WO2020047916A1 - 有机发光二极管驱动背板制造方法 - Google Patents

有机发光二极管驱动背板制造方法 Download PDF

Info

Publication number
WO2020047916A1
WO2020047916A1 PCT/CN2018/107927 CN2018107927W WO2020047916A1 WO 2020047916 A1 WO2020047916 A1 WO 2020047916A1 CN 2018107927 W CN2018107927 W CN 2018107927W WO 2020047916 A1 WO2020047916 A1 WO 2020047916A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
setting step
oxide semiconductor
gate
Prior art date
Application number
PCT/CN2018/107927
Other languages
English (en)
French (fr)
Inventor
刘兆松
任章淳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020047916A1 publication Critical patent/WO2020047916A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method for manufacturing a backplane, and in particular, to an organic light-emitting diode (Organic Light-Emitting Diode, An OLED) driving backplane manufacturing method can reduce the number of photomasks used, reduce the cost of the photomask, and further reduce the overall cost of the organic light emitting diode driving backplane.
  • an organic light-emitting diode Organic Light-Emitting Diode, An OLED
  • organic light emitting diode display panels Compared with liquid crystal display panels, organic light emitting diode display panels have many advantages such as high saturation, low power consumption, and no need for a backlight module, so they have gradually become the mainstream technology in the field of display panels.
  • the present inventor has a shortcoming of the manufacturing cost of the existing organic light emitting diode driving backplane in view of the disadvantage that the existing organic light emitting diode driving backplane is too high.
  • a method for manufacturing an organic light emitting diode driving backplane is created.
  • the main purpose of the present invention is to provide a method for manufacturing an organic light emitting diode driving backplane, which can reduce the number of photomasks used, reduce the cost of the photomask, and further reduce the overall cost of the organic light emitting diode driving backplane.
  • the present invention provides a method for manufacturing an organic light emitting diode driving backplane, including:
  • a color filter setting step including manufacturing a color filter on a substrate, wherein the color filter is used as a part of a light emitting area;
  • a buffer layer setting step comprising depositing a buffer layer on the substrate and the color filter
  • An oxide semiconductor layer setting step includes depositing an oxide semiconductor layer on the buffer layer;
  • a gate setting step includes depositing a gate insulating layer on the buffer layer and the oxide semiconductor layer, and then depositing a gate metal layer on the gate insulating layer;
  • a yellow light processing step includes setting a photoresist layer on the gate metal layer, using a yellow light to define a pattern on the photoresist layer, and etching the gate metal layer and the substrate according to the pattern. Mentioned gate insulating layer;
  • a plasma treatment step includes performing plasma treatment on a portion of the oxide semiconductor layer exposed outside the gate insulating layer and the gate metal layer to reduce the resistance thereof and to make the exposed oxide A part of the semiconductor layer forms an N + conductor layer as an anode;
  • the interlayer insulating layer setting step includes depositing an interlayer insulating layer on the N + conductor layer, the gate insulating layer and the gate metal layer, and forming two contact holes in the interlayer insulating layer. ;
  • a source-drain metal layer setting step includes depositing a source-drain metal layer on the interlayer insulating layer, and forming a source and a drain using the source-drain metal layer, wherein the source The electrode and the drain are respectively located in the two contact holes;
  • a passivation layer setting step includes depositing a passivation layer on the interlayer insulating layer, the source electrode and the drain electrode, and etching the passivation layer to form an active region, wherein the anode is exposed. In the active area;
  • An organic light emitting diode setting step including setting an organic light emitting diode to the anode in the active region;
  • a cathode setting step includes setting a cathode on the active region, wherein the cathode covers the organic light emitting diode.
  • the thickness of the metal oxide semiconductor layer is 100-1000 ⁇ .
  • the gate insulating layer is made of silicon oxide (SiOx) or silicon nitride (SiNx),
  • the gate insulating layer is a multilayer film.
  • the thickness of the gate insulating layer is 1000-3000 ⁇ .
  • the gate metal layer is made of molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), or an alloy thereof.
  • the thickness of the gate metal layer is 2000-8000 ⁇ .
  • the interlayer insulating layer is made of SiOx or SiNx.
  • the interlayer insulating layer is a multilayer film.
  • the thickness of the interlayer insulating layer is 2000-10000 ⁇ .
  • the source / drain metal layer is made of molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), or an alloy thereof.
  • the source-drain metal layer has a thickness of 2000-8000 ⁇ .
  • the passivation layer is made of SiOx or SiNx.
  • the thickness of the passivation layer is 1000-5000 ⁇ .
  • the organic light emitting diode is disposed by a vapor deposition process or an inkjet printing process.
  • the organic light emitting diode is a white light organic light emitting diode.
  • Another object of the present invention is to provide a method for manufacturing an organic light emitting diode driving backplane, including:
  • a color filter setting step including manufacturing a color filter on a substrate, wherein the color filter is used as a part of a light emitting area;
  • a buffer layer setting step comprising depositing a buffer layer on the substrate and the color filter
  • An oxide semiconductor layer setting step includes depositing an oxide semiconductor layer on the buffer layer;
  • a gate setting step includes depositing a gate insulating layer on the buffer layer and the oxide semiconductor layer, and then depositing a gate metal layer on the gate insulating layer;
  • a yellow light processing step includes setting a photoresist layer on the gate metal layer, using a yellow light to define a pattern on the photoresist layer, and etching the gate metal layer and the substrate according to the pattern. Mentioned gate insulating layer;
  • a plasma processing step includes performing plasma treatment on a portion of the oxide semiconductor layer exposed outside the gate insulating layer and the gate metal layer to reduce its resistance, and to expose the exposed oxide semiconductor A part of the layer forms an N + conductor layer as an anode;
  • the interlayer insulating layer setting step includes depositing an interlayer insulating layer on the N + conductor layer, the gate insulating layer and the gate metal layer, and forming two contact holes in the interlayer insulating layer. ;
  • a source-drain metal layer setting step includes depositing a source-drain metal layer on the interlayer insulating layer, and forming a source and a drain using the source-drain metal layer, wherein the source The electrode and the drain are respectively located in the two contact holes;
  • a passivation layer setting step includes depositing a passivation layer on the interlayer insulating layer, the source electrode and the drain electrode, and etching the passivation layer to form an active region, wherein the anode is exposed. In the active area;
  • An organic light emitting diode setting step including setting an organic light emitting diode element to the anode in the active region;
  • a cathode setting step including setting a cathode on the active region, wherein the cathode covers the organic light emitting diode element;
  • the color filter setting step includes making a black matrix on the substrate, and the buffer layer setting step includes depositing the buffer layer on the substrate, the black matrix, and the color filter;
  • the oxide semiconductor layer includes a metal oxide semiconductor layer, and the material of the metal oxide semiconductor layer is selected from the group consisting of indium gallium zinc oxide, indium zinc tin oxide, and indium gallium zinc tin oxide.
  • the thickness of the oxide semiconductor layer is 100-1000 ⁇ .
  • the gate insulating layer is made of silicon oxide (SiOx) or silicon nitride (SiNx),
  • the gate insulating layer is a multilayer film.
  • the thickness of the gate insulating layer is 1000-3000 ⁇ .
  • the gate metal layer is made of molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), or an alloy thereof.
  • the thickness of the gate metal layer is 2000-8000 ⁇ .
  • the interlayer insulating layer is made of SiOx or SiNx.
  • the present invention includes the following advantages:
  • the present invention uses a thin film transistor (TFT) on Color filter (CF), TOC) process, and the transparent oxide semiconductor layer is directly used as the anode, reducing the photomask to 8-9 sheets, reducing the cost of the photomask, and reducing the use of two layers of organic photoresist , Effectively reducing the cost of materials.
  • TFT thin film transistor
  • CF Color filter
  • TOC transparent oxide semiconductor layer
  • the anode can be manufactured by IGZTO. Because IGZTO is not only used as an anode material for organic light emitting diodes, but also as an active layer material for TFTs, a yellow light etching process for anode fabrication is omitted. At the same time, the present invention omits two processes of the flattening layer and the pixel definition layer of the traditional process, and saves three photomasks, which reduces the cost of the photomask and the cost of materials.
  • the color filter setting step includes making a black matrix on the substrate, and the buffer layer setting step includes depositing the buffer layer on the substrate, the black matrix, and the substrate. Mentioned color filters.
  • the oxide semiconductor layer includes a metal oxide semiconductor layer, and the material of the metal oxide semiconductor layer is selected from the group consisting of indium gallium zinc oxide, indium zinc tin oxide, and indium gallium zinc tin oxide. Group.
  • FIG. 1 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to a color filter setting step of a method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 2 is a side sectional view of a semi-finished organic light emitting diode driving backplane corresponding to a buffer layer setting step and an oxide semiconductor layer setting step corresponding to a method for manufacturing an organic light emitting diode driving backplane of the present invention.
  • FIG. 3 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to a gate setting step of a method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 4 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to the yellow light processing step of the method for manufacturing an organic light emitting diode driving backplane according to the present invention, wherein a photoresist layer is disposed on the gate metal layer.
  • FIG. 5 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to a yellow light processing step and a plasma processing step corresponding to a method for manufacturing an organic light emitting diode driving backplane according to the present invention, wherein the gate metal layer and the substrate are etched according to a pattern The gate insulation layer is described.
  • FIG. 6 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to the interlayer insulating layer setting step of the method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 7 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to a step of setting a source-drain metal layer of a method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 8 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to the passivation layer setting step of the method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 9 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to an organic light emitting diode setting step of a method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 10 is a side cross-sectional view of a semi-finished organic light emitting diode driving backplane corresponding to a cathode setting step of a method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 11 is a flowchart of steps in a method for manufacturing an organic light emitting diode driving backplane according to the present invention.
  • FIG. 12 is a flowchart of steps in a method for manufacturing an organic light emitting diode-driven backplane according to the present invention, wherein the steps are subsequent to the steps in FIG. 11.
  • a method for manufacturing an organic light-emitting diode (OLED) driving backplane of the present invention includes: a color filter setting step S01, a buffer layer setting step S02, a An oxide semiconductor layer setting step S03, a gate setting step S04, a yellow light processing step S05, a plasma processing step S06, an interlayer insulating layer setting step S07, a source / drain metal layer setting step S08, a A passivation layer setting step S09, an organic light emitting diode setting step S10, and a cathode setting step S11.
  • the color filter setting step S01 includes fabricating a color filter CF on a substrate SB, where the color filter CF is used as a part of a light emitting area.
  • the substrate SB is a glass substrate.
  • the color filter setting step S01 includes making a black matrix (Black) on the substrate.
  • Matrix) BM The black matrix BM prevents light leakage and color mixing of the color filter CF on the one hand, and can be used for thin film transistors (Thin) on the other hand. Film Transistor (TFT).
  • TFT Film Transistor
  • the buffer layer setting step S02 includes depositing a buffer layer BF on the substrate SB and the color filter CF.
  • the buffer layer setting step S02 includes depositing the buffer layer on the substrate, the black matrix BM, and the color filter CF.
  • the step of setting the oxide semiconductor layer S03 includes depositing an oxide semiconductor layer OX on the buffer layer BF.
  • the gate setting step S04 includes depositing a gate insulating layer GI on the buffer layer BF and the oxide semiconductor layer OX, and then depositing a gate metal layer GE on the gate insulation.
  • Layer GI In one embodiment of the present invention, the gate insulating layer GI is made of silicon oxide (SiOx) or silicon nitride (SiNx). Alternatively, the gate insulating layer GI is a multilayer film. The thickness of the gate insulating layer GI is 1000-3000 ⁇ . In an embodiment of the present invention, the gate metal layer GE is made of molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), or an alloy thereof. The thickness of the gate metal layer GE is 2000-8000 ⁇ .
  • the yellow light processing step S05 includes setting a photoresist layer PR on the gate metal layer GE, using a yellow light to define a pattern on the photoresist layer PR, and according to The pattern etches the gate metal layer GE and the gate insulating layer GI.
  • the plasma processing step S06 includes performing plasma treatment on a portion of the oxide semiconductor layer OX exposed outside the gate insulating layer GI and the gate metal layer GE to reduce its resistance and expose the exposed portion.
  • a part of the oxide semiconductor layer OX forms an N + conductor layer N as an anode.
  • a portion of the anode located below the gate insulation layer GI is not treated with plasma to maintain semiconductor characteristics and serves as a TFT channel.
  • the oxide semiconductor layer OX includes a metal oxide semiconductor layer, and the material of the metal oxide semiconductor layer is selected from the group consisting of indium gallium zinc oxide, indium zinc tin oxide, and indium gallium zinc tin oxide.
  • the thickness of the metal oxide semiconductor layer OX is 100-1000 ⁇ .
  • the interlayer insulation layer setting step S07 includes depositing an interlayer insulation layer IL (Interlayer Dielectric, ILD) to the N + conductor layer N, the gate insulation layer GI, and the gate metal layer. GE and two contact holes H are formed in the interlayer insulating layer IL.
  • the interlayer insulating layer IL is made of silicon oxide (SiOx) or silicon nitride (SiNx).
  • the interlayer insulating layer IL is a multilayer film. The thickness of the interlayer insulation layer IL is 2000-10000 ⁇ .
  • the source-drain metal layer setting step S08 includes depositing a source-drain metal layer on the interlayer insulation layer IL, and forming a source (Source) from the source-drain metal layer. Electrode) S and a drain electrode (Drain Electrode) D, wherein the source electrode S and the drain electrode D are respectively located in the two contact holes H.
  • the source / drain metal layer is made of molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), or an alloy thereof.
  • the source-drain metal layer has a thickness of 2000-8000 ⁇ .
  • the passivation layer setting step S09 includes depositing a passivation (PV) layer PV to the interlayer dielectric (IL), the source S, and the drain D. And etching the passivation layer PV to form an active area, wherein the anode is exposed in the active area.
  • the passivation layer PV is made of silicon oxide (SiOx) or silicon nitride (SiNx).
  • the passivation layer has a PV thickness of 1000-5000 ⁇ .
  • the organic light emitting diode setting step S10 includes setting an organic light emitting diode OL to the anode in the active area.
  • the cathode setting step S11 includes setting a cathode CA to the active area, wherein the cathode CA covers the organic light emitting diode OL.
  • the organic light emitting diode OL may be a white light organic light emitting diode OL.
  • the organic light emitting diode OL may be provided by a vapor deposition process or an inkjet printing process.
  • the present invention includes the following advantages:
  • the present invention uses a thin film transistor (Thin film) on a color filter CF.
  • transistor (TFT) on Color filter (CF), TOC) process and the transparent oxide semiconductor layer OX is used as the anode directly to reduce the photomask to 8-9 sheets, reducing the cost of the photomask and reducing
  • the use of two-layer organic photoresist effectively reduces the cost of materials.
  • the anode can be manufactured by IGZTO. Since IGZTO is not only used as an anode material for organic light emitting diode OL, but also as an active layer material for TFT, a yellow light etching process for anode fabrication is omitted. At the same time, the present invention omits two processes of the flattening layer and the pixel definition layer of the traditional process, and saves three photomasks, which reduces the cost of the photomask and the cost of materials.
  • the black matrix BM not only plays a role in blocking the light leakage of the color filter CF, but also serves as a light shielding layer of the TFT, reducing the production of a light shielding layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管驱动背板制造方法,包括:一彩色滤光片设置步骤、一缓冲层设置步骤、一氧化物半导体层设置步骤、一栅极设置步骤、一黄光处理步骤、一电浆处理步骤、一层间绝缘层设置步骤、一源极漏极金属层设置步骤、一钝化层设置步骤、一有机发光二极管设置步骤、以及一阴极设置步骤。上述制造方法采用在彩色滤光片上布置薄膜晶体管的工艺,并利用透明氧化物半导体层直接做为阳极的方式,减少了光罩数量,有效降低了材料成本。

Description

有机发光二极管驱动背板制造方法 技术领域
本发明是有关于一种背板制造方法,尤其关于一种有机发光二极管(Organic Light-Emitting Diode, OLED)驱动背板制造方法,其可减少所使用的光罩数量,降低光罩成本,进而降低有机发光二极管驱动背板的整体成本。
背景技术
相较于液晶显示面板,有机发光二极管显示面板具有高饱和度、低耗电、无须背光模组等多种优势,因此逐渐成为显示面板领域的主流技术。
然而,上述有机发光二极管显示面板在制造过程中,其彩色滤光片设置在薄膜晶体管阵列(Color Filter on Array, COF)上的制程需使用至少13道光罩,导致制造成本偏高。
因此,有必要提供一种有机发光二极管驱动背板制造方法,以解决现有技术所存在的成本过高的问题。
技术问题
本发明人有鉴于的现有有机发光二极管驱动背板的制造成本过高的缺点,为改良其不足与缺失,进而创作出一种有机发光二极管驱动背板制造方法。
技术解决方案
本发明主要目的在于提供一种有机发光二极管驱动背板制造方法,其可减少所使用的光罩数量,降低光罩成本,进而降低有机发光二极管驱动背板的整体成本。
为达上述目的,本发明提供一种有机发光二极管驱动背板制造方法,包括:
一彩色滤光片设置步骤,包括在一基板上制作一彩色滤光片,其中所述彩色滤光片作为发光区的一部分;
一缓冲层设置步骤,包括沉积一缓冲层在所述基板及所述彩色滤光片上;
一氧化物半导体层设置步骤,包括沉积一氧化物半导体层在所述缓冲层上;
一栅极设置步骤,包括沉积一栅极绝缘层在所述缓冲层和所述氧化物半导体层上,接着沉积一栅极金属层在所述栅极绝缘层上;
一黄光处理步骤,包括设置一光阻层在所述栅极金属层上,利用一道黄光在所述光阻层定义出一图形,并根据所述图形蚀刻所述栅极金属层以及所述栅极绝缘层;
一电浆处理步骤,包括对外露于所述栅极绝缘层和所述栅极金属层之外的氧化物半导体层的部分进行电浆处理以降低其电阻降低,并使所述外露的氧化物半导体层的部分形成一N+导体层以作为一阳极;
一层间绝缘层设置步骤,包括沉积一层间绝缘层到所述N+导体层、所述栅极绝缘层及所述栅极金属层上,并在所述层间绝缘层上形成两接触孔;
一源极漏极金属层设置步骤,包括沉积一源极漏极金属层到所述层间绝缘层上,以所述源极漏极金属层制作一源极以及一漏极,其中所述源极及所述漏极分别位于所述两接触孔内;
一钝化层设置步骤,包括沉积一钝化层到所述层间绝缘层、所述源极及所述漏极上,并蚀刻所述钝化层以形成一主动区,其中所述阳极外露于所述主动区中;
一有机发光二极管设置步骤,包括设置一有机发光二极管到所述主动区中的所述阳极上;以及
一阴极设置步骤,包括设置一阴极到所述主动区上,其中所述阴极覆盖所述有机发光二极管。
在本发明一实施例中,所述金属氧化物半导体层厚度为100-1000 Å。
在本发明一实施例中,所述栅极绝缘层以硅氧化物(SiOx)或硅氮化物(SiNx)制造,
在本发明一实施例中,所述栅极绝缘层为一多层薄膜。
在本发明一实施例中,所述栅极绝缘层厚度为1000-3000Å。
在本发明一实施例中,所述栅极金属层以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。
在本发明一实施例中,所述栅极金属层厚度为2000-8000 Å。
在本发明一实施例中,所述层间绝缘层以SiOx或SiNx制造。
在本发明一实施例中,所述层间绝缘层为一多层薄膜。
在本发明一实施例中,所述层间绝缘层厚度为2000-10000 Å。
在本发明一实施例中,所述源极漏极金属层以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。
在本发明一实施例中,所述源极漏极金属层厚度为2000-8000 Å。
在本发明一实施例中,所述钝化层以SiOx或SiNx制造。
在本发明一实施例中,所述钝化层厚度为1000-5000 Å。
在本发明一实施例中,所述有机发光二极管是以蒸镀工艺或喷墨列印工艺而设置。
在本发明一实施例中,所述有机发光二极管为一白光有机发光二极管。
本发明另一目的在于提供一种有机发光二极管驱动背板制造方法,包括:
一彩色滤光片设置步骤,包括在一基板上制作一彩色滤光片,其中所述彩色滤光片作为发光区的一部分;
一缓冲层设置步骤,包括沉积一缓冲层在所述基板及所述彩色滤光片上;
一氧化物半导体层设置步骤,包括沉积一氧化物半导体层在所述缓冲层上;
一栅极设置步骤,包括沉积一栅极绝缘层在所述缓冲层和所述氧化物半导体层上,接着沉积一栅极金属层在所述栅极绝缘层上;
一黄光处理步骤,包括设置一光阻层在所述栅极金属层上,利用一道黄光在所述光阻层定义出一图形,并根据所述图形蚀刻所述栅极金属层以及所述栅极绝缘层;
一电浆处理步骤,包括对外露于所述栅极绝缘层和所述栅极金属层之外的氧化物半导体层的部分进行电浆处理以降低其电阻,并使所述外露的氧化物半导体层的部分形成一N+导体层以作为一阳极;
一层间绝缘层设置步骤,包括沉积一层间绝缘层到所述N+导体层、所述栅极绝缘层及所述栅极金属层上,并在所述层间绝缘层上形成两接触孔;
一源极漏极金属层设置步骤,包括沉积一源极漏极金属层到所述层间绝缘层上,以所述源极漏极金属层制作一源极以及一漏极,其中所述源极及所述漏极分别位于所述两接触孔内;
一钝化层设置步骤,包括沉积一钝化层到所述层间绝缘层、所述源极及所述漏极上,并蚀刻所述钝化层以形成一主动区,其中所述阳极外露于所述主动区中;
一有机发光二极管设置步骤,包括设置一有机发光二极管元件到所述主动区中的所述阳极上;以及
一阴极设置步骤,包括设置一阴极到所述主动区上,其中所述阴极覆盖所述有机发光二极管元件;
其中所述彩色滤光片设置步骤包括在所述基板上制作一黑色矩阵,所述缓冲层设置步骤包括沉积所述缓冲层在所述基板、所述黑色矩阵及所述彩色滤光片上;
其中所述氧化物半导体层包括一金属氧化物半导体层,所述金属氧化物半导体层的材料选自由氧化铟镓锌、氧化铟锌锡及氧化铟镓锌锡构成的群组。
在本发明一实施例中,所述氧化物半导体层厚度为100-1000 Å。
在本发明一实施例中,所述栅极绝缘层以硅氧化物(SiOx)或硅氮化物(SiNx)制造,
在本发明一实施例中,所述栅极绝缘层为一多层薄膜。
在本发明一实施例中,所述栅极绝缘层厚度为1000-3000Å。
在本发明一实施例中,所述栅极金属层以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。
在本发明一实施例中,所述栅极金属层厚度为2000-8000 Å。
在本发明一实施例中,所述层间绝缘层以SiOx或SiNx制造。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
有益效果
藉由上述技术手段,本发明包括下列优点:
1. 本发明采用在彩色滤光片上布置薄膜晶体管(Thin film transistor (TFT) on Color filter (CF), TOC)的工艺,并利用透明氧化物半导体层直接做为阳极的方式,将光罩减少到8-9张,降低光罩成本的同时,减少了两层有机光阻的使用,有效降低了材料成本。
2. 所述阳极可以IGZTO制造。由于IGZTO不仅作为有机发光二极管发光的阳极材料,也作为TFT的有源层材料,因此省去阳极制作的一道黄光蚀刻工艺。同时,本发明省去了传统工艺平坦化层和像素定义层两道工序,节省了三道光罩,既降低了光罩成本,又降低了材料使用成本。
在本发明一实施例中,所述彩色滤光片设置步骤包括在所述基板上制作一黑色矩阵,所述缓冲层设置步骤包括沉积所述缓冲层在所述基板、所述黑色矩阵及所述彩色滤光片上。
在本发明一实施例中,所述氧化物半导体层包括一金属氧化物半导体层,所述金属氧化物半导体层的材料选自由氧化铟镓锌、氧化铟锌锡及氧化铟镓锌锡构成的群组。
附图说明
图1为本发明有机发光二极管驱动背板制造方法的彩色滤光片设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图2为本发明有机发光二极管驱动背板制造方法的缓冲层设置步骤及氧化物半导体层设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图3为本发明有机发光二极管驱动背板制造方法的栅极设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图4为本发明有机发光二极管驱动背板制造方法的黄光处理步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图,其中一光阻层设置在所述所述栅极金属层上。
图5为本发明有机发光二极管驱动背板制造方法的黄光处理步骤及电浆处理步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图,其中根据一图形蚀刻所述栅极金属层以及所述栅极绝缘层。
图6为本发明有机发光二极管驱动背板制造方法的层间绝缘层设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图7为本发明有机发光二极管驱动背板制造方法的源极漏极金属层设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图8为本发明有机发光二极管驱动背板制造方法的钝化层设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图9为本发明有机发光二极管驱动背板制造方法的有机发光二极管设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图10为本发明有机发光二极管驱动背板制造方法的阴极设置步骤所对应的有机发光二极管驱动背板半成品的侧面剖视图。
图11为本发明有机发光二极管驱动背板制造方法的步骤流程图。
图12为本发明有机发光二极管驱动背板制造方法的步骤流程图,其中的步骤为接续图11之步骤。
本发明的实施方式
请参照图11及图12,本发明有机发光二极管(Organic Light-Emitting Diode, OLED)驱动背板制造方法包括:一彩色滤光片(Color Filter)设置步骤S01、一缓冲层设置步骤S02、一氧化物半导体层设置步骤S03、一栅极设置步骤S04、一黄光处理步骤S05、一电浆处理步骤S06、一层间绝缘层设置步骤S07、一源极漏极金属层设置步骤S08、一钝化层设置步骤S09、一有机发光二极管设置步骤S10、以及一阴极设置步骤S11。
请参照图1,所述彩色滤光片设置步骤S01包括在一基板SB上制作一彩色滤光片CF,其中所述彩色滤光片CF作为发光区的一部分。所述基板SB为一玻璃基板。于执行所述步骤时,可先清洗所述基板SB才进行彩色滤光片CF的制作。在本发明一实施例中,所述彩色滤光片设置步骤S01包括在所述基板上制作一黑色矩阵(Black Matrix)BM。所述黑色矩阵BM一方面防止彩色滤光片CF漏光和混色,另外一方面可用于为薄膜晶体管(Thin Film Transistor, TFT)遮光。
请参照图2,所述缓冲层设置步骤S02包括沉积一缓冲层BF在所述基板SB及所述彩色滤光片CF上。在本发明一实施例中,所述缓冲层设置步骤S02包括沉积所述缓冲层在所述基板、所述黑色矩阵BM及所述彩色滤光片CF上。
所述氧化物半导体层设置步骤S03包括沉积一氧化物半导体层OX在所述缓冲层BF上。
请参照图3,所述栅极设置步骤S04包括沉积一栅极绝缘层GI在所述缓冲层BF和所述氧化物半导体层OX上,接着沉积一栅极金属层GE在所述栅极绝缘层GI上。在本发明一实施例中,所述栅极绝缘层GI以硅氧化物(SiOx)或硅氮化物(SiNx)制造。或者,所述栅极绝缘层GI为一多层薄膜。所述栅极绝缘层GI厚度为1000-3000Å。在本发明一实施例中,所述栅极金属层GE以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。所述栅极金属层GE厚度为2000-8000 Å。
请参照图4及图5,所述黄光处理步骤S05包括设置一光阻层PR在所述栅极金属层GE上,利用一道黄光在所述光阻层PR定义出一图形,并根据所述图形蚀刻所述栅极金属层GE以及所述栅极绝缘层GI。
所述电浆处理步骤S06包括对外露于所述栅极绝缘层GI和所述栅极金属层GE之外的氧化物半导体层OX的部分进行电浆处理以降低其电阻,并使所述外露的氧化物半导体层OX的部分形成一N+导体层N以作为一阳极。位于所述栅极绝缘层GI下方的阳极的部分未被电浆处理而保持半导体特性,且作为一TFT通道。此外,所述氧化物半导体层OX包括一金属氧化物半导体层,所述金属氧化物半导体层的材料选自由氧化铟镓锌、氧化铟锌锡及氧化铟镓锌锡构成的群组。所述金属氧化物半导体层OX厚度为100-1000 Å。
请参照图6,所述层间绝缘层设置步骤S07包括沉积一层间绝缘层IL(Interlayer Dielectric, ILD)到所述N+导体层N、所述栅极绝缘层GI及所述栅极金属层GE上,并在所述层间绝缘层IL上形成两接触孔H。在本发明一实施例中,所述层间绝缘层IL以硅氧化物(SiOx)或硅氮化物(SiNx)制造。或者,所述层间绝缘层IL为一多层薄膜。所述层间绝缘层IL厚度为2000-10000 Å。
请参照图7,所述源极漏极金属层设置步骤S08包括沉积一源极漏极金属层到所述层间绝缘层IL上,以所述源极漏极金属层制作一源极(Source Electrode)S以及一漏极(Drain Electrode)D,其中所述源极S及所述漏极D分别位于所述两接触孔H内。在本发明一实施例中,所述源极漏极金属层以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。所述源极漏极金属层厚度为2000-8000 Å。
请参照图8,所述钝化层设置步骤S09包括沉积一钝化(Passivation, PV)层PV到所述层间绝缘层(Inter Layer Dielectric)IL、所述源极S及所述漏极D上,并蚀刻所述钝化层PV以形成一主动区(Active Area),其中所述阳极外露于所述主动区中。在本发明一实施例中,所述钝化层PV以硅氧化物(SiOx)或硅氮化物(SiNx)制造。所述钝化层PV厚度为1000-5000 Å。
请参照图9,所述有机发光二极管设置步骤S10包括设置一有机发光二极管 OL到所述主动区中的所述阳极上。
请参照图10,所述阴极设置步骤S11包括设置一阴极CA到所述主动区上,其中所述阴极CA覆盖所述有机发光二极管 OL。所述有机发光二极管 OL可为一白光有机发光二极管 OL。此外,所述有机发光二极管 OL可以蒸镀工艺或喷墨列印工艺而设置。
藉由上述技术手段,本发明包括下列优点:
1. 本发明采用在彩色滤光片CF上布置薄膜晶体管(Thin film transistor (TFT) on Color filter (CF), TOC)的工艺,并利用透明氧化物半导体层OX直接做为阳极的方式,将光罩减少到8-9张,降低光罩成本的同时,减少了两层有机光阻的使用,有效降低了材料成本。
2. 所述阳极可以IGZTO制造,由于IGZTO不仅作为有机发光二极管 OL发光的阳极材料,也作为TFT的有源层材料,因此省去阳极制作的一道黄光蚀刻工艺。同时,本发明省去了传统工艺平坦化层和像素定义层两道工序,节省了三道光罩,既降低了光罩成本,又降低了材料使用成本。
3. 在设置黑色矩阵BM的实施例中,所述黑色矩阵BM既起到了隔绝彩色滤光片CF漏光问题,亦同时作为TFT的遮光层,减少了遮光层(Light Shielding Layer)的制作。

Claims (18)

  1. 一种有机发光二极管驱动背板制造方法,包括:
    一彩色滤光片设置步骤,包括在一基板上制作一彩色滤光片,其中所述彩色滤光片作为发光区的一部分;
    一缓冲层设置步骤,包括沉积一缓冲层在所述基板及所述彩色滤光片上;
    一氧化物半导体层设置步骤,包括沉积一氧化物半导体层在所述缓冲层上;
    一栅极设置步骤,包括沉积一栅极绝缘层在所述缓冲层和所述氧化物半导体层上,接着沉积一栅极金属层在所述栅极绝缘层上;
    一黄光处理步骤,包括设置一光阻层在所述栅极金属层上,利用一道黄光在所述光阻层定义出一图形,并根据所述图形蚀刻所述栅极金属层以及所述栅极绝缘层;
    一电浆处理步骤,包括对外露于所述栅极绝缘层和所述栅极金属层之外的氧化物半导体层的部分进行电浆处理以降低其电阻,并使所述外露的氧化物半导体层的部分形成一N+导体层以作为一阳极;
    一层间绝缘层设置步骤,包括沉积一层间绝缘层到所述N+导体层、所述栅极绝缘层及所述栅极金属层上,并在所述层间绝缘层上形成两接触孔;
    一源极漏极金属层设置步骤,包括沉积一源极漏极金属层到所述层间绝缘层上,以所述源极漏极金属层制作一源极以及一漏极,其中所述源极及所述漏极分别位于所述两接触孔内;
    一钝化层设置步骤,包括沉积一钝化层到所述层间绝缘层、所述源极及所述漏极上,并蚀刻所述钝化层以形成一主动区,其中所述阳极外露于所述主动区中;
    一有机发光二极管设置步骤,包括设置一有机发光二极管元件到所述主动区中的所述阳极上;以及
    一阴极设置步骤,包括设置一阴极到所述主动区上,其中所述阴极覆盖所述有机发光二极管元件。
  2. 如权利要求1所述的方法,其中所述彩色滤光片设置步骤包括在所述基板上制作一黑色矩阵,所述缓冲层设置步骤包括沉积所述缓冲层在所述基板、所述黑色矩阵及所述彩色滤光片上。
  3. 如权利要求1所述的方法,其中所述氧化物半导体层包括一金属氧化物半导体层,所述金属氧化物半导体层的材料选自由氧化铟镓锌、氧化铟锌锡及氧化铟镓锌锡构成的群组。
  4. 如权利要求1所述的方法,其中所述氧化物半导体层厚度为100-1000 Å。
  5. 如权利要求1所述的方法,其中所述栅极绝缘层以硅氧化物(SiOx)或硅氮化物(SiNx)制造,
  6. 如权利要求1所述的方法,其中所述栅极绝缘层为一多层薄膜。
  7. 如权利要求1所述的方法,其中所述栅极绝缘层厚度为1000-3000Å。
  8. 如权利要求1所述的方法,其中所述栅极金属层以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。
  9. 如权利要求1所述的方法,其中所述栅极金属层厚度为2000-8000 Å。
  10. 如权利要求1所述的方法,其中所述层间绝缘层以SiOx或SiNx制造。
  11. 一种有机发光二极管驱动背板制造方法,包括:
    一彩色滤光片设置步骤,包括在一基板上制作一彩色滤光片,其中所述彩色滤光片作为发光区的一部分;
    一缓冲层设置步骤,包括沉积一缓冲层在所述基板及所述彩色滤光片上;
    一氧化物半导体层设置步骤,包括沉积一氧化物半导体层在所述缓冲层上;
    一栅极设置步骤,包括沉积一栅极绝缘层在所述缓冲层和所述氧化物半导体层上,接着沉积一栅极金属层在所述栅极绝缘层上;
    一黄光处理步骤,包括设置一光阻层在所述栅极金属层上,利用一道黄光在所述光阻层定义出一图形,并根据所述图形蚀刻所述栅极金属层以及所述栅极绝缘层;
    一电浆处理步骤,包括对外露于所述栅极绝缘层和所述栅极金属层之外的氧化物半导体层的部分进行电浆处理以降低其电阻,并使所述外露的氧化物半导体层的部分形成一N+导体层以作为一阳极;
    一层间绝缘层设置步骤,包括沉积一层间绝缘层到所述N+导体层、所述栅极绝缘层及所述栅极金属层上,并在所述层间绝缘层上形成两接触孔;
    一源极漏极金属层设置步骤,包括沉积一源极漏极金属层到所述层间绝缘层上,以所述源极漏极金属层制作一源极以及一漏极,其中所述源极及所述漏极分别位于所述两接触孔内;
    一钝化层设置步骤,包括沉积一钝化层到所述层间绝缘层、所述源极及所述漏极上,并蚀刻所述钝化层以形成一主动区,其中所述阳极外露于所述主动区中;
    一有机发光二极管设置步骤,包括设置一有机发光二极管元件到所述主动区中的所述阳极上;以及
    一阴极设置步骤,包括设置一阴极到所述主动区上,其中所述阴极覆盖所述有机发光二极管元件;
    其中所述彩色滤光片设置步骤包括在所述基板上制作一黑色矩阵,所述缓冲层设置步骤包括沉积所述缓冲层在所述基板、所述黑色矩阵及所述彩色滤光片上;
    其中所述氧化物半导体层包括一金属氧化物半导体层,所述金属氧化物半导体层的材料选自由氧化铟镓锌、氧化铟锌锡及氧化铟镓锌锡构成的群组。
  12. 如权利要求11所述的方法,其中所述氧化物半导体层厚度为100-1000 Å。
  13. 如权利要求11所述的方法,其中所述栅极绝缘层以硅氧化物(SiOx)或硅氮化物(SiNx)制造,
  14. 如权利要求11所述的方法,其中所述栅极绝缘层为一多层薄膜。
  15. 如权利要求11所述的方法,其中所述栅极绝缘层厚度为1000-3000Å。
  16. 如权利要求11所述的方法,其中所述栅极金属层以钼(Mo)、铝(Al)、铜(Cu)、钛(Ti),或其合金制造。
  17. 如权利要求11所述的方法,其中所述栅极金属层厚度为2000-8000 Å。
  18. 如权利要求11所述的方法,其中所述层间绝缘层以SiOx或SiNx制造。
PCT/CN2018/107927 2018-09-06 2018-09-27 有机发光二极管驱动背板制造方法 WO2020047916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811039263.8 2018-09-06
CN201811039263.8A CN109244276A (zh) 2018-09-06 2018-09-06 有机发光二极管驱动背板制造方法

Publications (1)

Publication Number Publication Date
WO2020047916A1 true WO2020047916A1 (zh) 2020-03-12

Family

ID=65067560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107927 WO2020047916A1 (zh) 2018-09-06 2018-09-27 有机发光二极管驱动背板制造方法

Country Status (2)

Country Link
CN (1) CN109244276A (zh)
WO (1) WO2020047916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2614387A (en) * 2021-12-30 2023-07-05 Lg Display Co Ltd Organic light emitting display device and organic light emitting display panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817578A (zh) * 2019-02-27 2019-05-28 深圳市华星光电半导体显示技术有限公司 有机发光二极管背板的制作方法
CN114864636A (zh) * 2022-03-24 2022-08-05 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293554A (zh) * 2017-06-19 2017-10-24 深圳市华星光电技术有限公司 顶发射型oled面板的制作方法及其结构
CN107293555A (zh) * 2017-06-19 2017-10-24 深圳市华星光电技术有限公司 底发射型白光oled面板的制作方法及其结构
CN107680993A (zh) * 2017-10-23 2018-02-09 深圳市华星光电半导体显示技术有限公司 Oled面板及其制作方法
CN107946345A (zh) * 2017-11-22 2018-04-20 京东方科技集团股份有限公司 彩膜基板及其制备方法以及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293554A (zh) * 2017-06-19 2017-10-24 深圳市华星光电技术有限公司 顶发射型oled面板的制作方法及其结构
CN107293555A (zh) * 2017-06-19 2017-10-24 深圳市华星光电技术有限公司 底发射型白光oled面板的制作方法及其结构
CN107680993A (zh) * 2017-10-23 2018-02-09 深圳市华星光电半导体显示技术有限公司 Oled面板及其制作方法
CN107946345A (zh) * 2017-11-22 2018-04-20 京东方科技集团股份有限公司 彩膜基板及其制备方法以及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2614387A (en) * 2021-12-30 2023-07-05 Lg Display Co Ltd Organic light emitting display device and organic light emitting display panel

Also Published As

Publication number Publication date
CN109244276A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2019140733A1 (zh) 柔性amoled基板及其制作方法
US9947699B2 (en) Manufacturing method of dual gate oxide semiconductor TFT substrate and substrate thereof
US9768323B2 (en) Manufacture method of dual gate oxide semiconductor TFT substrate and structure thereof
WO2018227750A1 (zh) 柔性tft基板的制作方法
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
WO2017166341A1 (zh) Tft基板的制作方法及制得的tft基板
WO2017147974A1 (zh) 阵列基板的制作方法及制得的阵列基板
WO2016165187A1 (zh) 双栅极氧化物半导体tft基板的制作方法及其结构
KR100601374B1 (ko) 박막 트랜지스터 및 그 제조방법과 박막 트랜지스터를포함하는 평판표시장치
WO2016165185A1 (zh) 双栅极氧化物半导体tft基板的制作方法及其结构
WO2018090482A1 (zh) 阵列基板及其制备方法、显示装置
JP6899487B2 (ja) Tft基板及びその製造方法
WO2017024612A1 (zh) 氧化物半导体tft基板的制作方法及其结构
WO2020047916A1 (zh) 有机发光二极管驱动背板制造方法
JP6110412B2 (ja) 薄膜トランジスタアレイ基板及びその製造方法
CN107275345A (zh) 显示基板、显示装置及显示基板的制作方法
US20220310981A1 (en) Display panel and manufacturing method thereof
US10170506B2 (en) LTPS array substrate and method for producing the same
US20210366942A1 (en) Array substrate and manufacturing method thereof
WO2016026177A1 (zh) Tft基板的制作方法及其结构
WO2017147973A1 (zh) 阵列基板的制作方法及制得的阵列基板
US20150279873A1 (en) Manufacturing Method of TFT Array Substrate
US11296174B2 (en) Method of manufacturing display panel and display panel
US9035364B2 (en) Active device and fabricating method thereof
WO2018218769A1 (zh) 薄膜晶体管制造方法及阵列基板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932414

Country of ref document: EP

Kind code of ref document: A1