WO2020050638A1 - 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법 - Google Patents

전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법 Download PDF

Info

Publication number
WO2020050638A1
WO2020050638A1 PCT/KR2019/011448 KR2019011448W WO2020050638A1 WO 2020050638 A1 WO2020050638 A1 WO 2020050638A1 KR 2019011448 W KR2019011448 W KR 2019011448W WO 2020050638 A1 WO2020050638 A1 WO 2020050638A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane foam
foam composite
glycol
shear thickening
thickening fluid
Prior art date
Application number
PCT/KR2019/011448
Other languages
English (en)
French (fr)
Inventor
유의상
권미연
이현경
김주혜
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190109489A external-priority patent/KR102299012B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2020050638A1 publication Critical patent/WO2020050638A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a polyurethane foam composite, and more particularly, to a polyurethane foam composite for shock absorption to which a shear thickening fluid is applied.
  • the shock absorbing material absorbs impact energy to reduce injury to an object or body
  • plastic foam materials are typically used in various ways.
  • the plastic foam material has the advantage of being excellent in cushioning, relatively light and excellent in flexibility because it has many pores of a small size inside.
  • Polymer materials such as polyurethane, polystyrene, polypropylene, and polyethylene are mainly used for foaming products, and among them, polyurethane and polystyrene foams having a relatively high density and rigid and rigid form are mainly used as shock absorbing materials.
  • the conventional plastic foam-type shock absorbing material does not effectively prevent external shock when deformed too easily, while the foam itself may become an impact object when deformation is difficult.
  • the volume becomes large, which causes inconvenience when using it.
  • An object of the present invention is to provide a polyurethane foam composite having improved shock absorption capacity by connecting a shear thickening fluid with a polyurethane and a urethane bond.
  • the porous comprising a polyurethane; And a domain distributed in the matrix and including a shear thickening fluid, wherein the shear thickening fluid includes glycol and silica, and a polyurethane foam composite is provided.
  • the domain and the matrix may be connected by a urethane bond represented by Structural Formula 1 below, and the urethane bond may connect the polyurethane of the matrix and the glycol of the shear thickening fluid.
  • the polyurethane foam composite may include 1 to 30 parts by weight of the shear thickening fluid relative to 100 parts by weight of the polyurethane.
  • the shear thickening fluid may include 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the glycol.
  • the polyurethane may be prepared by condensation reaction of a polyol compound and an isocyanate compound.
  • the polyol compound may include at least one selected from the group consisting of polyether polyols and polyester polyols.
  • the polyether polyol includes at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, polymethylene glycol, and polytetramethylene glycol
  • the polyester polyol is ethylene glycol, diethylene glycol, dipropylene glycol , Propanediol, butanediol, neopentyl glycol, pentanediol and hexanediol and at least one selected from the group consisting of succinic acid, adipic acid, sebacic acid, azelaic acid, phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid, oxalic acid and naph. It may include one or more selected from the group consisting of one or more selected from the group consisting of styrene dicarboxylic acid esterification reaction.
  • the isocyanate compound is 4,4'-diphenylmethane diisocyanate (MDI), carbodiimide-modified MDI, polymeric MDI, hexamethylene diisocyanate, hydrogenated MDI, 4,4'-dicyclohexylmethane Diisocyanate (H 12 MDI), isophorone diisocyanate (IPDI), 1,4-cyclohexylmethane diisocyanate (CHDI), 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate (TDI) And isophorone diisocyanate.
  • MDI 4,4'-diphenylmethane diisocyanate
  • carbodiimide-modified MDI carbodiimide-modified MDI
  • polymeric MDI polymeric MDI
  • hexamethylene diisocyanate hydrogenated MDI
  • 4,4'-dicyclohexylmethane Diisocyanate
  • glycol is a group consisting of ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, polyethylene glycol, poly-1,2-propylene glycol, poly-1,3-propylene glycol and polytetramethylene glycol It may include one or more selected from.
  • the number average molecular weight of the polyethylene glycol may be 100 to 4,000.
  • the silica may include one or more selected from the group consisting of fumed silica, spherical silica (spherical silica) and fused silica (fused silica).
  • a shock absorbing material including the polyurethane foam composite is provided.
  • a shear thickening fluid comprising silica and glycol
  • B preparing a first mixture by mixing and stirring the polyol and the shear thickening fluid
  • mixing the first mixture with an isocyanate compound stirring it, injecting it into a mold, and reacting to prepare a polyurethane foam composite
  • a method for producing a polyurethane foam composite is provided.
  • the shear thickening fluid may include 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the glycol.
  • the polyurethane foam composite may include 1 to 30 parts by weight of the shear thickening fluid relative to 100 parts by weight of the polyurethane foam composite.
  • the manufacturing method of the polyurethane foam composite may further include; after the step (b), (b-1) further adding and stirring a catalyst to the first mixture.
  • the stirring in step (b) may be performed for 5 to 120 seconds
  • the stirring in step (c) may be performed for 2 to 60 seconds
  • the stirring in step (b-1) may be performed for 5 to 100 seconds.
  • step (c) can be carried out in a mold at a temperature of 40 to 70 ° C.
  • the first mixture of step (c) may further include a blowing agent.
  • the polyurethane foam composite of the present invention includes a shear thickening fluid, and a polyurethane and a shear thickening fluid are connected to each other by urethane bonding, thereby providing excellent shock absorption performance.
  • Figure 1 shows the viscosity change according to the shear rate (shear rate) of the shear thickening fluid prepared according to Preparation Example 1.
  • Figure 2 shows a scanning electron microscope image of the polyurethane foam prepared according to Examples 1 to 4 and Comparative Example 1.
  • Figure 3a is a FT-IR spectrum of the shear thickening fluid according to Preparation Example 1 and the polyurethane foam according to Example 3
  • Figure 3b is an FT-IR spectrum of the polyurethane foam prepared according to Comparative Example 1.
  • Figure 4 shows the back strain of the polyurethane foam prepared according to Examples 1 to 4 and Comparative Example 1.
  • first and second to be used below may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
  • a component when said to be “formed” or “stacked” on another component, it may be formed or stacked directly attached to the front or one side of the surface of the other component, but may be intermediate. It should be understood that other components may exist in the.
  • matrix refers to a continuous phase comprising a polyurethane present between pores and pores in the polyurethane foam composite of the present invention.
  • domain means a non-continuous phase that exists inside the matrix and contains a shear thickening fluid.
  • Shear thickening fluid is a type of non-Newtonian fluid that has a viscosity when shear stress or shear rate increases in a colloidal suspension in which solid particles are dispersed in a liquid dispersion medium. It is a fluid that causes a reversible state change from liquid to solid due to the rapidly increasing rheological properties.
  • Shear thickening fluid is usually in a liquid phase, and when a sudden impact is applied from the outside, a phase change to a solid phase occurs, and due to the property of being hardened, research into which fibers are impregnated and used as bulletproof or anti-vibration materials has been actively conducted.
  • the polyurethane foam composite of the present invention includes a polyurethane foam and a shear thickening fluid.
  • the polyurethane foam composite is porous, a matrix comprising polyurethane; And a domain distributed in the matrix and including a shear thickening fluid, wherein the shear thickening fluid comprises glycol and silica.
  • the domain and the matrix may be connected by a urethane bond represented by Structural Formula 1 below, and the urethane bond may connect the polyurethane of the matrix and the glycol of the shear thickening fluid.
  • the polyurethane foam composite may include 1 to 30 parts by weight of the shear thickening fluid relative to 100 parts by weight of the polyurethane.
  • the shear thickening fluid may contain 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the glycol, preferably 10 to 25 parts by weight, and more preferably 12 to 20 parts by weight.
  • the polyurethane may be prepared by condensation reaction of a polyol compound and an isocyanate compound.
  • the polyol compound may include a polyether polyol and a polyester polyol.
  • the polyether polyol includes at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, polymethylene glycol, and polytetramethylene glycol
  • the polyester polyol is ethylene glycol, diethylene glycol, dipropylene glycol , Propanediol, butanediol, neopentyl glycol, pentanediol and hexanediol and at least one selected from the group consisting of succinic acid, adipic acid, sebacic acid, azelaic acid, phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid, oxalic acid and naph. It may include one or more selected from the group consisting of one or more selected from the group consisting of styrene dicarboxylic acid esterification reaction.
  • the isocyanate compound is 4,4'-diphenylmethane diisocyanate (MDI), carbodiimide-modified MDI, polymeric MDI, hexamethylene diisocyanate, hydrogenated MDI, 4,4'-dicyclohexylmethane Diisocyanate (H 12 MDI), isophorone diisocyanate (IPDI), 1,4-cyclohexylmethane diisocyanate (CHDI), 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate (TDI) And it may include one or more selected from the group consisting of isophorone diisocyanate, preferably 4,4'- diphenylmethane diisocyanate.
  • MDI 4,4'-diphenylmethane diisocyanate
  • carbodiimide-modified MDI polymeric MDI
  • polymeric MDI polymeric MDI
  • the polyurethane may have a weight average molecular weight of 10,000 to 2,000,000.
  • glycol is a group consisting of ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, polyethylene glycol, poly-1,2-propylene glycol, poly-1,3-propylene glycol and polytetramethylene glycol It may include one or more selected from.
  • the number average molecular weight of the polyethylene glycol may be 100 to 4,000, preferably 100 to 1,000, more preferably 100 to 500, and even more preferably 100 to 300.
  • the number average molecular weight of polyethylene glycol is less than 100, it is not preferable because the viscosity increase is insufficient when the shear thickening phenomenon occurs, and the impact energy absorption effect by the shear stress becomes insignificant, and when it exceeds 4,000, the shear as the fluid disappears. It is not preferable because thickening is difficult to occur.
  • the silica may include one or more selected from the group consisting of fumed silica, spherical silica (spherical silica) and fused silica (fused silica).
  • the present invention provides a shock absorbing material comprising the polyurethane foam composite.
  • a shear thickening fluid comprising silica and glycol is prepared (step a).
  • a first mixture is prepared by mixing and stirring the polyol and the shear thickening fluid (step b).
  • an isocyanate compound is mixed with the first mixture, stirred, injected into a mold, and reacted to prepare a polyurethane foam composite (step c).
  • the shear thickening fluid may be prepared by mixing 5 to 30 parts by weight of the silica with respect to 100 parts by weight of the glycol, preferably 10 to 25 parts by weight, and more preferably 12 to 20 parts by weight. .
  • the polyurethane foam composite may include 1 to 30 parts by weight of the shear thickening fluid relative to 100 parts by weight of the polyurethane foam composite.
  • the manufacturing method of the polyurethane foam composite may further include a step of adding and stirring the catalyst to the first mixture after step b (step b-1).
  • the catalyst in step b-1 may include amines, preferably triethyleneamine, pentamethylethylenetriamine, dimethylcyclohexylamine and tris (3-dimethylamino) ) It may include one or more selected from the group consisting of propyl hexahydrotriamine (tris (3-dimethylamin) propylhexahydroamine), and more preferably may include triethyleneamine.
  • the stirring of step b may be performed for 5 to 120 seconds, preferably 10 to 90 seconds, more preferably 15 to 60 seconds, and even more preferably 20 to 40 seconds.
  • the stirring time of step b is less than 5 seconds, it is not preferable because the shear thickening fluid is insufficient to disperse in the polyol, and when it exceeds 120 seconds, the polyol of the shear thickening fluid diffuses out of the shear thickening fluid and viscosity during shear thickening. It is not preferable because the effect of absorbing impact energy due to shear stress is insufficient due to insufficient rise.
  • the stirring of step c may be performed for 2 to 60 seconds, preferably 3 to 30 seconds, more preferably 5 to 20 seconds, and even more preferably 7 to 15 seconds.
  • the stirring time in step c is less than 2 seconds, it is not preferable because the isocyanate compound is insufficient to disperse in the first mixture, and when it exceeds 60 seconds, the polyol of the shear thickening fluid diffuses out of the shear thickening fluid and viscosity during shear thickening. It is not preferable because the effect of absorbing impact energy due to shear stress is insufficient due to insufficient rise.
  • step c may be performed at 500 to 5000 rpm, preferably 800 to 4,000 rpm, even more preferably 1,000 to 3,000 rpm, and even more preferably 1,500 to 2,000 rpm.
  • the stirring in step c is less than 500 rpm, it is not preferable because the first mixture is not sufficiently mixed with the isocyanate compound, and when it exceeds 5,000 rpm, the domain form of the shear thickening fluid may be destroyed, which is not preferable.
  • step b-1 may be performed for 5 to 100 seconds, preferably 5 to 70 seconds, more preferably 5 to 50 seconds, even more preferably 10 to 30 seconds.
  • the stirring time in step b-1 is less than 5 seconds, it is not preferable because the catalyst is insufficient to disperse in the first mixture, and when it exceeds 100 seconds, the process efficiency is poor, which is undesirable.
  • step c may be performed at a temperature of 40 to 70 ° C in the mold. If the temperature of step c is less than 40 ° C, it is not preferable because the reaction between the isocyanate functional group and the polyol functional group is difficult to occur, and when it exceeds 70 ° C, an excessively fast reaction is induced, and it is difficult to control the reaction.
  • the first mixture of step c may further include a blowing agent, preferably water, cyclopentane, isopentane, normalpentane, chlorofluorocarbon, It may include one or more selected from the group consisting of hydrochlorofluorocarbons and hydrofluorocarbons, and more preferably water.
  • a blowing agent preferably water, cyclopentane, isopentane, normalpentane, chlorofluorocarbon, It may include one or more selected from the group consisting of hydrochlorofluorocarbons and hydrofluorocarbons, and more preferably water.
  • the polyurethane foam composite produced by the above method can be used in shock absorbing materials.
  • the polyurethane foam composite of the present invention when shocked, combines molecules so as to absorb its energy and becomes hard in an instant, and includes a shear thickening fluid that effectively absorbs the shock energy, and thus can significantly improve the shock absorbing power of the shock absorbing material.
  • Fumed silica (SiO 2 content: 99.8 wt%, specific surface area (BET): 200 m 2 /) while adding 85 parts by weight of polyethylene glycol having a number average molecular weight (M n ) 200 to the 3-neck flask and stirring the impeller's stirring speed to 60 rpm or less. g, pH: 4) 15 parts by weight was added and stirred for 24 hours at 50 rpm or less to prepare a uniform shear thickening fluid.
  • BET specific surface area
  • the density of the polymerized polyurethane was 0.1915 g / cm 3 and the hardness was 78.6 (Shore Hardness tester, F type).
  • a polyurethane foam composite was prepared in the same manner as in Example 1, except that 10 parts by weight of the shear thickening fluid was used instead of 5 parts by weight of the shear thickening fluid.
  • the density of the polymerized polyurethane was 0.1949 g / cm 3 and the hardness was 73.6.
  • a polyurethane foam composite was prepared in the same manner as in Example 1, except that 15 parts by weight of the shear thickening fluid was used instead of 5 parts by weight of the shear thickening fluid.
  • the density of the polymerized polyurethane was 0.1844 g / cm 3 and the hardness was 70.3.
  • a polyurethane foam composite was prepared in the same manner as in Example 1, except that 20 parts by weight of the shear thickening fluid was used instead of 5 parts by weight of the shear thickening fluid.
  • the density of the polymerized polyurethane was 0.1851 g / cm 3 and the hardness was 39.0.
  • a polyurethane foam composite was prepared in the same manner as in Example 1, except that 30 parts by weight of MDI and 5 parts by weight of shear thickening fluid were used instead of 29.25 parts by weight of MDI and 3.25 parts by weight of shear thickening fluid.
  • a polyurethane foam composite was prepared in the same manner as in Example 1, except that 30 parts by weight of MDI and 5 parts by weight of shear thickening fluid were used instead of 30.79 parts by weight of MDI and 3.42 parts by weight of shear thickening fluid.
  • a polyurethane foam was prepared in the same manner as in Example 1, except that a shear thickening fluid was not used instead of 5 parts by weight of the shear thickening fluid.
  • the density of the polymerized polyurethane was 0.1835 g / cm 3 and the hardness was 81.6.
  • Polyurethane foam was prepared in the same manner as in Example 1, except that 30 parts by weight of MDI and 5 parts by weight of shear thickening fluid were used instead of 29.25 parts by weight of MDI and no shear thickening fluid was used.
  • Table 1 below shows the proportions by weight of the polyurethane foam composites according to Examples 1 to 6 and Comparative Examples 1 and 2.
  • Example 1 65 30 5 0.01
  • Example 2 65 30 10 0.01
  • Example 3 65 30 15 0.01
  • Example 4 65 30 20 0.01
  • Example 5 65 29.25 3.25 0.01
  • Figure 1 shows the viscosity change according to the shear rate (shear rate) of the shear thickening fluid prepared according to Preparation Example 1.
  • shear viscosity according to the normal shear rate was measured using a rheometer (Advanced Rheometric Expansion System, Rhemetic Scientific, USA). The measurement having a diameter of 50mm was used for the angle of 2 ° cone and the plate-like viscoelasticity test fixture (Cone & plate geometry) range of shear rates of data 0.1 to 1000s - was measured at 1.
  • a shear thickening fluid which is a type of non-Newtonian fluid having a rheological characteristic in which the viscosity rapidly increases when the shear rate is increased, was prepared.
  • FIG. 2 shows electron microscopic images of polyurethane foam composites prepared according to Examples 1 to 4 and Comparative Example 1.
  • it was prepared according to Examples 1 to 4 and Comparative Example 1 at x35, x2000, x5000 and x10000 magnifications using a scanning electron microscope (SEM) to confirm whether the complex of the polyurethane foam and the shear thickening fluid was formed.
  • SEM scanning electron microscope
  • FIG. 2 it can be seen that pores were formed inside the polyurethane foam in the x35 magnification image, and the magnification between the pores and the pores was observed at an x2000 magnification, and as a result, in Examples 1 to 4, the circular shape was not visible You can see that the white domain indicated by the dotted line exists.
  • the x5000 magnification image of FIG. 2 enlarges a polyurethane foam support in which a domain including a support portion of a foam indicated by a dotted line in a triangle, square and trapezoid shape and a shear thickening fluid indicated by a dotted line in a circular shape in the x2000 magnification image
  • Test Example 3 Confirmation of urethane bond between shear thickening fluid and polyurethane foam
  • Figure 3a is a shear thickening fluid according to Preparation Example 1 and FT-IR spectrum of the polyurethane foam according to Example 3
  • Figure 3b is the invention synthesized by FT-IR spectrum of the polyurethane foam prepared according to Comparative Example 1 The structure of the urethane foam composite was analyzed.
  • FIG. 3b similar to Example 3 of Figure 3a it was observed that the transmittance increased at 1724cm -1 and 1533cm -1 points.
  • the shear thickening fluid when forming the polyurethane foam containing the shear thickening fluid, it can be seen that a urethane bond is formed between the shear thickening fluid and the polyurethane foam, and the shear thickening fluid is also a support (matrix, wall) between the pores and the pores of the polyurethane foam. It can be seen that it exerts the effect of shear thickening fluid when it is present in combination with) and shear stress is generated against external force.
  • Figure 4 shows the back strain of Examples 1 to 4 and Comparative Example 1 according to the low-speed impact test results
  • Table 2 summarizes the impact depth (trauma depth) and the impact transmission (shock resistance) according to the low-speed impact test results Is shown.
  • Example 1 42.95 0.6 - Example 2 41.64 3.6 - Example 3 35.88 16.9 - Example 4 57.09 -32.2 - Example 5 - - 1217 Example 6 - - 1268 Comparative Example 1 43.19 0 - Comparative Example 2 - - 1649
  • the polyurethane foam composites prepared according to Examples 1 to 4 and Comparative Example 1 were measured using a low velocity impactor to measure the trauma depth of the back surface of the polyurethane foam subjected to external force.
  • the oasis foam which shows the impact as it is on the back side where the impact was applied, was used to measure the deformation of the foam after floating it in plaster.
  • the dispersion state and energy size of impact energy can be visually confirmed from the shape of the rear deformation, and in the case of the polyurethane foam containing the shear thickening fluid, the external force spreads to the surface compared to the polyurethane foam not included in the impact. You can see that the length change for the direction is short.
  • the external impact energy is partially absorbed from the polyurethane foam containing the shear thickening fluid to reduce the impact transmitted to the back of the test piece.
  • the measured impact depths (mm) of the polyurethane foam composites prepared according to Examples 1 to 4 and Comparative Example 1 were 42.95, 41.64, 35.88, 57.09, and 43.19, respectively, compared to 0.6 in the shear-free fluid-free composite. %, 3.6%, 16.9%, and -32.2%.
  • the content of the shear thickening fluid in the polyurethane foam composite is 20 parts by weight, the content of the shear thickening fluid excessively reduces the support bond of the polyurethane foam to form a soft polyurethane foam, thereby reducing the relative compressive hardness and impact depth. Can be seen as getting bigger.
  • the impact transmission was measured by measuring the energy reaching the sensor below when 5J of energy was applied by dropping a 2.5kg dumbbell, and the impact resistance was measured, and the results are shown in Table 2.
  • the impact transmission amount of Example 5 and Comparative Example 2 in which the shear thickening fluid was used as 3.25 parts by weight was 1217N, respectively. It can be confirmed that it is 1649N. That is, it was found that the impact transmission amount of the polyurethane foam composite of Example 5 in which 3.25 parts by weight of shear thickening fluid was used was significantly reduced compared to the polyurethane of Comparative Example 2 in which shear thickening fluid was not used. At this time, the thickness of the polyurethane foam composite used in the experiment was used.
  • the polyurethane foam composite of the present invention includes a shear thickening fluid, and a polyurethane and a shear thickening fluid are connected to each other by urethane bonding, thereby providing excellent shock absorption performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

본 발명은 다공성이고, 폴리우레탄을 포함하는 매트릭스; 및 상기 매트릭스에 분포하고, 전단농화유체를 포함하는 도메인;을 포함하고, 상기 전단농화유체는 글리콜과 실리카를 포함하는 것인, 폴리우레탄 폼 복합체에 관한 것이다. 본 발명의 폴리우레탄 폼 복합체는 전단농화유체를 포함하고, 우레탄 결합으로 폴리우레탄과 전단농화유체가 연결되어, 충격 흡수 성능이 우수한 효과가 있다.

Description

전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법
본 발명은 폴리우레탄 폼 복합체에 관한 것으로, 보다 상세하게는 전단농화유체를 적용한 충격흡수용 폴리우레탄 폼 복합체에 관한 것이다.
충격 흡수 소재는 충격에너지를 흡수하여 물체 또는 신체에 상해를 줄이는 역할을 하며 플라스틱 폼 소재가 대표적으로 다양하게 사용된다. 플라스틱 폼 소재는 내부에 작은 사이즈의 기공을 많이 가지고 있어 완충성이 뛰어나며, 비교적 가볍고 유연성이 우수하다는 장점을 가지고 있다. 폴리우레탄, 폴리스틸렌, 폴리프로필렌, 폴리에틸렌 등의 고분자 재료가 발포제품에 주로 사용되며 그 중, 상대적으로 밀도가 높으며 딱딱하고 견고한 형태의 폴리우레탄 및 폴리스틸렌 폼이 주로 충격 흡수 소재로 사용된다.
그러나, 종래 플라스틱 폼 형태의 충격 흡수 소재는 너무 쉽게 변형되면 효과적으로 외부 충격을 막지 못하는 반면 변형이 어려우면 폼 자체가 충격 물체가 될 수 있다. 또한, 플라스틱 폼의 충격 흡수 효과를 높이고자 할 때 부피가 커져 이를 이용할 때 불편함이 발생한다.
본 발명의 목적은 전단농화유체를 폴리우레탄과 우레탄 결합으로 연결함으로써 충격흡수능력이 향상된 폴리우레탄 폼 복합체를 제공하는데 있다.
본 발명의 일 측면에 따르면, 다공성이고, 폴리우레탄을 포함하는 매트릭스; 및 상기 매트릭스에 분포하고, 전단농화유체를 포함하는 도메인;을 포함하고, 상기 전단농화유체는 글리콜과 실리카를 포함하는 것인, 폴리우레탄 폼 복합체가 제공된다.
또한, 상기 도메인과 상기 매트릭스가 아래 구조식 1로 표시되는 우레탄 결합으로 연결되고, 상기 우레탄 결합이 상기 매트릭스의 폴리우레탄과 상기 전단농화유체의 글리콜을 연결할 수 있다.
[구조식 1]
Figure PCTKR2019011448-appb-I000001
또한, 상기 폴리우레탄 폼 복합체가 상기 폴리우레탄 100 중량부에 대하여 상기 전단농화유체 1 내지 30 중량부를 포함할 수 있다.
또한, 상기 전단농화유체가 상기 글리콜 100 중량부에 대하여 상기 실리카 5 내지 30 중량부를 포함할 수 있다.
또한, 상기 폴리우레탄이 폴리올 화합물과 이소시아네이트 화합물을 축합 반응시켜 제조한 것일 수 있다.
또한, 상기 폴리올 화합물이 폴리에테르 폴리올 및 폴리에스터 폴리올로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 폴리에테르 폴리올이 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리메틸렌글리콜, 및 폴리테트라메틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함하고, 상기 폴리에스테르 폴리올이 에틸렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 프로판디올, 부탄디올, 네오펜틸글리콜, 펜탄디올 및 헥산디올로 이루어진 군으로부터 선택된 1종 이상과 숙신산, 아디핀산, 세바스산, 아젤라산, 프탈산, 이소프탈산, 테레프탈산, 푸마르산, 말레산, 옥살산 및 나프틸렌디카복실산으로 이루어진 군으로부터 선택된 1종 이상을 에스테르화 반응시켜 제조한 것으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 이소시아네이트 화합물이 4,4'-디페닐메탄디이소시아네이트(MDI), 카보디이미드-개질된 MDI, 폴리머릭 MDI, 헥사메틸렌 디이소시아네이트, 수소 첨가 MDI, 4,4'-디시클로헥실메탄 디이소시아네이트(H12MDI), 이소포론 디이소시아네이트(IPDI), 1,4-시클로헥실메탄 디이소시아네이트(CHDI), 2,4-톨루엔 디이소시아네이트(TDI), 2,6-톨루엔 디이소시아네이트(TDI) 및 아이소포론 디이소시아네이트로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 글리콜이 에틸렌글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 폴리에틸렌글리콜, 폴리-1,2-프로필렌글리콜, 폴리-1,3-프로필렌글리콜 및 폴리테트라메틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 폴리에틸렌글리콜의 수평균분자량이 100 내지 4,000일 수 있다.
또한, 상기 실리카는 흄드 실리카(fumed silica), 구형 실리카(spherical silica) 및 용융 실리카(fused silica)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 또 다른 하나의 측면에 따르면, 상기 폴리우레탄 폼 복합체를 포함하는 충격흡수소재가 제공된다.
본 발명의 또 다른 하나의 측면에 따르면, (a) 실리카와 글리콜을 포함하는 전단농화유체를 제조하는 단계; (b) 폴리올과 상기 전단농화유체를 혼합하고 교반하여 제1 혼합물을 제조하는 단계; 및 (c) 상기 제1 혼합물에 이소시아네이트 화합물을 혼합하고 교반하여 몰드에 주입한 후 반응시켜 폴리우레탄 폼 복합체를 제조하는 단계;를 포함하는 폴리우레탄 폼 복합체의 제조방법이 제공된다.
또한, 상기 전단농화유체가 상기 글리콜 100 중량부에 대하여 상기 실리카 5 내지 30 중량부를 포함할 수 있다.
또한, 상기 폴리우레탄 폼 복합체가 상기 폴리우레탄 폼 복합체 100중량부에 대하여 상기 전단농화유체 1 내지 30중량부를 포함할 수 있다.
또한, 상기 폴리우레탄 폼 복합체의 제조방법이 상기 단계 (b) 이후에, (b-1) 상기 제1 혼합물에 촉매를 추가로 첨가하고 교반하는 단계;를 추가로 포함할 수 있다.
또한, 단계 (b)의 교반이 5 내지 120 초 동안 수행되고, 단계 (c)의 교반이 2 내지 60 초 동안 수행되고, 단계 (b-1)의 교반이 5 내지 100 초 동안 수행될 수 있다.
또한, 단계 (c)의 반응이 몰드에서 40 내지 70℃의 온도로 수행될 수 있다.
또한, 단계 (c)의 상기 제1 혼합물이 발포제를 추가로 포함할 수 있다.
본 발명의 폴리우레탄 폼 복합체는 전단농화유체를 포함하고, 우레탄 결합으로 폴리우레탄과 전단농화유체가 연결되어 충격 흡수 성능이 우수한 효과가 있다.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.
도 1은 제조예 1에 따라 제조된 전단농화유체의 전단속도(shear rate)에 따른 점도 변화를 나타낸 것이다.
도 2는 실시예 1 내지 4 및 비교예 1에 따라 제조된 폴리우레탄 폼의 주사전자 현미경 이미지를 나타낸 것이다.
도 3a는 제조예 1에 따른 전단농화유체 및 실시예 3에 따른 폴리우레탄 폼의 FT-IR 스펙트럼이고, 도 3b는 비교예 1에 따라 제조된 폴리우레탄 폼의 FT-IR 스펙트럼이다.
도 4는 실시예 1 내지 4 및 비교예 1에 따라 제조된 폴리우레탄 폼의 후면변형을 나타낸 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.
또한, 본원에서 "매트릭스(matrix)"는 본 발명의 폴리우레탄 폼 복합체에서 기공과 기공 사이에 존재하는 폴리우레탄을 포함하는 연속상(continuous phase)을 의미한다.
또한, 본원에서 "도메인(domain)"은 상기 매트릭스 내부에 존재하고, 전단농화유체를 포함하는 불연속상(non-continuous phase)을 의미한다.
이하 폴리우레탄 폼 복합체를 설명하기에 앞서 전단농화유체에 대하여 설명한다.
전단농화유체(Shear Thickening Fluid, STF)란 비뉴턴유체의 일종으로 액상 분산매에 고체 입자가 분산되어 있는 콜로이드와 같은 현탁액에서 전단응력(shear stress)또는 전단속도(shear rate)가 증가했을 때 점도가 급격하게 증가하는 유변학적 특성으로 인하여 액상에서 고상으로의 가역적 상태변화를 일으키는 유체이다.
전단농화유체는 평소에는 액상으로 있다가 외부에서 급격한 충격이 가해질 경우 고체상으로 상 변화가 일어나 딱딱해지는 특성으로 인해 오늘날 섬유에 함침시켜 방탄 또는 방검 재료로 이용되는 연구가 활발히 진행되고 있다.
이하, 본 발명의 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명의 폴리우레탄 폼 복합체는 폴리우레탄 폼 및 전단농화유체를 포함한다.
상세하게는, 상기 폴리우레탄 폼 복합체는 다공성이고, 폴리우레탄을 포함하는 매트릭스; 및 상기 매트릭스에 분포하고, 전단농화유체를 포함하는 도메인;을 포함하고, 상기 전단농화유체는 글리콜과 실리카를 포함하는 것이다.
또한, 상기 도메인과 상기 매트릭스가 아래 구조식 1로 표시되는 우레탄 결합으로 연결되고, 상기 우레탄 결합이 상기 매트릭스의 폴리우레탄과 상기 전단농화유체의 글리콜을 연결할 수 있다.
[구조식 1]
Figure PCTKR2019011448-appb-I000002
또한, 상기 폴리우레탄 폼 복합체가 상기 폴리우레탄 100 중량부에 대하여 상기 전단농화유체 1 내지 30 중량부를 포함할 수 있다.
또한, 상기 전단농화유체가 상기 글리콜 100 중량부에 대하여 상기 실리카 5 내지 30 중량부를 포함할 수 있으며, 바람직하게는 10 내지 25 중량부, 더욱 바람직하게는 12 내지 20 중량부를 포함할 수 있다.
또한, 상기 폴리우레탄이 폴리올 화합물과 이소시아네이트 화합물을 축합 반응시켜 제조한 것일 수 있다.
또한, 상기 폴리올 화합물이 폴리에테르 폴리올 및 폴리에스터 폴리올을 포함할 수 있다.
또한, 상기 폴리에테르 폴리올이 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리메틸렌글리콜, 및 폴리테트라메틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함하고, 상기 폴리에스테르 폴리올이 에틸렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 프로판디올, 부탄디올, 네오펜틸글리콜, 펜탄디올 및 헥산디올로 이루어진 군으로부터 선택된 1종 이상과 숙신산, 아디핀산, 세바스산, 아젤라산, 프탈산, 이소프탈산, 테레프탈산, 푸마르산, 말레산, 옥살산 및 나프틸렌디카복실산으로 이루어진 군으로부터 선택된 1종 이상을 에스테르화 반응시켜 제조한 것으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 이소시아네이트 화합물이 4,4'-디페닐메탄디이소시아네이트(MDI), 카보디이미드-개질된 MDI, 폴리머릭 MDI, 헥사메틸렌 디이소시아네이트, 수소 첨가 MDI, 4,4'-디시클로헥실메탄 디이소시아네이트(H12MDI), 이소포론 디이소시아네이트(IPDI), 1,4-시클로헥실메탄 디이소시아네이트(CHDI), 2,4-톨루엔 디이소시아네이트(TDI), 2,6-톨루엔 디이소시아네이트(TDI) 및 아이소포론 디이소시아네이트로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으며 바람직하게는 4,4'-디페닐메탄디이소시아네이트를 포함할 수 있다.
또한, 상기 폴리우레탄은 중량평균분자량이 10,000 내지 2,000,000인 것일 수 있다.
또한, 상기 글리콜이 에틸렌글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 폴리에틸렌글리콜, 폴리-1,2-프로필렌글리콜, 폴리-1,3-프로필렌글리콜 및 폴리테트라메틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 폴리에틸렌글리콜의 수평균분자량이 100 내지 4,000, 바람직하게는 100 내지 1,000 보다 바람직하게는 100 내지 500, 보다 더욱 바람직하게는 100 내지 300인 것일 수 있다. 폴리에틸렌글리콜의 수평균분자량이 100 미만일 경우 전단농화현상이 나타날 때 점도 상승이 부족하게 일어나 전단응력에 의한 충격에너지 흡수효과가 미미해짐으로 바람직하지 않고, 4,000을 초과 할 경우 유체로서의 특성이 사라지면서 전단농화현상이 발생하기 어려우므로 바람직하지 않다.
또한, 상기 실리카는 흄드 실리카(fumed silica), 구형 실리카(spherical silica) 및 용융 실리카(fused silica)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명은 상기 폴리우레탄 폼 복합체를 포함하는 충격흡수소재를 제공한다.
이하, 본 발명의 폴리우레탄 폼 복합체의 제조방법에 대해 설명하기로 한다.
먼저, 실리카와 글리콜을 포함하는 전단농화유체를 제조한다(단계 a).
다음으로, 폴리올과 상기 전단농화유체를 혼합하고 교반하여 제1 혼합물을 제조한다(단계 b).
다음으로, 상기 제1 혼합물에 이소시아네이트 화합물을 혼합하고 교반하여 몰드에 주입한 후 반응시켜 폴리우레탄 폼 복합체를 제조한다(단계 c).
또한, 상기 전단농화유체가 상기 글리콜 100 중량부에 대하여 상기 실리카 5 내지 30 중량부를 혼합하여 제조할 수 있으며, 바람직하게는 10 내지 25 중량부, 더욱 바람직하게는 12 내지 20 중량부를 포함할 수 있다.
또한, 상기 폴리우레탄 폼 복합체가 상기 폴리우레탄 폼 복합체 100 중량부에 대하여 상기 전단농화유체 1 내지 30 중량부를 포함할 수 있다.
또한, 상기 폴리우레탄 폼 복합체의 제조방법이 상기 단계 b 이후에, 상기 제1 혼합물에 촉매를 추가로 첨가하고 교반하는 단계(단계 b-1)를 추가로 포함할 수 있다.
또한, 상기 단계 b-1에서 촉매가 아민류를 포함할 수 있으며, 바람직하게는 트리에틸렌아민(triethyleneamine), 펜타메틸에틸렌트리아민(pentamethylethylenetriamine), 디메틸시클로헥실아민(dimethylcyclohexylamine) 및 트리스(3-디메틸아미노)프로필헥사히드로트리아민(tris(3-dimethylamin)propylhexahydroamine)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고 더욱 바람직하게는 트리에틸렌아민을 포함할 수 있다.
또한, 상기 단계 b의 교반이 5 내지 120 초, 바람직하게는 10 내지 90 초, 보다 바람직하게는 15 내지 60 초, 보다 더욱 바람직하게는 20 내지 40 초 동안 수행될 수 있다. 상기 단계 b의 교반 시간이 5초 미만일 경우 전단농화유체를 폴리올에 분산시키기 부족하므로 바람직하지 않고, 120초를 초과할 경우 전단농화유체의 폴리올이 전단농화유체의 외부로 확산되어 전단농화현상시 점도 상승이 부족하게 일어나 전단응력에 의한 충격에너지 흡수효과가 미미하므로 바람직하지 않다.
또한, 상기 단계 c의 교반이 2 내지 60 초, 바람직하게는 3 내지 30 초, 보다 바람직하게는 5 내지 20 초, 보다 더욱 바람직하게는 7 내지 15 초 동안 수행될 수 있다. 상기 단계 c의 교반 시간이 2초 미만일 경우 이소시아네이트 화합물을 제1 혼합물에 분산시키기 부족하므로 바람직하지 않고, 60초 초과일 경우 전단농화유체의 폴리올이 전단농화유체의 외부로 확산되어 전단농화현상시 점도 상승이 부족하게 일어나 전단응력에 의한 충격에너지 흡수효과가 미미하므로 바람직하지 않다.
또한, 상기 단계 c의 교반이 500 내지 5000 rpm, 바람직하게는 800 내지 4,000 rpm, 보다 더욱 바람직하게는 1,000 내지 3,000 rpm, 보다 더욱 바람직하게는 1,500 내지 2,000 rpm으로 수행될 수 있다. 상기 단계 c의 교반이 500rpm 미만일 경우 제1 혼합물 사이로 이소시아네이트 화합물과 충분히 혼합되지 못하여 바람직하지 않고, 5,000rpm 초과일 경우 전단농화유체의 도메인 형태가 파괴될 수 있어 바람직하지 않다.
또한, 상기 단계 b-1의 교반이 5 내지 100 초, 바람직하게는 5 내지 70 초, 보다 바람직하게는 5 내지 50 초, 보다 더욱 바람직하게는 10 내지 30 초 동안 수행될 수 있다. 상기 단계 b-1의 교반 시간이 5초 미만일 경우 촉매를 제1 혼합물에 분산시키기 부족하므로 바람직하지 않고, 100초 초과일 경우 공정효율이 떨어지므로 바람직하지 않다.
또한, 상기 단계 c의 반응이 몰드에서 40 내지 70℃의 온도로 수행될 수 있다. 단계 c의 수행 온도가 40℃ 미만일 경우 이소시아네이트 작용기와 폴리올 작용기와의 반응이 일어나기 어려워 바람직하지 않고, 70℃를 초과할 경우 지나치게 빠른 반응이 유도되어 반응을 조절하기 어려우므로 바람직하지 않다.
또한, 단계 c의 상기 제1 혼합물이 발포제를 추가로 포함할 수 있으며, 바람직하게는 물, 시클로펜탄(cyclopentane), 아이소펜탄(isopentane), 노말펜탄(normalpentane), 클로로플루오로카본(chlorofluorocarbon), 히드로클로로플루오로카본(hydrochlorofluorocarbon) 및 히드로플루오로카본(hydrofluorocarbon)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 보다 더욱 바람직하게는 물을 포함할 수 있다.
이상의 방법으로 제조된 폴리우레탄 폼 복합체는 충격흡수소재에 이용될 수 있다. 본 발명의 폴리우레탄 폼 복합체는 충격을 받으면 그 에너지를 흡수하도록 분자들이 결합하여 순식간에 단단해지며 충격에너지를 효과적으로 흡수하는 전단농화유체를 포함하므로, 충격흡수소재의 충격 흡수력을 상당히 개선시킬 수 있다.
[실시예]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
제조예 1: 전단농화유체
3구 플라스크에 수평균 분자량(Mn) 200의 폴리에틸렌글리콜 85중량부를 투입하고 임펠라의 교반속도를 60rpm 이하로 교반하면서 흄드 실리카(SiO2 함량: 99.8wt%, 비표면적(BET): 200m2/g, pH: 4)를 15중량부를 첨가하고 50rpm 이하로 24시간동안 교반하여 균일한 전단농화유체를 제조하였다.
폴리우레탄 폼 복합체
실시예 1
수평균 분자량(Mn) 1,000의 폴리에틸렌글리콜과 수평균 분자량(Mn) 400의 폴리프로필렌글리콜을 70:30 중량 비율로 혼합한 폴리올 65중량부와 제조예 1에 따라 제조된 전단농화유체 5중량부를 교반기에 넣고 균질기(homogenizer)를 이용하여 30초간 교반하여 예비분산을 행함으로써 균일한 1차 혼합물을 제조하였다.
1차 혼합물에 촉매인 트리에틸렌아민 0.01중량부를 첨가하고, 발포제인 물을 3중량부 첨가한 후 20초간 교반하여 균일한 2차 혼합물을 제조하였다.
2차 예비혼합물을 1500rpm으로 교반하면서 4,4'-디페닐메탄디이소시아네이트(MDI)를 30중량부 첨가한 후 10초간 혼합하였다. 우레탄 중합반응이 시작되어 크리미한 발포액을 15초 이내에 몰드에 주입하여 50 내지 60℃의 온도로 30분간 몰드 성형하여 폴리우레탄 폼 복합체를 제조하였다.
중합된 폴리우레탄의 밀도는 0.1915g/cm3이고, 경도는 78.6(Shore Hardness tester, F type)이었다.
실시예 2
전단농화유체를 5중량부 사용한 것 대신에 전단농화유체를 10중량부 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼 복합체를 제조하였다. 중합된 폴리우레탄의 밀도는 0.1949g/cm3이고, 경도는 73.6 이었다.
실시예 3
전단농화유체를 5중량부 사용한 것 대신에 전단농화유체를 15중량부 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼 복합체를 제조하였다. 중합된 폴리우레탄의 밀도는 0.1844g/cm3이고, 경도는 70.3 이었다.
실시예 4
전단농화유체를 5중량부 사용한 것 대신에 전단농화유체를 20중량부 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼 복합체를 제조하였다. 중합된 폴리우레탄의 밀도는 0.1851g/cm3이고, 경도는 39.0 이었다.
실시예 5
MDI를 30 중량부, 전단농화유체를 5 중량부 사용한 것 대신에 MDI를 29.25 중량부, 전단농화유체를 3.25 중량부 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼 복합체를 제조하였다.
실시예 6
MDI를 30 중량부, 전단농화유체를 5 중량부 사용한 것 대신에 MDI를 30.79 중량부, 전단농화유체를 3.42 중량부 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼 복합체를 제조하였다.
비교예 1
전단농화유체를 5중량부 사용한 것 대신에 전단농화유체를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼을 제조하였다. 중합된 폴리우레탄의 밀도는 0.1835g/cm3이고, 경도는 81.6 이었다.
비교예 2
MDI를 30 중량부, 전단농화유체를 5중량부 사용한 것 대신에 MDI를 29.25 중량부 사용하고, 전단농화유체를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 폼을 제조하였다.
하기 표 1은 실시예 1 내지 6, 비교예 1 및 2에 따른 폴리우레탄 폼 복합체의 중량부 비율을 정리하여 나타낸 것이다.
구분 폴리올(중량부) 이소시아네이트(중량부) 전단농화유체(중량부) 촉매(중량부)
실시예 1 65 30 5 0.01
실시예 2 65 30 10 0.01
실시예 3 65 30 15 0.01
실시예 4 65 30 20 0.01
실시예 5 65 29.25 3.25 0.01
실시예 6 65 30.79 3.42 0.01
비교예 1 65 30 0 0.01
비교예 2 65 29.25 0 0.01
[시험예]
시험예 1: 전단농화유체의 점도 측정
도 1은 제조예 1에 따라 제조된 전단농화유체의 전단속도(shear rate)에 따른 점도 변화를 나타낸 것이다. 상세하게는, 제조예 1에 따라 제조된 전단농화유체의 유변학적 거동을 관찰하기 위해 레오미터(Advanced Rheometric Expansion System, Rhemetic Scientific, USA)를 사용하여 정상전단속도에 따른 전단 점도를 측정하였다. 측정은 직경이 50mm이고 각도가 2°인 콘 및 플레이트 형상(Cone&plate geometry)의 점탄성측정 지그를 이용했으며 데이터의 전단속도의 범위는 0.1 내지 1000s- 1으로 측정하였다. 도 1에 따르면, 전단속도가 증가했을 때 점도가 급격하게 증가하는 유변학적 특징을 보이는 비뉴턴 유체의 일종인 전단농화유체가 제조되었음을 확인할 수 있다.
시험예 2: 전자 현미경 이미지
도 2는 실시예 1 내지 4 및 비교예 1에 따라 제조된 폴리우레탄 폼 복합체의 전자 현미경 이미지를 나타낸 것이다. 상세하게는, 폴리우레탄 폼과 전단농화유체와의 복합체 형성여부를 확인하기 위해 주사 전자 현미경(SEM)을 이용하여 x35, x2000, x5000 및 x10000 배율로 실시예 1 내지 4 및 비교예 1에 따라 제조된 폴리우레탄 폼 복합체의 표면 관찰을 수행하였다.
도 2에 따르면, x35 배율 이미지에서 폴리우레탄 폼 내부에 기공이 형성된 것을 확인할 수 있으며, 기공과 기공 사이를 x2000 배율로 확대해서 관찰한 결과 실시예 1 내지 4에서 비교예 1에서는 보이지 않는 원형 모양의 점선으로 표시된 흰색의 도메인(domain)이 존재하는 것을 확인할 수 있다.
따라서, 실시예 1 내지 4에 따라 폴리우레탄 폼 복합체를 제조할 시 전단농화유체가 기공과 기공 사이의 폴리우레탄 폼의 지지체(matrix) 내부에 존재하는 것을 확인할 수 있다.
또한, 도 2의 x5000 배율 이미지는 x2000 배율 이미지에서 삼각형, 사각형 및 사다리꼴 모양의 점선으로 표시된 폼의 지지체 부분과 원형 모양의 점선으로 표시된 전단농화유체를 포함하는 도메인이 존재하는 폴리우레탄 폼 지지체를 확대한 사진으로, 폴리우레탄 폼의 지지체와 전단농화유체 도메인의 형상이 확연히 다른 것을 다시 한번 확인할 수 있다.
이와 같은 결과로, 실시예 1 내지 4에 따라 제조할 시 폴리우레탄 폼 및 전단농화유체의 폴리우레탄 폼 복합체가 형성된 것을 확인할 수 있다.
시험예 3: 전단농화유체와 폴리우레탄 폼 사이의 우레탄 결합 확인
도 3a는 제조예 1에 따른 전단농화유체 및 실시예 3에 따른 폴리우레탄 폼의 FT-IR 스펙트럼이고, 도 3b는 비교예 1에 따라 제조된 폴리우레탄 폼의 FT-IR 스펙트럼으로 합성된 본 발명의 우레탄 폼 복합체의 구조를 분석하였다. 도 3a를 참조하면, 실시예 3에 따른 폴리우레탄 폼의 스펙트럼은 제조예 1에 따른 전단농화유체의 스펙트럼에 비해 OH의 신축피크를 나타내는 3390cm-1 지점에서 투과율이 약간 감소한 것이 관찰되었고 우레탄기의 C=O 신축피크를 나타내는 1726cm-1 및 우레탄기의 N-H 신축피크를 나타내는 1537cm-1 와 1241cm-1 지점에서 투과율이 증가한 것이 관찰되었다. 도 3b를 참조하면, 도 3a의 실시예 3과 유사하게 1724cm-1 및 1533cm-1 지점에서 투과율이 증가한 것으로 관찰되었다. 이는 전단농화유체 내의 폴리에틸렌글리콜이 폴리우레탄 폼을 형성하는 폴리올의 일종이므로 전단농화유체 함유 폴리우레탄 폼을 형성할 때 전단농화유체 내 폴리에틸렌글리콜이 이소시아네이트와 반응하여 우레탄 결합을 형성함에 따라 나타난 영향으로 볼 수 있다.
따라서, 전단농화유체 함유 폴리우레탄 폼을 형성할 때 전단농화유체와 폴리우레탄 폼 사이에 우레탄 결합이 형성되는 것을 알 수 있으며 또한 전단농화유체는 폴리우레탄 폼의 기공과 기공 사이의 지지체(matrix, 벽)에 결합되어 존재하다가 외부 외력에 대해 전단응력이 발생하면 전단농화유체의 효과를 발휘하는 것을 알 수 있다.
시험예 4: 저속 충격 흡수 능력 분석
도 4는 저속 충격 시험 결과에 따른 실시예 1 내지 4 및 비교예 1의 후면변형을 나타낸 것이며, 하기 표 2는 저속 충격 시험 결과에 따른 충격 깊이(trauma depth)와 충격전달량(shock resistance)을 정리하여 나타낸 것이다.
구분 저속 충격흡수 시험 충격저항시험
충격 깊이(mm) 충격 깊이(%) 충격 전달량(N)
실시예 1 42.95 0.6 -
실시예 2 41.64 3.6 -
실시예 3 35.88 16.9 -
실시예 4 57.09 -32.2 -
실시예 5 - - 1217
실시예 6 - - 1268
비교예 1 43.19 0 -
비교예 2 - - 1649
실시예 1 내지 4 및 비교예 1에 따라 제조된 폴리우레탄 폼 복합체를 저속 충격 시험 장치(low velocity impactor)를 사용하여 외력을 받은 폴리우레탄 폼 후면의 충격 깊이(trauma depth)를 측정하였다. 충격을 가한 뒷면에 충격을 그대로 나타내는 오아시스 폼을 사용하여 그 폼의 변형을 석고로 형상을 떠서 만든 후 측정을 수행하였다.
도 4에 따르면, 후면변형의 형태로부터 충격에너지의 분산 상태와 에너지 크기를 육안으로 확인할 수 있으며, 전단농화유체가 함유된 폴리우레탄 폼의 경우 미함유된 폴리우레탄 폼에 비해 외력이 면으로 퍼져 충격방향에 대한 길이변화가 짧아진 것을 확인할 수 있다.
따라서, 외부의 충격에너지가 전단농화유체가 함유된 폴리우레탄 폼에서 일부 흡수되어 시험편 뒤쪽으로 전달되는 충격을 줄여주는 것으로 볼 수 있다.
표 2에 따르면, 실시예 1 내지 4 및 비교예 1에 따라 제조된 폴리우레탄 폼 복합체의 측정된 충격 깊이(mm)가 각각 42.95, 41.64, 35.88, 57.09, 43.19로 전단농화유체 미함유 복합체 대비 0.6%, 3.6%, 16.9%, -32.2%로 나타난 것을 확인할 수 있다.
따라서, 폴리우레탄 폼 복합체에서 전단농화유체의 함량이 20중량부일 경우, 전단농화유체의 함량이 폴리우레탄 폼의 지지체 결합을 과도하게 감소시켜 연질 폴리우레탄 폼이 형성되므로 상대적인 압축경도가 감소하여 충격 깊이가 더 커지는 것으로 볼 수 있다.
시험예 5: 충격전달량 측정
충격전달량 측정은 2.5kg 덤벨을 떨어뜨려 5J의 에너지를 가하였을 때 아래쪽의 센서에 도달하는 에너지를 측정하는 방법으로 충격저항를 측정하였고, 표 2에 기재했다.
표 2를 참고하면, 충격 흡수용 패드로 폴리우레탄 폼 복합체를 적용하기 위해 전단농화유체의 함량을 3.25 중량부로 사용한 실시예 5와 전단농화유체를 사용하지 않은 비교예 2의 충격전달량이 각각 1217N, 1649N인 것을 확인할 수 있다. 즉, 전단농화유체가 3.25 중량부 사용된 실시예 5의 폴리우레탄 폼 복합체의 충격전달량이 전단농화유체가 사용되지 않은 비교예 2의 폴리우레탄에 비교하여 충격전달량이 현저하게 감소한 것을 알 수 있었다. 이때 실험에 사용된 폴리우레탄 폼 복합체의 두께는 10mm를 사용하였다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 폴리우레탄 폼 복합체는 전단농화유체를 포함하고, 우레탄 결합으로 폴리우레탄과 전단농화유체가 연결되어 충격 흡수 성능이 우수한 효과가 있다.

Claims (19)

  1. 다공성이고, 폴리우레탄을 포함하는 매트릭스; 및
    상기 매트릭스에 분포하고, 전단농화유체를 포함하는 도메인; 을 포함하고,
    상기 전단농화유체는 글리콜과 실리카를 포함하는 것인,
    폴리우레탄 폼 복합체.
  2. 제1항에 있어서,
    상기 도메인과 상기 매트릭스가 아래 구조식 1로 표시되는 우레탄 결합으로 연결되고,
    상기 우레탄 결합이 상기 매트릭스의 폴리우레탄과 상기 전단농화유체의 글리콜을 연결하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
    [구조식 1]
    Figure PCTKR2019011448-appb-I000003
  3. 제1항에 있어서,
    상기 폴리우레탄 폼 복합체가 상기 폴리우레탄 100 중량부에 대하여 상기 전단농화유체 1 내지 30 중량부를 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  4. 제1항에 있어서,
    상기 전단농화유체가 상기 글리콜 100 중량부에 대하여 상기 실리카 5 내지 30중량부를 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  5. 제1항에 있어서,
    상기 폴리우레탄이 폴리올 화합물과 이소시아네이트 화합물을 축합 반응시켜 제조한 것을 특징으로 하는 폴리우레탄 폼 복합체.
  6. 제5항에 있어서,
    상기 폴리올 화합물이 폴리에테르 폴리올 및 폴리에스터 폴리올로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  7. 제6항에 있어서,
    상기 폴리에테르 폴리올이 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리메틸렌글리콜, 및 폴리테트라메틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함하고,
    상기 폴리에스테르 폴리올이 에틸렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 프로판디올, 부탄디올, 네오펜틸글리콜, 펜탄디올 및 헥산디올로 이루어진 군으로부터 선택된 1종 이상과 숙신산, 아디핀산, 세바스산, 아젤라산, 프탈산, 이소프탈산, 테레프탈산, 푸마르산, 말레산, 옥살산 및 나프틸렌디카복실산으로 이루어진 군으로부터 선택된 1종 이상을 에스테르화 반응시켜 제조한 것으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  8. 제5항에 있어서,
    상기 이소시아네이트 화합물이 4,4'-디페닐메탄디이소시아네이트(MDI), 카보디이미드-개질된 MDI, 폴리머릭 MDI, 헥사메틸렌 디이소시아네이트, 수소 첨가 MDI, 4,4'-디시클로헥실메탄 디이소시아네이트(H12MDI), 이소포론 디이소시아네이트(IPDI), 1,4-시클로헥실메탄 디이소시아네이트(CHDI), 2,4-톨루엔 디이소시아네이트(TDI), 2,6-톨루엔 디이소시아네이트(TDI) 및 아이소포론 디이소시아네이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  9. 제1항에 있어서,
    상기 글리콜이 에틸렌글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌를리콜, 폴리에틸렌글리콜, 폴리-1,2-프로필렌글리콜, 폴리-1,3-프로필렌를리콜 및 폴리테트라메틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  10. 제9항에 있어서,
    상기 폴리에틸렌글리콜의 수평균분자량이 100 내지 4,000인 것을 특징으로 하는 폴리우레탄 폼 복합체.
  11. 제1항에 있어서,
    상기 실리카는 흄드 실리카(fumed silica), 구형 실리카(spherical silica), 및 용융 실리카(fused silica)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  12. 제1항에 따른 폴리우레탄 폼 복합체를 포함하는 충격흡수소재.
  13. (a) 실리카와 글리콜을 포함하는 전단농화유체를 제조하는 단계;
    (b) 폴리올과 상기 전단농화유체를 혼합하고 교반하여 제1 혼합물을 제조하는 단계; 및
    (c) 상기 제1 혼합물에 이소시아네이트 화합물을 혼합하고 교반하여 몰드에 주입한 후 반응시켜 폴리우레탄 폼 복합체를 제조하는 단계;를
    포함하는 폴리우레탄 폼 복합체의 제조방법.
  14. 제13항에 있어서,
    상기 전단농화유체가 상기 글리콜 100 중량부에 대하여 상기 실리카 5 내지 30중량부를 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체.
  15. 제13항에 있어서,
    상기 폴리우레탄 폼 복합체가 상기 폴리우레탄 100 중량부에 대하여 상기 전단농화유체 1 내지 30 중량부를 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체의 제조방법.
  16. 제13항에 있어서, 상기 폴리우레탄 폼 복합체의 제조방법이
    상기 단계 (b) 이후에, (b-1) 상기 제1 혼합물에 촉매를 추가로 첨가하고 교반하는 단계;를 추가로 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체의 제조방법.
  17. 제16항에 있어서,
    단계 (b)의 교반이 5 내지 120 초 동안 수행되고,
    단계 (c)의 교반이 2 내지 60 초 동안 수행되고,
    단계 (b-1)의 교반이 5 내지 100 초 동안 수행되는 것을 특징으로 하는 폴리우레탄 폼 복합체의 제조방법.
  18. 제13항에 있어서,
    단계 (c)의 반응이 몰드에서 40 내지 70℃의 온도로 수행되는 것을 특징으로 하는 폴리우레탄 폼 복합체의 제조방법.
  19. 제13항에 있어서,
    단계 (c)의 상기 제1 혼합물이 발포제를 추가로 포함하는 것을 특징으로 하는 폴리우레탄 폼 복합체의 제조방법.
PCT/KR2019/011448 2018-09-06 2019-09-05 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법 WO2020050638A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0106229 2018-09-06
KR20180106229 2018-09-06
KR10-2019-0109489 2019-09-04
KR1020190109489A KR102299012B1 (ko) 2018-09-06 2019-09-04 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020050638A1 true WO2020050638A1 (ko) 2020-03-12

Family

ID=69721943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011448 WO2020050638A1 (ko) 2018-09-06 2019-09-05 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2020050638A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116656117A (zh) * 2023-07-11 2023-08-29 扬州市天宇鞋业有限公司 一种安全鞋护足趾智能弹性体包头用材及其制备方法
WO2024099040A1 (zh) * 2022-11-07 2024-05-16 黄山久石科技发展有限公司 一种剪切增稠复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157709A (ja) * 1994-12-02 1996-06-18 Toyo Tire & Rubber Co Ltd 硬質ポリウレタンフォームの製造方法
KR20070010810A (ko) * 2005-07-20 2007-01-24 에스엔케이폴리텍(주) 우수한 충격흡수성 및 복원력을 갖는 폴리우레탄 폼 및이의 제조방법
KR20120089089A (ko) * 2011-02-01 2012-08-09 한국생산기술연구원 전단농화유체를 포함하는 복합섬유의 제조방법
KR20150054033A (ko) * 2013-11-08 2015-05-20 한국생산기술연구원 전단농화유체를 이용한 고분자 복합체
CN103772960B (zh) * 2014-01-23 2016-01-06 德清苏尔新材料有限公司 聚氨酯基抗冲击复合材料及其制备方法
KR101797957B1 (ko) * 2014-10-31 2017-12-13 한국생산기술연구원 전단농화유체 캡슐 및 이를 이용한 고분자 복합체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157709A (ja) * 1994-12-02 1996-06-18 Toyo Tire & Rubber Co Ltd 硬質ポリウレタンフォームの製造方法
KR20070010810A (ko) * 2005-07-20 2007-01-24 에스엔케이폴리텍(주) 우수한 충격흡수성 및 복원력을 갖는 폴리우레탄 폼 및이의 제조방법
KR20120089089A (ko) * 2011-02-01 2012-08-09 한국생산기술연구원 전단농화유체를 포함하는 복합섬유의 제조방법
KR20150054033A (ko) * 2013-11-08 2015-05-20 한국생산기술연구원 전단농화유체를 이용한 고분자 복합체
CN103772960B (zh) * 2014-01-23 2016-01-06 德清苏尔新材料有限公司 聚氨酯基抗冲击复合材料及其制备方法
KR101797957B1 (ko) * 2014-10-31 2017-12-13 한국생산기술연구원 전단농화유체 캡슐 및 이를 이용한 고분자 복합체

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099040A1 (zh) * 2022-11-07 2024-05-16 黄山久石科技发展有限公司 一种剪切增稠复合材料及其制备方法和应用
CN116656117A (zh) * 2023-07-11 2023-08-29 扬州市天宇鞋业有限公司 一种安全鞋护足趾智能弹性体包头用材及其制备方法
CN116656117B (zh) * 2023-07-11 2023-11-14 扬州市天宇鞋业有限公司 一种安全鞋护足趾智能弹性体包头用材及其制备方法

Similar Documents

Publication Publication Date Title
WO2020050638A1 (ko) 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법
WO2018131868A1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
JP6779334B2 (ja) 多孔質ポリウレタン研磨パッドおよびその製造方法
KR102054309B1 (ko) 다공성 연마 패드 및 이의 제조방법
CN101239457A (zh) 高弹体改性的化学机械抛光垫
KR102177748B1 (ko) 다공성 연마 패드 및 이의 제조방법
WO2013058489A2 (ko) 폴리우레탄계 시멘트 복합체와 그 제조방법, 이를 이용한 성형품
CN101023132A (zh) 耐热性优异的脂肪族聚酯树脂组合物
WO2017003249A1 (ko) 기재 필름
KR20160004813A (ko) 초경량 폴리우레탄 인조피혁 조성물
WO2019050365A1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
WO2017195934A1 (ko) 가교 사이트가 부여된 열가소성 폴리우레탄 및 이를 이용한 가교 발포 방법
KR20190029473A (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
WO2019093747A1 (ko) 비공기압 타이어 스포크용 조성물
WO2021029546A1 (ko) 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
JP4850574B2 (ja) 発泡ポリウレタンの製造方法
JP2623221B2 (ja) 熱可塑性ウレタン樹脂分散体の製造方法
WO2014021544A1 (ko) 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체
KR102299012B1 (ko) 전단농화유체를 함유한 충격흡수용 폴리우레탄 폼 복합체 및 그 제조방법
WO2016204509A1 (ko) 자동차용 내장내 및 이의 제조방법
WO2017209526A1 (ko) 연질 열가소성수지 소재 및 천연가죽의 상온 전사인쇄를 위한 전사액 조성물, 이의 제조방법, 이를 이용하여 제조된 인쇄제작물
US6235830B1 (en) Polyurethane resin type composition for slush molding
JP4484398B2 (ja) スラッシュ成形用複合樹脂組成物
WO2016093570A1 (ko) 박막 폴리우레탄 폼 적층체 및 그 제조방법
WO2020101106A1 (ko) 발포용 생분해성 수지의 유변물성 증대를 위한 선택적 이온결합성 사슬 연장제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858539

Country of ref document: EP

Kind code of ref document: A1