最大値である最大外れ値と、を出力する工程と、
     を有する半導体装置の製造方法。
    A method for manufacturing a semiconductor device having a substrate processing step of processing a substrate by executing a process recipe including at least a procedure of supplying a gas and a procedure of purging the gas,
    In the substrate processing step,
    While executing the process recipe, while collecting the pipe temperature and the pipe pressure for the monitoring target site in the pipe serving as the gas flow path, when any of the pipe temperature or the pipe pressure changes Calculating a saturation temperature with respect to the pipe pressure;
    Calculating the difference between the saturation temperature and the pipe temperature as an outlier,
    Extracting the outlier corresponding to the liquefaction region of the vapor pressure curve determined according to the raw material of the gas,
    Outputting a number of outliers that is the number of the outliers corresponding to the liquefaction region of the vapor pressure curve within a predetermined period, and a maximum outlier that is the maximum value of the outliers,
    A method for manufacturing a semiconductor device having:
  14.  ガスを供給する手順と前記ガスをパージする手順とを少なくとも含むプロセスレシピを実行して基板を処理する手順と、
     前記ガスの流路となる配管における監視対象の部位についての配管温度および配管圧力を収集しつつ、前記配管温度または前記配管圧力のいずれかの値が変化したときに、前記配管圧力に対する飽和温度を算出する手順と、
     前記飽和温度と前記配管温度との差分を外れ値として計算する手順と、
     前記前記ガスの原料に応じて決められている蒸気圧曲線の液化領域に該当する前記外れ値を抽出する手順と、
    所定の期間内における、前記蒸気圧曲線の液化領域に該当する前記外れ値の個数である外れ個数と、前記外れ値の最大値である最大外れ値と、を出力する手順と、
     をコンピュータを介して基板処理装置に実行させるプログラム。
    A procedure of processing a substrate by executing a process recipe including at least a procedure of supplying a gas and a procedure of purging the gas,
    While collecting the pipe temperature and the pipe pressure for the part to be monitored in the pipe serving as the gas flow path, when any of the pipe temperature or the pipe pressure changes, the saturation temperature with respect to the pipe pressure is changed. Calculation procedure,
    Calculating the difference between the saturation temperature and the pipe temperature as an outlier,
    A step of extracting the outlier corresponding to a liquefaction region of a vapor pressure curve determined according to the raw material of the gas,
    Within a predetermined period, the number of outliers that is the number of outliers corresponding to the liquefaction region of the vapor pressure curve, and the maximum outlier that is the maximum of the outliers, and a procedure for outputting the maximum outlier.
    That causes a substrate processing apparatus to execute the above through a computer.
PCT/JP2018/034764 2018-09-20 2018-09-20 Substrate treatment device, method for manufacturing semiconductor device and program WO2020059070A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/034764 WO2020059070A1 (en) 2018-09-20 2018-09-20 Substrate treatment device, method for manufacturing semiconductor device and program
JP2020547536A JP6961834B2 (en) 2018-09-20 2018-09-20 Substrate processing equipment, semiconductor equipment manufacturing methods and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034764 WO2020059070A1 (en) 2018-09-20 2018-09-20 Substrate treatment device, method for manufacturing semiconductor device and program

Publications (1)

Publication Number Publication Date
WO2020059070A1 true WO2020059070A1 (en) 2020-03-26

Family

ID=69888552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034764 WO2020059070A1 (en) 2018-09-20 2018-09-20 Substrate treatment device, method for manufacturing semiconductor device and program

Country Status (2)

Country Link
JP (1) JP6961834B2 (en)
WO (1) WO2020059070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771120A (en) * 2022-06-18 2022-07-22 南通人民彩印有限公司 Pressure control method and device in micro-contact printing process and artificial intelligence system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188495A (en) * 1995-01-09 1996-07-23 Hitachi Ltd Vapor phase chemical reaction equipment
JPH1163400A (en) * 1997-08-15 1999-03-05 Fujikin:Kk Liquefied material gas passage blocking preventing method and device therefor
JP2002357300A (en) * 2001-04-06 2002-12-13 Boc Group Inc:The Liquefaction monitoring method and device
JP2009295906A (en) * 2008-06-09 2009-12-17 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2012216697A (en) * 2011-04-01 2012-11-08 Hitachi Kokusai Electric Inc Management device
JP2013048186A (en) * 2011-08-29 2013-03-07 Tokyo Electron Ltd Replacement time determination device, replacement time determination method and plasma processing system
JP2016207768A (en) * 2015-04-20 2016-12-08 東京エレクトロン株式会社 Method of etching porous film
JP2017194951A (en) * 2016-04-19 2017-10-26 株式会社日立国際電気 Substrate processing device, device management controller, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188495A (en) * 1995-01-09 1996-07-23 Hitachi Ltd Vapor phase chemical reaction equipment
JPH1163400A (en) * 1997-08-15 1999-03-05 Fujikin:Kk Liquefied material gas passage blocking preventing method and device therefor
JP2002357300A (en) * 2001-04-06 2002-12-13 Boc Group Inc:The Liquefaction monitoring method and device
JP2009295906A (en) * 2008-06-09 2009-12-17 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2012216697A (en) * 2011-04-01 2012-11-08 Hitachi Kokusai Electric Inc Management device
JP2013048186A (en) * 2011-08-29 2013-03-07 Tokyo Electron Ltd Replacement time determination device, replacement time determination method and plasma processing system
JP2016207768A (en) * 2015-04-20 2016-12-08 東京エレクトロン株式会社 Method of etching porous film
JP2017194951A (en) * 2016-04-19 2017-10-26 株式会社日立国際電気 Substrate processing device, device management controller, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771120A (en) * 2022-06-18 2022-07-22 南通人民彩印有限公司 Pressure control method and device in micro-contact printing process and artificial intelligence system
CN114771120B (en) * 2022-06-18 2022-09-02 南通人民彩印有限公司 Pressure control method and device in micro-contact printing process and artificial intelligence system

Also Published As

Publication number Publication date
JPWO2020059070A1 (en) 2021-08-30
JP6961834B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
TWI641932B (en) Processing device, device management controller, and recording medium
JP5855841B2 (en) Management device
US20120226475A1 (en) Substrate processing system, management apparatus, data analysis method
JP6905107B2 (en) Manufacturing methods and programs for substrate processing equipment, equipment management controllers, and semiconductor equipment
US10937676B2 (en) Substrate processing apparatus and device management controller
WO2014115643A1 (en) Substrate processing device anomaly determination method, anomaly determination device, and substrate processing system and recording medium
JP6833048B2 (en) Substrate processing equipment, abnormality monitoring method for substrate processing equipment, and programs
US9142436B2 (en) Statistical analysis method and substrate process system
CN112740358B (en) Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
WO2020059070A1 (en) Substrate treatment device, method for manufacturing semiconductor device and program
JP2013033967A (en) Substrate processing apparatus abnormality detection method and substrate processing apparatus
KR20220123103A (en) Processing device, display method, semiconductor device manufacturing method and program
JP5142353B2 (en) Substrate processing apparatus, substrate processing apparatus abnormality detection method, substrate processing system, substrate processing apparatus abnormality detection program, and semiconductor device manufacturing method
TW202129792A (en) Substrate processing device, method for manufacturing semiconductor device, and sign detection program
JP2015185827A (en) substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933741

Country of ref document: EP

Kind code of ref document: A1