WO2020050023A1 - アナログ・デジタルコンバータ - Google Patents

アナログ・デジタルコンバータ Download PDF

Info

Publication number
WO2020050023A1
WO2020050023A1 PCT/JP2019/032569 JP2019032569W WO2020050023A1 WO 2020050023 A1 WO2020050023 A1 WO 2020050023A1 JP 2019032569 W JP2019032569 W JP 2019032569W WO 2020050023 A1 WO2020050023 A1 WO 2020050023A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
analog
channel
converter
Prior art date
Application number
PCT/JP2019/032569
Other languages
English (en)
French (fr)
Inventor
照男 徐
山崎 裕史
宗彦 長谷
裕史 濱田
秀之 野坂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/272,886 priority Critical patent/US11394390B2/en
Publication of WO2020050023A1 publication Critical patent/WO2020050023A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0626Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/04Frequency-transposition arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/04Frequency-transposition arrangements
    • H04J1/05Frequency-transposition arrangements using digital techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks

Definitions

  • the present invention relates to an analog-to-digital converter that individually converts an analog input signal into a digital signal for each frequency band, and then synthesizes and outputs one on a frequency axis.
  • Analog-to-Digital Converters used in optical communications and measuring instruments are CMOS processes that can be easily integrated with digital signal processors (DSPs) from the viewpoint of circuit integration. It is desirable to be manufactured. However, since the bandwidth of the CMOS process is narrow, there is a limit to widening the ADC bandwidth.
  • FIG. 4 is a block diagram showing a configuration of a conventional analog / digital converter.
  • the case where the signal components of the partial band Wi are individually A / D converted is shown.
  • the conventional analog / digital converter 50 includes, as processing blocks for each CHi, an analog processing block Ai of an analog processing circuit unit 50A and a digital processing block Bi of a digital processing circuit unit 50B. .
  • each filter 61 extracts a signal s1j of a corresponding partial band Wj from an analog input signal Sx having a wide frequency band W. .
  • s1j is down-converted into a signal s2j on the low frequency side by the corresponding local oscillation signal fj.
  • SADC sub A / D converter 63
  • the filter 61 extracts the corresponding signal s11 of the partial band W1 from the analog input signal Sx having the wide frequency band W.
  • the sub-A / D converter 63 (SADC) converts s11 into a digital signal s31 without down-converting.
  • s3j obtained in A1 is output to the adder 70 as a CH1 channel output signal sy1 without up-conversion.
  • the summer 70 generates and outputs a digital output signal Sy corresponding to the original analog input signal Sx by adding the channel output signals syi of the respective channels CHi and synthesizing them on the frequency axis.
  • the present invention has been made to solve such a problem, and provides an analog-to-digital converter that can convert a wideband analog input signal to a digital output signal based on a band division method without requiring a filter circuit. It is intended to be.
  • N analog processing blocks Ai provided for each channel and processing the analog signal of the channel CHi
  • N digital processing blocks Bi provided for each channel CHi and processing the digital signal of the channel CHi.
  • the digital processing block comprising: a frequency converter for down-converting at a cutoff frequency fj-1 of CHj-1; and a sub-A / D converter for A / D converting an analog signal Saj obtained by the frequency converter.
  • Bj is a multiplier for doubling the signal strength of the first digital signal S1j obtained by the sub A / D converter of the analog processing block Aj, and a second digital signal S2j obtained by the multiplier
  • Subtracter subtracts the third digital signal S3j-1 for the channel CHj-1 from the corresponding channel CHj-1, and outputs a third digital signal S3j of the channel CHj.
  • the analog processing block A1 includes a sub-A / D converter for A / D converting the analog input signal Sx, and the digital processing block B1 includes the sub-A / D converter of the analog processing block A1.
  • the obtained first digital signal S11 is output as a third digital signal of the channel CH1 and is output to the adder as a channel output signal Sy1 of the channel CH1.
  • the digital processing block Bi may be configured so that the digital processing block Bi is based on an inverse transfer function of a signal path in the analog processing block Ai of the corresponding channel CHi.
  • the first output signal Si1 includes a digital filter for compensating the frequency characteristic in the corresponding partial band Wi.
  • the present invention it is possible to convert a wideband analog input signal into a digital output signal based on a band division method without requiring a filter circuit. Therefore, it is possible to avoid an increase in circuit area and a complicated circuit configuration due to the filter circuit, and it is possible to easily manufacture an analog-to-digital converter by a CMOS process that can be easily integrated with a digital signal processor (DSP). Becomes
  • FIG. 1 is a block diagram showing the configuration of the analog-to-digital converter according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating a simulation result according to the first embodiment.
  • FIG. 3 is a block diagram showing a configuration of the analog-to-digital converter according to the second embodiment.
  • FIG. 4 is a block diagram showing a configuration of a conventional analog / digital converter.
  • FIG. 1 is a block diagram illustrating a configuration of the analog-to-digital converter according to the first embodiment.
  • the analog / digital converter 10 is a circuit that A / D converts an analog input signal Sx and outputs a digital output signal Sy based on a band division method.
  • an analog / digital converter 10 includes, as main circuit units, an analog processing circuit unit 10A that performs analog signal processing for A / D conversion, and a digital signal process for A / D conversion. And a digital processing circuit unit 10B.
  • the analog processing circuit unit 10A is configured by various circuit components, and the digital processing circuit unit 10B is configured by an arithmetic processing circuit in which a multiprocessor such as a DSP or a CPU cooperates with a program.
  • the signal components of the respective sub-bands Wi are individually A / D converted, and the obtained digital signals are synthesized on the frequency axis to obtain a digital output corresponding to the original Sx. It has a function of generating and outputting the signal Sy.
  • the partial bands Wi corresponding to the channels CH1, CH2, CH3,..., CHN are DC (DC components) to f1, f1 to f2, f2 to f3,.
  • the frequency fi indicates a frequency that is an integer i times the frequency f1.
  • signal components corresponding to CH1, CH2, CH3,..., CHN are represented by D1 (f), D2 (f), D3 (f),.
  • all signal components Dall (f) of Sx are represented by D1 (f) + D2 (f) + D3 (f) +... + DN (f).
  • the analog processing circuit unit 10A includes N analog processing blocks Ai that are provided for each of these CHi and process analog signals of the CHi. Further, the digital processing circuit unit 10B is provided for each of these CHi, and is provided with N digital processing blocks Bi for processing the digital signal of the CHi, and provided in common for these CHi and obtained by these digital processing blocks Bi.
  • a summation unit 20 is provided that sums the obtained channel output signals Syi of each CHi and synthesizes (joins) them on the frequency axis to generate and output Sy corresponding to the original Sx.
  • the third digital signal S3j of CHj is output by subtracting ( ⁇ 2) 13 and the third digital signal S3j-1 relating to CHj-1 from the second digital signal S2j obtained by the multiplier 13.
  • the subtractor 14 and the third digital signal S3j obtained by the subtractor 14 are up-converted into an upper sideband at a cutoff frequency (lower limit frequency of CHj) fj-1 of CHj-1, which is a local signal, And a frequency converter (up-converter) 15 that outputs the channel output signal Syj of the CHj to the adder 20.
  • the digital processing block B1 outputs the first digital signal S11 obtained by the sub-A / D converter 12 of A1 as the third digital signal S31 of the CH1. Has the function of outputting the first digital signal S11 to the adder 20 as the channel output signal Sy1 of the CH1.
  • the analog input signal Sx is input to analog processing blocks A1, A2, A3 corresponding to the respective channels CH1, CH2, CH3.
  • the A / D converter itself has a low-pass filter characteristic. For this reason, from the sub-A / D converter 12, only the signal component D1a (f) in the range of DC (direct current component) to f1 out of all the signal components Dall (f) of Sx due to its own low-pass filter characteristic.
  • a / D conversion is performed and output as S11.
  • D1a (f) matches the signal component D1 (f) of CH1, and is represented by the following equation (1).
  • A2 of CH2 Sx is frequency-converted by the frequency converter 11.
  • Dall (f) is set to f1 from the IF port.
  • the down-converted signal component D2m (f) is output as an analog signal Sa2.
  • D2m (f) is represented by the following equation (2).
  • the frequency converter 11 of A2 is composed of a mixer of double side band (DBS: Double Side Band), and it is assumed that the bandwidth of each port is infinite and each port is completely isolated. However, since the actual mixer has a finite band, in the A2 frequency converter 11, the band of the RF port may be wider than DC to f2, and the band of the IF port may be DC to f1 or more.
  • DBS Double Side Band
  • D2m (f) obtained by the frequency converter 11 is converted into a first digital signal S12 by the sub-A / D converter 12 of A2.
  • the sub A / D converter 12 outputs only the signal component D2a (f) in the range of DC (DC component) to f1 of D2m (f) due to its own low-pass filter characteristic.
  • D2a (f) is represented by the following equation (3).
  • the frequency converter 11 of ⁇ A3 also includes a double side band (DBS: Double Side Band) mixer, the bandwidth of each port is infinite, and the ports are completely isolated.
  • DBS Double Side Band
  • the band of the RF port may be wider than f1 to f3
  • the band of the IF port may be DC to f1 or more.
  • D3m (f) obtained by the frequency converter 11 is converted into a first digital signal S13 by the sub A / D converter 12 of A3.
  • the sub A / D converter 12 itself has a low-pass filter characteristic, of the D3m (f)
  • only the signal component D3a (f) in the range of DC (DC component) to f1 is A / D converted.
  • D3a (f) is represented by the following equation (5).
  • the first digital signals S11, S12, S13 obtained in the analog processing blocks A1, A2, A3 corresponding to the respective channels CH1, CH2, CH3 are converted into digital signals corresponding to the respective channels CH1, CH2, CH3.
  • the input signal component D1a (f) of S11 is output to the adder 20 as a channel output signal Sy1 of CH1 composed of the signal component D1 (f).
  • S11 is output to B2 as a third digital signal S31 of CH1.
  • the signal component D2a (f) of the input S12 is doubled by the multiplier 13, and the signal component D1a (f) of the third digital signal S31 of CH1 is obtained from the obtained second digital signal S22.
  • the third digital signal S32 obtained by the subtracter 14 is up-converted to the original frequency band by the cut-off frequency f1 of CH1 by the frequency converter 15, and the channel output signal Sy2 of CH2 comprising the signal component D2 (f). Is output to the summer 20.
  • D2 (f) obtained by these digital signal processes in B2 is represented by the following equation (6).
  • the input signal component D3a (f) of S13 is doubled by the multiplier 13, and the signal component D2a (f) of the third digital signal S32 of CH2 is obtained from the obtained second digital signal S23.
  • the third digital signal S33 obtained by the subtractor 14 is up-converted by the frequency converter 15 to the original frequency band by the cut-off frequency f2 of CH2, and the channel output signal Sy3 of CH3 comprising the signal component D3 (f). Is output to the summer 20.
  • D3 (f) obtained by the digital signal processing in B3 is expressed by the following equation (7).
  • the signal components D1 (f), D2 (f), and D3 (f) of the channel output signals Sy1, Sy2, Sy3 of CH1, CH2, and CH3 output from B1, B2, and B3 are frequency-divided by the adder 20. Combined on axis. At this time, since the frequency bands of D1 (f), D2 (f), and D3 (f) are DC (DC components) to f1, f1 to f2, and f2 to f3, they correspond to the original analog input signal Sx. Is output from the adder 20.
  • FIG. 2 is an explanatory diagram illustrating a simulation result according to the first embodiment.
  • the input S11 is output to the adder 20 as a CH1 channel output signal Sy1 having a signal component D1 (f) of DC to 30 GHz.
  • S11 is output to B2 as a third digital signal S31 of CH1.
  • Sx is first multiplied by the local signal of 30 GHz (f1) by the frequency converter 11 and downconverted to an analog signal Sa2 having a signal component D2m (f). After that, only the signal component D2a (f) of DC to 30 GHz is converted into the first digital signal S12 in the sub-A / D converter 12 of A2 and the digital processing block B2 of CH2. Is output.
  • the input S12 is converted by the multiplier 13 into a second digital signal S22 having twice the signal strength, and a signal component D1a (f) corresponding to the third digital signal S31 of CH1 is subtracted from S22. It is subtracted by the unit 14.
  • the third digital signal S32 thus obtained is converted into a CH2 channel output signal Sy2 having a signal component D2 (f) of 30 GHz to 60 GHz based on a local oscillation signal of 30 GHz (f1) by the converter 15 of B2.
  • the signal is up-converted and output to the adder 20.
  • Sx is first multiplied by the local signal of 60 GHz (f2) by the frequency converter 11 and downconverted to an analog signal Sa3 having a signal component D3m (f). Thereafter, only the signal component D3a (f) of DC to 30 GHz of Sa3 is converted into the first digital signal S13 by the sub A / D converter 12 of A3, and is output to the digital processing block B3 of CH3. .
  • the input S13 is converted by the multiplier 13 into a second digital signal S23 having twice the signal strength, and a signal component D2a (f) corresponding to the third digital signal S32 of CH2 is subtracted from S23. It is subtracted by the unit 14.
  • the third digital signal S33 thus obtained is converted into a CH3 channel output signal Sy3 having a signal component D3 (f) of 60 GHz to 90 GHz based on the local signal of 60 GHz (f2) by the converter 15 of B3.
  • the signal is up-converted and output to the adder 20. Thereafter, in the adder 20, these channel output signals Sy1, Sy2, Sy3 are synthesized on the same frequency axis and output as a digital output signal Sy corresponding to the original analog input signal Sx.
  • the frequency converter 11 downconverts the analog input signal Sx at the cutoff frequency fj-1 of the channel CHj-1. Then, the sub A / D converter 12 performs A / D conversion of the analog signal Saj obtained by the frequency converter 11, and in the digital processing block Bj, the multiplier 13 performs the sub A / D conversion of the analog processing block Aj. The signal intensity of the first digital signal S1j obtained by the multiplier 12 is doubled, and the subtractor 14 outputs the third digital signal S3j of the channel CHj-1 from the second digital signal S2j obtained by the multiplier 13.
  • the sub A / D converter 12 A / D converts the analog input signal Sx
  • the digital processing block B1 is obtained by the sub A / D converter 12 in the analog processing block A1.
  • the first digital signal S11 is output as the third digital signal S31 of the channel CH1 and is output to the summer 20 as the channel output signal Sy1 of the channel CH1.
  • FIG. 3 is a block diagram illustrating a configuration of the analog-to-digital converter according to the second embodiment.
  • circuit components Normally, circuit components often have frequency characteristics in which the strength and phase of an output signal change with respect to an input signal, such as a decrease in pass characteristics as the frequency increases or a ripple in the pass characteristics. is there. Therefore, when the circuit components used in the analog processing block Ai of the analog processing circuit unit 10A have the above-mentioned non-flat frequency characteristics, the channel output is performed in the addition / subtraction processing in the digital processing block Bi of the digital processing circuit unit 10B. This causes the SN ratio of the signal Syi to deteriorate.
  • a digital filter is provided at the input stage of the digital processing block Bi so as to compensate for the frequency characteristics in the partial band Wi of each channel CHi. That is, in the present embodiment, as shown in FIG. 3, the digital processing block Bi receives the first signal from the analog processing block Ai based on the inverse transfer function of the signal path in the analog processing block Ai of the corresponding channel CHi.
  • the output signal Si1 includes a digital filter 16 for compensating frequency characteristics in a corresponding partial band Wi.
  • Other configurations according to the present embodiment are the same as those of the first embodiment, and a detailed description thereof will be omitted.
  • the inverse transfer function used in the digital filter 16 is obtained by inputting a known test signal such as an impulse signal or a multi-tone signal to the actual analog processing block Ai, and outputting the first digital signal S1i output from the Ai and the test signal. May be created based on the difference between.
  • the digital filter 16 compensates the frequency characteristics in the corresponding partial band Wi, and obtains the fourth signal. Is input to the multiplier 13.
  • Other operations according to the present embodiment are the same as those in the first embodiment, and a detailed description thereof will be omitted.
  • the digital filter 16 of the digital processing block Bi uses the first output from the analog processing block Ai based on the inverse transfer function of the signal path in the analog processing block Ai of the corresponding channel CHi.
  • the signal Si1 the frequency characteristic in the corresponding partial band Wi is compensated.
  • 10 analog-to-digital converter 10A analog processing circuit section, 10B digital processing circuit section, A1, A2, A3, AN, Ai, Aj analog processing block, B1, B2, B3, BN, Bi, Bj digital Processing block, 11: frequency converter, 12: sub A / D converter (SADC), 13: multiplier, 14: subtractor, 15: frequency converter, 16: digital filter, 20: summer, CH1, H2 , CH3, CHN, CHi, CHj channel, Sx analog input signal, Sy1, Sy2, Sy3, SyN, Syi, Syj channel output signal, Sy digital output signal, W frequency band, Wi, Wj partial band , Sa1, Sa2, Sa3, SaN, Sai, Saj...
  • Analog signals S11, S12, S13, S1N, S1i, S1 ... first digital signal, S21, S22, S23, S2N, S2i, S2j ... second digital signal, S31, S32, S33, S3N, S3i, S3j ... third digital signal, S41, S42, S43, S4N , S4i, S4j... Fourth digital signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

フィルタ回路を必要とすることなく、帯域分割方式に基づいて広帯域なアナログ入力信号をデジタル出力信号に変換する。 アナログ処理ブロックAj(j=2~Nの整数)が、アナログ入力信号SxをチャネルCHj-1のカットオフ周波数fj-1でダウンコンバートし、得られたアナログ信号SajをA/D変換し、デジタル処理ブロックBjが、Ajで得られた第1のデジタル信号S1jの信号強度を2倍し、得られた第2のデジタル信号S2jからチャネルCHj-1の第3のデジタル信号S3j-1を減算し、得られた第3のデジタル信号S3jをカットオフ周波数fj-1でアップコンバートし、当該チャネルCHjのチャネル出力信号Syjとして合算器20へ出力する。

Description

アナログ・デジタルコンバータ
 本発明は、アナログ入力信号をその周波数帯域ごとに個別にデジタル信号に変換した後、周波数軸上で1つに合成して出力するアナログ・デジタルコンバータに関する。
 光通信や測定器等で使われるアナログ・デジタルコンバータ(ADC:Analog to Digital Converter)は、回路の集積化の観点から、デジタルシグナルプロセッサ(DSP:Digital Signal Processor)との集積が容易なCMOSプロセスで製造されることが望ましい。しかしながらCMOSプロセスの帯域は狭いがためにADCの広帯域化には限界があった。
 従来、ADCの広帯域化を実現するための技術として、より広帯域なプロセスで製造される周波数変換器を用いた帯域分割方式が提案されている(例えば、非特許文献1など参照)。図4は、従来のアナログ・デジタルコンバータの構成を示すブロック図である。ここでは、アナログ入力信号Sxが持つ周波数帯域WをN個の部分帯域Wi(i=1~Nの整数)に分割し、これら部分帯域Wiごとに設けたチャネル(処理系統)CHiで、それぞれの部分帯域Wiの信号成分を個別にA/D変換する場合が示されている。
 図4に示すように、来のアナログ・デジタルコンバータ50は、各CHiの処理ブロックとして、アナログ処理回路部50Aのアナログ処理ブロックAiと、デジタル処理回路部50Bのデジタル処理ブロックBiとを備えている。
 まず、アナログ処理回路部50Aの各Aj(j=2~Nの整数)では、それぞれのフィルタ61で、広い周波数帯域Wを持つアナログ入力信号Sxから、対応する部分帯域Wjの信号s1jを抽出する。次に、それぞれの周波数変換器62で、対応する局発信号fjにより、s1jを低周波側の信号s2jにダウンコンバートする。その後、それぞれのサブA/D変換器63(SADC)で、s2jをデジタル信号s3jに変換する。
 次に、デジタル処理回路部50Bの各Bjでは、対応するAjで得られたs3jを、それぞれの周波数変換器64で局発信号fjによりそれぞれアップコンバートし、CHjのチャネル出力信号syjを合算器70へ出力する。
 一方、アナログ処理回路部50AのA1では、フィルタ61で、広い周波数帯域Wを持つアナログ入力信号Sxから、対応する部分帯域W1の信号s11を抽出する。次に、s11をダウンコンバートせずに、サブA/D変換器63(SADC)でデジタル信号s31に変換する。
 次に、デジタル処理回路部50BのB1では、A1で得られたs3jをアップコンバートせずに、そのままCH1のチャネル出力信号sy1として合算器70へ出力する。
 この後、合算器70は、各チャネルCHiのチャネル出力信号syiを合算して周波数軸上で合成することにより、元のアナログ入力信号Sxと対応するデジタル出力信号Syを生成して出力する。
G. Raybon, et al., "160-Gbaud coherent receiver based on 100-GHz bandwidth, 240-GS/s analog-to-digital conversion", M2G.1.pdf, OFC 2015 Conference Papers, Optical Fiber Communication Conference(OFC), 2015.
 しかしながら、このような従来技術では、入力側に部分帯域Wiの信号を抽出するためのフィルタ回路が複数必要となるが、これらフィルタ回路は、回路面積の増大を招くという問題点があった。また、高周波で所望のフィルタ特性(中心周波数、帯域、リジェクション等)を満たすフィルタ回路を高い精度で製造することは、回路構成の複雑化を招くという問題点もあった。
 本発明はこのような課題を解決するためのものであり、フィルタ回路を必要とすることなく、帯域分割方式に基づいて広帯域なアナログ入力信号をデジタル出力信号に変換できるアナログ・デジタルコンバータを提供することを目的としている。
 このような目的を達成するために、本発明にかかるアナログ・デジタルコンバータは、アナログ入力信号Sxと対応する周波数帯域をN個に分割して得られたチャネルCHi(i=1~Nの整数)ごとに設けられて、当該チャネルCHiのアナログ信号を処理するN個のアナログ処理ブロックAiと、前記チャネルCHiごとに設けられて、当該チャネルCHiのデジタル信号を処理するN個のデジタル処理ブロックBiと、前記デジタル処理ブロックBiで得られたチャネルCHiのチャネル出力信号Syiを合算して周波数軸上で合成することにより、前記アナログ入力信号Sxと対応するデジタル出力信号Syを出力する合算器とを備え、前記アナログ処理ブロックAj(j=2~Nの整数)は、前記アナログ入力信号SxをチャネルCHj-1のカットオフ周波数fj-1でダウンコンバートする周波数変換器と、前記周波数変換器で得られたアナログ信号SajをA/D変換するサブA/D変換器とを含み、前記デジタル処理ブロックBjは、前記アナログ処理ブロックAjの前記サブA/D変換器で得られた第1のデジタル信号S1jの信号強度を2倍する乗算器と、前記乗算器で得られた第2のデジタル信号S2jからチャネルCHj-1に関する第3のデジタル信号S3j-1を減算し、当該チャネルCHjの第3のデジタル信号S3jを出力する減算器と、前記減算器で得られた前記第3のデジタル信号S3jを前記カットオフ周波数fj-1でアップコンバートし、当該チャネルCHjのチャネル出力信号Syjとして前記合算器へ出力する周波数変換器とを含み、前記アナログ処理ブロックA1は、前記アナログ入力信号SxをA/D変換するサブA/D変換器を含み、前記デジタル処理ブロックB1は、前記アナログ処理ブロックA1の前記サブA/D変換器で得られた第1のデジタル信号S11を、当該チャネルCH1の第3のデジタル信号として出力するとともに、当該チャネルCH1のチャネル出力信号Sy1として前記合算器へ出力するようにしたものである。
 また、本発明にかかる上記アナログ・デジタルコンバータの一構成例は、前記デジタル処理ブロックBiが、対応するチャネルCHiのアナログ処理ブロックAiにおける信号パスの逆伝達関数に基づいて、前記アナログ処理ブロックAiからの第1の出力信号Si1のうち、対応する部分帯域Wiにおける周波数特性を補償するデジタルフィルタを含むものである。
 本発明によれば、フィルタ回路を必要とすることなく、帯域分割方式に基づいて広帯域なアナログ入力信号をデジタル出力信号に変換することが可能となる。したがって、フィルタ回路による回路面積の増大および回路構成の複雑化を回避することができ、デジタルシグナルプロセッサ(DSP)との集積が容易なCMOSプロセスで、アナログ・デジタルコンバータを容易に製造することが可能となる。
図1は第1の実施の形態にかかるアナログ・デジタルコンバータの構成を示すブロック図である。 図2は第1の実施の形態にかかるシミュレーション結果を示す説明図である。 図3は第2の実施の形態にかかるアナログ・デジタルコンバータの構成を示すブロック図である。 図4は従来のアナログ・デジタルコンバータの構成を示すブロック図である。
 次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
 まず、図1を参照して、本発明の第1の実施の形態にかかるアナログ・デジタルコンバータ10について説明する。図1は、第1の実施の形態にかかるアナログ・デジタルコンバータの構成を示すブロック図である。
 このアナログ・デジタルコンバータ10は、帯域分割方式に基づいて、アナログ入力信号SxをA/D変換してデジタル出力信号Syを出力する回路である。
 図1に示すように、アナログ・デジタルコンバータ10は、主な回路部として、A/D変換のためのアナログ信号処理を行うアナログ処理回路部10Aと、A/D変換のためのデジタル信号処理を行うデジタル処理回路部10Bとを備えている。アナログ処理回路部10Aは、各種の回路部品から構成され、デジタル処理回路部10Bは、DSPやCPUなどのマルチプロセッサとプログラムとが協働する演算処理回路から構成される。
 本実施の形態にかかるアナログ・デジタルコンバータ10は、アナログ入力信号Sxが持つ周波数帯域WをN個の連続する部分帯域Wi(i=1~Nの整数)に分割し、これら部分帯域Wiごとに設けたチャネル(処理系統)CHiで、それぞれの部分帯域Wiの信号成分を個別にA/D変換し、得られたデジタル信号を周波数軸上で合成することにより、元のSxと対応するデジタル出力信号Syを生成して出力する機能を有している。
 なお、チャネルCH1,CH2,CH3,…,CHNと対応する部分帯域Wiは、それぞれDC(直流成分)~f1,f1~f2,f2~f3,…,fN-1~fNとし、それぞれの帯域幅は等しいものとする。なお周波数fiは、f1の整数i倍の周波数を示している。また、CH1,CH2,CH3,…,CHNに対応する信号成分をD1(f),D2(f),D3(f),…,DN(f)で表す。これにより、Sxの全信号成分Dall(f)は、D1(f)+D2(f)+D3(f)+…+DN(f)で表されることになる。
 アナログ処理回路部10Aは、これらCHiごとに設けられて、当該CHiのアナログ信号を処理するN個のアナログ処理ブロックAiを備えている。
 また、デジタル処理回路部10Bは、これらCHiごとに設けられて、当該CHiのデジタル信号を処理するN個のデジタル処理ブロックBiと、これらCHiに共通に設けられて、これらデジタル処理ブロックBiで得られた各CHiのチャネル出力信号Syiを合算して周波数軸上で合成する(繋ぎ合わせる)ことにより、元のSxと対応するSyを生成して出力する合算器20とを備えている。
 アナログ処理ブロックAiのうち、アナログ処理ブロックAj(j=2~Nの整数)は、局発信号であるCHj-1のカットオフ周波数(CHjの下限周波数)fj-1でSxをダウンコンバートする周波数変換器(ダウンコンバータ)11と、周波数変換器11で得られたアナログ信号SajをA/D変換するサブA/D変換器(SADC)12とを含んでいる。
 また、アナログ処理ブロックAiのうち、アナログ処理ブロックA1は、Sx(=Sa1)をA/D変換するサブA/D変換器(SADC)12を含んでいる。なお、A1に周波数変換器11は含まれていない。
 デジタル処理ブロックBiのうち、デジタル処理ブロックBj(j=2~Nの整数)は、AjのサブA/D変換器12で得られた第1のデジタル信号S1jの信号強度を2倍する乗算器(×2)13と、乗算器13で得られた第2のデジタル信号S2jからCHj-1に関する第3のデジタル信号S3j-1を減算することにより、CHjの第3のデジタル信号S3jを出力する減算器14と、減算器14で得られた第3のデジタル信号S3jを、局発信号であるCHj-1のカットオフ周波数(CHjの下限周波数)fj-1で上側波帯へアップコンバートし、当該CHjのチャネル出力信号Syjとして合算器20へ出力する周波数変換器(アップコンバータ)15とを含んでいる。
 また、デジタル処理ブロックBiのうち、デジタル処理ブロックB1は、A1のサブA/D変換器12で得られた第1のデジタル信号S11を、当該CH1の第3のデジタル信号S31として出力する機能と、同じく第1のデジタル信号S11を、当該CH1のチャネル出力信号Sy1として合算器20へ出力する機能を有している。
[第1の実施の形態の動作]
 次に、図1を参照して、本実施の形態にかかるアナログ・デジタルコンバータ10の動作について説明する。以下では、理解を容易とするため、帯域分割数NがN=3である場合を例として説明するが、これに限定されるものではなく、N=2またはN>3である場合も同様である。
 アナログ入力信号Sxは、各チャネルCH1,CH2,CH3に対応するアナログ処理ブロックA1,A2,A3にそれぞれ入力される。
 まず、CH1のA1では、A1に周波数変換器11が含まれておらず、Sx(=Sa1)はサブA/D変換器12で第1のデジタル信号S11に変換される。通常、A/D変換器自身はにローパスフィルタ特性がある。このため、サブA/D変換器12からは、自身のローパスフィルタ特性により、Sxの全信号成分Dall(f)のうち、DC(直流成分)~f1の範囲の信号成分D1a(f)のみがA/D変換され、S11として出力される。
 これにより、D1a(f)はCH1の信号成分D1(f)と一致し、次の式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 次に、CH2のA2において、Sxは周波数変換器11で周波数変換される。この際、周波数変換器11のRFポートにはDall(f)が入力されるとともに、LOポートにはCH1のカットオフ周波数f1が入力されているため、IFポートからはDall(f)がf1でダウンコンバートされた信号成分D2m(f)が、アナログ信号Sa2として出力される。D2m(f)は次の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、各式において「*」は複素共役を表すものとする。A2の周波数変換器11は、ダブルサイドバンド(DBS:Double Side Band)のミキサからなり、各ポートの帯域は無限にあり、各ポート間は完全にアイソレーションされているものとする。但し、実際のミキサは有限の帯域を持っているため、A2の周波数変換器11において、RFポートの帯域はDC~f2より広く、IFポートの帯域はDC~f1以上であればよい。
 この後、周波数変換器11で得られたD2m(f)は、A2のサブA/D変換器12で第1のデジタル信号S12に変換される。この際、CH1と同様にして、サブA/D変換器12からは、自身のローパスフィルタ特性により、D2m(f)のうち、DC(直流成分)~f1の範囲の信号成分D2a(f)のみがA/D変換される。D2a(f)は次の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 次に、CH3のA3において、Sxは周波数変換器11で周波数変換される。この際、周波数変換器11のRFポートにはDall(f)が入力されるとともに、LOポートにはCH2のカットオフ周波数f2が入力されているため、IFポートからはDall(f)がf2でダウンコンバートされた信号成分D3m(f)が、アナログ信号Sa3として出力される。D3m(f)は次の式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 A3の周波数変換器11も、ダブルサイドバンド(DBS:Double Side Band)のミキサからなり、各ポートの帯域は無限にあり、各ポート間は完全にアイソレーションされているものとする。但し、実際のミキサは有限の帯域を持っているため、A3の周波数変換器11において、RFポートの帯域はf1~f3より広く、IFポートの帯域はDC~f1以上であればよい。
 この後、周波数変換器11で得られたD3m(f)は、A3のサブA/D変換器12で第1のデジタル信号S13に変換される。この際、サブA/D変換器12自身にローパスフィルタ特性があるため、D3m(f)のうち、DC(直流成分)~f1の範囲の信号成分D3a(f)のみがA/D変換される。D3a(f)は次の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 このようにして、各チャネルCH1,CH2,CH3に対応するアナログ処理ブロックA1,A2,A3で得られた第1のデジタル信号S11,S12,S13は、各チャネルCH1,CH2,CH3に対応するデジタル処理ブロックB1,B2,B3に入力される。
 まず、B1では、入力されたS11の信号成分D1a(f)が、信号成分D1(f)からなるCH1のチャネル出力信号Sy1として合算器20へ出力される。また、S11は、CH1の第3のデジタル信号S31としてB2へ出力される。
 次に、B2では、入力されたS12の信号成分D2a(f)が乗算器13で2倍され、得られた第2のデジタル信号S22からCH1の第3のデジタル信号S31の信号成分D1a(f)が減算器14で減算される。減算器14で得られた第3のデジタル信号S32は、周波数変換器15でCH1のカットオフ周波数f1により元の周波数帯へアップコンバートされ、信号成分D2(f)からなるCH2のチャネル出力信号Sy2として合算器20へ出力される。
 B2におけるこれらデジタル信号処理により得られるD2(f)は、次の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 次に、B3では、入力されたS13の信号成分D3a(f)が乗算器13で2倍され、得られた第2のデジタル信号S23からCH2の第3のデジタル信号S32の信号成分D2a(f)が減算器14で減算される。減算器14で得られた第3のデジタル信号S33は、周波数変換器15でCH2のカットオフ周波数f2により元の周波数帯へアップコンバートされ、信号成分D3(f)からなるCH3のチャネル出力信号Sy3として合算器20へ出力される。
 B3におけるこれらデジタル信号処理により得られるD3(f)は、次の式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 この後、B1,B2,B3から出力されたCH1,CH2,CH3のチャネル出力信号Sy1,Sy2,Sy3の信号成分D1(f),D2(f),D3(f)は、合算器20により周波数軸上で合成される。この際、D1(f),D2(f),D3(f)の周波数帯域は、DC(直流成分)~f1,f1~f2,f2~f3であることから、元のアナログ入力信号Sxと対応するデジタル出力信号Syが合算器20から出力される。
[シミュレーション結果]
 次に、図2を参照して、本実施の形態にかかるアナログ・デジタルコンバータ10の動作に関するシミュレーション結果について説明する。図2は、第1の実施の形態にかかるシミュレーション結果を示す説明図である。以下では、DC~90GHzの周波数帯域Wを持ち、強度が1で位相がランダムなアナログ入力信号Sxを、3つ(N=3)の部分帯域Wi(i=1,2,3)に分割し、これら部分帯域Wiごとに設けたチャネル(処理系統)CHiで、それぞれの部分帯域Wiの信号成分を個別のA/D変換する場合を例として説明するが、これに限定されるものではなく、N=2またはN>3である場合も同様である。
 まず、CH1のアナログ処理ブロックA1では、SxがそのままサブA/D変換器12へ入力される。この際、各チャネルのサブA/D変換器12が持つローパスフィルタ特性のカットオフ周波数は全て30GHz(f1)である。そのため、A1では、Sx(=Sa1)のうちDC~30GHzの信号成分D1a(f)のみが、サブA/D変換器12で第1のデジタル信号S11へ変換されて、CH1のデジタル処理ブロックB1へ出力される。
 B1では、入力されたS11がDC~30GHzの信号成分D1(f)を持つ、CH1のチャネル出力信号Sy1として、合算器20へ出力される。また、S11は、CH1の第3のデジタル信号S31としてB2へ出力される。
 一方、CH2のアナログ処理ブロックA2では、Sxがまず周波数変換器11で30GHz(f1)の局発信号と掛け合わされて、信号成分D2m(f)を持つアナログ信号Sa2にダウンコンバートされる。この後、Sa2のうちCH1と同じくDC~30GHzの信号成分D2a(f)のみが、A2のサブA/D変換器12で第1のデジタル信号S12へ変換されて、CH2のデジタル処理ブロックB2へ出力される。
 B2では、入力されたS12が乗算器13で2倍の信号強度を持つ第2のデジタル信号S22に変換され、CH1の第3のデジタル信号S31に相当する信号成分D1a(f)がS22から減算器14で減算される。こうして得られた第3のデジタル信号S32は、B2の変換器15で30GHz(f1)の局発信号に基づいて、30GH~60GHzの信号成分D2(f)を持つ、CH2のチャネル出力信号Sy2にアップコンバートされて、合算器20へ出力される。
 同様に、CH3のアナログ処理ブロックA3では、Sxがまず周波数変換器11で60GHz(f2)の局発信号と掛け合わされて、信号成分D3m(f)を持つアナログ信号Sa3にダウンコンバートされる。この後、Sa3のうちDC~30GHzの信号成分D3a(f)のみが、A3のサブA/D変換器12で第1のデジタル信号S13へ変換されて、CH3のデジタル処理ブロックB3へ出力される。
 B3では、入力されたS13が乗算器13で2倍の信号強度を持つ第2のデジタル信号S23に変換され、CH2の第3のデジタル信号S32に相当する信号成分D2a(f)がS23から減算器14で減算される。こうして得られた第3のデジタル信号S33は、B3の変換器15で60GHz(f2)の局発信号に基づいて、60GH~90GHzの信号成分D3(f)を持つ、CH3のチャネル出力信号Sy3にアップコンバートされて、合算器20へ出力される。
 この後、合算器20で、これらチャネル出力信号Sy1,Sy2,Sy3が同一周波数軸上で合成されて、元のアナログ入力信号Sxと対応するデジタル出力信号Syとして出力される。
[第1の実施の形態の効果]
 このように、本実施の形態は、アナログ処理ブロックAj(j=2~Nの整数)において、周波数変換器11が、アナログ入力信号SxをチャネルCHj-1のカットオフ周波数fj-1でダウンコンバートし、サブA/D変換器12が、周波数変換器11で得られたアナログ信号SajをA/D変換し、デジタル処理ブロックBjにおいて、乗算器13が、アナログ処理ブロックAjのサブA/D変換器12で得られた第1のデジタル信号S1jの信号強度を2倍し、減算器14が、乗算器13で得られた第2のデジタル信号S2jからチャネルCHj-1の第3のデジタル信号S3j-1を減算し、当該チャネルCHjの第3のデジタル信号S3jを出力し、周波数変換器15が、減算器14で得られた第3のデジタル信号S3jをカットオフ周波数fj-1でアップコンバートし、当該チャネルCHjのチャネル出力信号Syjとして合算器20へ出力するようにしたものである。
 さらに、アナログ処理ブロックA1において、サブA/D変換器12が、アナログ入力信号SxをA/D変換し、デジタル処理ブロックB1が、アナログ処理ブロックA1のサブA/D変換器12で得られた第1のデジタル信号S11を、当該チャネルCH1の第3のデジタル信号S31として出力するとともに、当該チャネルCH1のチャネル出力信号Sy1として合算器20へ出力するようにしたものである。
 そして、合算器20が、各デジタル処理ブロックBi(i=1~Nの整数)で得られたチャネルCHiのチャネル出力信号Syiを合算して周波数軸上で合成することにより、アナログ入力信号Sxと対応するデジタル出力信号Syを出力するようにしたものである。
 これにより、アナログ処理回路部10A側にそれぞれの部分帯域Wiと対応するフィルタ回路を設けることなく、デジタル処理回路部10B側の信号処理により、それぞれの部分帯域Wiと対応する信号成分を有するチャネル出力信号Syiが得られることになる。このため、フィルタ回路を必要とすることなく、帯域分割方式に基づいて広帯域なアナログ入力信号Sxをデジタル出力信号Syに変換することが可能となる。したがって、フィルタ回路による回路面積の増大および回路構成の複雑化を回避することができ、デジタルシグナルプロセッサ(DSP)との集積が容易なCMOSプロセスで、アナログ・デジタルコンバータを容易に製造することが可能となる。
[第2の実施の形態]
 次に、図3を参照して、本発明の第2の実施の形態にかかるアナログ・デジタルコンバータ10について説明する。図3は、第2の実施の形態にかかるアナログ・デジタルコンバータの構成を示すブロック図である。
 通常、回路部品は、高周波になるほど通過特性が低下したり、通過特性にリップルがあったりというような、出力信号の強度と位相が入力信号に対して変化する周波数特性を有している場合がある。したがって、アナログ処理回路部10Aのアナログ処理ブロックAiで用いる回路部品が、上記のようなフラットでない周波数特性を有している場合、デジタル処理回路部10Bのデジタル処理ブロックBiにおける加減算処理において、チャネル出力信号SyiのSN比が劣化する原因となる。
 本実施の形態では、このような場合に対応するため、デジタル処理ブロックBiの入力段にデジタルフィルタを設け、それぞれのチャネルCHiの部分帯域Wiにおける周波数特性を補償するようにしたものである。
 すなわち、本実施の形態において、図3に示すように、デジタル処理ブロックBiは、対応するチャネルCHiのアナログ処理ブロックAiにおける信号パスの逆伝達関数に基づいて、アナログ処理ブロックAiからの第1の出力信号Si1のうち、対応する部分帯域Wiにおける周波数特性を補償するデジタルフィルタ16を含んでいる。本実施の形態にかかるその他の構成については、第1の実施の形態と同様であり、ここでの詳細な説明は省略する。
 デジタルフィルタ16で用いる逆伝達関数は、実際のアナログ処理ブロックAiに、例えばインパルス信号やマルチトーン信号などの既知の試験信号を入力し、Aiから出力される第1のデジタル信号S1iと試験信号との差分に基づいて作成すればよい。
 したがって、チャネルCHj(j=2~Nの整数)のB2では、入力された第1のデジタル信号S1jのうち、デジタルフィルタ16で対応する部分帯域Wiにおける周波数特性が補償され、得られた第4のデジタル信号S4jが、乗算器13に入力されることになる。本実施の形態にかかるその他の動作については、第1の実施の形態と同様であり、ここでの詳細な説明は省略する。
[第2の実施の形態の効果]
 このように、本実施の形態は、デジタル処理ブロックBiのデジタルフィルタ16が、対応するチャネルCHiのアナログ処理ブロックAiにおける信号パスの逆伝達関数に基づいて、アナログ処理ブロックAiからの第1の出力信号Si1のうち、対応する部分帯域Wiにおける周波数特性を補償するようにしたものである。
 これにより、アナログ処理ブロックAiの回路部品の周波数特性に起因する、出力信号Si4のSN比の劣化を低減することができ、高い精度でA/D変換を行うことが可能となる。
[実施の形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
 10…アナログ・デジタルコンバータ、10A…アナログ処理回路部、10B…デジタル処理回路部、A1,A2,A3,AN,Ai,Aj…アナログ処理ブロック、B1,B2,B3,BN,Bi,Bj…デジタル処理ブロック、11…周波数変換器、12…サブA/D変換器(SADC)、13…乗算器、14…減算器、15…周波数変換器、16…デジタルフィルタ、20…合算器、CH1,H2,CH3,CHN,CHi,CHj…チャネル、Sx…アナログ入力信号、Sy1,Sy2,Sy3,SyN,Syi,Syj…チャネル出力信号、Sy…デジタル出力信号、W…周波数帯域、Wi,Wj…部分帯域、Sa1,Sa2,Sa3,SaN,Sai,Saj…アナログ信号、S11,S12,S13,S1N,S1i,S1j…第1のデジタル信号、S21,S22,S23,S2N,S2i,S2j…第2のデジタル信号、S31,S32,S33,S3N,S3i,S3j…第3のデジタル信号、S41,S42,S43,S4N,S4i,S4j…第4のデジタル信号。

Claims (2)

  1.  アナログ入力信号Sxと対応する周波数帯域をN個に分割して得られたチャネルCHi(i=1~Nの整数)ごとに設けられて、当該チャネルCHiのアナログ信号を処理するN個のアナログ処理ブロックAiと、
     前記チャネルCHiごとに設けられて、当該チャネルCHiのデジタル信号を処理するN個のデジタル処理ブロックBiと、
     前記デジタル処理ブロックBiで得られたチャネルCHiのチャネル出力信号Syiを合算して周波数軸上で合成することにより、前記アナログ入力信号Sxと対応するデジタル出力信号Syを出力する合算器とを備え、
     前記アナログ処理ブロックAj(j=2~Nの整数)は、
     前記アナログ入力信号SxをチャネルCHj-1のカットオフ周波数fj-1でダウンコンバートする周波数変換器と、
     前記周波数変換器で得られたアナログ信号SajをA/D変換するサブA/D変換器とを含み、
     前記デジタル処理ブロックBjは、
     前記アナログ処理ブロックAjの前記サブA/D変換器で得られた第1のデジタル信号S1jの信号強度を2倍する乗算器と、
     前記乗算器で得られた第2のデジタル信号S2jからチャネルCHj-1に関する第3のデジタル信号S3j-1を減算し、当該チャネルCHjの第3のデジタル信号S3jを出力する減算器と、
     前記減算器で得られた前記第3のデジタル信号S3jを前記カットオフ周波数fj-1でアップコンバートし、当該チャネルCHjのチャネル出力信号Syjとして前記合算器へ出力する周波数変換器とを含み、
     前記アナログ処理ブロックA1は、前記アナログ入力信号SxをA/D変換するサブA/D変換器を含み、
     前記デジタル処理ブロックB1は、前記アナログ処理ブロックA1の前記サブA/D変換器で得られた第1のデジタル信号S11を、当該チャネルCH1の第3のデジタル信号として出力するとともに、当該チャネルCH1のチャネル出力信号Sy1として前記合算器へ出力する
     ことを特徴とするアナログ・デジタルコンバータ。
  2.  請求項1に記載のアナログ・デジタルコンバータにおいて、
     前記デジタル処理ブロックBiは、対応するチャネルCHiのアナログ処理ブロックAiにおける信号パスの逆伝達関数に基づいて、前記アナログ処理ブロックAiからの第1の出力信号Si1のうち、対応する部分帯域Wiにおける周波数特性を補償するデジタルフィルタを含んでいることを特徴とするアナログ・デジタルコンバータ。
PCT/JP2019/032569 2018-09-04 2019-08-21 アナログ・デジタルコンバータ WO2020050023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/272,886 US11394390B2 (en) 2018-09-04 2019-08-21 Analog/digital converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-165111 2018-09-04
JP2018165111A JP7014105B2 (ja) 2018-09-04 2018-09-04 アナログ・デジタルコンバータ

Publications (1)

Publication Number Publication Date
WO2020050023A1 true WO2020050023A1 (ja) 2020-03-12

Family

ID=69722576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032569 WO2020050023A1 (ja) 2018-09-04 2019-08-21 アナログ・デジタルコンバータ

Country Status (3)

Country Link
US (1) US11394390B2 (ja)
JP (1) JP7014105B2 (ja)
WO (1) WO2020050023A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985324B2 (en) 2019-06-14 2021-04-20 Shaanxi Lighte Optoelectronics Material Co., Ltd. Nitrogen-containing compound, organic electroluminescent device and photoelectric conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504100A (ja) * 2002-10-24 2006-02-02 レクロイ コーポレーション 高帯域幅リアルタイムオシロスコープ
US7253761B1 (en) * 2004-11-08 2007-08-07 United States Of America As Represented By The Secretary Of The Army Analog to digital conversion with signal expansion
JP2017009608A (ja) * 2015-06-19 2017-01-12 テクトロニクス・インコーポレイテッドTektronix,Inc. 試験測定装置及び補償値決定方法
WO2017033446A1 (ja) * 2015-08-27 2017-03-02 日本電信電話株式会社 信号生成装置
US20170170838A1 (en) * 2011-06-27 2017-06-15 Syntropy Systems, Llc Apparatuses and Methods for Converting Fluctuations in Periodicity of an Input Signal into Fluctuations in Amplitude of an Output Signal

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869145A (ja) * 1981-10-20 1983-04-25 Sony Corp 広帯域信号のa/d/−d/a変換装置
US6009130A (en) * 1995-12-28 1999-12-28 Motorola, Inc. Multiple access digital transmitter and receiver
US7236757B2 (en) * 2001-07-11 2007-06-26 Vativ Technologies, Inc. High-speed multi-channel communications transceiver with inter-channel interference filter
US7324036B2 (en) * 2003-05-12 2008-01-29 Hrl Laboratories, Llc Adaptive, intelligent transform-based analog to information converter method and system
US7193544B1 (en) * 2004-09-08 2007-03-20 Northrop Grumman Corporation Parallel, adaptive delta sigma ADC
US8064550B2 (en) * 2007-03-09 2011-11-22 Qualcomm, Incorporated Quadrature imbalance estimation using unbiased training sequences
US8644376B2 (en) * 2010-09-30 2014-02-04 Alcatel Lucent Apparatus and method for generating compressive measurements of video using spatial and temporal integration
WO2012168926A2 (en) * 2011-06-10 2012-12-13 Technion R&D Foundation Receiver, transmitter and a method for digital multiple sub-band processing
US8823573B1 (en) * 2013-02-20 2014-09-02 Raytheon Company System and method for reconstruction of sparse frequency spectrum from ambiguous under-sampled time domain data
US8836552B1 (en) * 2013-03-15 2014-09-16 Lockheed Martin Corporation Direct input radio frequency complex analog to digital converter with corrective factors
US9197283B1 (en) * 2014-12-18 2015-11-24 Raytheon Company Reconfigurable wideband channelized receiver
US9621175B2 (en) * 2015-02-11 2017-04-11 Syntropy Systems, Llc Sampling/quantization converters
EP3332389B1 (en) * 2015-08-03 2021-09-29 Phase Sensitive Innovations, Inc. Distributed array for direction and frequency finding
US11064446B2 (en) * 2016-04-26 2021-07-13 Anatog Devices, Inc. Apparatus and methods for wideband receivers
US10560128B2 (en) * 2017-12-05 2020-02-11 Samsung Electronics Co., Ltd. Carrier aggregated signal transmission and reception
US10797738B2 (en) * 2018-10-26 2020-10-06 Analog Devices, Inc. Segmented receiver for wireless communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504100A (ja) * 2002-10-24 2006-02-02 レクロイ コーポレーション 高帯域幅リアルタイムオシロスコープ
US7253761B1 (en) * 2004-11-08 2007-08-07 United States Of America As Represented By The Secretary Of The Army Analog to digital conversion with signal expansion
US20170170838A1 (en) * 2011-06-27 2017-06-15 Syntropy Systems, Llc Apparatuses and Methods for Converting Fluctuations in Periodicity of an Input Signal into Fluctuations in Amplitude of an Output Signal
JP2017009608A (ja) * 2015-06-19 2017-01-12 テクトロニクス・インコーポレイテッドTektronix,Inc. 試験測定装置及び補償値決定方法
WO2017033446A1 (ja) * 2015-08-27 2017-03-02 日本電信電話株式会社 信号生成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985324B2 (en) 2019-06-14 2021-04-20 Shaanxi Lighte Optoelectronics Material Co., Ltd. Nitrogen-containing compound, organic electroluminescent device and photoelectric conversion device

Also Published As

Publication number Publication date
JP2020039047A (ja) 2020-03-12
US11394390B2 (en) 2022-07-19
JP7014105B2 (ja) 2022-02-01
US20210320667A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5095007B2 (ja) アナログデジタル変換器および半導体集積回路装置
JP6203485B2 (ja) 試験測定装置用信号取込み装置及び入力信号デジタル化方法
US6570514B1 (en) Linearity error compensator
CN101777918B (zh) 用于将模拟输入信号转换成数字输出信号的方法
US7492300B2 (en) Analog-digital conversion apparatus and digital-analog conversion apparatus
US9431962B2 (en) Coefficient estimation for digital IQ calibration
US10164807B2 (en) Receiver circuits
WO2020050023A1 (ja) アナログ・デジタルコンバータ
KR20120123288A (ko) 증폭 장치 및 신호 처리 장치
JP6649230B2 (ja) 信号生成器
Khan et al. A fully digital background calibration technique for M-channel time-interleaved ADCs
JP2010219697A (ja) 受信機
JP4130276B2 (ja) ディジタル−アナログ変換器のスプリアスのないダイナミック・レンジを拡大する方法および装置
JP6310045B1 (ja) 増幅回路
JP6977658B2 (ja) 信号生成器および信号生成方法
Wang et al. Minimax design and order estimation of FIR filters for extending the bandwidth of ADCs
US11444819B1 (en) Adaptive digital receiver path linearizer
Tian et al. A pre-compensation method for digital-to-analog converter using minimax-designed FIR filters
US10686476B1 (en) Digital RF-DAC
JP2000223956A (ja) イメージキャンセルミクサ回路
US20050152444A1 (en) Digital filter
JP5043142B2 (ja) 周波数変換装置及び周波数変換方法
JP4991896B2 (ja) 周波数変換装置及び周波数変換方法
JP6490603B2 (ja) プリディストーション回路及び通信装置
JP2022172940A (ja) 信号発生器および任意波形発生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856907

Country of ref document: EP

Kind code of ref document: A1