WO2014021544A1 - 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체 - Google Patents

생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체 Download PDF

Info

Publication number
WO2014021544A1
WO2014021544A1 PCT/KR2013/004228 KR2013004228W WO2014021544A1 WO 2014021544 A1 WO2014021544 A1 WO 2014021544A1 KR 2013004228 W KR2013004228 W KR 2013004228W WO 2014021544 A1 WO2014021544 A1 WO 2014021544A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
foaming
weight
foam
resin composition
Prior art date
Application number
PCT/KR2013/004228
Other languages
English (en)
French (fr)
Inventor
천종필
김희수
최수연
김예진
윤기철
김민경
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to JP2015525318A priority Critical patent/JP6078152B2/ja
Priority to US14/403,409 priority patent/US9200128B2/en
Priority to AU2013297330A priority patent/AU2013297330B2/en
Priority to CN201380038585.XA priority patent/CN104470978B/zh
Priority to EP13825113.7A priority patent/EP2881426A4/en
Publication of WO2014021544A1 publication Critical patent/WO2014021544A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/06Unsaturated polyesters

Definitions

  • the present invention relates to a foaming resin composition and a foam produced therefrom. More specifically, a foaming resin composition prepared by applying a biodegradable polyester resin having a double bond-containing monomer bonded to an ethylene-vinylacetate (EVA) resin, which is a foaming polymer, and having improved foaming properties, It relates to a foam having physical properties.
  • EVA ethylene-vinylacetate
  • Synthetic resin foams that are usefully used are made of various materials such as polyethylene, polypropylene, ethylene-vinylacetate copolymer, polyester, polyurethane, and the like.
  • foams based on ethylene-vinylacetate resins are generally manufactured by various molding methods such as press foam molding and injection foam molding, and are mainly used because of their advantages of being light, discolored, and inexpensive.
  • biodegradable polymer resins and ethylene-vinylacetate resins are mixed and used.
  • foaming such as the desired foam form, for example, uniform size of bubbles, etc.
  • polylactic acid has a variety of problems, such as not being processed at a normal processing temperature due to high melting temperature and low thermal properties.
  • ethylene-vinylacetate resin which is a foaming polymer
  • a catalytic amount of a crosslinking aid (dicumyl peroxide), a crosslinking aid (triallyl cyanurate), and a blowing agent (azodicarbonamide) as a crosslinking aid.
  • a crosslinking aid (dicumyl peroxide), a crosslinking aid (triallyl cyanurate), and a blowing agent (azodicarbonamide)
  • the processability is reduced when mixed with a biodegradable polyester resin of 25% or more, and after chemical crosslinking, the foaming properties are partially expressed separately from the ethylene-vinylacetate resin, so that the bubble size or the shape of the foam There are still problems.
  • the present inventors while studying the resin composition for foaming, when using a biodegradable polyester resin mixed with a monomer containing a double bond in the ethylene-vinylacetate resin, the double bond contained in the biodegradable polyester resin Chemical crosslinking with the ethylene-vinylacetate resin through this crosslinking agent to improve the compatibility to improve the workability and further improve the foaming properties and the mechanical properties of the foam was completed and the present invention was completed.
  • the problem to be solved by the present invention is to provide a foaming resin composition comprising a biodegradable resin with improved workability and foaming mechanical properties.
  • Another problem to be solved by the present invention is to provide a foam prepared from a resin composition for foaming comprising a biodegradable resin with improved workability and foaming mechanical properties.
  • this invention is a resin composition for foaming
  • Crosslinking agents ; Crosslinking aids; It provides a resin composition for foaming comprising a biodegradable resin comprising a filler and a blowing agent.
  • the biodegradable polyester resin with respect to the ethylene-vinylacetate resin is preferably used in the range of 20% by weight to 50% by weight.
  • the monomer including a double bond bonded to the biodegradable polyester resin is preferably contained in a 0.003 to 0.2 molar ratio.
  • the biodegradable polyester resin is a monomer containing a double bond as a monomer containing a double bond, an unsaturated acid having two or more functional groups, unsaturated isocyanates, unsaturated alcohols, or a polyester resin containing a monomer comprising an unsaturated hydroxy carboxylic acid bonded PBAF (polybutylene adipate-co-fumalate), PBAI (polybutylene adipate-co-itaconate), PBSAF (polybutylene succinate-co-adipate-) Co-fumalate), PBSAI (polybutylene succinate-co-adipate-co-itaconate), PBSF (polybutylene succinate-co-fumalate), or PBSI (polybutylene succinate-co -Itaconate).
  • PBAF polybutylene adipate-co-fumalate
  • PBAI polybutylene adipate-co-itacon
  • crosslinking agent 0.1 to 10 parts by weight of crosslinking agent, 0.1 to 5 parts by weight of crosslinking aid, and 0.1 to 5 parts by weight of filler based on 100 parts by weight of the total weight of the ethylene-vinylacetate resin and biodegradable polyester resin.
  • filler 0.1 to 5 parts by weight of filler based on 100 parts by weight of the total weight of the ethylene-vinylacetate resin and biodegradable polyester resin.
  • blowing agent 0.1 to 10 parts by weight of blowing agent.
  • the present invention is ethylene-vinylacetate resin; Biodegradable polyester resins having a double bond-containing monomer bonded thereto; And crosslinking agents; Crosslinking aids; Provided is a foam in which a foaming resin composition comprising a filler and a foaming agent is foam molded.
  • the foam molding is preferably foamed through press foam molding or injection foam molding.
  • the foam can be used in the sole, midsole or insole of a shoe.
  • the present invention improves compatibility with ethylene-vinylacetate resin by applying a biodegradable polyester resin in which a monomer including a double bond is bonded to ethylene-vinylacetate resin.
  • a biodegradable polyester resin having a double bond-containing monomer is applied thereto so that double bonds in the biodegradable polyester resin can be chemically crosslinked with ethylene-vinylacetate through a crosslinking agent.
  • the foaming properties and the mechanical properties of the foam can be significantly improved.
  • the resin composition for foaming which can improve the workability (release property) and foaming properties and the mechanical properties of the foam according to the present invention is ethylene-vinylacetate resin; Biodegradable polyester resins having a double bond-containing monomer bonded thereto; Crosslinking agents; Crosslinking aids; Fillers and blowing agents.
  • the ethylene-vinylacetate resin has a weight average molecular weight of 100,000 to 300,000, preferably 160,000 to 250,000, vinyl acetate content is in the range of 10% to 30% by weight, preferably 15 to 25% by weight Range. Further, the melt index (ASTM D1238, 190 ° C, 2.16 kg) is 0.05 to 20.0 g / 10 min, more preferably 0.3 to 10.0 g / min.
  • the biodegradable polyester resin in which the monomer including the double bond is bonded may improve workability (releasability) when mixed with the ethylene-vinylacetate resin, and the double bond in the biodegradable polyester resin may be ethylene through a crosslinking agent. By chemically crosslinking with vinyl acetate resin, the foaming properties and mechanical properties of the foam can be significantly improved.
  • the double bond in the biodegradable polyester resin may be introduced into the biodegradable polyester resin by polymerizing using an unsaturated compound having two or more functional groups having a double bond as a monomer.
  • double bond means a double bond of carbon-carbon, carbon-oxygen or carbon-nitrogen in addition to the C ⁇ O double bond present in the carboxyl group for conventional esterification.
  • PBAF polybutylene adipate-co-fumalate
  • PBAI polybutylene adipate-co-itaconate
  • PBSAF polybutylene succinate-co-adipate-co-fumal
  • PBSAI polybutylene succinate-co-adipate-co-itaconate
  • PBSF polybutylene succinate-co-fumalate
  • PBSI polybutylene succinate-co-itaconate
  • n 0.8 to 0.997.
  • n 0.8 to 0.997.
  • the monomer containing the double bond in the said biodegradable polyester resin is contained in 0.003-0.2 molar ratio, and its 0.003-0.1 molar ratio is still more preferable. If a monomer containing a double bond is included in less than 0.003 molar ratio, the improvement of workability (releasability) during mixing is insignificant, and the chemical crosslinking with ethylene-vinylacetate resin may be insignificant, and if contained in excess of 0.2 molar ratio. It is not preferable because it may cause foaming properties and color degradation due to excessive crosslinking density with EVA.
  • the molar ratio represents the ratio of the moles of the monomer containing the double bond to the total moles of the monomers constituting the biodegradable polyester resin as a product.
  • the polyester resin in which the double bond-containing monomer is bonded has a weight average molecular weight of 100,000 to 300,000, preferably 160,000 to 250,000, and the melt index (ASTM D1238, 190 ° C, 2.16kg) is 0.05 to It is 20.0 g / 10min, More preferably, it is 0.3-10.0 g / min.
  • the biodegradable polyester resin with respect to the ethylene-vinylacetate resin may be mixed with 20% by weight or more, preferably 20 to 50% by weight.
  • the biodegradable polyester resin is used in less than 10% by weight, since the biodegradable effect on the eco-friendly bioplastic resin is insignificant, it should be included in 20% by weight or more.
  • the resin composition for foaming of the present invention includes a crosslinking agent, a crosslinking aid, a filler and a blowing agent.
  • the crosslinking agent may be an organic peroxide, for example, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl -2,5-di- (t-butylperoxyisopropyl) benzine, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, etc. may be used, and the said ethylene- It is preferable to use within the range of 0.1-10 weight part with respect to a total of 100 weight part of vinyl acetate resin and the said biodegradable polyester resin.
  • organic peroxide for example, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl -2,5-di- (t-butylperoxyiso
  • 0.1 part by weight may have a low degree of crosslinking or may not be crosslinked. If it exceeds 10 parts by weight, not only crosslinking may be formed, but also may be cleaved between main chains to cause molecular weight degradation.
  • the crosslinking aid may be selected from triallyl cyanurate (TAC), triallyl isocyanurate (TAIC), trimethylol propane trimethacrylate (TMPTMA), or trimethylol propane triacrylate (TMPTA).
  • TAC triallyl cyanurate
  • TAIC triallyl isocyanurate
  • TMPTMA trimethylol propane trimethacrylate
  • TMPTA trimethylol propane triacrylate
  • the crosslinking aid is preferably used in the range of 0.1 to 5 parts by weight based on 100 parts by weight of the total weight of the ethylene-vinylacetate resin and the biodegradable polyester resin.
  • TAC triallyl cyanurate
  • TAIC triallyl isocyanurate
  • TMPTMA trimethylol propane trimethacrylate
  • TMPTA trimethylol propane triacrylate
  • the filler is preferably an inorganic filler, and the inorganic filler serves to improve the strength of the foam.
  • the inorganic fillers include calcium carbonate, titanium oxide, talc, egg shells, silica, and the like.
  • the particle diameter of an inorganic filler is not specifically limited, The particle diameter normally used for a resin composition may be sufficient.
  • the content of the inorganic filler is preferably in the range of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the total weight of the ethylene-vinylacetate resin and the biodegradable polyester resin.
  • the blowing agent includes at least one selected from the group consisting of azo compounds, nitroso compounds, sulfonylhydrazide compounds, azobisisobutyronitrile, diazoaminoazobenzene and sodium dicarbonate.
  • azo compounds such as azodicarbonamide, nitroso compounds such as N, N'-dinitrosopentamethylenetetramine, azobisisobutyronitrile, p-toluenesulfonylhydrazine, p, p'- Foaming agents such as oxybisbenzenesuccinylhydrazide, diazoaminoazobenzene, azodicarboxylic acid barium, sodium bicarbonate, and the like, may be included, but are not limited thereto.
  • the blowing agent is preferably used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the total weight of the ethylene-vinylacetate resin and the biodegradable polyester resin in consideration of the expansion ratio and density.
  • the hardness of the foam is high, the specific gravity is high, and if it exceeds 10 parts by weight, the foam may tear or form an unstable foam cell.
  • the environmentally friendly foaming resin composition may include, as necessary, white enhancers, dyes, pigments, antioxidants, lubricants, flame retardants, antistatic agents, antibacterial agents, biodegradation accelerators, heat stabilizers, weather stabilizers, light stabilizers, ultraviolet absorbers, and antiblocking agents.
  • Various processing aids, such as these, can be mix
  • Environment-friendly foams using the resin composition for foaming according to the present invention can be produced by the following method, but is not limited thereto.
  • Method for producing a foam using the foaming resin composition is a biodegradable resin, a filler, a processing aid and EVA MB (EVA and inorganic additives combined with ethylene-vinylacetate and a monomer including a double bond in a pressure kneader extruder Mixing a master batch made by mixing in an extruder) at 60 to 110 ° C. for 3 to 10 minutes to prepare a primary blend; Mixing the crosslinking agent, the crosslinking aid, and the blowing agent with the primary blend at 60 to 110 ° C.
  • EVA MB EVA and inorganic additives combined with ethylene-vinylacetate and a monomer including a double bond in a pressure kneader extruder
  • the step of preparing the blend may be mixed by kneading in addition to the kneader, kneaders commonly used in this field, such as snakeberry, roll mill.
  • the EVA MB refers to a master batch made by mixing ethylene vinyl acetate and an inorganic additive in an extruder, and injecting such a master batch to disperse the inorganic additives well to improve compatibility.
  • the molten composition may be molded into a sheet or ribbon form in addition to the pellets.
  • the foaming method may be foamed in a general manner in this field, such as a press foam molding method in addition to the injection foam molding method.
  • the foams obtained can be used in shoe soles, midsoles or insoles.
  • the intermediate product obtained from the reaction was subjected to polycondensation reaction at 240 ° C. under a vacuum degree of less than 1 torr for 135 minutes to obtain a biodegradable resin.
  • the intermediate product obtained from the reaction was subjected to polycondensation reaction at 240 ° C. under a vacuum degree of less than 1 torr for 135 minutes to obtain a biodegradable resin.
  • a filler talc
  • the dried chips were then injected into a mold (6 cm X 18 cm X 2 cm) through an injection foam molding machine and then foamed after 360 seconds at 170 ° C.
  • the foamed foam (163% foam) was aged for 6 hours to prepare the final foam.
  • a foam was prepared in the same manner as in Example 1 except for using PBAI (Polybutylene- Adipate-co-itaconate) of Preparation Example 2 instead of PBAF as the biodegradable polyester resin.
  • PBAI Polybutylene- Adipate-co-itaconate
  • a foam was prepared in the same manner as in Example 1 except that the biodegradable polyester resin was not used.
  • a foam was prepared in the same manner as in Example 1 except for using PBA (polybutylene adipate) instead of PBAF as the biodegradable polyester resin.
  • PBA polybutylene adipate
  • Foams were prepared in the same manner as in Example 1 except for using PBSA (polybutylene succinate-co-adipate) instead of PBAF as the biodegradable polyester resin.
  • PBSA polybutylene succinate-co-adipate
  • a foam was prepared in the same manner as in Example 1 except for using PBS (polybutylene succinate) instead of PBAF as the biodegradable polyester resin.
  • PBS polybutylene succinate
  • a foam was prepared in the same manner as in Example 1 except for using PBAT (polybutylene adipate-co-phthalate) instead of PBAF as the biodegradable polyester resin.
  • PBAT polybutylene adipate-co-phthalate
  • Tensile strength is the value obtained by dividing the maximum load of the material by the cross-sectional area of the specimen.
  • the tensile strength was measured according to ASTM D412 by fabricating a specimen having a width of 6 mm and a thickness of 3 mm. At this time, five test pieces were used in the same test, and the tensile speed was 500 mm / min.
  • Tear strength is the value obtained by dividing the maximum force at which the material is torn from the cut marks by the thickness of the cut part.
  • a test piece having a thickness of 3 mm was produced and measured in accordance with ASTM D3574 and ASTM D634, respectively, and the measurement speed was 500 mm / min for 5 times. The measurements were taken and averaged.
  • Hardness represents the hardness of the surface and the hardness was measured under 1 kg load. A specimen of 10 mm thickness was prepared, and the five points of the hardest and flatst overlapping were set, and then measured in accordance with ASTM D2240 with an Asker C type hardness tester.
  • Split tier refers to the force divided by the width of the specimen divided by the force required to tear it in parallel along a line cut perpendicular to the thickness.
  • the specimen is made of 15 cm, 2.54 cm, and 10 mm in width, length, and thickness with a cutter, respectively. The split tier was measured using this specimen.
  • test piece manufactured in the form of a cylinder having a diameter of 30 + 0.05 mm by turning the foam to 10 mm in thickness was measured according to ASTM D3547. Place the specimen between two parallel metal plates, insert a spacer equal to 50% of the specimen thickness, compress it, heat it in an air-circulating oven maintained at 50 + 0.1 ° C for 6 hours, and remove the specimen from the compression device. After cooling for 30 minutes at room temperature the thickness was measured. Three test pieces were used in the same test, and a compression set was calculated by the following equation.
  • C s is the compressive permanent shrinkage
  • t o is the initial thickness of the test piece
  • t f is the thickness of the test piece when cooled after heat treatment
  • t s is the thickness of the spacer.
  • the shape of the foam is determined by visual observation of the shape of the foam and the size uniformity of the bubbles after aging foamed from the injection molding machine.
  • the foam according to the present invention is also excellent in workability, higher tear, tensile, hardness and equivalent compressive shrinkage than Comparative Example 1 without biodegradable resin bar mechanical properties Although excellent in tear, tensile and hardness similar to Comparative Examples 2 to 5 including a biodegradable resin in which monomers containing no double bonds were bonded, uniform compression of foam size and foam size with lower compression reduction rate It was confirmed that the foaming properties such as excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 생분해성 수지를 포함한 발포용 수지 조성물 및 이로부터 제조된 발포체에 관한 것으로, 본 발명에 따른 조성물은 발포용 수지 조성물에 있어서, 에틸렌-비닐아세테이트 수지; 이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지; 가교제; 가교조제; 충진제 및 발포제를 포함하며, 이와 같은 조성물은 생분해성 폴리에스테르 수지에 포함된 이중 결합이 가교제를 통해 에틸렌-비닐아세테이트 수지와의 화학적 가교결합을 가능하게 하여 에틸렌-비닐아세테이트 수지와의 상용성을 개선시키면서, 혼융시 작업성(이형성)을 개선시키고, 발포 특성 및 발포체의 기계적 물성을 현저히 개선시킬 수 있다.

Description

생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체
본 발명은 발포용 수지 조성물 및 그것으로부터 제조된 발포체에 관한 것이다. 보다 상세하게는 발포용 고분자인 에틸렌-비닐아세테이트(EVA) 수지에 이중 결합을 함유하는 모노머를 결합시킨 생분해성 폴리에스테르 수지를 적용시켜 발포 특성을 개선시킨 발포용 수지 조성물 및 그것으로부터 제조된, 우수한 물성을 갖는 발포체에 관한 것이다.
유용하게 사용되는 합성수지계 발포체는 폴리에틸렌, 폴리프로필렌, 에틸렌-비닐아세테이트 공중합체, 폴리에스테르, 폴리우레탄 등 다양한 소재로 제조되고 있다.
이 중 에틸렌-비닐아세테이트 수지를 기초로 한 발포체는 통상 프레스 발포성형, 사출 발포성형 등 다양한 성형방법으로 제조되고 있으며, 가볍고 변색이 되지 않고 값이 저렴한 이점이 있어 주로 사용되고 있다.
상기 발포체에 있어 중요한 기술적 사항은 가공성이 우수하며 기계적 물성의 저하가 없으면서 동시에 환경친화적인 플라스틱 제조이다. 이는 시급하게 요청되는 발포체의 제조기술 조건으로서, 종래 에틸렌-비닐아세테이트 수지, 아조디카본아미드와 같은 발포제, 유기퍼옥사이드와 같은 가교제 등으로 구성된 발포체용 조성물을 활용한 가교 발포체는 폐기되어 땅속에 묻힐 경우 생분해가 거의 되지 않으며 또한 소각 처리시 다이옥신 또는 VOC등 유해가스가 발생되기 때문에 환경파괴 등 생태계 등을 교란 시킬 가능성이 크다.
이에 따라, 환경친화적인 바이오 플라스틱을 도입하고자 생분해성 고분자 수지와 에틸렌-비닐아세테이트 수지를 혼합하여 사용하고 있다. 그러나, 예를 들면, 폴리락틱산과 에틸렌-비닐아세테이트 수지의 혼합물로 이루어진 발포체의 경우는 에틸렌-비닐아세테이트 수지와의 상용성이 부족하여 원하는 발포체의 형태, 예를 들면 기포의 균일한 크기 등과 같은 발포 특성이 얻어지지 않을 뿐만 아니라 이에 따라 기계적 물성이 저하되는 문제가 있어 왔다. 특히, 폴리락틱산의 경우 높은 용융온도 및 낮은 열적특성 등으로 인하여 통상적인 가공온도에서는 가공이 되지 않는 등의 여러 가지 문제점들이 있어왔다.
따라서, 여러 가지 방법으로 에틸렌-비닐아세테이트 수지와 다른 수지와의 혼합물 등을 기초로 한 발포체용 조성물을 활용한 가교 발포체로 종래의 문제점을 개선하고자 하는 연구가 진행되어 왔으나, 충분한 성능이 얻어지지 않았다.
예를 들면, 발포용 고분자인 에틸렌-비닐아세테이트 수지에 가교 보조제인 촉매량의 가교제(디쿠밀 퍼옥사이드), 가교조제(트리알릴 시아누레이트) 및 발포제(아조디카르본아미드)를 혼용하여 발포특성을 개선하고 있지만, 이 경우에도 25% 이상 생분해성 폴리에스테르 수지와 혼용시 가공성이 저하되고, 화학적 가교 결합 후, 발포특성이 에틸렌-비닐아세테이트 수지와 별도로 부분적으로 발현되어 기포의 크기 또는 발포체의 모양이 불량해지는 등 여전히 문제점을 내포하고 있다.
따라서, 친환경적이면서도 동시에 발포특성 및 기계적 물성을 개선시킨 탁월한 발포체의 출현이 절실히 요구되고 있다.
이에 본 발명자들은 발포용 수지 조성물에 대한 연구를 하면서, 에틸렌-비닐아세테이트 수지에 이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지를 혼용하는 경우, 상기 생분해성 폴리에스테르 수지 내에 함유된 이중 결합이 가교제를 통해 에틸렌-비닐아세테이트 수지와 화학적 가교를 함에 따라 상용성을 좋게하여 작업성을 개선시키며 더 나아가 발포특성을 향상시키고 발포체의 기계적 물성도 개선시킬 수 있음을 밝히고 본 발명을 완성하였다.
본 발명이 해결하고자 하는 과제는 작업성과 함께 발포특성 및 발포체의 기계적 물성을 개선시킨 생분해성 수지를 포함한 발포용 수지 조성물을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는 작업성과 함께 발포특성 및 발포체의 기계적 물성을 개선시킨 생분해성 수지를 포함하는 발포용 수지 조성물로부터 제조된 발포체를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 발포용 수지 조성물에 있어서,
에틸렌-비닐아세테이트 수지;
이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지; 및
가교제; 가교조제; 충진제 및 발포제를 포함하는 것인 생분해성 수지를 포함한 발포용 수지 조성물을 제공한다.
본 발명에 따른 발포용 수지 조성물에서, 상기 에틸렌-비닐아세테이트 수지에 대하여 상기 생분해성 폴리에스테르 수지는 20 중량% 내지 50 중량%의 범위 내에서 사용되는 것이 바람직하다.
또한, 상기 생분해성 폴리에스테르 수지에 결합된 이중 결합을 포함한 모노머는 0.003 내지 0.2 몰비로 포함되어 있는 것이 바람직하다.
또한, 상기 생분해성 폴리에스테르 수지로는 이중 결합이 포함된 모노머로 2 이상의 관능기를 갖는 불포화산류, 불포화 이소시아네이트류, 불포화 알코올류, 또는 불포화 히드록시 카르복실산류를 포함하는 모노머가 결합된 폴리에스테르 수지로부터 선택될 수 있으며, 구체적으로 PBAF(폴리부틸렌아디페이트-코-푸말레이트), PBAI(폴리부틸렌아디페이트-코-이타코네이트), PBSAF(폴리부틸렌숙시네이트-코-아디페이트-코-푸말레이트), PBSAI (폴리부틸렌숙시네이트-코-아디페이트-코-이타코네이트), PBSF(폴리부틸렌숙시네이트-코-푸말레이트), 또는 PBSI(폴리부틸렌숙시네이트-코-이타코네이트)로부터 선택되는 것이 바람직하다.
본 발명에 따른 발포용 수지 조성물에서, 상기 에틸렌-비닐아세테이트 수지와 생분해성 폴리에스테르 수지의 중량 합계 100중량부에 대하여 가교제 0.1 내지 10중량부, 가교조제 0.1 내지 5중량부, 충진제 0.1 내지 5중량부 및 발포제 1 내지 10중량부를 포함하는 것이 바람직하다.
상기 또 다른 과제를 해결하기 위하여, 본 발명은 에틸렌-비닐아세테이트 수지; 이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지; 및 가교제; 가교조제; 충진제 및 발포제를 포함하는 발포용 수지 조성물을 발포 성형시킨 발포체를 제공한다.
본 발명에 따른 발포체에서 발포 성형은 프레스 발포성형 또는 사출 발포성형을 통해 발포되는 것이 바람직하다. 상기 발포체는 신발의 밑창, 중간창 또는 안창에 사용될 수 있다.
본 발명의 효과는 다음과 같다.
첫 번째, 본 발명은 이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지를 에틸렌-비닐아세테이트 수지에 적용시켜 에틸렌-비닐아세테이트 수지와의 상용성을 개선시키고 있다.
두 번째, 본 발명에서는 이중 결합이 포함된 모노머가 도입된 생분해성 폴리에스테르 수지를 적용시켜 생분해성 폴리에스테르 수지 내의 이중 결합이 가교제를 통하여 에틸렌-비닐아세테이트와 화학적 가교결합을 가능하게 하여 혼융시 작업성(이형성)을 개선시킬 뿐만 아니라, 발포특성 및 발포체의 기계적 물성을 현저히 개선시킬 수 있다.
본 발명에 따른 작업성(이형성)과 발포특성 및 발포체의 기계적 물성을 개선시킬 수 있는 발포용 수지 조성물은 에틸렌-비닐아세테이트 수지; 이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지; 가교제; 가교조제; 충진제 및 발포제를 포함한다.
상기 에틸렌-비닐아세테이트 수지는 중량평균분자량이 10만 내지 30만이고, 16만 내지 25만이 바람직하며, 비닐아세테이트 함유량은 10중량% 내지 30중량%의 범위이고, 바람직하게는 15 내지 25중량%의 범위이다. 또한, 용융지수(ASTM D1238, 190℃, 2.16kg)는 0.05 내지 20.0g/10분이고, 보다 바람직하게는 0.3 내지 10.0g/분이다.
상기 이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지는 상기 에틸렌-비닐아세테이트 수지와 혼융시 작업성(이형성)을 개선시킬 수 있으며, 상기 생분해성 폴리에스테르 수지 내의 이중 결합이 가교제를 통해 에틸렌-비닐아세테이트 수지와 화학적 가교결합을 가능하게 하여 발포 특성 및 발포체의 기계적 물성을 현저히 개선시킬 수 있다. 상기 생분해성 폴리에스테르 수지 내의 이중 결합은 이중 결합을 갖는 2 이상의 관능기를 갖는 불포화 화합물을 모노머로 사용하여 중합함으로써 생분해성 폴리에스테르 수지 내에 도입될 수 있다.
상기 이중 결합이 포함된 모노머에서 “이중 결합”은 기존 에스테르화를 위한 카르복실기에 존재하는 C=O 이중 결합 이외에 탄소-탄소, 탄소-산소 또는 탄소-질소의 이중 결합을 의미한다.
상기 생분해성 폴리에스테르 수지에 결합된 이중 결합이 함유된 모노머로는 2이상의 관능기를 갖는 불포화산류, 불포화 이소시아네이트류, 불포화 알코올류 또는 불포화 히드록시 카르복실산이 선택될 수 있으며, 구체적으로 하기 식 1의 PBAF(폴리부틸렌아디페이트-코-푸말레이트), 하기 식 2의 PBAI(폴리부틸렌아디페이트-코-이타코네이트), 및 PBSAF(폴리부틸렌숙시네이트-코-아디페이트-코-푸말레이트), PBSAI (폴리부틸렌숙시네이트-코-아디페이트-코-이타코네이트) PBSF(폴리부틸렌숙시네이트 -코-푸말레이트), PBSI(폴리부틸렌숙시네이트-코-이타코네이트) 등을 예로 들 수 있다.
[화학식 1]
Figure PCTKR2013004228-appb-I000001
여기서, m, n은 상대적인 몰비를 나타내며, m은 0.003 내지 0.2이고, n은 0.8 내지 0.997이다.
[화학식 2]
Figure PCTKR2013004228-appb-I000002
여기서, m, n은 상대적인 몰비를 나타내며, m은 0.003 내지 0.2이고, n은 0.8 내지 0.997이다.
상기 생분해성 폴리에스테르 수지 내의 이중 결합이 포함된 모노머는 0.003 내지 0.2 몰비 내로 포함되어 있는 것이 바람직하고, 0.003 내지 0.1 몰비가 보다 더 바람직하다. 0.003 몰비 미만으로 이중 결합이 포함된 모노머가 포함되어 있으면, 혼융시 작업성(이형성)의 개선이 미미하며, 에틸렌-비닐아세테이트 수지와 화학적 가교결합이 미미할 수 있고, 0.2 몰비를 초과하여 포함되어 있다면, EVA와의 과도한 가교밀도로 인한 발포 특성저하 및 색상저하를 초래할 수 있어 바람직하지 않다.
여기서, 몰비는 생성물인 생분해성 폴리에스테르 수지를 구성하는 모노머의 총몰에 대한 이중 결합이 포함된 모노머의 몰의 비율을 나타낸 것이다.
상기 이중 결합이 포함된 모노머가 결합된 폴리에스테르 수지는 중량평균분자량이 10만 내지 30만이고, 16만 내지 25만이 바람직하며, 또한, 용융지수(ASTM D1238, 190℃, 2.16kg)는 0.05 내지 20.0g/10분의 것이고, 보다 바람직하게는 0.3 내지 10.0g/분이다.
상기 에틸렌-비닐아세테이트 수지에 대해 생분해성 폴리에스테르 수지는 20중량% 이상으로 혼합될 수 있으며, 바람직하게는 20 내지 50중량% 이다. 상기 생분해성 폴리에스테르 수지가 10중량% 미만으로 사용되는 경우, 친환경 바이오 플라스틱 수지에 대한 생분해성 효과가 미미하기 때문에, 20중량% 이상으로 포함되어야 한다.
본 발명의 발포용 수지 조성물에는 가교제, 가교조제, 충진제 및 발포제가 포함된다.
상기 가교제로는 유기과산화물인 것으로, 예를 들면, 디큐밀퍼옥사이드, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 2,5-디메틸-2,5-디-(t-부틸퍼옥시이소프로필)벤진, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산 등에서 선택된 것을 사용할 수 있으며, 상기 에틸렌-비닐아세테이트 수지 및 상기 생분해성 폴리에스테르 수지의 중량 합계 100중량부에 대하여 0.1 내지 10중량부의 범위 내에서 사용하는 것이 바람직하다. 여기서, 0.1 중량부 미만이면 가교도가 떨어지거나 가교되지 않을 수 있으며, 10 중량부를 초과하면 가교결합을 형성하는 것 뿐만 아니라, 주쇄사이에서 절단되어 분자량 저하를 초래한다.
상기 가교조제로는 트리알릴시아누레이트(TAC), 트리알릴이소시아누레이트(TAIC), 트리메틸올 프로판 트리메타크릴레이트(TMPTMA) 또는 트리메틸올 프로판트리아크릴레이트(TMPTA) 등에서 선택된 것을 사용할 수 있으며, 상기 가교조제는 상기 에틸렌-비닐아세테이트 수지 및 생분해성 폴리에스테르 수지의 중량 합계 100중량부에 대하여 0.1 내지 5중량부의 범위내에서 사용하는 것이 바람직하다. 여기서, 가교조제가 0.1 중량부 미만으로 사용되는 경우, 그의 역할이 미비할 수 있으며, 5중량부를 초과하여 사용하는 경우, 주쇄와 가교조제간의 과도한 가교밀도로 인한 발포 특성저하를 초래한다.
상기 충진제로는 무기 충진제가 바람직하며, 상기 무기 충진제는 발포체의 강도를 개선하는 역할을 한다. 무기 충진제의 구체적인 예로서는 탄산칼슘, 산화티탄, 탈크, 알 껍데기, 실리카 등을 들 수 있다. 무기질 충진제의 입자직경은 특히 한정되지 않으며, 수지 조성물에 통상 이용되고 있는 입자직경의 것이어도 좋다. 본 발명의 발포성 수지 조성물에 있어서, 무기질 충진제의 함유량은 상기 에틸렌-비닐아세테이트 수지 및 상기 생분해성 폴리에스테르 수지의 중량 합계 100중량부에 대하여 0.1중량부 내지 5중량부의 범위 내인 것이 바람직하다.
상기 발포제로는 아조계 화합물, 니트로소계 화합물, 술포닐히드라지드계 화합물, 아조비스이소부티로니트릴, 디아조아미노아조벤젠 및 나트륨디카보네이트로 구성되는 군으로부터 어느 하나 이상의 선택되는 것을 포함한다. 구체적으로, 아조디카르본아미드 등의 아조계 화합물, N,N'-디니트로소펜타메틸렌테트라민 등의 니트로소계 화합물, 아조비스이소부티로니트릴, p-톨루엔술포닐히드라진, p,p'-옥시비스벤젠숙포닐히드라지드, 디아조아미노아조벤젠, 아조디카르복실산바륨, 중탄산나트륨 등의 발포제를 포함할 수 있으며, 이에 한정되지 않는다. 상기 발포제는 발포배율 및 밀도를 고려하여 상기 에틸렌-비닐아세테이트 수지 및 상기 생분해성 폴리에스테르 수지의 중량 합계 100중량부에 대하여 1 내지 10중량부 사용하는 것이 바람직하다. 여기서, 1중량부 미만이면 발포체의 경도가 높아 비중이 높아지며, 10중량부를 초과하면 발포체가 찢어지거나 불안정한 발포셀을 형성할 우려가 있다.
본 발명에 있어서, 친환경 발포용 수지 조성물에는 필요에 따라서 백색증진제, 염료, 안료, 산화방지제, 윤활제, 난연제, 대전방지제, 항균제, 생분해촉진제, 내열안정제, 내후안정제, 광안정제, 자외선흡수제, 블로킹 방지제 등의 각종 가공조제를 본 발명의 목적을 손상시키지 않는 범위에서 배합할 수 있다.
본 발명에 따른 발포용 수지 조성물을 이용한 환경친화적인 발포체를 다음과 같은 방법에 의해 제조될 수 있지만, 이것으로 제한되는 것은 아니다.
상기 발포용 수지 조성물을 이용한 발포체의 제조방법은 가압 니더(Kneader) 압출기에 에틸렌-비닐아세테이트와 이중 결합이 포함된 모노머가 결합된 생분해성 수지, 충진제, 가공조제 및 EVA MB(EVA와 무기첨가제를 압출기에서 혼융하여 만든 마스터 배치(Master Batch))를 60 내지 110℃에서 3 내지 10분 동안 혼융하여 1차 혼융물을 제조하는 단계; 1차 혼융물에 가교제, 가교조제 및 발포제를 60 내지 110℃에서 3 내지 10분 동안 혼융하여 2차 혼융물을 제조하는 단계; 상기 2차 혼융물을 카렌더 롤(Calender Roll)로 3회 반복하여 통과시킨 후, 혼융물을 80 내지 120℃에서 펠렛화하여 칩상태로 제조하는 단계; 및 사출 발포성형기에 100 내지 200℃의 온도에서 200 내지 600초 동안 발포시키는 단계를 포함한다.
여기서, 혼융물을 제조하는 단계는 니더 이외에 뱀버리, 롤밀 등의 이 분야에서 일반적으로 사용되는 혼련기에 투입하여 혼융시킬 수 있다.
상기 EVA MB는 에틸렌 비닐아세테이트와 무기첨가제를 압출기에서 혼융하여 만든 마스터 배치를 말하는 것으로, 이와 같은 마스터 배치를 투입하는 것은 무기첨가제들을 잘 분산시켜 상용성을 좋게 하기 위한 것이다.
또한, 상기 혼융 후에, 횬융된 조성물은 펠렛 이외에 시트 또는 리본 형태로 성형할 수 있다.
또한, 발포시키는 방법에는 사출발포 성형법 이외에 프레스 발포성형법 등 이 분야에서 일반적인 방식으로 발포될 수 있다.
상기 얻어진 발포체는 신발용 밑창(sold), 중간창(midsole) 또는 안창(insole)에 사용될 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
제조예 1
PBAF의 제조
교반기, 온도계, 및 진공펌프와 연결되고 상부에 온도계가 설치된 콘덴서를 구비한 500ml 반응기에 1.15mol의 1,4-부탄디올(BDO), 0.95mol의 아디프산(AA) 및 0.05mol의 푸말산, 테트라부틸 티타네이트 0.3g, 트리페닐 포스페이트 0.1g, 분지제로서 말릭산을 아디프산 중량 대비 0.58중량%을 혼합한 후 승온하여 195℃에서 80분 동안 에스테르 반응시켰다. 반응은 반응기 콘덴서의 상부 온도가 90℃이하로 떨어지는 시점에서 종결하였다.
이어서 상기 반응으로부터 수득되는 중간 생성물을 240℃, 1torr 미만의 진공도에서 135분간 중축합 반응시켜 생분해성 수지를 얻었다.
제조예 2
PBAI의 제조
교반기, 온도계, 및 진공펌프와 연결되고 상부에 온도계가 설치된 콘덴서를 구비한 500ml 반응기에 1.15mol의 1,4-부탄디올(BDO), 0.95mol의 아디프산(AA) 및 0.05mol의 이타코닉산, 테트라부틸 티타네이트 0.3g, 트리페닐 포스페이트 0.1g, 분지제로서 말릭산을 아디프산 중량 대비 0.58중량%을 혼합한 후 승온하여 195℃에서 80분 동안 에스테르 반응시켰다. 반응은 반응기 콘덴서의 상부 온도가 90℃이하로 떨어지는 시점에서 종결하였다.
이어서 상기 반응으로부터 수득되는 중간 생성물을 240℃, 1torr 미만의 진공도에서 135분간 중축합 반응시켜 생분해성 수지를 얻었다.
실시예 1
생분해성 발포체의 제조
용융지수 0.8g/10분, 에틸렌:비닐아세테이트=78:22중량% 비율로 중합한 에틸렌-비닐아세테이트 수지(듀폰사 3388 Grade 제품) 70중량%와 생분해성 폴리에스테르 수지로서 상기 제조예 1의PBAF(폴리부틸렌아디페이트-코-푸말레이트)가 30중량% 혼합된 수지 100중량부에 대하여 가공조제 (스테아린산) 0.2중량부, EVA MB(EVA 5중량부, 탄산칼슘 5중량부 및 산화아연 5중량부) 6중량부, 충진제(탈크) 3중량부를 계량하여 니더(kneader)에 투입하고, 95℃에서 6분간 혼융하여 1차 혼융물을 제조하였다. 이어서 1차 혼융물내에 가교제인 디큐밀퍼옥사이드 0.5중량부, 가교조제인 트리알릴시아누레이트 3중량부 및 발포제로서 디아조디카르본아미드 3중량부를 계량하여 니더에 2차 투입하고 95℃에서 6분간 혼융하여 2차 혼융물을 제조하였다. 상기 2차 혼융 조성물은 카렌더 롤(Carender Roll)에서 균일성을 확보하기 위해 3회 통과시키고, 균일하게 혼용된 조성물을 압출기에서 배럴 온도 90℃에서 압출한 후 펠렛화하여 건조시켰다.
이어서, 건조된 칩을 사출 발포 성형기를 통해 몰드(6cmX18cmX2cm) 내로 사출한 후, 170℃에서 360초 후에 발포시켰다. 발포된 발포체(163% 발포)를 6시간 에이징하여 최종 발포체를 제조하였다.
실시예 2
상기 생분해성 폴리에스테르 수지로서 PBAF 대신 상기 제조예 2의 PBAI(폴리부틸렌-아디페이트-코-이타코네이트)를 사용하는 것만 제외하고, 실시예 1과 동일하게 하여 발포체를 제조하였다.
비교예 1
상기 생분해성 폴리에스테르 수지를 사용하지 않는 것만 제외하고, 실시예 1과 동일하게 하여 발포체를 제조하였다.
비교예 2
상기 생분해성 폴리에스테르 수지로서 PBAF 대신 PBA(폴리부틸렌아디페이트)를 사용하는 것만 제외하고, 실시예 1과 동일하게 하여 발포체를 제조하였다.
비교예 3
상기 생분해성 폴리에스테르 수지로서 PBAF 대신 PBSA(폴리부틸렌숙시네이트-코-아디페이트)를 사용하는 것만 제외하고, 실시예 1과 동일하게 하여 발포체를 제조하였다.
비교예 4
상기 생분해성 폴리에스테르 수지로서 PBAF 대신 PBS(폴리부틸렌숙시네이트)를 사용하는 것만 제외하고, 실시예 1과 동일하게 하여 발포체를 제조하였다.
비교예 5
상기 생분해성 폴리에스테르 수지로서 PBAF 대신 PBAT(폴리부틸렌아디페이트-코-프탈레이트)를 사용하는 것만 제외하고, 실시예 1과 동일하게 하여 발포체를 제조하였다.
시험예 1
성능 평가
상기 실시예 1 내지 2 및 비교예 1 내지 5에서 제조된 발포체에 대하여 다음과 같은 항목을 평가하여 그 결과를 하기 표 1 및 표 2에 나타내었다.
작업성(이형성)
가압 니더(Kneader) 압출기 내에서 혼융할 때, 혼융된 혼합물이 금속 표면내에서 잘 이형이 되는지 여부를 육안으로 관찰한다.
인장강도(kg/㎠)
인장강도는 재료가 받는 최대 하중을 시편의 단면적으로 나눈값을 의미하며, 폭이 6mm이고, 두께가 3mm인 시편을 제작하여 ASTM D412에 준하여 인장강도를 측정하였다. 이때 동일 시험에 사용한 시험편은 5개로 하였으며, 인장속도는 500mm/분으로 하였다.
인열강도(kg/cm)
인열강도는 잘린 자국으로부터 재료가 찢어지는 최대힘을 절단부 두께로 나눈 값을 의미하며, 두께 3mm의 시험편을 제작하여 각각 ASTM D3574와 ASTM D634에 준하여 측정하였으며, 측정속도는 500mm/분으로 5회 측정하여 평균값을 취하였다.
경도
경도는 표면의 단단한 정도를 나타내며, 1kg 하중 하에서 경도를 측정하였다. 두께 10mm의 시편을 제작하여 가장 단단하고 편평한 중복되지 않는 5개의 포인트를 설정한 후 에스커 씨(Asker C) 타입의 경도계로 ASTM D2240에 준하여 측정하였다.
스플릿 티어(split tear)(kg/cm)
스플릿 티어는 두께에 수직으로 자른 선을 따라 평행으로 찢기 위해 필요한 힘을 시편의 폭으로 나눈 값을 의미하며, 이때 시편은 가로, 세로 및 두께를 커터로 각각 15cm, 2.54cm 및 10mm로 만들어 제작하였으며, 이 시편을 이용하여 스플릿 티어를 측정하였다.
압출줄음율(%)
발포체를 두께가 10mm가 되도록 켜내어 지름이 30+0.05mm의 원기둥 형태로 제조한 시험편을 ASTM D3547에 준하여 측정하였다. 2장의 평행 금속판 사이에 시험편을 넣고, 시험편 두께의 50%에 해당하는 스페이서(spacer)를 끼운 후 압축시켜 50+0.1℃가 유지되는 공기순환식 오븐에서 6시간 열처리 한 후 압축장치에서 시험편을 꺼내어 실온에서 30분간 냉각시킨 후 두께를 측정하였다. 동일 시험에 사용된 시험편을 3개로 하였고, 압축줄음율(compression set)을 다음 식 1에 의해 계산하였다.
[수학식]
Cs(%) = [(to-tf)/(to-ts)]x100
여기서, Cs는 압축영구줄음율, to는 시험편의 초기두께, tf는 열처리 후 냉각되었을 때의 시험편의 두께이며, ts는 스페이서의 두께이다.
발포체 모양
발포체 모양은 사출성형기에서 발포되어 나온 에이징 후의 발포체의 형태 및 기포의 크기 균일성을 육안 관찰로
표 1
Figure PCTKR2013004228-appb-T000001
표 2
Figure PCTKR2013004228-appb-T000002
(◎ : 매우우수, : 우수, ○ : 보통, △ : 나쁨, X : 매우 나쁨)
상기 표 1 및 2를 통해 알 수 있는 바와 같이, 본 발명에 따른 발포체는 작업성도 우수하며, 생분해성 수지가 포함되지 않은 비교예 1보다 인열, 인장, 경도가 높고 압축줄음율이 동등한 바 기계적 물성이 우수하고, 또한, 이중결합이 포함되지 않는 모노머가 결합된 생분해성 수지를 포함시킨 비교예 2 내지 5보다 인열, 인장 및 경도는 비슷하지만 압축 줄음율은 낮으면서 기포 크기의 균일성 및 발포체 형태 등의 발포 특성이 우수함을 확인할 수 있었다.

Claims (9)

  1. 발포용 수지 조성물에 있어서,
    에틸렌-비닐아세테이트 수지;
    이중 결합이 포함된 모노머가 결합된 생분해성 폴리에스테르 수지;
    가교제; 가교조제; 충진제 및 발포제를 포함하는 생분해성 수지를 포함하는 발포용 수지 조성물.
  2. 제1항에 있어서,
    상기 에틸렌-비닐아세테이트 수지에 대하여 상기 생분해성 폴리에스테르 수지는 20중량% 내지 50중량% 범위로 사용되는 것을 특징으로 하는 발포용 수지 조성물.
  3. 제1항에 있어서,
    상기 생분해성 폴리에스테르 수지에 이중 결합이 포함된 모노머는 0.003 내지 0.2 몰비로 포함되어 있는 것을 특징으로 하는 발포용 수지 조성물.
  4. 제1항에 있어서,
    상기 생분해성 폴리에스테르 수지에 결합된 이중 결합이 함유된 모노머로는 2 이상의 관능기를 갖는 불포화산류, 불포화 이소시아네이트류, 불포화 알코올류, 및 불포화 히드록시 카르복실산류가 결합된 폴리에스테르 수지로부터 선택되는 것을 특징으로 하는 발포용 수지 조성물.
  5. 제4항에 있어서,
    상기 생분해성 폴리에스테르 수지는 PBAF, PBAI, PBSAF, PBSAI, PBSF 또는 PBSI로부터 선택되는 것을 특징으로 하는 발포용 수지 조성물.
  6. 제1항에 있어서,
    상기 조성물은 상기 에틸렌-비닐아세테이트 수지와 생분해성 폴리에스테르 수지의 중량 합계 100 중량부에 대하여 가교제 0.1 내지 10중량부, 가교조제 0.1 내지 5중량부, 충진제 0.1 내지 5중량부 및 발포제 1 내지 10중량부를 포함하는 것을 특징으로 하는 발포용 수지 조성물.
  7. 제1항 내지 제6항중 어느 하나의 항에 따른 발포용 수지 조성물을 발포성형시킨 발포체.
  8. 제7항에 있어서,
    상기 발포성형은 사출 발포성형 또는 프레스 발포성형인 발포체.
  9. 제7항에 있어서,
    상기 발포체는 신발 밑창, 중간창 또는 안창에 사용되는 것인 발포체.
PCT/KR2013/004228 2012-07-30 2013-05-13 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체 WO2014021544A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015525318A JP6078152B2 (ja) 2012-07-30 2013-05-13 生分解性樹脂を含む発泡用樹脂組成物およびそれから製造された発泡体
US14/403,409 US9200128B2 (en) 2012-07-30 2013-05-13 Resin composition for foaming containing biodegradable resin, and foam manufactured therefrom
AU2013297330A AU2013297330B2 (en) 2012-07-30 2013-05-13 Resin composition for foaming containing biodegradable resin, and foam manufactured therefrom
CN201380038585.XA CN104470978B (zh) 2012-07-30 2013-05-13 包含生物可降解树脂的发泡用树脂组合物及由其制造的发泡体
EP13825113.7A EP2881426A4 (en) 2012-07-30 2013-05-13 FOAMING RESIN COMPOSITION CONTAINING BIODEGRADABLE RESIN, AND FOAM OBTAINED WITH THE COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0083244 2012-07-30
KR20120083244A KR20140016548A (ko) 2012-07-30 2012-07-30 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체

Publications (1)

Publication Number Publication Date
WO2014021544A1 true WO2014021544A1 (ko) 2014-02-06

Family

ID=50028185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004228 WO2014021544A1 (ko) 2012-07-30 2013-05-13 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체

Country Status (7)

Country Link
US (1) US9200128B2 (ko)
EP (1) EP2881426A4 (ko)
JP (1) JP6078152B2 (ko)
KR (1) KR20140016548A (ko)
CN (1) CN104470978B (ko)
AU (1) AU2013297330B2 (ko)
WO (1) WO2014021544A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717504A (zh) * 2021-09-08 2021-11-30 北京化工大学常州先进材料研究院 一种相分离制备pbat/pp复合发泡材料的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410178B1 (ko) * 2020-07-03 2022-06-17 (주)세창이노베이션 고함량의 폐발포스크랩을 포함하는 재생 발포체 조성물, 이를 이용하여 제조되는 재생 발포체 및 재생 발포체의 제조방법
CN112048122A (zh) * 2020-09-18 2020-12-08 泉州师范学院 一种可生物降解pbst/eva中底鞋材及其制备方法
IT202100013310A1 (it) 2021-05-21 2022-11-21 Krill Design Srl Filler per composizioni polimeriche derivante da scarti di lavorazione e/o spremitura degli agrumi.
WO2023063710A1 (ko) * 2021-10-13 2023-04-20 이성율 생분해성 폼 조성물
KR20230091709A (ko) 2021-12-16 2023-06-23 한국신발피혁연구원 열분해 특성을 갖는 신발 부품용 eva 발포체 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859892A (ja) * 1994-08-08 1996-03-05 Novamont Spa 生分解性発泡プラスチック材料とその製造方法
KR19980072370A (ko) * 1997-03-04 1998-11-05 이봉주 생분해성 폴리올레핀계 가교발포체 조성물
KR20000059820A (ko) * 1999-03-09 2000-10-05 한형수 고용융점도를 갖는 생분해성 수지 조성물
KR20050087967A (ko) * 2004-02-28 2005-09-01 동서대학교산학협력단 생분해성 신발중창 발포체 조성물 및 이의 제조방법
KR101038038B1 (ko) * 2010-10-25 2011-05-31 주식회사 시피에스티 생분해성 발포체용 조성물 및 이를 이용한 발포체의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346934A (en) * 1992-12-21 1994-09-13 Chriss Henry T Footwear additive made from recycled materials
EP1987935A3 (en) * 2004-12-01 2008-11-19 Nitto Denko Corporation Foam Filling Member
JP4463667B2 (ja) * 2004-12-01 2010-05-19 日東電工株式会社 発泡充填部材
JP2009144152A (ja) * 2007-11-29 2009-07-02 Sukano Management & Services Ag 生分解性ポリエステル組成物
CN101475734B (zh) * 2008-12-15 2011-10-12 山东省意可曼科技有限公司 可完全生物降解聚羟基烷酸酯/聚碳酸酯共混合金及其制备方法
CN101899200B (zh) * 2010-06-03 2012-07-18 上海交通大学 可生物降解聚丁二酸丁二醇酯发泡材料的制备方法
KR101223219B1 (ko) * 2011-01-20 2013-01-17 주식회사 컴테크케미칼 폴리락틱엑시드를 이용한 신발 중창용 생분해성 발포체 조성물 및 이의 제조방법
US9060568B2 (en) * 2011-12-02 2015-06-23 Nike, Inc. Article of footwear with insertable lightweight interior midsole structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859892A (ja) * 1994-08-08 1996-03-05 Novamont Spa 生分解性発泡プラスチック材料とその製造方法
KR19980072370A (ko) * 1997-03-04 1998-11-05 이봉주 생분해성 폴리올레핀계 가교발포체 조성물
KR20000059820A (ko) * 1999-03-09 2000-10-05 한형수 고용융점도를 갖는 생분해성 수지 조성물
KR20050087967A (ko) * 2004-02-28 2005-09-01 동서대학교산학협력단 생분해성 신발중창 발포체 조성물 및 이의 제조방법
KR101038038B1 (ko) * 2010-10-25 2011-05-31 주식회사 시피에스티 생분해성 발포체용 조성물 및 이를 이용한 발포체의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717504A (zh) * 2021-09-08 2021-11-30 北京化工大学常州先进材料研究院 一种相分离制备pbat/pp复合发泡材料的方法

Also Published As

Publication number Publication date
AU2013297330A1 (en) 2014-11-27
JP2015528848A (ja) 2015-10-01
CN104470978A (zh) 2015-03-25
EP2881426A1 (en) 2015-06-10
KR20140016548A (ko) 2014-02-10
EP2881426A4 (en) 2016-05-25
JP6078152B2 (ja) 2017-02-08
CN104470978B (zh) 2017-05-03
US9200128B2 (en) 2015-12-01
US20150119481A1 (en) 2015-04-30
AU2013297330B2 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2014021544A1 (ko) 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체
WO2013089387A1 (ko) 가교된 폴리락트산을 이용한 발포 시트 및 이의 제조방법
GB1562869A (en) Compositions of ethylene-vinyl acetate rubber and polyolefin resin
WO2014003376A1 (ko) 신발창용 스펀지 조성물
EP2918633A1 (en) Thermoplastic resin composition for use as vehicle interior material, and formed product for use as vehicle interior material
CN103131071A (zh) 一种交联剂改性聚乙烯土工格栅及其制造方法
CN110527214B (zh) 一种抗寒保暖用二氧化硅气凝胶发泡材料
WO2014025161A1 (ko) 신발창용 스펀지 조성물
JP2018188664A (ja) 組成物、組成物から生産された熱可塑性加硫物および組成物から生産された物
WO2012099357A2 (ko) 폴리락틱엑시드를 이용한 신발 중창용 생분해성 발포체 조성물 및 이의 제조방법
US8080589B2 (en) Method for producing a bio-based polymeric shoe component
KR20210067265A (ko) 수축필름용 폴리프로필렌 수지 조성물 및 이를 이용하여 제조된 수축필름
TW202239843A (zh) 再循環聚合物組成物及其方法
JP2002037987A (ja) ポリ乳酸系組成物及びその製造方法
WO2013100420A1 (ko) 생분해성 수지 조성물과 이를 이용한 생분해성 시트의 제조방법
TWI706989B (zh) 聚乳酸-聚烯烴合金樹脂組成物
JP2008115274A (ja) マスターバッチおよびそれを用いた成形体の製造方法
CN111073123A (zh) 一种聚乙烯母料及制备方法、聚乙烯组合物
JP4953597B2 (ja) ポリブチレンサクシネート樹脂組成物、その製造方法、それからなる成形体
CN115707575A (zh) 一种多层膜及其制备方法和用途
KR101382784B1 (ko) 우수한 내충격성 및 내열성을 가지는 생분해성 대전방지 다층시트 및 그 제조방법
CN113248877B (zh) 抗氧化淀粉基生物可降解材料及其制备方法
CN111073122A (zh) 一种聚乙烯组合物及其制备方法
KR19980014509A (ko) 축광성 고분자 발포체 및 이의 제조방법
WO2024128426A1 (ko) 복합 가소제를 이용한 생분해성 수지 조성물의 제조 방법 및 이에 의해 제조된 바이오매스 기반의 생분해성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013825113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14403409

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013297330

Country of ref document: AU

Date of ref document: 20130513

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015525318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE