WO2020054209A1 - 二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム - Google Patents

二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム Download PDF

Info

Publication number
WO2020054209A1
WO2020054209A1 PCT/JP2019/027847 JP2019027847W WO2020054209A1 WO 2020054209 A1 WO2020054209 A1 WO 2020054209A1 JP 2019027847 W JP2019027847 W JP 2019027847W WO 2020054209 A1 WO2020054209 A1 WO 2020054209A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
flicker
dimensional
flicker value
measured
Prior art date
Application number
PCT/JP2019/027847
Other languages
English (en)
French (fr)
Inventor
智寛 村田
増田 敏
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020546726A priority Critical patent/JP7189515B2/ja
Publication of WO2020054209A1 publication Critical patent/WO2020054209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers

Definitions

  • the present invention relates to a technique for measuring a flicker value of a screen of a liquid crystal display, for example.
  • the spot-type flicker measurement device includes a probe, and measures a flicker value of the measurement region while the probe is close to the measurement region (spot region) (for example, Patent Document 1).
  • the two-dimensional flicker measurement device includes a two-dimensional image sensor, and measures a flicker value in a two-dimensional area (for example, Patent Document 2).
  • the two-dimensional flicker measuring device measures a flicker value in a two-dimensional area. For this reason, the angle and direction of the measurement area viewed from the two-dimensional flicker measurement device differ depending on the position of the measurement area.
  • the present inventor has found that, in the case of a liquid crystal display screen, if the angle is different, the flicker value is different, and if the direction is different even at the same angle (for example, a left 45 ° angle and a right 45 ° angle), the flicker value is changed. I found something different. The present inventor believes that the alignment is caused by the orientation of the liquid crystal arranged in the liquid crystal display.
  • the angle and direction of the measurement area viewed from the two-dimensional flicker measurement device differ depending on the position of the measurement area. As a result, there is a difference between the flicker unevenness based on the flicker value measured by the two-dimensional flicker measuring device and the flicker unevenness felt by a human looking at the screen of the liquid crystal display. The details will be described below.
  • the position at which a person looks at the liquid crystal display screen is relatively far from the liquid crystal display screen.
  • the flicker value of the screen of the liquid crystal display is measured using the two-dimensional flicker measuring device
  • the distance between the screen of the liquid crystal display and the two-dimensional flicker measuring device is relatively short. If the distance is relatively large, the following disadvantages occur. Since the screen of the liquid crystal display photographed by the two-dimensional image sensor of the two-dimensional flicker measuring device becomes smaller, the number of measurement areas that can be set on this screen becomes smaller (decrease in measurement resolution).
  • the area required for measuring the flicker value of the screen of the liquid crystal display increases, the degree of freedom of the layout of the facility is reduced in the facility where the flicker value is measured.
  • the distance between the position where a person looks at the screen of the liquid crystal display and the screen of the liquid crystal display may be significantly different from the distance between the two-dimensional flicker measuring device and the screen of the liquid crystal display.
  • the respective angles and directions of the plurality of measurement regions viewed from the two-dimensional flicker measurement device are different from the respective angles and directions of the plurality of measurement regions viewed from the position where the human looks at the screen of the liquid crystal display. .
  • the screens of a plurality of liquid crystal displays are arranged and the flicker value is measured collectively.
  • the screen of the liquid crystal display which is not arranged near the optical axis of the two-dimensional flicker measuring device, among the screens of the plurality of liquid crystal displays arranged in an oblique direction is viewed from the two-dimensional flicker measuring device. For this reason, with respect to the screen of these liquid crystal displays, the flicker value is measured from an angle and a direction different from the angle and the direction at which a person looks at the screen of the liquid crystal display.
  • the same problem occurs if the measurement target has a property in which the flicker value of the measurement region has a different property according to the angle and direction of the measurement region viewed from the two-dimensional flicker measurement device. .
  • the present invention relates to a two-dimensional flicker measurement device capable of measuring flicker values of a plurality of measurement regions set on a measurement target in consideration of an angle and a direction of a measurement region viewed from the two-dimensional flicker measurement device. It is an object to provide a two-dimensional flicker measurement method and a two-dimensional flicker measurement program.
  • a two-dimensional flicker measurement device includes a two-dimensional image sensor, a calculation unit, and a correction unit.
  • the calculation unit is configured to measure each of a plurality of measurement areas set in the measurement target based on a light measurement amount of the measurement target obtained by capturing the measurement target by the two-dimensional imaging device. Is calculated.
  • the correction unit corrects the flicker value of each of the plurality of measurement regions to the flicker value corresponding to a case where each of the plurality of measurement regions is measured from a predetermined angle and direction.
  • FIG. 2 is a diagram showing a relationship between a liquid crystal color display (DUT) having a screen to be measured and a two-dimensional flicker measuring device. It is a schematic diagram of a plane of a DUT screen in which a plurality of measurement areas are set.
  • FIG. 1 is a block diagram illustrating a configuration of a two-dimensional flicker measurement device according to an embodiment and a PC that can communicate with the measurement device.
  • FIG. 9 is an explanatory diagram illustrating an example of a table.
  • FIG. 4 is a schematic diagram of a state in which a DUT screen is viewed from a two-dimensional flicker measurement device. It is the first half of the flowchart explaining the 1st generation method of a table.
  • FIG. 9 is an explanatory diagram illustrating an initial state of a setting screen.
  • FIG. 9 is an explanatory diagram illustrating a setting screen after a model name and respective positions of a plurality of measurement areas B are input.
  • FIG. 7 is an explanatory diagram illustrating a setting screen including measurement results of a horizontal angle and a vertical angle.
  • FIG. 11 is an explanatory diagram illustrating a setting screen after a horizontal angle and a vertical angle for which a flicker value is to be measured are input.
  • FIG. 9 is an explanatory diagram illustrating an initial state of a setting screen.
  • FIG. 9 is an explanatory diagram illustrating a setting screen after a model name and respective positions of a plurality of measurement areas B are input.
  • FIG. 7 is an explanatory diagram illustrating a setting screen including measurement results of a horizontal angle and a vertical angle.
  • FIG. 11 is an explanatory diagram illustrating a setting screen after a horizontal angle and a vertical angle for which a flicker value is
  • FIG. 9 is a schematic diagram showing a state where a flicker value is measured from a horizontal angle of 0 ° and a vertical angle of 0 ° (an example of a predetermined angle and direction) in a measurement area B-1.
  • FIG. 9 is an explanatory diagram illustrating a setting screen in a state where a flicker value has been input.
  • FIG. 13 is an explanatory diagram illustrating a setting screen switched by operating a next key included in the setting screen illustrated in FIG. 12.
  • FIG. 14 is an explanatory diagram illustrating a setting screen in which a flicker value has been input in the measurement area column illustrated in FIG. 13.
  • FIG. 9 is an explanatory diagram illustrating a setting screen including a table.
  • FIG. 7 is an explanatory diagram illustrating a setting screen including measurement results of a horizontal angle and a vertical angle.
  • FIG. 9 is a schematic diagram showing a state where a flicker value is measured by changing a horizontal angle and a vertical angle in a measurement area B-8 (measurement area C).
  • FIG. 9 is an explanatory diagram illustrating a setting screen in a state where a flicker value has been input.
  • FIG. 20 is an explanatory diagram illustrating a setting screen switched by operating a next key included in the setting screen illustrated in FIG. 19.
  • FIG. 9 is a schematic diagram showing a state where a flicker value is measured by changing a horizontal angle and a vertical angle in a measurement area B-8 (measurement area C).
  • FIG. 9 is an explanatory diagram illustrating a setting screen in a state where a flicker value has been input.
  • FIG. 20 is an explanatory diagram illustrating a setting screen switched by operating a next key included in the setting screen illustrated in FIG. 19.
  • FIG. 21 is an explanatory diagram illustrating a setting screen displayed when the horizontal angle and the vertical angle input in the angle column do not match any of the 15 combinations of the horizontal angle and the vertical angle included in the measurement region column illustrated in FIG. is there.
  • FIG. 9 is an explanatory diagram illustrating a setting screen including a table.
  • 5 is a flowchart illustrating an operation in which the two-dimensional flicker measuring device according to the embodiment measures flicker using a table. It is a schematic diagram of the some smart phone arranged side by side for the measurement of a flicker value.
  • the measurement target has a function of displaying an image.
  • DUT screen 1 (hereinafter, DUT screen 1) as an example.
  • the object to be measured is not limited to the screen of the liquid crystal display, but also includes, for example, a projection screen and a projection screen of a liquid crystal projector.
  • FIG. 2 is a schematic plan view of the DUT screen 1 on which a plurality of measurement areas 10 are set. On the DUT screen 1, fifteen measurement areas 10-1 to 10-15 are set two-dimensionally. The number of the measurement areas 10 set on the DUT screen 1 may be a plurality, and is not limited to fifteen. Although no gap is formed between adjacent measurement areas 10, a gap may be formed.
  • the shape of the measurement region 10 is rectangular, but is not limited thereto, and may be circular.
  • FIG. 3 is a block diagram showing the respective configurations of the two-dimensional flicker measurement device 3 according to the embodiment and a PC (Personal Computer) 5 that can communicate with the measurement device.
  • the two-dimensional flicker measurement device 3 includes an optical lens 31, a two-dimensional image sensor 32, an arithmetic processing unit 33, an operation unit 34, and a communication unit 35.
  • the optical lens 31 converges light L from the entire DUT screen 1.
  • the light L converged by the optical lens 31 is received by the two-dimensional image sensor 32.
  • the two-dimensional image sensor 32 is an image sensor having a two-dimensional imaging area (for example, a CMOS sensor or a CCD sensor).
  • the two-dimensional image sensor 32 shoots the DUT screen 1 displaying an image at a set frame rate, and outputs a luminance signal SG of the shot image.
  • the luminance signal SG is a specific example of a signal indicating the light intensity measurement.
  • Luminance is the light intensity of the DUT screen 1 measured by the two-dimensional image sensor 32 having the spectral sensitivity characteristic of the visibility curve V ( ⁇ ).
  • the luminance signal SG is a signal indicating the light intensity. Although the description will be made using the luminance signal SG as an example, an image information signal may be used.
  • the image information signal is a light intensity signal (RAW image data) generated by the two-dimensional imaging device 32 when the two-dimensional imaging device 32 having an arbitrary spectral sensitivity characteristic photographs the DUT screen 1.
  • the photometric light quantity is a physical quantity that generically refers to the luminance and the image information signal.
  • the calculation processing unit 33 is a hardware processor that executes various calculations and processes necessary for measuring the flicker value.
  • the arithmetic processing unit 33 is realized by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), and the like.
  • the arithmetic processing unit 33 includes a calculation unit 331, a correction unit 332, and a storage unit 333 as functional blocks.
  • calculation unit 331 determines a plurality of values set in DUT screen 1 based on the measured light amounts of DUT screen 1 obtained by two-dimensional image sensor 32 capturing DUT screen 1.
  • the flicker value of each of the measurement areas 10 is calculated.
  • As a method for calculating the flicker value there are a contrast method and a JEITA (Japan Electronics and Information Information Technology Industries Association) method.
  • the calculation unit 331 can calculate the flicker value by either the contrast method or the JEITA method.
  • the correction unit 332 corrects each flicker value of the plurality of measurement regions 10 to a flicker value corresponding to a case where each of the plurality of measurement regions 10 is measured from a predetermined angle and direction.
  • the predetermined angle and direction will be described with reference to FIG.
  • the predetermined angle and direction are determined based on, for example, the normal line of the DUT screen 1.
  • the optical axis AX of the two-dimensional flicker measuring device 3 is set to an angle and a direction defined by a horizontal angle of 0 degrees and a vertical angle of 0 degrees, the optical axis AX and the normal line coincide.
  • the predetermined angle and direction may be, for example, the same as or substantially the same as the angle and direction of the measurement region 10 as viewed from the position where the person views the DUT screen 1.
  • the term “substantially the same” refers to the flicker unevenness based on the flicker value measured by the two-dimensional flicker measuring device 3 and the flicker unevenness felt when a person looks at the DUT screen 1 from the position where the DUT screen 1 is viewed. It means the degree of no difference.
  • storage unit 333 stores table 334 in advance.
  • the table 334 includes a plurality of correction coefficients assigned to each of the plurality of measurement regions 10.
  • the table 334 converts the flicker value of each of the plurality of measurement regions 10 calculated by the calculation unit 331 into a flicker value corresponding to a case where each of the plurality of measurement regions 10 is subjected to photometry from a predetermined angle and direction. Used for The correction unit 332 performs correction using the table 334.
  • FIG. 4 is an explanatory diagram illustrating an example of the table 334. Angles and directions are defined by horizontal and vertical angles.
  • the table 334 stores the values of the horizontal angle and the vertical angle of the measurement areas 10-1 to 10-15 (FIG. 2) viewed from the two-dimensional flicker measurement device 3.
  • the horizontal angle and the vertical angle at the center of the measurement area 10-1 are the horizontal angle and the vertical angle of the measurement area 10-1. The same applies to the measurement areas 10-2 to 10-15.
  • the table 334 stores correction coefficients assigned to each of the measurement areas 10-1 to 10-15.
  • the horizontal angle and the vertical angle can be measured by the same method as that by which the surveying instrument measures the horizontal angle and the vertical angle.
  • the two-dimensional flicker measuring device 3 has the same function as that of the surveying instrument for measuring the horizontal angle and the vertical angle, and measures the horizontal angle and the vertical angle using this function.
  • FIG. 5 is a schematic diagram showing a state in which the DUT screen 1 is viewed from the two-dimensional flicker measurement device 3.
  • the angle of view range of the two-dimensional image sensor 32 is divided into a case where the angle of view is less than 10 degrees, a case where it is 10 degrees or more and less than 20 degrees, a case where it is 20 degrees or more and less than 30 degrees, and a case where it is 30 degrees or more and less than 40 degrees.
  • a table indicating the correspondence between the coordinates of the effective pixel area of the two-dimensional image sensor 32 and the angle of view range is stored in the storage unit 333 in advance.
  • the arithmetic processing unit 33 converts the coordinates of the center of the measurement area 10-1 on the DUT screen 1 into coordinates on the effective pixel area of the two-dimensional image sensor 32.
  • the transformed coordinates (hereinafter referred to as transformed coordinates) indicate the direction of the measurement area 10-1.
  • the arithmetic processing unit 33 specifies the angle of view range to which the transformed coordinates belong with reference to the table.
  • the specified angle-of-view range indicates the angle of the measurement area 10-1. The same applies to the measurement areas 10-2 to 10-15.
  • operation unit 34 is realized by a touch panel, hard keys, and the like.
  • the operation unit 34 is used for focusing the optical lens 31, setting the frame rate of the two-dimensional image sensor 32, inputting a flicker value measurement command, and the like.
  • the operation unit 34 performs an operation of selecting a mode for correcting a flicker value and a mode for not correcting a flicker value.
  • the correction unit 332 corrects the flicker value of each of the plurality of measurement regions 10 calculated by the calculation unit 331.
  • the correction unit 332 does not correct the flicker values of the plurality of measurement regions 10 calculated by the calculation unit 331.
  • the communication unit 35 is a communication interface through which the two-dimensional flicker measurement device 3 communicates with the external PC 5.
  • the PC 5 includes a communication unit 51, an arithmetic processing unit 52, an input unit 53, and a display unit 54.
  • the communication unit 51 is a communication interface with which the PC 5 communicates with the external two-dimensional flicker measurement device 3.
  • the operation processing unit 52 is a hardware processor that executes various operations and processes for realizing the functions of the PC 5.
  • the arithmetic processing unit 52 is realized by a CPU, a RAM, a ROM, an HDD, and the like.
  • the arithmetic processing unit 52 includes a setting unit 521, a generation unit 522, and a storage unit 523 as functional blocks.
  • the setting unit 521 performs various settings (for example, designation of the center position of the measurement area 10 and the number of the measurement areas 10) necessary for measuring the flicker value.
  • the generation unit 522 generates the table 334.
  • the storage unit 523 stores information (horizontal angle, vertical angle, flicker value, and the like) necessary for generating the table 334.
  • the input unit 53 is a device that inputs commands, data, information, and the like to the PC 5, and is realized by a keyboard, a mouse, and the like.
  • the display unit 54 functions as an output unit of the PC 5, and is realized by a liquid crystal display or the like.
  • arithmetic processing units 33 and 52 may be realized by processing by an FPGA (field programmable gate array) instead of or together with processing by the CPU.
  • FPGA field programmable gate array
  • some or all of the functions of the arithmetic processing units 33 and 52 may be realized by processing by a dedicated hardware circuit instead of or together with processing by software.
  • the arithmetic processing unit 33 includes a plurality of elements shown in FIG. Therefore, a program for realizing these elements is stored in the HDD, which is hardware for realizing the arithmetic processing unit 33. That is, the HDD stores programs for realizing each of the calculation unit 331 and the correction unit 332. These programs are expressed as a calculation program and a correction program.
  • the arithmetic processing unit 52 is constituted by a plurality of elements shown in FIG. Therefore, a program for realizing these elements is stored in the HDD, which is hardware for realizing the arithmetic processing unit 52. That is, a program for realizing each of the setting unit 521 and the generation unit 522 is stored in the HDD.
  • These programs are referred to as a setting program and a generation program.
  • the calculation unit 331 and the calculation program will be described as examples.
  • the calculation unit 331 is configured to calculate each of the plurality of measurement regions 10 set on the measurement target based on the measured light amounts of the measurement target obtained by the two-dimensional imaging device 32 capturing the measurement target. Calculate the flicker value.
  • the calculation program calculates the flicker of each of the plurality of measurement areas 10 set on the measurement target based on the measured light intensity of the measurement target obtained by imaging the measurement target with the two-dimensional image sensor 32. This is a program that calculates the value.
  • FIG. 6A is the first half of a flowchart illustrating a first generation method of the table 334.
  • FIG. 6B is the latter half of the flowchart for explaining the first generation method of the table 334.
  • the measurer operates input unit 53 to input a command to generate table 334 to PC 5.
  • the arithmetic processing unit 52 activates the generation program of the table 334, and causes the display unit 54 to display the setting screen 60 shown in FIG. 7 (Step S1).
  • FIG. 7 is an explanatory diagram illustrating an initial state of the setting screen 60.
  • the setting screen 60 includes a character area 600, a model name field 601, a measurement area field 602, and a next key 603.
  • the measurer inputs the model name of the DUT to be measured for flicker into model type field 601 using input unit 53, and enters a plurality of model names into measurement area field 602.
  • the respective positions of the measurement area B are input (step S2).
  • a plurality of measurement areas B are set on the DUT screen A.
  • FIG. 8 is an explanatory diagram illustrating the setting screen 60 after the model name and the respective positions of the plurality of measurement areas B have been input.
  • the setting unit 521 sets a plurality of measurement areas B on the DUT screen A according to the input position, and displays the set plurality of measurement areas B in the measurement area column 602 shown in FIG.
  • the number of the measurement areas B is set to 15.
  • measurement areas B-1 to B-15 set on the DUT screen A are displayed.
  • the number and position of the measurement areas B are the same as the number and position of the measurement areas 10 (FIG. 2) set on the DUT screen 1. Note that these may be different. If they are different, the generation unit 522 obtains a required flicker value by interpolating the flicker values of the plurality of measurement areas B.
  • the measurer operates the next key 603 included in the setting screen 60 shown in FIG.
  • the generation unit 522 instructs the two-dimensional flicker measurement device 3 to measure the horizontal angle and the vertical angle of each of the measurement areas B-1 to B-15 set on the DUT screen A ( Step S3).
  • the communication unit 51 transmits this command to the communication unit 35.
  • the two-dimensional flicker measurement device 3 measures the horizontal angle and the vertical angle of each of the measurement areas B-1 to B-15 (step T1).
  • the arithmetic processing unit 33 instructs the communication unit 35 to transmit the measurement results of the horizontal angle and the vertical angle.
  • the communication unit 35 transmits these measurement results to the communication unit 51 (Step T2).
  • FIG. 9 is an explanatory diagram illustrating the setting screen 60 including the measurement results of the horizontal angle and the vertical angle.
  • the measurement area column 602 shows the horizontal angle and the vertical angle of each of the measurement areas B-1 to B-15.
  • ⁇ “ Enter the horizontal and vertical angles for which you want to measure flicker values ” is displayed in the character area 600 of the setting screen 60 shown in FIG.
  • the horizontal angle and the vertical angle for which the flicker value is to be measured mean predetermined angles and directions.
  • An angle field 604 is added to the setting screen 60.
  • the measurer operates the input unit 53 to input a horizontal angle and a vertical angle (predetermined angle and direction) for which the flicker value is to be measured in the angle column 604 (step S5). For example, assume that a horizontal angle of 0 degrees and a vertical angle of 0 degrees are input.
  • FIG. 10 is an explanatory diagram illustrating the setting screen 60 after the horizontal angle and the vertical angle for which the flicker value is to be measured are input.
  • a horizontal angle of 0 degree and a vertical angle of 0 degree are displayed for each of the measurement areas B-1 to B-15, and the flicker value is blank.
  • the character area 600 "Please measure the flicker value at a horizontal angle of 0 degree and a vertical angle of 0 degree for each measurement area. Then, enter the measured flicker value.” Is done.
  • FIG. 11 is a schematic diagram showing a state where the flicker value is measured from the horizontal angle of 0 ° and the vertical angle of 0 ° (an example of a predetermined angle and direction) in the measurement area B-1.
  • the measurer operates the operation unit 34 (FIG. 3) to set a mode in which the flicker value is not corrected.
  • the measurer sets the two-dimensional flicker measuring device 3 at a position where the measurement area B-1 has a horizontal angle of 0 ° and a vertical angle of 0 ° as viewed from the two-dimensional flicker measuring device 3.
  • the measurer measures the flicker value of the measurement area B-1 using the two-dimensional flicker measurement device 3.
  • the measured flicker value is the flicker value calculated by the calculation unit 331 (the flicker value before correction). Assume that the measured flicker value is F-1.
  • the measurer sets the two-dimensional flicker measuring device 3 at a position where the measurement area B-2 has a horizontal angle of 0 ° and a vertical angle of 0 ° when viewed from the two-dimensional flicker measuring device 3.
  • the flicker value of the measurement area B-2 is measured in the same manner as the measurement of the flicker value of the measurement area B-1. Assume that the measured flicker value is F-2. Flicker values are similarly measured for the measurement areas B-3 to B-15.
  • the flicker values F-1 to F-15 (the flicker values before correction) measured at the horizontal angle of 0 degree and the vertical angle of 0 degree are measured for each of the measurement areas B-1 to B-15. Is done.
  • the flicker values F-1 to F-15 are determined by a predetermined angle and direction for each of a plurality of measurement areas B set on a measurement object A (DUT screen A) of the same model as the measurement object (DUT screen 1). Is a flicker value measured from.
  • a spot type flicker measuring device is used to measure the flicker value of each of the measurement areas B-1 to B-15 under a horizontal angle of 0 degree and a vertical angle of 0 degree. May be measured.
  • the measurer determines whether or not flicker values F-1 to F-15 are normal. If it is abnormal, it cannot be used as the basis of the table 334, so the measurer starts over from step S1.
  • the operator uses the input unit 53 to enter the flicker values F-1 to F-15 in the flicker value column included in the measurement area column 602.
  • Input step S7.
  • FIG. 12 is an explanatory diagram illustrating the setting screen 60 in a state where the flicker value has been input.
  • the arithmetic processing unit 52 causes the storage unit 523 to store information included in the model name column 601, the measurement region column 602, and the angle column 604 shown in FIG.
  • the storage unit 523 stores such information.
  • the measurer operates the next key 603 included in the setting screen 60 shown in FIG.
  • FIG. 13 is an explanatory diagram illustrating the setting screen 60 switched by operating the next key 603 included in the setting screen 60 illustrated in FIG.
  • the measurement area column 602 includes a flicker value input column in addition to the contents of the measurement area column 602 shown in FIG.
  • the character area 600 "Please set the two-dimensional flicker measurement device 3 to the original position and measure the flicker value before correction of each measurement region using the two-dimensional flicker measurement device 3" is displayed. You.
  • the optical axis AX is located at the center of the DUT screen A, and the two-dimensional flicker is set at a position where the entire DUT screen A can be photographed.
  • the measuring device 3 is set (for example, the position shown in FIG. 2).
  • the measurer inputs a command to measure the uncorrected flicker value of each of the measurement areas B-1 to B-15 (step S9).
  • the communication unit 51 transmits this command to the communication unit 35.
  • the two-dimensional flicker measurement device 3 measures the uncorrected flicker value of each of the measurement areas B-1 to B-15 (step T3).
  • the uncorrected flicker value of each of the measurement areas B-1 to B-15 is obtained as follows.
  • the position of the two-dimensional flicker measurement device 3 is the original position. That is, the position is the same as the position where the flicker value of each of the measurement areas 10-1 to 10-15 set on the DUT screen 1 is measured.
  • the two-dimensional image sensor 32 captures an image of the DUT screen A, and the calculating unit 331 determines the measurement area B-1 based on the light intensity of the DUT screen A obtained by capturing the DUT screen A.
  • the flicker value of each of B15 to B-15 is calculated. Assume that the calculated flicker values are f-1 to f-15. These flicker values are the pre-correction flicker values of the measurement areas B-1 to B-15. That is, when the flicker value of each of the measurement areas 10-1 to 10-15 set on the DUT screen 1 is measured, the two-dimensional flicker measurement device 3 is moved from the position where the two-dimensional flicker measurement device 3 is installed. These are the flicker values of the measurement areas B-1 to B-15 before correction, which are obtained by using this method.
  • the arithmetic processing unit 33 instructs the communication unit 35 to transmit the measurement results of the flicker value before correction (flicker values f-1 to f-15).
  • the communication unit 35 transmits the measurement result of the flicker value before correction to the communication unit 51 (step T4).
  • the arithmetic processing unit 52 causes the display unit 54 to display a setting screen 60 including the received measurement result, as shown in FIG. 14 (step S10).
  • FIG. 14 is an explanatory diagram illustrating the setting screen 60 in which the flicker value has been input to the measurement area column 602 shown in FIG. Flicker values f-1 to f-15 are displayed in the respective flicker value columns of the measurement areas B-1 to B-15.
  • the arithmetic processing unit 52 causes the storage unit 523 to store information included in the model name column 601, the measurement region column 602, and the angle column 604 shown in FIG. The storage unit 523 stores such information.
  • the measurer operates the next key 603 of the setting screen 60 shown in FIG. Accordingly, the generation unit 522 determines the measurement areas 10-1 to 10-15 based on the flicker values F-1 to F-15 shown in FIG. 12 and the flicker values f-1 to f-15 shown in FIG.
  • the respective correction coefficients of FIG. 2 are calculated, and a table 334 (FIG. 4) is generated (step S11).
  • the measurement areas 10-1 to 10-15 correspond to the measurement areas B-1 to B-15, respectively.
  • a value obtained by reducing the flicker value F shown in FIG. 12 by the flicker value f shown in FIG. 14 is a correction coefficient assigned to the measurement region 10 corresponding to the measurement region B.
  • Flicker value F-1 / flicker value f-1 is a correction coefficient assigned to measurement area 10-1.
  • FIG. 15 is an explanatory diagram illustrating the setting screen 60 including the table 334.
  • the setting screen 60 includes an enter key 605 instead of the next key 603. In the character area 600, "Please check the contents of the table. If there is no problem, operate the enter key.” Is displayed.
  • the measurer operates the input unit 53 to operate the enter key 605.
  • the generation unit 522 sends to the two-dimensional flicker measurement device 3 a table 334 in which the model name input in the model name field 601 and the angle input in the angle field 604 are linked. do.
  • the generation unit 522 causes the storage unit 523 to store the table 334 to which these are linked (Step S13).
  • the communication unit 51 transmits a table 334 in which a model name and an angle are linked to the communication unit 35 in accordance with the instruction.
  • the arithmetic processing unit 33 causes the storage unit 333 to store the table 334 in which the model name and the angle are linked (step T5).
  • FIG. 16A is the first half of a flowchart illustrating the second generation method of table 334.
  • FIG. 16B is the latter half of the flowchart for explaining the second generation method of the table 334. Steps S1 to S3 and steps T1 and T2 are the same as those in FIG. 6A, and thus description thereof is omitted.
  • FIG. 17 is an explanatory diagram illustrating a setting screen 60 including the measurement results of the horizontal angle and the vertical angle.
  • the measurement area column 602 displays the measurement results of the horizontal angle and the vertical angle for each of the measurement areas B-1 to B-15, and the flicker value is blank.
  • the number of combinations of the horizontal angle and the vertical angle is 15 (plural).
  • One measurement area (measurement area C) is selected from the measurement areas B-1 to B-15, and the measurement is performed on the selected measurement area C. Measure the flicker value for all combinations of the horizontal angle and the vertical angle (angle and direction) shown in the area column 602. The measurement results are transferred to the measurement areas B-1 to B-15 shown in the measurement area column 602. Please input in the field of flicker value corresponding to each of ".”
  • FIG. 18 is a schematic diagram showing a state where the flicker value is measured for the measurement area B-8 (measurement area C) while changing the horizontal angle and the vertical angle.
  • the measurer operates the operation unit 34 (FIG. 3) to set a mode in which the flicker value is not corrected.
  • the measurer places the two-dimensional flicker at a position where the measurement area B-8 has a horizontal angle of -60 degrees and a vertical angle of +40 degrees (corresponding to the position of the measurement area B-1).
  • the flicker measuring device 3 is set.
  • the measurer measures the flicker value of the measurement area B-8 using the two-dimensional flicker measurement device 3.
  • the measured flicker value is the flicker value calculated by the calculation unit 331 (the flicker value before correction). Assume that the measured flicker value is f-1.
  • the measurer positions the measurement area B-8 at a position where the horizontal angle is ⁇ 40 degrees and the vertical angle is +40 degrees (corresponding to the position of the measurement area B-2).
  • the dimension flicker measuring device 3 is set.
  • the measurer measures the flicker value of the measurement area B-8 using the two-dimensional flicker measurement device 3.
  • the measured flicker value is assumed to be f-2. Flicker values are measured for the remaining combinations of the horizontal angle and the vertical angle in the same manner. Assume that the measured flicker value is f-3 to f-15.
  • the flicker values f-1 to f-15 are a plurality of flicker values measured in a predetermined measurement area C under a plurality of combinations of angles and directions. Note that these flicker values may be measured using a spot-type flicker measuring device instead of the two-dimensional flicker measuring device 3.
  • a plurality of combinations of the horizontal angle and the vertical angle (angle and direction) correspond to the horizontal angle and the vertical angle (angle and direction) of the measurement areas 10-1 to 10-15 set on the DUT screen 1 (FIG. 2). Although the description has been given of the case where they match, they do not have to match. If they do not match, the generation unit 522 determines that the flicker values among the flicker values measured from the horizontal angle and the vertical angle (angle and direction) of each of the measurement areas B-1 to B-15 set on the DUT screen A are sufficient. For the horizontal and vertical angles that do not exist, the flicker value is obtained by interpolation.
  • the measurer determines whether the flicker values f-1 to f-15 are normal. If it is abnormal, it cannot be used as the basis of the table 334, so the measurer starts over from step S1.
  • the input unit 53 is used to enter the flicker values f-1 to f-15 in the flicker value column included in the measurement area column 602 shown in FIG. f-15 is input (step S22).
  • FIG. 19 is an explanatory diagram illustrating the setting screen 60 in a state where the flicker value has been input. The measurer operates the next key 603 included in the setting screen 60 shown in FIG.
  • the arithmetic processing unit 52 causes the display unit 54 to display the setting screen 60 shown in FIG. 20 (step S23).
  • FIG. 20 is an explanatory diagram illustrating the setting screen 60 switched by operating the next key 603 included in the setting screen 60 illustrated in FIG.
  • An angle field 604 is added to the setting screen 60.
  • "Please input the horizontal angle and the vertical angle for which you want to measure the flicker value” is displayed.
  • the horizontal angle and the vertical angle for which the flicker value is to be measured mean predetermined angles and directions.
  • the measurer operates input unit 53 to input a horizontal angle and a vertical angle (predetermined angle and direction) for which flicker value is to be measured in angle field 604.
  • Step S24 For example, assume that a horizontal angle of 0 degrees and a vertical angle of 0 degrees are input.
  • the flicker value f-8 of the measurement area B-8 is equal to the flicker value measured from a predetermined angle and direction for a predetermined measurement area C set on the measurement object A of the same model as the measurement object.
  • the arithmetic processing unit 52 causes the storage unit 523 to store information included in the model name column 601, the measurement region column 602, and the angle column 604 shown in FIG.
  • the storage unit 523 stores such information.
  • the measurer operates the input unit 53 to operate the next key 603. According to this operation, the generation unit 522 matches the horizontal angle and the vertical angle input in the angle column 604 with any one of the 15 combinations of the horizontal angle and the vertical angle included in the measurement area column 602 shown in FIG. It is determined whether or not (step S25).
  • the generating unit 522 determines that the horizontal angle and the vertical angle input in the angle column 604 match any one of the 15 combinations. Is determined (Yes in step S25). Then, the generation unit 522 generates the table 334 (Step S27). This will be described later.
  • the generating unit 522 determines that the horizontal angle and the vertical angle input in the angle column 604 do not match any of the fifteen combinations. (No in step S25). Then, the arithmetic processing unit 52 causes the display unit 54 to display the setting screen 60 shown in FIG. 21 (Step S26).
  • FIG. 21 is a setting screen displayed when the horizontal angle and the vertical angle input in the angle column 604 do not match any of the 15 combinations of the horizontal angle and the vertical angle included in the measurement area column 602 shown in FIG. FIG.
  • the measurer operates the operation unit 34 to set the mode in which the flicker value is not corrected. Then, the measurer sets the two-dimensional flicker measuring device 3 at a position where the measurement area B-8 has a horizontal angle of 0 degrees and a vertical angle of +20 degrees as viewed from the two-dimensional flicker measuring device 3. The measurer measures the flicker value of the measurement area B-8 using the two-dimensional flicker measurement device 3. In this measurement, since the correction unit 332 is not used, the measured flicker value is the flicker value calculated by the calculation unit 331 (the flicker value before correction). Assume that the measured flicker value is f-0.
  • the measurer uses the input unit 53 to input the flicker value f-0 into the blank column of the item of flicker value included in the angle column 604.
  • the arithmetic processing unit 52 causes the storage unit 523 to store information included in the model name column 601, the measurement region column 602, and the angle column 604 shown in FIG.
  • the storage unit 523 stores such information.
  • a key 603 is operated.
  • the generation unit 522 generates the table 334 (Step S27).
  • the generating unit 522 determines that the horizontal angle and the vertical angle input in the angle column 604 do not match any of the 15 (plural) combinations of the horizontal angle and the vertical angle included in the measurement region column 602 shown in FIG. (No in step S25), the flicker value may be calculated using interpolation.
  • the generation unit 522 interpolates the horizontal angle, the vertical angle, and the 15 (plural) combinations of the flicker values shown in the measurement area column 602 shown in FIG. Calculate the flicker value measured under the vertical angle.
  • the second generation method of the table 334 even if the horizontal angle and the vertical angle for which the flicker value is to be measured are changed, it is possible to cope with the change by interpolation.
  • the generation of the table 334 will be described by taking as an example a case where the determination is Yes in step S25.
  • the generation unit 522 calculates the respective correction coefficients of the measurement areas 10-1 to 10-15 (FIG. 2) based on the flicker values f-1 to f-15 and the flicker value f-8 shown in FIG. Then, a table 334 is generated.
  • the measurement areas 10-1 to 10-15 correspond to the measurement areas B-1 to B-15, respectively.
  • Each of the flicker values f-1 to f-15 is used as a numerator, and the value obtained by using the flicker value f-8 as a denominator is a correction coefficient.
  • a description will be given taking the measurement area B-1 as an example.
  • the flicker value f ⁇ 8 / the flicker value f ⁇ 1 is a correction coefficient assigned to the measurement area 10-1.
  • the generation unit 522 generates the table 334 by using the flicker value f-0 instead of the flicker value f-8.
  • FIG. 22 is an explanatory diagram illustrating the setting screen 60 including the table 334.
  • This table 334 corresponds to the case where the horizontal angle and the vertical angle for which the flicker value is to be measured are each 0 degree (the case where it is determined Yes in step S25).
  • the setting screen 60 includes an enter key 605 instead of the next key 603. In the character area 600, "Please check the contents of the table. If there is no problem, operate the enter key.” Is displayed.
  • the measurer operates the input unit 53 to operate the enter key 605.
  • the subsequent steps S13 and T5) are the same as steps S13 and T5 shown in FIG. 6B.
  • the above is the second generation method of the table 334.
  • the table 334 is generated in advance for each DUT model and stored in the storage unit 333.
  • the table 334 is used for measuring the flicker of the current time and measuring the flicker of the DUT of the same model after the current time.
  • FIG. 23 is a flowchart for explaining this.
  • a DUT screen 1 to be measured is set at a flicker measurement position.
  • the measurer operates the operation unit 34 to set a mode for correcting the flicker value (step T31).
  • a mode in which the flicker value is not corrected is set.
  • the distance between the position where a person looks at the screen of the liquid crystal display and the screen of the liquid crystal display is relatively short, and is equal to the distance between the two-dimensional flicker measuring device 3 and the liquid crystal display screen.
  • the flicker measurer operates the operation unit 34 to set a mode in which the flicker value is not corrected.
  • the measurer operates the operation unit 34 to give a command to measure the flicker value.
  • the arithmetic processing unit 33 causes the two-dimensional image sensor 32 to photograph the DUT screen 1 at a predetermined frame rate according to the instruction (step T32).
  • the luminance signal SG indicating the luminance of each pixel of the DUT screen 1 output from the two-dimensional image sensor 32 is input to the arithmetic processing unit 33.
  • the calculation unit 331 calculates the flicker value of each of the measurement areas 10-1 to 10-15 set on the DUT screen 1 based on the luminance signal SG (an example of the light measurement amount) input to the arithmetic processing unit 33. Is calculated (step T33).
  • the correction unit 332 corrects the flicker value of each of the measurement areas 10-1 to 10-15 using the table 334 allocated to the DUT screen 1 (step T34).
  • the arithmetic processing unit 33 displays the corrected flicker value of each of the measurement areas 10-1 to 10-15 on the display of the operation unit 34 (step T35).
  • FIG. 24 is a schematic diagram of a plurality of smartphones SP arranged side by side for measuring a flicker value.
  • a plurality of smartphones SP are arranged in a matrix within a shooting range R of a two-dimensional image sensor 32 provided in the two-dimensional flicker measurement device 3.
  • a plurality of measurement areas are set for each liquid crystal display screen (DUT screen 1) of the plurality of smartphones SP, or one measurement area (not shown) is set at the center of the screen. .
  • the two-dimensional flicker measurement device based on a two-dimensional image sensor, based on the light intensity of the measurement object obtained by imaging the measurement object by the two-dimensional image sensor, the A calculating unit that calculates a flicker value of each of the plurality of measurement regions set in the measurement target; and the flicker value of each of the plurality of measurement regions, the plurality of measurement regions from a predetermined angle and direction. And a correction unit that corrects the flicker value corresponding to a case where each of the photometric values is measured.
  • the measured light quantity is a physical quantity that generically refers to the luminance and the image information signal.
  • the luminance is the light intensity of the measurement object measured by the two-dimensional imaging device having the spectral sensitivity characteristic of the visibility curve V ( ⁇ ).
  • the image information signal is a light intensity signal (RAW image data) generated by the two-dimensional imaging device when the two-dimensional imaging device having an arbitrary spectral sensitivity characteristic captures an image of the measurement target.
  • the predetermined angle and direction are determined based on, for example, the normal to the surface of the measurement target.
  • the optical axis of the two-dimensional flicker measuring device is set to an angle and a direction defined by a horizontal angle of 0 ° and a vertical angle of 0 °, the optical axis and the normal line coincide.
  • the predetermined angle and direction may be, for example, the same as or substantially the same as the angle and direction of the measurement region viewed from the position where the person views the measurement target. Approximately the same is the difference between the flicker unevenness based on the flicker value measured by the two-dimensional flicker measurement device and the flicker unevenness felt when a person is looking at the measurement target from the position where the user views the measurement target. Does not occur.
  • the correction unit corrects the flicker value of each of the plurality of measurement areas to a flicker value corresponding to a case where each of the plurality of measurement areas is measured from a predetermined angle and direction. Therefore, according to the two-dimensional flicker measurement device according to the first aspect of the embodiment, in consideration of the angle and direction of the measurement region viewed from the two-dimensional flicker measurement device, a plurality of measurement regions set in the measurement target are considered. Each flicker value can be measured.
  • a table for converting the flicker value of each of the plurality of measurement regions into the flicker value corresponding to a case where each of the plurality of measurement regions is measured from the predetermined angle and direction is stored in advance.
  • the storage device further includes a storage unit, and the correction unit performs the correction using the table.
  • This configuration corrects the flicker value using a table stored in the storage unit in advance.
  • the above configuration further includes an operation unit capable of performing an operation of selecting whether or not the correction unit corrects the flicker value of each of the plurality of measurement areas calculated by the calculation unit.
  • the distance between the position at which a person looks at the screen of the liquid crystal display and the screen of the liquid crystal display is relatively short, which is equivalent to the distance between the two-dimensional flicker measurement device and the liquid crystal display screen.
  • the flicker value is corrected, on the contrary, the flicker unevenness based on the flicker value measured by the two-dimensional flicker measurement device and the flicker felt when a human is looking at the screen of the liquid crystal display for the PC. And a difference is generated. Therefore, in such a case, the measurer operates the operation unit to select not to correct the flicker value.
  • the two-dimensional image sensor is set to the measurement target based on a light measurement amount of the measurement target obtained by photographing the measurement target.
  • the two-dimensional flicker measurement method according to the second aspect of the embodiment defines the two-dimensional flicker measurement device according to the first aspect of the embodiment from the viewpoint of the method, and the two-dimensional flicker measurement according to the first aspect of the embodiment. It has the same function and effect as the device.
  • the two-dimensional image sensor is set in the measurement target based on a light measurement amount of the measurement target obtained by photographing the measurement target.
  • the two-dimensional flicker measurement program according to the third aspect of the embodiment defines the two-dimensional flicker measurement device according to the first aspect of the embodiment from the viewpoint of the program, and the two-dimensional flicker measurement program according to the first aspect of the embodiment. It has the same function and effect as the device.
  • the correcting step calculates the flicker value of each of the plurality of measurement regions, which is calculated by the calculation step, when each of the plurality of measurement regions is measured from the predetermined angle and direction.
  • the correction is performed using a table for converting to the corresponding flicker value.
  • the computer before the calculation step, is further caused to execute a generation step of generating the table including a plurality of correction coefficients assigned to each of the plurality of measurement regions in advance.
  • the user (measurer) of the two-dimensional flicker measurement program can generate a table using the two-dimensional flicker measurement program.
  • the generation step includes: setting the measurement target A of the same model as the measurement target; for each of the plurality of measurement regions B, the flicker value measured from the predetermined angle and direction; When the flicker value of each of the plurality of measurement areas is measured, from the position where the two-dimensional flicker measurement device equipped with the two-dimensional imaging device is installed, obtained using the two-dimensional flicker measurement device, The plurality of correction coefficients are calculated based on the pre-correction flicker values of the plurality of measurement areas B.
  • the contents of the table differ depending on the model of the object to be measured. According to this configuration, it is possible to generate a table corresponding to the model of the measurement target.
  • the measurement object A is the same model as the measurement object, and a plurality of measurement areas B are set.
  • the measurement object and the measurement object A are separately described, and the plurality of measurement regions and the plurality of measurement regions B are separately described.
  • the number and position of the plurality of measurement regions B set on the measurement target A may be the same as or different from the number and position of the plurality of measurement regions set on the measurement target. If they are different, the generation step obtains a required flicker value by interpolating the flicker values of the plurality of measurement areas B.
  • the pre-correction flicker value of each of the plurality of measurement areas B is obtained as follows.
  • the position of the two-dimensional flicker measurement device is the same as when measuring the flicker value of each of a plurality of measurement areas set on the measurement target.
  • the two-dimensional image sensor measures the light of each of the plurality of measurement areas B, and outputs a signal indicating the measured light amount.
  • the calculation unit calculates the flicker value of each of the plurality of measurement areas B based on the signal indicating the light intensity measurement. These flicker values are the flicker values of the plurality of measurement areas B before correction.
  • the correction coefficient will be described with a specific example.
  • the plurality of measurement areas set on the measurement target are 15 measurement areas 10-1 to 10-15, and the plurality of measurement areas B set on the measurement target A are 15 measurement areas B-1. B-15.
  • the fifteen measurement areas B-1 to B-15 are located at the same positions as the fifteen measurement areas 10-1 to 10-15.
  • the flicker value measured from a predetermined angle and direction is F-1. It is assumed that the flicker value f-1 before correction of the measurement area B-1 is obtained by using the two-dimensional flicker measuring device.
  • the correction coefficient assigned to the measurement area 10-1 is F-1 / f-1.
  • the correction coefficients assigned to the measurement areas 10-2 to 10-15 are obtained in the same manner.
  • the generation step includes: for a predetermined measurement area C set on the measurement target A of the same model as the measurement target, the flicker value measured from the predetermined angle and direction; For the measurement area C, the plurality of correction coefficients are calculated based on the plurality of flicker values measured under a plurality of combinations of angles and directions.
  • the contents of the table differ depending on the model of the object to be measured. According to this configuration, it is possible to generate a table corresponding to the model of the measurement target.
  • the measurement of the flicker value from the predetermined angle and the direction can be omitted for the predetermined measurement region C.
  • a plurality of combinations of angles and directions may or may not match the respective angles and directions of the plurality of measurement regions set on the measurement target.
  • a description will be given of an example in which the number of a plurality of measurement regions set in the measurement target is fifteen.
  • the former is that the angle and direction of each of the 15 measurement areas set on the measurement object match the 15 combinations of angle and direction.
  • the flicker values of the missing angles and directions are obtained by interpolation. That is, the flicker value of the missing angle and direction is obtained by interpolating the flicker value measured under a plurality of combinations of the angle and direction in the predetermined measurement region C.
  • the correction coefficient will be described with a specific example.
  • the plurality of measurement areas set on the measurement target are 15 measurement areas 10-1 to 10-15, and the plurality of measurement areas B set on the measurement target A are 15 measurement areas B-1. B-15.
  • the fifteen measurement areas B-1 to B-15 are located at the same positions as the fifteen measurement areas 10-1 to 10-15.
  • For a predetermined measurement area C the flicker value measured from a predetermined angle and direction is f-0.
  • the flicker value measured from the angle and direction of the measurement area B-1 is f-1.
  • the correction coefficient assigned to the measurement area 10-1 is f-0 / f-1.
  • the correction coefficients assigned to the measurement areas 10-2 to 10-15 are obtained in the same manner.
  • a two-dimensional flicker measurement device a two-dimensional flicker measurement method, and a two-dimensional flicker measurement program can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

二次元フリッカ測定装置は、二次元撮像素子と、二次元撮像素子が測定対象物(DUT画面)を撮影することにより得られる測定対象物の測光量を基にして、測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出部と、複数の測定領域のそれぞれのフリッカ値を、所定の角度と方向から複数の測定領域のそれぞれが測光された場合に相当するフリッカ値に補正する補正部と、を備える。

Description

二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム
 本発明は、例えば、液晶ディスプレイの画面のフリッカ値を測定する技術に関する。
 フリッカ測定装置として、スポット型のフリッカ測定装置と二次元フリッカ測定装置とがある。スポット型のフリッカ測定装置は、プローブを備えており、プローブが測定領域(スポット領域)に近づけられた状態で、測定領域のフリッカ値を測定する(例えば、特許文献1)。二次元フリッカ測定装置は、二次元撮像素子を備えており、二次元領域のフリッカ値を測定する(例えば、特許文献2)。
 ディスプレイの画面に発生するフリッカのムラを評価するために、ディスプレイの画面に設定された複数の測定領域のそれぞれのフリッカ値が測定される。二次元フリッカ測定装置によれば、二次元領域のフリッカ値を測定することができるので、1台の二次元フリッカ測定装置で、複数の測定領域のそれぞれのフリッカ値を一度に測定することができる。
 二次元フリッカ測定装置は、二次元領域のフリッカ値を測定する。このため、二次元フリッカ測定装置から見た測定領域の角度と方向は、測定領域の位置に応じて異なる。本発明者は、液晶ディスプレイの画面の場合、角度が異なれば、フリッカ値が異なり、また、同じ角度でも方向が異なれば(例えば、左45度の角度と右45度の角度)、フリッカ値が異なることを見出した。本発明者は、液晶ディスプレイに配置された液晶の配向が原因と考えている。
 二次元フリッカ測定装置から見た測定領域の角度と方向が、測定領域の位置に応じて異なる。これにより、二次元フリッカ測定装置で測定されたフリッカ値を基にしたフリッカのムラと、人間が液晶ディスプレイの画面を見ているときに感じるフリッカのムラとに差が生じる。以下、詳しく説明する。
 例えば、大型、中型表示用の液晶ディスプレイの場合、人間が液晶ディスプレイの画面を見る位置と液晶ディスプレイの画面との距離は、比較的離れている。これに対して、二次元フリッカ測定装置を用いて、液晶ディスプレイの画面のフリッカ値を測定するとき、液晶ディスプレイの画面と二次元フリッカ測定装置との距離は、比較的近くにされている。この距離が比較的離れていれば、以下のデメリットが生じるからである。二次元フリッカ測定装置の二次元撮像素子で撮影される液晶ディスプレイの画面が小さくなるので、この画面に設定できる測定領域の数が少なくなる(測定解像度の低下)。また、液晶ディスプレイの画面のフリッカ値を測定するために要する面積が大きくなるので、フリッカ値の測定がされる施設において、設備のレイアウトの自由度が低下する。
 このように、人間が液晶ディスプレイの画面を見る位置と液晶ディスプレイの画面との距離が、二次元フリッカ測定装置と液晶ディスプレイの画面との距離と大きく異なることがある。この場合、二次元フリッカ測定装置から見た複数の測定領域のそれぞれの角度と方向と、人間が液晶ディスプレイの画面を見る位置から見た複数の測定領域のそれぞれの角度と方向とは、相違する。この結果、二次元フリッカ測定装置で測定されたフリッカ値を基にしたフリッカのムラと、人間が液晶ディスプレイの画面を見ているときに感じるフリッカのムラとに差が生じる。
 モバイル用の液晶ディスプレイの場合、サイズが小さいので、複数の液晶ディスプレイの画面が並べられ、まとめてフリッカ値が測定される。並べられた複数の液晶ディスプレイの画面のうち、二次元フリッカ測定装置の光軸付近に配置されていない液晶ディスプレイの画面は、二次元フリッカ測定装置から見て、斜め方向に位置する。このため、これらの液晶ディスプレイの画面については、人間が液晶ディスプレイの画面を見る角度、方向と異なる角度、方向からフリッカ値が測定されることになる。この結果、これらの液晶ディスプレイの画面については、二次元フリッカ測定装置で測定されたフリッカ値を基にしたフリッカのムラと、人間が液晶ディスプレイの画面を見ているときに感じられるフリッカのムラとに差が生じる。
 液晶ディスプレイの画面を例に説明したが、二次元フリッカ測定装置から見た測定領域の角度と方向に応じて、測定領域のフリッカ値が異なる性質を有する測定対象物であれば、同じ問題が生じる。
特開2002-350284号公報 特開2005-109535号公報
 本発明は、二次元フリッカ測定装置から見た測定領域の角度と方向を考慮して、測定対象物に設定された複数の測定領域のそれぞれのフリッカ値を測定することができる二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラムを提供することを目的とする。
 上述した目的を実現するために、本発明の一側面を反映した二次元フリッカ測定装置は、二次元撮像素子と、算出部と、補正部と、を備える。前記算出部は、前記二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する。前記補正部は、前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する。
 発明の1又は複数の実施形態により与えられる利点及び特徴は以下に与えられる詳細な説明及び添付図面から十分に理解される。これら詳細な説明及び添付図面は、例としてのみ与えられるものであり本発明の限定の定義として意図されるものではない。
測定対象物となる画面を有する液晶カラーディスプレイ(DUT)と二次元フリッカ測定装置との関係を示す図である。 複数の測定領域が設定されたDUT画面の平面の模式図である。 実施形態に係る二次元フリッカ測定装置、および、この測定装置と通信可能なPCのそれぞれの構成を示すブロック図である。 テーブルの一例を説明する説明図である。 二次元フリッカ測定装置からDUT画面を見た状態の模式図である。 テーブルの第1の生成方法を説明するフローチャートの前半である。 テーブルの第1の生成方法を説明するフローチャートの後半である。 設定画面の初期状態を説明する説明図である。 機種名および複数の測定領域Bのそれぞれの位置が入力された後の設定画面を説明する説明図である。 水平角と垂直角の測定結果を含む設定画面を説明する説明図である。 フリッカ値を測定したい水平角と垂直角が入力された後の設定画面を説明する説明図である。 測定領域B-1について、水平角0度かつ垂直角0度(所定の角度と方向の一例)からフリッカ値が測定されている状態を示す模式図である。 フリッカ値が入力された状態の設定画面を説明する説明図である。 図12に示す設定画面に含まれる次へキーが操作されることにより、切り替えられた設定画面を説明する説明図である。 図13に示す測定領域欄にフリッカ値が入力された設定画面を説明する説明図である。 テーブルを含む設定画面を説明する説明図である。 テーブルの第2の生成方法を説明するフローチャートの前半である。 テーブルの第2の生成方法を説明するフローチャートの後半である。 水平角と垂直角の測定結果を含む設定画面を説明する説明図である。 測定領域B-8(測定領域C)について、水平角と垂直角を変えて、フリッカ値が測定されている状態を示す模式図である。 フリッカ値が入力された状態の設定画面を説明する説明図である。 図19に示す設定画面に含まれる次へキーが操作されることにより、切り替えられた設定画面を説明する説明図である。 角度欄に入力した水平角と垂直角が、図20に示す測定領域欄に含まれる水平角と垂直角の15個の組み合わせのいずれとも一致しない場合に表示される設定画面を説明する説明図である。 テーブルを含む設定画面を説明する説明図である。 実施形態に係る二次元フリッカ測定装置が、テーブルを用いてフリッカを測定する動作について説明するフローチャートである。 フリッカ値の測定のために並べて配置された複数のスマートフォンの模式図である。
 以下、図面を参照して、本発明の1又は複数の実施形態が説明される。しかし、発明の範囲は、開示された実施形態に限定されない。
 各図において、同一符号を付した構成は、同一の構成であることを示し、その構成について、既に説明している内容については、その説明を省略する。本明細書において、個別の構成を指す場合にはハイフンを付した参照符号(例えば、測定領域10-1)で示し、総称する場合にはハイフンを省略した参照符号(例えば、測定領域10)で示す。
 図1は、測定対象物となる画面1を有する液晶カラーディスプレイ(DUT=Device Under Test)と二次元フリッカ測定装置3との関係を示す図である。測定対象物は、画像を表示する機能を有しており、実施形態では、DUTの画面1(以下、DUT画面1)を例にして説明する。測定対象物は、液晶ディスプレイの画面に限らず、他に、例えば、液晶プロジェクターの投写画面、投影画面がある。
 二次元フリッカ測定装置3は、測定者の指示に基づいて、DUT画面1に複数の測定領域を設定し、複数の測定領域について、同時にフリッカ値を測定する。図2は、複数の測定領域10が設定されたDUT画面1の平面の模式図である。DUT画面1には、15個の測定領域10-1~10-15が二次元に設定されている。DUT画面1に設定される測定領域10の数は、複数であればよく、15に限定されない。隣り合う測定領域10の間には、隙間が形成されていないが、隙間が形成されていてもよい。測定領域10の形状は、矩形であるが、これに限定されず、円形でもよい。
 図3は、実施形態に係る二次元フリッカ測定装置3、および、この測定装置と通信可能なPC(Personal Computer)5のそれぞれの構成を示すブロック図である。二次元フリッカ測定装置3は、光学レンズ31と、二次元撮像素子32と、演算処理部33と、操作部34と、通信部35と、を備える。光学レンズ31は、DUT画面1の全体からの光Lを収束する。光学レンズ31で収束された光Lは、二次元撮像素子32で受光される。
 二次元撮像素子32は、二次元の撮影領域を有する画像センサである(例えば、CMOSセンサ、CCDセンサ)。二次元撮像素子32は、画像を表示したDUT画面1を、設定されたフレームレートで撮影し、撮影した画像の輝度信号SGを出力する。輝度信号SGは、測光量を示す信号の具体例である。
 輝度は、視感度曲線V(λ)の分光感度特性を持つ二次元撮像素子32が測定したDUT画面1の光強度である。輝度信号SGは、この光強度を示す信号である。輝度信号SGを例にして説明するが、画像情報信号でもよい。画像情報信号は、任意の分光感度特性を持つ二次元撮像素子32がDUT画面1を撮影することにより、二次元撮像素子32が生成する光強度信号(RAW画像データ)である。測光量は、輝度および画像情報信号を総称する物理量である。
 演算処理部33は、フリッカ値の測定に必要な各種の演算および処理を実行するハードウェアプロセッサである。演算処理部33は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、および、HDD(Hard Disk Drive)等によって実現される。演算処理部33は、機能ブロックとして、算出部331と、補正部332と、記憶部333と、を備える。
 図2および図3を参照して、算出部331は、二次元撮像素子32がDUT画面1を撮影することにより得られるDUT画面1の測光量を基にして、DUT画面1に設定された複数の測定領域10(図2の場合、測定領域10-1~10-15)のぞれぞれのフリッカ値を算出する。フリッカ値の算出方式として、コントラスト方式とJEITA(Japan Electronics and Information Technology Industries Association)方式とがある。算出部331は、コントラスト方式、JEITA方式のいずれでもフリッカ値を算出することができる。
 補正部332は、複数の測定領域10のそれぞれのフリッカ値を、所定の角度と方向から複数の測定領域10のそれぞれが測光された場合に相当するフリッカ値に補正する。所定の角度と方向について、図2を参照して説明する。所定の角度と方向は、例えば、DUT画面1の法線を基準にして定められる。二次元フリッカ測定装置3の光軸AXが、水平角0度かつ垂直角0度で規定される角度と方向にされたとき、光軸AXと法線とが一致する。所定の角度と方向は、例えば、人間がDUT画面1を見る位置から見た測定領域10の角度と方向と同じでもよいし、略同じでもよい。略同じとは、二次元フリッカ測定装置3で測定されたフリッカ値を基にしたフリッカのムラと、人間がDUT画面1を見る位置からDUT画面1を見ているときに感じるフリッカのムラとに差が生じない程度を意味する。
 図2および図3を参照して、記憶部333は、テーブル334を予め記憶している。テーブル334は、複数の測定領域10のそれぞれに割り当てられた複数の補正係数を含む。テーブル334は、算出部331によって算出された、複数の測定領域10のそれぞれのフリッカ値を、所定の角度と方向から複数の測定領域10のそれぞれが測光された場合に相当するフリッカ値に変換するために用いられる。補正部332は、テーブル334を用いて補正をする。
 図4は、テーブル334の一例を説明する説明図である。角度と方向は、水平角と垂直角で規定されている。テーブル334には、二次元フリッカ測定装置3から見た測定領域10-1~10-15(図2)の水平角と垂直角の値が格納されている。測定領域10-1の中心の水平角と垂直角が、測定領域10-1の水平角と垂直角とされる。測定領域10-2~10-15についても同様である。テーブル334には、測定領域10-1~10-15のそれぞれに割り当てられた補正係数が格納されている。
 角度と方向が、水平角と垂直角で規定される場合、測量機器が水平角と垂直角を測定する手法と同じ手法で、水平角と垂直角を測定することができる。この場合、二次元フリッカ測定装置3は、測量機器が水平角と垂直角を測定する機能と同じ機能を有し、この機能を用いて、水平角と垂直角を測定する。
 角度と方向は、測量機器が水平角と垂直角を測定する手法と別の手法を用いても規定することができる。この一例について説明する。図5は、二次元フリッカ測定装置3からDUT画面1を見た状態の模式図である。例えば、二次元撮像素子32の画角範囲が、10度未満の場合、10度以上20度未満の場合、20度以上30度未満の場合、30度以上40度未満の場合に分ける。二次元撮像素子32の有効画素領域の座標と画角範囲との対応関係を示すテーブルが、記憶部333に予め記憶されている。
 演算処理部33は、DUT画面1上における測定領域10-1の中心の座標を、二次元撮像素子32の有効画素領域上における座標に変換する。変換された座標(以下、変換座標と記載する)が測定領域10-1の方向を示す。演算処理部33は、前記テーブルを参照して、前記変換座標が属する画角範囲を特定する。特定された画角範囲が、測定領域10-1の角度を示す。測定領域10-2~10-15についても同様である。
 図3を参照して、操作部34は、タッチパネル、ハードキー等により実現される。操作部34は、光学レンズ31のピント合わせ、二次元撮像素子32のフレームレートの設定、フリッカ値の測定命令の入力等に用いられる。また、操作部34は、フリッカ値を補正するモードとフリッカ値を補正しないモードとを選択する操作がされる。フリッカ値を補正するモードが選択されているとき、補正部332は、算出部331によって算出された複数の測定領域10のそれぞれのフリッカ値を補正する。フリッカ値を補正しないモードが選択されているとき、補正部332は、算出部331によって算出された複数の測定領域10のそれぞれのフリッカ値を補正しない。
 通信部35は、二次元フリッカ測定装置3が外部のPC5と通信する通信インターフェイスである。
 PC5は、通信部51と、演算処理部52と、入力部53と、表示部54と、を備える。
 通信部51は、PC5が外部の二次元フリッカ測定装置3と通信する通信インターフェイスである。
 演算処理部52は、PC5の機能を実現するための各種の演算および処理を実行するハードウェアプロセッサである。演算処理部52は、CPU、RAM、ROM、および、HDD等によって実現される。演算処理部52は、機能ブロックとして、設定部521と、生成部522と、記憶部523と、を備える。
 設定部521は、フリッカ値の測定に必要な各種設定(例えば、測定領域10の中心位置の指定、測定領域10の数)をする。生成部522は、テーブル334の生成をする。記憶部523は、テーブル334の生成に必要な情報(水平角、垂直角、フリッカ値等)を記憶する。
 入力部53は、PC5に命令、データ、情報等を入力する装置であり、キーボード、マウス等によって実現される。表示部54は、PC5の出力部として機能し、液晶ディスプレイ等によって実現される。
 なお、演算処理部33,52の機能の一部又は全部は、CPUによる処理に替えて、又は、これと共に、FPGA(field programmable gate array)による処理によって実現されてもよい。又、同様に、演算処理部33,52の機能の一部又は全部は、ソフトウェアによる処理に替えて、又は、これと共に、専用のハードウェア回路による処理によって実現されてもよい。
 演算処理部33は、図3に示す複数の要素によって構成される。従って、演算処理部33を実現するハードウェアであるHDDには、これらの要素を実現するためのプログラムが格納されている。すなわち、このHDDには、算出部331および補正部332のそれぞれを実現するためのプログラムが格納されている。これらのプログラムは、算出プログラム、補正プログラムと表現される。
 同様に、演算処理部52は、図3に示す複数の要素によって構成される。従って、演算処理部52を実現するハードウェアであるHDDには、これらの要素を実現するためのプログラムが格納されている。すなわち、このHDDには、設定部521および生成部522のそれぞれを実現するためのプログラムが格納されている。これらのプログラムは、設定プログラム、生成プログラムと表現される。
 これらのプログラムは、要素の定義を用いて表現される。算出部331及び算出プログラムを例にして説明する。算出部331は、二次元撮像素子32が測定対象物を撮影することにより得られる測定対象物の測光量を基にして、測定対象物に設定された複数の測定領域10のぞれぞれのフリッカ値を算出する。算出プログラムは、二次元撮像素子32が測定対象物を撮影することにより得られる測定対象物の測光量を基にして、測定対象物に設定された複数の測定領域10のぞれぞれのフリッカ値を算出するプログラムである。
 演算処理部33,52を実現するハードウェアであるCPUによって実行されるこれらのプログラム(算出プログラム、補正プログラム、設定プログラム、生成プログラム)のフローチャートが、後で説明する図6A、図6B、図16A、図16B、図23である。
 テーブル334の生成方法について説明する。図6Aは、テーブル334の第1の生成方法を説明するフローチャートの前半である。図6Bは、テーブル334の第1の生成方法を説明するフローチャートの後半である。図2を参照して、二次元フリッカ測定装置3は、DUT画面1がフリッカの測定位置にセットされたとき、光軸AXがDUT画面1の中心に位置し、DUT画面1全体が撮影可能な位置にセットされている。
 図3および図6Aを参照して、測定者は、入力部53を操作して、テーブル334の生成命令をPC5に入力する。これにより、演算処理部52は、テーブル334の生成プログラムを起動させ、図7に示す設定画面60を表示部54に表示させる(ステップS1)。図7は、設定画面60の初期状態を説明する説明図である。設定画面60は、文字領域600、機種名欄601、測定領域欄602、および、次へキー603を含む。
 図7に示す設定画面60の文字領域600には、「DUTの機種名およびフリッカの測定領域を入力して下さい。入力した機種名のDUTのうち、今回、フリッカを測定するDUTの中から1つを選択してフリッカの測定位置にセットして下さい。」が表示される。測定位置にセットされたDUTの画面(DUT画面1)が、このDUTと同じ機種のDUTの画面(DUT画面A)となる。
 図3、図6Aおよび図7を参照して、測定者は、入力部53を用いて、フリッカの測定対象となるDUTの機種名を機種名欄601に入力し、測定領域欄602に複数の測定領域Bのそれぞれの位置を入力する(ステップS2)。複数の測定領域Bは、DUT画面Aに設定される。
 図8は、機種名および複数の測定領域Bのそれぞれの位置が入力された後の設定画面60を説明する説明図である。機種名欄601には、機種名として、「○○○」が入力されている。設定部521は、入力された位置に従って、DUT画面Aに複数の測定領域Bを設定し、設定された複数の測定領域Bを図8に示す測定領域欄602に表示させる。測定領域Bの数は15とする。測定領域欄602には、DUT画面Aに設定された測定領域B-1~B-15が表示されている。測定領域Bの数と位置は、DUT画面1に設定された測定領域10(図2)の数と位置と同じである。なお、これらが異なっていてもよい。異なっている場合、生成部522は、複数の測定領域Bのフリッカ値を補間することにより、必要となるフリッカ値を求める。
 測定者は、入力部53を用いて、図8に示す設定画面60に含まれる次へキー603を操作する。生成部522は、この操作に従って、二次元フリッカ測定装置3に対して、DUT画面Aに設定された測定領域B-1~B-15のそれぞれの水平角と垂直角を測定する命令をする(ステップS3)。通信部51は、この命令を通信部35に送信する。
 通信部35が命令を受信したとき、二次元フリッカ測定装置3は、測定領域B-1~B-15のそれぞれの水平角と垂直角を測定する(ステップT1)。演算処理部33は、通信部35に対して、水平角、垂直角の測定結果を送信する命令をする。通信部35は、これらの測定結果を通信部51に送信する(ステップT2)。
 通信部51が測定結果を受信したとき、演算処理部52は、図9に示す設定画面60を表示部54に表示させる(ステップS4)。図9は、水平角と垂直角の測定結果を含む設定画面60を説明する説明図である。測定領域欄602には、測定領域B-1~B-15のそれぞれの水平角と垂直角が示されている。
 図9に示す設定画面60の文字領域600には、「フリッカ値を測定したい水平角と垂直角を入力して下さい。」が表示される。フリッカ値を測定したい水平角と垂直角とは、所定の角度と方向の意味である。設定画面60には、角度欄604が追加されている。測定者は、入力部53を操作して、角度欄604に、フリッカ値を測定したい水平角と垂直角(所定の角度と方向)を入力する(ステップS5)。例えば、水平角0度、垂直角0度が入力されたとする。
 測定者は、図9に示す設定画面60に含まれる次へキー603を操作する。演算処理部52は、図10に示す設定画面60を表示部54に表示させる(ステップS6)。図10は、フリッカ値を測定したい水平角と垂直角が入力された後の設定画面60を説明する説明図である。測定領域欄602には、測定領域B-1~B-15のそれぞれについて、水平角0度、垂直角0度が表示され、フリッカ値は空欄にされている。文字領域600には、「各測定領域に対して、水平角0度かつ垂直角0度の下でフリッカ値を測定して下さい。そして、測定されたフリッカ値を入力して下さい。」が表示される。
 図11は、測定領域B-1について、水平角0度かつ垂直角0度(所定の角度と方向の一例)からフリッカ値が測定されている状態を示す模式図である。まず、測定者は、操作部34(図3)を操作して、フリッカ値を補正しないモードにする。そして、測定者は、二次元フリッカ測定装置3から見て、測定領域B-1が水平角0度かつ垂直角0度となる位置に、二次元フリッカ測定装置3をセットする。測定者は、二次元フリッカ測定装置3を用いて、測定領域B-1のフリッカ値を測定する。この測定において、補正部332が用いられないので、測定されたフリッカ値は、算出部331が算出したフリッカ値(補正前のフリッカ値)である。測定されたフリッカ値がF-1とする。
 次に、測定者は、二次元フリッカ測定装置3から見て、測定領域B-2が水平角0度かつ垂直角0度となる位置に、二次元フリッカ測定装置3をセットする。測定領域B-1のフリッカ値の測定と同様にして、測定領域B-2のフリッカ値が測定される。測定されたフリッカ値がF-2とする。測定領域B-3~B-15についても同様にしてフリッカ値が測定される。
 以上のようにして、測定領域B-1~B-15のそれぞれについて、水平角0度かつ垂直角0度で測定されたフリッカ値F-1~F-15(補正前のフリッカ値)が測定される。フリッカ値F-1~F-15は、測定対象物(DUT画面1)と同じ機種の測定対象物A(DUT画面A)に設定された複数の測定領域Bのそれぞれについて、所定の角度と方向から測定されたフリッカ値である。なお、二次元フリッカ測定装置3の替わりに、スポット型のフリッカ測定装置を用いて、測定領域B-1~B-15のそれぞれについて、水平角0度かつ垂直角0度の下で、フリッカ値が測定されてもよい。
 図3、図6Aおよび図10を参照して、測定者は、フリッカ値F-1~F-15が正常か否かを判断する。異常であれば、テーブル334の基礎にできないので、測定者は、ステップS1からやり直す。測定者は、フリッカ値F-1~F-15が正常と判断したとき、入力部53を用いて、測定領域欄602に含まれるフリッカ値の欄に、フリッカ値F-1~F-15を入力する(ステップS7)。図12は、フリッカ値が入力された状態の設定画面60を説明する説明図である。演算処理部52は、図12に示す機種名欄601、測定領域欄602、角度欄604に含まれる情報を、記憶部523に記憶させる。記憶部523は、これらの情報を保存する。測定者は、図12に示す設定画面60に含まれる次へキー603を操作する。
 図3および図6Bを参照して、演算処理部52は、図13に示す設定画面60を表示部54に表示させる(ステップS8)。図13は、図12に示す設定画面60に含まれる次へキー603が操作されることにより、切り替えられた設定画面60を説明する説明図である。測定領域欄602には、図9に示す測定領域欄602の内容に加えて、フリッカ値の入力欄がある。文字領域600には、「二次元フリッカ測定装置3を元の位置にセットし、二次元フリッカ測定装置3を用いて、各測定領域の補正前のフリッカ値を測定して下さい。」が表示される。元の位置にセットとは、DUT画面Aがフリッカの測定位置にセットされたとき、光軸AXがDUT画面Aの中心に位置し、DUT画面Aの全体が撮影可能な位置に、二次元フリッカ測定装置3がセットされることである(例えば、図2に示す位置)。
 測定者は、入力部53を用いて、測定領域B-1~B-15のそれぞれの補正前のフリッカ値を測定する命令を入力する(ステップS9)。通信部51は、この命令を通信部35に送信する。
 通信部35が命令を受信したとき、二次元フリッカ測定装置3は、測定領域B-1~B-15のそれぞれの補正前のフリッカ値を測定する(ステップT3)。測定領域B-1~B-15のそれぞれの補正前のフリッカ値は、次のようにして得られる。二次元フリッカ測定装置3の位置は、元の位置である。すなわち、DUT画面1に設定された測定領域10-1~10-15のそれぞれのフリッカ値を測定する位置と同じである。この状態で、二次元撮像素子32は、DUT画面Aを撮影し、算出部331は、DUT画面Aが撮影されることにより得られるDUT画面Aの測光量を基にして、測定領域B-1~B-15のぞれぞれのフリッカ値を算出する。算出されたフリッカ値が、f-1~f-15とする。これらのフリッカ値が、測定領域B-1~B-15のそれぞれの補正前のフリッカ値である。すなわち、DUT画面1に設定された測定領域10-1~10-15のそれぞれのフリッカ値が測定される際に、二次元フリッカ測定装置3が設置される位置から、二次元フリッカ測定装置3を用いて得られた、測定領域B-1~B-15のそれぞれの補正前のフリッカ値である。
 演算処理部33は、通信部35に対して、補正前のフリッカ値の測定結果(フリッカ値f-1~f-15)を送信する命令をする。通信部35は、補正前のフリッカ値の測定結果を通信部51に送信する(ステップT4)。
 通信部51が測定結果を受信したとき、演算処理部52は、図14に示すように、受信した測定結果を含む設定画面60を表示部54に表示させる(ステップS10)。図14は、図13に示す測定領域欄602にフリッカ値が入力された設定画面60を説明する説明図である。測定領域B-1~B-15のそれぞれのフリッカ値の欄には、フリッカ値f-1~f-15が表示されている。演算処理部52は、図14に示す機種名欄601、測定領域欄602、角度欄604に含まれる情報を、記憶部523に記憶させる。記憶部523は、これらの情報を保存する。
 測定者は、図14に示す設定画面60の次へキー603を操作する。これにより、生成部522は、図12に示すフリッカ値F-1~F-15と図14に示すフリッカ値f-1~f-15とを基にして、測定領域10-1~10-15(図2)のそれぞれの補正係数を算出し、テーブル334(図4)を生成する(ステップS11)。測定領域10-1~10-15は、それぞれ、測定領域B-1~B-15と対応する。同じ測定領域Bについて、図12に示すフリッカ値Fを図14に示すフリッカ値fで徐した値が、この測定領域Bと対応する測定領域10に割り当てられる補正係数となる。測定領域B-1を例にして説明する。フリッカ値F-1/フリッカ値f-1が、測定領域10-1に割り当てられる補正係数である。
 生成部522がテーブル334を生成した後、演算処理部52は、図15に示す設定画面60を表示部54に表示させる(ステップS12)。図15は、テーブル334を含む設定画面60を説明する説明図である。この設定画面60は、次へキー603の替わりに確定キー605を含む。文字領域600には、「テーブルの内容を確認して下さい。問題なければ、確定キーを操作して下さい。」が表示されている。
 測定者が、入力部53を操作して、確定キー605を操作する。生成部522は、この操作に従って、機種名欄601に入力された機種名と、角度欄604に入力された角度と、が紐付けられたテーブル334を、二次元フリッカ測定装置3に送信する命令をする。さらに、生成部522は、これらが紐付けられたテーブル334を記憶部523に記憶させる(ステップS13)。
 通信部51は、この命令に従って、機種名と角度が紐付けられたテーブル334を通信部35に送信する。
 通信部35が、機種名と角度が紐付けられたテーブル334を受信したとき、演算処理部33は、機種名と角度が紐付けられたテーブル334を記憶部333に記憶させる(ステップT5)。
 以上が、テーブル334の第1の生成方法である。テーブル334の第2の生成方法を説明する。図16Aは、テーブル334の第2の生成方法を説明するフローチャートの前半である。図16Bは、テーブル334の第2の生成方法を説明するフローチャートの後半である。ステップS1~S3およびステップT1、ステップT2は、図6Aのこれらと同じなので、説明を省略する。
 通信部51が水平角、垂直角の測定結果を受信したとき、演算処理部52は、図17に示す設定画面60を表示部54に表示させる(ステップS21)。図17は、水平角と垂直角の測定結果を含む設定画面60を説明する説明図である。測定領域欄602には、測定領域B-1~B-15のそれぞれについて、水平角と垂直角の測定結果が表示され、フリッカ値は空欄にされている。水平角と垂直角の組み合わせの数は、15(複数)である。
 図17に示す設定画面60の文字領域600には、「測定領域B-1~B-15の中から1つの測定領域(測定領域C)を選択し、選択した測定領域Cに対して、測定領域欄602に示される水平角と垂直角(角度と方向)の全ての組み合わせについて、フリッカ値を測定して下さい。測定結果を、測定領域欄602に示される測定領域B-1~B-15のそれぞれに対応するフリッカ値の欄に入力して下さい。」が表示される。
 ここでは、測定領域Cとして、水平角0度かつ垂直角0度で規定される測定領域B-8が選択されたとする。図18は、測定領域B-8(測定領域C)について、水平角と垂直角を変えて、フリッカ値が測定されている状態を示す模式図である。まず、測定者は、操作部34(図3)を操作して、フリッカ値を補正しないモードにする。そして、測定者は、二次元フリッカ測定装置3から見て、測定領域B-8が水平角-60度かつ垂直角+40度となる位置(測定領域B-1の位置に相当)に、二次元フリッカ測定装置3をセットする。測定者は、二次元フリッカ測定装置3を用いて、測定領域B-8のフリッカ値を測定する。この測定において、補正部332が用いられないので、測定されたフリッカ値は、算出部331が算出したフリッカ値(補正前のフリッカ値)である。測定されたフリッカ値がf-1とする。
 次に、測定者は、二次元フリッカ測定装置3から見て、測定領域B-8が水平角-40度かつ垂直角+40度となる位置(測定領域B-2の位置に相当)に、二次元フリッカ測定装置3をセットする。測定者は、二次元フリッカ測定装置3を用いて、測定領域B-8のフリッカ値を測定する。測定されたフリッカ値がf-2とする。水平角と垂直角の残りの組み合わせについても、同様にしてフリッカ値が測定される。測定されたフリッカ値がf-3~f-15とする。
 フリッカ値f-1~f-15は、所定の測定領域Cについて、角度と方向の複数の組み合わせの下で測定された複数のフリッカ値である。なお、二次元フリッカ測定装置3の替わりに、スポット型のフリッカ測定装置を用いて、これらのフリッカ値が測定されてもよい。
 水平角と垂直角(角度と方向)の複数の組み合わせは、DUT画面1(図2)に設定された測定領域10-1~10-15のそれぞれの水平角と垂直角(角度と方向)に一致している場合で説明したが、一致していなくてもよい。一致していない場合、生成部522は、DUT画面Aに設定された測定領域B-1~B-15のそれぞれの水平角と垂直角(角度と方向)から測定されたフリッカ値のうち、足りない水平角と垂直角について、フリッカ値を補間により求める。
 測定者は、フリッカ値f-1~f-15が正常か否かを判断する。異常であれば、テーブル334の基礎にできないので、測定者は、ステップS1からやり直す。測定者は、フリッカ値f-1~f-15が正常と判断したとき、入力部53を用いて、図17に示す測定領域欄602に含まれるフリッカ値の欄に、フリッカ値f-1~f-15を入力する(ステップS22)。図19は、フリッカ値が入力された状態の設定画面60を説明する説明図である。測定者は、図19に示す設定画面60に含まれる次へキー603を操作する。
 演算処理部52は、この操作に従って、図20に示す設定画面60を表示部54に表示させる(ステップS23)。図20は、図19に示す設定画面60に含まれる次へキー603が操作されることにより、切り替えられた設定画面60を説明する説明図である。設定画面60には、角度欄604が追加されている。文字領域600には、「フリッカ値を測定したい水平角と垂直角を入力して下さい。」が表示される。フリッカ値を測定したい水平角と垂直角とは、所定の角度と方向の意味である。
 図3、図16Bおよび図20を参照して、測定者は、入力部53を操作して、フリッカ値を測定したい水平角と垂直角(所定の角度と方向)を、角度欄604に入力する(ステップS24)。例えば、水平角0度、垂直角0度が入力されたとする。この場合、測定領域B-8のフリッカ値f-8が、測定対象物と同じ機種の測定対象物Aに設定された所定の測定領域Cについて、所定の角度と方向から測定されたフリッカ値となる。演算処理部52は、図20に示す機種名欄601、測定領域欄602、角度欄604に含まれる情報を、記憶部523に記憶させる。記憶部523は、これらの情報を保存する。
 測定者が、入力部53を操作して、次へキー603を操作する。生成部522は、この操作に従って、角度欄604に入力した水平角と垂直角が、図20に示す測定領域欄602に含まれる水平角と垂直角の15個の組み合わせのうち、いずれかと一致するか否かを判断する(ステップS25)。
 水平角0度、垂直角0度が角度欄604に入力されているので、生成部522は、角度欄604に入力した水平角と垂直角が、15個の組み合わせのうちいずれかと一致していると判断する(ステップS25でYes)。そして、生成部522は、テーブル334を生成する(ステップS27)。これについては後で説明する。
 例えば、水平角0度、垂直角+20度が角度欄604に入力されている場合、生成部522は、角度欄604に入力した水平角と垂直角が、15個の組み合わせのいずれにも一致しないと判断する(ステップS25でNo)。そして、演算処理部52は、図21に示す設定画面60を表示部54に表示させる(ステップS26)。図21は、角度欄604に入力した水平角と垂直角が、図20に示す測定領域欄602に含まれる水平角と垂直角の15個の組み合わせのいずれとも一致しない場合に表示される設定画面60を説明する説明図である。角度欄604には、フリッカ値を入力するための空欄が追加されている。文字領域600には、「フリッカ値を測定したい水平角と垂直角の下で、上記選択した測定領域(測定領域B-8=測定領域C)に対して、フリッカ値を測定して下さい。」が表示される。
 測定者は、操作部34を操作して、フリッカ値を補正しないモードにする。そして、測定者は、二次元フリッカ測定装置3から見て、測定領域B-8が水平角0度かつ垂直角+20度となる位置に、二次元フリッカ測定装置3をセットする。測定者は、二次元フリッカ測定装置3を用いて、測定領域B-8のフリッカ値を測定する。この測定において、補正部332が用いられないので、測定されたフリッカ値は、算出部331が算出したフリッカ値(補正前のフリッカ値)である。測定されたフリッカ値がf-0とする。測定者は、入力部53を用いて、フリッカ値f-0を角度欄604に含まれるフリッカ値の項目の空欄に入力する。演算処理部52は、図21に示す機種名欄601、測定領域欄602、角度欄604に含まれる情報を、記憶部523に記憶させる。記憶部523は、これらの情報を保存する。そして、次へキー603を操作する。これにより、生成部522は、テーブル334を生成する(ステップS27)。
 なお、生成部522は、角度欄604に入力した水平角と垂直角が、図20に示す測定領域欄602に含まれる水平角と垂直角の15個(複数)の組み合わせのいずれにも一致しないと判断した場合(ステップS25でNo)、補間を用いて、フリッカ値を算出してもよい。詳しく説明する。生成部522は、図20に示す測定領域欄602に示される水平角、垂直角、フリッカ値の15個(複数)の組み合わせに対して、補間することにより、角度欄604に入力した水平角と垂直角の下で測定されるフリッカ値を算出する。このように、テーブル334の第2の生成方法によれば、フリッカ値を測定したい水平角と垂直角が変えられても、補間により対応することができる。
 テーブル334の生成について、ステップS25でYesと判断された場合を例にして説明する。生成部522は、図20に示すフリッカ値f-1~f-15とフリッカ値f-8とを基にして、測定領域10-1~10-15(図2)のそれぞれの補正係数を算出し、テーブル334を生成する。測定領域10-1~10-15は、それぞれ、測定領域B-1~B-15と対応する。フリッカ値f-1~f-15のそれぞれを分子とし、フリッカ値f-8がこれらの分母とした値が、補正係数となる。測定領域B-1を例にして説明する。フリッカ値f-8/フリッカ値f-1が、測定領域10-1に割り当てられる補正係数である。ステップS25でNoと判断された場合、生成部522は、フリッカ値f-8の替わりにフリッカ値f-0を用いて、テーブル334を生成する。
 生成部522がテーブル334を生成した後、演算処理部52は、図22に示す設定画面60を表示部54に表示させる(ステップS28)。図22は、テーブル334を含む設定画面60を説明する説明図である。このテーブル334は、フリッカ値を測定したい水平角、垂直角がそれぞれ0度の場合(ステップS25でYesと判断された場合)に対応する。この設定画面60は、次へキー603の替わりに確定キー605を含む。文字領域600には、「テーブルの内容を確認して下さい。問題なければ、確定キーを操作して下さい。」が表示されている。
 測定者が、入力部53を操作して、確定キー605を操作する。以降のステップS13、ステップT5)、図6Bに示すステップS13、ステップT5と同じである。以上がテーブル334の第2の生成方法である。
 テーブル334は、DUTの機種毎に予め生成され、記憶部333に記憶されている。テーブル334は、今回のフリッカの測定、および、今回以降の同じ機種のDUTのフリッカの測定に用いられる。
 次に、実施形態に係る二次元フリッカ測定装置3が、テーブル334を用いてフリッカを測定する動作について説明する。図23は、これを説明するフローチャートである。図2、図3および図23を参照して、フリッカの測定位置に、測定対象となるDUT画面1がセットされている。測定者は、操作部34を操作して、フリッカ値を補正するモードにする(ステップT31)。
 なお、例えば、PC用の液晶ディスプレイの場合、フリッカ値を補正しないモードにされる。PC用の液晶ディスプレイの場合、人間が液晶ディスプレイの画面を見る位置と液晶ディスプレイの画面との距離が比較的近く、二次元フリッカ測定装置3と液晶ディスプレイ画面との距離と同等である。この場合、フリッカ値が補正されると、却って、二次元フリッカ測定装置3で測定されたフリッカ値を基にしたフリッカのムラと、人間が液晶ディスプレイの画面を見ているときに感じるフリッカのムラとに差が生じる。従って、このような場合、フリッカの測定者は、操作部34を操作して、フリッカ値を補正しないモードにする。
 測定者は、操作部34を操作して、フリッカ値を測定する命令をする。演算処理部33は、この命令に従って、二次元撮像素子32に所定のフレームレートでDUT画面1を撮影させる(ステップT32)。これにより、二次元撮像素子32から出力されるDUT画面1の各画素の輝度を示す輝度信号SGが演算処理部33に入力する。
 算出部331は、演算処理部33に入力した輝度信号SG(測光量の一例)を基にして、DUT画面1に設定された測定領域10-1~10-15のぞれぞれのフリッカ値を算出する(ステップT33)。
 補正部332は、このDUT画面1に割り当てられたテーブル334を用いて、測定領域10-1~10-15のぞれぞれのフリッカ値を補正する(ステップT34)。演算処理部33は、測定領域10-1~10-15のぞれぞれの補正されたフリッカ値を、操作部34のディスプレイに表示させる(ステップT35)。
 なお、モバイル用の液晶ディスプレイは、小型なので、複数の液晶ディスプレイが並べられて、フリッカ値が一度に測定される。スマートフォン用の液晶ディスプレイを例にして説明する。図24は、フリッカ値の測定のために並べて配置された複数のスマートフォンSPの模式図である。二次元フリッカ測定装置3に備えられる二次元撮像素子32の撮影範囲R内に、複数のスマートフォンSPが行列状に並べられている。複数のスマートフォンSPのそれぞれの液晶ディスプレイの画面(DUT画面1)対して、複数の測定領域(不図示)が設定され、または、その画面の中心に1つの測定領域(不図示)が設定される。
(実施形態の纏め)
 実施形態の第1局面に係る二次元フリッカ測定装置は、二次元撮像素子と、前記二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出部と、前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する補正部と、を備える。
 測光量(明るさ)は、輝度および画像情報信号を総称する物理量である。輝度は、視感度曲線V(λ)の分光感度特性を持つ二次元撮像素子が測定した測定対象物の光強度である。画像情報信号は、任意の分光感度特性を持つ二次元撮像素子が測定対象物を撮像することにより、二次元撮像素子が生成する光強度信号(RAW画像データ)である。
 所定の角度と方向は、例えば、測定対象物の面の法線を基準にして定められる。二次元フリッカ測定装置の光軸が、水平角0度かつ垂直角0度で規定される角度と方向にされたとき、光軸と法線とが一致する。所定の角度と方向は、例えば、人間が測定対象物を見る位置から見た測定領域の角度と方向と同じでもよいし、略同じでもよい。略同じとは、二次元フリッカ測定装置で測定されたフリッカ値を基にしたフリッカのムラと、人間が測定対象物を見る位置から測定対象物を見ているときに感じるフリッカのムラとに差が生じない程度を意味する。
 補正部は、複数の測定領域のそれぞれのフリッカ値を、所定の角度と方向から複数の測定領域のそれぞれが測光された場合に相当するフリッカ値に補正する。従って、実施形態の第1局面に係る二次元フリッカ測定装置によれば、二次元フリッカ測定装置から見た測定領域の角度と方向を考慮して、測定対象物に設定された複数の測定領域のそれぞれのフリッカ値を測定することができる。
 上記構成において、前記複数の測定領域のそれぞれの前記フリッカ値を、前記所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に変換するテーブルを予め記憶する記憶部をさらに備え、前記補正部は、前記テーブルを用いて前記補正をする。
 この構成は、記憶部に予め記憶されているテーブルを用いて、フリッカ値を補正する。これは、フリッカ値を補正する手法の一例である。他の例として、補正式が予め記憶部に記憶されており、補正部は、この補正式を用いてフリッカ値を補正する手法がある。
 上記構成において、前記算出部によって算出された、前記複数の測定領域のそれぞれの前記フリッカ値を、前記補正部が前記補正をするか否かを選択する操作が可能な操作部をさらに備える。
 例えば、PC用の液晶ディスプレイの場合、人間が液晶ディスプレイの画面を見る位置と液晶ディスプレイの画面との距離が比較的近く、二次元フリッカ測定装置と液晶ディスプレイ画面との距離と同等である。この場合、フリッカ値が補正されると、却って、二次元フリッカ測定装置で測定されたフリッカ値を基にしたフリッカのムラと、人間がPC用の液晶ディスプレイの画面を見ているときに感じるフリッカのムラとに差が生じる。従って、このような場合、測定者は、操作部を操作して、フリッカ値を補正しない選択をする。
 実施形態の第2局面に係る二次元フリッカ測定方法は、二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出ステップと、前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する補正ステップと、を備える。
 実施形態の第2局面に係る二次元フリッカ測定方法は、実施形態の第1局面に係る二次元フリッカ測定装置を方法の観点から規定しており、実施形態の第1局面に係る二次元フリッカ測定装置と同様の作用効果を有する。
 実施形態の第3局面に係る二次元フリッカ測定プログラムは、二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出ステップと、前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する補正ステップと、をコンピュータに実行させる。
 実施形態の第3局面に係る二次元フリッカ測定プログラムは、実施形態の第1局面に係る二次元フリッカ測定装置をプログラムの観点から規定しており、実施形態の第1局面に係る二次元フリッカ測定装置と同様の作用効果を有する。
 上記構成において、前記補正ステップは、前記算出ステップによって算出された、前記複数の測定領域のそれぞれの前記フリッカ値を、前記所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に変換するテーブルを用いて、前記補正をする。
 この構成は、テーブルを用いて、フリッカ値を補正する。
 上記構成において、前記算出ステップの前に、前記複数の測定領域のそれぞれに割り当てられた複数の補正係数を含む前記テーブルを予め生成する生成ステップを、さらにコンピュータに実行させる。
 この構成によれば、二次元フリッカ測定プログラムのユーザ(測定者)が、二次元フリッカ測定プログラムを用いて、テーブルを生成することができる。
 上記構成において、前記生成ステップは、前記測定対象物と同じ機種の測定対象物Aに設定された、複数の測定領域Bのそれぞれについて、前記所定の角度と方向から測定された前記フリッカ値と、前記複数の測定領域のそれぞれの前記フリッカ値が測定される際に、前記二次元撮像素子を備える二次元フリッカ測定装置が設置される位置から、前記二次元フリッカ測定装置を用いて得られた、前記複数の測定領域Bのそれぞれの前記補正前の前記フリッカ値と、を基にして、前記複数の補正係数を算出する。
 テーブルの内容は、測定対象物の機種に応じて異なる。この構成によれば、測定対象物の機種に応じたテーブルを生成することができる。測定対象物Aは、測定対象物と同じ機種であり、複数の測定領域Bが設定される。以下、測定対象物と測定対象物Aとは区別して記載されており、複数の測定領域と複数の測定領域Bとは区別して記載されている。
 測定対象物Aに設定された複数の測定領域Bの数、位置は、測定対象物に設定された複数の測定領域の数、位置と同じでもよいし、異なっていてもよい。異なっている場合、生成ステップは、複数の測定領域Bのフリッカ値を補間することにより、必要となるフリッカ値を求める。
 複数の測定領域Bのそれぞれの補正前のフリッカ値は、次のようにして得られる。二次元フリッカ測定装置の位置は、測定対象物に設定された複数の測定領域のそれぞれのフリッカ値を測定する場合と同じである。この状態で、二次元撮像素子は、複数の測定領域Bのそれぞれを測光し、測光量を示す信号を出力する。算出部は、測光量を示す信号を基にして、複数の測定領域Bのそれぞれのフリッカ値を算出する。これらのフリッカ値が、複数の測定領域Bのそれぞれの補正前のフリッカ値である。
 補正係数について具体例で説明する。測定対象物に設定された複数の測定領域が、15個の測定領域10-1~10-15とし、測定対象物Aに設定された複数の測定領域Bが、15個の測定領域B-1~B-15とする。15個の測定領域B-1~B-15は、15個の測定領域10-1~10-15と同じ位置にある。測定領域B-1について、所定の角度と方向から測定されたフリッカ値がF-1とする。二次元フリッカ測定装置を用いて得られた、測定領域B-1の補正前のフリッカ値f-1とする。測定領域10-1に割り当てられる補正係数は、F-1/f-1となる。測定領域10-2~10-15に割り当てられる補正係数についても同様にして求められる。
 上記構成において、前記生成ステップは、前記測定対象物と同じ機種の測定対象物Aに設定された所定の測定領域Cについて、前記所定の角度と方向から測定された前記フリッカ値と、前記所定の測定領域Cについて、角度と方向の複数の組み合わせの下で測定された複数の前記フリッカ値と、を基にして、前記複数の補正係数を算出する。
 テーブルの内容は、測定対象物の機種に応じて異なる。この構成によれば、測定対象物の機種に応じたテーブルを生成することができる。
 所定の角度と方向が、角度と方向の複数の組み合わせの中に含まれる場合、所定の測定領域Cについて、所定の角度と方向からのフリッカ値の測定は省略できる。
 角度と方向の複数の組み合わせは、測定対象物に設定された複数の測定領域のそれぞれの角度と方向に一致していてもよいし、一致していなくてもよい。測定対象物に設定された複数の測定領域の数が15を例にして説明する。前者は、測定対象物に設定された15個の測定領域のそれぞれの角度と方向が、角度と方向の15個の組み合わせと一致することである。後者の場合、生成ステップは、測定対象物に設定された15個の測定領域のそれぞれの角度と方向から測定されたフリッカ値のうち、足りない角度と方向のフリッカ値を補間により求める。すなわち、足りない角度と方向のフリッカ値は、所定の測定領域Cについて、角度と方向の複数の組み合わせの下で測定されたフリッカ値を補間することにより求められる。
 補正係数について具体例で説明する。測定対象物に設定された複数の測定領域が、15個の測定領域10-1~10-15とし、測定対象物Aに設定された複数の測定領域Bが、15個の測定領域B-1~B-15とする。15個の測定領域B-1~B-15は、15個の測定領域10-1~10-15と同じ位置にある。所定の測定領域Cについて、所定の角度と方向から測定されたフリッカ値がf-0とする。所定の測定領域Cについて、測定領域B-1の角度と方向から測定されたフリッカ値がf-1とする。測定領域10-1に割り当てられる補正係数は、f-0/f-1となる。測定領域10-2~10-15に割り当てられる補正係数についても同様にして求められる。
 本発明の実施形態が詳細に図示され、かつ、説明されたが、それは単なる図例及び実例であって限定ではない。本発明の範囲は、添付されたクレームの文言によって解釈されるべきである。
 2018年9月13日に提出された日本国特許出願特願2018-171560は、その全体の開示が、その全体において参照によりここに組み込まれる。
 本発明によれば、二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラムを提供することができる。

Claims (9)

  1.  二次元撮像素子と、
     前記二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出部と、
     前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する補正部と、を備える、二次元フリッカ測定装置。
  2.  前記複数の測定領域のそれぞれの前記フリッカ値を、前記所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に変換するテーブルを予め記憶する記憶部をさらに備え、
     前記補正部は、前記テーブルを用いて前記補正をする、請求項1に記載の二次元フリッカ測定装置。
  3.  前記算出部によって算出された、前記複数の測定領域のそれぞれの前記フリッカ値を、前記補正部が前記補正をするか否かを選択する操作が可能な操作部をさらに備える、請求項1又は2に記載の二次元フリッカ測定装置。
  4.  二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出ステップと、
     前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する補正ステップと、を備える、二次元フリッカ測定方法。
  5.  二次元撮像素子が測定対象物を撮影することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ値を算出する算出ステップと、
     前記複数の測定領域のそれぞれの前記フリッカ値を、所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に補正する補正ステップと、をコンピュータに実行させる二次元フリッカ測定プログラム。
  6.  前記補正ステップは、前記算出ステップによって算出された、前記複数の測定領域のそれぞれの前記フリッカ値を、前記所定の角度と方向から前記複数の測定領域のそれぞれが測光された場合に相当する前記フリッカ値に変換するテーブルを用いて、前記補正をする、請求項5に記載の二次元フリッカ測定プログラム。
  7.  前記算出ステップの前に、前記複数の測定領域のそれぞれに割り当てられた複数の補正係数を含む前記テーブルを予め生成する生成ステップを、さらにコンピュータに実行させる、請求項6に記載の二次元フリッカ測定プログラム。
  8.  前記生成ステップは、
     前記測定対象物と同じ機種の測定対象物Aに設定された、複数の測定領域Bのそれぞれについて、前記所定の角度と方向から測定された前記フリッカ値と、
     前記複数の測定領域のそれぞれの前記フリッカ値が測定される際に、前記二次元撮像素子を備える二次元フリッカ測定装置が設置される位置から、前記二次元フリッカ測定装置を用いて得られた、前記複数の測定領域Bのそれぞれの前記補正前の前記フリッカ値と、
     を基にして、前記複数の補正係数を算出する、請求項7に記載の二次元フリッカ測定プログラム。
  9.  前記生成ステップは、
     前記測定対象物と同じ機種の測定対象物Aに設定された所定の測定領域Cについて、前記所定の角度と方向から測定された前記フリッカ値と、
     前記所定の測定領域Cについて、角度と方向の複数の組み合わせの下で測定された複数の前記フリッカ値と、
     を基にして、前記複数の補正係数を算出する、請求項7に記載の二次元フリッカ測定プログラム。
PCT/JP2019/027847 2018-09-13 2019-07-16 二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム WO2020054209A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546726A JP7189515B2 (ja) 2018-09-13 2019-07-16 二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171560 2018-09-13
JP2018-171560 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054209A1 true WO2020054209A1 (ja) 2020-03-19

Family

ID=69778235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027847 WO2020054209A1 (ja) 2018-09-13 2019-07-16 二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム

Country Status (2)

Country Link
JP (1) JP7189515B2 (ja)
WO (1) WO2020054209A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109535A (ja) * 2003-09-26 2005-04-21 Sony Corp フリッカ測定装置
JP2006091149A (ja) * 2004-09-21 2006-04-06 Seiko Epson Corp フリッカ測定方法、および、フリッカ測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109535A (ja) * 2003-09-26 2005-04-21 Sony Corp フリッカ測定装置
JP2006091149A (ja) * 2004-09-21 2006-04-06 Seiko Epson Corp フリッカ測定方法、および、フリッカ測定装置

Also Published As

Publication number Publication date
JP7189515B2 (ja) 2022-12-14
JPWO2020054209A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
EP3287986B1 (en) Image correction method of projector and image correction system
JP5241700B2 (ja) 画質が改良された撮像装置
JP5910157B2 (ja) 画像投射装置
JP7258572B2 (ja) 映像表示装置および方法
JP4770197B2 (ja) プレゼンテーション制御装置およびプログラム
JP6645687B2 (ja) 表示装置及び制御方法
JP2010122273A (ja) 投写光学系のズーム比測定方法、そのズーム比測定方法を用いた投写画像の補正方法及びその補正方法を実行するプロジェクタ
JP2010288063A (ja) プロジェクター、プログラム、情報記憶媒体および台形歪み補正方法
JP6035947B2 (ja) 画像表示装置、画像表示方法および画像表示プログラム
JP2017083550A (ja) 情報処理装置、画像投影システムおよびプログラム
JP2016085380A (ja) 制御装置、制御方法、及び、プログラム
JP6749402B2 (ja) 投射型映像表示装置および投射映像の調整方法
CN109076186B (zh) 显示***以及信息处理方法
WO2020085303A1 (ja) 情報処理装置及び情報処理方法
JP6162971B2 (ja) 画像処理装置、画像処理方法、撮像装置及びその制御方法
JP6713622B2 (ja) 3次元計測装置、3次元計測システム、3次元計測方法及びプログラム
JP6221287B2 (ja) プロジェクター及びプロジェクターの制御方法
WO2020054209A1 (ja) 二次元フリッカ測定装置、二次元フリッカ測定方法、および、二次元フリッカ測定プログラム
US10616542B2 (en) Multi-dimensional image projection apparatus and multi-dimensional image calibration method thereof
CN114339179B (zh) 投影校正方法、装置、存储介质以及投影设备
JP2019120885A (ja) 投影制御システム及び投影制御方法
JP3730982B2 (ja) プロジェクタ
JP5691631B2 (ja) 画像合成方法
JP2021105639A (ja) 投写システムの制御方法、投写システム及び制御プログラム
JPWO2020079946A1 (ja) フリッカ測定装置、フリッカ測定方法、フリッカ測定プログラム、フリッカ評価支援装置、フリッカ評価支援方法およびフリッカ評価支援プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860466

Country of ref document: EP

Kind code of ref document: A1