WO2020047899A1 - 像素结构及其应用的显示面板与制造方法 - Google Patents

像素结构及其应用的显示面板与制造方法 Download PDF

Info

Publication number
WO2020047899A1
WO2020047899A1 PCT/CN2018/106147 CN2018106147W WO2020047899A1 WO 2020047899 A1 WO2020047899 A1 WO 2020047899A1 CN 2018106147 W CN2018106147 W CN 2018106147W WO 2020047899 A1 WO2020047899 A1 WO 2020047899A1
Authority
WO
WIPO (PCT)
Prior art keywords
color resist
layer
resist layer
light
color
Prior art date
Application number
PCT/CN2018/106147
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/461,999 priority Critical patent/US20200257150A1/en
Publication of WO2020047899A1 publication Critical patent/WO2020047899A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13625Patterning using multi-mask exposure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present application relates to a pixel design method, in particular to a pixel structure and a display panel and a manufacturing method thereof.
  • Liquid crystal display panels usually consist of a color filter substrate (CF), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT array Substrate), and a liquid crystal layer (Liquid Crystal Layer, LC) disposed between the two substrates.
  • CF color filter substrate
  • TFT array Substrate thin film transistor array substrate
  • LC liquid crystal layer
  • its working principle is to control the rotation of the liquid crystal molecules of the liquid crystal layer by applying a driving voltage to two glass substrates, and refracting the light of the backlight module to generate a picture.
  • the liquid crystal display panels in the mainstream market can be divided into the following types: vertical alignment (VA), twisted nematic (TN) or super twisted nematic (TN) Nematic (STN) type, In-Plane switching (IPS) type and Fringe Field Switching (FFS) type.
  • VA vertical alignment
  • TN twisted nematic
  • TN super twisted nematic
  • STN super twisted nematic
  • IPS In-Plane switching
  • FFS Fringe Field Switching
  • the vertical alignment (VA) mode liquid crystal display for example, a graphic vertical alignment (PVA) liquid crystal display or a multi-domain vertical alignment (MVA) liquid crystal display device, wherein
  • the PVA type uses a fringe field effect and a compensation plate to achieve a wide viewing angle effect.
  • the MVA type divides a pixel into multiple regions, and uses protrusions or specific pattern structures to cause the liquid crystal molecules located in different regions to fall in different directions to achieve a wide viewing angle and improve the transmittance.
  • the liquid crystal molecules are driven correspondingly in a direction parallel to the plane of the substrate by applying an electric field containing a component substantially parallel to the substrate.
  • the IPS type liquid crystal display panel and the FFS type liquid crystal display panel have the advantages of wide viewing angle. However, due to the shorter wavelength of blue light, compared to red and green light, the phase difference (Retardation) required to achieve the same transmittance (Transmittance) is smaller, and the transmittance-voltage of red, green, and blue light (voltage VT) curves are different; In addition, the transmittance of red, green, and blue light in the panel's polyimide (PI) film, planarization layer (PFA), and coating layer (OC) is different. This can cause color cast problems.
  • PI polyimide
  • PFA planarization layer
  • OC coating layer
  • the current mainstream is mostly to distinguish pixels into bright and dark areas, so the optical performance can be mixed by two VT characteristics.
  • the area ratio of bright and dark areas can be adjusted appropriately to effectively suppress medium gray at large viewing angles. Order whitening.
  • an object of the present application is to provide a pixel design method, and particularly to a pixel structure and a display panel and a manufacturing method thereof, which can not only effectively solve the problem of color cast, but also effectively improve the pixel Design aperture ratio.
  • a pixel structure according to the present application includes a plurality of pixel units, wherein each of the pixel units includes: a light-transmitting area, and the light-transmitting area includes a main light-transmitting area and a primary light-transmitting area disposed adjacently.
  • a color resist structure disposed in the light-transmitting area includes a first color resist layer, a second color resist layer, a third color resist layer, and a first color resist disposed oppositely Layer, a second color resist layer, and a third color resist layer; wherein the first color resist layer, the second color resist layer, and the third color resist layer are disposed in the main light transmitting region The first color resist layer, the second color resist layer, and the third color resist layer are disposed in the second light transmitting region.
  • a liquid crystal display panel including: a first substrate having a plurality of pixel regions; the first substrate includes: a first substrate; and a first insulating layer formed on the first substrate A second substrate disposed opposite to the first substrate; and a liquid crystal layer disposed between the first substrate and the second substrate; further including the pixel structure disposed on the first substrate Between a substrate and the second substrate.
  • Another object of the present application is a method for manufacturing a liquid crystal display panel, including: providing a first substrate; forming a first insulating layer on the first substrate; and sequentially forming a plurality of photoresist layers arranged in parallel on the substrate. Forming a color filter layer on the first insulating layer; forming a protective layer on the color filter layer at the same time; and forming a first electrode layer on the protective layer, thus completing a first substrate Providing a second substrate opposite to the first substrate, wherein a photo spacer is located between the first substrate and the second substrate to define a liquid crystal space and fill the liquid crystal A space; and forming a liquid crystal layer between the first substrate and the second substrate.
  • the first color resist layer, the second color resist layer, and the third color resist layer are in position with the first color resist layer and the second color resist layer.
  • the color resist layer and the third color resist layer are oppositely disposed.
  • the first color resist layer, the second color resist layer, and the third color resist layer are disposed adjacently.
  • an area ratio of the primary transparent region to the secondary transparent region is between 1.5 and 4.
  • the brightness of the primary light transmitting area is greater than the brightness of the secondary light transmitting area.
  • the input voltage of the primary light-transmitting region is greater than the input voltage of the secondary light-transmitting region.
  • the step of sequentially forming a plurality of color-resistance layers arranged in parallel on the first insulating layer to complete a color filter layer includes: A light-shielding material layer is formed on the first insulation layer to cover the first insulation layer; a photomask is provided on the light-shielding material layer, and the photomask has a light-transmitting area, a non-light-transmitting area, and a semi-transparent area.
  • the step of sequentially forming a plurality of color-resistance layers arranged in parallel on the first insulating layer to complete a color filter layer includes: A light-shielding material layer is formed on the first insulation layer to cover the first insulation layer; a photomask is provided on the light-shielding material layer, and the photomask has a light-transmitting area, a non-light-transmitting area, and a semi-transparent area.
  • Light area and performing an exposure manufacturing and a development manufacturing to pattern the light-shielding material layer to form the color filter layer; wherein the main light-transmitting area sequentially sets the first color resist layer, After the second color resist layer and the third color resist layer, the first color resist layer, the second color resist layer, and the third Color barrier layer.
  • the beneficial effect of the present application is to increase the pixel transmittance, and can effectively solve the problem of whitening or color shift of the large viewing angle of the liquid crystal display panel.
  • FIG. 1 a is a transmittance-grayscale value curve corresponding to a color misregistration angle of an exemplary vertical alignment type liquid crystal display device at a viewing angle of 0 °, a viewing angle of 45 °, and a viewing angle of 60 °.
  • FIG. 1b is an exemplary brightness-grayscale curve corresponding to the two improved color shift angles.
  • FIG. 2 is an exemplary mixed low color cast region model.
  • FIG. 3a is a driving schematic diagram of color resist layers in different light-transmitting regions according to an embodiment of the present application.
  • FIG. 3b is a driving equivalent circuit diagram of the color resist layers in different light-transmitting regions according to an embodiment of the present application.
  • FIG. 4a is a schematic diagram showing that the color filter is applied on a thin film transistor substrate and has an insulating layer according to the method of the present application.
  • FIG. 4b is a schematic diagram showing that a color filter is applied to a thin film transistor substrate and has a photomask according to the method of the present application.
  • FIG. 4c is a schematic diagram showing that a color filter is applied to a thin film transistor substrate and has a red photoresist according to the method of the present application.
  • FIG. 4d is a schematic diagram showing that a green filter is applied to a color filter on a thin film transistor substrate according to the method of the present application.
  • FIG. 4e is a schematic diagram showing a blue photoresist applied to a color filter on a thin film transistor substrate according to the method of the present application.
  • FIG. 4f is a schematic diagram showing that a white filter is applied to a color filter on a thin film transistor substrate according to the method of the present application.
  • FIG. 4g is a schematic diagram showing that a color filter is applied on a thin film transistor substrate and has a protective layer according to the method of the present application.
  • FIG. 4h is a schematic diagram showing that a color filter is applied on a thin film transistor substrate and has a pixel electrode layer according to the method of the present application.
  • the liquid crystal display device of the present application may include a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel may include a thin film transistor (TFT) substrate, a color filter (CF) substrate, and a liquid crystal layer formed between the two substrates.
  • TFT thin film transistor
  • CF color filter
  • the liquid crystal display panel of the present application may be a curved display panel, and the liquid crystal display device of the present application may also be a curved display device.
  • the thin film transistor (TFT) and the color filter (CF) of the present application can be formed on the same substrate.
  • FIG. 1 a is a transmission-grayscale value curve corresponding to a color shift angle of an exemplary vertical alignment type liquid crystal display device at a viewing angle of 0 °, a viewing angle of 45 °, and a viewing angle of 60 °.
  • the transmittance-grayscale value curve 110 corresponding to the 0 degree color shift angle of view
  • the transmittance-grayscale value curve 120 corresponding to the 45 degree color shift angle of view
  • the 60 degree color shift angle of view Corresponding transmittance-grayscale value curve 130. Therefore, as the angle of view of the color shift is higher, the brightness transmittance is higher in the same grayscale value.
  • FIG. 1b is an exemplary brightness-grayscale curve corresponding to the two improved color shift angles. Please refer to FIG. 1b.
  • the mainstream in the current MVA mode, the mainstream is mostly to distinguish pixels into bright areas and dark areas, so the optical performance can be mixed by two VT characteristics, and the brightness can be adjusted appropriately.
  • the area ratio of the dark area can effectively suppress the problem of medium grayscale whitening at large viewing angles.
  • the pixels 160 are mixed and adjusted in the brightness-grayscale scheme.
  • FIG. 2 is an exemplary mixed low color cast region model. Please refer to FIG. 2.
  • the main principle of a common Low Color Shift technology is to divide a conventional 4 area into 8 areas using a partial pressure or an additional driving method. Therefore, there are multi-category compensation effects when viewed at a large viewing angle, such as mixing the second low-color cast region 210 and the main low-color cast region 220 into the low-color cast region 200.
  • FIG. 3a is a schematic diagram of driving a color-blocking layer in different light-transmitting regions according to an embodiment of the present application
  • FIG. 3b is a driving equivalent circuit diagram of the color-blocking layer in different light-transmitting regions according to an embodiment of the present application.
  • a pixel structure includes a plurality of pixel units, and each of the pixel units includes: a light-transmitting area 300, and the light-transmitting area 300 includes a phase.
  • a main light-transmitting area 310 and a primary light-transmitting area 320 are arranged adjacent to each other; a color resist structure 305 is disposed in the light-transmitting area 300, and the color resist structure 305 includes a first color resist layer (red color resist layer) 312 A second color resist layer (green color resist layer) 314, a third color resist layer (blue color resist layer) 316, and a first color resist layer (sub-red color resist layer) 322, A second color resist layer (sub-green color resist layer) 324, a third color resist layer (sub-blue color resist layer) 326; wherein the red color resist layer 312, the green color resist layer 314, the A blue color resist layer 316 is disposed in the main light transmitting region 310; the sub-red color resist layer 322, the sub green color resist layer 324, and the sub blue color resist layer 326 are disposed in the sub light transmitting region 320 .
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 are in position with the sub-red color resist layer 322 and the sub-green color resist layer 324. And the sub-blue color resist layer 326 is oppositely disposed.
  • the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color resist layer 326 are disposed adjacently.
  • an area ratio of the main light-transmitting area 310 to the sub-light-transmitting area 320 is between 1.5 and 4.
  • the brightness of the main transparent region 310 is greater than the brightness of the sub transparent region 320, where The input voltage of the main light-transmitting region 310 is greater than the input voltage of the second light-transmitting region 320, so that the main light-transmitting region 310 and the second light-transmitting region 320 with different brightness are formed.
  • the main transparent The brightness of the light region 310 is greater than the brightness of the sub-transmissive region 320.
  • the driving equivalent circuit diagrams of the color-blocking layers of different light-transmitting regions 310 and 320 include: a plurality of main liquid crystal capacitors 341, 343, and 345; a plurality of main storage capacitors 342, 344, and 346; and a plurality of sub-liquid crystals.
  • FIG. 4a is a schematic view showing a method according to the present application, applied to a color filter on a thin film transistor substrate and having an insulating layer
  • FIG. 4b is a view showing a method according to the present application, applied to a color filter on a thin film transistor substrate and having A schematic view of the photomask
  • FIG. 4c is a schematic view showing the method according to the present application, which is applied to a color filter on a thin film transistor substrate and has a red photoresist
  • FIG. 4d is a schematic view showing a method according to the present application, which is applied to a color filter on a thin film. Schematic diagram of green photoresistance on a transistor substrate
  • FIG. 4b is a view showing a method according to the present application, applied to a color filter on a thin film transistor substrate and having A schematic view of the photomask
  • FIG. 4c is a schematic view showing the method according to the present application, which is applied to a color filter on a thin film transistor substrate
  • FIG. 4e is a schematic diagram showing a method according to the present application, which is applied to a color filter on a thin film transistor substrate and has a blue photoresistance
  • FIG. 4f is a diagram of a method according to the present application, which is applied to Schematic diagram of a color filter on a thin film transistor substrate with a white photoresist
  • FIG. 4g shows a method according to the present application, and a schematic diagram of a color filter applied to a thin film transistor substrate with a protective layer
  • FIG. 4h shows a display according to the application The method is applied to a color filter on a thin film transistor substrate and has a pixel electrode layer.
  • a liquid crystal display panel includes: a first substrate 400 having a plurality of pixel regions; the first substrate 400 includes: a first substrate 410; And a first insulating layer 420 is formed on the first substrate 410; a second substrate (not shown) is disposed opposite to the first substrate 400; and a liquid crystal layer (not shown) is disposed on the first substrate 410; Between the first substrate 400 and the second substrate; further including the pixel structure, disposed between the first substrate 400 and the second substrate.
  • a display device includes a backlight module and the liquid crystal display panel, including: a first substrate 400 having a plurality of pixel regions; the first substrate 400 includes: a first A substrate 410; and a first insulating layer 420 formed on the first substrate 410; a second substrate (not shown) disposed opposite the first substrate 400; and a liquid crystal layer (not shown),
  • the pixel structure is disposed between the first substrate 400 and the second substrate.
  • the pixel structure is further included between the first substrate 400 and the second substrate.
  • a method for manufacturing a liquid crystal display panel includes: providing a first substrate 410; and forming a first insulating layer 420 on the first On the substrate 410; sequentially forming a plurality of photoresist layers 430, 432, 434, and 436 arranged in parallel on the first insulating layer 420 to complete a color filter layer; and simultaneously forming a protective layer 438 on the color On a filter layer; and a first electrode layer 439 is formed on the protective layer 438, so that a first substrate 400 is completed; a second substrate is provided opposite to the first substrate 400, and the light interval is An object is located between the first substrate 400 and the second substrate to define a liquid crystal space and fill the liquid crystal space; and a liquid crystal layer is formed on the first substrate 400 and the first substrate. Between two substrates.
  • the plurality of photoresist layers 430, 432, 434, and 436 are sequentially formed on the first insulating layer 420 in order to complete a color filter layer.
  • the method includes: forming a light-shielding material layer on the first insulation layer 420 to cover the first insulation layer 420; and providing a photomask 440 on the light-shielding material layer, the photomask 440 having a light-transmitting area A non-light-transmitting area and a semi-transparent area; and performing an exposure manufacturing and a development manufacturing to pattern the light-shielding material layer to form the color filter layer, wherein in the main light-transmitting area 310
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 are sequentially arranged, and the sub-red color is simultaneously set in the sub-transmissive area 320 through the same mask 400.
  • the plurality of photoresist layers 430, 432, 434, and 436 are sequentially formed on the first insulating layer 420 in order to complete a color filter layer.
  • the method includes: forming a light-shielding material layer on the first insulation layer 420 to cover the first insulation layer 420; and providing a photomask 440 on the light-shielding material layer, the photomask 440 having a light-transmitting area A non-light-transmitting area and a semi-transparent area; and performing an exposure manufacturing and a development manufacturing to pattern the light-shielding material layer to form the color filter layer, wherein in the main light-transmitting area 310
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 are sequentially disposed, and then the sub-red color resist layer 322, the The sub-green color resist layer 324 and the sub-blue color resist layer 326.
  • This embodiment is to improve the pixel transmittance, and can effectively solve the problem of whitening or color shift of the liquid crystal display panel with a large viewing angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请是有关于一种像素结构及其应用的显示面板与制造方法,一种像素结构,包括多个像素单元,其中每一此像素单元包括:一透光区域,此透光区域包括相邻配置的一主透光区域和一次透光区域;一色阻结构,设置于此透光区域,此色阻结构包括一第一色阻层、一第二色阻层、一第三色阻层,以及相对配置的一第一次色阻层、一第二次色阻层、一第三次色阻层;其中此第一色阻层、此第二色阻层、此第三色阻层设置于此主透光区域;此第一次色阻层、此第二次色阻层、此第三次色阻层设置于此次透光区域。

Description

像素结构及其应用的显示面板与制造方法 技术领域
本申请涉及一种像素的设计方法,特别是涉及一种像素结构及其应用的显示面板与制造方法。
背景技术
液晶显示面板的通常是由一彩膜基板(Color Filter,CF)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer,LC Layer)所构成,其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模块的光线折射出来产生画面。按照液晶的取向方式不同,目前主流市场上的液晶显示面板可以分为以下几种类型:垂直配向(Vertical Alignment,VA)型、扭曲向列(Twisted Nematic,TN)或超扭曲向列(Super Twisted Nematic,STN)型、平面转换(In-Plane Switching,IPS)型及边缘场开关(Fringe Field Switching,FFS)型。
所述垂直配向型(Vertical Alignment,VA)模式的液晶显示,例如图形垂直配向型(Patterned Vertical Alignment,PVA)液晶显示器或多区域垂直配向型(Multi-domain Vertical Alignment,MVA)液晶显示设备,其中PVA型利用边缘场效应与补偿板达到广视角的效果。MVA型将一个像素分成多个区域,并使用突起物(Protrusion)或特定图案结构,使位于不同区域的液晶分子朝向不同同向倾倒,以达到广视角且提升穿透率的作用。
在IPS模式或FFS模式中,通过施加含有基本平行于基板的分量的电场,使液晶分子在平行于基板平面的方向相应而驱动液晶分子。IPS型液晶显示面板和FFS型液晶显示面板,二者具有广视角的优点。但由于蓝光的波长较短,与红光和绿光相比,达到相同穿透率(Transmittance)所需的相位差(Retardation)较小,红光、绿光和蓝光的穿透率-电压(VT)曲线不同;而且,红光、绿光和蓝光在面板中的聚酰亚胺(PI)膜、平坦化层(PFA)、涂覆层(OC)等膜面的穿透率不同,也会导致出现色偏问题。
在MVA模式目前主流是多是采用将像素区分为亮区与暗区,因此光学表现上可以由两种V-T特性混合,另外在适当调整亮暗区面积比例,在大视角时可有效压制中灰阶泛白的问题。
发明内容
为了解决上述技术问题,本申请的目的在于,提供一种像素的设计方法,特别是涉及一种像素结构及其应用的显示面板与制造方法,不仅可以有效解决色偏问题,同时可有效提升像素设计 开口率。
本申请的目的及解决其技术问题是采用以下技术方案来实现的。依据本申请提出的一种像素结构,包括多个像素单元,其中每一所述像素单元包括:一透光区域,所述透光区域包括相邻配置的一主透光区域和一次透光区域;一色阻结构,设置于所述透光区域,所述色阻结构包括一第一色阻层、一第二色阻层、一第三色阻层,以及相对配置的一第一次色阻层、一第二次色阻层、一第三次色阻层;其中所述第一色阻层、所述第二色阻层、所述第三色阻层设置于所述主透光区域;所述第一次色阻层、所述第二次色阻层、所述第三次色阻层设置于所述次透光区域。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请的另一目的一种液晶显示面板,包括:一第一基板,具有多个像素区;所述第一基板包括:一第一基底;以及一第一绝缘层形成于所述第一基底上;一第二基板,与所述第一基板相对设置;以及一液晶层,设置于所述第一基板与所述第二基板之间;还包括所述的像素结构,设置于所述第一基板与所述第二基板之间。
本申请的又一目的一种液晶显示面板的制造方法,包括:提供一第一基底;形成一第一绝缘层于所述第一基底上;依序形成多个平行配置的光阻层于所述第一绝缘层上,以完成一彩色滤光层;同时形成一保护层于所述彩色滤光层上;以及一第一电极层形成于所述保护层上,如此已完成一第一基板;提供一第二基板,与所述第一基板对向设置,其中光间隔物位于所述第一基板以及所述第二基板之间,用以定义一液晶间隔空间,并填满所述液晶间隔空间;以及形成一液晶层于所述第一基板以及所述第二基板之间。
在本申请的一实施例中,所述第一色阻层、所述第二色阻层及所述第三色阻层在位置上与所述第一次色阻层、所述第二次色阻层及所述第三次色阻层相对配置。
在本申请的一实施例中,所述第一次色阻层、所述第二次色阻层及所述第三次色阻层相邻配置。
在本申请的一实施例中,所述主透光区域与所述次透光区域的面积比例介于1.5~4之间。
在本申请的一实施例中,通过调整所述主透光区域和所述次透光区域输入电压的大小,使所述主透光区域的亮度大于所述次透光区域的亮度。其中,所述主要透光区域的输入电压大于所述次要透光区域的输入电压。
在本申请的一实施例中,所述制造方法,所述依序形成多个平行配置的色阻层于所述第一绝缘层上,以完成一彩色滤光层的步骤包括:在所述第一绝缘层上形成一遮光材料层,以覆盖所述第一绝缘层;在所述遮光材料层上设置一光罩,所述光罩具有一透光区、一非透光区以及一半透光区;以及进行一曝光制造以及一显影制造,以图案化所述遮光材料层,而形成所述彩色滤光层;其 中,在所述主透光区域依序设置所述第一色阻层,所述第二色阻层,所述第三色阻层的同时,通过同一道光罩,在所述次透光区域同时设置所述第一次色阻层、所述第二次色阻层、所述第三次色阻层。
在本申请的一实施例中,所述制造方法,所述依序形成多个平行配置的色阻层于所述第一绝缘层上,以完成一彩色滤光层的步骤包括:在所述第一绝缘层上形成一遮光材料层,以覆盖所述第一绝缘层;在所述遮光材料层上设置一光罩,所述光罩具有一透光区、一非透光区以及一半透光区;以及进行一曝光制造以及一显影制造,以图案化所述遮光材料层,而形成所述彩色滤光层;其中,所述主透光区域依序设置所述第一色阻层,所述第二色阻层,所述第三色阻层后;在所述次透光区域依序设置所述第一次色阻层、所述第二次色阻层、所述第三次色阻层。
本申请的有益效果是提升像素穿透率,且可有效解决液晶显示面板大视角泛白或色偏问题。
附图说明
图1a是范例性的垂直配向型液晶显示设备在0度视角、45度视角及60度视角的情形下,色偏角度所对应的穿透率-灰阶值曲线。
图1b是范例性的混合两种改善色偏角度所对应的亮度-灰阶曲线。
图2是范例性的混合低色偏区域模型。
图3a是本申请一实施例的不同透光区色阻层的驱动示意图。
图3b是本申请一实施例的不同透光区色阻层的驱动等效电路图。
图4a是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有绝缘层示意图。
图4b是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有光罩示意图。
图4c是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有红色光阻示意图。
图4d是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有绿色光阻示意图。
图4e是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有蓝色光阻示意图。
图4f是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有白色光阻示意图。
图4g是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有保护层示意图。
图4h是显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有像素电极层示意图。
具体实施方式
以下各实施例的说明是参考附加的图式,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。
附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。在附图中,为了理解和便于描述,夸大了一些层和区域的厚度。将理解的是,当例如层、膜、区域或基底的组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。
另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。
为更进一步阐述本申请为达成预定申请目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的一种像素结构及其应用的显示面板与制造方法其具体实施方式、结构、特征及其功效,详细说明如后。
本申请的液晶显示设备可包括背光模块及液晶显示面板。液晶显示面板可包括薄膜晶体管(Thin Film Transistor,TFT)基板、彩色滤光片(Color Filter,CF)基板与形成于两基板之间的液晶层。
在一实施例中,本申请的液晶显示面板可为曲面型显示面板,且本申请的液晶显示设备亦可为曲面型显示设备。
在一实施例中,本申请的薄膜晶体管(TFT)及彩色滤光片(CF)可形成于同一基板上。
图1a为范例性的垂直配向型液晶显示设备在0度视角、45度视角及60度视角的情形下,色偏角度所对应的穿透率-灰阶值曲线。请参照图1a,在0度色偏视角所对应的穿透率-灰阶值曲线110、在45度色偏视角所对应的穿透率-灰阶值曲线120及在60度色偏视角所对应的穿透率-灰阶值曲线130。因此随着色偏视角角度越高,在同一个灰阶值中,亮度穿透率就越高。
图1b为范例性的混合两种改善色偏角度所对应的亮度-灰阶曲线。请参照图1b,在本申请的一实施例中,在MVA模式目前主流是多是采用将像素区分为亮区与暗区,因此光学表现上可以由两种V-T特性混合,另外在适当调整亮暗区面积比例,所以在大视角时可有效压制中灰阶泛白 的问题。而在亮区像素140与暗区像素150,彼此在亮度-灰阶图式中混合调整成像素160。
图2为范例性的混合低色偏区域模型。请参照图2,在本申请的一实施例中,常见的低色偏(Low Color Shift)技术主要原理是将传统4区域利用分压或额外驱动方式再切割为8区域。因此在大视角观看下会有多范畴补偿的效果,如次低色偏区域210及主低色偏区域220相混合成低色偏区域200。
图3a为本申请一实施例的不同透光区色阻层的驱动示意图及图3b为本申请一实施例的不同透光区色阻层的驱动等效电路图。请参照图3a及图3b,在本申请的一实施例中,一种像素结构,包括多个像素单元,每一所述像素单元包括:一透光区域300,所述透光区域300包括相邻配置的一主透光区域310和一次透光区域320;一色阻结构305,设置于所述透光区域300,所述色阻结构305包括一第一色阻层(红色色阻层)312、一第二色阻层(绿色色阻层)314、一第三色阻层(蓝色色阻层)316,以及相对配置的一第一次色阻层(次红色色阻层)322、一第二次色阻层(次绿色色阻层)324、一第三次色阻层(次蓝色色阻层)326;其中所述红色色阻层312、所述绿色色阻层314、所述蓝色色阻层316设置于所述主透光区域310;所述次红色色阻层322、所述次绿色色阻层324、所述次蓝色色阻层326设置于所述次透光区域320。
在一实施例中,所述红色色阻层312、所述绿色色阻层314及所述蓝色色阻层316在位置上与所述次红色色阻层322、所述次绿色色阻层324及所述次蓝色色阻层326相对配置。
在一实施例中,所述次红色色阻层322、所述次绿色色阻层324及所述次蓝色色阻层326相邻配置。
在一实施例中,所述主透光区域310与所述次透光区域320的面积比例介于1.5~4之间。
在一实施例中,通过调整所述主透光区域310和所述次透光区域320输入电压的大小,使所述主透光区域310的亮度大于所述次透光区域320的亮度,其中所述主要透光区域310的输入电压大于所述次要透光区域320的输入电压,以此形成亮暗不同的主要透光区域310和次要透光区域320。
在一实施例中,通过调整所述主透光区域310中的数据线331、333、335和所述次透光区域320中数据线332、334、336的电压的大小,使所述主透光区域310的亮度大于所述次透光区域320的亮度。
在一实施例中,不同透光区310、320色阻层的驱动等效电路图,包括:多个主液晶电容341、343、345;多个主储存电容342、344、346;多个次液晶电容351、353、355;多个次储存电容352、354、356;多条扫描线330及多条数据线331、332、333、334、335、336;其中所述多条扫描线330连接所述多条数据线331、332、333、334、335、336。
图4a为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有绝缘层示意图、图4b为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有光罩示意图、图4c为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有红色光阻示意图、图4d为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有绿色光阻示意图、图4e为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有蓝色光阻示意图、图4f为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有白色光阻示意图、图4g为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有保护层示意图及图4h为显示依据本申请的方法,应用于彩色滤光片在薄膜晶体管基板上且具有像素电极层示意图。请参照图4a至图4h,在本申请一实施例中,一种液晶显示面板,包括:一第一基板400,具有多个像素区;所述第一基板400包括:一第一基底410;以及一第一绝缘层420形成于所述第一基底410上;一第二基板(图未示),与所述第一基板400相对设置;以及一液晶层(图未示),设置于所述第一基板400与所述第二基板之间;还包括所述的像素结构,设置于所述第一基板400与所述第二基板之间。
在本申请一实施例中,一种显示设备,包括背光模块,还包括所述液晶显示面板,包括:一第一基板400,具有多个像素区;所述第一基板400包括:一第一基底410;以及一第一绝缘层420形成于所述第一基底410上;一第二基板(图未示),与所述第一基板400相对设置;以及一液晶层(图未示),设置于所述第一基板400与所述第二基板之间;还包括所述的像素结构,设置于所述第一基板400与所述第二基板之间。
请继续参照图4a至图4h与图3a,在本申请一实施例中,一种液晶显示面板的制造方法,包括:提供一第一基底410;形成一第一绝缘层420于所述第一基底410上;依序形成多个平行配置的光阻层430、432、434、436于所述第一绝缘层420上,以完成一彩色滤光层;同时形成一保护层438于所述彩色滤光层上;以及一第一电极层439形成于所述保护层438上,如此已完成一第一基板400;提供一第二基板,与所述第一基板400对向设置,其中光间隔物位于所述第一基板400以及所述第二基板之间,用以定义一液晶间隔空间,并填满所述液晶间隔空间;以及形成一液晶层于所述第一基板400以及所述第二基板之间。
在一实施例中,所述制造方法,所述依序形成多个平行配置的光阻层430、432、434、436于所述第一绝缘层420上,以完成一彩色滤光层的步骤包括:在所述第一绝缘层420上形成一遮光材料层,以覆盖所述第一绝缘层420;在所述遮光材料层上设置一光罩440,所述光罩440具有一透光区、一非透光区以及一半透光区;以及进行一曝光制造以及一显影制造,以图案化所述遮光材料层,而形成所述彩色滤光层,其中,在所述主透光区域310依序设置所述红色色阻层312,所述绿 色色阻层314,所述蓝色色阻层316的同时,通过同一道光罩400,在所述次透光区域320同时设置所述次红色色阻层322、所述次绿色色阻层324、所述次蓝色色阻层326。
在一实施例中,所述制造方法,所述依序形成多个平行配置的光阻层430、432、434、436于所述第一绝缘层420上,以完成一彩色滤光层的步骤包括:在所述第一绝缘层420上形成一遮光材料层,以覆盖所述第一绝缘层420;在所述遮光材料层上设置一光罩440,所述光罩440具有一透光区、一非透光区以及一半透光区;以及进行一曝光制造以及一显影制造,以图案化所述遮光材料层,而形成所述彩色滤光层,其中,在所述主透光区域310依序设置所述红色色阻层312,所述绿色色阻层314,所述蓝色色阻层316之后,在所述次透光区域320依序设置所述次红色色阻层322、所述次绿色色阻层324、所述次蓝色色阻层326。
本实施例在于提升像素穿透率,且可有效解决液晶显示面板大视角泛白或色偏问题。
“在一些实施例中”及“在各种实施例中”等用语被重复地使用。所述用语通常不是指相同的实施例;但它亦可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (15)

  1. 一种像素结构,包括多个像素单元,每一所述像素单元包括:
    一透光区域,所述透光区域包括相邻配置的一主透光区域和一次透光区域;
    一色阻结构,设置于所述透光区域,所述色阻结构包括一第一色阻层、一第二色阻层、一第三色阻层,以及相对配置的一第一次色阻层、一第二次色阻层、一第三次色阻层;
    其中,所述第一色阻层、所述第二色阻层、所述第三色阻层设置于所述主透光区域;所述第一次色阻层、所述第二次色阻层、所述第三次色阻层设置于所述次透光区域。
  2. 如权利要求1所述的像素结构,其中,所述第一色阻层、所述第二色阻层及所述第三色阻层在位置上与所述第一次色阻层、所述第二次色阻层及所述第三次色阻层相对配置。
  3. 如权利要求1所述的像素结构,其中,所述第一次色阻层、所述第二次色阻层及所述第三次色阻层相邻配置。
  4. 如权利要求1所述的像素结构,其中,所述主透光区域与所述次透光区域的面积比例介于1.5~4之间。
  5. 如权利要求1所述的像素结构,其中,通过调整所述主透光区域和所述次透光区域输入电压的大小,使所述主透光区域的亮度大于所述次透光区域的亮度。
  6. 如权利要求5所述的像素结构,其中,所述主透光区域的输入电压大于所述次透光区域的输入电压。
  7. 一种液晶显示面板,包括:
    一第一基板,具有多个像素区;所述第一基板包括:
    一第一基底;以及
    一第一绝缘层形成于所述第一基底上;
    一第二基板,与所述第一基板相对设置;
    一液晶层,设置于所述第一基板与所述第二基板之间;以及
    一像素结构,包括多个像素单元,每一所述像素单元包括:
    一透光区域,所述透光区域包括相邻配置的一主透光区域和一次透光区域;
    一色阻结构,设置于所述透光区域,所述色阻结构包括一第一色阻层、一第二色阻层、一第三色阻层,以及相对配置的一第一次色阻层、一第二次色阻层、一第三次色阻层;
    其中,所述第一色阻层、所述第二色阻层、所述第三色阻层设置于所述主透光区域;所述第一次色阻层、所述第二次色阻层、所述第三次色阻层设置于所述次透光区域;
    其中,所述像素结构设置于所述第一基板与所述第二基板之间。
  8. 如权利要求7所述的液晶显示面板,其中,所述第一色阻层、所述第二色阻层及所述第三色阻层在位置上与所述第一次色阻层、所述第二次色阻层及所述第三次色阻层相对配置。
  9. 如权利要求7所述的液晶显示面板,其中,所述第一次色阻层、所述第二次色阻层及所述第三次色阻层相邻配置。
  10. 如权利要求7所述的液晶显示面板,其中,所述主透光区域与所述次透光区域的面积比例介于1.5~4之间。
  11. 如权利要求7所述的液晶显示面板,其中,通过调整所述主透光区域和所述次透光区域输入电压的大小,使所述主透光区域的亮度大于所述次透光区域的亮度。
  12. 如权利要求11所述的液晶显示面板,其中,所述主透光区域的输入电压大于所述次透光区域的输入电压。
  13. 一种液晶显示面板的制造方法,包括:
    提供一第一基底;
    形成一第一绝缘层于所述第一基底上;
    依序形成多个平行配置的色阻层于所述第一绝缘层上,以完成一彩色滤光层;
    同时形成一保护层于所述彩色滤光层上;以及
    一第一电极层形成于所述保护层上,如此以完成一第一基板;
    提供一第二基板,与所述第一基板对向设置,其中光间隔物位于所述第一基板以及所述第二基板之间,用以定义一液晶间隔空间,并填满所述液晶间隔空间;以及
    形成一液晶层于所述第一基板以及所述第二基板之间。
  14. 如权利要求13所述的液晶显示面板的制造方法,其中,所述依序形成多个平行配置的色阻层于所述第一绝缘层上,以完成一彩色滤光层的步骤包括:
    在所述第一绝缘层上形成一遮光材料层,以覆盖所述第一绝缘层;
    在所述遮光材料层上设置一光罩,所述光罩具有一透光区、一非透光区以及一半透光区;以及
    进行一曝光制造以及一显影制造,以图案化所述遮光材料层,而形成所述彩色滤光层;
    其中,在所述主透光区域依序设置所述第一色阻层,所述第二色阻层,所述第三色阻层的同时,通过同一道光罩,在所述次透光区域同时设置所述第一次色阻层、所述第二次色阻层、所述第三次色阻层。
  15. 如权利要求13所述的液晶显示面板的制造方法,其中,所述依序形成多个平行配置的色阻层于所述第一绝缘层上,以完成一彩色滤光层的步骤包括:
    在所述第一绝缘层上形成一遮光材料层,以覆盖所述第一绝缘层;
    在所述遮光材料层上设置一光罩,所述光罩具有一透光区、一非透光区以及一半透光区;以及
    进行一曝光制造以及一显影制造,以图案化所述遮光材料层,而形成所述彩色滤光层;
    其中,所述主透光区域依序设置所述第一色阻层,所述第二色阻层,所述第三色阻层后;在所述次透光区域依序设置所述第一次色阻层、所述第二次色阻层、所述第三次色阻层。
PCT/CN2018/106147 2018-09-07 2018-09-18 像素结构及其应用的显示面板与制造方法 WO2020047899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/461,999 US20200257150A1 (en) 2018-09-07 2018-09-18 Pixel structure, display panel thereof using same, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811042619.3A CN109116645A (zh) 2018-09-07 2018-09-07 像素结构及其应用的显示面板与制造方法
CN201811042619.3 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020047899A1 true WO2020047899A1 (zh) 2020-03-12

Family

ID=64858852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106147 WO2020047899A1 (zh) 2018-09-07 2018-09-18 像素结构及其应用的显示面板与制造方法

Country Status (3)

Country Link
US (1) US20200257150A1 (zh)
CN (1) CN109116645A (zh)
WO (1) WO2020047899A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038436B (zh) * 2021-11-23 2023-06-27 深圳市华星光电半导体显示技术有限公司 液晶显示面板及显示终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932608A (zh) * 2005-09-13 2007-03-21 友达光电股份有限公司 像素单元
KR20070110976A (ko) * 2006-05-16 2007-11-21 엘지.필립스 엘시디 주식회사 액정 표시장치용 컬러필터 기판의 제조 방법
CN107219670A (zh) * 2017-07-24 2017-09-29 深圳市华星光电技术有限公司 显示面板及显示装置
CN107505760A (zh) * 2017-09-18 2017-12-22 惠科股份有限公司 阵列基板的像素结构以及液晶显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717392B2 (ja) * 2004-08-13 2011-07-06 富士通株式会社 液晶表示装置用基板及びそれを備えた液晶表示装置
CN101308297B (zh) * 2007-05-14 2012-03-21 奇美电子股份有限公司 液晶显示面板及应用其的液晶显示装置
US10175543B2 (en) * 2015-06-12 2019-01-08 Samsung Display Co., Ltd. Display substrate and liquid crystal display having the same
KR102493218B1 (ko) * 2016-04-04 2023-01-30 삼성디스플레이 주식회사 액정 표시 장치
CN106292106B (zh) * 2016-08-31 2019-11-26 深圳市华星光电技术有限公司 一种阵列基板的电路结构
CN107561790A (zh) * 2017-09-19 2018-01-09 惠科股份有限公司 阵列基板及其显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932608A (zh) * 2005-09-13 2007-03-21 友达光电股份有限公司 像素单元
KR20070110976A (ko) * 2006-05-16 2007-11-21 엘지.필립스 엘시디 주식회사 액정 표시장치용 컬러필터 기판의 제조 방법
CN107219670A (zh) * 2017-07-24 2017-09-29 深圳市华星光电技术有限公司 显示面板及显示装置
CN107505760A (zh) * 2017-09-18 2017-12-22 惠科股份有限公司 阵列基板的像素结构以及液晶显示面板

Also Published As

Publication number Publication date
US20200257150A1 (en) 2020-08-13
CN109116645A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
US11126042B2 (en) Horizontal electric field type display panel, method of manufacturing the same, and display device
WO2017041346A1 (zh) 改善色偏的液晶显示面板
CN107505760B (zh) 阵列基板的像素结构以及液晶显示面板
WO2019127711A1 (zh) 显示面板及显示装置
WO2018176629A1 (zh) 显示面板及其制造方法
ITUD980090A1 (it) Metodo di produzione di due domini all'interno di uno strato di cristallo liquido, un dispositivo di visualizzazione a
US7106407B2 (en) Liquid crystal display device and electronic apparatus
US20190011784A1 (en) Pixel structure and display panel applying the same
WO2020087583A1 (zh) Coa型液晶显示器
JP2007163722A (ja) 液晶装置とその製造方法、位相差板、及び電子機器
JP2007034308A (ja) 液晶表示装置とその製造方法
US10578905B2 (en) Liquid crystal display device including liquid crystal capsule
US10761382B2 (en) Pixel structure
JP2004295077A (ja) 液晶表示装置および電子機器
WO2020107725A1 (zh) 彩膜基板及液晶显示面板
US20180275466A1 (en) Display panel and lcd panel and lcd apparatus using the same
WO2019085288A1 (zh) 显示面板及其制造方法
WO2018120393A1 (zh) 液晶显示面板的画素结构及其应用的显示设备
US9904115B2 (en) Liquid crystal panels
WO2018120647A1 (zh) 显示面板及显示装置的制造方法
WO2020047899A1 (zh) 像素结构及其应用的显示面板与制造方法
WO2019085291A1 (zh) 主动开关阵列基板及其制造方法与显示装置
WO2020047998A1 (zh) 画素结构及显示面板的制造方法
TWI798019B (zh) 顯示裝置
US11487149B2 (en) Curved display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932629

Country of ref document: EP

Kind code of ref document: A1