WO2020057279A1 - 一种干线混合动力机车组控制***及方法 - Google Patents

一种干线混合动力机车组控制***及方法 Download PDF

Info

Publication number
WO2020057279A1
WO2020057279A1 PCT/CN2019/099381 CN2019099381W WO2020057279A1 WO 2020057279 A1 WO2020057279 A1 WO 2020057279A1 CN 2019099381 W CN2019099381 W CN 2019099381W WO 2020057279 A1 WO2020057279 A1 WO 2020057279A1
Authority
WO
WIPO (PCT)
Prior art keywords
locomotive
battery
power
diesel
powered
Prior art date
Application number
PCT/CN2019/099381
Other languages
English (en)
French (fr)
Inventor
刘顺国
韩笑
孟玉发
彭长福
Original Assignee
中车资阳机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车资阳机车有限公司 filed Critical 中车资阳机车有限公司
Publication of WO2020057279A1 publication Critical patent/WO2020057279A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/12Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention belongs to the field of rail transit, and particularly relates to a main line hybrid locomotive control system and method.
  • the present invention proposes a mainline hybrid locomotive control system, and specifically includes a diesel locomotive control subsystem and a battery locomotive control subsystem.
  • the diesel locomotive control subsystem is connected to the battery locomotive control subsystem through a wireless network. .
  • the diesel locomotive control subsystem includes a first locomotive microcomputer, a generator, a first traction motor, an excitation device, a rectifier device, a first inverter device, and a braking resistor.
  • the first locomotive microcomputer is connected to an input end of the excitation device and The input terminal of the first inverter device, the output terminal of the excitation device is connected to the input terminal of the generator, the output terminal of the generator is connected to the input terminal of the rectifier device, and the output terminal of the rectifier device is connected to the first inverter device.
  • the input end of the first inverter device is connected to the input end of the braking resistor, and the first traction motor is bidirectionally electrically connected to the first inverter device.
  • the battery locomotive control subsystem includes a second locomotive microcomputer, a power battery, an electronic switch, a battery management system, a second inverter device, and a second traction motor.
  • the second locomotive microcomputer is connected to the first locomotive microcomputer through a wireless network.
  • the second locomotive microcomputer is electrically connected to the battery management system in two directions, the battery management system is electrically connected to the power battery, the input terminal of the power battery is connected to the electronic switch output terminal, and the electronic switch input terminal is connected to the rectifier of the control subsystem of the internal combustion engine
  • the power battery is also bidirectionally electrically connected to a second inverter device, and the second inverter device is bidirectionally electrically connected to a second traction motor and a second locomotive microcomputer.
  • the present invention also proposes a method for controlling a main line hybrid locomotive, which specifically includes the following steps:
  • step S4 In a main-line hybrid locomotive composed of a pure battery-powered locomotive and a diesel locomotive, when the train is downhill or at a reduced speed, step S4 is performed; otherwise, step S2 is performed;
  • step S5 When the traction power required by the train is higher than the set value, step S5 is performed; otherwise, step S3 is performed;
  • step S6 is performed; otherwise, this step ends
  • the battery is charged by the battery-powered locomotive power brake
  • the diesel locomotive is responsible for traction of the train.
  • the internal combustion locomotive uses an electronic switch to output a part of the battery for charging the battery of a pure battery-powered locomotive.
  • step S5 includes the following sub-steps:
  • step S53 is performed; otherwise, step S52 is performed;
  • step S52 When the battery power is lower than the preset low power value, step S54 is performed; otherwise, step S55 is performed;
  • S55 Decrease the output of the battery-powered locomotive, increase the speed of the diesel engine in the diesel locomotive, and control the main excitation to increase the output power of the diesel engine.
  • step S54 is specifically: the diesel engine in the diesel locomotive works at a high speed, the battery in the pure battery powered locomotive works in a charged state, and transmits the allowed charging power to the diesel locomotive, and the diesel locomotive according to the traction power required by the train
  • the charging power required by the battery and the battery controls the diesel engine excitation, adjusts the main output power and voltage of the diesel engine, and the microcomputer of the diesel locomotive transmits the charging power parameters to the battery-powered locomotive microcomputer through network communication. recharging current.
  • the battery of pure battery-powered locomotive is used to recover the kinetic energy of the locomotive, which reduces the brake shoe consumption of the vehicle and improves the economic performance of the locomotive;
  • This control method reasonably allocates the battery charging and discharging power of pure battery-powered locomotives, and can exert the maximum traction, braking power and endurance of hybrid electric vehicles;
  • the control method can effectively recover and utilize the braking energy of the train, and the fuel-saving rate of the locomotive can reach 30% or more, thereby reducing the use cost.
  • FIG. 1 is a flowchart of a method for controlling a main line hybrid locomotive
  • Figure 2 is a schematic diagram of a mainline hybrid locomotive control system.
  • This embodiment provides a mainline hybrid locomotive control system. As shown in FIG. 2, it includes a diesel locomotive control subsystem and a battery locomotive control subsystem. The two can provide traction power independently or jointly. The braking energy recovery can be implemented during braking. When the braking capacity of the battery is insufficient, the diesel locomotive control subsystem uses resistance braking to supplement. The control information of the diesel locomotive control subsystem and the battery locomotive control subsystem is transmitted through the communication network. of:
  • the diesel locomotive control subsystem includes a first locomotive microcomputer, a generator, a first traction motor, an excitation device, a rectifier device, a first inverter device, and a braking resistor.
  • the first locomotive microcomputer is connected to the input terminal of the excitation device and the first inverter.
  • the input of the device, the output of the excitation device is connected to the input of the generator, the output of the generator is connected to the input of the rectifier, and the output of the rectifier is connected to the input of the first inverter device.
  • the output end is connected to the input end connected to the braking resistor, and the first traction motor is bidirectionally electrically connected to the first inverter device.
  • the battery locomotive control subsystem includes a second locomotive microcomputer, a power battery, an electronic switch, a battery management system, a second inverter device, and a second traction motor.
  • the second locomotive microcomputer is connected to the first locomotive microcomputer through a wireless network, and the second locomotive microcomputer is bidirectional.
  • the battery management system is electrically connected to the battery management system.
  • the battery management system is electrically connected to the power battery.
  • the input of the power battery is connected to the output of the electronic switch.
  • the input of the electronic switch is connected to the output of the rectifier of the control subsystem of the diesel locomotive. Transformer, and the second inverter device is bidirectionally connected to the second traction motor and the second locomotive microcomputer.
  • this embodiment also provides a main-line hybrid locomotive control method, which uses a battery (that is, the aforementioned power battery) to recover locomotive kinetic energy, reduce vehicle brake shoe consumption, improve locomotive economy, reasonably allocate battery charge and discharge power, and increase locomotive. Endurance.
  • the charging strategy of a pure battery-powered locomotive (the aforementioned battery locomotive) is to charge the battery with the power brake of a pure battery-powered locomotive when the train is going downhill or at a reduced speed, or when the traction capacity of the diesel locomotive is rich and the battery power is low, this When the diesel locomotive is towed, the battery-powered locomotive uses a part of the output power of the diesel locomotive to charge the battery in the battery-powered locomotive through electronic switches. When more traction power is needed, the two locomotives jointly provide traction power to ensure the traction performance of the main train.
  • the specific control methods are as follows:
  • the pure battery-powered locomotive gives priority to the traction power; when the battery power SOC is at a low position, the power of the pure battery-powered locomotive is further reduced, and the diesel locomotive increases the speed of the diesel engine and controls the main engine. Excitation increases the output power of the diesel engine; when the battery approaches the lower limit of use, the battery stops outputting power and the diesel locomotive provides all the traction power required by the train.
  • the diesel locomotive When the locomotive is in the traction state, when the battery power SOC is less than the set value, the diesel locomotive allows the diesel engine to work at a high speed, the pure battery-powered locomotive works in the charging state, and transmits the allowed charging power to the diesel locomotive.
  • the power and the allowable charging power of the battery-powered locomotive control the diesel engine excitation, adjust the main output power and voltage of the diesel engine, and the microcomputer of the diesel locomotive transmits the charging power parameters to the battery-powered locomotive microcomputer through network communication.
  • the battery-powered locomotive controls the electronic switch duty cycle. To control the battery charging current.
  • the diesel engine of the diesel locomotive outputs part of the power, and a part of the power P 4 charges the battery through the electronic switch of the battery-powered locomotive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种干线混合动力机车组控制***及方法,其中,在由纯蓄电池动力机车与内燃机车组成的干线混合动力机车组中:当列车处于下坡或降低速度的状态时,利用纯蓄电池动力机车动力制动给蓄电池充电;当列车需要的牵引功率高于设定值时,纯蓄电池动力机车与内燃机车共同牵引列车;当内燃机车牵引能力有富余,且纯蓄电池动力机车的蓄电池电量低于预设值时,内燃机车负责牵引列车,内燃机车通过电子开关将一部分输出用于纯蓄电池动力机车的蓄电池充电;本干线混合动力机车组控制***及方法利用纯蓄电池动力机车的蓄电池回收机车动能,降低了车辆闸瓦消耗,提高了机车经济性能。

Description

一种干线混合动力机车组控制***及方法 技术领域
本发明属于轨道交通领域,尤其涉及一种干线混合动力机车组控制***及方法。
背景技术
目前,国内外仅有混合动力调车机车控制方法,暂时还没有成熟的、节能的干线用纯蓄电池动力机车与内燃机车混合控制方法。
发明内容
为了解决上述问题,本发明提出一种干线混合动力机车组控制***,具体的,包括内燃机车控制子***和蓄电池机车控制子***,所述内燃机车控制子***通过无线网络连接蓄电池机车控制子***。
所述内燃机车控制子***包括第一机车微机、发电机、第一牵引电机、励磁装置、整流装置、第一逆变装置和制动电阻,所述第一机车微机连接励磁装置的输入端和第一逆变装置的输入端,所述励磁装置的输出端连接发电机的输入端,所述发电机的输出端连接整流装置的输入端,所述整流装置的输出端连接第一逆变装置的输入端,所述第一逆变装置的输出端连接连接制动电阻的输入端,所述第一牵引电机双向电连接第一逆变装置。
所述蓄电池机车控制子***包括第二机车微机、动力电池、电子开关、电池管理***、第二逆变装置和第二牵引电机,所述第二机车微机通过无线网络连接第一机车微机,所述第二机车微机双向电连接电池管理***,所述电池管理***电连接动力电池,所述动力电池的输入端连接电子开关输出端,所述电子开关输入端连接内燃机车控制子***的整流装置输出端,所述动力电池还双向电连接第二逆变装置,所述第二逆变装置双向电连接第二牵引电机和第二机车微机。
此外,本发明还提出一种干线混合动力机车组控制方法,具体的,包括以下步骤:
S1.在由纯蓄电池动力机车与内燃机车组成的干线混合动力机车组中,当列车处于下坡或降低速度的状态时,执行步骤S4;否则,执行步骤S2;
S2.当列车需要的牵引功率高于设定值时,执行步骤S5;否则,执行步骤S3;
S3.当内燃机车牵引能力有富余,且纯蓄电池动力机车的蓄电池电量低于预设值时,执行步骤S6;否则,结束此步骤
S4.利用纯蓄电池动力机车动力制动给蓄电池充电;
S5.纯蓄电池动力机车与内燃机车共同牵引列车;
S6.内燃机车负责牵引列车,内燃机车通过电子开关将一部分输出用于纯蓄电池动力机车的蓄电池充电。
进一步的,所述步骤S5包括以下子步骤:
S51.当蓄电池电量高于预设高电量值时,执行步骤S53;否则,执行步骤S52;
S52.当蓄电池电量低于预设低电量值时,执行步骤S54;否则,执行步骤S55;
S53.纯蓄电池动力机车优先输出牵引动力;
S54.停止纯蓄电池动力机车输出,内燃机车提供列车所需全部牵引动力;
S55.降低纯蓄电池动力机车输出,提高内燃机车中柴油机的转速,控制主发励磁加大柴油机输出功率。
进一步的,所述步骤S54具体为:内燃机车中的柴油机工作在高转速状态,纯蓄电池动力机车中的蓄电池工作在充电状态,并传输允许充电功率给内燃机车,内燃机车根据列车需要的牵引功率和蓄电池需要的的充电功率控制柴油机励磁,调节柴油机主发输出功率和电压,内燃机车微机通过网络通信传输充电功率参数给纯蓄电池动力机车微机,纯蓄电池动力机车控制电子开关占空比来控制蓄电池充电电流。
本发明的有益效果在于:
(1)利用纯蓄电池动力机车的蓄电池回收机车动能,降低了车辆闸瓦消耗,提高了机车经济性能;
(2)本控制方法合理分配纯蓄电池动力机车的蓄电池充放电功率,能发挥混合动力车组最大牵引、制动功率和续航能力;
(3)使用本控制方法能保证纯蓄电池动力机车的蓄电池达到最佳循环寿命;
(4)使用本控制方法能有效回收、利用列车制动能量,机车组的节油率可达30%及以上,从而降低使用成本。
附图说明
图1是一种干线混合动力机车组控制方法的流程图;
图2是是一种干线混合动力机车组控制***的原理图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
本实施例提供了一种干线混合动力机车组控制***,如图2所示,包括内燃机车控制子***和蓄电池机车控制子***,两者可独立或共同提供牵引动力,蓄电池机车控制子***在制动时可实施制动能量回收,蓄电池的制动能力不足时,由内燃机车控制子***采用电阻制动补充,内燃机车控制子***和蓄电池机车控制子***的控制信息通过通信网络传输,具体的:
内燃机车控制子***包括第一机车微机、发电机、第一牵引电机、励磁装置、整流装置、第一逆变装置和制动电阻,第一机车微机连接励磁装置的输入端和第一逆变装置的输入端,励磁装置的输出端连接发电机的输入端,发电机的输出端连接整流装置的输入端,整流装置的输出端连接第一逆变装置的输入端,第一逆变装置的输出端连接连接制动电阻的输入端,第一牵引电机双向电连接第一逆变装置。
蓄电池机车控制子***包括第二机车微机、动力电池、电子开关、电池管理***、第二逆变装置和第二牵引电机,第二机车微机通过无线网络连接第一机车微机,第二机车微机双向电连接电池管理***,电池管理***电连接动力电池,动力电池的输入端连接电子开关输出端,电子开关输入端连接内燃机车控制子***的整流装置输出端,动力电池还双向电连接第二逆变装置,第二逆变装置双向电连接第二牵引电机和第二机车微机。
此外,本实施例还提供了一种干线混合动力机车组控制方法,利用蓄电池(即前述动力电池)回收机车动能,降低车辆闸瓦消耗,提高机车经济性,合理分配蓄电池充放电功率,提高机车续航能力。纯蓄电池动力机车(即前述蓄电池机车)的充电策略是列车下坡或降低速度时利用纯蓄电池动力机车的动力制动给蓄电池充电,或者内燃机车牵引能力有富余,且蓄电池电量较低时,此时内燃机车牵引,纯蓄电池动力机车通过电子开关将一部分内燃机车主发输出功率用于纯蓄电池动力机车中的蓄电池充电。在需要更大牵引功率时,两台机车共同提供牵引功率以保证干线车组牵引性能。具体控制方法如下:
1混合牵引各自输出功率的控制策略
为了保证机车续航能力,当蓄电池电量SOC较高时,纯蓄电池动力机车优先输出牵引功率;当蓄电池电量SOC处于较低位置后,进一步降低纯蓄电池动力机车功率,内燃机车提高柴油机转速,控制主发励磁加大柴油机输出功率;当蓄电池接近使用下限后,蓄电池停止输出功率,内燃机车提供列车所需全部牵引功率。
2牵引过程中内燃机车向纯蓄电池动力机车充电的控制策略
机车处于牵引状态时,当蓄电池电量SOC小于设定值,内燃机车让柴油机工作在高转速状态,纯蓄电池动力机车工作在充电状态,并传输允许充电功率给内燃机车,内燃机车根据列车需要的牵引功率和纯蓄电池动力机车允许的充电功率控制柴油机励磁,调节柴油机主发输出功率和电压,内燃机车微机通过网络通信传输充电功率参数给纯蓄电池动力机车微机, 纯蓄电池动力机车控制电子开关占空比来控制蓄电池充电电流。
3纯蓄电池动力机车回收列车动能控制策略
3.1列车制动功率P 1高于纯蓄电池动力机车允许充电能力时
列车制动功率P 1优先用于纯蓄电池动力机车的蓄电池充电P 2,剩余部分由内燃机车电阻制动功率P 3补充,其中P 1=P 2+P 3
3.2列车制动功率P 1低于动力电池允许充电能力时
如果蓄电池电量SOC较高,内燃机车柴油机停止输出功率,纯蓄电池动力机车制动功率P 2=列车制动功率P 1
如果蓄电池电量SOC较低,内燃机车柴油机输出部分功率,其中一部分功率P 4通过纯蓄电池动力机车的电子开关给蓄电池充电,纯蓄电池动力机车按功率P 2=P 1+P 4给蓄电池充电。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (4)

  1. 一种干线混合动力机车组控制***,其特征在于,包括内燃机车控制子***和蓄电池机车控制子***,所述内燃机车控制子***通过无线网络连接蓄电池机车控制子***;
    所述内燃机车控制子***包括第一机车微机、发电机、第一牵引电机、励磁装置、整流装置、第一逆变装置和制动电阻,所述第一机车微机连接励磁装置的输入端和第一逆变装置的输入端,所述励磁装置的输出端连接发电机的输入端,所述发电机的输出端连接整流装置的输入端,所述整流装置的输出端连接第一逆变装置的输入端,所述第一逆变装置的输出端连接连接制动电阻的输入端,所述第一牵引电机双向电连接第一逆变装置;
    所述蓄电池机车控制子***包括第二机车微机、动力电池、电子开关、电池管理***、第二逆变装置和第二牵引电机,所述第二机车微机通过无线网络连接第一机车微机,所述第二机车微机双向电连接电池管理***,所述电池管理***电连接动力电池,所述动力电池的输入端连接电子开关输出端,所述电子开关输入端连接内燃机车控制子***的整流装置输出端,所述动力电池还双向电连接第二逆变装置,所述第二逆变装置双向电连接第二牵引电机和第二机车微机。
  2. 一种干线混合动力机车组控制方法,其特征在于,包括以下步骤:
    S1.在由纯蓄电池动力机车与内燃机车组成的干线混合动力机车组中,当列车处于下坡或降低速度的状态时,执行步骤S4;否则,执行步骤S2;
    S2.当列车需要的牵引功率高于设定值时,执行步骤S5;否则,执行步骤S3;
    S3.当内燃机车牵引能力有富余,且纯蓄电池动力机车的蓄电池电量低于预设值时,执行步骤S6;否则,结束此步骤;
    S4.利用纯蓄电池动力机车动力制动给蓄电池充电;
    S5.纯蓄电池动力机车与内燃机车共同牵引列车;
    S6.内燃机车负责牵引列车,内燃机车通过电子开关将一部分输出用于纯蓄电池动力机车的蓄电池充电。
  3. 根据权利要求2所述的一种干线混合动力机车组控制方法,其特征在于,所述步骤S5包括以下子步骤:
    S51.当蓄电池电量高于预设高电量值时,执行步骤S53;否则,执行步骤S52;
    S52.当蓄电池电量低于预设低电量值时,执行步骤S54;否则,执行步骤S55;
    S53.纯蓄电池动力机车优先输出牵引动力;
    S54.停止纯蓄电池动力机车输出,内燃机车提供列车所需全部牵引动力;
    S55.降低纯蓄电池动力机车输出,提高内燃机车中柴油机的转速,控制主发励磁加大柴油机输出功率。
  4. 根据权利要求3所述的一种干线混合动力机车组控制方法,其特征在于,所述步骤S54具体为:内燃机车中的柴油机工作在高转速状态,纯蓄电池动力机车中的蓄电池工作在充电状态,并传输允许充电功率给内燃机车,内燃机车根据列车需要的牵引功率和蓄电池需要的的充电功率控制柴油机励磁,调节柴油机主发输出功率和电压,内燃机车微机通过网络通信传输充电功率参数给纯蓄电池动力机车微机,纯蓄电池动力机车控制电子开关占空比来控制蓄电池充电电流。
PCT/CN2019/099381 2018-09-19 2019-08-06 一种干线混合动力机车组控制***及方法 WO2020057279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811091679.4 2018-09-19
CN201811091679.4A CN109278765B (zh) 2018-09-19 2018-09-19 一种干线混合动力机车组控制***

Publications (1)

Publication Number Publication Date
WO2020057279A1 true WO2020057279A1 (zh) 2020-03-26

Family

ID=65181708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099381 WO2020057279A1 (zh) 2018-09-19 2019-08-06 一种干线混合动力机车组控制***及方法

Country Status (2)

Country Link
CN (1) CN109278765B (zh)
WO (1) WO2020057279A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278765B (zh) * 2018-09-19 2024-02-13 中车资阳机车有限公司 一种干线混合动力机车组控制***
CN110667606B (zh) * 2019-10-16 2021-03-23 中车大连机车车辆有限公司 一种交流传动混合动力调车机车的控制方法
CN113928300B (zh) * 2020-06-28 2023-09-29 株洲中车时代电气股份有限公司 一种混合动力车辆的牵引控制方法及其***
CN113997958B (zh) * 2021-12-03 2023-04-28 中车资阳机车有限公司 一种带动力电池车的三动力机车组及可扩展牵引拓扑结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576088A (zh) * 2003-07-03 2005-02-09 株式会社日立制作所 铁道车辆驱动***
CN1899873A (zh) * 2005-07-21 2007-01-24 株式会社日立制作所 车辆
CN101516701A (zh) * 2006-08-24 2009-08-26 株式会社日立制作所 铁道车辆的驱动装置
JP2011010482A (ja) * 2009-06-26 2011-01-13 Toshiba Corp 車両駆動システム
CN103419668A (zh) * 2012-05-22 2013-12-04 株式会社东芝 车辆的蓄电控制装置
CN109278765A (zh) * 2018-09-19 2019-01-29 中车资阳机车有限公司 一种干线混合动力机车组控制***及方法
CN208760604U (zh) * 2018-09-19 2019-04-19 中车资阳机车有限公司 一种干线混合动力机车组控制***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080148993A1 (en) * 2006-12-08 2008-06-26 Tom Mack Hybrid propulsion system and method
CN101274594A (zh) * 2007-03-30 2008-10-01 南车成都机车车辆有限公司 轨道混合动力机车
JP2009254069A (ja) * 2008-04-03 2009-10-29 Hitachi Ltd 鉄道車両の制御方法および装置
US8136454B2 (en) * 2009-05-01 2012-03-20 Norfolk Southern Corporation Battery-powered all-electric locomotive and related locomotive and train configurations
DE102009039684A1 (de) * 2009-09-02 2011-03-31 Voith Patent Gmbh Hybridantrieb für Schienenfahrzeuge
CN201890228U (zh) * 2010-11-18 2011-07-06 南车资阳机车有限公司 一种柴油发电机和蓄电池混合动力交流传动机车控制***
CN202208292U (zh) * 2011-05-09 2012-05-02 台州市鼎天摩配科技有限公司 混合动力摩托/助力车
CN202163433U (zh) * 2011-08-04 2012-03-14 南车资阳机车有限公司 三动力调车机车
RO131114A0 (ro) * 2016-01-06 2016-05-30 Mihai Marcu Instalaţie multifuncţională autonomă pentru optimizarea funcţionării locomotivei diesel
CN106965815B (zh) * 2017-04-25 2023-08-22 深圳市安顺节能科技发展有限公司 一种增程式电动牵引机车的动力***及动力控制方法
CN206781745U (zh) * 2017-04-25 2017-12-22 深圳市安顺节能科技发展有限公司 一种增程式电动牵引机车的动力***
CN207426788U (zh) * 2017-11-29 2018-05-29 中车资阳机车有限公司 一种用于油--电混合动力机车车载动力电池的充电***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576088A (zh) * 2003-07-03 2005-02-09 株式会社日立制作所 铁道车辆驱动***
CN1899873A (zh) * 2005-07-21 2007-01-24 株式会社日立制作所 车辆
CN101516701A (zh) * 2006-08-24 2009-08-26 株式会社日立制作所 铁道车辆的驱动装置
JP2011010482A (ja) * 2009-06-26 2011-01-13 Toshiba Corp 車両駆動システム
CN103419668A (zh) * 2012-05-22 2013-12-04 株式会社东芝 车辆的蓄电控制装置
CN109278765A (zh) * 2018-09-19 2019-01-29 中车资阳机车有限公司 一种干线混合动力机车组控制***及方法
CN208760604U (zh) * 2018-09-19 2019-04-19 中车资阳机车有限公司 一种干线混合动力机车组控制***

Also Published As

Publication number Publication date
CN109278765B (zh) 2024-02-13
CN109278765A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2020057279A1 (zh) 一种干线混合动力机车组控制***及方法
CN106696721B (zh) 纯电动汽车双源能量***及供电控制方法、快充方法和慢充方法
CN108110877B (zh) 一种地铁用混合储能***
WO2014206185A1 (zh) 一种接触网和储能装置混合供电的动车组牵引***
WO2022027984A1 (zh) 回馈电流控制装置及高空作业车
KR101679964B1 (ko) 친환경 차량의 전원장치
CN104163111A (zh) 基于双向dc/dc的电动车复合能源增程***
CN103481787A (zh) 接触网、动力包和储能装置混合供电的动车组牵引***
JP2009273198A (ja) 電池駆動車両のパワーフロー制御方法および制御装置
WO2009067887A1 (fr) Procédé de commande cc-cc pour véhicules électriques hybrides
CN103496327A (zh) 一种动力包和储能装置混合供电的动车组牵引***
WO2014206184A1 (zh) 一种接触网和动力包混合供电的动车组牵引***
CN113263920B (zh) 电气化铁路车载混合式储能***及其能量管理方法
WO2020097896A1 (zh) 一种油电混合动力机车能量管理控制***和控制方法
CN107499190A (zh) 高速动车组动力牵引和再生制动的能量储放电***
CN102891522B (zh) 具有车载充电功能的双储能装置
CN202320312U (zh) 混合动力传动***
CN106877479A (zh) 一种车载超级电容储能***控制方法
CN109131380B (zh) 内燃机车主辅传动***及内燃机车
CN111864774B (zh) 一种电气化铁路同相混合储能供电构造削峰填谷控制方法
CN207311178U (zh) 高速动车组动力牵引和再生制动的能量储放电***
CN213367428U (zh) 用于控制回馈电流的电路装置及高空作业车
CN109353367A (zh) 基于飞轮储能和电阻制动的再生能量回收***及控制方法
CN110667606B (zh) 一种交流传动混合动力调车机车的控制方法
CN203580676U (zh) 一种动力包和储能装置混合供电的动车组牵引***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862656

Country of ref document: EP

Kind code of ref document: A1